Dokumenttyp: Zeitschriftenaufsatz
Autor(en) des Beitrags: Rasthofer, U.; Burton, G.C.; Wall, W.A.; Gravemeier, V.
Titel des Beitrags: An algebraic variational multiscale-multigrid-multifractal method (AVM^4) for large-eddy simulation of turbulent variable-density flow at low Mach number
Abstract: An algebraic variational multiscale-multigrid-multifractal method is proposed for large-eddy simulation of turbulent variable-density flow at low Mach number. In the multifractal subgrid-scale modeling approach, the subgrid-scale quantities are explicitly evaluated from a multifractal description of associated gradient fields. The multifractal subgrid-scale modeling approach is embedded into a residual-based form of the variational multiscale method. A particular feature of the proposed form of the multifractal subgrid-scale modeling approach is scale separation by level-transfer operators from plain aggregation algebraic multigrid methods to identify the required smaller resolved scales. In this study, we introduce a novel development of the multifractal subgrid-scale modeling approach for application to turbulent variable-density flow at low Mach number. Based on the physical background, we derive a variable-density extension of the multifractal subgrid-scale modeling approach to recover the subgrid-scale velocity and temperature field. The proposed
method is validated via two numerical test cases. First, turbulent flow in a channel with a heated and a cooled wall is considered for two different temperature ratios. Second, turbulent flow over a backward-facing step with heating is investigated. The results obtained with the algebraic variational multiscale-multigrid-multifractal method are compared to results obtained with the widely-used dynamic Smagorinsky model and a residual-based variational multiscale method. Particularly the results obtained for turbulent flow in a channel with a heated and a cooled wall indicate the excellent prediction quality achievable by the proposed method for turbulent variable-density flow at low Mach number.

Stichworte:
- large-eddy simulation
- turbulent variable-density flow
- low-Mach-number flow
- multifractal subgrid-scale modeling
- variational multiscale method
- algebraic-multigrid scale separation
- turbulent channel flow
- backward-facing step

Dewey Dezimalklassifikation neu:
- 620 Ingenieurwissenschaften

Zeitschriftentitel:
- International Journal for Numerical Methods in Fluids

Jahr:
- 2014

Band:
- 76

Jahr / Monat:
- 2014-11

Quartal:
- 4. Quartal

Monat:
- Nov

Heft / Issue:
- 7

Seiten:
- 416-449

Nachgewiesen in:
- Scopus

Reviewed:
- ja

Sprache:
- en

Volltext / DOI:
- http://doi.org/10.1002/fld.3940

Verlag / Institution:
- Wiley

Status:
- Verlagsversion / published

Eingereicht (bei Zeitschrift):
- 15.04.2014

Angenommen (von Zeitschrift):
- 28.06.2014

Publikationsdatum:
- 05.08.2014

Semester (für SAP-Datenerfassung):
- SS 14