A classification of Lévy processes via their symbols and its application to Finance

Abstract:
We classify Lévy processes according to the solution spaces of the associated parabolic PIDEs. This classification reveals structural characteristics of the processes and is relevant for applications such as for solving PIDEs numerically for pricing options in Lévy models. The classification is done via the Fourier transform i.e. via the symbol of the process. We define the Sobolev index of a Lévy process by a certain growth condition on the symbol. It follows that for Lévy processes with Sobolev index alpha the corresponding evolution problem has a unique weak solution in the Sobolev-Slobodeckii space $H^{\alpha/2}$. We show that this classification applies to a wide range of processes. Examples are the Brownian motion with or without drift, generalised hyperbolic (GH), CGMY and (semi) stable Lévy processes. A comparison of the Sobolev index with the Blumenthal-Getoor index sheds light on the structural implication of the classification. More precisely, we discuss the Sobolev index as an indicator of the smoothness of the distribution and of the variation of the paths of the process. This highlights the relation between the p-variation of the paths and the degree of smoothing effect that stems from the distribution.

Stichworte:
Lévy processes, PIDEs, weak solutions, parabolic evolution equation, Sobolev-Slobodeckii-spaces, pseudo differential operator, option pricing.

Intellectual Contribution:
Discipline-based Research

Zeitschriftentitel:
working paper

Jahr:
2012

Seiten:
-

Reviewed:
ja

Sprache:
en

Status:
Erstveröffentlichung

Format:
Text

Key publication:
Nein

Peer reviewed:
Nein

International:
Ja

Book review:
Nein

commissioned:
not commissioned

Professional Journal:
Nein

Occurences:
- Einrichtungen > Fakultäten > Fakultät für Mathematik > Zentrum Mathematik > M13 Lehrstuhl für Finanzmathematik (Prof. Zagst) > Journal Papers

entries: