Dokumenttyp: Journal Article

Autor(en) des Beitrags: Wu, Y.; Karttunen, V. A.; Parker, S.; Genest, A.; Rosch, N.

Titel des Beitrags: Olefin Hydrosilylation Catalyzed by a Bis-N-Heterocyclic Carbene Rhodium Complex. A Density Functional Theory Study

Abstract: Using a density functional theory method, we explored four reaction mechanisms of hydrosilylation of silane and ethylene as model substrates, catalyzed by a Rh(I) complex with a bidendate ethylene-bridged bis-N-heterocyclic carbene ligand. We examined in detail the energy profiles of the Glaser-Tilley, Chalk-Harrod, and modified Chalk-Harrod mechanisms, as well as of sigma-bond metathesis. The Chalk-Harrod mechanism and sigma-bond metathesis were determined most favorable, with the calculated highest relative activation enthalpies of 9.3 and 8.6 kcal mol\(^{-1}\), respectively. We also studied a potential side reaction in the sigma-bond metathesis that leads to the formation of ethane; its rate-limiting activation enthalpy is sufficiently high, 20.9 kcal mol\(^{-1}\) (14.6 kcal mol\(^{-1}\) higher than the competing barrier on the main pathway), not to be competitive. The feasibility of crucial reaction steps, C-H and C-Si bond formation, was found to correlate with the ease of conformational changes of the bis-N-heterocyclic carbene ligand, thus providing a hint at optimum ligand design.

Kongresstitel: ISI Document Delivery No.: 132IF
Times Cited: 0 Cited Reference Count: 59 Wu, Yin Karttunen, Virve A. Parker, Shane Genest, Alexander Roesch, Notker Wacker Chemie AG; Fonds der Chemischen Industrie We
thank Dr. J. Stohrer (Wacker Chemie AG) for valuable discussions. This work was supported by
Wacker Chemie AG and Fonds der Chemischen Industrie. We gratefully acknowledge generous
computing resources at Leibniz Rechenzentrum München. 0 Amer chemical soc Washington

Zeitschriftentitel:
Organometallics

Jahr:
2013

Band:
32

Heft / Issue:
8

Seiten:
2363-2372

Volltext / DOI:
http://doi.org/10.1021/om301236n

Occurences:
- Einrichtungen > Forschungszentren > Zentralinstitut für Katalyseforschung (CRC) >
 Publikationen_Jahr > 2013
- Einrichtungen > Forschungszentren > Zentralinstitut für Katalyseforschung (CRC) >
 Publikationen_Mitglieder > CRC Honorary Members > Rösch
- Einrichtungen > Forschungszentren > Zentralinstitut für Katalyseforschung (CRC)

entries: