Abstract:
Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B_0) and transmit (B_1) field heterogeneities, and commonly biased by T_2/T_1. The purpose of this study is the development of a rapid T_1 and T_2 relaxometry method that is completely (T_2) or partly (T_1) bias-free. A new method is introduced to simultaneously quantify T_1 and T_2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. It is found that relaxometry with TESS is not biased by T_2/T_1, insensitive to B_0 heterogeneities, and, surprisingly, that TESS-T_2 is not affected by B_1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T_2 in vitro at 1.5 T and in vivo at 3 T. TESS offers rapid T_1 and T_2 quantification within one single scan, and in particular B_1-insensitive T_2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T_2 mapping, especially of the musculoskeletal system at high to ultra-high fields.