Fakultät für Mathematik

Autor(en) des Beitrags:
Hug, S.; Theis, F. J.

Titel des Beitrags:
Bayesian inference of latent causes in gene regulatory dynamics

Abstract:
In the study of gene regulatory networks, more and more quantitative data becomes available. However, few of the players in such networks are observed, others are latent. Focusing on the inference of multiple such latent causes, we arrive at a blind source separation problem. Under the assumptions of independent sources and Gaussian noise, this condenses to a Bayesian independent component analysis problem with a natural dynamic structure. We here present a method for the inference in networks with linear dynamics, with a straightforward extension to the nonlinear case. The proposed method uses a maximum a posteriori estimate of the latent causes, with additional prior information guaranteeing independence. We illustrate the feasibility of our method on a toy example and compare the results with standard approaches.

Stichworte:
Independent component analysis
Bayesian inference latent causes

Herausgeber:
Theis, F.; Cichocki, A.; Yeredor, A.; Zibulevsky, M.

Band / Teilband:
7191; Latent Variable Analysis and Signal Separation

Verlag / Institution:
Springer

Verlagsort:
Heidelberg

Jahr:
2012

Seiten:
520-527

Occurences: