The challenge to fruitfully merge state-of-the-art techniques from mathematical finance and numerical analysis has inspired researchers to develop fast deterministic option pricing methods. As a result, highly efficient algorithms to compute option prices in Lévy models by solving partial integro differential equations have been developed. In order to provide a solid mathematical foundation for these methods, we derive a Feynman-Kac representation of variational solutions to partial integro differential equations that characterize conditional expectations of functionals of killed time-inhomogeneous Lévy processes. We allow for a wide range of underlying stochastic processes, comprising processes with Brownian part, and a broad class of pure jump processes such as generalized hyperbolic, multivariate normal inverse Gaussian, tempered stable, and \(\alpha \)-semi stable Lévy processes. By virtue of our mild regularity assumptions as to the killing rate and the initial condition of the partial differential equation, our results provide a rigorous basis for numerous applications, not only in financial mathematics but also in probability theory and...
relativistic quantum mechanics.

Stichworte: Levy processes, killing rate, Feynman-Kac representation, weak solutions, parabolic evolution equation, partial integro differential equation, PIDE, pseudo differential equation

Intellectual Contribution: Discipline-based Research

Zeitschriftentitel: Finance and Stochastics

Journal gelistet in FT45 Ranking: nein

Jahr: 2016

Heft / Issue: 20/4

Seiten: 1021–1059

Reviewed: ja

Sprache: en

Status: Postprint / reviewed

TUM Einrichtung: Lehrstuhl für Finanzmathematik

Urteilsanmerkung / Urteilsbesprechung: 0

Key publication: Nein

Peer reviewed: Nein

International: Ja

Book review: Nein

commissioned: not commissioned

Professional Journal: Nein

Interdisziplinarität: Nein

Occurences: · Hochschulbibliographie > 2016 > Fakultäten > Mathematik > M13 Lehrstuhl für Finanzmathematik (Prof. Zagst)