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If man made himself the first object of study, he would see hcapable he is in going further.
How can a part know the whole?
(Blaise Pascal)
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Abstract

When robots leave industrial settings to enter collabonatiith humans in applications as
rehabilitation, elderly care and entertainment, the lcapiodality plays an important role in
guidance and object manipulation. When working with a hurnrsser,robots should be enabled
to contribute with their increasing capabilities to therglgatask goal. Consequently, the robot
is no longer seen as a tool, but a partner. Communication leetée two partners (human and
robot) via the haptic channel becomes a prerequisite. lerdodallow an intuitive use, the robot
should show human-like characteristics in its behaviosdigons. So far, corresponding design
guidelines for robotic partners in this context are raree @issertation addresses this lack of
knowledge by following a systematic approach based on figagns of human dyad’s behav-
ior in haptic collaboration tasks. Four achievements tdwdhis goal are presented. First, in
order to provide a profound theoretical background, a cotuzé, control-theoretically inspired
framework for haptic collaboration between two partnedeigeloped. The framework describes
human dyads as a reference for human-robot collaboratimthér, based on an overview of ex-
isting psychological studies as well as new experimentahots and according measurements,
design guidelines for robotic partners are provided inti@hato two central concerns: A) For
the first time, it is shown that haptic communication exiatg] that this form of feedback actu-
ally enables the integration and negotiation of individu&ntions of human partners. Thus, a
strong motivation for the integration of this modality in arhan-like manner in control archi-
tectures is given. B) Focusing on dominance behavior, @etglidelines for robotic behavior
in haptic collaboration are derived: the dominance behasxecuted by human partners in a
haptic collaboration task is quantified, the changes inviddal dominance behavior depending
on different partners are investigated, and predictionashihiance behavior in shared decision
making is enabled. The final contribution is realized by thpact on future research in the field
of haptic human-robot collaboration: The experimentalrapph to learn from human dyads
can be used as reference for further studies. The generepbhehind the framework offers a
foundation for modeling robotic partners, including theuks presented here.



Zusammenfassung

Wenn Roboter nicht nur im industriellen Kontext eingesetetden, sondern mit Menschen
in Anwendungen wie Rehabilitation, Untditstung fir altere Personen oder Unterhaltung zu-
sammen arbeiten, spielt die haptische Modakiine grofl3e Rolle in der Bewegunigisfung und
Objektmanipulation. Wenn Roboter mit Menschen zusammeitarb(kollaborieren), sollten sie
ihre zunehmendendhigkeiten zur Erreichung des Aufgabenziels einbring&mlen. Dann ist
der Roboter nicht als Werkzeug zu betrachten sondern alsdPatie Kommunikation zwischen
den Partnern (Mensch und Robot&ber den haptischen Kanal wird eine Grundvorrausetzung.
Um eine intuitive Handhabung zu gatwleisten, sollte der Roboter menscalenliche Charak-
teristiken in seinen Verhaltensweisen zeigen. Allerdisigsl entsprechende Design-Richtlinien
fur Roboter in diesem Kontext kaum bekannt. Die vorliegends®tation adressiert diese Wis-
senslicke, indem eine systematische Vorgehensweiségikwvird, welche die Untersuchung
des Verhaltens menschlicher Partner in haptischen Kaldiomsaufgaben beinhaltet. Vier Er-
folge hinsichtlich dieses Zielstkinen verzeichnet werden. Zum einen ist ein konzeptioselle
regelungstechnisch inspiriertes Rahmenwerk entwickeltiam, um den entsprechenden theore-
tischen Hintergrund zu bilden. Das Rahmenwerk beschreibsoidiche Partner als Referenz f
Mensch-Roboter-Kollaboration. Basierend auf eingoerblick bisheriger Studien, neuen Expe-
rimenten und den dazugétigen Messgif3en, knnen Richtlinienidir Roboter gegeben werden,
die zwei zentrale Anliegen adressieren: A) Zum ersten Mahkgezeigt werden, dass haptische
Kommunikation existiert und dass diese Form des Feedbatker dlie Verhandlung von Inten-
tionen erlaubt. Somit ist eine starke Motivation gegebérsa Modali&t in menschedhnlicher
Form in Regelungs-Architekturen von Robotern einzubringgnDas Dominanzverhalten in
den Vordergrund stellendpknen weitere Richtlinierid Roboter aufgezeigt werden: das Inter-
vall von Dominanzunterschieden, dass zwischen mensehmiBtartnern gefunden werden kann,
ist benannt worden; die notwendige ®aderung in Dominanzverhalten in Adohgigkeidiet
von verschiedenen Partnern ist quantifiziert worden undbDiaminanzverhalten in gemeinsa-
men Entscheidungen konnte prediziert werden. Der letzt&rd@pdieser Dissertation richtet
sich an zukinftige Forschung in Mensch-Roboter Kollaboration: Derezkpentelle Ansatz von
menschlichen Partnern zu lernen, kann als Referéngtere Studien dienen. Das generische
Konzept des Rahmenwerks bietet eine Grundlagez@ikinftige Modelle von Robotern, unter
anderem auf Basis der hiergsentierten Ergebnissen.
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Notations

Statistics

Fa,b

B,7,0,b,
X
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value of F-statistic; a,b: DoF of variance components
probability of test statistic if null-hypothesis is assuime
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Pearson correlation (can be effect size measure)
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partial eta square (effect size)

probability of a variable”

group mean

variance

error term

fixed regression coefficients

column matrix of regression coefficients

random effects

predictor variable

matrix of fixed regression coefficients

matrix of all predictors



1 Introduction

The goal of this dissertation is to outline a generic expental approach to design guidelines
for robots, which are built to collaborate with a human usex haptic task. Despite the technical
advances that enhance robots acting in dynamic, unstaccgnvironments, their collaboration
with human users is still challenging. For successful @atation, the robot has to be enabled
to contribute with its increasing capabilities to sharesktexecution. Such capabilities may be
cognitive (e.g. accurate memory, rational decision makiogphysical (e.g. strength, precision,
endurance). Furthermore, the robot may need to adapt tkeexagution to situation-specific
capabilities (e.g. workspace restrictions). Thus, inadmrative scenarios the robot should be
seen as a partner with its own action plans, which need totbgrated with those of a human
partner. Itis claimed that the robot should show humani&kavior characteristics to offer an
intuitive understanding of its actions to the human user{M@sbJe_el_a'.[LZQ_d4] state: “The hu-
man must be able to understand the reason for and effectbaffirotiative. These requirements
can only be met through careful application of human fagboisciples”, see alsmal.
[2005]; Demiris [2007]} Fong et al. [2005]; Grosz [1996];HEmub [2004] for this line of argu-
mentation.

So far there is little known about human behavior charasties in haptic collaboration. To
the author’s best knowledge no investigations on the iategr of individual action plans exist
in this context. Therefore, this dissertation addresses#havior of interacting human dyads
theoretically as well as experimentally, in order to untierd general principles of human haptic
collaboration. Based on this systematic approach, firsgdegiidelines for robotic partners in
haptic collaboration can be derived, and a foundation ferattquisition of further guidelines is
given.

In order to motivate the research interest in haptic hunedotrcollaboration, the following
section gives application examples.

1.1 Applications of Haptic Human-Robot Collaboration

In [B_ULghar_t_eI_ah.LLZD_dZ] a classification of haptic collabiwatasks is presented. The goal of
this classification is to reduce the complexity of haptidad@bration research by focusing on task
specific aspects. Mostly, haptic collaboration researchdes on interaction betweémo part-
ners (dyads)however, it can take place within bigger teams as well. d\'ﬂu'thgl

], two categories of haptic collaboration are distiisged in this dissertation:

1. joint object manipulation

2. haptic collaboration without object



1 Introduction

Figure 1.1: Example of a human collaboratively carrying an object with a robot.

Within the first category the task may require the partnejsitdly place/ removeor carry the
objecﬂ. These actions can be further specified e.g. by environrhamtatraints, goal positions,
and object characteristics. Whether a partner is actuattgssary for successful task execution
depends on these task-related attributes (comparb e.cargon et dl.L[M?]). An example of
a haptic task in human-robot collaboration, i.e. objectyéag, is given in Figuré1]1.

The second category represents tasks sugaiaigin kinesthetic teaching scenarios (called
“leading” and “restricting” il‘m& 2]), whidnvolves assistance to handicapped
people, rehabilitation or dancing. Tasks of this categawy eften related to dominance-,
capability- or knowledge-differences between the pasinérhese tasks are not defined for a
single person (with the possible exception of guiding ooeis limbs e.g. for stroke patients).

Robots can be partners in both task categories. They carboddiiz in tasks taking place in
reality, or virtual reality environments (VR). Some exenmplacenarios are listed below:

e Autonomous assistants and service robotsEspecially in the fields of elderly care, as-
sistance for handicapped (e.g. blind) people, but also asrgehousehold assistance,
robots are introduced as every-day partners, which aretatdapport humans in haptic
tasks by collaboration. Some exemplary scenarios incly@ei@nomous helpers which
can help to carry bulky objects such as a fridge or a tabl ' aLLZQb4];
b) an interactive shopping trolley as developedm ]; ¢) a wheelchair
which vision-based cognitive system controls the moverdeattion collaboratively with

the human, see Carlson and Demi Ls_[ZOOS] d) an intelligeailker, which adapts break

torque to the human and the environment presentéd_b;LHJl:alb@QQS_h] e) a walker

for blind people e.g. Lacey and Rodriguez-Losada [2008].

e Entertainment: Virtual reality (VR) scenarios are often unrealistic witlhdaptic feed-
back (when users can reach through objects without feebstrictions), especially in
social interaction with partners (e.g. handshake scehahﬁhngﬂﬁi.ﬁzoﬂg]). In addi-
tion, robotic partners are introduced in real life entemagnt such as in dancing, see e.qg.

Takeda et al/ [2007a].

e Medical training: In order to teach high-level motor skills as required in ncatappli-
cations, haptic collaboration is employed to enhance thktsnsfer between humans as

LIt has to be mentioned that objects can be transformed withouing them, however, this is not considered here.



1.2 Open Challenges

e.g. inLEsen et all [2007]; Nudehi et al. [2005], or betweeriraal agent and a human

trainee, e.d. Bettini et al. [2004]; Kragic et al, [2005].

¢ Rehabilitation and Therapy: The importance of haptic feedback in physical rehabilita-

tion has been stressed e.g. @ﬂOﬁEﬁEMZM M];Emt_dl.mg];

|BQp_e_s_C_u_e_t_$lL[;QbO]. So far robots have been used in thepphef autistic children with
kinesthetic tasks [Robins et al., 2d)09]. However, the twdneas (child and robot) were

not physically connected. In Morasso et hLLdOO?] the intgoaee for haptic feedback in
therapy is outlined.

e TelepresencesSignal-exchange between one or more humans and a remoterenent is
challenging. The development of assistance functiongvalloore accurate task execution
for two human operators acting in the same remote envirohroewhen the performance
of an individual operator is enhanced by assistance prdviyea virtual agent. This is
of high relevance in situations requ;ri_n_&orecise manifpoies as in outer space, compare

. [2

e.g. Hirzinger et al/[2005]; Oda et| bOl].
e \ehicle / aircraft control: In a first experimer‘JI Griffiths and Qillesbib_[;d)OS] outlined

the benefits of partly autonomous steering-wheels whenikgepvirtual car on the lane,
avoiding obstacles. Another study investigating the ¢fiébaptic guidance in curve navi-

ation while driving was conducted by Mulder et i[;boallrﬂﬁermord, Field and Harris

] compared different cross-cockpit linkages for coencral aircrafts.

It has to be mentioned that the precise separation betweetdssification of a robotic partner
and an assistance function is still subject to discussi@mneHan assistance function is considered
less autonomous than a robotic partner. Thus, the last ttegaaes are listed as possible fields
of application. There, however, the focus is on assistancetions, as the scenarios generally
require the responsibility for the task execution to be @htman side.

1.2 Open Challenges

If the goal is to design a robotic partner, which is able tdatmrate in haptic tasks, in contrast
to a tool operated by the human user, behavior guidelinethéorobot have to be established.
On the one hand the robot has to act in a way, which enablegutivie collaboration for the
user; on the other hand it has to understand and adapt tog¢hs astions. Therefore, one main
challenge in this field of research is to determine rulesctviiescribe human behavior in haptic
tasks in order to provide the robotic partner with an appat@model of the human user and to
derive guidelines for the robot itself.

In order to approach this goal ways have to be found to sdieadty investigate human behav-
ior. This can be done by psychological experiments. Howéwnited knowledge exists on the
methodology of psychological experimeimghe context of haptic human-robot collaboration.
This leads to two phenomena: First, general guidelines ontbodesign experiments in this
context are rare. Second, this lack of pre-knowledge resultather unsystematically related
research interests. Consequently, it is challenging tde@sisting results to each other as no
integrating conceptual framewoik established so far.



1 Introduction

In the author’s opinion one central challenge, which shda@dddressed in a first step, is an
empirical proof of theexistence of haptic communicatioii human dyads do not communicate
via this channel, in the sense of goal-orienit@egration of individual action plaﬂsthere IS no
point in building robots, which relate to this behavior. Hgtic communication exists, further
research effort on the engineering side to overcome clgiterelated to instabilities due to bilat-
eral energy exchange in direct contact can be considereitiwioife. In addition, psychological
studies on human behavior can only be motivated by posififeets of haptic feedback be-
tween partners. Then, psychological experiments shoglasfon potential key-factors in haptic
collaboration. Fundamental knowledge of haptic collaboraso-gained is required to support
dynamic modeling as a prerequisite for building robotidipars in this context.

1.3 Definition of Haptic Collaboration & Main
Assumption

There is no clear agreement on the definition of haptic coliaion in literature. Therefore,
this section will provide a working definition. Accompanginlefinitions can be found in Ap-
pendix(A.

This thesis investigates collaboration based onkiinestheticpart of thehaptic sense in
contrast to tactile information (though, the general tehaptic” is used in the following). “The
kinesthetic system receives sensory input from mechaapters located within the body’s mus-
cles, tendons, and joints” [Klatzky and Lederman, 2002]ptitaperception always involves the
exchange of (mechanical) energy - and therefore informatizetween the body and the world
outside Eg%]. The most important abgristic of this sense is that it is
the only human sense, which is capable of percemhadditionally directly related to action:
the human motor system. Hence, the haptic information atlasimteractive per se, as it allows
us to sensand act on our environment. It is agreed vviﬂh_Ham&d_&d_AE@&ﬁ] that the
resulting “bidirectionality is the most prominent chaexcstic of the haptic channel”. This is the
reason why literature sometimes refers to “haptic intésatin scenarios whereneperson ma-
nipulates an object. However, throughout this thesis #nistis reserved for interaction between
two cognitive systems, independent whether it is a humad dya human-robot team.

If two partners want to accomplish a task together, they doomdy interact but collab-
orate. “Whereas interaction entails action on someone or sonmgteise, collaboration is
inherently workingwith others” lHfoman and Breazéé_l,ld%], referring hg_[ﬂ&}ﬂﬁﬁ_&i;
J.Grosz and J;LLQbO]. Collaboration requires sharing tagksgd his implies the recognition
of the partner'sntentions (= action plans towards a goal) and the integration into &/n
intentions, i.e. thenegotiation of shared intentions in case of different individual intens.
Shared intentions “are not reducible to mere summationaividual intentions” MI.,
]. Hence, when two systems collaborate, the partnen®e st least one goal (what) and
are confronted with the challenge to find suitable actiompl@gow) to achieve iuﬁéls 96;
Johannsen and Averbukh, 1993; Tomasello et al.,/2005].

Haptic collaboration is based on the exchangefofce and motion signalsetween partners,
either in direct contact (e.g. the hands in guidance) or niakgect which is jointly manipulated.

2this will be defined more explicitly as “intention negotitin the next subchapter



1.4 Approach

As long as there is physical contact between the two parttiersphysical coupling leads
to a constant signal flow between partners. Thus, hapti@lothation issimultaneous and
continuousbecause the partner’'s dynamics are perceived while aclihg. direct feedback is
the main difference to turn-taking in talking and to formscoflaboration, where cooperation
takes place mostly sequentially, see e.g. Meulenbroek ¢2a07]; [Schub? et al. [2007];
nz IL[;O_QB&H; We|s|h_[g 09]. Not all signals tramstebetween partners are assumed

to have a symbolic character, i.e. are meant to transpontithal intentions to the partner
(compar h@S]). Therefore, one challenge in hapoitaboration research is to find out
if and how partners communicate via signals, and how shasgdnaplans look like. Herein,
mutualhaptic feedback is a key-concept. Precisely, “mutual’nefe the fact that both partners
are able to perceive and act upon each other via this sigrelaege allowing adaptation
processes, which is a prerequisite for collaborationshared action plans.

The main assumptionof this dissertation is that most tasks, which require ttaptilabo-
ration, can be described on an abstract level as the exacftia shared trajectory. This can
be the trajectory towards a goal position in joint object ipatation, or a guidance scenario.
Furthermore, the goal may lie in the actual following of thegectory as e.g. in dancing. Thus,
when two partners collaborate in a haptic task, they havatbefitask-optimal trajectory for this
interaction point or the object. This implies that the sddaaetion plan towards a task goal in
haptic collaboration can be based on the negotiation cédtajies between partners, compare
also| Evrard and Khedda]r_[;dOQ] for this consideration. Thagptic collaboration is closely
linked to manual motor control tasks. The partners can exghdorces to push or pull in
different directions and, by doing so, influence the pararet the shared trajectory. Depending
on the agreement between the partners on the shared trgjdetse forces may vary, reflecting
the different intentions of the partners.

In addition to one’s own proprioceptive feedback, haptiedigack from the partner and the
jointly manipulated object, feedback from other modadiiealso involved in most haptic collab-
oration scenarios: usually the partners can visually pezt¢be environmental changes which are
caused by their haptic interaction, and may also use vedoahwnication. However, throughout
this dissertation verbal communication is neglected iofaf a clear focus.

1.4 Approach

Two different approaches to investigate haptic collahorabetween humans and robots can be
separated:

1. Studying two interacting humans with the goal of knowledgquisition on intuitive hap-
tic collaboration. Then, a model for one human within theddgan be developed for the
implementation on a technical partner - one human is “sulet” by the robot. After-
wards, the model can be transformed for an increased use aidividual capabilities of
the specific partners without loosing the human-like catation patterns. This approach
is located early in the design process as it defines requirenod robotsbeforethey are
developed.
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Human-Human-Collaboration

T

Analysis
Model

TT

Human-Robot-Collaboration

Figure 1.2: The chosen approach in this dissertation to design intuitive technical part-
ners for haptic collaboration tasks is to analyze and model two collaborating
human partners (HHC) in controlled experiments in a first step. Then, one
human is “substituted” by a robot on the basis of these models. Thus, the
knowledge from HHC can enhance human-robot-collaboration (HRC) in ac-
tual applications.

2. Investigating directly how humans collaborate with oy evaluating the human-robot
interaction depending on variations in specific parametérsis, however, requires an
existing model of an interacting partner. Thus, the apgrazn be choselater in the
design process of robotic partners when pre-knowledgdsexigich allowes for a first
prototype of a technical partner.

Both approaches should be combined when building techneahgrs. Starting with the
first approach is useful for information on key-concepts enfildencing factors which leads to
the development of a model. Once this model or a simplifiechfisrimplemented on a robot, it
needs to be evaluated. For the successful introductionalfatic partner for haptic collaboration
tasks, this process will be run through iteratively.

At the moment few models are available, which can be impleéetkon technical partners for
haptic collaboration. Thus, recent research in this fiel@seon human-human haptic collab-
oration (HHC) as a reference when designing technical parire follows the first approach
||§;Qr1eville et al.| 2007: Evrard and KhedeQ; RahmaméZﬁOléiﬂe_e_d_e_t_hLLdOG]. It
is argued by these authors that intuitive human-robot boHtation (HRC) has to be based on
rules and models familiar to humans.LIn_Hinds_ét[a.L_LiOOIE] put forward that humans “will
be more at ease collaborating with human-like robots”, bsedhey “may be perceived as more
predictable” and “human-like characteristics are likelyehgender a more human mental model
of the robot”, when estimating its capabilities. The arguatnie supported baI.

], where it is stated that if no other mental model isilatsée, we tend to use the men-
tal model of ourselves for the partner. Therefore, thisattsgion is an attempt to understand
human-like haptic collaboration behavior by studying hardgads. The gained knowledge can
then be transfered to human-robot collaboration (sulttittapproach), compare FigureIl.2.
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Note, that this human-likeness is not interpreted as a yepldiuman behavior but a deeper
understanding of key-concepts.

Independent of the approach, at least one human partnevdlveénl in the corresponding
studies. As an implication for haptic collaboration reségssychological experimentsare
required: Due to the generally high variety and complexftiiuman behavior, a high quality of
experimental design and analysis is necessary in orderableicausal inferences, taking into
account the variability in human behavior and still allogiifor statements on a general level
representing the population of potential human partners.

Thus, this thesis will present psychological experimemgsollaborating humans to under-
stand key concepts in haptic collaboration and derive diniete for the development of robotic
partners resembling the first approach.

1.5 Main Contributions and Outline

In order to address the challenges in the research field dichaglaboration between humans
and robots, this thesis attempts to systematically ingat#i haptic collaboration between two
human partners as a reference for haptic human-robot cofiibn. Within a stepwise approach,
the following main contributions can be separated:

1. development of a conceptual framework for haptic coltabon

2. profound introduction of experimental methods inclggline introduction of new experi-
mental designs and measures in relation to state-of-thexperiments

3. experimental investigation of the existence of “haptimemunication” between humans
4. analysis of characteristics of shared actions in haptialzoration

Based on these four steps, it is not only possible to derived@sign guidelines for robotic
partners in haptic collaboration, but in addition, futureriw can profit from the theoretical
background and the presented methodologies. This pdténpact on future research can be
interpreted as another contribution of this dissertation.

In the following, the main contributions are summarized iorendetail relating to the open
challenges in this research field. At the same time, an @udifrthe thesis is given:

A Conceptual Framework for Haptic Collaboration is developed irChapter 2 It serves
as a basis for systematic psychological experiments andtasoeetical background for future
modeling attempts. This framework is based on theoreyicatived requirements on haptic col-
laboration partners (whether human or robot) in line witls&xg interaction models, which are
mainly developed in the context of human-computer intévaatr supervisory control. The new
framework is presented thoroughly and discussed in reldtidhe requirements. The purpose
of this work is two-fold: On the one hand, the close relatiorcontrol theory inspires future
models for robotic partners and supports the substitudjmm-oach when transferring knowledge
from human dyads to human-robot collaboration. On the oflaed, the framework enables
the structuring and integration of experimental reseanchaptic collaboration by identifying
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Figure 1.3: Overview on the composition of Chapters 2-7

important concepts, structures and signal flows. This waig, possible to precisely classify
which key-components are addressed in an experimental. sBadfar, no framework on haptic
collaboration exists in literature. Within the frameworkct levels of haptic collaboration are
distinguished depending on the processed intentions: dWerllevel refers to a collaboration
effort which integrates the two individual force outputskariented. Thus, dealing with the
challenge to agree on strategieshmwto move an object. The higher level is defined by shared
decision making between partners whereto move. These two levels structure the research
presented in the remainder of the thesis, where the expetandesign and related analyses
distinguish between these levels, compare Figure 1.3.

Before new experiments are designed, within the conceptaradwork to investigate human
dyad behavior in haptic collaborationascussion on Directions in State-of-the-Art Exper-
iments is presented for the first timghapter [3). This discussion is based on an overview of
more than 80 studies conducted in haptic collaborationAgpgpendix(B. Challenges in the de-
sign of future experiments in the context of haptic collaimn are identified within this chapter.

Taking into account the conceptual framework as well as thie ®f the art in experimental
research on haptic collaboration, new experiments aregdegi Chapter ), separating
Experimental Designs and Measures First, two general research questions are elaborated,
which are addressed by the experiments presented in ths tHEhen, two new psychological
experimental designs, investigating behavior on the twatibacollaboration levels, are intro-
duced. In the next step, measurements to analyze the bedad@ba gained by the experiments
are derived. The experiments and measures are the badie fi@sults obtained in the following
chapters. Additionally, the choice of experiments and messsis motivated extensively to show
the general relevance in the research field beyond the sgeelsented here. To the author’s best
knowledge neither the experimental design nor the meabkaresbeen used in any other studies
on haptic collaboration than those presented here.

Experimental results are presented in relation to the #imal considerations and ex-
periments designed in the previous chapters. The analykless the two central research
questions: 1) Does haptic communication existention Negotiation between human partners
via mutual haptic feedback is investigated @hapter [H employing an efficiency measure;
2) How do Shared Actions in haptic collaboration look like? As one important congept
dominance in human dyad behavior is addressed as a measadiviadual responsibility for
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the shared action<Chapter [6). Within both chapters human behavior is analyzed sedgrate
for the two levels of haptic collaboration. Thus, sharedislen making is studied for the first
time in haptic collaboration. On the basis of the deriveditssDesign Guidelinesfor robotic
partners in haptic collaboration are identified.

The last chapter draws gene€dnclusionsand gives an outlook on future research in haptic
collaboration Chapter[7). The provided theoretical knowledge in the conceptuah&aork, the
results on intention negotiation and shared actions, theraxentally derived design guidelines,
as well as the recorded data, which allow further analyse®eyond the work presented here,
and are promising tools for an enhancement of robotic peringhe future.



2 Conceptual Framework for Haptic
Collaboration

This thesis aims to broaden the understanding of human lmehiavjointly executed haptic
tasks in favor of more intuitive human-robot collaboratiorhis is approached by addressing
the behavior of human dyads as a reference. Thus, the gdahwitis field of research is a
systematic investigation of human collaborative behavibneoretical knowledge on internal
processes leading to this behavior is required as a firghpttéo structure the corresponding
experiments and to enhance modeling of robotic partnetssrcontext.

Even though interaction models describing informationcpsses in man-machine interac-
tion exist, they mainly focus on human-computer interactio supervisory control. The first
group of these models does not take components specific tw ltatlaboration into account,
the second group of models does not describe the behaviarootallaborating partners, but
how humans control non-autonomous systemsl In |Kannd,&@$] (referring toMs,
11996 Paris et élL,;le]), it is stated that “the basic fiamcdf man-machine interfaces is limited
to information exchange lacking more conceptual and irdeat aspects of communication that
enable humans to manage cooperative work efficiently”. dloee, the focus of a framework
that describes internal processes of partners collabgraia haptic signals should be on inten-
tional components including adaptation towards the partnerder to allow real collaboration,
the integration of individual intentions of two cognitivgssems is required. To the best of the
author’s knowledge, so far no framework exists, which dessrsuch processes responsible for
the resulting behavior in a collaborative haptic task.

The following chapter introduces a conceptual framevﬁbtok haptic collaboration based on
the requirements identified by discussing existing intevaanodels and their relation to haptic
collaboration. The framework enables structuring of fatstudies on haptic collaboration and
(control-theoretic as well as statistic) modeling in gahand specifically for the work presented
in the following chapters: Referring to the framework, it @spible to determine which compo-
nents are experimentally addressed or modeled, leadingigghar quality in integration of and
comparisons between corresponding results. The closgoredhip of the haptic collaboration
framework introduced to control-theoretic modeling eneges the knowledge transfer between
experimentally gained design guidelines from human-huomdiaboration and the actual mod-
eling of robots.

Requirements of a framework for haptic collaboration araiified in Sectioh ZJ1. Then, the
framework itself is described in Subchagied 2.2. In Subtvé&h3 the framework is discussed in
relation to the requirements. Possible extensions anddatfns for experimental research and

'Note that the haptic collaboration framework is called fifivork” in contrast to “model” because it consists of
a broad structure focusing on generalizability, rathen thiaprecise predictions expected from a model. Hence,
parameters and signal flows are not described in enougH tetalk about a model. However, guidelines for
models are implicit to the framework. If the authors of cifgpers referred to their work as a “model” the term
is repeated here.
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Response
Selection

Sensory | | Perception/

Processing Working Memory — Decision Making [

Figure 2.1: Simple model of human information processing [Parasuraman et al., ZOOd]

robotic partners are outlined. The chapter ends with a asrah including an outlook on future
work.

2.1 Requirements and Related Work
The author agrees with Johannsen and Averbukh [1993] ticantedevelopments in human-

robot interaction demand “more comprehensive modelingumhdn performance than it was
necessary for traditional supervisory and control syste#hen there is haptic collaboration
with robots, the human does not control a system with altsinpats in a supervisory manner
anymore. Instead, the human is part of the overall systemshondld be allowed to interact
intuitively by developing shared action plans with the part To understand this process, two
humans are considered within the framework. Later reseaiitinave to find ways to design
robots accordingly to substitute one partner. Focus of theéwork is to provide means in
order to achieve this goal. Next, necessary componentstfaptic collaboration framework are
investigated by relating to literature on interaction mede

2.1.1 Feedback Loop

In the context of human-machine interaction, Parasurarhah ﬁomb] introduce a four stage

model of human information processing in general (see Eifufd). Here, this model is

considered as a starting point from where further requirgsmare added. First, information
is registered, then consciously perceived and processethingognitive processes decisions
are reached, and finally an action is implemented based @ ttlecisions. This model is

introduced to specify the capabilities of a technical partmhich are related to its autonomy,
separately for these stages. It emphasizes the importdmExigion making, i.e. choosing an
action out of several possible. In this simplified model, eedback loops are included. Thus,
the information, whether an action led to an achievemenhefdesired goal is not part of the
model.

In an interaction model proposed M}ng%] it is ensjtead that the chosen actions
are expected to be goal-oriented. To ensure this, the di@iuaf executed actions is required
in relation to these desired goals. This is described asdbéex loop. In a seven level model
of human task performance it is strengthened that actiane@ronly executed, but additionally
evaluated, see Figure 2.2. In this model “interaction” refe an exchange between the human
and the environment. The model describes the developmemtgoil towards the “intention
to act”, to a sequence of actions, and the actual executighi®sequence which transforms
the environment. The state of the environment is then perdeand interpreted, and finally the
interpretations are evaluated. This evaluation may inftaghe goal. Thus, a feedback loop is
introduced which can influence actions before (intermegligsults are reached, and which may

11
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Goals
Intention to Evaluation of
act interpretations
Sequence of The Interpreting the
actions User perception
Execution of the Perceving the state
action sequence of the world
The World

Figure 2.2: This figure illustrates the feedback loop of individual goal-oriented actions
as proposed by [Norman [1998]. This model is called interactive, relating to
the interaction with the world. Thus, further components have to be added
to use the feedback loop in a description of haptic collaboration.

lead to further goals and sub-goals.

This feedback loop, which allows an adaptation of goalsyseerucial for haptic collabora-
tion, where two individual actions are continuously conaain It seems reasonable to assume
that both partners should be represented by such feedbapk.ldn dependence on the per-
ceived partner’s action and the resulting changes in theedhenvironment, own action plans
may have to be transformed to achieve the shared overall §balcontinuous feedback of the
partner’s actions as provided in haptic collaboratiorvedloeceiving information on the partner’s
actions in addition to feedback of the own acti@oesitinuously This should enable negotiating
or adapting intentions with/towards the partner during tesecution before the final goal is
reached. However, additional components are required tehtbe integration of two action
plans. Itis unclear, which information is exchanged betwtbe two partners. As a first step, the
next section considers information processed by one iddalibefore the exchange is discussed
further.

2.1.2 Levels in Information Processing

A well-known model of human performance and informationgassing for the design of
man-machine interfaces is developedLb;LBasmbis_enJ[1983)],cmlssifies different types of
processed information. The model distinguishes betwesmilifa and unfamiliar tasks and
resulting cognitive demands on the human. Therefore, itfisrdntiated between skill-, rule-
and knowledge-based task-levels, compare Figuie 2.3. fdeegsed information is grouped
in three categories: signals, signs and symbols, in reldbahe task-level. According to the
author thesame physical cuis interpreted differently on each level:

1) “At the skill-basedlevel the perceptual motor system acts as a multi-variategiraoous
control system synchronizing the physical activity in sashnavigating the body through the
environment and manipulating external objects in a timespmomain. For this control the

12
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Goals
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Behavior Feature Formation > Motor Patterns

Sensory Input Signals Actions

Figure 2.3: “Simplified illustration of three levels of performance of skilled human oper-
ators. Note that levels are not alternatives but interact in a way only rudi-

mentarily represented in the diagram” Rasmussen ﬂL9_8_3]

sensed information is perceived as time-spgigaals continuous quantitative indicators of the
time space behavior of the environment. These signals haveeaning or significance except
as direct physical time space data”. On this level, inforamais processed subconsciously,
interpretation is not necessary.

2) “At the rule-basedevel, information is typically perceived agn The information perceived
is defined as a sign when it serves to activate or modify peeaghed actions or manipulations.
Signs refer to situations or proper behavior by conventioprer experience. [...] Signs can
only be used to select or modify rules controlling the segirenof skilled subroutines”. Signs
can also trigger skill-based actions. This level is assediavith “if-then rules” by S,
, Chapter 7].

3) For theknowledge-baselkvel, it is stated: “To be useful for causal functional @asg in
predicting or explaining unfamiliar behavior of the envireent information must be perceived
assymbols [...] Symbols are defined by and refer to the internal cohadpepresentation
which is the basis for reasoning and planning.” When no rutesstored analytic processing
using conceptual information is necessary. Symbols rdlategoals and an action plan”
, , Chapter 71].

The processing of sensory input by one or several levelsléathe execution of rule-based
or automated actions. Rasmussen’s model was establishéeé iconhtext of interface design
for supervisory control. The model clearly states that @resery input can have very different
meanings. In haptic collaboration, not only physical cuesnftheenvironmentare processed
as signals, signs or symbols, but it is assumed that the gddysiies caused by the partner’s
behaviorare processed accordingly in haptic collaboration: his&ntions may be processed
subconsciously, trigger behavior rules or may requireaeiag) and prediction on the underlying
intentions. Thus, the introduction of this different levef information processing seems crucial
for intention recognition and resulting action plan negtitin as a main concept in haptic
collaboration. How negotiation of intentions between pars based on the different levels of

13



2 Conceptual Framework for Haptic Collaboration
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Figure 2.4: This figure describes a performance model for human-machine interaction
described inJohannsen and Averbukh [1993]. A supervisory (1) and a com-
municative (2) level are differentiated, resulting in different channels of in-
teraction with the interface. Both levels refer to a knowledge base.

information can take place has to be specified further.

One model which also differentiates levels of processedrmétion is proposed by
Johannsen and Averbukh [1993]. Only two levels are distaigad and depicted in Figure 2.4. In
contrast t(LRasmuiée[n_Llﬁ 83] these two different levelslaoesaparated within the communi-
cation taking place via a man-machine interface. The fivallis a control function level, which
is related to supervisory functions within a task. The séderel is a communication-specific
level. On both levels the processes of information selagfiooblem solving and action execu-
tion take place. Both, control and communication level ergeainformation with a knowledge
base. The authors assume human behavior needs to be mantelexdH levels. In this model,
two different channels of interaction are defined in accocgawith the two levels.

When transferring concepts of this model to haptic collationa(leaving other modalities
aside), it is important to clarify that only one channel sports information. Via haptic signals
the object is manipulated and intention negotiation withphartner via force and motion signals
takes place. Still, we can assume different levels of infdram processes (communicative and
supervisory) internally in the partners.

Another model which addresses the fact that the informagichanged between partners
can relate to different internal levels is presentecLb;Lﬁl&}@r_e_t_dl. 5]. Four observation
levels of in- and outputs between two systems are distihguis
1) Physical layer describes characteristics of the device or the human
2) Information-theoretical layer informs about bandwidth, data compression and other com-
munication characteristics of the two systems

14
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3) Cognitive layer transforms representational, procedural aspects ahictien into syntax and
semantics such as pattern recognition and learning. Tvés ie the bridge between low-level
and high-level (intentional) activity.

4) Intentional layer processes goals, believes, and the information from |devets

This model stresses the fact that goals are c@ctly exchanged in interaction and that the
actual information which is exchanged depends on charatitsr of the involved systems.
Except for this necessary compatibility of the two systemallow information exchange (and
thus the recognition of exchange and negotiation of inb@sli, this model introduces different
levels of abstraction in the context of interaction, in lmgh the models presented above.

It is important to note that the action goals, which are meféto in the presented models, can
themselves have a hierarchical ordI_QL[_QanLeLa.nd_SilhejﬂlL, ZThapter 5]. An overall goal can
consist of different sub-goals, which can be further dgtished into desired motor commands.
Action plans therefore exist on several levels as well, ag ttontain the plan to achieve those
goals. Thus, depending on the task, the goal of haptic awi¢dion can be described differently,
e.g. the goal to empty a room full of certain objects collaboely, contains the subgoals to
grasp, lift, and move these objects along position trajgeto For the joint achievement of a
goal, the two individual action plans need to be combinednae this possible, the individual
needs a representation of what the partner is intending.eReptation is addressed in the next
section.

2.1.3 Mental Models

After summarizing models with internal feedback strucsuaed different levels of processed
information and goals, the relation between this infororatand the environment is now ad-
dressed. This is done by introducingental modelswhich are an internal representations of
the external world, including the collaborating partner.ethl models allow to explain and
predict a system state and to recognize the relationshipdest system components and events
||V_Vi|son and Rutherfonld, 19$9]. Recently mental models rex@icreasing attention in interac-
tion design processes [Cooper et al., 2007; Galitz, 2007rS#tanl.| 2007]. Herein, it is aimed
to derive high system performance based on the approactinaiser can rely on existing
mental models when interacting with technical devicei_h:hB'Lds_Qn_el_éll_ﬂQ;M], the general
action-perception loop is further extended by mental n®dal the concept of learning. Three
different types of mental models are distinguished:
1) “Ends models” deal with perception and information abwb#t one is trying to accomplish
(goals)
2) “Mean models” contain plans of actions / strategies (intas)
3) “Mean/ends models” inform on feedback structures anesrul

Based on the mental models, the state of the system, whictutharhinteracts with, is pre-
dicted and actions on this system are planned. In this coréaxningis defined as “processes
by which people change their mental models” and involvesigba in: action plans (means),
goals (ends), cue selection including its interpretataord changes models of system functions
(means-ends). Learning happens via the feedback loop fnenodtcome of our actions. In
collaboration, both partners need to fisdaredmental models, to work on the basis of the
same representations and to exchange information whiclbeanterpreted correctly, see e.g.
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Doyle and Ford|[1998]; Klimoski and Mohammed [1994]; Leves@t al. [2001]. The concept
of shared mental models is closely related to intentiongeitmn, common ground, theory of
mind and social cognition. The importance of shared mentalets for man-machine interac-

tion is stressed by e.g. Hwan al. [2005]; Johannsen aatbakh [1998]; Rouse and Morris

[1998];|Staggers and Nor¢i 93].

Shared mental models are assumed to be necessary componemrchitecture modeling
behavior for successful haptic collaboration. We need towkithe state of the partner and
integrate itinto our own action plans. Therefore, this comgnt should be part of the framework.

The computational framework established_b;Mo_lp_eﬂ_b@_Q[k] introduces mental models
to kinesthetic tasks in interaction. It deals with processeimitation learning where two
humans are not physically coupled. First, a social inteackoop is described: A motor
command causes “motor consequences” in the environmeghvg@nerates a communicative
signal. When this is perceived by partners, it can have “infteeon their hidden (mental) state
which constitutes the set of parameters that determine blediavior”. Therefore, “if we know
the state of someone else and have a model of their behawe@hould be able to predict their
response to a given input”. Several challenges in this ghaeeare mentioned:

1) There is time delay between actions and responses in ayreavironment, making causal
inferences hard to predict.

2) Due to a generally complex, noisy, non-linear relatiopétetween actions and consequences
of one partner, the response of the other person to thisgrartctions is hard to predict. Thus,
there is noise in both partner’s perceptions of actions aride perception of responses.

3) Because social interaction can involve interaction witlitiple partners, which have different
dynamics, there exists no general model for all of them.

Motivated by these challenges, the authors assume thattdr@al models of the partner have
to be learned: “An inverse social model could be used to trgdisieve some hidden mental
state, and hence behavior, in another person”. Whereas docdhsequences of one’s own
movements, easy to learn feedforward models are proposhﬂdmtt_el_a.'. [[ZD_dS], for the
estimation of the partner’s hidden states inverse modelseguired: from the consequences we
perceive the motor command behind has to be estimated. Agaie challenges have to be met:
The degrees of freedom in the internal models of the partreeteamormous”. Furthermore, for
system identification, one would need a battery of inputsivisannot be given to a partner. Itis
assumed that learning of the others hidden states can take gue to the fact that the partners
are similar. Thus, the framework proposed_b;Mo_lp_eLLEM] provides further arguments
in favor of human-like robotic partners, which can then bedmxted easier by the human user.
In agreement with models presented in the previous sedtierframework froMl.
[@%} suggests a (hierarchical) structure for the corgmal extraction of intentions. According
to the authors, this hierarchical, tree-like structure élasnents of motor control on the lowest
level and more abstract representations as intentions @ad gn higher levels. This is in line
with a statement by Fri 8]: “the sharing must occur angnlevels of representation”.

In |C_ann_Qn;B_OAALeLS_el_hll_[19|93], it is reasoned that a team meimée multiple mental

models of the task, and the team. The partners must undéitamlynamics and control of the
equipment (object), the task, and the environment, thédr irothe task and they should have
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Table 2.1: Multiple Mental Models in Teams as proposed by (Cannon-Bowers et al.
I@é]

Type of Model Knowledge Content Stability of Model Content
Equipment functioning
Equipment Model| Operating procedures High

Equipment limitations
Likely failures
Task procedures
Task Model Likely contingencies Moderate
Likely scenarios
Task strategies
Environmental constraints
Roles / responsibilities
Team Interaction|| Information sources Moderate
Model Interaction patterns
Communication channels
Role interdependencies
Teammates’ knowledge
Team Model Teammates’ skills Low
Teammates’ abilities
Teammates’ preferences
Teammates’ tendencies

the knowledge, skills, preferences, and other attributélsedr partner, compare Talle 2.1. The
equipment model is considered quite consistent as the uBdrandle the object or equipment

in a certain manner. The most dynamic model is the team muadhéth highly depends on the

specific partner. A framework on haptic collaboration skhoemmbed according mental models
and allow for their transformation/adaptation to addressaroposed dynamics.

Here, it is assumed that the individual mental models inibaoilaborations need to concep-
tualize different external counterparts: not only a modé¢he task but also from the partner, the
environment and possibly the object are involved and havetshared. The models presented
in this section emphasize learning in as representatiamsttange with experience and require-
ments. In the next section, the state of the art in robotibitctures in relation to intention
recognition and mental models is presented.

2.1.4 Intention Recognition: Robotics

Intentionsare action plans on how to achieve a goal (compare Appéndiaig in contrast to
executed, observable actions, intentions are thoughtstiona. This section introduces two
exemplary architectures proposed for robots able of idemecognition.

Two different levels are distinguished hLA\ﬂZZ&Ew_and_BelgaQb[ﬂQ_%] in a “new interac-
tive paradigm”, where eeactiverobot allowing bidirectional skill-transfer is describ@ebmpare
Figure2.5). The basis of this skill transfer is seen in itienrecognition. A low and a high level
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Figure 2.5: Possible architecture for a reactive robot as proposed by

Avizzano and Bergamascd [1999]

of signal transfer between human and device are separdtedower level is not intelligent and
only transfers raw data whereas the skill transfer takesepten a higher level. The proposed
architecture for such a reactive robot includegaction modulevhich consists of three other
modules (reactive units): a) anterpreter modulewhich interprets the signals from low level
and estimates the task bjemction control modulg/hich determines the interaction with the user
and distributes information among other modules ojaleler modul@roviding information on
the user’s intentions, interpreted as goals. The reactotral loop exchanges signals with an
environmental model and a task model. In contrast to Joleamasd Averbukh 3] and in
line with LS_Qthaer_el_élLLlQbS], the two levels of the rabatrchitecture exchange informa-
tion with the user by an identical channel (here vision angtibp The reactive architecture is
implemented in Solis et hlL[&b?]. The model introduceskotic partner capable of intention
recognition, and explicitly names a teaching haptic i@tegfin contrast to a cooperative part-
ner. Based on recognized intentions of the user on Japartéss,léhe robot guides the user
along a preprogrammed trajectory to increase his/her peéoce. The importance of intention
recognition is stressed.

The robot “respects” the user’s intentions, thus, has noiatemtions and therefore, negotia-
tion of intentions is not modeled. However, in haptic codleddion, the two partners may have
different ideas on action plans due to their capabilitiesspnal preferences, or environmental
constraints. This model shows that intention recognitgopassible by robotic partners and can
be considered a valuable reference which can be extendibefur

Another architecture is presented by Schrempf E@HZOQE]ere intention recognition is
addressed in the context of a service robot; haptic colk&tmor is not addressed. In their model,
theintention recognitiormodule directly interacts with a database and the planngdafidual
movements, compare Figure2.6. The intention recognitiodute builds a model of the human
users and thus “allows for estimating the user’s intentromfexternal cues while maintaining
information concerning the uncertainty of the estimatehe &rchitecture, which has not been
implemented yet, enables the robot to proactively intendttt the user to gain more information
for intention recognition. This model is close to the heresented framework. However, as no
continuous interaction is addressed, adaptation towaelpartner is not modeled. Adaptation
is addressed in Sectién 2.11.8.
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Figure 2.6: System architecture proposed by [Schrempf et al! [2005]

Thus, there are existing models for robots dealing withntite recognition on the basis of
representations of the users. However, for the framewovkldped here, these models need
to be extended towards intention negotiation between pegtwhich may have different action
plans and which have to agree on them. The next section latkaction plans with more detail,
namely how actions are chosen to achieve a goal.

2.1.5 Decisions on Actions

Decision makings generally defined as the act of choosing one availabl@womiit of several
possibilities, which have different trade-offs betweendfés and costs. Some researchers refer
to decision as the “forming of intentions before actiﬂgltﬂh&Ma.IJ_?_é,Lln_pLeés', whereas others
define the exact time-point as decision, Qgﬁoff_m%mdﬁ@mb] Wick si_[;OjM] defines

a decision-making task with the following components:

1) “a person must select one option from a number of alteresiti

2) “there is some amount of information available with redgie the option”.

3) “the time frame is relatively long”.

4) “the choice is associated with uncertainty”.

After a literature overview on existing models of decisioakimngQKenlsLLZD_d4] develops a
model of the decision making process based on Rasmussend m&m |19B3]). Three
levels of decision making are introduced based on the irg&pon of environmental cues and
the resulting action execution (see also Fiduré 2.7):

1) Automatic informatiorprocessing: In accordance with the skill-based leve X
[@] the relation between perception and action doesaet higher cognitive conS|dera-
tions.

2) Intuitive informationprocessing: After the environmental cues are integratealeavhich is
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Figure 2.7: Processes in decision making as described in [Wickens, 2004, Chapter 7]

learned in earlier experiences can be activated to geremadetion.

3) Analytical informatiorprocessing: When decision time is available or the two lowagyes do
not provide solutions, analytical (knowledge-based) psses are involved in decision making
based on the help of cognitive simulations (mental modelgjevelop hypotheses about the
state of the environment.

The decision process contaimental model$o make mental simulations possible and eval-
uate the decisions. Furthermore, the importancieefibacks emphasized to correct poor de-
cisions. Thus, this model integrates requirements stat&ctions 2.1]11, 2.1.3 ahd 2J1.2 into a
decision process model. However, a partner is not addressled decision process.

For a framework of haptic collaboration it is proposed héxat these different layers exist
within the two individual partners. One important aspectaflaboration is that decisions on
action plans need to be shared with the partnershiared decision makindwo partners have
to agree on a solution. In the context of human-computeran:ltion,LQLo_sz_and_Hgﬂib_edger

] introduce shared decision making as crucial foradmkation. It is emphasized that
partners may reason differently in decision situationd, that “they must eventually choose
collectively”. Thus, they may prefer different action péague to different information bases or
perceived options. Shared decision making is the intef@aptiocess to negotiate action plans to
reach the shared goal. Thus, the second component of deaisking claimed by@s,

, Chapter 7] that information should be available in asil@t process can be extended to
information form the partner when shared decision makikgsalace. Then, the forth com-
ponent that decision making involves uncertainties besoaven more relevant as one partner
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has to recognize the intended decisions of the other patrtecannot be sure to do this correctly.

In klanngn;B_OMLeLs_el_hlL[lQb3] it is stated that shared detisieking can be understood

in relation to shared mental models: effective team perémoe requires coordination and a
“‘common or overlapping representation of task, requirasigorocedure and role responsibil-
ity”. Shared decision making is considered as a processath#éging, processing, integrating
and communicating information in support of arriving at skt@elevant decision”. For a general
overview on shared decision making, Eﬁ_e_Qasjdlla.n_h%S].

In|Evrard and KheddbL[;Qb9] decisions are addressed inghiext of haptic collaboration
between a human and a robotic partner. It is stated that cosiiiations between the two part-
ners are likely to occur if their individually intended teafories are not identical. It is proposed
that within a decision process this conflict needs to be rnagot and resolved. However, thus
decision processes are not implemented so far. In agre@mﬁerfMMdLheﬂdbL[;QbQ], it
is assumed that the process of shared decision making istampan haptic collaboration. The
next section will introduce a model directly addressing drga, which so far was not included
in presented models.

2.1.6 Partner

There are few interaction models which specifically takeréngs into account. One example is
introduced by Massink and Faconti [2002], where a partnadiressed on the group level of
the layered reference model for continuous interactiore Mlodel involves the following levels
and is depicted in Figufe 2.8:

1) Physical level where physical interaction takes place via signal exchahgformation from
the environment is processed. If the signals have certajninements, they are processed to
higher levels. On this level interaction is described agioaous. Effective interaction takes
place here. Problems can occur when signals from the aatifigstem are not adapted to human
perception capabilities.

2), 3), 4) Information processing levels?) a perceptual information processing level which
integrates cross modal information to achieve temporatidpcoherence; 3) a propositional
level, which mediates between skill-based (lower levelg) knowledge-based (higher levels)
behavior on the basis of pattern recognition and learnipg;@bnceptual level which deals with
goals, believes, intentions, and task requirements. Grialel, conceptual interaction between
human and computer takes place. However, this communichés to be refined into physical
signals which are exchanged on the physical layer.

5) Group level is explicitly responsible for interaction problems reldto the coordination of a
task. Social aspects, shared tasks, turn-taking protgsgalshronization of activity are handled
here.

This model is considered as a valuable reference when dergl@a framework for haptic
collaboration. It not only addresses a partner, but in &fdih levels 2) to 45 the authors explic-
itly refer toLRasmussJalh_LlQS?)], and the general model is éuntblated t 8]. The
conceptual interaction is interpreted as intention negiotn by the author of this thesis, as in-
tentions relate to goals which are the conceptual basiskfegecution. In Massink and Faconti
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Figure 2.8: “Reference  model for continuous human computer interaction”

[Massink and Faconti, |;O_02]

[@] it is stated that the reference model wants to givégdeguidelines for continuous inter-
faces. Even though, detailed modeling techniques are owided, models from manual control
in tracking tasks are mentioned as a possibility to fornealiee reference model. Such models
are addressed in the next section.

2.1.7 Manual Control Models

To gain information for the implementation of human behavimdels on robotic partners the
framework for haptic collaboration should be related totoartheoretic models. However, it
cannot be the goal to propose detailed parameters as thid wewaccompanied with a reduced
generalizability. The framework should be a basis for asynstwared haptic tasks, partners and
environments as possible. Signal flows and componentsrezhjun all of these task should be
addressed. Actions in kinesthetic tasks require motorobritherefore, existing control-models
for individually executed manual tasks can be consulted regesence for the manipulation of
an object. In the following, approaches are presented wdirglady integrate components men-
tioned in the previous sections into a general control laogxecute motor behavior, i.e. feed-
back loops, different levels of task execution, thus infation processing and mental models.
In an overview on models describing human operators inti@gevith dynamic systems,
such as vehicles and aircrafts, generally supervisoryrgbist given. All these models do not
assume a partndr |5herib@,j992]. Still, they deal witjedtary following. It is assumed by
the author of this thesis that haptic collaboration is basethe movement of an object or an
interaction point, which follows a trajectory. In kinestizetasks e.g. object manipulation or
guidance, trajectories play a key role because the goalobf tsisks can be defined by a position
or in the case of e.g. dancing by the trajectory followinglitsThus, the related action plans will
deal with options how to best follow such a trajectory. Tisisn line with the model of “path
planning” as basis of human-robot collaboration proposéﬂﬂempf_el_dlj_ﬁo_%]. Within the
models describing trajectory following presented|_in_[_$ﬂmi|,|_19_9_b, Chapter 1] is the concept
of nested control loops, which is introduced in the contéxircraft control. Sheridan relates
to MM&IM_[LQQM] when describing such a loop (semie{2.9) with a) arinner
control loop responsible for noise control, b) an intermgésiguidanceloop, which is dealing
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Figure 2.9: [Sheridan, (1992, Chapter 1] relates to Hess and McNally [1984] when pre-

senting this figure, describing “navigation, guidance, and control as nested
loops, as applied to an aircraft or another vehicle under multi-level control”.

with the general heading of the aircraft and the general fagedtory inherence, and c) an outer
navigation control loop which is concerned with planning of gross twipeies. The author
strengthens the importance of the concept of mental modelsupervisory control. Mental
models are necessary to understand the controlled prdoesstine the objective function and
to have general operation procedures and strategies. thersupervisory control is related to

Rasmussen’s framewoﬂk_LRa.smuiiem_ll%?,].
Describing pilot behavior from a control-theoretic pertﬂpe,LMQRu_eLand_KLendeh_ﬂQW]

introduce a model for tracking behavior, resembling tr@gcfollowing. It was shown that
this model can describe the joint performance of two coltabog humans in a tracking task
[Feth et a|.|;0_0_¢a]. Furthermore, McRuer and Krdnb_el_LhQEﬂ]actors which can influence
the pilot’s behavior. This is of interest as these key vadeglolefining behavior in a motor task
can be transferred to the motor task of haptic collaboratiptask variablesaddress all variables
outside the pilot and the control elements. The enormougerahpossible conditions is outlined
and the direct influence on the pilot's dynamics emphasia&fthin task variables a further
distinction between 2¢nvironmental variableand 3)procedural variabless made. The latter
ones are defined as aspects of the experimental procedeitediking or order of trials. Finally,
4) pilot centered variableare introduced e.g. training, motivation, physical caodit The list
of these variables resembles the list of mental models r:xemb)l Cannon-Bowers et al. |1993].

It is argued that in haptic collaboration the environmeny miaectly influence behavior as it
can provide restrictions influencing the observed exechéddvior. In addition, representations
of the environment may also influence the parameters in thera@oof motor behavior before
the movement is actually executed. Both paths should be ssktieén a framework. Based on
such internal representations, discussed as mental mod#stior 2.1.3, collaboration can take
place by integrating individual action plans. Thus, the paotners have to adapt towards each
other as outlined in the next section.

2.1.8 Adaptation
In their overview on human performance in manual contrdt¢ddagacinski and Flach, 2003,

page 350] state that the classical servomechanism pointesf gn human performance is
not recognizing the “adaptive nature of human performancé”is described that already
in simple compensatory tracking tasks humans adopt a dostriategy to accommodate the
system dynamics. Therefore, the classical control looptfacking tasks is extended by
a supervisory-loop which influences the controller to optentask-specific criteria. Each
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level contains a dynamic world model of the environment. sTinodel is then related to the
knowledge-, rule-, and skill-based behavior modéJ_o_f_BaSﬂMﬂQ_&B] to enforce the authors
opinion of qualitative differences between the sub-lodpsuis, not only the adaptive capabilities
of humans are stressed, also the possible integrationakitigabehavior towards Rasmussen’s
model is introduced. This extensions of the tracking cdritiop will play a key-role in the
haptic collaboration framework.

Here, it is expected that adaptation does not only take ptacards the environment and the
controlled object but above all towards the partner gair@véver, there is limited literature on
adaptation between partners in collaboration. In Joharmseodel (Johannsen and Averblikh

1), adaptation of a technical system towards the humaaddressed. However, the
technical system does not have the status of a partner. tatedsthat interfaces should be
adaptive to increase the effectiveness of interaction la@disers acceptance. For a near-optimal
adaptation the following challenges have to be addressed:

a) informative parameters for user modeling have to be &=lec

b) levels where adaptation is meaningful have to be defined

c) robust metrics to measure the difference between asswisexdmodels and online user
behavior have to be identified

d) the laws of adaptation in man-machine interaction haveetwlentified

These challenges can provide guidelines how adaptatioheartegrated into the haptic col-
laboration framework. They can be transformed for a framikwlescribing the haptic collabora-
tion between two partnerd hus, adaptive components are closely linked to intemongnition
as the latter provides information about how to adopt to tméner. However, for haptic collab-
oration the integration of the recognized partner’s interg and own (possibly varying) action
plans needs to be specified further.

2.1.9 Summary of Requirements

The goal of this chapter is to establish a framework, whidhsitates the processing of
information between partners and within partners to acdisim@ jointly executed, kinesthetic
task. Such tasks include object manipulation as movingawipd) and tasks with direct contact
between partners as in guidance. It is assumed that thellaastagoal, e.g. the goal position
for an manipulated object is known to both partners. Sewatbn plans can exist to reach a
goal (action plan towards goal = intention). Therefore, yad¢@ncept of the haptic collaboration
framework is the negotiation of intentions because pastdemot necessarily agree on the same
action plan a priori. Furthermore, the framework shouldcdes collaboration between two
humans as reference for human-like behavior, Con{paLe_&ikEnBI_ai.MS]. The behavioral
models developed within such a framework can then be treesfeéo robots as technical
partners considering specifications according to the abilhardware and tasks. Based on the
literature overview above, the following claims on a haptdaboration framework are asserted:

1) Haptic Collaboration is explicitly addressed here, contrasting other formsneriaction.
Thus, signals exchanged by the partners and the enviroranenbetween partners are motion
or force related.
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2) Feedback Loop and Manual Control Models contrast to pure interaction, shared goals
are a key concept to allow collaboration. To achieve gomrbed performance the compo-
nents of the framework should address action plans (irtes}iand their execution. An action-
perception-loop is thus the baseline of the framework basd@arasuraman etlal. |2£b00], where
feedback loops allow the evaluation of individual and jagtions @8}. As haptic
collaboration is closely connected to individual manuaktaxecution, control-theoretic mod-
els established in this line of applications (see Hess anklaWg [1984];Jagacinski and Flach
[hDQé];LShﬂdenLLl&éZ]) can provide the basis of the hapti¢éaboration framework. Those
control-theoretic tracking task models can then be consdlthe lower level of interaction as
e.g. presented in Johannsen and Averblikh [1993] or Avizaadd3ergamasto [1999].

3) Levels of Information Processingtherein, the goals, intentions and actions should be de-
scribed by a hierarchical structure of processed infomnatiThe framework aims to a close
relation to_Ra.smussJeh_[lg%] as a well established modethwias been adopted to supervi-

sory control in guidance dy Hess and MgNlalIy |1bé4|; Shgﬁd@_&i] and to decision making

by [2004] both important in haptic tasks. Rasmusserdel is integrated in the work
of Johannsen and Averbukh [1993] and Massink and Facor@iRThus, the differentiation of
automatic, rule- and knowledge-based behavior shouldapsferred to haptic collaboration.

4) Mental Models and Intention Recognitiohﬂas&ink_and_EacgﬁltL[ZQbZ] state that individ-
ual behavior models are not sufficient to describe intesactiinteraction specific challenges,
such as coordination, social aspects, or synchronizatiacivity, have to be addressed by
modules in the haptic collaboration framework. The intégraof two individual actions in a
shared action plan and the involved intention negotiatiavento be addressed by the frame-
work to answer those challenges. Mental models as the bfsiteation recognition have to

be introduced as described by Avizzano and Ber ﬁsg_oj[ﬂlggﬂhon-Bowers et hIL[LQIQB];
Johannsen and Averbukh |1$9i3]: Schrempf etlal. [2005]; \Alblet al. Irzoob]. The architec-

tures for robots as proposed by Avizzano and Bergamasco [198Brempf et al.|[2005] are a

reference how to embed intention recognition in contreletietic models. However, they need to
be extended towards a robot as a partner, which does notecdgnize intentions, but actually
negotiates them based on its (semi-)autonomously dewelopentions.
5) Shared Decision Making and Adaptation towards the Partrigoth, adaptation and shared
decision making, are closely related to intention negioimat The partners can have different
action plans in mind when confronted with the task or sub{asknpare Evrard and Kheddar
1), they may also have different capabilities or prefices (compare team models in
nnon-Bowers et I|._[;9|93]). However to successfully acdisimphe task, partners have to
agree on one shared action plan, as the resulting perfoerdpends on both their inputs. This
can be achieved by shared decision making and the willirgteeadapt towards the partner.
Adaptation towards the partner is considered a preregus$high performance especially when
aiming for a shared goal (sé_e_J_Qhanmn_and_A\Ldr [1998p haptic framework should
identify the parameters or modules, which are adapted. ,Titwdl explicitly address the rela-

tion to a partner as proposed|by Massink and chbmi_(ZO&ﬂf}neling existing human-machine
interaction models.
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2.2 Haptic Collaboration Framework

In this section, a conceptual haptic framework for dyadilatmration in kinesthetic tasks is
proposed based on the requirements investigated in thedeson.

The framework is based on the assumption that on a task-émdiemt level haptic tasks (as
those summarized in Sectibn1.1) can be described as a movainag a trajectory, compare
also Sectiol 1]3. Depending on the task, the focus liesrettheeaching a goal position (e.g.
placing an object) or on following an optimal trajectorygieguidance or dancing). The follow-
ing description will focus on the first case. Within Secfio8,2he generalizability towards other
tasks is discussed.

The haptic collaboration framework is depicted in FigurER It illustrates two collaborating
partners, jointly manipulating arobject. The framework presents an architecture of underlying
structures relevant to describe the process of intentigration of two human partnersThe
framework is meant to enhance the understanding of thessgges towards a control archi-
tecture, which can be implemented on robotic partners aligiwhem human-like behavior, and
thus, intuitive human-robot collaboration. For now, tweerracting humans are assumed. The
specifications required due to restrictions or variationshie perceptual or cognitive systems
when one partner is replaced by a technical system are netdsoed in detail in this fist ap-
proach. The two partners are depicted differently, evendhothe characteristics of subsystems
and signals flows are considered identical (parameters pecifie controllers however, may
vary). The motivation for the different depiction is a bettgerview: InPartner 2thethree main
unitswithin each partner are depicted. They will be explainederiext section. The visualiza-
tion of Partner 1is used to give a detailed image of the subsystems withinhitee tmain units.
These subsystems and the corresponding signal flows wolkeslescribed afterwards.

Haptic collaboration takes place within a cert@nvironment in which the two partners
manipulate an object. This framework is focusing on freaegpmotions in the context of
joint object manipulation. Further extensions toward«dasvolving contact forces with the
environment are possible. For now, the environment doegresient forces associated with
contact between the object and the environment. Thus, Isftpva from the environment
generally refers to non-haptic information: visual anditargl cues (and in case of a technical
partner possibly additional sensors).

The three main unitsdepicted inPartner 2 can be summarized as follows: Action plans
how to a achieve the overall task goal of moving an object td&/a goal position, i.e. the
desired shared object trajectory, is developed imptaaning unit This desired shared trajectory
is sent from theplanning unitto the control unit where the motor command to execute the
planned action is defined. Output is the individual forceligpipon the object. Thelanning
unit exchanges information with thedaptation unit which contains mental models of one’s
own system, the task, the partner and the environment. Kssraed that the overall goal is
not communicated via the haptic channel but known to bottnpes by other modalities. The
definition of the shared desired trajectory and the compmsaf deviations from this desired
trajectory, both summarized as action plans, require fitemecognition. And based on this

2|t is not assumed that the defined structures and signal flesesmble the human physiological or neurological
systems.
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2 Conceptual Framework for Haptic Collaboration

and according prediction on the partners behavior, integrand negotiation of action plans
between partners and an adaptation towards the partnerecachiieved. These processes take
place in theadaptation unitand are derived based on an interpretation of the signalsatea
received via the sensory system in t@ntrol unitcomparing the mental models stored there.
The adaptation unitcan then influence thplanning unitand thecontrol unit to realize the
adaptations. Now, the units are described in more detailte Nwat the processes within one
partner are described, hefPartner 1

2.2.1 Control Unit

The purpose of theontrol unitis the actual task execution, i.e. to apply appropriateg®mmn
the object keeping it on the desired trajectory towards thexail goal position. It is designed
as an action-perception-loop and involves a feedbacktsiito evaluate the performance, the
deviation between desired and actual object trajectorye ddntrol unit consists of the three
subsystemssensory systermotor systenandtracking controllet

The input of thetracking controlleris the tracking errore; = xil — 7,1), the difference
between desired and perceived trajectorypaftner 1 Information about the desired shared
trajectory:zci1 is received from th@lanning unit Output of thetracking controller the control
signal, is the forcg{ partner 1desires to apply on the object. The force is executed bynibter
systemleading to a measurable behavjr which due to noise and variable impedances in the
motor system is not necessarily identical with Summed with the force applied by the partner
f2, this force is responsible for the object movement, thusrikasurable, shared trajectary.
This trajectory is perceived by the sensory system. Dueddithitations and characteristics
of this system (e.g. bandwidth, resolution, attention)gkeceived object trajectory, ; is not
necessarily identical to the real trajectary

Taking into account Newton’s third law it is assumed that filmee applied on the object
by partner 1 is also the forgeerceivedby his/hersensory systemf;. There, however, the
signal may again be subject to noise. This also results imskamption that the partner’s force
is not perceived directly but has to be inferred by relating dbject movement to the own
applied forces (more information is given when describimg mental models in Sectign 2.2.3).
Furthermore, thsensory systeiperceives environmental information by other modalitiesnt
the haptic channel, e.g. the goal or obstacles can be pedcegigually; information on the
partners behavior, e.g. head movements can be collectedesbdl communication between
partners could take place. In addition, tensory systeras knowledge on configurations in
themotor systemi.e. proprioceptive feedback.

As the position of the object also depends on the partnetisres; i.e. his/her applied forces,
there exist several possibilities how a position error camdaluced by the collaborating dyad.
The process of intention negotiation mainly takes placé@&ataptation unit but the resulting
desired behavior is executed tigicking controller Based on estimations of the partner’s force,
a strategy is realized defining how much force is applied &rete the desired trajectory. The
structure and/or parameters of tin@cking controller and thus, the reaction to an existing track-
ing error, can be changed depending on an adaptation ruteedefi theadaptation of low-level
collaboration This adaptation component is part of the adaptation uagcdbed further in the
corresponding Sectidn 2.2.3.
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The parameters of each of the three subsystems in this @niichmecessarily time-constant.
Changes can occur due to adaptation towards the environme it eelation to the physiological
system (hardware for robotic partners), e.g. after exlh@ustf the muscles or depending on
angels in the limb-joints it may be necessary to change thenpeters in thenotor systento
follow the desired trajectory. Similarly, th@ensory systeroan change its focus of attention
or adapt to environmental conditions. These variationsrateced by thephysical interaction
adaptation componenagain part of the adaptation unit.

The tracking controller is described as position controNehich can be realized e.g. with
controllers known from manual task control in tracking mskomparé Jagacinski and Flach
[|;O_0_‘$]; McRuer and Krendei_[;9_|74||; Sheridan |1b92]. Of ceyrdhis simple structure can be
extended e.g. allowing feedforward in addition. For robgtartners, the specification of motor
and sensory system depends on the available hardware. lugghtthe goal of theontrol unit
is clearly specified here, its realization may vary depemdimthe details considered in the motor
system. A profound description of components of this systechtheir modeling is beyond the
scope of this thesis.

2.2.2 Planning Unit

Aim of the planning unitis to provide possible goal-oriented object trajectoreperform a
given haptic collaboration task. In real-life scenariaffedent options for the object trajectory
towards the goal may exist, e.g. a goal may be reached bydfiffeoutes; accuracy or time
can have different priorities; constraints in the envir@minor the partners’ capabilities may be
answered in different ways. Furthermore, the two partnarst@ave different representations
of the task and the environment and their personal prefeseoan differ. Thus, two modules
are proposed for thplanning unit a) aplanner, which examines the possible trajectories and
chooses the trajectory perceived as optimal by the indalidand b) adecision makerwhich
chooses a desired trajectory considering the output frarpllinner andthe input from the
partner to derive aharedaction plan.

The plannerreceives its input from thadaptation unit Information related to e.g. environ-
mental information on object properties, the goal posijtmd positions of possible obstacles
is transmitted. According signals are first perceived byséesory systerand interpreted by
the adaptation unitand together with the here-stored knowledge on the taskfgdhkr trans-
ferred to theplanner In Figure[2.1D this signal flow is depicted in a lighter color to contrast
it from more specific signal flows. Qualitative informatioefohed by\ can for example contain
information on the perceived physical fitness of the part8ech information could change the
individual optimization rule, and thus, the preferencagussible trajectories. In the given ex-
ample, if the partner looks weak, the length of the trajgctamn be optimized so he/she does not
have to carry the object for too long.

Based on this information, the planner can suggest a set silpp@snotion trajectories to
the decision maker It is assumed that these trajectories have a discrete nurAdditionally,
the plannerweights these trajectories based on preferences recewedtfieadaptation unit
The resulting signal for thelecision makercan thus be described asz/ ,..w} ] ., where
w!...w™ are theindividual weights of the different trajectories. Note that accordinghe
hierarchical structure of task goals, there can be desregdctories proposed for these sub-
goals. Examples of such discrete options for the desiregcbbjajectory in these sub-goals can
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be found in obstacle avoidance, i.e surrounding it cloclardgiclockwise.

The decision makeselects the individually desiresharedtrajectory for the objectafil).
This is done by considering the own preferences, out of tilssipte trajectories proposed by the
planner, and additional input from the partner, i.e. hisdstimated intentions e.g. based fn
the estimated forces applied by the partner. The integraifdwo different individual action
plans towards a shared intention is challenged dependirtigeotieviation between the personal
preferences. Furthermore, the actual trajectary, and the individual force input to this
trajectory (f;) can influence the decision. Thus, there is a feedback loogadng the desired
trajectory with the actually followed trajectory ) via the sensory system. How this information
is processed within theecision makedepends on the adaptation rules defined iratthptation
of high-level collaborationcomponent. Hence, in théecision makeilintention negotiation
takes place, i.eshared decision makindDetails on adaptation will be described in Secfion 2.2.3.

If a robotic partner has to generate possible desired tajes, the planner can use path
planning algorithms and task-dependent optimizationsefind the trajectories and the prefer-
ences (weights). The optimization rules can be gained floenkhowledge base. One deci-
sion model which allows dynamic modeling of individual dgons is the decision field theory
proposed by Busemeyer and Townsend [1993], see also BuseareyBiederich[[2002]. This
state-space model has successfully been introduced iarobsen operators in supervisory tasks
b b_ao_and_LéeLLZOLbG] and a survey for robotic applicationgiven |n|_ELlhag_en_and_B_LQho
[@]. This model seems to be an adequate starting poinhwhé&ning a concrete decision
maker for a robotic partner in collaboration.

2.2.3 Adaptation Unit

The adaptation unitforms the heart of the haptic collaboration framework agddrasses the
collaboration with and the adaptation towards the partneuding intention recognition, inte-
gration, and definition of rules to negotiate them. It caissef mental models (stored in the
knowledge unit),related predictions, and three differad@ptation modules, which influence
components in theontrol unitand theplanning unit

Mental models

Mental modelsare introduced within th&nowledge unito allow a higher-level control based
on internal representations of the task, the environméet,otvn system, and the partner. In
haptic collaboration, it is fundamental to choose task ddpg optimal action plans to achieve
the desired shared overall goal. High performance as welessurce-saving does not only
depend on the individual. The partners need to adapt andiatgtheir individual action plans
towards a shared intention. Theowledge unitonsisting of the internal representations and
predictions, i.e. mental models are the basis for intentemognition and integration. Based
on past experiences, input from teensory systermnd feedback from the signals processed in
the planning unitand thecontrol unit mental models are built, which can influence adaptation
rules as the basis of intention negotiation. Those rulesifype adaptation towards the partner
and the environment, and thus, influence the action plans$trexecution. As mental models
can be advanced and specified based on experiences, le@rhaggfic collaboration takes place
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2.2 Haptic Collaboration Framework

here [Wolpert et &I, 2003].

If our goal is to change the environment together with anopleeson, mental models of dif-
ferent aspects need to be formed. They are presented iforetatkey variables introduced
by McRuer and Krendel [1974] and the models proposed by CaBowers et al.[[1993]. The
factors described biLLM_QRuQLand_KLed(ﬂ_QL_JbM] are defing¢ld fiecus on experimental setups
and not for real scenarios. He relates ®wiregleperson’s free-space motions. Hence, it is neces-
sary to modify and extend the list to meet the charactesistidyadichaptic collaboration. The
transformed definitions of the four influencing factors omtaémodels are as follows:

1) Mental representations of the tasipresent the goals, related sub goals and possible action
plans, which have to be achieved by the interacting teamy &teerelated to the task variables in
IMcRuer and Krendel [1974] and the task models in Cannon-Boweais [£993]. One important
aspect of the task representation is to clarify prior to ®skcution whether it is actually neces-
sary to collaborate or if it can be done alone or if dyadic sefjal processes are promising. If
the task requires haptic collaboration, different actitanp can be formed to combine the two
individual inputs to the tasks.

2) Mental representations of the environmeeter to the way how the state of the environment
is presented, mainly by haptic and visual feedback. Thgzesentations are associated with
the environmental variables in McRuer and Krendel [1974].Cannon-Bowers et al. [1993],
they are listed within the task model. Here, object charesties are thought to be part of the
environment, summarizing all representations of the eslexorld except for the partner. Thus,
the equipment model is associated with this mental reptaBen. Such equipment models may
relate to the form of interaction (which can be direct hurhaman or direct human-robot as
well as two humans interacting mediated by a robot as ingedeence or VFB) Task-specific
environmental variables include object characteristiud eonstraints and possibilities for the
trajectory towards the goal. Whether environmental infdromais task specific or not is decided
with the help of th&knowledge unit

3) Mental representations of ourselvaee individual variables associated “pilot-centered-vari
ables” given bM&m&dﬁe&bM?ﬂ. Again, a wide ranfjeonstellations is possible
here, to name some: general capabilities to accomplishaleand preferences on strategies
(e.g. being lazy) as well as situation-specific preferentesddition, there are personal vari-
ables which directly relate to interaction as attitudesais fair workload sharing or dominance.
There is no equivalent mental model proposedin&_moﬂmﬂ}s [L9_9_13]. However it
seems intuitive that the representation of our own capegslinfluences how we collaborate
with a partner.

4) Mental representations of the partnezfer to information we have about the partner. Such
partner variables are not proposedLb;LMgRuﬁLa.nd_KLblhdﬁldﬂmé’cause no collaboration is
assumed there. These representations are related to thartesaction model and the team
model introduced b& Cannon-Bowers et hl._[1|993]. These twoeaisagre not separated as the
general interaction style is assumed to be human-like.iBlesgriations from this schema are

3If the two partners interacting mediated by devices (pdggibaddition to a real object), all device characteristics
such as available degrees of freedom are considered emérdal variables because they are not specific for
the collaboration: When executing the task alone, the deshegacteristics would still be perceived. In exper-
imental setups and for the design of technical systems, efirition of coupling between partners which can
be rigid or compliant, via an object or direct, is importafie characteristics of the physical coupling between
partners are considered environmental variables.
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2 Conceptual Framework for Haptic Collaboration

then partner dependent. Hence, the haptic signals and féreeid intentions are most impor-
tant in this context, but also general information as phalsappearance, general capabilities,
authority, presumed knowledge on the task, social relatitimthe partner and related emotions
or other variables which may change our mental representafi the partner. Learning takes
place in the mental models. Deviations between existingesgmtations and perceived sensory
information are detected here and the mental models can degeg accordingly. If no infor-
mation on the partner is available at the beginning of a bolation, it is assumed in line with
.[[20_d3] that the individual model of oneselfaken as a reference.

Input to themental modelsre signals processed by teensory systemThese signals are
interpreted by the mental models to gain representatiortheofpartner’s actions or environ-
mental changes. These interpretation and the resultimgseptations are assumed to be task-
dependent. Thus, the mental models receive additionat finpion the planneron possible tra-
jectories and information on the individually desired écpry from thedecision makeand the
desired force from th&acking controllet

The internal representations built in the mental modele lthifferent aims in the context of

haptic collaboration: Most important is the inference omplartner’s intentions. I al.

], this is described in detail as the inference on thénpes goals based on the observed
actions. As the overall task goal is assumed to be known by pattners, this claim can be
transferred to evolving sub-goals during task executioocokding td_C_ujip_eLs_el_hlLLZQbG], it
is most important to identify the partner’'s goals to allowagoriented behavior for the over-
all system. In haptic collaboration, those have to be ieféfrom force and position signals.
Whereas the position of the object and/or the partner canreetlyi perceived by the sensory
systems, the forces applied by the partner cannot. Inste&t own forces are perceived and the
resulting object movement observed, which allows infertime partner’s forceg,. Estimating
the partner’s intentions is not enough to allow efficientadmbration. The intentions have to be
negotiated to find a shared action plan, i.e. rules on howahtm@r’s actions are combined with
the own action plans considering task and environment nreée established. In Kanno et al.

], it is stated that “team intention is not reducibleiere summation of individual inten-
tions”. Those rules are specified in the three adaptatiorutesdChanges in the mental models
can change adaptation rules, e.g. working together withyaipally weaker person may lead to
a more sensitive adaptation in terms of partner’s force)y@partner is assumed to apply lower
mean forces. The information transferred from the mentaletsoto the adaptation modules is
represented by as it is abstract knowledge and no physical measure. Howeveiproposed
that these rules consider the inferred partner’s foficeone’s own forcg;, and the perceived
object positionz,, ; as well as the desired positioari1 as input variables. Therefore, these sig-
nals are transmitted from the mental models to the colldlwrapecific adaptation units. The
adaptation modules are described in detalil in the next paphg.

Internal representations of task are an output of the mendalels for theplanner They
include the overall goal, self-representations and in&drom about the partner and the envi-
ronment (all described b¥), which allow the planner to find possible trajectories tactethis
goal.

Knowledge bases and intention recognition modules are osexp by

Avizzano and Beraamaslc&;[ﬂ%] and Schrempf etlal. [2005]rétotic applications. In
Hwang et al. H;O_d6], an information theoretic approach fogntal models and its formal

—
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2.2 Haptic Collaboration Framework

modeling is proposed. Thus, there already exist first steyards an implementation of the
required modules.

Adaptation

Based on the mental models in tkeowledge unjtthe individual can adapt structures and pa-
rameters in the modules of tiptanning unitand thecontrol unitin relation to task requirements
for optimal performance. To address this explicitly, thee@ptation modules are introduced,
which receive information from the mental models and yieliraction of how to treat infor-
mation received by the sensory system. The high capabditgdch adaptations in humans is
shown for manual control tasks by Jagacinski and Flach [Ra88wever, their importance in-
creases when collaborating with a partner which requiresdioation of two individual inputs
and shared decision making.

The adaptation laws in the three modules can have diffeterdtares and vary in complexity,
starting from simple linear functions and fixed mappingsagdin scheduling to more complex
adaptive control or optimization rules, see Astrom and &Hithark [1994] for an overview. Fur-
thermore, it may be suitable for the design of robotic pagieat not only the parameters of the
controllers in the planning or the control unit are adapbed the structure itself is changed, then
hybrid models need to be addressed.

Adaptation of Physical Interaction

This module is responsible for adjusting the parametersesensory systeieind themotor sys-
temwithin the control unit The initial tension in muscles (based on the internal regmeation
of the object), the visual attention focus (again based ontahenodels about the environment),
and other behavioral parameters can be manipulated vidfsggal interaction adaptation. This
adaptation is not part of collaboration as it is assumedpheameter adaptation does not take
place on the basis of recognized intentions from the partdewever, it is an interactive adap-
tation as there is reciprocal influence between partnerss,the partner and the related internal
representations in theental model unitmay change rules in the adaptation module, e.g. the
expected weight of the object the individual has to carryegawith the existence of a partner.
Another example is given when two people carry a table, andngpbdown movements due to
walking motion from the one partner are perceived by therothatomatically (in the sense of
R&smu_s_séﬂ_[LQBB]) humans balance this movement withoutnéenpretation of the partner’'s
intentions.

The focus of this framework is on collaboration. Therefdine,physical interaction adaptation
is not described in more detail.

Adaptation of Low-Level Collaboration

The desired object trajectory cab be the same for both rmr(n{@1 = xgg) because it is clearly
defined by the task or the environment. Sitill, it is requirkdttstrategies are derived which
determine how the overall force necessary to follow therddsirajectory is applied by the
partners. The necessary force of the overall system (batimgya) can be split in different
ways between partners. Within this processpw-level adaptation modules responsible to
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2 Conceptual Framework for Haptic Collaboration

find adequate ways of adaptation towards the partner’s mhagpecially the force applied by
him/her in relation to the desired trajectory.

Thus, this module adapts the parameters or structure dfdbking controller which aims
to reduce deviations from the desired shared trajectory.tht® compensation different action
plans with respect to the two individually applied forces possible. The forces one partner
would apply to the object when acting alone, change depgnaolinthe partner’s actions. To
allow a successful integration of the two individual actgans, the parter’s intentions have to
be estimated. Therefore, this module is described as colifibe. For example, if it is clear
how the two partners maneuver an object around an obstaigle-l@vel collaboration), one
partner can still choose to be lazy and leave the main physiceload to the other partner
(low-level collaboration). For high task performance stpartner has to realize that he will
have to apply more forces based on the internal represemtafithe partner's behavior and
according predictions of his/her behavior. Thus, the nagoh on strategies is accomplished by
interpreting the partner’s intention based on the mentaletsoand defining an adaptation law in
the low-level adaptatiormodule. This adaptation process is nanmd levelbecause it is only
dealing with action plans when a desired shared trajectosyb goal in the overall action plan)
is assumed to be agreed on by both parEneTrbus, this level is related to the “how”’-to-do level
proposed bLloﬂmmmﬂeﬂd&[_i%S]. In the givenegoiittdescribesrow to move
the object Which adaptation law is adequate in a given situation isrdeteed by the mental
models and perceived signals from partner and environniBaged on the according input, the
low-level adaptatiomodule defines an adaptation rule. The output of the adaptatodule can
be either a parameter-vector or a function, if the structiithe tracking controller is adapted.
In order to depict both cases, the output signal is not fupecified and generally nameg;,
with LL for low level in Figurd 2.1D.

It is proposed to relate this level of haptic collaboratishere it is defined how to move the
object, to rule-based behavior and rule-based decisiommakthe sense (H_R@smuslsm[j%?,]
and WiledsL[;O_(M]: once a model of the partner is developédas/her intention recognized
and integrated in the individual action plans, collabamain this level should be smooth based
on the roles chosen by the partners (e.g. leader and foljowdris decision is assumed to be
implicit. The information on the partner is perceived asisigvhich trigger adequate actions to
keep the object on the desired trajectory. O States it, the partner’s input is
anif-then-rule which defines the necessary output to achieve the sharéd goa

The author of this thesis is confident that dynamic modelscigsinteractive behavior known
from humanities can be adopted to approach specific contcbitactures for this adaptation

component focusing on partner’s signals, e[.g._Eelml_e_e_aBﬂmb_erbLLl&%]t_G_Qtlman_Qdal.
[|20_Qi];LLj_eb_OMiIQh_el_a|l.L[ZD_d8]. These theories are notdohen kinesthetic data and do not

take into account continuous haptic coupling between pastwhich is a specialty of haptic
collaboration. However, according transformations cdddlefined.

4If the two desired trajectories are not identical, the niagioin of a jointly desired trajectory takes place on the
higher level of haptic collaboration as described in thet paxagraph
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2.2 Haptic Collaboration Framework

Adaptation of High-Level Collaboration

Preferences on the desired object trajectory out of segesalibilities are not per se identical for
both partners. Shared decision making may be necessanademation of high-level collabo-
ration contains adaptation rules depending on the partner’sratdiconsider his/her intentions
in the decision processes on the desired trajectory. Hagélhaptic collaboration is required,
whenever the shared trajectory of the object in a collabmragcenario is not clearly defined.
Physical constraints as individual workspace restrigjamthin the environment or in relation
to the object characteristics have to be considered in tbeegses of haptic shared decision
making as well as performance- or effort- (mental or physisaestigation of resources) optimal
solutions. There can be large differences between the anaoarkind of information on these
factors accessible by the partners, especially in humbatcollaboration. The higher the devi-
ation between the mental models based on this informatibmd®n partners is and the higher
the deviation between individual constraints, the hardeillibe to agree on one shared decision.

In contrast to the low-level adaptation to the partner, ia tigh-level adaptation process not
the individual input of the shared object trajectory is teg(strategies how to move the object)
but the decision on a shared trajectory itself, which careltsed to sub-goals in the action plan
to accomplish the overall task. Hence, thigh-level collaborative adaptatiomodule is respon-
sible for decisions omvhere to move the object - along which trajectory Thus, the module
provides adaptation laws for tlikecision makeragain based on mental models. As it is likely
that the partners have different notions on what is the agtobject trajectory (taking also into
account the task, the environment, and the personal cépebdnd preferences), negotiation
on the shared trajectory may be required, seelalso Evrarilaeddar [[;O_dQ]. Again, intention
recognition is involved to understand the partner’'s acptams. Thus, high-level adaptation is
defined as a collaborative process. This adaptation to tliequas compared to the “what’-to-
do level proposed HLJ_Qhannsgn_a.nd_A\LeJ:bbkh_ﬂlg%]. To givexample, two partners jointly
carrying a heavy object and standing in front of an obstadeansidered. In relation to his/her
information on the environment and personal preferencegariner may want to surround the
obstacle on the left side. However, when the other’s forcespplied in the opposite direction
he/she may change the decision and follow his/her partntéretoight side. Information flow
in this module is the same as in low-level adaptation: baseshental models and the inferred
partner’s intentions the adaptation law is defined. On eyt haptic collaboration the adap-
tation towards the partner influences tihecision makeby forwarding the adaptation law as a
parameter vector or a function to change the structuye,(with H L for high level).

It is assumed that the individuals plan an object movemeranagleal trajectory. Small
deviations may be accepted or controlled by ¢oatrol unit It is further supposed that there
exists a threshold, when an executed object trajectory lemger considered identical with the
planned trajectory. Then, a decision hast to be taken, vehatHiscrete adaptation of the desired
trajectory is required. Furthermore, it is assumed thatetbgists a rule how to treat information
of the partner. Again, a threshold could exist: If the parimells or pushes away from one’s
own desired trajectory, high interactive forces (oppoBitees of the partner compare Section
[4.3) are a consequence. In order to reduce the physical,effased on the believe that the
partner has good reasons for another trajectory, or otluglseasons, the personally preferred
decision can be changed (e.g. towards a compromise) if thesactive forces increase above
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2 Conceptual Framework for Haptic Collaboration

a certain threshold. It may be suitable to change this tlotdstepending on how goal-oriented
the partner’s behavior is perceived. Finally, the prefeeeweights of a specific trajectory can
be changed this way. These thresholds or alternative fumeton the adaptation towards the
partner in relation to the environment are part of highdéwaptic collaboration. Further, the

shared decision on the desired trajectory is relatémpmhMMB] symbol level, and thus,
knowledge-based decisions as describeld_b;MéILeasJ[ZOM].

There exist several approaches towards the modeling aflumthtive behavior in shared de-
cision processes. For example with a game-theoretic apIpJJMLe_t_aﬂ QO_O_E] modeled de-
cisions by cooperative pilots and Xiao et é‘L_L2|O05] decisian engineering teams. Decision
making is formally described in multi-agent systemﬂnﬂaxa_el_él.L[ZOj)Z]. An extension
of the dynamic field theory of decision makiﬂg_(ﬁu_s_emeler_&m_eﬂm&&%]) could be ad-
vanced towards shared decision making. These approaahdesuaribed as valuable reference,
however, they have to be adopted to continuous, haptic cbiondbetween partners.

2.3 Discussion of Framework

In the following the haptic collaboration is discussed.sEithe proposed framework is related
to the requirements derived from the literature overviewhmm first Subchaptér 2.1. Therein, it
is especially referred to the claims summarized in Se€tid®2 Second, possible extensions of
the framework are discussed.

2.3.1 Statement on Requirements

In haptic collaboration, the information which can be exajed between partners is force- and
motion-based (claim 1). The proposed framework addressetschcollaboration explicitly by
describing force and position signals and their exchangwd®n specific modules. It is addi-
tionally referred to further modalities when task releyang. visual feedback from the object
trajectory. Some simplification on exchanged signals hdmktmade, e.g. physical adaptation is
not described in detail as it is assumed that the procedsieg talace here are based on several
modalities and require task specific psychophysical kndgde The same simplification holds
true for more qualitative signals processed in the knowdedgt. Again, it is assumed that this
signal flow is complex and modeled more easily in concretaades which allow focusing on
specific high-level variables. The framework provides gliites to derive a model of haptic
collaboration, including the identification of specific pareters.

The second claim in Sectidn 2.1 addresses the control olis@@ctions. The framework
clearly separates an executing control unit and a plannitig The former contains a direct
feedback structure in an action-perception loop and caedleed with control-theoretic mod-
els known from manual tracking tasks. Thus, the structuréhefcontrol unit enhances the
transfer of established models for individual behaviondrthis line of research into new col-
laborative models. Within the control unit a feedback loap the sensory system allows for
continuous reduction of deviations from the desired olijegéctory, comparémla@%].
The control unit is part ofow-level haptic collaboration as it focuses on thew-challenges

within a given action plarl (Johannsen and Averbukh |1199Eﬂ)9 decision maker closes another

feedback loop. Based on information of the partner's belmaanal the goal-orientation of the
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Figure 2.11: Informations in haptic collaboration is processed on different levels in the
sense of Rasmussen [1983]. To accomplish a shared haptic task the in-
dividual processes informations on the sign, signal and knowledge lev-
els (according to automation, rules and knowledge) for successful perfor-
mance in the environment. For collaborative task execution Rasmussen’s
model is described with two dimensions here: The three different levels
describe a) process in relation to the task (vertical); and b) in relation
to the partner and the environment (horizontal), i.e. adaptive processes.
Both dimensions display the SSK-structure (sign, signal and knowledge
levels). This illustration is a simplification and does not want to imply that
the two dimensions are independent of each other, nor that the modules
are clearly distinguishable.

current object trajectory decisions on the desired trajgatan be changed. The planning unit
is part ofhigh-levelhaptic collaboration and associated with titgerechallenge when planning
the task (comparable with the what-leveMQ%]).

When surveying existing literature on information procegsin human-machine inter-
action, a hierarchical structure is proposed by severahaaste.g. | Wick sL[LO_dM];
Johannsen and Averbdkh_[;é%h Massink and Falc&mti_ﬂZOWh}sre most of them relate to

3]. It is proposed that Rasmussen’s modeHdingldhe sign-, signal- and
knowledge- levels (SSK model) holds fovo dimensions within the haptic collaboration frame-
work, in contrast to its original one-dimensional desc¢optof information processing for in-
dividual task execution, see Figure 2.19ignalsare processed automatically in physical inter-
action with the environment. On low-level task executioayidtions between the desired and
actual trajectory are reduced rule-based and informasipndcessed asgns Symbolsare pro-
posed to represent knowledge required for high-level tasicwion. This structure is in line

with the multi-level control loop proposed in Hess and Md¥41984], see [Sheridan, 1992,

Chapter 1].
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In addition, the haptic collaboration framework providesimilar structure concerning in-
formation from the partner (horizontal axis): The trackicwntroller and the decision maker
automatically processignsfrom modules of the adaptation unit and feedback from thinpar
The rules how to react to the partners are defined in the ataptaodules considering input
form the partner via the knowledge unit which can triggestheaules. Thus, information about
the partner is processed signalshere. The knowledge unit processes more abstract informa-
tion on the basis of mental models of the partner and can imfkidower levels based on the
processed symbols. Hence, the processastention negotiationfrom intention recognition
to adaptation rules and actual changes in action plans, €aeldted to the three levels of Ras-
mussen’s model. The two dimensions in Figure P.11 both sgmtehow information from the
environment (including task specific information and thetqper) are processed. With the adap-
tation unit the claim to provide group specific informatiaogessing (see Massink and Fadonti

]) is addressed within the haptic collaboration frasme.

Mental models as asked by Johannsen and Averbukh [1993hafat al. [2003] are repre-
sented in a knowledge unit and specified to four sources offrimdition. One of them representing
information on the partner. This mental model is the basisritention recognition as already

proposed for robotic architectures [b;LA\azza.ngLamj_B_elgﬁd]b@_&b] ] Schremof et al, r20b5]

Adaptation is explicitly part of the framework as require¢
[|;0_0_‘$], Johannsen and Averbukh [1@93] as well as shared sideci making compare
Cannon-Bowers et hL[;Qbil; Grosz and HunsbéﬂggLHZOOG].llﬁwa]ot only intention recog-
nition but also negotiation (if the two partners have difigraction plans due to environmental
constraints, preferences in task execution, capabiltie®tera) the partners actions have to be
integrated in the individual task execution. This is ilhaséd in the framework via the adaptation
modules, which influence the tracking controlleoyy, low-level and the decision makewhere,
high-leve) towards shared action plans leading to high performanbas;Tthe two levels in Jo-
hannsen’s model could be integrated in one single procesgarmation exchange. However,
the two components of communication and supervisory cbatsostill distinct and can be sep-
arately addressed in research and the development of cabartiners. Herein the challenges
Johannsen and Averbukh |1993] associated with adaptatamepses are investigated. The hap-
tic signals from the partner are considered to transferimédion. The levels of this information
are structured by Rasmussen’s model. The remaining chaketoagmeasure adaptation and de-
fine adaptation laws have to be subject of experimental relseend modeling.

2.3.2 Extensions

First, it has to be mentioned that this framework is the figgiraach towards a description
of processes taking place during haptic collaboration betwhuman partners. As such it is
assumed to be transformed in future when more knowledge é&qmeriments based on related
tasks is available. This implies further, that the disimctbetween the levels should not be
interpreted to strictly as it is seen as a tool for modelingnplexity which may be more fuzzy in
reality.

The framework is introduced for scenarios requiring shargeéct manipulation With the
objective to generalize this framework towards hapticraxtéons with direct contact between
partners (e.g. contact between two hands as in guidaneeplject can be defined as zero-
object, then, named interaction point. Further, the objemy be virtual or tele-present. Hence,
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2.4 Conclusion

there may be devices mediating the human output appliedeoalifect. Within the framework,
the actual object and the device can be merged as one conmpdnsnimportant to note that
the characteristics of the object (e.g. size, stiffnedtj@mce the physical connection and thus,
signal transfer between the partners. This is also trueherdevices, which may influence
collaboration e.g. by restricting the workspace to a lichiteimber of degrees of freedoms.
Keeping the framework as general as possible, such objéctiavice characteristics were not
specified. Furthermore, the framework does not considetacbibetween the object and the
environment. This additional source of forces affecting ¢ibject can be modeled additionally
for concrete tasks.

As stated earlier, the framework is based on a position otetrin the control unit. The
assumption that the goal of haptic collaboration tasks esetkecution of a position trajectory
should hold for most scenarios. If, however, a force trajgcis a better model of the task goal
(e.g. in rehabilitation applications), the signal flows ¢entransformed accordingly. It is as-
sumed that it is possible to change the framework towardsnéed if required. It is proposed
to do this together with object characteristics in the ceinté a specific task. Another simplifi-
cation in the framework lies in the neglect of possible tineéag in the signal flow between the
components. The disregard of predictive control is closelgted. This is in line with the state
of the art in all interaction models introduced in Secfiof. 2However, time delay will be of
importance when modeling of empirical data is done on thestzdshe framework. Then, these
factors have to be modeled, which again should be simplé&imiask-specific considerations.

The integration of the haptic collaboration framework itéoger scenarios which require
other forms of communication using different modalitieteis aside. The task-goal is assumed
to be known to both partners, probably on the basis of verbaincunication. It is proposed
that it is not beneficial to add further interactive compdsdpefore understanding of haptic
collaboration itself has increased. However, the fram&wan generally integrate other forms
of communication. The multi-modal integration of sensamormation is a topic studied in
psychophysics (e.d@st_&d_Bdnks_[QOOZ]), which is ofveglee in the sensory system and
mental models. This integration will gain the more impodathe more modalities are involved.
Psychophysical studies can also help to specify the presds&ing place in the sensory and
motor systems.

2.4 Conclusion

2.4.1 Summary

This chapter introduced a framework for haptic collabamatibetween two partners. Require-
ments for individual processes leading to collaborativeadveor, i.e. task performance, have
been identified within an overview of existing interactioonaels, mainly derived in the context
of human-computer interaction and supervisory controlusltihe relations between existing
models and haptic collaboration are discussed, beforeaptchcollaboration framework has
been presented in the next step.
The actual framework specifies components and signalingfilovolved in haptic collabora-

tion, which can now be addressed more systematically byrewpats as done in the remaining
chapters of this thesis. Three units are separated: a pignit, a control unit and an adaptation
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unit. Depending on the involved structures for task executwithin these units, two levels of
haptic collaboration can be distinguished: On the lowettibagllaboration level, the partners
are concerned with the question lodw to move an object along a desired trajectory towards
a goal position. Low-level haptic collaboration involvée tcontrol unit, which is responsible
for the application of required forces. The control unit dapted towards the partner by the
adaptation unit to allow intention negotiation, and thtie, development of a shared action plan.
The higher level of haptic collaboration deals with the rade to derive a task-optimal desired
trajectory (vhere to move the object). This is the task of the planning unit,cihelaborates
possible trajectories and chooses the optimal sharededesajectory. Herein, it is required to
process information from the adaptation unit again to adamnvironmental constraints and
information perceived from the partner’s behavior.

The haptic collaboration framework has been discussedlatiog to the requirements de-
fined based on existing models beforehand. A central poithtinvthis discussion has been the
extension of Rasmussen’s sign, signal and knowledge leselafbrmation processing towards
a two dimensional representation. These two dimensiongafmation processing can be found
in the corresponding structures within the haptic collabion framework. Possible extensions
of the framework have been outlined additionally.

The framework enables researchers to focus on the idetiticaf different components
within haptic collaboration. Modeling attempts as well ayghological experiments can be
defined and planned more systematically in relation to tbesgonents. In general, the frame-
work enhances the communication, integration and congraoéresults from these models and
experiments. Existing studies can be classified by the frnarie allowing a more profound
theoretical background before new ones are developed.

2.4.2 Future Work

The framework addresses the requirements elaborated irespective sections (summarized
in the claims in Section 2.1.9) when describing goal-ogdrtiehavior in haptic collaboration.
However, there is awareness that the framework is so farasgticbon empirical data. The relation
to existing models can not be seen as sufficient validatiblmsTfuture work has to validate the
haptic collaboration framework further. Still, it is conded that based on the answers to the
requirements, the framework can be considered as a pragnssamting point to broaden the
understanding and research of haptic collaboration. Tdradwork is not considered to be at its
final state. Future research can lead to knowledge whichcaitretize and possibly transform
the framework and lead to further research interests withptic collaboration. This framework
is seen as a first important step to motivate such research.

The next step to validate the framework and to further idgrgiructures and signal flows
is seen in experimental studies investigating collabogaliumans. Such experiments should
address low- and high-level haptic collaboration withirtangardized task to address the exis-
tence of two levels of haptic collaboration and to undermtamplications of the two levels for
behavioral models.

Some challenges which become evident within the framewaladdressed by studies in the
remainder of this thesis. Separately the two levels of bamtilaboration are investigated to
ascertain whether intention integration actually takes@lvia haptic feedback as a first step to
give meaning to this framework. Then, the two levels arededéd in the context of dominance
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distributions between partners when jointly executing sk.taThe corresponding results will
present first indications for the existence of two sepamtels.

2.4.3 Implications for Modeling of Robotic Partners

The main statement of the framework is seen in the separafibtow- and high-level haptic
collaboration and the introduction of the associated megluT his allows the study of the adap-
tation modules within the planning unit and the control uteitatively in experiments. Thus, the
level of haptic collaboration can be increased stepwisenclethe challenges involved in the
understanding of adaptation processes can be reduced.tlAEEdtbyLlQh&ﬂDSﬂn_and_A\LeLbilkh

] these challenges are to measure adaptation and tgdimetic laws. Within the frame-
work, experiments can be conducted to gain empirical datanfedeling of robotic partners
including the identification of parameters and signal floasponsible for adaptation.

As pointed out in the description of the modules within treriework, models exist which
can be seen as reference structure for these modules: Tinelcort has been described together
with a concrete signal flow and can therefore be related toatsdcbm manual tracking control.
Furthermore, path planning and decision making models eseribed specifying the planning
unit. However, the modules described within the adaptati@ballow only vague specifications
of exchanged signals between them. This bears the chaltendentify the partner’s intentions
based on haptic signals building a mental model from thmpa(BeéJALlegn_el_blLLZQbﬂ for
details). In line with the argumentation |M0_Ip_eﬂ_e|t ﬂOJ{B], that when there is no mental
model available from the partner’'s behavior, one’s own r@@laken as reference, it is argued
by the author of this thesis, that the robotic partner shahldw as human-like behavior as
possible. Then, we are able to assume a human model as mepradentation. Thus, future
work should focus on the study of human partners in collabmrdo identify the signal flow in
more detail by experimental research in specific tasks.

The goal of existing and future experimental studies in icagullaboration is the identifica-
tion of key-factors in this context. Once this can be dongfarts of) the framework, a model
which can be implemented on a prototype for a technical patan be derived. Then, experi-
mental studies on haptic collaboration between this pyptond a human partner can be con-
ducted within the framework. These studies can enable amsydic variation of parameters and
the investigation of resulting changes in the human pastihehavior and overall performance.
This way, causal relations between parameter sets andotanthitectures and the quality of
collaboration are possible. In addition, the separatiohaytic collaboration levels allows a
clear definition of the capabilities of existing robotic wears and helps to structure evaluation
studies.

One major challenge in realizing a model for a technicalrgaron the basis of the proposed
framework lies in the fact that signals from the partner caly be estimated. They can be the
result of a decision process a certain strategy for tracking control within the partrtee(clear
distinction between the levels of collaboration is not resegily possible here). Therefore, it will
be challenging to find quantitative indicators for the iptetation of these signals. Nonetheless,
this is a key-prerequisite for successful collaboratiom.tHe author’s opinion, the framework
manages to point out these challenges and motivates rbsaadhis direction.
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3 Discussion on Trends in State-of-the-Art
Experiments

Psychological experiments can support the acquisitiomofsedge towards robotic partners,
which are able to collaborate in haptic task via an intuitanner for the human users. As
psychological experiments help understanding the humarsukehavior in these tasks, their
results can provide guidelines for the design of robotidnmas. Furthermore, user studies are
employed to evaluate technical partners. So far no statbesért overview exists on the use of
psychological experiments in the design of robots for ltagilaboration with humans. There-
fore, this chapter provides a discussion about trends ialgggical experiments in this context

The following overview on haptic collaboration experimeadibes not focus on explicit re-
sults, but stresses general trends in this research aredemtdies general components of the
conducted experiments. A sound discussion of individuadliss and results relevant for the
experiment conducted as part of this thesis can be foundeitéginning of Chaptéd 5 andl 6.
The studies on haptic collaboration, on which the followdigcussion is based, are summarized
in the overview-table in AppendixIB. There, 54 experiments @gscribed citing a total of 82
studies, which can be classified as follows:

e Experiments, which deal witbynchronousaptic collaboration (in contrast to passing an
object, sequential interaction or communication on theshafsartificial tactile signals).

e Studies, which investigate a) collaboration between twmdms (directly or technically
mediated); and b) human-robot collaboration with autonesnmbots or human-like as-
sistance functions (other assistance functions as etgaliixtures are excluded).

e Experiments are included if the authors referred to thenxpsrénents (though, in evalu-
ations designed as case studies this word can raise extagtjergpectations).

e The studies, which are cited additionally to the 54 fullyadpd experiments, are those
which present results reported similarly in one of the fuiported studies.

To the best of the author’'s knowledge the experiments redart AppendiX B are all pub-
lished studies under these criteria at the given time.

After defining psychological experiments, major charastes of existing experiments are
discussed. This chapter ends with a conclusion on the dtttte art in psychological studies on
haptic collaboration.

LIn this thesis, the word “experiment” refers to psycholadjiexperiments only, knowing, that this is not the only
form of experiment important in the context of human-roléraction.
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3.1 Psychological Experiment for the Design of Robotic
Partners

Before directions in the state of the art of experiments irtibagpllaboration are investigated,
a short definition of psychological experiments is given #melr meaning within the design
process of robotic partners outlined.

3.1.1 Definition of Psychological Experiment

In the way as it is conducted nowadays, the scientific metfiedmeriments was proposed first
by Bacon r‘II9jZ6]. Wundt was the first scientist who sti@ise meaning of experiments
in psychological research_LB_ull_QtB_OMLdbhl._ZbOG]. In gentgahs psychological experiments
can be defined as follows: “In an experiment, scientists mdate one or more factors and
observe the effects of this manipulation on behavibﬂLﬁhmﬂsﬂ%_ZD_d)S]. The different levels
within manipulated factors (also named independent vlEa®lare the experimental conditions.
The effect of a manipulation in one factor is assessed by unea®f behavior, which in the
widest sense can include physiological data, behaviofalnmation or answerers to items of
guestionnaires. These measures are also termed depeadabtes. In order to understand if
found differences in measures are systematically due toggsain experimental conditions or
caused by any noise, inference statistical analyses aneeedq They relate the found effect to the
unexplained variance (noise) in measurements. Thus, iexpets in psychology do not differ in
their approach of knowledge-generation compared to otiserplines. However, the complex
behavior of humans demands extended care for unsystenaatznge and disturbances in the
experimental execution (extraneous variables). When adimdpa psychological experiments
the following steps are undertaken in line with the defimtod experiments (these requirements
on experiments as first outlined n@IBM]):

¢ Intentional preparation and selection of experimentabldams

e Control for unsystematic influences and differences betvpeeticipants

e Systematic variation of experimental conditions

e Observation of effects [on measurement] due to variatiorxperimental conditions

Within the discussion of the state of the art in experimengakarch on haptic collabora-
tion, which is presented throughout this chapter, furthetaids on psychological experiments
are provided. However, it is beyond this thesis to give aemsive overview on methods of ex-
perimental design and analysis. The interested reader mm]'dE}Lie_IHLZO_th Field and Hole

[Izogi];Lc?Lolenﬂjl.l rﬁozcﬁ&mm _rzobm- Rubin and Chi§fi200€]; 'Shaughnessy [2008];

| 08].
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3 Discussion on Trends in State-of-the-Art Experiments

3.1.2 Psychological Experiments in Design Processes

Design processes for interactive systems can generallgseided by the following four steps,
compare e.d. Butler et al. [2007]; Sharp etlal. [2007]; 1S019240 (former ISO 13407):

1. Identification of requirements
2. Design

3. Development

4. Evaluation

These steps are now interpreted for human-robot collailborad fundamental step is to iden-
tify requirements, which have to be met by the robot. Thisliegonot only an understanding of
the task but a profound knowledge about the human partnés.céh be achieved by conducting
experiments. Possibilities to integrate this knowledgéhm control architecture of robots are
considered in the second step. Afterwards a prototype caeveoped. The matching between
the requirements and the performance of the prototype asstigated in the last step, again
this can be done experimentally. Note, that this can be aatite process based on evalua-
tion results. The actual development of a robot (step thokesksically belongs to the science of
engineering, as well as the system evaluation from a teahpaint of view. However, a user re-
lated evaluation of robots is mainly executed with psycmal methods. Within the context of
human-robot collaboration the first two steps in the desigiegss require a close collaboration
between engineering and psychological science: Eachptirseihas different methods to derive
knowledge and models on the partners in human-robot catidibo.

Thus, there aréwo levels in the design process of robotic partners in haptilalgoration,
which can be enhanced by psychological experiments: apimedtal knowledge on the user’s
behavior, capabilities and preferences can enhance tlge diad software design in terms of
requirements which have to be met (step 1); b) evaluatioegisfing robots with potential users
allow feedback on achieved progress (step 4).

In the following, it is investigated in which ways psychoicg experiments are employed in
haptic collaboration to date.

3.2 Development of Interdisciplinary Work over Time

As afirst step to gain insights into experiments used in teearch field of haptic collaboration,
the development over time of publications presenting pshdical experiments in this context
is depicted in Figure_3l1. The first experiment is dated bacd®94 (conducted Mal.

]), since then an increasing trend in the numbers ofigatibns can be found (There are
more experiments expected for 2@L0However, compared to other fields of research, the total
number of 82 studies including all publications mentionedppendiXB shows that experimen-
tal research on haptic collaboration is still young. Oneliogion for current studies is the lack
of pre-knowledge when addressing new research questiahdesigning experiments. Thus, it
is not surprising that most current studies have an exmloratharacter.

2This dissertation was handed in on 4th of October 2010.
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Figure 3.1: Number of publications per year reporting experiments on haptic human-
robot interaction, compare Appendix

3.3 Classification of Research Interests and Measures

In this section the motivation to conduct psychologicalexments in the field of haptic col-
laboration is investigated by classifying the researchregts and summarizing the employed
measures reported in the 54 main studies summarized in AppBh

Research Interests: Six classes of research interests could be identified, caamipigure
[B.2. If reported studies had several research interesise ttvhere counted separately. In total
76 research interests were examined. The percentagesigi¥égure[3.2 and reported in the
following, however, are calculated in relation to the 54 mstiudies to allow statements on the
percentages of research interests in relation to the nuailperblications.

We can see that 44% of studies in haptic collaboration reketake place late in the
design process, meaning that they deal with the evaluafieristing setups/artificial partners.
Three research interests are addressed with similar fnegue existing literature on haptic
collaboration: dominance (26%), feedback (26%) and pa(t88%). These experiments focus
on effects of these factors on human behavior. Thus, therésab gain fundamental knowledge
on human behavior in haptic collaboration. Herein, domiearelated studies investigate the
distribution of control, i.e. the influence of each partnertioe jointly manipulated object, when
executing a haptic task together. It is assumed that therdome is of such interest because this
aspect becomes more evident in haptic collaboration thather forms of interaction i.e. verbal
communication or other sequential interaction. The twaviddal actions of partner’s plans
are combined synchronous and continuous in haptic coldioor, which makes integration of
individual actions towards a shared goal a major aspectsrkthd of collaboration. Dominance
measures, how similar the degree of responsibility for thared goal is between partners.
Furthermore, dominance is a key concept in training scesawhere a trainee should gain
more independence from the trainer (higher dominance iteitld within the learning process.
The other two research fields focus on the effect of addititvagotic feedback (mainly in
addition to visual feedback conditions where no haptic bee#t is given at all) and the effect
of performing a task alone or together with a partner. Hetleey analyze the effect of haptic
collaboration by contrasting it to these control condisionThe related studies address how
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Research Interest (%)

50 44
40 30
30 26 26
20
10 7 7
° mm
N & & ¥ & &
© P © o &
O \(\rb(\ &\)'b 060@ @0 Q®<\
& < <«®

Figure 3.2: Research interests investigated in the 54 publications presented in the
state-of-the-art-table in Appendix Bl If several research interests are inves-
tigated in one study, they are counted separately, leading to a total amount
of 76 research interests. The percentages reported here are calculated in
relation to the number of investigated publications (54).

measures (mainly performance) changes when haptic codiabo takes place compared to
these control conditions. The interest in the effect of bzaxtk and the partner hint towards an
interest in fundamental knowledge on principals of hapbitaboration: What changes if haptic
feedback is provided and a task is done with a partner? Résedecest in time delay (7%) is
above all motivated by tele-present scenarios. These sosrt®mve to deal with the challenge
of network latencies, and thus, it is crucial to know how flaistor influences the collaboration
between partners. This knowledge can then allow to prediesequences in human behavior
or find adequate ways to compensate time delay. Strikingignaverview is the fact that only
another 7% of the investigated studies have the goal to génmation on potential dynamic
models of human behavior in haptic collaboration. Modelscdbing human behavior over
time are a prerequisite for direct transfer of human behawodels on robots. The small
number of studies toward dynamic models is interpreted askadf fundamental knowledge on
human behavior in haptic collaboration. So far, the stathefart seems to be concerned with
knowledge on the general role of the haptic channel comigaprecise modeling of behavioral
patterns.

Measures: The research interests determine the experimental condito address a cer-
tain topic (e.g. partner vs. single person task executiahvamiation of provided feedback).
Furthermore, they require measures, which give insightshtmges between these conditions
on variables of interest. Figure 8.3 gives an overview omtleasures involved in the existing
experiments on haptic collaboration. If studies used s¢veeasures, those were counted sepa-
rately. This results in an absolute number of 90 differenasoees investigated. Percentages are
reported as a fraction of the 54 studies independenthydlisté&\ppendi{B.

In accordance with the goal of performance-optimal coltabon, 61% of the investigated
experiments address performance measures. The low pageeoit subjective measures (ques-
tionnaires: 15%) in these studies can be explained by théHatbehavioral measures are con-
sidered more reliable than those. Even more important,vb@hean be recorded continuously
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63 Measures (%)

37

Figure 3.3: Measures involved in the analysis of experiments on haptic collaboration
reported in Appendix [Bl If several measures were used in one study, they
are counted additional. The percentages reported here are calculated in
relation to the absolute amount of 54 independent studies.

and online with behavioral measures, which is of high irdefer the development of artificial
partners as it is more cloesly linked to the design of mod®lsdbots. Only half of the conducted
studies measure forces or power/energy (37% + 13% = 50%, rbqthiring force measures).
This percentage is lower than expected in research on hagltaboration, where the exchange
of force signals is assumed to be a key-component in the conaation with a partner. Only
few experiments (17%) analyze (position, velocity or fQricajectories over time to understand
the actual behavior in haptic collaboration. This analgdirajectories is done by inspection,
a valuable tool to find qualitative differences in behavidowever, to gain knowledge for the
design of technical collaboration partners, more quait@alescriptions have to be involved in
future studies as it is hard to derive design guidelines &mameters in the control architecture
of artificial partners on the basis of qualitative stateraeKeeping the goal to develop technical
partners which understand human behavior in mind, it isrging, that most studies measure
performance based on position signals, but not force tlaeasures. The latter measures allow
describing the collaborative behavior itself, in contitasts results. However, these findings can
be explained by the high amount of evaluation studies indtaite of the art, which do not focus
on the understanding of behavior. Depending on the speesarch interest, several more spe-
cialized measures such as, lifting altitude of the objestdied and KheddhL@bQ], or success
rates in dancing steds_[lLke_d_idtMWa] are used in 4% imvestigated experiments. The
majority of those measures can be interpreted task-depeodly. Thus, they are of importance
in the evaluation of specific scenarios, rather than foriggifundamental knowledge on haptic
collaboration.

3.4 Interaction Types and Collaboration Levels

When conducting experiments to evaluate robotic partnersdptic collaborations or to find
generic principles of human behavior in this context, iatéion between partners, whether
human-human or human-robot, is per definition part of theegrpental design. This section
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Interaction Types (%)
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Figure 3.4: Overview on used interaction types as part of the experimental design in
studies reported in Appendix Bl HRI refers to human-robot interaction;
HRHI refers to robot-mediated human-human interaction. HHI describes
human-human interaction which is not technically mediated. Within these
categories natural visual feedback is distinguished from virtual reality.

investigates the interaction types used in the experirhsptaps in the 54 studies reported in
AppendixB.

The more standardized an experiment, meaning high conmrtii@presented conditions, the
more precise is the statement on causality between theotledtvariations in the experimental
conditions and the resulting measurements (internal tglid The drawback of such highly
standardized experiments is that they do not necessaphgesent real applications, leading
to a lack of external validity. In contrast, the high comjpigxn real applications can easily
lead to a high amount of data, especially noisy data, whiehd#ficult to analyze and draw
conclusions on. Thus, an important decision when desigaxpggriments in the context of
haptic collaboration has to be taken on the validity focus.the majority of cases there is
a trade-off between both types of validity. Hence, an expent can either focus on the
identification of causal rulesr the examination of real applications.

Interaction Types: One component, which has to be taken into account when cansid
the validity of results, is the constellation of collabdoat partners in a given experiment: The
advantage in investigatirtggo human partners (HHIis that found results will represent natural
human behavior. This is of importance when following therwusntered design approach
to substitute one out of two human partners by a robot, basechadels gained in the first
step. This constellation is of high interest when collegtbasic knowledge, which can then
be transferred to the design of technical partners. Withénitvestigated studies 12% analyze
human-human behavior. The need to measure performanceoeres fis challenging within
natural (meaning non-mediated) interaction between twersjswhich may explain the low
number of studies with this interaction type. However, tbeuk on two interacting humans
reveals the agreement of the research community towardsraestered design approach when
developing robotic partners. To enhance behavior measmetachnically mediated setups to
investigate two collaborating humans (HRHlje required. In addition, haptic interaction in
virtual realities or multi-user tele-present scenarios tss setup. Hence, this is the approach
chosen by most experiments (50%) conducted in haptic aoiaion. Thus, the experiments
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allow for a controlled manipulation of the connection betweartners. Lasgxisting technical
partners and humans (HRBan collaborate. This constellation enables to study theti@n
of human users to partners showing standardized or non+mlikebehavior. It is the chosen
approach in 31% of the experiments discussed here. It isreskuhat the number of studies
addressing this interaction type increases in line witreaded knowledge in the filed of haptic
collaboration: For now, the knowledge of haptic collabimmais not profound enough allowing
for a high number of autonomously acting robots. Figuré Buktrates the frequencies in
which interaction types of collaborating partners are adsked in the state of the art. Here, it is
further distinguished how the visual feedback in the givepeeiment is provided, contrasting
real feedback or virtual feedback (including all artificigual information from e.g. computer
monitors). Technical mediated visual feedback is anotlessibility to control the perceived
signals of the human user within an experimental setup.

Collaboration Levels: Within the conceptual framework described in Chapiem®) levels
of haptic collaboration based on the task complexity canistenguished. The lower level deals
only with the shared action plans of the two partners how teentbe jointly manipulated object,
i.e. howto combine the two individual force applied on the objectatiition, high-level haptic
collaboration requires shared decisionsvamereto move the object (along which trajectory).
The studies reported in AppendiX B are classified within fréenework. The classification
criterion by the description of the two levels is not totatlistinct. Here, the level of each
experiment is decided in relation to amount of possibdif@r goal-directed object trajectories in
the given task, i.e. if shared decision making on the objagtdtory is required. This separation
allows describing a general trend in this overview on haptitaboration experiments: 70%
of the experiments involve designs and setups which implyl&vel haptic collaboration (low
complexity) and only 30% deal with more complex scenariogis Tinding is related to the
recency of the research field. Once the underlying rules ayefdctors in low-level haptic
collaboration are understood, experimental setups makedito real life applications, i.e. higher
complexity, can be employed.

3.5 Participants and Statistical Analysis

In the given context, the goal of psychological experimest® understand aspects of human
behavior and information processing in order to derive glegjuidelines for robotic architec-
tures and associated signal flows. In haptic collaboratesearch, this implies to describe
typical, interactive behavior. To derive these generakestants, a representative sample out
of a theoretical user population is a key-requirement. Henre differentiate between content
representativity, i.e. if the participants are typical fbe population and statistical representa-
tivity. Here, it is intuitively accessible that results bdson a small group are less reliable than
those based on larger samples. As a rule of thumb, repréisépts given, when each cell in
the experimental plan (related to the experimental comsii contains a minimum of 10 units
of analysis, e.g[_Rj_ther_a_nd_EL’lQKibbL[me]. The reconaedroverall sample size depends
on several factors: a) the experimental design (e.g. whethe a between-subject design,
where each cell of the experimental plan contains diffetsmts, or a repeated-measurement
design, where the same units are tested under the diffeomalitons; or the expected effect
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size); b) the goal of the study, i.e. if it is an exploratorydst (which requires less participants)
or a hypothesis-testing study (which involves more paréiois); c) for hypothesis testing: the
recommended sample size depends on the yielded experimpentar (related to the expected
effect size, and thus, requires pre-knowledge), and thafsignce level. For a calculation of
the required sample size it can be referred to @pgme degrees of freedom in
human behavior are immense. Thus, if studies are condustedse studies based on only one
or two participants, it is questionable if a typical behaviim haptic collaboration is shown,
which can be generalized to a broader population. Hencelahger of spuriously found effects
in measurements is high. The reason for talking albmits of analysisnstead ofparticipants

in the context of haptic collaboration research is the foifg: One assumption of inference
statistic tests is that the tested valuesiadependent When studying any kind of interaction,
this independence can not be assured due to a possible tafapaahe partner. This holds true
especially for haptic interaction where the partners amgplsd through a (rigid) connection.
There are several possibilities to deal with this challenge

1) The experiment is designed such that one participant iotdyacts withone other partner.
Thus, the dyads taking part in the experiment are indepéridentrasting the studies where all
participants interact in all possible dyad combinationB)en, thedyad is the unit of analysis
and independence of measures is achieved. Still, indilsdughin an interacting dyad cannot
be analyzed this way.

2) Another approach which aims to examine individual betvais to have arstandardized
partner, who is interacting with participants. This wayegartner is assumed to show identical
behavior, i.e. not influencing the experiment or all papieits in the same way. Only the
second partner, thene participant, is the unit of analysi$his can be realized in two manners:
a) HRI, the robot can be programmed to perform exactly the sartiens in each interaction;
b) HHI or HRHI, where a confederate of the experimenter teaes o act in a standardized
way interacting with participants. The drawback of thisqadure is that collaboration involves
adaptation towards the partner. However, the trained pacsgmnot adapt naturally to the partner
as his/her aim is to present a standardized partner. In t@@aiopinion this is contradictory
to the goal of studying collaboration.

3) A third possibility to deal with the question of how to exam the effect of the interaction
partner is to directly address it lmyodeling the interdependenciékhis can be done by using an
experimental design which allows participants to inteveitih several partners (e.g. round robin
design [LKenn;Lel_él.L_ZQbm) and use more advanced methads asi hierarchical modeling
(compare e.d. Fitzmaurice et al. |2d)d4|; Gelman and ﬂq@pfor analysis. The disadvantage
of this approach is that the dyadic data is no longer indepeindnd cannot be investigated
additionally with standard methods .

Participants: The number of participants involved in the state-of-thieeperiments is
reported in Figure_315. Only 41% of publications involve mdran the recommended minimum
of ten units of analysis. In contrast, 26% of the experimemesexecuted with less than five
participants. Even though results in those studies are ofterpreted as general statements,
their generalizability towards the population of usersusstionable.

Analysis: In the context of the generalizability of found results,stalso of interest how
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Figure 3.5: Number of units of analysis in the experimental studies on haptic collab-
oration reported in Appendix Bl Units of analysis which can be dyads if
both partners are participants or individuals if one partner is a standardized
partner. If more than one experiment is conducted in one publication, the
mean number of units of analysis is reported. One study reported only to
have “several” participants involved [Kosuge and Kazamura, 1997], which
is interpreted as a number between five and nine. If all dyad combinations
within a given group of participants are tested, we report the number of
participants, not the dyads.

the data is analyzed. Inference statistic tests lead begescriptive statistics, which describe a
given data set by reducing the data to some parametersdtlypmean and standard deviation).
Inference statistic techniques inform on the represesiiaf results under a given confidence
level. In the state of the art only 39% of the studies are a=alyvith inference statistic methods,
33% report descriptive results. Thus, it is not investidathether found differences between the
experimental conditions are due to noise (as inter- orpetrsonal differences) or if a significant
effect is found. Note, that the significance of an effect doaisonly depend on its actual size
and the amount of noise, but in addition on the number of @pents (via the standard error,

see e.g. Field [2009]; Howall [2007] for more information).

3.6 Related Experimental Studies

While literature on experiments in haptic collaboration waamined so far, this section gives a
brief summary on related experiments, which do not direatlgress the research field. Those
studies are of high importance to gain a full picture of haptllaboration and to design future
experiments. This following list is not complete and ser@e®n overview only:

e Studies (psychophysical) on the perception of haptic $s execution of kinesthetic
tasks, by individuals e.g b_&_P_QngLast.éZQOﬁ] and between persons

e.g. lShgrglll etall, Q£b3].

e Studies which address non-human-like assistance fursctiery. |[Bayart etall, 2005;

Morris et al.] 2007; U. LJnIerhinninghQﬂdn, 2£|)08].

e Experiments which focus on jointly executed haptic taskdctwirequire sequential
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interaction between participants, contrasting paraltloas on the manipulated ob-

ject or interaction point, e.g. | [Giannopoulos et al., 2088oblich and Jordan, 2003;
Meulenbroek et all, 2007; Sebanz etlal., 2003a,b].

e Experiments investigating the affordance to collaboratehbysiological variables, e.g.

arm-span [Isenhower etlal., 2010; Richardson et al.,|2007].

e Studies addressing “haptic communication” based on nkalsned signals, e.g. hap-
tic gestures|[0aklev et bIL_2d01], tactile signdls [Char@]eﬂZO_Qt], haptic icons
[IMaQLQan_a.nd_EnLiguJai_ZdOS], via foot—devicés_LRmLeLs_amiEssénl_ZQ%] or via
hand-held device [Fogg etlal., 1998].

e Experiments dealing with the short-timed haptic inte@ctiwhen passing objects, e.g.
% 3].

e Studies on interaction in kinesthetic tasks where no hafgedback is given, e.g.

1

3.7 Conclusion

For the first time this chapter has provided an overview on tesgarch in haptic collaboration
is conducted with psychological experiments to date, refgrto the overview-table on exper-
iments in AppendiX_B. The discussion revealed the increasitegest in haptic collaboration
research during the last 15 years. However, it was founddkpérimental research in hap-
tic collaboration is still in its beginnings. The researoterests and the related measurements
above all focus on performance and evaluation studies. Eargh the exchange of forces is
essential in haptic collaboration, only half of the repdréxperiments measure those. Model-
ing attempts of human behavior are rare. Thus, little is kmaWwout underlying mechanisms of
how humans conduct haptic collaboration tasks. This mayonit be explained by the short
existence of this research field, but additionally by chgkes related to interdisciplinary work.

Together with AppendikB this chapter provides an overviewatready conducted studies,
which can enhance the design of those future experimentsbgdnopen research questions. In
addition, this chapter clearly states the need for furtkpeaments on haptic collaboration.

Based on the overview on state-of-the-art experiments amdetlated discussion on trends
presented in this chapter, the next chapter will introdueghods to conduct new experiments:
Experimental designs and corresponding measurementgsealued in detail.
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4 Research Interest, Experimental Paradigm
and Measures

Whereas the last two chapters provided a theoretical bagkdrto conduct research in hap-
tic collaboration, the current chapter will introduce arpesimental paradigm and behavioral
measures, which are required to find new experimentallyeghinsights into this topic. This
chapter is divided into three subchapters. The first oneepteghe two main research interests
addressed via experiments in this thesis. These intergkiemced the decisions on the exper-
imental paradigm and the measures presented in the follptivin subchapters. However, it
is the major goal of this chapter to present both the experiaielesigns and the measures in
general terms. This way, future research can profit by usiagame designs and measures with
different research questions. The argumentation in falzeaations in design and measures are
precise enough to enrich related decisions future work.ekperimental paradigm introduced in
the second subchapter allows a manipulation of the joirdliréd object trajectory, representing
the shared action plan. The two different levels proposdterhaptic collaboration framework
can be studied iteratively by two different experimentadigas. Next, the subchapter on mea-
sures provides an overview on force and energy componergteofince in haptic collaboration,
which so far has not been reported in literature. Then, aciefity measure is provided which
allows one to relate task performance to the physical eféaytiired to achieve it. Until now, the
latter component has been neglected in haptic collaboratisearch. Even though dominance
measures exist in literature, they have not been compaoédysrdly. In addition, a new measure
called cognitive dominance is proposed. The experimemsigths and measures presented are
the basis of the results reported in the remainder of thsishe

4.1 General Research Questions

Next to the theoretical background given by the frameworkaf@&r2) and the discussion
of the state of the art on haptic collaboration research (@&n&), this dissertation provides
experimental results on two research interests, which@tmed in the following:

4.1.1 Intention Negotiation

One fundamental question, which should be answered bdierehallenges of developing be-
havior models in the context of haptic collaboration, is thiee “haptic communication” exists.
If the integration of two human partners‘intentions, pbhsincluding a negotiation of individ-
ually different intentions, cannot be executed via thisei&, it is not necessarily required that
technical partners show an corresponding behavior. Sadastudies have investigated system-
atically if intention integration in haptic collaboratidgasks is actually enhanced by additional
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information exchange via force and position signals bemwmaanan partner@ In this thesis,
task performance as an indicator of successful collalmras related to physical effort as a
measure of the negotiation costs. The relation betweer tfnes measures is called efficiency.
The following subchapters will introduce the experimewlasigns and measures to address this
research interest.

Itis possible not to provide haptic feedback at all in vite@enarios. Artificial forms of haptic
feedback, contrasting the feedback resulting from huri@nHdehavior in haptic collaboration,
can be implemented in robotic assistant partners (as gakdlowing). To show the potential
benefit in deriving models dealing with the challenges of lanpenting human-like behavior
in haptic collaboration, efficiency of haptic collaboratibetween humans is experimentally
addressed. Herein, it is the goal to identify important dest which can affect efficiency in
haptic collaboration. Relating to the research overviewxastiag experiments in Chapter 3 the
following factors are addressed: a) the effect of a partgentboducing experimental conditions,
where the task is executed by a single user and b) the effestitafal haptic feedback between
partners by introducing a control condition without sucedieack. Furthermore, efficiency will
be studied for each level of haptic collaboration sepaydtelmpare Chaptét 2) to derive insights
into an effect of the need to negotiate intentions. The tegilthe related experiments are then
presented in ChaptEr 5.

4.1.2 Dominance

Each of the collaborating partners in jointly executed ltajatsks is only partly responsible for
the resulting behavior of the overall system, and thus,rdmries only partly to the joint task

performance. A key-concept in haptic collaboration argethactions, which are based on in-
dividual intentions. The challenge lies in modeling of tbeatic partner to behave human-like
when executing such shared actions. Here, it is not enouglave a model, which performs
well in a given task that is executed individually. The cbdeaation with a partner has to be
considered explicitly in the integration of individual set plans. Intention integration should
be possible in an intuitive manner to gain high performanmu @wser-friendly interactions. By

investigating the dominance distribution between two haipartners, it is possible to gain in-
formation on roles of humans in haptic collaboration whearsty the responsibility of a task

outcome. The identification of such dominance roles engblesse quantitative guidelines for
robotic partners.

The influence of mutual haptic feedback will be analyzed byleging a control condition
without such feedbac@( Again, the need to negotiate intentions is experimentabyipulated
by conducting two different experimental studies for the tevels of haptic collaboration as
introduced in Chaptéd 2. The results and related guidelimesobotic partners, are presented in
Chaptefb.

Lexcept for the studies by the author of this thesis relatéo @haptefb
2In the dominance context the effect of a partner is not ingastd as this measure requires two inputs
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4.2 Experimental Design

In order to address the research questions raised abowejass experiments are described in
the following. The experiments separately address the apbidicollaboration levels proposed
in the conceptual framework. The focus is on two general eptsc efficiencyof intention
integration via mutual haptic feedback atdminancedifference in the collaborating partners’
behavior.

Haptic collaboration is no well-studied subject yet as etabed in Chaptdrl3. Hence, there
is only little theoretical knowledge available. Therefoiteis decided against experiments in
complex setups of real applications. High complexity wolidve led to a high amount of in-
terdependent, multi-dimensional data. Without pre-kmalge on what to look for in this data,
experiments in real-life scenarios do not seem promisirfigntbfundamental insights into hap-
tic collaboration. Drawback of the decision in favor for damental, structured experiments
is that the generalizability to real applications is notes=arily given and has to be proofed
in additional experiments. However, standardized expamisilead to higher internal validity.
The reduction of the complexity is desired for both collaimn levels. For these reasons, the
experiments in this thesis are based on a jointly execusaditig task where two persons ma-
nipulate a virtual object together. In line with the genaygbroach in this thesis, the experiments
presented in the following are conducted with human dyadgmio knowledge about “natural”
human behavior in haptic collaboration. In contrast to axgsexperiments in this context, the
new designs and setups offer the following advantages:

e The latent concept of the individually desired trajectayriade measurable and experi-
mentally controllable.

e For the first time, it is possible to investigate shared decisnaking via mutual haptic
feedback.

e An experimental manipulation of the need to negotiate indes between partners is real-
ized.

Furthermore, the experiments allow the introduction oftamnconditions without mutual
haptic feedback in order to understand the effect of thidldaek. In addition, the setup enables
exact measurements of position and force signals. The tesepted experimental designs ad-
dress the two levels of haptic collaboration presentederfridmmework (Chaptéd 2) iteratively as
a first attempt to investigate the proposed components aghaand allow a first validation of
the framework.

Components of the experimental setup and design are desanildetail in the following.

4.2.1 Jointly Executed Tracking Task

The tasks mostly used in existing experiments on hapti@aboHation are pointing or position-

ing tasks (e. gl_MaIe_o_etJ LLZd E_Ba.hma.n_é LaLLZbdelM:IEeﬁhk]nL[ZDﬁ)S]) tracking
tasks (e.g. Basdogan et al. [2000]; Glynn et al. [2001]; Glgnd Henning![2000]), and cube

manipulation/lifting of an object (e.g._Evrard and Khedi(ﬂm_O_é], Hamza-Lup et al .L[;Qb9],
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B_aﬂﬁs_e_t_aj[[;O_dO]L_S_aLhé t;O_Qh]). Mostly one-dimensional tasks are chosen toceedam-

plexity. Here, a jointly executed tracking task as a streddiexperiment representing real sce-
narios based on haptic collaboration is chosen for theviatig reasons:
A) As stated in Chaptéd 2, intention integration is assumed @ key-concept in haptic collab-
oration. Intentions can only be addressed in an experimbatewthe individual and (resulting)
shared intentions, i.e. the desired behavior, are not argyitive representations, but are made
explicit in the experimental design. In a one DoF pointingktanly the final position is clearly
defined and the movement trajectory in time is not experiaigntontrolled. In contrast, the
joint tracking task paradigm allows instructing the degibehavior/goal at each time point.
B) A virtual task, in contrast to a task taking place in realitpripare e.g[ Reed and Peshkin
]), is chosen because virtual reality offers the ath@a of controlled manipulation of the
visual information of the track, resembling the individaation goals. Thus, the visual feedback
given can be experimentally controlled and reduced to ezdhariocus on the haptic modality in
afirst step. In particular, this setup allows studying hig\vel haptic collaboration by introducing
different individually preferred action plans. Thus, sfthdecision making in accordance with
the described framework (see Chajpfer 2) can be investigated.
C) When studying the effects of a partner and mutual haptic faekllh is required that adequate
control conditions can be realized within the experimendidign. The virtual tracking task
paradigm allows to be executed by one person only (comgpthe effect of a partner) and to be
executed without haptic feedback from the partner (addrgske effect of haptic interaction).
D) The joint tracking task paradigm enables the implementatwth several devices and in
virtual realities of varying complexity (e.g. visual infoation, degrees of freedom, dynamics of
manipulated object). Thus, once generic models are fouddkey parameters in a scenario of
low complexity are identified, the generalizability of teegsults can easily be tested.
E) The tracking paradigm is well studied for individual perfars (e.g..Jagacinski and Flach
[|;0_Q$]; McRuer and ,]éﬁ_[;&b?l; Rasmuslsbn_[i983|; WidkéﬂsABO@nd thus, there are de-
scriptive and control theoretic models provided for thegkrperson behavior, which may be
adoptable for two persons, see Feth ét al. [2009a] and cenSeution 2.117.
F) As Rasmussérh_[LQBs] points out, the tracking task is nonlagihg when it is operated by
a single individual and is therefore handled on the skidzhlevel. Hence, when participants
are asked to execute a tracking task collaboratively, insueed that enough higher cognitive
resources are still available to focus on the collaboratiith the partner.

To the author’s best knowledge, this experimental task baarsonly been used on lower
level haptic collaboration, i.e. with identical refererpaghs for both parters, @LBMQM'[ al.
[ILO_OQ]; Glynn et ai.[[;O_dl]. The here introduced shared sleni making in a tracking task,
i.e. different reference paths for the partners as part gifi-tevel collaboration, has not been
investigated so far in literature.

4.2.2 Two Levels of Haptic Collaboration

To gain insights into the two different levels of haptic eddbration, the meaning of the decision
module introduced in Chaptel 2 is taken literally. In accamtawith the low-complexity ap-
proach, binary decision making is represented by the highret haptic collaboration within the
joint tracking task paradigm. In Figuire 4.1 the relationimsdn the experimental design and real
life applications (table carrying) is demonstrated togethith the substitution of one partner
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Experiment

Human-Human- I |
Collaboration

Application
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Human-Robot-

Figure 4.1: One approach to design intuitive technical partners in kinesthetic tasks is
to substitute one human partner of the interacting dyad. The knowledge
gained on HHC in controlled experiments can enhance HRC in actual ap-
plications.

(towards real human-robot collaboration, here on higlelleollaboration). However, it should
again be noted that both haptic collaboration levels adgdoasic concepts of haptic collabora-
tion; the joint tracking task is not supposed to meet the derily of a real life scenario.

4.2.3 Control Conditions

For a deeper understanding of haptic collaboration, cbntmditions have been introduced in
literature which allow the investigation of the effect of armer and haptic feedback on var-
ious measures. By eliminating either one of the two key patarsen haptic collaboration,

the advantages of haptic collaboration can be addressetﬂlelexisting literature, conditions

out haptic feedback are mtroduced (compare e.g. Ba
@f ]). Depending on these control conditions, the losians, which can be drawn
from differences between the experimental conditionsy.var the following, an overview on
(dis-)advantages of possible control conditions is presken

A) Single-person, single-hand control conditiom this condition, interaction does not take
place by definition. Mental models of the partner and actikam mtegration are not necessary.
Hence, differences between the single-person conditidrifanhaptic interaction condition can
have several reasons, i.e. the effect of the haptic feedifaekncreased workload due to action
plan integration, the task simplification due to the suppdrthe partner, and possible social
effects (to name some sources of variations in measurejrastsonfounded.

B) Single-person, dual-hand conditiofhis control condition does not require mental models of
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a partner but still interaction takes place due to the faattttine two hands have to be coordinated.
The dual-hand condition can be presented with and withoptidvéeedback, and thus, allows to
study the effect of feedback separately from the effect @raction in motor-coordination. The
effect of shared mental models can be examined. The challeegin the fact that the single
person has only one dominant hand, whereas the partnersyiadacdn both work with their
dominant hands. Therefore, the comparability of task eii@cietween those two conditions is
not fully given.

C) Without-haptic-feedback control conditiortere, interaction takes place as in the haptic con-
dition on the physical coordination level as well as on thgretive level, because mental models
of the partner are required. However, providing visual fesdk from the partners actions only,
potentially leads to inconsistencies when two persongljomanipulate an object. For the in-
dividual the proprioceptive movement of the muscles andsthhestimated object movement is
not necessarily consistent with the real object movememiwis also influenced by the partner.
Therefore, this control condition confounds the effectadiional haptic information from the
partner with effects due to disturbances related to thidkdaek. In addition, two cases have to be
separated: a) the haptic feedback of the object is stilligeml/in this control condition as in the
here presented experiments or b) no haptic feedback atgillea (e.gLB_asﬂann_QdeL[Zd)OO];
B_Ms_ej_&i.[[;O_dO]). In the latter case, the overall effect gititefeedback cannot be separated
from the effect of haptic feedback on the actual interagttbns communication between part-
ners. In relation to the general research interests in @dtil, haptic feedback from the object
is provided in the control condition. This seems to be thd bekition in the given context as
further discussed in Sectién 5.1.

D) Technical partner:Comparing a technical partner to a human partner is foremmst do
evaluate a model of an interactive haptic partner. Diffeesrbetween the two conditions allow
defining the quality of such a model. Because the model neebs tefined beforehand, this
control condition is added for the sake of completenesstbutse depends on the development
of advanced technical partners.

In the experiments described in the following, control atnd A and B are chosen to study
low-level haptic collaboration. To the author’s best kneslde no studies, other than the one
presented here, have so far used conditions without hageatbfack (control condition A) and a
partner (control condition B) within the same experimentt lkigher level haptic collaboration
involving shared decision making, the single-person abrdondition is of no use as shared
decision making can only be studied within dyads.

4.2.4 Experimental Setup

After the presentation of the task and the experimental iiong in the last section, the spe-
cific realization of the experiments on low- and high-levaptic collaboration are shown in the
following. First, the general design of the experiments tradr setup is described for lower
level haptic collaboration. Then, the undertaken exterssio order to address high-level haptic
collaboration are introduced.
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Figure 4.2: Experimental setup where two users can jointly manipulated a virtual ob-
ject. Except for the visual task instruction, the setup is identical for the ex-
periments in low- and high-level collaboration. The figure shows the signal
flow between the two operators and the virtual environment.

Low-Level Haptic Collaboration

The general design of the setup to study virtual haptic bolation between two human users
is depicted in Figure412. A description of the underlyingrirol of the haptic devices is given
in Appendix C. To match the definitions of low-level hapticlabloration within the conceptual
framework introduced in ChaptEl 2, the experiment condutiesfudy this level was designed
in the following way:

Participants are asked to move a virtual object, visuakisented by a cursor (red ball) along
a given reference path (see Figlre 4.3). As introduced irerdetail below, four different con-
ditions, two single person and two interaction conditiogo(partners), are defined. All four
conditions have in common that the reference path is degigsa@a random sequence of the same
components (triangles, curves, straight lines, jumps3.displayed as a white line on two black
screens (both showing the same scene). As the path scrolfsttie screen along theaxiswith
a constant velocity of 5 mm/s, participants are asked to track it as accurately aslpes The
overall path length is constant for all trials and experitabnonditions. One trial takes1 s.
The horizontal position of the red ball renders the restipasition of the haptic interfaces the
participants use to interact with each other. These haptigcfaces have one degree of freedom
(1 DOF) and allow movements along tikeaxis (traversal plane of operator). Each interface
is equipped with a force sensor (burster load cell 8542-Hjarad knob and a linear actuator
(Thrusttube). Their control is implemented in Matlab/Simk and executed on a PC running
the Linux Real Time Application Interface (RTAI). The samrmglirate was 1kHz. The graphical
representation of the path is rendered on another compgdernunication between both PCs
is realized by an UDP connection in a local area network. enegligible time delay can be
assumed.

The control of the haptic interfaces is designed to modelrdlyocarried virtual object. The
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=
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Figure 4.3: Photo of the experimental setup consisting of two linear haptic interfaces
and two screens with the graphical representation of the tracking path. Dur-
ing experiments a wall was placed between the participants blocking the
view on the other participant’s screen.

virtual object is defined to be a pure inertia, which can beheydifferential equation:

foum(t) = f1(t) + fo(t) = mi,(1) (4.1)

where f,.. is the sum of the forces applied by the participantiss the virtual inertia and:,
is the acceleration of the virtual object and, hence, of tyetib interfaces. The corresponding
transfer function in the Laplace domain

Xo(s) 1
Fom(s)  ms

is realized by a position-based admittance control (forexd@tails refer tb_FeLeﬂaL[LOQQb]).
This setup allows not only the measurement of the resultingeff,.,.(¢) but also of the indi-
vidual forcesf;(t) and f»(t) applied by each participants as would be the case in reatbje
manipulation.

In order to investigate the effect bfptic collaborationin the joint pursuit tracking task, a
condition with mutual haptic feedback between partnerstarek different control conditions
are examined. The resulting four conditions are descriledaib
1) Vision-haptic condition (VH)The partners receive visual feedback of the virtual objehtch
they jointly manipulate. In addition, they are connected the haptic channel. Next to the
inertial forces of the virtual objech{20 kg), they can feel the forces applied to the obfgct
their partner. This is achieved by introducing a virtual riﬁcd:onnection between the interacting
partners. Thusy,(t) = z1(t) = x»(t) and the virtual object (cursor) position is determined by
transforming Equatiori (4.2) to the time-domain and solvirigr z,(t)

Gols) = (4.2)

2

To(t) = foum(t) * go(t) (4.3)

with g,(t) is the inverse Laplace transform Gf(s).

2) Vision condition (V) Again, visual feedback is provided. The inertia (= 20 kg) of the
cursor is divided into two parts, such that each partner dandve 10 kg, which presents an
equal sharing of the workload. The participants feel onéyittertia, but not the forces applied
by their partner. This contrasts with haptic interactiandgts in the literature where no haptic

3realized with a high gain PD-controller, compare Appeidix C
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feedback at all is provided in the interactive control cdiodi. In contrast, environmental force
feedback from the object (mass) is provided in all condgiorhus, solely the effect of the haptic
feedbaclbetweerpartners can be investigated. The cursor position is deisdlde mean of the
two individual device positions. Therefore, each partraer only infer what the other is doing
from inconsistencies between his or her own movements andegulting cursor position (for
further research on inconsistencies in this context se¢eGet al. [[;O_O_éc]). Here, the object
position is calculated by

zo(t) = (z1(t) + x2(1)) /2. (4.4)

3) “Alone” condition with full interial mass (AF) The participant executes the task alone. He/she
has to move the virtual inertia in the same way as two pa#ditip do in the VH trialsi¢ =

20 kg).

4) “Alone” condition with half intertial mass (AH) The participant executes the task alone.
He/she has to move onlyra = 10 kg inertia, which is identical to the workload of an indivadu

in an interaction task with equally shared workload or theldaad in the vision condition.

Participants are not allowed to speak to each other duri@gxiperiment. In this way, it is
guaranteed that only haptic communication is studied. Hueyinformed about each condition
beforehand. In addition, they know that the first curve oftilaeking path is for practice and
will be excluded from the analysis.

The sequence in which the conditions are presented to thieipants is randomized. For a
further standardization of the test situation the follogvarrangements are made: a wall is placed
between the two participants to block visual informatioatithe movements of their partner;
participants use their right hand to perform the task (allhef participants are right-handed);
white noise was played on headphones worn by the partigpaotthe noise of the moving
haptic interfaces would not distract and verbal commuiocatannot take place. Further, the
position (left or right seat) was randomized with the orde®@erimental condition. The task is
considered intuitive enough to neglect a possible effeprefknowledge on haptic devices. To
be sure to eliminate this factor, a repeated measuremeigindeschosen where conditions are
counterbalanced.

High-Level Haptic Collaboration

The experiment developed to study high-level collaboraisodesigned employing shared de-
cision making. Shared decision making is e.g. required vitvenpersons carry an object and
face the challenge how to surround an obstacle in their waypare Figuré 4]1. Except for

this deviation from the setup described above, the two éxyerts are kept as similar as possi-
ble. However, on this level of haptic collaboration, no ‘faéd conditions are considered as the
focus is on shared decision making which has no equivalghtmane person. Thus, two differ-

ent conditions regarding the feedback between partnersoanpared: The interactive condition

with and without haptic feedback between partners.

Again, participants are asked to move a virtual inertia afigurepresented by a cursor along
given reference paths. This time, the reference paths/hifier for the two partners and involve
binary shared decision situations: Each participant sgeglaon an individual screen and the
cursor is again jointly controlled, see Figurel4.3. The e#joof 15 mm/s is kept constant
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Figure 4.4: Exemplary path combination for binary decision making in the joint tracking
task.

compared to the low-level experiment. One trial tak@&s. The same interfaces are used. The
dynamics of the virtual object are again defined by EqualoB)(

To introduceshared decision makinm the tracking task paradigm, it is necessary to fork the
track to meet the requirement of available options when ogfidecisions. The track is forked
with an angle of 180between the two options leading to a rectangular path, wieighired clear
decision statements. These decision situations offevogoiptions are separated by intermedi-
ate no-decision track sections, see Figuré 4.4. The trackl dm foreseen by 5s. All decision
situations (defined as the 2s interval around the bifurnaticthe track) are identical except for
the instructed preferences explained below: They all recgiep responses of the cursor. There-
fore, if the cursor is following the track accurately (pdsionly in theory), the task execution
alone requires the same effort in all conditions. Diffeesim measures between decision types
are therefore causally determined by the decision factor.

Part of the definition of shared decision making is intentiecognition, or, in other words,
the forming of mental models from the partner’s preferena¥ten approaching the decision,
participants do not know the partner’s intentions in terrhthe preferred path a priori. Thus,
negotiation of the shared trajectory is required. Howeere are two challenges in the experi-
mental design of such situations:

A) the dyad could agree on one of the two options (either lefight track) at the beginning of
the trial, stick with this solution and thus make no decisionthe remaining trials.

B) one of the partners could behave passively in decisiontgitg- then the experiment would
no longer address shared decision making.

To overcome these challenges, preferences are externtaibgiiced to the decision situation.
Hence, partners do not receive the same visual represemtdtihe path. Although the general
form is the same, the thickness in the analyzed decisionstypded: A track segment can
be depicted in normal path thickness or in forty times themarpath thickness. In Figure
[4.4 one paired path is shown as an example. The variationeopdith thickness introduces
individual preferences into the tracking task because #ih [ easier to track when thicker.
These preferences are equivalent to different informaltietween partners in real scenarios.
This leads to preferences in decision situations such amepf the two tracks between which
the decision had to be taken was thicker than the other,igadia preference for the thicker path
as it was easier to follow; b) only one path was depicted fandividual, thus no decision was
possible but there was a clear preference for the depictid fa make sure that the resulting
step in the track presenting the latter situation was nat@ated with this situation only, the
step was repeated in the track for both partners, so no dadisid to be taken.

The preferences in these decision situations represdstefit information or possibilities
for the partners in real life applications. As an examples partner may be aware of different
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options to accomplish a task but prefers one of them due terdask execution or is limited by
his/her workspace. It is necessary that both partners conuaie their preferences/recognize
each others intentions to allow a smooth task execution anavarall high performance. To
transfer this goal of high performance to our experimentjgpants are instructed that their task
was to reach the highest possible overall performance a$ dyé as individuals. Performance
is defined as the deviation to the closer path of the two whiak available for both partners
(described in detail when reporting the experiments in Givail and16). In order to strengthen
this motivation, participants were informed beforehanat tihey would be paid performance-
related. This, however, was not true; all participants gdithe same amount of monetary reward.

Note, that this experimental design does not allow to studi-tevel haptic collaboration
independent of the lower level. This is considered to bevedgemt to real life applications and
can be inferred directly from the structure of the concefraaework introduced in ChaptEf 2.
Next measures are introduced which allow an analysis ofidehia the presented experiments.

4.3 Measures

The last subchapter introduced the experimental designsatup developed in line with the
research interests on intention integration and efficieagyvell as dominance in shared actions
in haptic collaboration tasks. This section introduces suess, which enable a description of
human behavior in these tasks, and thus, build the foundé&iofuture modeling of technical
partners.

As a first step, force and energy components, which are rel@vanaptic collaboration, are
presented and challenges involved in those measurementismussed. Then, an efficiency
measure is introduced that allows combining performancasores with physical effort mea-
sures such as forces and power. This efficiency measure isateat by existing literature
on haptic collaboration (summarized in Secfidn 3), whemeements addressed performance-
related measurements above all others, only 50% of theqattilhs measured forces or power,
and no studies (except for publications by the author of ttesis) combines these two most
important behavioral measures in haptic collaboratioreré&fore, only little is known about the
relation between these two components. Next, dominanceuresas a strategy to investigate
action plans between partners are presented. Again, thegsunes are motivated by the interest
in the research community as stated in Sedtion 3. Within dmidance measure, two different
components are differentiated: physical dominance anditeg dominance, which is related
to decision making processes. This division is in line witl two levels of haptic collaboration
presented in the conceptual framework in Chalpter 2.

It is important to note that this dissertation focuses onal&iral measures in contrast to
subjective measures, which can be gained from questi@®aird in contrast to physiological
measures. Here, behavioral measures are chosen becaosertiegoal is to achieve the same
behaviorfor robotic partners compared to humans. Neverthelesse thawareness that in later
steps, especially in the evaluation of developed robotitnpes, several measures should be
combined to allow a full picture of haptic collaboration.
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Figure 4.5: Comparison of the external, interactive and difference forces in three 1 DoF
examples. The measure f;;;; was introduced by IReed et al. [2005]

4.3.1 Force and Power Components

InPan et all.[[;O_dS] a force decomposition of the applieddeioy a human intwork andnone-
work forces is given in the context of assistant robots. This dgmsition is based on the fact
that due to environmental constraints not all forces agpiiean object lead to a movement of
this object. IH_Ean_eJ:_anIl_LZQbS] the vectors fwork and none-workforces are defined to be
independent (orthogonal), which can only be assumed with-invariant constraints. In haptic
collaboration, the constraints can be caused by the pavtheris applying forces in the opposite
direction. Thus, the constraints are no longer time-irarari Therefore, a different type of force
decomposition is introduced here. In relation to the expental setup described in Section
4.2, all of the relevant forces are restricted to a dyad maafjmg a rigid object in a 1 DoF
environment. However, the definitions can consistently Xtereled for more DoFs and more
partners, as well as in direct haptic interaction withoubhject (e.g. guidance). The variables
f1and fQH are the forces applied by each of the interaction partnete@object. Two different
components of these forces are proposed in relatibn_toﬂhﬂEM]: The external forc¢”
and the interactive forcg’. Thus, the force applied by partner 1 can be described as:

fi=f+ A (4.5)

The movement of the object is caused by the sum of the extéonads (related tavork

4All measures derived in this sub-chapter can be defined fartawme(t). However, this is not explicitly mentioned
in each equation.
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Figure 4.6: Measurements corresponding to all force types introduced so far are plotted
over time for an exemplary trial in the joint tracking task experiment (low-
level haptic collaboration, haptic feedback condition)

forces), which also equals the sumffand f,

=fitfo (4.7)
and, thus, implies
fl=—f5 (4.8)

Interactive forces occur if the two individuals do not apfidyces in the same direction, but
rather push against or pull away from each other (relatedte-workforces). Thus, interactive
forces are contradictory and do not contribute directlyasktexecution, i.e. do not lead to an
acceleration of the object. Hence, interactive forces @amterpreted as wasted effort from a
purely physical point of view. However, they could play arpontant role in communicative
aspects of haptic collaboration. Interactive forces arfindd to be non-zero only if the two
partners apply forces in opposite directions. Furtherptbesabsolute value of interaction forces

is defined to be identical for both partners:

0 if sgn(f1) = sgn(fs)
fl=qh  sgn(fr) # sgn(fo) Al < | fa (4.9)
—fa if sgn(fi) # sgn(f2) A fil > [fa] -

The interactive force of the other partngl is determined correspondingly by (#.8). Based on
the obtained interactive forces, the external for€sand £ are calculated by applying (4.5).
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e
Humanarm1 * Virtual object ! Human arm 2

Figure 4.7: Energy flow in haptic human-human interaction, see also|Feth et al. [2009b]

Figure[4.5 illustrates schematically interactive and mdkeforces. Due to our definition of
coordinate systems, partners push against each otlierif0 and pull away from each other if
f1<O.

In [Re_eﬂ_el_dl.L[ZDQS] another form is chosen to describe tlaioal between two individual
force inputs, the difference force, defined as:

fairr = f1 = Jfa (4.10)

The difference forces are also displayed in Fidquré 4.5 tarashthem with the interactive forces
defined above. The difference force has been claimed to beegsune of disagreement of the
members” (Reed et al. [2006]) that “has no effect on accétera(Reed et al.|[2005]). The
author of this dissertation does not agree with the latetiestent as only’ has no effect on
the object movement. The measufig; is presented here to clearly contrast it with interactive
forces. Figur€ 416 gives further explanations of the refatietween the different force measures
by plotting an exemplary measure over time.

The separation of internal and external forces has formddgen proposed by
Yoshikawa and NadaL[LQ_bl] in a different context. Note,tttiee definition of f/ as it is
introduced here can be applied to translatory movementssavalid in static situations only:
Forces measures due to the dynamics of the object or an getieer, who has to move the
inertia of a passively behaving partner (the active partaarto move the passive partner’'s arm
by the other partner in addition to the object) are not takeéa account. Hence, these factors
can be interpreted as error within the force measures. Toakeknowledge of the author no
dynamic definition could be derived in literature yet. Atstisiarly stage of haptic collaboration
research the static definition is considered precise entwiglestigate basic behavior patterns.

In addition to the force components, measurement of pou@wsicharacterizing behavior in
haptic collaboration. Power-based measures combine thaspects of haptic interaction sig-
nals: force and velocity. Corresponding, energy flows camiaéyaed between the two partners:

P1 = fiin (4.11)

whereP; is thepower / energy flowfrom partner 1 to the environment (here including partner
2), f1 is the force applied by partner 1 arid is the velocity of the object. The velocity is
equivalent for both partners only when they hold on to theesateraction point. The energy
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Figure 4.8: Exemplary measurement of position and force data in the joint tracking task
experiment (low-level, haptic feedback condition). When both partners ap-
ply forces in the same direction (sign-wise) the measurements represent
active manipulations of the object. This is not necessarily true for forces
applied in opposite directions.

flow between partner 2 and the environment is defined correipgly. The different systems,
human operators and environment, and the respective efiengyare introduced in Figute 4.7.

After the force and power components have been introdugedaties of behavioral mea-
surements in haptic collaboration are addressed now:
1) Measurements in haptic collaboration are based on phygeelbles, which results itime-
series datavhen collected. Specific information (parameters) has texbected to make inter-
pretation possible. This can be done by methods, such &istdtanalysis, time series analysis,
or control-theoretic modeling.
2) It is important to differentiate between data representmeractingindividualsand dyads
Depending on the analysis level, modeling assumptions taJ®e checked (i.e. two indi-
vidual data streams within a dyad are not independent) andlesions of data analysis have
to be adapted to the level of the unit of analysis. The indigldoehavior within a dyad is
the data most interesting to find hints for human-like mod#l¢echnical partners. How-
ever, it is also the data most difficult to investigate as ddad procedures of inference statis-
tics cannot be applied, due to the dependent data. In metloodsocial psychology these
problems are addressed, and the knowledge can be trawisterreaptic collaboration re-

search_David A. Kenny [1996]; Griffin and Gonzalez [1995, Z0Kashy and Snyder [1995];
[Kenn;Lel_a'. [LZD_dlL_ZD_¢6l;_MagLﬂré_[1Q99]. Furthermore, ®dble to make statements about

individual behavior it is necessary to have two force-tergansors involved in the setup. Using
only one sensor to measure tingeractive force®nly allows analysis of dyadic behavior which
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is of limited use when one individual partner should be medel

3) The measurement of forces in haptic interaction comprisegeschallenges in relation to the
definition of the cause / thesponsible partnefor a specific measured force. The interpretation
of the so gained force signals is not straightforward. | hmith LBan_el_dI.LLZD_CbS], measured
forces can be actively applied or result from passive behmagig. wherpartner 1is pulling the
object not only this forces will be recorded but the secondnea’s force sensor will measure
forces in the opposite direction as well, due to his/her arentia. This is true even gartner 2
did not willingly pull in the opposite direction. Hence, iaignot be separated if the recorded
individual force with the lower absolute value is activelypéied or not. Figuré_4]8 gives an
example of individually measured forces in relation to thsulting object movement along a
reference trajectory.

4) Due to the above described dynamics in this interactivegaskution, one fundamental prob-
lem in haptic collaboration is thatdividual errors in action plans, i.e. forces which do not lead
to a performance increase by reducing the distance betwesor@and path, cannot be measured.

4.3.2 Efficiency Measures

Efficiency is generally defined byerformancen relation to thecostsnecessary to achieve it.
The concept of workload (cost or effort, which are considezguivalents here) in the evaluation
of human-machine-systems was introduced_b;LHaﬂ_andMﬁi?@&b]. After a short moti-
vation, a general overview on efficiency measures is predenthen, performance and effort
measures relevant in haptic collaboration tasks are degtriFinally, an efficiency measure for
this purpose is provided.

In the context of haptic interaction the existing litera&tends to focus on performance rather
than cost (or benefits) due to the physical coupling betweeimers, i.e. the physical workload.
However, physical effort is intuitively related to kinestlt tasks: a) the existence of a partner
may reduce the physical individual workload as the indigicheeds to handle only parts of the
dynamics of the objects; or b) contrasting only visual coygpbetween partners (as possible in
VR), the presence of a physical connection between partreysaiso be perceived as hindrance
because the necessity of coordination between partneftd beuncreased. Low coordination
may thus result in additional physical costs (in terms oérattive forces as defined above).
Hence, in this thesis the focus lies on physical effort asttng mental effort as a key concept
of haptic collaboration. In the following it is always reffed to physical effort measures if not
stated otherwise. Besides the research interest to inaéstige efficiency of haptic feedback
between partners for information exchange, there is furti@ivation to derive such a measure
for haptic collaboration research:

1. The found relationship between physical costs and padaoce can give insights into the
nature and utility of the forces or energies exchanged batvwartners. Based on this
knowledge, more advanced forms of artificial haptic fee&biac autonomous helping
robots, avatars in virtual reality, and assistance funetio tele-present scenarios can be
established in early stages of the design process.

2. Evaluations in the context of haptic interaction basedaoth dimensions (performance
and effort) will give a more complete picture of possible giing algorithms between
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partners, having in mind the design of assistance functsts the model of artificial
partners (compare e.m& 010]).

Next, efficiency measures from several disciplines (suatcasomics, (electrical) engineer-
ing, cognitive science, usability and human factors) am@duced. On this basis an appropriate
measure for haptic collaboration is developed.

Efficiency measures are most widely used in economics. A comfenture is the structure of
measures as a ratio between an output and a resource irgpup(echase per staff, contracts per
buyer, administrative dollars per contract [Moncka éﬂﬂjj)]. In.Dumon L[;9_§4] efficiency is
defined as “the amount of resources used to produce a unitpftuThis efficiency measure
is relative. That is, it allows different persons or situations to beda&gainst each other, but
it is only meaningful within the particular comparison. Timeasures introduced in economics
contribute to understand the general concept of efficidmdythey cannot be used to establish a
specific measure in the haptic interaction context, becthesperformance and effort measures
involved are too general.

Therefore, an efficiency measure related more closely tticdageraction is examined: In
the engineering context, the definition of efficiency corsvéye benefit to describe absolute
measure, meaning that it can be directly interpreted witlaocomparison: Efficiency is “the
ratio, expressed as a percentage, of the output to the ifpoier” (Park r3]) and can be
formulated as

- Useful Power
Efficiency = Total Power (4.12)

Because input and output are measured on the same scal@rthidd enables a percentage to
be specified, which allows for intuitive interpretation ofjaven efficiency. Such an absolute
measure would be desirable for efficiency in haptic intésactHowever, this would require a
measure equivalent to power, which is universal to all @apions of haptic collaboration.

IniZhai and Milgrath {L9_§8] a modified version of this absoleatciency measure is applied
in a kinesthetic task, in order to quantify the efficiency teé toordination of multi-degree-of-
freedom movements. Here, the authors take into accountatiel@ngth that the object (or a
specific edge) was moved in comparison to the path lengthseapgeto move to accomplish the
goal:

AP —- NP
NP

where AP is the actual path executed by participants anll the necessary path, which is the

shortest distance between two positioAs? — N P can thus be thought of as the “wasted effort”
' 8]). Therefore, this formula desestan inverse measure of efficiency,

hence calledNefficiency of the coordination movement. The disadvantdgf@®measure is that

it only indirectly describes the workload by position tret@ries in contrast to force measures.

The author of this dissertation considers this measure togerformance measure instead of an

efficiency measure as it describes a standardized deviationthe desired path.

Another research field that provides efficiency definitionseptially relevant to haptic in-
teraction is human-computer interaction or human-fachmaysis: In addition to satisfaction,
effectiveness and efficiency are the central criteria obiisain computer science. The follow-
ing definitions can be found: “Measures of efficiency rel&ie level of effectiveness achieved

Efficiency = (4.13)
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to the expenditure of resourc995] in accordantel®O 9241-210. Hereby, effec-
tiveness is described by two components: a) the quantitytaglathat is completed in a given
time [speed] and b) the quality related to the task goalsueay] (ISO 9241[M!r_;ﬂal.
). Depending on the involved resources, severalieffcy measures exist. Generalig;

sources may be mental or physical effathen “human efficiency” is measured Bev 995];
Paas and Merri?nboer |199$|; Tullis and Alﬂ)éﬂ_[2|008]. Thehars stress the fact that these
measures of efficiency arelative They can be used to investigate different tasks, userdpar
ipants], or products [displays, interfaces], but are megiioil only in a specific comparison.

One specifiaelative efficiency definition in the field of human factors analysigigen in
ICamp et dl.[[2001]; Paas et dl. [2005]; Paas and Merri?hb®83[1 Efficiency is defined as a
combination of performance measures and cognitive loadhtgheffort), where mental effort
corresponds to the “total amount of controlled cognitivegaissing in which a subject is en-
gaged” l(Baas_a.nd_M_eLLL?_nbbbLle93])l_Ln_C_amp_b 0(g]dtated that "high performance
with a low mental effort is most efficient and a low performar@aombined with high mental
effort is least efficient”. The authors express this conoepof efficiency in terms of a two-
dimensional space with a performance-axis (y-axis) andffant-@xis (x-axis), where the two
measures arescore standardized (mean = 0, std. deviation, = 1) to acamate differences
in measurement scales, see Fidure 4.9. A reference lineevitficiency = 0 is defined by the
linear function, Performance = Effort (both z-scored). sTteference line is representing mean
efficiency (in the given sample) under the assumption of @alirrelation between effort and
performance. Any particular observation of effort and perfance defines a point in this space,
and the corresponding efficiency can then be calculated éyénpendicular distance of the
point along r to the reference line. The distance, or the labs@alue of the relative efficiency
measure, can be calculated as follows:

|Effort - Performanck
V2

The sign of this efficiency measure is defined in the followwmgy: If (Effort - Perfor-
mance)< 0, efficiency is positive, otherwise negative. It is menéidrby the authors that the
linear relationship constitutes an oversimplificationcdngse in many tasks performance will
reach an asymptote that becomes independent of the addlitwested effort.

The advantage of this measure is that due to the z-standéadizit is independent of factors
that are constant across conditions of the experiment, asitie specific task that is performed.
Thus, it allows comparisons of efficiency across experisméaiing similar manipulations, but
quite different measures of performance or effort as theresefce values for both dimensions are
the mean of the given sample.

In [Llse_ul‘_a_el_aj.ﬂQ_Q?] an energy-based measure for codparefficiency is presented. How-
ever, this measure does not take performance into accauhthas, can hardly be adopted to a
general efficiency measure in haptic collaboration.

Common to all the efficiency definitions noted above (excedlﬁeu_riej_ai.[[LQ_Qﬂ) is that
they relate two variables: one measuring the quality of engoutput, useful power, effec-
tiveness, performance) and the other relating to resounvesved (input, costs, total power,
effort, workload). Here, these words are considered symaus ILRQb_QLt_a‘nd_I:I_O_ka&._lQW].
In general,an efficiency measure expresses a relation between perfearamd effort, where
efficiency is high when high performance is gained with lowrefflb is desirable to derive an

|Efficiency] =

(4.14)
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z-scores
I High Efficiency § Performance

Exemplary measures

z-scores
| Effort
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reference value Low Efficiency

Figure 4.9: Efficiency as function of performance and effort based on the distance
between a measure and the reference line the efficiency is calculated

[Camp et al, [2001].

absolute measure of efficiency for haptic collaborationis;Thowever, requires to measure per-
formance and effort on the same scale. Therefore, possibésunes of these two dimensions
are introduced in the following.

Exemplary Performance Measures in Haptic Collaboration

Task performance is described either by speed or accuracgpare e.g. @5@95];
Kerzel and PridzL[;O_dS]. The following list of performanceasures only considers objective
behavioral measures, in contrast to subjective ratings.

As summarized in Appendix]1B, most publications in the stat¢hefart measure position
errors, time to task completion or single event errors widehiessing performance in haptic col-
laboration tasks. Here, within these performance measheg®cus is on position errors, based
on the main assumption in this thesis (compare Chapter 2jrtbst haptic collaboration scenar-
ios can be abstractly represented by shared trajectoomfimify. Thus, any kind of displacement
measure between the desired and actual trajectories idevegt and represents the accuracy
aspect of performance. The so-derived measurement wollvalls to analyze the experiments
presented in Sectidn 4.2. However, there is a clear drawingo&rformance measures based on
differences between desired and actual trajectories: theed trajectory needs to be known to
use displacement performance measures. This is mainhageein experimental setups, but not
necessarily in real life applications where the environtean be less structured. Thus, this mea-
sures can serve only to find generic rules but can not be padrdfollers for robotic partners.
Some exemplary performance measures are summarized here:

A) Root-mean-square erroRM S) is based on the displacement between the desired and the
actual position of a given object over several time stepgpetitions. Here, an example is given
for the one-dimensional case:
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N d _ 2
RMS = \/ Zk:l(%](; o) (4.15)

Wherexii is the desired position;, ; the actual position and/ the number of samples in the
examined interaction sequence. The advantage ofthi5 in contrast to the mean absolute
error is that theRM S punishes large displacements stronger. Hence, it is asstimag the
signal to noise ratio in this measure is increasd/ S and other displacement measures give
precise information on accuracy but do not take into accthenspeed of a task.

B) Time on targetTOT) is the percentage of desired behavior throughout one Baldistin-
guishing only between correct and erroneous behavior fon &me step, an absolute measure
can be derived. Thus, it represents the time when the tasberéamed “correctly”.

N
Ty
TOT = 100% (4.16)
1 ifzd, —2,, <TOL
O = { 0 otherwise 4.17)

Wherexii is the desired position;, ; the actual position)V the number of samples in the task
length examined an@@O L a possible tolerance value for the accuracy.
Because of its binary nature (on/off target), this measugeinerally less precise than the/.S
but offers other advantages: Usiv 995]'s definibbriemporal efficiency, TOT is
already an efficiency measure, as it relates a qualitatibi@aier aspect (correct/incorrect) to a
resource, here time. However, the goal in this section isttoduce physical effort as costs, and
hencel’OT can be utilized as performance, but not as efficiency measure
C) Time to Task Completio¥'("C') is another well-known performance measure. It relies on
speed aspects exclusively and is not addressing accuracy.
D) Single-event errors Examples for this measure in the context of haptic taskseage
dropping a box (e.@ ]) or bumping into the wall of a labyrinth (elﬁ]

1). The measure is highly task specific and thus, nadigiven here.

Performance measures are highly task-related (for an mwein further measures see e.g.
Jagacinski and Flach [2003]). Hence, depending on a giva taore specialized performance
measures might be suitable. Furthermore, it is importabétaware of the correct interpretation
of the performance measures: While hihT measures describe good performance, it is the
other way around foRM S andTT'C, because here smaller values are desirable. Hence, the
two latter measures lead to inverse performance staterapdts relation to the effort measure
would lead tolNefficiency measures rather than to efficiency scales. To smmenit can be
stated that there is a variety in possibilities to measurtopeance in haptic collaboration. By
choosing a task to conduct an experimental study in thisesonthe performance measure is
indirectly derived depending on the task goals.

Effort Measures in Haptic Collaboration

In jointly executed kinesthetic tasks a physical effort mea has to be related to forces. Only
in this way can we address the effort (= the costs arisingtferindividual accomplishing the
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Individual level ¢) Dyadic level ()
Movement effort | MAFY, = fen(f£(t)) MAFY = MAF{; + MAFZ,
Interaction effort | MAF{; = fen(f{(t)) MAF] = MAF{; + MAF],
Total effort MAFT, = MAF{; + MAF{, | MAF] = MAF} + MAF

Table 4.1: Effort measures based on interactive and external forces separated for indi-
vidual and dyadic level; the individual level is shown as indexed for partner
1.

task, here the physical effort) which arises from coordamatvith the partner in addition to the
forces necessary to manipulate an object. Furthermoat efin be measured by the movement
executed during object manipulation. The combination sftmovement effort with forces leads
to power- or energy-based measures, which consider ordenotion.

A) Force-based Effort MeasureBased on the forces components introduced in SeCfion/4.3.1,
an effort measure for a given haptic collaboration task is derived M AF' (= mean absolute
forces, see Equation (4]18)). To derive this measure in animgfl way, movement and in-
teraction effort are distinguishedMovement efforts based on individual external forces and
directly influences the position of the object. Therefotes ialso related to the accuracy part
of performance, the qualitative outcome of such movementsraction efforf however, could
influence the communication between partners, helpingtédobsh mental models of the partner
or determining roles. Thus, interaction effort could leadhigh performance indirectly. Hence,
the total effort MAF is the sum of the movement effort based on external forces Mavd
the interaction effort MAE in a given interaction sequence. Because the sign of thesfdsce
defined by direction, which does not influence effort, theotlis force is considered (MAF =
mean absolute force).

N
1
MAF = — 4.1
N Z (k) (4.18)
with N the length of the task, one trial or data set and f thpeetve force component.

MAF? = MAF¥ + MAF! (4.19)

where MAF is the mean absolute force.

In general, effort can be described on an individudlA F;) or dyadic level (/ AF,, which
is indicated by the subscriptandd, respectively). Based on this analysis, effort measures are
defined as a function of the respective forces and listed liteT&.1.

One important control condition in haptic collaboratiosearch is a condition where no hap-
tic feedback between partners and possibly the object igiged. Thus, the effort measure
should be applicable to this condition as well, to allow a panson of efficiency values result-
ing from those control conditions. Howevg¥, is not relevant in vision feedback condition, as it
is not felt and has no meaning. Instead, the partners ardezmbbp some algorithm determining
the object position without feeling each others forcestiméxperiments presented here the ob-
ject position resembles the mean of the two individual isput/nder this conditionf! measures
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only the forces required to move the inertia of the objecudflthey represent the error due to the
static definition. Therefore, the force-based effort measare not directly comparable between
a mutual haptic feedback and a vision condition. In addjtibis assumed that in this condition
the physical effort arising for a partner is rather motioarttforce determined: The individ-
ual can only infer what the partner is doing by comparingh@sown input with the resulting
cursor position (compali_e_GLolen_ei éI_[Zb 09c]). md¢hse of misinterpretations, addi-
tional movements are required to produce the desired obrjegements. A power-based effort
measure, which considers the movement effort, is preser@edo overcome those drawbacks.

B) Power-based Effort Measure$Vhile overcoming some of the disadvantages of the force-
based effort measure, a power-based effort measure akscs diffe following benefits: effort
measures in engineering are mainly based on pawer vf or energyE = [ P. Conse-
qguently, energy-based approaches are widely used in osbistithe context of haptic inter-
action, especially in teleoperation (Anderson and Spo@88); \Hokayem and Spong [2006];
Niemeyer and Slgti[hé;[;le]). Power as a mean of measurfog & considered in relation to
the definition given in Sectidn 4.3.1.

Itis intuitively clear that a higher energy flow relates toigher physical effort. But, not only
a positive energy flow, i.e. energy injection to the system. @cceleration of the virtual object),
causes physical effort for the operator, but also a negatnvzgy flow, i.e. dissipating energy
from it (e.g. deceleration of the virtual object). For thesson, this effort measure is defined as

the mean absolute powet/(A P) in a given interaction sequence:
N N

1 1
MAPy = MAP;; + MAPy; = ]; Puel + ’; Py (4.20)
whereP; , andP, is the energy flow at the respective interfaces/interagbioints at a given
time stepk (k = 1... N). Again, the indiceg andd indicate if the measure is on the individual
or dyadic level.

Despite the above mentioned advantages of this measutsg ihas some drawbacks: Only
total physical effort can be considered with power basedrefheasures, and no distinction
between movement and interaction effort is possible. feuntiore, in the case that both partners
push against each other without moving the object, the tefaneasured as zero, which does
depict the workload in accordance with the physical debniti However, it may still require
isometric contraction of the partner’'s muscles, leadingéoceived workload. Despite this
definition problem, this measure allows us to compare effalties from conditions with and
without haptic feedback between partners, as a common awopan haptic collaboration
research.

Note, that in line with the static definition of force compate proposed in Sectidn 4.8.1,
the effort measures introduced here are not able to mea#foré due to object dynamics or
effort related to a partner, which has to be move a passivagré arm in addition to the object.
Furthermore, it is important to note that we took the meanhef ¢ffort measures to derive
one value representing an interaction sequence/trial.n,Taeomparison between interaction
sequences is only given when the trial length is constarth Wirying trial length it is advisable
to integrate over time instead.
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Efficiency Measures in Haptic Collaboration

To approach the targeted absolute measure of efficiencyafatichcollaboration, it is necessary
to express effort and performance on the same measurenaat doescribing the effort by
the deviation from the desired and actual path ds in Zhai aitgram [1998] does not seem
appropriate here, as the forces exchanged between paaireeos high interest and should be
addressed in the effort measure. Thus, the solution to bsslate measure problem could lie
in a force based performance measure. However, that wogldresknowing the desired force,
which is the necessary effort, in a given task. This is pdesibindividual task execution as it
can be derived from a known, desired object trajectory. Ghowhen working with a partner,
the desired force to achieve maximum task performanceeppir partner 1 is highly depending
on the force applied by partner 2 as stated before. This fappdied by the partner cannot be
predicted. Furthermore, at this point there is no infororaton how much effort is necessary
for the interaction itself. Due to the interaction betweantpers in haptic collaboration, such a
force-based performance measure could only be derived gadicddmeasurement level. As a
general goal in this line of research is to gain an individunatlel and to understand the interac-
tion between partners to develop shared action plans ontlofidual action plans, this solution
is refused here, even though, in specific tasks and with mar&mpowledge on the interactive
behavior such an absolute measure may be developed in .futleece, a relative measure is
introduced in the following.

A modified version of the measure introduced in the field of horfactors is adopted be-
cause it is more precise than definitions found in the ecoa@musability context and allows
considering physical effort. The efficiency measure is dasethe distance efficiency measure

[Camp et al.| 2001; Paas et al., 2005; Paas and MerriZribo@s], i®epicted Z19. It allows for

comparing efficiency, for example,

e between dyads in a given sample
e between two partners of a dyad
e between conditions such as different partners, displag&stand feedback conditions

For the following experiments on haptic collaboration tieency measure is defined to be:
Z(B) - Z(T)
V2

where Z(B) is a z-standardized performance measure &(d) a z-standardized effort
measure. In contrast to the procedure presenteH by Qamb[bﬂéli]; |Baas_e_t_él.|_[;Qb5];

i? ér_L1993], the absolute values are mailatdd first and the sign corrected

afterwards, but this is done directly in the formula. Beingledndependent due to the z-
standardization the performance and effort measures npregent deviations from the mean
values found in the overall data set. Whether this measunessgs the dyadit, or individual
A, ;, efficiency depends on the level of the performance andtafieasures involved. Further-
more, it is distinguished between interacti¥é, externalA”, and totalA” efficiency; again
depending on the implied effort measure. This efficiencysueais discussed in more detail in
relation to the specifically used performance and effortsuess in the context of the efficiency
analysis in Chaptér 5.

A(B,T) = (4.21)
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4.3.3 Dominance Measures

Addressing the second research interest outlined in Spbetd.1, this section develops dom-
inance measures for haptic collaboration research. Thendmoe concept plays an important
role in action plan negotiation on both levels of haptic abtiration. In line with the framework
presented in ChaptEl 2, on the lower level it needs to be ratgdthow the two individual force
inputs are chosen to follow a shared trajectory. Due to tla¢ios to the applied forces, this dom-
inance on this level is callgghysical dominanceOn the higher level, the shared trajectory itself
needs to be negotiated, if several possible trajectories. ekhe decision on this trajectory is
related to higher levedognitive dominancedn the following, these two dominance measures are
outlined in detail. The first part deals with dominance in{@wel, the second with dominance
in high-level haptic collaboration.

Dominance Measure for Low-Level Haptic Collaboration

Before an overview on dominance measures in literature engia definition of dominance in
low-level haptic collaboration is derived: the partner wapplies higher forces (in one dimen-
sion) on the object is controlling the object movement togibr degree (in this dimension) and
can thus be considered dominant (in this dimension) on theldgel of haptic collaboration.
This partner determines the shared action plan on how tovidhe desired trajectory to a larger
extend than the partner. This dominance type is also reféoras physical dominance.

Dominanceparametergmainly termeda) are used in state-of-the-art control architectures
for human robot interaction and technically mediated exd#@ons between two humans, e.g.
[Evrard and Kheddaf [2009]; Khademian and Hashtrudi-za@074.h| 20098, bf; Nudehi etlal.
[@]. However, to the author’s best knowledge, only twprapches exist which deal with the
measuremendf dominance:

A measure of dominance for experimental human-human ictieradata is developed in
|Re_e_d_e_t_dl.|_[;0_65]. There, dominance of one dyad member isadidin the basis of individually
applied forces:

S
fsum

(' is calculated correspondingly. The authors assume thaetiveo measures range from 0
to 1, and the two measures add up to 1. However, it is impottamite that this measure
of dominance can only be considered standardized whenidudivforces of both partners are
applied in the same direction, meaning that no interactivees occurOnly thenis C; € [0, 1]
and thusC; + C; = 1. Using these measures also in situations when interactinee$ are
applied, comparability of dominance across different dyad experimental conditions is not
ensured. The authors changed this measui‘_e_m_Re_eﬂ_a.nd_ﬂ’M and divided| f; by

[ fsum- The integral was calculated over phases of contemporareameleration or deceleration
of both partners, neglecting phases with interactive ®r@dis also implies that calculation per
time-step is no longer possible, limiting the usage in miodeiechnical partners.

It has to be mentioned thatlin Corteville et 07] an aasi=z function for one DoF point-
to-point movements is designed which allows a scaling ofgsstance level. This scaling (de-
noted asy) allows to vary the control of the assistance function owvertjmovements between 0
and 100%. In contrast to all other two approaches ,dhglue is velocity and not force related.

Cy =

(4.22)
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Figure 4.10: Relation between the framework introduced in Chapter [2l and the domi-
nance measures. Note, that dominance is introduced as measures and
not as parameters of the human model. CD refers to cognitive dominance
and PD to physical dominance. Physical dominance is based on the ratio
of individually applied forces which accelerate the object, i.e. fZ and the
forces summed from both partners, which operate on the object (f**).
The force decomposition into interactive (f!) and external forces (f¥) is
calculated by the force summation in the jointly manipulated object. Cog-
nitive dominance is position-based and is calculated as the difference be-
tween the individually planned object trajectory (:zci2 or xil) and the actual
object trajectory resulting from haptic collaboration. It is position-based
and relates to the deviation between the actual object trajectory and the
desired individual trajectories.

Therefore, speed-profiles of a given task have to be impléadan advance, which reduces the
generalizability of this approach. Furthermore, in case the estimated speed-profile does not
match the actually executed one, the domiannce measurbd actual interaction between as-
sistance and human may vary from the a priorics&tlue. Thus, the comparison to force-based
dominance measures is limited.

Now a dominance measure for haptic collaboration, whichseawe as a basis for controller
design and evaluation of haptic human-robot collaboraisodeveloped. Based on the force
components introduced in the previous section, a forceedaysical dominance measure is
extending the above summarized state of the art. This doroeeneasure is derived for one
dimension only. But, it can be generalized to multidimenalarbject motions by e.g. taking
the mean dominance of all dimensions. It may, however, bargdgeous to know dimensions
specific which partner is dominant. The dominance meastioeigled on the measure proposed
by[Rahman_el_élL[ZQ_Qba]: A dominance factors introduced as “distribution ratio” or “factor
of inertia”. The individual values can range from 0 to 1 and aomplementary (i.ea; +
as = 1). This complementarity of dominance variables is consisigth definitions from social
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psychology (compare Chapféer 6). The research grb_up_(&ah_rrdnﬂE_O;h]) experimentally
investigated the dominance between two human partners ibaFLpointing task. As they

claimed measuring interactive forces between two humam@a is impossible (being right for
the dynamic case, not the static one), they used a cormelatialysis between the acceleration
of the jointly manipulated object and the individually ajepl forces to address the dominance
distribution. The disadvantage of this procedure, besidigdd explanatory power (correlations
do not reflect the amplitude of forces) is that the corretatian only be calculated offline. The
distribution ratio is defined as follows:

J1=ami + fiu (4.23)
fo= (1 —a)mi — fin (4.24)

wheref;,; are defined as internal forces by the authors, equivalehttbére defined interactive
forcesf!. After illustrating that a mathematical calculation®fs impossible, the authors state
that “it is also difficult to determine the value af analytically because the nature of internal
forces is unknown”. This seems to be correct for a dynamicsonesnent of the internal forces,
which is not available. However, the internal forces can leasared in a static way, as shown in
Sectiof4.311, where different force components are defiAsdtated there, the static measure
is assumed to be appropriate when the object has a small madss moved in free space (no
damping). The static measure can still give valuable irtsigtto haptic collaboration. Thus, the
low-level dominance measure can be defined in accordanmet_éll_[;O_Qba].
Equation [[4.2B) is also related [to_Re_e_d_ét[aL_LiOOS]. Howeiveronsiders the individual
external forces instead of the overall forces applied byinldesidual. This has to reasons: a)
the dominance measure should describe which partner hasrhegntrol of the object move-
ment. As only external forces are responsible for objectlacation it seems intuitive to employ
them when developing a dominance measure; b) The measunedibﬁlﬂe_e_d_ej_élL[;QbS] can
measure dominance only if both partners apply forces in #&meesdirection. This problem is
overcome by using the external forces. The interactiveefoire important for describing the
individual effort a partner applies, but they do not conitéto the dominance measure.
Consequently, the individual dominance of partner 1 oveP R{;) can be defined as

i
fsum,t

wheret is the corresponding time step. The same also holdsFiby, ;. The attributes
common to most dominance measures in literature are ekiggewell: PDy, € [0,1] and
PD., + PDy = 1. Thus, a partner is absolutely dominant with a value of ond,absolutely
non-dominant with a value of zero. If there are interactivecés in the time step, the partner
who applies only interactive forces (the smaller amountootés, compare Equation (#.9)) is
per definition non-dominant. A value of 0.5 means, that battirers equally share the work-
load required to accelerate the object. The individual sd@mce measure is independent of the
direction of the individual forceg; and f,. It can be calculated for each time step, contrasting
Reed and Pesh!(ih_[LdOS]. To describe the dominance distibbétween partners for the whole
task or interaction sequence, the absolute mean dominaheior (°D,,) can be calculated.
For some analyses in haptic collaboration, a measure wiistrithes the dominance behavior
on adyadic levelcan be necessary. Hence, a measure describing the amouetadrninance

PDhay =

(4.25)
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difference, meaning the amount to which one partner doregthie other is derived additionally:
PDyisy = |PDy2 — PDa | (4.26)

This measure circumvents the problem of interchangeghwfitthe interacting partners. The
value is independent of the constellation, i.e. if partndofninates partner 2 or vice versa.

Figure[4.10 depicts the relation between the measure ofigadiydgominance and the con-
ceptual framework presented in Chagter 2. It is illustrated the applied forces influence the
physical dominance measurBD). It can be seen that the physical dominance relates todorce
only. Next, the position-based cognitive dominan€éX) measure is introduced.

Dominance Measure for High-Level Haptic Collaboration

A measure on high-level haptic collaboration has to addwdssh partner is dominating the
decision on the shared trajectoof the jointly manipulated object if there exist differerdgsi-
bilities for this trajectory. In contrast to the physicalimance defined above, this dominance
measure is, thus, not force- but position-based. It is nasogditive dominancand the measure
is related to physical dominance and the framework destiib€haptef R in Figure 4.10.

It is evident that those two measures are not independenacsf ether: To convince one
partner via the haptic communication channel to lift an objggher (choosing this trajectory)
while the overall goal is to execute a horizontal movemenef@mple implies that forces are
applied in this direction. Thus the cognitive dominant partneeds to be physically dominant
at some point. However, it is questionable that it is alwayse that the partner who carries
more weight, thus is more dominant on the lower level, alsod#s on the object trajectories.
This question will be addressed in Chapter 6. For now it ismsslthat in a given interaction
sequence the cognitive dominance (CD) in decision situati®melated to physical dominance
in this situation P D;5) by some functiorf which is unequal to zero:

CDyy = fen(PDy2), with fen # 1 (4.27)

For cognitive dominance to take place, it is necessary fiffereint object trajectories exist.
Furthermore, it is a prerequisite to know the individual@tiplans about the trajectory, i.e. the
individually desired trajectories. Then, a cognitive doarice measure should quantify to which
amount the shared action plan, and thus, the resulting oijeeement is following each of the
individually planned trajectories. This is fulfilled by

oD 0.5 if 24 = 24 (4.28)
2 min(1, max(0, %)) else. '

whereC D1, is the cognitive dominance of partner 1 over 2 in a given decisituation (.5),
, is the actual position of the virtual object anflandz¢ the individually desired trajectories
of the two partners. Due to the fact that the actual obje¢eédtary does not necessarily lie
between the two desired trajectories (e.g. when there isvarslooot due to falsely assumed
object dynamics) the above given saturations have to be nGmgitive dominance, thus, takes
the Euclidean distance between the individually plannetiaatually jointly executed trajectory
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into account to determine, which partner is influencing teeigion on the object trajectory to a
higher amount. The measured values lie between 0 and 1 andrapgementary for the partners.
A values of 0 implies non-dominance which his given when ehsas a difference between
individual desired trajectories and that the dyad then @begtthe trajectory planned by the other
partner. A values of 0.5 in cognitive dominance can have tigirgs: a) the executed trajectory
lies exactly between the two individually desired trajeies; b) the two desired trajectories are
identical as it represents = z¢. Both situations are considered equal in terms of dominasice a
no partner overrules the other. A valuelamplies high dominance.

The actual object trajectory is observable; no challengesneasurement exist here. How-
ever, gaining knowledge on the individually desired trépeies can be difficult as they are latent
cognitive concepts (not observable). The desired trajestcan be addressed by questioning the
participant or user during task execution. Another way isdnotrol these individual desired tra-
jectories experimentally by explicit instructions as igigen in the here presented experiments
(compare Section 4.2.4). In the author’s opinion that ishib&t way to investigate the individual
action plans, however, the procedure is based on the assmnibiat participants actually plan
to follow the path exactly.

Generally, the data on latent concepts can be of lower ikfiathan direct measures as
they are inferred indirectly. Therefore, a simplified measwent of cognitive dominance for
exploratory use of this concept is proposédb®. It can be applied if the following conditions
hold:

¢ afinite number for possible object trajectories (as in trengple of obstacle avoidance)

e an individual preference on one of these options is ingdicnd thus, its execution mea-
surable

which is true for the experiments introduced in Secfion 4t2s required to code the dom-
inance in a decision situations where the individually cegsitrajectory is equivalent with the
executed as one and coding the opposite case as zero. If &tiers agree on an action plan,
i.e. there is no negotiation the joint trajectory in a givextidion situation, cognitive dominance
can be coded as 0.5. When several decision situatlph® () are part of the given interaction
sequence, the value for mean cognitive dominance is defséteasum of these coded values
standardized by the total amount of decisions taken. Thenroegnitive dominance for partner
lis then:

k
Zi:l Olez,i
k
where>"F | CDy,, are the values of cognitive dominance of partner 1 over pai2nin a
sequence of decision situationk = ) DS) based on the above-described coding schema. The
same also holds faf' D5, .

CDb, = (4.29)

4.4 Conclusion

This chapter introduced tools for the experimental ingzgion of human behavior in haptic
collaboration. Two new experimental designs and the cporeding setups have been explained
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to enable an investigation of the two central research gprestaised in this thesis: A) if inten-
tion negotiation via mutual haptic feedback is possiblel(adsed by an efficiency measure) and
B) how two individual contributions to a shared action are borad (addressed by a dominance
measure). The two experiments are investigated in the tweldeof haptic collaboration, i.e.
how and where to move an object, iteratively. Thus, they eavesas a tool to validate the haptic
collaboration framework presented in this dissertatiohe €xperiments introduced here are a
profound method to study far more research questions thetwihh mentioned. Shared decision
making and intention negotiation can now be studied on aeraxgntally controlled manner.
The form in which the individually desired trajectory is isformed from a latent concept
to a measurable one, enables a quantitative investigafiaiewations from the individually
desired trajectories due to the collaboration with a parthleus, a general contribution to future
investigations on haptic collaboration could be made.

In addition, measurements in the context of haptic collabon have been introduced.
For the first time, force and energy components of relevanctis line of research have
been discussed in detail. Again, this serves as a genernal toasonduct future analyses of
haptic collaboration experiments. Two explicit measuresenntroduced then: The presented
efficiency measure allows for the first time in haptic colleimn research to relate task
performance to required physical effort. This is a valuabéasure to evaluate robotic partners
and assistance functions in haptic tasks as can e.g. berﬂ&mmﬁ_ej_éll_[;O_hO]. The measure
is also suitable for individual task execution. The efficigmneasure can easily be adapted to
different tasks and various performance and effort measumed thus, is of general interest.
The second measure introduced is a dominance measure. Eaisure is subdivided into
two types in line with the levels of haptic collaborationroduced in the framework. The
physical dominance measure enables statements on thedumalivforce contribution to the
acceleration of a jointly manipulated object. Cognitive doamce measures on the other hand
can derive knowledge on the accordance between individpéinned trajectories and jointly
executed trajectories of an object in shared decisiontgiugmas e.g. part of obstacle avoidance.
The two dominance measures are of high relevance to gaighiissinto human behavior as
parameters corresponding to physical dominance in robotititectures are already state of the
art. However, only little knowledge exists on appropriatggical dominance behavior in haptic
collaboration with humans. Cognitive dominance has not laekinessed in literature so far. As
a first attempt to measure latent concepts in haptic colé&lmor, here the desired trajectory, this
measure can clearly enhance research towards human-hievibg robotic partners in haptic
collaboration.

Based on the experimental designs and measures presergethlbarext two chapters report
analyses of these experiments addressing the two resaagshians.
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Analysis

The possibility to integrate the individual intentions iprerequisite for collaboration between
two partners. Then, intention negotiation is required isecthe individual intentions differ.
Despite this interest in intention negotiation, in haptdlaboration no experiments have been
conducted yet, which show that “haptic communication” &islf, however, intentions cannot
be negotiated via this channel, it is doubtful that the imp@atation of corresponding behavior
on robotic partners is necessary. Taking into account tladlestges of implementing mutual
haptic feedback, it is of high interest to know the scenandsich benefit from this potential
communication channel. The design of haptic interactiomtrob architectures is challenging
enough [[ALaLeLdI. ; ' .LZQ_d4], even if the
transfered signals are not considering intentions comeoated with human users.

After the presentation of a conceptual framework of happitaboration (Chaptdr] 2) and the
introduction of experimental designs and measures, whicble systematic research within
the framework (Chaptéd 4), this chapter describes the aeglgbtwo experiments. These ex-
periments answer the question of whether intention negmtiaia mutual haptic feedbaﬁl&s
possible between human partners.

Mutual haptic feedback, which is optional in virtual sceasy could positively influence the
joint task performance. However, it could also generatéuthsince for the individual part-
ner, who eventually has to overcome the partner’s forcesingl to different individual action
plans. Therefore, it is argued that an analysis should nigtiovestigate the performance (dis-
)advantages of human-like mutual haptic feedback for tde@megotiation, but also the phys-
ical effort related to it. Hence, in this chapter, efficieranyalyses are executed, which address
the performance in relation to physical effort. This measuelps to draw conclusions on the
existence of intention negotiation. Results will show stgirformance in situations, which re-
guire increased intention negotiation indicating thagimiton negotiation takes place. The effort
measure provides evidence that the haptic communicatianngh is actually utilized. Haptic
collaboration between two human partners is studied aseserte for human-like behavior
within a jointly executed tracking task. In order to undanst the role of mutual haptic feedback
for intention negotiation between humans in kinesthetsx¢aa control condition where such
feedback is not provided is required. Therefore, in the twoeements reported separately in
the next subchapters, a control condition is employed whapgic feedback is given from the
manipulated object only. Furthermore, in these two expenits, intention negotiation on the
basis of mutual haptic feedback is investigated iterativelline with the two levels of haptic
collaboration, see Figufe .1. These levels relate to theypes of intentions, which have to be

lapart from the related publications by the author of thisefigtion|[Groten et al., 200Sb, 2010]

2Mutual refers to the fact that both partners are able to peg@nd act upon each other via this signal exchange
allowing adaptation processes, which is a prerequisitecédlaboration. Thus, it is associated with human
behavior here, compare also Secfiod 1.3.
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Figure 5.1: Structuring this chapter within the haptic collaboration framework as de-
scribed in Chapter[2} The efficiency analysis presented in the following ad-
dresses intention negotiation on how (lower level) and where (higher level)
to move a jointly manipulated object.

negotiated: On the lower level it has to be decitdled/to move an object. Strategies to combine
the individual force inputs have to be found. On the higheellé has to be decidedhereto
move the object, i.e. shared decisions on the object tajebiave to take place.

First, a literature overview on effects of haptic feedbaokperformance and effort is pre-
sented. The following two subchapters experimentally esklefficiency on the two different
levels of haptic collaboration to gain insights on the bear@fimutual haptic feedback for in-
tention negotiation. This chapter ends with a general emeh including guidelines for the
development of robotic partners inferred from the resufthhaman-human collaboration pre-
sented in this chapter.

5.1 Literature Overview

Human-robot haptic collaboration is not yet a well studiabjsct (see Hoffman and Breazeal
[2004] and compare Sectidn 3). However, studies exist whrehof relevance in the context
of efficiency, i.e. the relation between effort and perfones and intention negotiation in joint
tasks. These are discussed in the following.

Several authors suggest that providing haptic feedback fre virtual environment, where
task execution takes place by one indiviguiglads to higher performance (Biocca [1992];
Burdea and Coiffet| [1994]; Gupta etal. [1997]). Also, in thentaxt of supervisory con-
trol and tele-operation a positive effect of haptic feedbaa individual task performance
could be shown (Das etlal. [1992]; Hannaford etlal. [1991 1wk ¢1992]; Lee and Kim [2008];
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Massimino and Sheridlalﬂl_[;égm; Sheribhn_[j992]). Furtleeemin training contexts, i.e. learn-
ing of motor skills it was found that haptic guidance leadsatoincrease of performance
in individual task executio a]LﬁbOtl._F_eygﬂ_aﬂ tZD_QlZ]LMQI:LiS_el_éI.L[ZD_dW];
lOguz et al.[[2010]; Stm et al. [2006)).

To investigate the question whether the advantage of htggatback in performance can be
found injoint task executiorftwo collaborating humans) as well, several experimeritaliss
have been conducted: [In Basdogan éwOOO] a non-haptaitean is contrasted with a hap-
tic condition that provided feedback from the environmémtjuding the interaction partner, in
a “ring-on-wire game”. The task completion time as well as time per successful trial were
higher when haptic feedback was provided. The same conditigith either none or full haptic
feedback) were compared by Saet ai.[[moi; Salkis [Mh]l Sallas and ZhhiL[MB]. Par-
ticipants were asked to jointly manipulate cubes in a virseanario. Performance did not differ
in terms of task completion time, but the number of cubesigltiown because of insufficient
interaction was decreased with haptic feedback. In a two §#Fpaced tracking task for two
persons with different control-architectures of inputidesLG_I;mn_el_dl.LLZD_dl] compared force
feedback conditions to those without such feedback. Notigiog force feedback led to better
performance than a condition with force feedback, wherénpas were coupled with a virtual
spring. However, the results are challenging to interpsetha experimental plan with the two
control-architectures and feedback conditions was ndy firtbssed. In all these experiments,
the haptic feedback was either given from the paremetthe environment, i.e. the manipulated
object or no haptic feedback at all was provided. Hence,dbad advances in performance can
possibly be explained by the effect of haptic feedback mediby the object, which has been
shown in individual task execution research. Thus, whethgual haptic feedback between the
two partners, i.e. the haptic communication channel leadsdreased performance can not be
answered explicitly by those studies. One study, which ssggthat a general effect of haptic
feedback instead of a collaboration specific effect, isgmed b MIL{;OJO]. There, in
a virtual reality experiment, artificial forms of haptic tHeack provided by coordination con-
trollers between partners did not increase performanceaced to simple force feedback from
the object.

In the studies described in the following, individual ancdig task performance have been
compared when executing the same task with haptic feedbikce, the feedback condition is
constant, and the effect of a partner can be studied insteadyeneral haptic feedback effect:
Interaction with haptic feedback was contrasted with sfgrson task execution t al.
[ZO_OA,QO_QBH Reed and Pgstlkln_[;b08]. The authors analygaldnuman-human interaction
in a one DoF pointing task. Results showed that dyads perfbletter than individuals with
respect to task completion time. Thalividual forces were higher when acting alone compared
to acting within a dyad. This may be caused by the partner asdradnce to smooth task ex-
ecution. The authors report that few dyads had a feeling opemtion, most perceived the
partner as interferencb_[ﬂe_e;L&d_Pe_éﬂm.JZOOS]. To overtbenchallenge that performance
advances in dyadic task execution could be explained bydt#i@anal physical resources of a
partner the rotational inertia has been adjusted (douldedyfads) to provide equal workload
for the individual whether interacting with a partner or.n8imilar experiments with one DoF
rotational pointing tasks have been executed by antry] M] and Ueha et al. [20b9]. Both
studies report increased performance for dyads compareditoduals. In|£e1h_ej_éll_[;0_0_bb]
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performance and energy of dyads in contrast to two inditidoaditions has been studied, using
the experimental tracking task setup reported in this ghé3erformance was higher for dyads,
and an energy exchange between partners was found. In ohe tdlone” conditions the ob-
ject dynamics where adjusted to achieve comparable watldoaditions for the individuals in
the “alone” and the collaborative task execution. The othEme” condition was not adjusted
to serve as a control condition. Taking this into accourd, liere mentioned studies suggest a
positive effect of haptic interaction on performance, asdbvantage of a reduced workload is
experimentally adjusted. However, it remains unclear éf éldvantages of mutual haptic feed-
back are due to an efficient intention recognition betweamnpss, or if there are alternative
explanations as a stabilization of the movement due toantse forces. The idea that “con-
tradictory forces” lead to an advanced control of pertudvest is experimentally addressed in

Reed and Peshkin [2008], but was not supported by results.

There is one study which compares a) a collaborative hagéididack condition to b) an in-
dividual task execution and c) dyadic performance with leaffgiedback from the manipulated
object but not from the interacting partnéL[EeMtMO The task conditions did not in-
fluence the error in a two dimensional pointing task, exettegepresent with four dimensional
interfaces. However, task completion time was signifigatiéicreased in the collaborative haptic
feedback condition, whereas there was no significant éiffee between the other two condi-
tions. Again, this implies evidence for a benefit in perfonta based on the communication
channel provided by the haptic feedback.

The only studies in the above mentioned kinesthetic intema@xperiments which recorded
effort measures such as force and energy next to perfornzardbe ones Hyﬂe_e_d_ej al. |2])04,
|;0_0ﬁ5]; Reed and Peshkih_[;éOS] and Feth étLaI._[ztﬂ)Qb,c]. Mewyehe effort measures are
not related to the performance in these tasks. Thus, to thiedbéhe author’'s knowledge, no
experimental study has been conducted to date addresdicigrefy in haptic human-human

collaboration (except for the publications based on thaptér:| Groten et iiIL[;O_be, 2d10]).

Efficiency has not been investigated in joint kinesthetsksawith mutual haptic feedback be-
tween partners. However, theoretical, task-independemwledge of the relation between effort
and performance can provide information on basic mechanistms generally assumed, that
humans prefer to achieve their action goals with a minimuraffwirt, whether this is mental or
physical effort. For example, Robert and Hockey introducedgnitive-energetical framework
(Robert and HQQké}L[LQbﬂ) with a compensatory control maidma within a human operator
to address the trade off between performance and coststjéfésed on Kahneman [1973]. The
idea is, that performance is “protected” by allocation aftier resources. The alternative to this
behavior is seen in a stable amount of involved resourceglg#o a possible lower performance
with increased task requirements. In this model those ressiare related to subjective mental
effort. However, in the given context a generalization a$ thought towards physical effort is
proposed as research topic.

Based on findings that group performance is influenced by tigyatf group members
to exchange and coordinate information [Driskell and $a1882; Shat, 1932] identified two
types of team members experimentally. It was shown dgaicentricteam members did not
take the information of the partners into account in seqakhinary decision tasks for dyads.
This behavior led to poorer performance than thoseaifectively orientedteam members.
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Based on the results foundlin Driskell and Salas [1992] itésiaed that this additional channel
of communication leads to increased performance. This fdaads further support in an
experiment executed H);LKnleiQh_andedamLiOOB], wherexgerimental setup of a dyadic
pursuit tracking task is used to understand anticipatofgadbcontrol in interaction with a
partner. In this setup participants did not have hapticlbeed from their partner because they
did not execute the linear movement of the virtual cursoarapel. Instead, each of the partners
had a different action to perform: one had to press a buttsparsible for the acceleration of
the object, the other a button responsible for deceleralibe partners could not see each other
or talk but in some conditions the partners had externalldaeki on what the partner is doing
(auditory cues for pushes on the button). Performanceasecwith these auditory cues of the
partners task execution. As proposed by the authors, thelikely reason for this is that with
external cues the partner’s actions can be integrated ia owa action plans. The idea that
information from additional modalities (here vision) enhas verbal communication has been
addressed experimentally rgle etlal. r:t004], too. Basethe approach that grounding is
a key concept of communication (Clark and Br ﬂaLLlL991].),tlhat common ground / shared
knowledge / shared mental models (all considered synonym) lsmplifies communication
|G_Q[gl_e_el_a|I.LL20_d4] set up a dyadic puzzle experiment. Tlaeyed the amount of shared visual
information. The more information was shared between pasirthe higher was performance.
This effect was stronger, when task complexity increased.

To summarize, it is so far unclear if mutual haptic feedbaufkasmces intention negotiation,
especially, if it leads to higher performance and to whicktesuch an improvement can be
achieved. Thus, the usefulness of the haptic channel ftalmmiative scenarios cannot fully be
answered by existing literature.

5.2 Efficiency in Low-Level Collaboration

In this subchapter low-level haptic collaboration is exaeai, where intentions have to be negoti-
ated orhowto move a jointly manipulated object. Herein, efficiencyngdstigated as a manner
to relate task performance to the physical workload (&ff@md thus, understand possible ad-
vantages of mutual haptic feedback in human collaboration.

Executing a joint tracking task (introduced in detail in 8@&t[4.2), two human partners were
asked to move a virtual object along a given reference pattiichwscrolled down on the two
screen. The task was executed with two one-degree-ofdreatbvices, compare Figure b.2.
The instructed desired trajectory is kept identical formbpartners, so intention negotiation on
where to move the object (high-level haptic collaboratismnjot required.

In order to understand the effect of mutual haptic feedbadiuman haptic collaboration, an
interactive condition with haptic feedback from the partf\éH) was contrasted to an interactive
condition without such feedback/}, where haptic feedback was provided from the object only.
It is important to note, that haptic feedback from the enwinent (here the object) is nonethe-
less given in this condition. Thus, difference between e ¢ollaborative conditions are not
influenced by a general advantage of haptic feedback buékated to the forms of intention ne-
gotiation provided: with only visual feedback from the pent the inconsistencies between own
movements and resulting object movements allow inferencethe partner’s actions. In con-
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Figure 5.2: Photo of the experimental setup consisting of two linear haptic interfaces
and two screens with the graphical representation of the tracking path. Dur-
ing experiments a wall was placed between the participants blocking the
view on the other participant’s screen.

trast, the partner’s actions can be directly perceived ifualuhaptic feedback is implemented.
Furthermore, two “alone” conditions are used to analyzesffects of a partner and show how
well the task is executed if intention negotiation is notuiegd. As this efficiency analysis is
focusing on physical workload, which depends on the ineftthe manipulated object, the inter-
active conditions are compared to an “alone”-condition sgltbe same inertia has to be moved
(AF) and one where only half of the inertia has to be manipulatét) (compare Section 4.2.4
for details).

After raising research questions on the efficiency of mutagtic feedback in a task requiring
intention negotiation within low-level haptic collaboiat, details on the analysis of the above
described experiment are given. Then, statistical reauttseported and discussed in the end of
this subchapter.

5.2.1 Research Questions

Most studies reported in literature suggest a performadeardage due to additional feedback
from the partner, here, provided by mutual haptic feedbdtie relation between the task per-
formance and the accompanying physical effort has not beereased experimentally so far.

Contrasting the experiments reported in literature, in ¥pEements presented in the follow-
ing, the amount of exchanged information is not treated ssltref interpersonal differences,
which are balanced out within the sample as.in [Driskell aalhs 1992; Shaw, 19|32], but is
experimentally varied by the provided communication clenre. whether there is mutual hap-
tic feedback between partners or not. Even though, in thgserienents verbal communication
(as inLG_eth_e_el_éIJ_[ZQ_M]) is not allowed (in order to addrdee effects of haptic collabora-
tion only), the mutual haptic feedback is additional infatiton compared to visual information
on the partner's motions. Therefore, when generalizingrédseilts from Gergle et hll_@b4]
and/ Knoblich an r ||1_[;d03], it can be expected that iadait information, as it is given
with mutual haptic feedback, helps to establish common mpitahared action plans, and thus
increases joint task performance. However, it is uncleawhach extent these results can be
generalized to haptic collaboration. Thus, there is notughaheoretical knowledge to raise
concrete hypotheses here. Instead, the focus is on tworchsgaestions examined by an ex-
ploratory study:
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e RQ1 - Effect of mutual haptic feedback on efficiency:ls haptic feedback from the part-
ner efficient in collaborative trials where intention negbibn is only required to decide
how to move the object? The mutual haptic feedback condisacompared with two
control conditions: a) individual execution and b) intdraic without this communication
channel to understand this effect. This question combimesantrol conditions proposed
by different studies in the literature overview (Sectiofl)5n a single experiment. It is
assumed that good performance results from good collaborathe measured physical
effort is an indication to which degree the haptic collatiorachannel is used, as the ef-
fort for optimal task execution is controlled experimelytdlia the adjusted inertia and
equivalent paths). The efficiency measure relates periocenand physical effort.

e RQ2 - Efficiency distribution between partnersﬁ: How is efficiency distributed between
partners (within a dyad), comparing trials with and withoutitual haptic feedback in
low-level of haptic collaboration? This sub chapter focuge the efficiency of interactive
behavior in a task, where strategies on how to move the olgeetto be defined in a shared
action plan. Thus, this question allows first insights ifte differences in strategies when
mutual haptic feedback is provided compared to the contotlition.

5.2.2 Data Analysis
Participants

The shared tracking task experiment (for details see Sd€did4) was conducted with 24 par-
ticipants (age mean: 27.6, std. deviation: 2.5) formingridependent mixed-gender dyaﬁs.
In the “alone”-conditions only one randomly selected pariof a dyad is analyzed to guarantee
statistical independence of data points within this coodit

Measures

Efficiency is analyzed with the measure described in det@lkctio 4.3]2. This measure relates
performance to physical effort. For the efficiency analgsisociated with the first research ques-
tion, the relativedyadic efficiencyneasure £7) is used for all four conditions as a description of
the overall systenfwhether it contains one or two humans, see Equation 4.2d€tails). The

root mean square erroRR(\/S) is chosen as the performance measure with the goal to punish
larger deviations from the desired trajectory harder. Beean this efficiency definition, per-
formance values are positively definggél)/ S is transformed to receive a positive measure (i.e.
high values mean good performance) as follows:

RMS,

B=1- "2
RMSmax

(5.1)

3As performance in this jointly executed task is identicallfoth partners, difference in efficiency are only due to
effort measures.

4For the sake of completeness it has to be mentioned that tpar®i¢ipants formed six groups of four persons
each. Participants interacted in accordance with a roubih rdesign [(Kenny et all [2006]), such that each
performed in partnership with each of the group members dlsasealone. In the results presented in this
section, due to the assumptions in inference statisticalyaes |(Kenny et all [2006Pnly independent dyads
were considered, i.e. each analyzed participant was partigfone dyad.
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whereRM S,, .. is the maximumR M S found in a given data set (here: maximum of the whole
experimental datalR M S,,., = 0.0055m) and RM S; is the error of trial j.

Effort I'; can be expressed as powekd A P) or force-based X/ AF) measure. The focus
here is on the first, as it is more representative foMlmndition (for further argumentations on
the use of a specific effort measures see SeCtion4.3.2).

To compare the power-based effort‘@lone” and dyadictrials it is necessary to define
a single measure for both cased/ AP? is a dyadic measure which is used in the “alone”-
condition as well. In the “alone”-condition, the influencktibe (nonexistent) partner is set to
“0" (MAP] = MAPY + MAPL = MAP! + 0). Thus, the efficiency measure, based
on this overall effort measure can be used to describe atl émperimental conditions. Both
performance and effort are reported per trial. This leadbdfficiency measure:

Z(B) = Z(Ty)
V2

The z-standardizatior¥; (B) and Z (I';), takes place over all experimental conditions.

AT =

(5.2)

To answer the second research question, it is required twagipindividual efficiencyA”
within a dyad(contrasting dyad members). This, of course, can only benae in the in-
teractive conditions. Here, efficiency has to be defined feingle partner rather than at the
dyadic level: To define the former, the performance and tfeeteheasure have to be described
individually for both partners. Due to the fact that perfamoe in the haptic task is described
in relation to the object involved (i.e., it is the same meador both partners), the efficiency
varies between partners in relation to the effort measuhg drhe individual efficiency Afi)
is calculated correspondingly to the dyadic formula, bugedabon(M AP, )and (M AP);) for
partner 1 and 2, respectively.

It is not possible to quantify the difference or similaritiytbe individual efficiency of dyad
members with the Pearson correlation measure, becausedridydd members are exchange-
able. Exchangeability here means, that there is no cleadistribution by which the individuals
can be distinguished. For example, if we develop our datatdbe correlations, we build two
columns, one for a certain variable of each partner. It igrany if we allocate a particular indi-
vidually measured efficiency to the colurpartner 1or partner 2 Thus, various possible groups
of data can be built, leading to different correlations. @y to overcome this problem is the
pairwise intraclass correlatioh_(ﬁtiﬁm_a.nd_G_anhbz_[ﬂ]lenmLel_aJ. [LZD_dB]), which can be
based on the double entry method: all possible within-gneaipings of scores are built before
calculating the correlation on this dataset. For dyadg, tieans that the individual measures
of a couple are entered in the dataset in both possible caafigns. In this way the relation
between the individual variables can be determined by asBegroduct-moment correlation.
Based on this method, the intraclass correlations and thestedj significance level from the
doubled data entriels_(ﬁr_iﬂln_a‘nd_G_Qanliléz_LJbQS]) is catmd. The z-transformation of the
efficiency-variable is conducted on the double entry datasmss the data from both interac-
tive conditions.
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Figure 5.3: Performance B is measured as positively transformed RM S (higher value
= high performance). Effort is defined as mean absolute power per trial.
Comparison between the four experimental conditions AF (“alone” with full
mass), AH (“alone” with half mass), V (visual interactive = no mutual haptic
feedback), VH (haptic interactive = mutual haptic feedback): mean and one
standard error.

5.2.3 Results

This section presents the experimental results in reladdhe research questions raised in the
beginning of this subchapter.

RQ1 - Effect of mutual haptic feedback on efficiency

Descriptive results of the effect of the four conditions diort, performance and efficiency are
depicted in Figuré 513 and Figure 5.4. A one-way, repeatedsurement ANOVA was con-
ducted separately for each measure. Because of a lack of@phfar the effort and efficiency
measures, the corresponding ANOVAs were Greenhouse-dta@sgected. The results for all
three analyses are presented in Tablé 5.2. Given a sigriificain effect of the feedback factor
on all three measures, pairwise comparisons between expeatial levels were executed with
Bonferroni adjusted post-hoc tests. Tablg 5.1 shows theigége statistics and the pairwise
comparisons for each measure and condition.

Performance(measured as positively transformBd/S: B) is better in interactive trialsv,
VH) than in individual trials AF, AH), as the relevant post-hoc comparisons reach significance,
as shown in Table5.1. Hence, even in this haptic collabmmatsk, which can be done alone,
the participants profited from interaction with a partnehisTis true even when the interactive
conditions are compared with theeH condition, where the mass was halved, thus instantiat-
ing optimal mass sharing between two partners. Despitedkergbtive tendency that reducing
the mass in individual performance conditions and progdimutual haptic feedback increases
performance compared & andV, respectively, these tendencies do not reach significance.
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Figure 5.4: Efficiency A2 compared between the four experimental conditions AF
(“alone” with full mass), AH (“alone” with half mass), V (visual interactive
= no mutual haptic feedback), VH (haptic interactive = mutual haptic feed-
back): mean and one standard error. The horizontal line refers to the ref-
erence value of zero efficiency, representing average efficiency within the
given sample, compare Figure [4.9]

Table 5.1: Descriptive results for the four conditions on performance (B), effort M AP}
and efficiency (A,;) and the pairwise comparisons. Significant comparisons
on a 0.05 level are marked with *

Measure | Condition | Mean | Std. Deviation AF AH \Y VH
Performance AF 0.155 0.110 - 0.052 0.001* | <0.001*

B AH 0.289 0.033 0.052 - 0.028* 0.002*
\% 0.384 0.027 0.001* 0.028* - 0.127

VH 0.440 0.017 <0.001* | 0.002* 0.127 -

Effort AF 0.028 0.008 - <0.001* | 1.000 0.89

MAPT AH 0.015 0.003 <0.001* - <0.001* | 0.013*
\% 0.030 0.005 1.000 | <0.001* - 0.077

VH 0.065 0.044 0.89 0.013* 0.077 -
Efficiency AF -0.631 0.674 - 0.007* 0.005* 1.000
AT AH 0.346 0.595 0.007* - 1.000 1.000
\% 0.432 0.498 0.005* 1.000 - 0.290

VH -0.147 1.045 1.000 1.000 0.290 -
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Table 5.2: ANOVA results for the four conditions on performance B, effort I} and effi-
ciency A%. Adjusted ANOVAs are Greenhouse-Geisser corrected

Measure DoF F Sign. | partial Eta?
Performance 3,33 28.415| <0.001 0.721
adjusted Effort | 1.051,11.561 11.631| 0.005 0.514

adjusted Efficiency 1.935, 21.281 6.671 | 0.006 0.378

Effort (I'y) is analyzed with th@ower-based effort measuid AP first, as it is considered
more appropriate when analyzing teondition, compare Sectign 4.8.2: The “alone” condition
with the reduced mass elicits lower effort compared to tieiotonditions, which is due to the
fact that here, the overall cursor mass is halviékg) compared to all other condition®)(kg).
No significant difference is found between the efforfdiR, V andVH. The mass that has to be
moved (by either one or two humans) is equal in these comditidhat the effort betweeviand
AF is identical suggests that no additional effort was necgdsa interaction. Therefore, it is
concluded that the effort is dependent on the mass ratheiotihéhe interaction, when no haptic
feedback of the partner is provided. In tfiel condition, however, the deviation from the mean
effort values is much higher within the sample, this may ke rdason why the descriptively
higher effort in this condition does not reach significarm@npared tAAF andV. To examine
the effort in the mutual haptic feedback condition in mortadgtheforce-based effort measure
is applied in a second step. Note that, even though intgeaftirces can be measuredinthey
are not felt by the participants. A descriptive comparisbitie two respective force-based effort
measures/ AFF and M AF}! is illustrated in Figur€5]5; descriptive statistics canfdnend in
Table5.B. The external forces, which are responsible footlject manipulation and hence, task
execution, are comparable in both conditions. The interadbrces are not only increased in
the VH condition compared t¥, but also have a high variance. This allows the conclusiuat, t
the high variance in the power-based effort meaduréP! for the condition with mutual haptic
feedback is due to the interactive forces.

Efficiency is analyzed by using the power-based effort measure onisegmonding to Equa-
tion (5.2). This allows considering the workload due to mmeat in addition to forces, which
iS more representative in thé condition. Efficiency is highest in th€ and AH conditions,
which do not differ statistically. That is, two people irdeting with visual feedback/) and
20 kg mass are as efficient in this task as one person performithghalf the massAH). The
comparable efficiency between these conditions reflecedatoff: V requires higher effort but
yields improved performance comparedAbl. The efficiency for theAF condition is lowest
and differs significantly from that o¥ and AH. The mean efficiency for the interactive haptic
feedback conditio’VH lies between these two extremes and is not statisticalfgréifit from
any of the others. This means that with experimental pa/uethe current analysis, haptic feed-
back interaction is found neither to improve nor to worsditieihncy compared to other feedback
conditions or doing the task alone. The finding th&t-efficiency does not significantly differ
from V-efficiency is consistent with the previously described ifigd that mutual haptic feed-

SPower here means the capability of an analysis to deteerdiftes in conditions. The power depends not only
on the actual effect size (this difference) but also on tigeitance level, the sample size and the number of
analyzed conditions
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Figure 5.5: Box-whiskers-plot comparing external effort I'” and interaction effort T’}
based on the force-based effort measures: mean absolute interactive forces
and mean absolute external forces. Only the two interactive conditions are
compared, as otherwise no interactive forces are involved in task execution.

Table 5.3: Mean and standard deviation of external effort M/ AF¥ and interaction effort
M AF! for the two interactive conditions

Condition|| Mean | Std. Dev.|| Mean | Std. Dev.

MAFF | MAFF || MAF! | MAF!
\ 1.102 0.135 0.130 0.049

VH 1.204 0.166 1.659 1.840

back neither improved performance nor required greatertatlative to interaction with vision
alone.

RQ2 - Efficiency distribution between partners

In the aforementioned results efficiency was analyzed onaalidylevel. Now, it will be ex-
amined on an individual level and differences or similastin this measurd? between the
two partners are compared. In Figlrel5.6, the efficiency oreasf each dyad member is plot-
ted in relation to the partner. Each dyad is entered twiceraggsed b)l!_QLiIﬂn_a.nd_G_andez
], corresponding to the two columns in the doubleyedata set. The closer the dots to
the 45° diagonal, the more similar the dyad members are. The valu#santraclass corre-
lations show that the efficiency of the two partners is gdhevery similar in both feedback
conditions. Due to the rigid connection between partnezsptrformance measures, on which
these efficiency values are based, are equal for both part@erresponding, efficiency values
differ between individuals within a dyaohly on the basis of the effort value$he intraclass
correlations on individual efficiency values within a dyad the two interactive conditions are
V i r = 0.867; Pone—taitea = 0.002 andVH : r = 0.983; pone_raitea < 0.001, stating a high
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Figure 5.6: Similarity of individual efficiencies (AT) within dyads. Each dyad is pre-
sented twice by a dot (based on the double entry method) The closer the
mirrored dots are to the diagonal, the more similar the values of the two
partners are . Differences in efficiency between the partners reflect differ-
ences in the applied effort, as the performance measure is equal for both
partners in this task.

similarity between the two individual mean effort valuedieh lead to these efficiency values.
The two intraclass correlations calculated for the tworantéve conditions differ significantly
from each other, when testing the hypothesis of equalitly ®isher z-transformed values as pro-
posed b)k Kenny et ialL[;QbG]z (= 2.3674; prwo—taitea = 0.018). Taking into account Figuile 3.6
this causes more similarity (closer to thg® diagonal) between partners when mutual haptic
feedback is provided.

5.2.4 Discussion

The presented analysis considered performance and effarelhas the relation between them,
i.e. efficiency, in a low-level haptic collaboration taskheve the desired object trajectory is
identical for both partners. Thus, the results allow cosidos on the efficiency of providing
mutual haptic feedback in tasks where individual intergion how to move the object have to
be integrated.

With respect to thgerformance measure, it can be stated that participants benefit from a
partner. The advantages of interaction (which can e.g. besemsory systems able to perceive
errors faster reaction times allowed for by strategiessK haring like acceleration-deceleration
specializations between partners) outbalance the clyglterelated to intention negotiation. No
difference in performance between the mutual haptic fegddbandition compared to the inter-
active condition without such feedback was observed. Ttnesbenefit of additional feedback

from the partner found in other task [Gergle etlal., 2004; iiot and Jordan, 2003] can not be
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reported here. One possible explanation may be the low edqtplof the current task, which
may have led to a ceiling effect here and could explain therdint findings compared to other

haptic collaboratiob_Eeih_eﬂaJL_[ZQ_Cbgc].

It is not surprising, that the results reported by studiegcivisompare haptic feedback from
the partner and the object/environment to a none-haptidbfaek condition|[Basdogan et|a|.,
2000: Glynn et all, 2001; Salss et al., 2000; Salis, 2001} Sallas and Zth;Oj)S] are not re-
peated here. There, the focus was on the general effect dit fiepdback whereas here the
effects of mutual haptic feedback as communication chaareeéxamined by providing haptic
feedback from the object in all conditions. Hence, it is passthat the performance advantage
reported in previous studies is mainly due to the feedbaokepeed from the object, which may
allow a higher general control of it. The current resultsyeeer, show that with the presented
experimental setup, the haptic channel and its theoret@amunication advantage does not in-
crease performance in highly structured tasks where otéypiions on how to move the object
have to be negotiated.

The mutual haptic feedback condition requires n&dfirt, measured as power, on the dyadic
level. Striking is the high standard deviation in this cdiwsti. This variance is due to the high
inter-dyadic differences in the mean interactive forcgdiad during task execution and not the
external forces. Reasons for this differences are manifedasonality variables and differences
in capabilities to execute the task are considered the mgsbriant factors, which should be
addressed in future research. As mentioned in Section| 4t& 2ffort measure is only defined
for the static case, resulting in errors in this measurerdaatto the dynamic interaction. The
differences in the found average behavior per conditiorcansidered clear enough, to neglect
this noise in the interpretation of results.

Turning to the measure efficiency, the interactive condition without mutual haptic feedback
led to increased efficiency relative to doing the task alortb fmll mass. However, when indi-
viduals performed in a half-mass condition, representimayed workload, their efficiency was
equal to the vision-only interactive condition. Thus, asd@s no haptic feedback was provided,
the overall efficiency was influenced by the inertia of theeohjrather than by the fact that the
task was performed with a partner or not. When haptic feedvaskbrought into play, the mean
efficiency tended to be lower than dyadic interaction usiisgpn alone. The effect, however,
was not statistically significant, given the variability efficiency under haptic feedback. This
in turn reflects the variance in interactive forces. Henle,resulting efficiency values can be
explained by the performance and effort results. Mutuatibdpedback cannot be considered
as more efficient in the presented interaction task in gémasré leads to higher effort without
increasing performance. If there is intention negotiabetween partners (on this lower level of
haptic collaboration: strategies how to move the obje@)thie haptic channel, it does not pay
off in better performance. One possible explanation is tihatgiven task does not allow for a
further increase due to haptic interaction because thermani performance (considering the
dynamics of the human action-perception system) is alraatlieved with visual-only feedback
from the partner. Or, the task may have been too simple (iidcoe performed alone and was
highly structured) to make an explicit negotiation of irttens necessary. In any case, mutual
haptic feedback seems to be a hindrance rather than a supgwetcurrent task, in line with the

suggestions from Reed and Peshkin |2008].

Itis an open issue whether these results can be generaibgghter level haptic collaboration

95



5 Intention Negotiation: an Efficiency Analysis

scenarios involving the negotiation of the shared trajgciio addition to the strategies as part
of the joint action plan. Therefore, in the next section thsic is addressed by experimentally
varying the amount of needed intention negotiation to agdisim the task. The complexity of
the task is then increased as it now incorporates sharedidieenaking, thereby representing
higher level haptic collaboration.

The fact that the effort is distributed more fairly betweemtpers when mutual haptic feed-
back is provided, may suggest a negation of strategiesmiitle dyads. The shared action plan
would then have the goal to share the task workload equalithifthe following chapter (sub-
chaptef 6.8), strategies on how to distribute forces agmliethe object among dyad members
are addressed more explicitly wittdaminanceneasure.

5.3 Efficiency in Shared Decision Making (High-Level
Collaboration)

In the previous subchapter, it was reported that mutuali©végedback does not increase effi-
ciency in a one DoF joint tracking task when intention negfain is only required in relation
to action plans dealing withowto move the object. This was due to the fact that performance
was equal in both interactive conditions, with and withouitoal haptic feedback, but inter-
action forces between partners were increased in the ladtadition. These findings may be
explained by the low task complexity, which did not allow E@mefits of mutual haptic feedback
in more challenging intention negotiation tasks. Therefar the current subchapter an effect of
mutual haptic feedback on efficiency is investigated by d@rpentally controlling and increas-
ing the need to negotiate intentions. The focus is on higatleaptic collaboration, where the
negotiation of action plans does not only require to agrea strategyhowto move an object
but additional requires decisions on the shared desir¢ectomy, i.e. whereto move the ob-
ject, compare Figurie 3.1. To explicitly increase task caxipy towardshaptic shared decision
making(HSDM), binary decision situations with different prefeces on the two options for the
individual partners are introduced.

Whenever the environment or capabilities of interactindn@as (whether humans or robots)
offer several action plans to achieve a shared goal, shaeididn making plays a key-role.
Decision makings generally defined as the act of choosing one availabl®omtut of several
possibilities which may have different trade-offs betwéenefits and costs. Some researchers
refer to decision as the “forming of intentions before ag:’tiﬂ-lardv-Vall?é, in preis] whereas
others define the exact point of time as decision |HQﬁmanﬂﬂ£];0_d5]. Irshared decision
makingtwo partners have to agree on a solution. Even though, thgypmeder different action
plans due to different information bases or perceived ogtioShared decision making is the
interactive process of negotiating action plans to reaehstiared goal. Thus, shared decision
making is one form of collaboration and allows to study iti@mrecognition between partners
i.e. the construction of a mental model of the partner’'sslenistate. For a general overview on
shared decision making s|e_e_C_asléI|a.n_L1993L_Ln_Ba¥n§ &%il it is assumed that an effort
accuracy trade-off exists in decision making: people aseragd to be motivated to use as little
effort as necessary to solve a decision problem. This theambe directly investigated with the
use of the efficiency measure. As a first step towards thezegin of robotic partners, which are
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Experiment

Human-Human-
Collaboration

*M

Human-Robot-

Figure 5.7: In line with the approach to learn from human dyads to enhance human-
robot collaboration, this experiment investigates haptic collaboration of two
human users with the shown setup including shared decision making.

able to show human-like behavior-patterns in haptic coltabon, the following study investi-
gates the efficiency of intention negotiation via mutualtiafeedback in a task involvinigaptic
shared decision making find out, whether the process of shared decision makingtisatly
enhanced by this additional modality available to transignals between partners. In line with
the general approach followed in this thesis, collaboratietween two humans is investigated
to derive guidelines for robotic partners in VR, tele-preseand autonomous assistance robots.

Except for the decision situations the experimental desgdentical with the one used in
the previous study on efficiency in low-level haptic colledtaon, compare Figuiie 3.7. Binary-
shared decision-making in haptic collaboration has appba in real-life scenarios as obstacle
avoidance.

In the following hypotheses on the efficiency of mutual hafgedback in a joint tracking
task containing binary-shared decision-making are ptesemext, detailed information on the
data analysis are given. Afterwards the results are predemheir discussion is given in the last
section of this subchapter.

5.3.1 Hypotheses

An interactive tracking task is executed by two human pastnk includes binary, shared deci-
sion situations. The effect of mutual haptic feedback owriefficy is addressed by comparing it to
a control condition with haptic feedback from the objectyorilhree different types of decisions
are contrasted (details see Figlrel 5.8):decisions where the experimentally instructed pref-
erences of the two human partners on the two tracking patbrepéare equivalenB) decision
types where only one partner has a preference whereas theigtimdetermined) decisions
where the preferences of the two partners are opposite. dée for negotiation between part-
ners is expected to increase in the order of the presentésiatetypes (representing an upward
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trend in task complexity, which is experimentally conteadl). The following hypotheses are
raised:

e H1: Performance decreases with an increase in the need for negotiation eftions
in decisionsituations A to C). In addition, mutual haptifeedbackshould lead to higher
performance (especially in decision tyewhere the task is most challenging) because
of the additional communication channel to negotiate oantions.

e H2: Effort (measured as energy) is higher whaatisionpreferences between partners
are less compatible, expressing the negotiation acsviierthermore, mutual hapfieed-
backis assumed to generally cost higher effort in accordande thi results reported in
the previous subchapter and as an effect of the actual uddaso€hannel for intention
negotiation.

e H3: Efficiency, meaning the relation (within the given sample of partioisa between
performance and physical effort, is higher ttecisiontypes with low need of negotiation
(type A andB) than in decision typ€. This is expected because task execution should be
easier and no effort is necessary for intention negotiatahe latter case. The relation
of the assumed performance benefit from mutual hdpgdbackcompared to the effort
costs cannot be predicted due to missing previous knowletlges, the effect of mutual
haptic feedback on efficiency is formulated as open resegrehtion.

5.3.2 Data Analysis

In the current analysis, only the two interactive condisiddH andV (with haptic feedback
from the partner, and without, respectively) are compaFedusing orshareddecision making,
the individual conditions loose their meaning in the cutreldy. However, participants also
conducted an “alone” condition containing binary decisiomhis is mentioned for the sake of
completeness and is not part of the analysis reported hbeetwio interactive conditions are the
same as in the experiment on efficiency in low-level haptitaboration (for details compare

Sectiof4.214).

Participants

In this study, 58 participants (total of 29 dyads: five makg female and 22 mixed dyads; mean
age: 25,78 (standard deviation = 4,87)) are involved, @hitenthe sample size on which the
results reported in Groten et dl._[lbm] are based (a pulditan relation to this subchapter).
The tracking task including binary decisions was origyatbnducted by 32 participants form-
ing eight groups of four persons each. Only independentsl{a@) were analyzed due to the
independent error assumptions in inference statisticadyaasKKan;Lel_élLLZQ%]). Here, this
sample is increased by another 13 dyads. The reason is fausmime interesting descriptive
results which did not reach significance in the previousyamslbut which may do so with the
larger sample size.

Participants were informed about the feedback conditidarbband. In addition, they knew
that the first curve of the tracking path was for practice andld/be excluded from the analysis.
Participants had an extended test run where they could vaty $creens and thus gathered
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Partner 1

Partner 2

Decision
Type: A B C

Figure 5.8: Exemplary paired reference tracks which “scroll down” the negative z-axis.
In reality, the track is rotated by -90° compared to this picture, see also
Figure 5.7l The instructed individual preferences (thickness of the path) are
varied between partners to make action plan negotiation necessary. The
enlarged section depicts which part of the decision is analyzed (2s). This is
identical for all three decision types.

information on the different types of decision situatiofifierefore, participants were aware of
the fact that they had to negotiate intentions with the @autn

Analyzed Decision Types

The three decision types are depicted in Figuré 5.8. Baseleoassumption that a thicker path
is preferred as it is easier to follow, the decision typesdafned in the following:

e Decision type A requires no negotiation of action plans as both partnexfepthe same
option (instructed via the individual path thickness).

e Decision type B instructs a preference to only one partner. Negotiatioaation plans
may be necessary because it is unpredictable how the pasime@thas no instructed pref-
erences, may prefer to accomplish the task to stay on thie trac

e Decision type C The negotiation of the executed trajectory is inevitabégause opposite
preferences are instructed to the partners.

To answer a possible side bias in decision situations, eacisidn type was presented in all
possible left / right combinations. That leads to 8 analy@edsion situations (2 decision type
A + 4 decision typd + 2 decision typeC).

Summarizing, the experiment allows investigating two destwhich may have an effect on
the efficiency of interacting dyads in kinesthetic taskstha)three decision types, representing
the need for trajectory negotiation and b) the presence tahtaptic feedback. This results in
a 2*3 fully crossed experimental design which was conduetedepeated-measurement study,
meaning that all participants provided data for each of tkeanditions. Whereas the decision
types varied within one trial, the feedback conditions wavestigated in different trials. Each
trial was executed with one of eight different tracks. Tlaeks alter with respect to the presented
order of the path sections including the eight analyzedsiatitypes. In this way learning-
effects through track repetition are prevented. In addjttbe sequence in which the feedback
conditions were presented to the participants were rarzkmi
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Figure 5.9: Mean and one standard error of performance measured as positively trans-
formed RM S error (higher value = higher performance), contrasting the two
feedback and three decision conditions. With mutual haptic feedback (VH)
performance is higher compared to the control condition without such feed-
back (V).

Measures

In the current analysis the efficiency measure presenteedtid®[4.3.2 is used. This measure
relates performance to physical effort.

Due to the dynamics of the human arm and negotiations on theugad shared trajectory,
participants were not able to accurately follow the stephm path during decision situations.
Therefore, performance, effort and the resulting efficyeare calculated in a two second interval
around each decision (interval size defined by inspects®® Figur€ 5]8. Thestandardization
of the performance and effort values to obtain the efficiaratyies took place across all decision
types and repetitions as well as across both experimemaditians.

5.3.3 Results
H1: Performance

Descriptive results on performance are depicted in Figulie A 2(feedback)*3(decision type)
repeated measurement ANOVA shows that performance isfisigmnily influenced by the pro-
vided feedback (and thus possibilities to communicatejeen partnersH; o, = 12.056;p =
0.002; 7713 = 0.334): The positive performance measure (transformed root regaare error) is
higher when mutual haptic feedback is provided. In addjttbe decision type significantly af-
fects performancel(, 4s = 6.568;p = 0.003; 77;2, = 0.215): The mean performance across both
feedback conditions is lower with higher complexity in dgon types. Hypothesis 1 is strength-
ened. However, only decision tygeis significantly different from the other twa(vs. B: p

= 0.035;Avs. C: p = 0.006), whereas there is no significant difference betwdecision type
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Figure 5.10: Mean and standard error of effort values (measured as M APT) contrast-
ing the two feedback and three decision conditions: Increased decision
complexity leads higher effort. With reciprocal haptic feedback (VH) effort
Is increased compared to the control condition without such feedback (V).

B andC (p = 0.721) as tested with Bonferroni adjusted pairwise caorspas. Figuré 519 illus-
trates that the need to negotiate a decision with a partmgatinely influences performance with
“vision-only” feedback from the partner. If mutual hapteefdback is provided the performance
stays more stable. This interaction between the two fact@shes significance (Greenhouse-
Geisser corrected due to a lack of sphericitysr4 32.310 = 12.085; p = 0.001; 7712, = 0.334). The
stable performance suggests that intention negotiatioata place via mutual haptic feedback
as otherwise a decrease in performance would be expectedigher need to negotiate inten-
tions. Judging from the effect sizgf,o, feedback has a higher influence on performance than the
decision type.

H2: Effort

Effort results are shown in Figuke 5110. Descriptively dffs higher with mutual haptic feed-
back and is highest within each feedback condition for dewit/peC. Effort is again analyzed
with a 2(feedback)*3(decision type) repeated measurerABI@VA. Results support the de-
scriptive findings: effort is significantly affected by theefdback factorf(y o, = 22.352;p <
0.001;7;,2, = 0.482). Furthermore, the effort significantly increases whenitiwelved prefer-
ences in the decision types are opposite, meaning that fiwe ief decision type C is signifi-
cantly higher than in the other two decision types (Greesbdbeisser corrected due to a lack
of sphericity: Fi 391 33.379 = 16.799; p < 0.001; 775 = 0.412; Bonferroni adjusted pairwise com-
parisons:Avs. B: p = 1.000;B vs. C: p < 0.001 andA vs. C: p < 0.001). Hypothesis two can
be assumed to be correct for the given task. The effect ofitbddctors on effort is similar as
can be seen from the effect size (partjd), interaction between factors is not significant. As
the necessary effort to execute the task is equal in all pe@mental cells (resulting form fully
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Figure 5.11: Scatter plots showing the efficiency values resulting from z-standardized
performance and effort separately for the two feedback conditions. The
three different decision types are color-coded. The zero of each axis rep-
resents the mean of the z-standardized values across all conditions. Ef-
ficiency is calculated as distance from the diagonal reference line which
represents an efficiency value of O, representing average efficiency. Posi-
tive/negative efficiency values describe efficient/inefficient behavior.

crossing the two factors), any additional effort is relat@ahteraction between partners. Effort
increases with the need to negotiate intentions compaanditonsA andB to C.

H3: Efficiency

Efficiency values are depicted in Figure 3.11, which shovedtec plots visualizing the calcu-
lation of dyadic efficiency values based on the z-standaddzerformance and effort values.
Results are depicted separately for the control conditiaghawit haptic feedback between part-
ner (V, left side in plot) and the mutual haptic feedback condifigH, right side). The zero line
of each axis presents the mean of the z-standardized vatuessall conditions. Even though,
for the latter condition a larger amount of values is aboeeétierence line (zero efficiency) than
for the control condition, the descriptive differencesimstn the two conditions are low.

In Figure[5.1?2 the means of these efficiency values per donditre shown. The reference
value of zero efficiency is depicted as horizontal line hefe2(feedback)*3(decision type)
repeated measurement ANOVA reveals no evidence that tlbdek factor is influencing ef-
ficiency. Thus, the research question related to hypotliesse can be answered by reporting
that there is no effect: The linear relationship betweenrefind performance is similar for
both feedback conditions across all decision types. Effeyievalues are affected by decision
type (Greenhouse-Geisser corrected due to a lack of SEREIE; 344 30047 = 15.919;p <
0.001; 77,% = 0.399. Bonferroni adjusted pairwise comparisons show that alisitat types lead
to significantly different efficiency value®\(vs B: p = 0.035;B vs. C: p < 0.001;Bvs. C: p
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Figure 5.12: Efficiency measure depending on the feedback (VH and V) and deci-
sion type factor (A, B, C): mean and standard error. The horizontal line
is the reference value of zero efficiency, expressing the linear mapping
of z-standardized performance and z-standardized effort within the given
sample. Only the decision factor had significant influence on efficiency:
With increased need to negotiate intentions in decisions, the efficiency
decreased.

= 0.017). Efficiency decreases with the need to negotiasgaiitins in decision situations. The
lower this need is, the higher performance and effort ne¢deegotiate are, resulting in high
efficiency for decision type A and low efficiency for decisitype C.

5.3.4 Discussion

In the following the results from an efficiency analysis tielg performance and effort measures
are discussed. The haptic collaboration task in this expent was designed to investigate high-
level haptic collaboration including shared decision mgki The effects of two factors where
examined: the presence of mutual haptic feedback and tlte@eegotiate intentions in decision
situations.

From Gergle et all [2004] and Knoblich and Jordan [2003] i wepected that the additional
source of information on the partner’s behavior additiondrmation as it is given with mutual
haptic feedback, increases joint task performance. Thseasupport by the presented results:
Performance is higher with mutual haptic feedback thanauthaveraged across the decision
types. In average, across the two feedback conditionspimeaince decreases with the need of
intention negotiation between partners. However, theiogmt statistical interaction tells us
that performance is more stable with mutual haptic feedbaciss the decision situations when
the need to negotiate intentions increases.

Across all decision types, the effort with mutual hapticdieack is higher compared to the
vision control condition. It was shown that with oppositefgrences between partners in deci-
sion situations (highest need of intention negotiatiomimithe three decision types) the amount
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of physical effort is highest, which is interpreted as addil negotiation effort. This is equally
true for both feedback conditions.

Overall, a higher need to negotiate between partners |leashote inefficient behavior: In-
creasing task challenge results a) in higher effort, egfigdior the mutual haptic feedback
condition and b) in lower performance in the vision conditids the efficiency measure relates
those two components, the resulting overall (across detiypes) efficiency for the two feed-
back conditions is comparable. The additional effort eslab reciprocal haptic feedback pays
off with better performance which is in line with “proteati@f performance” by the allocation
of further resources, which is predicted by the cognitiaergetical framework introduced by
Robert and Hockey [1997] and the trade-off described by Payaé [1993] (see Sectidn5.1).

Based on the findings in this experiment the following conolus on mutual intention nego-
tiation via mutual haptic feedback can be drawn: The higHerten the mutual haptic feedback
condition compared to the control condition shows thatdlaee forces exchanged between part-
ners in excess to those needed to move the object task-dtumah required the same forces
in both conditions). However, this does not necessarilylyntipat intention negotiation takes
place via these signals. Performance is considered as aatodfor communication via the
haptic channel. It is assumed that when keeping factors asitlaptic feedback from the object
comparable, variations in performance between the twabadconditions have to be caused
by either a better negotiation of action plans between pastfcommunication via the added
haptic modality) or so far unknown additional advantagesnatual haptic feedback. An ex-
amples for such unknown advantages may be found in the ‘adictory forces” between the
dyad members, which were not task related, were examinedssuined to serve as increased
stiffness (comparable to muscle contractions) with thd gmaeal with perturbations. In the
related study biLBe_eﬁ_and_Best_LjOOB], this hypothesisnatistrengthened. Another ad-
vantage of haptic feedback may lay in the consistency betyegprioceptive and visual feed-
back from the object position, which is not necessarily thgecin thev condition Section 412.
However, if such factors cause the performance benefitdfadren mutual haptic feedback is
provided, a decrease in performance with higher need oftradigpm would still be expected be-
cause those advantages would not simplify the complexighafed decision situations. But, the
performance with mutual haptic feedback is stable acrosside types with increasing need
for intention negotiation. Therefore, the first explanatithe actual use of the haptic channel
to negotiate the shared action plan finds support. Thesen§adustify further research on this
modality in haptic collaboration and show that it is not &doty which force and motion sig-
nals are exchanged between human and robotic partnersiimggeonsideration in the design
processes.

5.4 Conclusion

5.4.1 Summary

This chapter addressed the question as to what extentiorigrggotiation between two partners
in a haptic collaboration task is possible via mutual hafagedback. In a first attempt, an ex-
periment was conducted which required intention negotmatinly on the lower level of haptic

collaboration, meaning that strategies on how to move thecohad to be found. In a second
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study including binary decision making, high-level haptalaboration was examined. Thus,
this study additionally includes intention negotiationwhere to move the object. In both ex-
periments the effect of mutual haptic feedback was addddsgeontrasting a condition where
this feedback was provided to one where feedback was onlyded from the object. The in-
fluence of mutual haptic feedback was measured in task peaface, and the physical effort
required for task execution, as well as efficiency, which boas these two measures.

For low-level haptic collaboration, it was shown that muituaptic feedback does not signif-
icantly increase performance compared to a condition witlsach feedback. Combined with
increased effort for the mutual haptic feedback conditibis, feedback from the partner does not
result in efficient task execution. However, it led to a fag#ort distribution between partners.
For high-level haptic collaboration efficiency of mutuaptia feedback is again comparable to
that of the control condition without such feedback. Howeperformance with mutual haptic
feedback is higher. This benefit is achieved by the apptioatif higher effort. The necessary
effort to keep performance constant increases as the ngalieof intention negotiation on the
shared trajectory become higher. Together with the fattwtithout mutual haptic feedback per-
formance decreases with the increase in negotiation niggésis concluded that mutual haptic
feedback can be a valuable channel for intention negatiatigoint kinesthetic tasks.

The presented results are based on individual mean measot®per interaction and it is un-
known if they hold beyond the given task. However, for the firae, evidence for the existence
of “haptic communication” is reported. The results cleauistify further effort in investigating
mutual haptic feedback, especially for tasks of higher demity.

5.4.2 Future Work

In future, task complexity can be investigated further .(elgect size and dynamics, degrees of
freedom in individual movements, different tasks) as amartite factor on the relation between
effort and performance in haptic tasks. Furthermore, dogrin addition to physical effort could
be addressed in haptic collaboration to obtain deeperhitssigto the costs of collaboration.

Investigating haptic collaboration over time may enabled@mtification of signals relevant
for intention negotiation. Especially, it may allow instghonhow intention negotiation takes
place. This will be of importance when defining the range ghals which can be executed
by robotic partners without risking misinterpretation bijianan user. Time series analysis and
information-theoretic approaches seem to be promisinggaspoposed bLSLI:LLt&iﬂ)éLLZﬁbOO].
One way to address the communication via the haptic chanrékfr could be the explicit ma-
nipulation of the reliability of information transfer by p&rimentally controlling the physical
connection between partners.

The effect of mutual haptic feedback was investigated bypamng this condition to one
where no haptic feedback between partners was exchangeduie, the efficiency measure can
be employed to investigate differences between humaratkienon-human-like haptic feedback
as provided by artificial partners. This way the significan€druman-like behavior can be
understood further. As a first attempt in this matter comjaté et al.|[(submitted].

Because the results show that humans negotiate intenticstsaned decision situations via
mutual haptic feedback, the described experimental setufd serve as a tool to understand
more about human collaboration in general. Social sciend¢eaditionally dominated by sub-
jective data (e.g. from questionnaires after a social auigon). However, the experiments
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presented here may allow enhancement these measures Bctrding of high sample rate
behavioral data to investigate generic rules of humanacten behavior when the development
of shared action plans is required.

5.4.3 Design Guidelines for Robotic Partners

As most tasks in real-life applications request a perforreamptimal behavior, the results found
in the second study advise the implementation of mutualibdpédback. The analyses have
compared mutual haptic feedback as exchanged between hartaers with a condition with-
out haptic feedback between partners. The results indtcatelusions for virtual reality applica-
tions where these two forms of feedback can be implementee fact, that humans are capable
of negotiating intentions via haptic feedback does imp#t ttuman-like feedback is also worth-
while in other human-robot collaboration scenarios whaeealternative would be to provide
non-human-like feedback. Even if the robot does not trargienan-like haptic feedback to the
human partner, attention should be paid to its actions asethdting force and motion signals
may still be interpreted as intentions by the human parffiee. advantages of human-like haptic
feedback in contrast to these alternatives should be dubjéature studies.

The first experiment revealed that the effort distributi@tween partners is more balanced
for both partners with mutual haptic feedback than in a visialy partner feedback condition
as was shown from the individual efficiency analysis. Thiggasts that haptic feedback should
be implemented if the goal is a fairer effort distributionteeen partners. However, this may
not necessarily be advantageous in any human robot int@mesdenario, as the robotic partner
could be defined as the partner carrying most physical effbine next chapter addresses this
topic more explicitly as dominance distribution betweertmears.

Altogether, the results found provide a motivation for figit engineering effort to overcome
stability challenges related to the implementation of muhaptic feedback.
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In general, collaboration between two partners requirasttiey develop a shared action plan
towards the task goal (shared intentions). Such a sharezhgatn has to define how the in-
dividual actions are integrated task-oriented. Espsciallcollaborations where a continuous
interaction takes place, dominance distributions betvgegtners are a prominent concept when
describing action integration. Therefore, intuitive haptuman-robot collaboration should con-
sider the distribution of dominance between partners: dtagned that the dominance behavior
measured when two human users collaborate can inspire dangrbehavior of a robotic part-
ner collaborating in a kinesthetic task. However, littl&kiown about the dominance behavior
humans show in haptic collaboration.

Thus, this chapter investigates dominance distributi@&éen two human users experimen-
tally as a first attempt to learn about the integration ofvrtilial action plans. In two subchap-
ters, dominance is addressed separately for the two lef/bkspbic collaboration (as introduced
in the haptic collaboration framework, compare Chapter 2gkyerimentally controlling the
intentions, which have to be negotiated between partnstiiguishing between two dominance
types, see Figurie 8.1: In the lower level of haptic collaboraintentions orhowto move an
object along a desired trajectory towards a goal have to betia¢ed by the partner&hysical
dominance measures the distribution of applied forces liggat-acceleration between partners
in this context. High-level haptic collaboration inclugishared decisions on the desired trajec-
tory additionally requires shared intentionswhereto move an objectCognitivedominance is
used to measure the extent to which decision situationsamena@ted by a partner.

In contrast to the state of the art, which can so far only glewualitative statements on
dominance behavior in haptic collaboration, explicit mtds for both types of dominance be-
havior executed by human dyads are reported in this chdpaethe first time, it is investigated
to what extend the distribution of physical dominance betwpartners changes across collab-
orations with different partneﬂs The influence of dominance differences on performance is
studied. Furthermore, the relation between physical dante before shared decision situa-
tions and cognitive dominance in these decision situatiomsodeled. No equivalent attempts
to predict human behavior in haptic shared decision makamgoe found in the state of the art.

After an overview on related literature is given, two expental studies on dominance dif-
ferences shown by collaborating humans in a joint hapticipudation task are presented. The
chapter ends with a general conclusion including desigdeduies for robotic partners in terms
of dominance in collaborative haptic tasks.

However, the results reported on physical dominance hass peblished in part by the author of this thesis in

Groten et al..[2009a]
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Figure 6.1: The figure shows two collaborating partners (P1 and P2), who jointly ma-
nipulate an object, in a simplified illustration of the framework introduced in
Chapter 2l Signal flows relevant for dominance measures are depicted (for
details see Section[4.3.3). The force-based measure PD refers to physical
dominance addressed in Subchapter [6.4], and the position based measure
CD to cognitive dominance addressed in Subchapter[6.3] and .

6.1 Dominance Definitions

Dominance can be defined as follows: It “refers to contextt eelationship-dependent inter-
action patterns in which one actor’s assertion of controhé& by acquiescence from another”
[Rogers-Millar and Milldr];9_7|9] and is described as “a nelaal, behavioral, and interaction
state that reflects the actual achievement of influence draaver another via communicative
actions” [&ﬂgg_on_e_t_élLLQQS]. It is important to note thatrdnance is a dyadic variable and
hence is only present in interaction (unlike domineerirsgh@/hich is a character-trait and hence,
an individual variable). Dominance complementarity tifere implies that when one partner is
dominant to a certain amount, the other one is non-dominatitdosame amou al.,
|;O_O_'}’]. In|Burgoon and Dunda]r_[;dOO] and Mast and I—iaL[iOOBis iemphasized that domi-
nance is a function of individual characteristics and situnal effects, especially the specific
relationship between the two partners.

These definitions of dominance are transferred to the tweegs of dominance in haptic
collaboration as follows:

e Physicaldominance: the relative (compared to the partner) amouekiginal force (re-
sponsible for object acceleration) applied to the jointlgmpulated object, leading to a
control over the trajectory in space.

e Cognitivedominance: the relative control over the jointly desiregjectory in decision
situations, in the case where several object trajectoreepa@ssible.
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6.2 Literature Overview

Physical dominanceplays an important role in haptic collaboration as the datbgect trajec-
tory is directly influenced by the forces applied by the twapars. In the following a overview
on literature related to physical dominance is presented:

Some approaches in haptic human-robot interaction focasednplementing robots as
passivefollowers, e.g. | Araietal.| [2000]; Hirata etlal. [2002]; Kage and Hirata|[2004];
Y. Hirata et al. ]. This, however, does not lead to ret@riaction because the two involved
systems do not influence each other mutually. The same hdids tie robot is the leader by re-
playing a prerecorded trajectoty (Bayart dtm[ZOOS]),mhheanabsolute dominan&of the
robot. These two approaches represent the extreme cashgsatgd dominance in haptic col-
laboration. More recent research in HRI addresses shareicahgominance imteractivesce-
narios to allow more intuitive interaction. Even though adfetical physical dominance param-
eter has been used in control architectures (e.gatharameter iIIJ_EMLaLd_and_Khedbb.r_[Zbog];
Khademian and Hashtrudi-Z dd_[;Q@i.b_‘_Zﬂﬁ9ﬁ.b_]M ¢2005]:| Oguz et al. [2010]),
only few studies empirically investigated physical dommo@ in human behavior in a haptic
interaction task to gain reference values for designingtiolpartners| (Rahman et dl._[LOJJZa];
[Rg_e_d_el_dl.LLZD_dS]). In the following, experiments are sunipearwhich examine human phys-
ical dominance behavior. Herein, two different types ofigta are distinguished: Experiments
which investigate human dyads, and experiments which addneman-robot interaction.

To the author’s best knowledge only two studies addressgddydominance in haptic human-
human behavior without manipulating the dominance digtim: An interactive one DoF point-
ing task was applied dy Rahman et al. |2d02a] and showed tleapariner within a dyad can
be characterized as leader and the other as follower. Tlesséts are based on a correlation
analyses between the individually applied forces and theltiag object acceleration. Thus, the
results allow no statement on the actual amount of dominaree the distribution of object
control between partners. No correlation between dommamc performance was studied. In
another study on human dyads conducte@;ﬂe&d etal [20@%daaure is introduced which
describes the individual contribution of one partner (dua d\uman dyad, HHI) on the object
movement in tasks, where forces are only applied in the sareetidn. Based on the average
individual contribution (which is interpreted as physidaiminance here) the authors derive the
conclusion that some, though not all, dyads show specthbedavior, meaning that the individ-
ual contribution, and thus dominance of one partner, isérigh some phases of collaboration
than in others.

Several studies address dominance in technically medsategs which allow an experimen-
tal control of the dominance distribution: In Evrard and Kter tZD_Qb] collaboration between
a virtual partner and a human partner jointly lifting an abjacross an obstacle was examined.
A specialization in strategies was expected corresportml&_e_d_ej_dl.L[;OQS]. Different con-
trollers were implemented for the virtual partner to previthptic input of different dominance:
the technical partner was leading, following or switchimge or twice between those two phys-
ical dominance behaviors. However, the resulting forcedtaries of both partners (the virtual
and the human partner) did not show specialization, i.eptatian to each other. The contradic-

2which is intuitively accessible, however, cannot be measdwith the physical dominance measure proposed in
this thesis which assumes partners who are willing to coliate
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6 Shared Actions: a Dominance Analysis

tion to the results presented by Reed et al. [2005] is expdanyethe higher task complexity in
the experiment reported in_EMLaLd_and_Kh_QdeaLL 009]. Ittbase pointed out that according
to the definition of dominance given above, the study pubﬁishyLEMLaLd_andJﬁheﬂdd.L[ZdOQ]
investigates domineeringness rather than dominance:amendnce parameter responsible for
the avatar behavior is determined before the actual caitdiom, such not a result of interaction
but a “character trait” of the avatar. The physical domimafactor which is implemented in
the control architecture lln_lﬁhad_emm&nd_ljﬁshltudﬂzm%] is not based on empirical
findings. However, |lh_Khadgmian_and_HﬁshlmdLia|.ad_[2b(Dﬁa]effect ofa on performance
in a 2 DoF trainer/trainee tracking task scenario (HHI) wagstigated. For the six participants
acting as trainees, performance increased when a domivahee between 0.25 and 0.75 was
given (where 0 and 1 are the extreme values of this compleamneparameter). These findings
further emphasize the necessity to develop technical @a;twhich are neither designed to pas-
sively follow nor to pure replay. Humans seem to performdyettith shared dominance. In an
experiment conducted Mg@ MlO], two assistamoetibns and a no-guidance control
condition were evaluated in a virtual game played by one munfaball had to be moved in
a plane where several targets in form of cylinders are givée cylinder, which served as the
current target, changed color. Thus, the other potentigéta could be seen as obstacles. There-
fore, this study can be seen as the only study whegaitive dominancecould be of relevance,
as a decision on the trajectories around the obstacles diézte taken. However, the assistance
functions were designed in a way that the partners eitheebadl control of the ball position or
that the assistance function was adaptive in the way thadlitges its dominance “if the user and
the controller have discordant preferences”. Thus, thaitiwg control is per definition with the
participants and not the assistance function, and no subjéaevestigation. It could be shown
that with a technical partner who adapts its dominance tdsvéite user (based on variations
in force parameters between the current interactive tadKaone behavior” of the participant
recorded earlier), performance did not increase. Howélertechnical partner was rated more
human-like in this case.

To summarize, it can be stated that humans seem to work withysigal dominance dif-
ference, leading to distinguishable leader or followeesolHowever, so far no precise values
of physical dominance in human-human collaboration arented. The results concerning a
correlation between dominance distribution and perforceaare contradictory: | mgal

[|2Q1£b] LRahman_el_élL[ZO_QIZa] no relationship between thenwasures was found, whereas
Khademian and Hashtrudi- Zée{_d_[_Qb?a] report a performarrease with shared dominance.

So far, an analysis of cognitive dominance (decisions oratlifajectories) is not yet reported
in literature.

6.3 Physical Dominance (Low-Level Collaboration)

This subchapter reports the results of an experiment ilgagstg physicaldominance of hu-
man parters’ behavior in a joint object manipulation taskueo the fact that the theoretical
knowledge on dominance differences in haptic tasks isdidhithe experiment is conducted as
an exploratory study. As the focus is on physical dominalose;level haptic collaboration is
studied with a jointly executed tracking task, where therutted desired trajectories are iden-
tical for both partners, thus, no decisions on where to mbigh¢level haptic collaboration) are
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Figure 6.2: Photo of the experimental setup consisting of two linear haptic interfaces
and two screens with the graphical representation of the tracking path. Dur-
ing experiments a wall was placed between the participants blocking the
view on the other participant’s screen.

involved in the shared action plans. The experimental setdppicted in Figure6l2: The cursor
representing a virtual object has to be moved along theawéertrajectory, which scrolls down
automatically. Thus, the task is executed by one-dimeasimovements along the y-axis only.
For details on the experimental design see Settion|4.2.4.

As this subchapter focuses exclusively on physical donuedR D), it is always referred to
this type when talking about dominance. The next sectiomdgfihe research questions. Then,
the experimentally gained data and its analysis are destriifterwards, results are presented
and discussed.

6.3.1 Research Questions

The following research question are addressed by the foipanalyses:

e RQ1 - Physical Dominance Distribution: Which physical dominance differences can be
found in the behavior of two human partners executing a bolative haptic task?

e RQ2 - Physical Dominance and PerformanceWhich physical dominance differences
lead to high performance?

e RQ3 - Consistency of Physical Dominance across Partnerslow consistent are physi-
cal dominance differences between human partners acrossbpartners and sub-trials?
The gained knowledge will give hints on the required amodrdaminance adaptability
of a robotic partner.

In order to gain information about the role of the haptic caimimation channel on dom-
inance, a mutual haptic feedback conditiarH) is compared with a condition without such
feedback, called vision conditioW}, where only haptic feedback form the virtual object, which
has to be moved along the reference path, is given.
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6.3.2 Data Analysis
Participants

The analysis of dominance is based on 24 participants (ag&’\; sd: 2.5, 12 males) forming
six groups of four persons ea&rParticipants interacted in accordance with a round robsigh
[Kenny et al.,l;O_dG], such that each participant perfornredtask with every group member.
All participants were randomly assigned to a group. Due todimall strength necessary to
collaborate in this task it is assumed that the physicahgtreof participants does not interfere
with the results.

Measures

For the analysis of the experimentally gained behavior,dh& physical dominance measure
based on the ratio of individual external forces (forces #itaelerate the object, thus are related
to the control over the object) and the summed applied focemployed (details in Section

4.33):

St

fsum,t

PD12,t = (6-1)
whereP D, is the individual dominance of partner 1 over partner 2 aedritlext the analyzed
time point. The measure is force-based and describes thedudl contribution to the object
motion.

In order to analyze the effect of haptic feedback on the gedominance difference across
the whole trial (RQ1), trials with and without mutual hapteztiback from the partner are con-
sidered (two conditions). The data analysis is based on #enalyadic physical dominance
difference measureDy;s; = |PD1» — P Dy |) per trial, whereP Dy, andbar PD,; are the in-
dividual means per analyzed interaction sequence. By takindifference measure the problem
that the mean of the individual dominance values for the taxners is 0.5 per definition can
be overcome. The analysis 8D, is conducted using 12 mixed-gender dyads from the given
dataset, which are independent (meaning that an individyzdrt of only one dyad). The same
physical dominance measure and the same sample of 12 dyadsreidered when addressing
research question two. In addition, the Euclidean distéeteeen the cursor and the reference
track is used to quantify task performance. It is measurega@tsmean square erragtM .S to
provide statements on the performance across a whole mm(ite also Sectidn 4.3.2).

To address the necessary adaptability of a potential ropatitner towards the human user’s
dominance, a method to describe the empirically found sterscy of human physical dom-
inance behavior across different partners is required. hSumethod was found in the so-
cial relations model (SRM, introduced lin Bond and Lashley E]9®avid A. Kenny [1995];
Kenny et al. [[;O_d]l,;Oﬁ)G] in the context of social psychologiyhis method is related to multi-

level linear regression, also known as hierarchical limeadeling as it introduces random co-

efficients to the regression model [Gelman and Hill, 2008jeSiers and Kenny, 2005]. Thus,

3which is the same overall sample as in the study on efficiemdgvi-level haptic collaboration (Sectién 5.2.2).
As dominance distributions are of no relevance in individask execution, the “alone trials” are not considered
here.
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SRM explicitly models interdependence between two partrsshe method is not derived by
the author, it is stated here for the sake of completenesss lomly summarized in brevity for
the dominance analysis conducted here:

The amount to which partner 1 dominates partner 2 on averageial and vice versa can be
expressed as follows for a given condition:

P_D12,j = p+ b1+ 2 + 012 + €125 (6.2)
PDoj = p+ Bo+ 1 + o1 + €215 (6.3)

The parameten reflects a fixed effect, namely the mean individual physicahshance mea-
sure in a given group. This parameter is of no relevance aSRM investigates variances. In
the following, the first equation referring to partner 1 iscébed. Partner 2 can be analyzed
correspondingly. The first random effectds which presents the actor effect, i.e. theneral
tendency of partnet to dominate othersacross thé sub-trials and the different partners in the
group. The random effeef, describes thgeneral tendency of partné& to be dominated by
othersacross thé: sub-trials and the different partners in the group. Theltrandom effect is
012 reflecting theunique dominance constellation within a specific dyzete partnet and part-
ner2. The last component, ; is the variance in the dominance measure in a given subytrial
which cannot be explained by the other componeso( term). In the given data set there are
three sub-trials and three different partners. It is imgatrthat the SRM is not directly interested
in the size of the effect of this components as there is noata&ifect due to specific predictors
involved here, as it would be in ordinary regression apgreac Instead, the variance in these
effects is the focus of the model. To give an example, theraetoance can be interpreted as
an “estimate of the overall amount of variation in dyadicresathat is potentially explainable
by characteristics of the individuals who generated the[@'mwj_aulo_d&. Thus, a large
variance in the actor effect actually means that changelserdominance measure are due to
characteristics of the actor in contrast to interactivesvedr towards the partner.

The goal of the social relations model is to examine the wagaof the three random ef-
fects @3, 0,, 0s5). Hence, the variance found in all dominance measures irdataset can
be partitioned into the three above-explained sourcesy@ag an additive, linear relationship.
Furthermore, the SRM distinguishes two types of reciprocity
a) Actor-partner reciprocityor generalized reciprocity (covariance ©f and~; has no mean-
ing when analyzing dominance. This is due to the complemigntaf dominance PDq, =
(1— PD4,), compare Sectidn4.3.3: Negative generalized reciprdeity) implies that persons
who dominate others are not dominated by others. Thus, ttaenmders’; andy,; correlate with
r = —1 by definition.

b) Dyadic-reciprocity(covariance ob,, andda,: o5 5) reflects the unique association between
the dominance value of partnérand partner. This reciprocity provides information on the
consistency of the dominance differences in the behaviowofpartners across the three subtri-
als.

The analysis of the social relations model is conductedguigia whole round robin dataset.
The five variance/covariance parameters of the model angifigel with the SOREMO program
,]. All inference statistical results in the hegction will be reported on a signifi-
cance level of 5%.
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Figure 6.3: Exemplary dominance behavior of an individual participant (D;-;) over time,
condition with mutual haptic feedback (VH). The reference track is plotted
independently of the scaling on the y-axis.

6.3.3 Results

In the following, the effect of mutual haptic feedback on gicgl dominance, the relationship
between performance and physical dominance as well as ttsstency of physical dominance
behavior across several partners are analyzed takingéotuat the overall (mean) behavior per
trial. This is in line with the state of the art in robotic ingohentation of dominance parameters,
which are all time-invariant. Nonetheless, in Figlrel 6.3eaample of an individual physical
dominance behavior is shown. The frequency of switchingZdbet dominant and non-dominant
behavior is high, compared to the frequency of external®ravhich are necessary to complete
the task. These external forces necessary for task compledin be inferred from the reference
track depicted in the same plot. Itis concluded that the friggjuency in the physical dominance
measure is due to the fact that in our experiment the objecahaw inertia and no damping is
implemented which may lead to a higher frequency of overstin expected otherwise. As
the following analyses focus on mean dominance behavierattalysis of parameters causing
dominance switches between partners is left for later studi

RQ1 - Physical Dominance Distribution

The mean of the dominance differendel},;; ;) in the two conditions with and without mutual
haptic feedback of the partner is shown in Figuré 6.4. In ie®r-only condition the average
difference was 17.29 percent points on the dominance s@aigifig from zero to 1) and in the
vision-haptic condition 14.17 percent points . For thewvidilial dominance it is observed that
with a probability of 95%P D, will not be higher than 0.6 (consequently not lower than @d d
to the complementarity of the measure) in the given taslepeddent of the feedback condition.
A one-tailed t-test for each condition was conducted, toastitat the dominance difference
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Figure 6.4: Comparison of dominance difference (PDg;s;) in the two conditions (V and
VH); mean and standard errors. The difference between feedback condi-
tions is small. In both cases a dominance difference can be found (values
unequal to zero).
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Figure 6.5: Correlation between the performance RM S and the physical dominance
difference between partners (PD,;;;) separately for the two feedback con-
dition with (VH) and without (V) mutual haptic feedback. As an inference
statistic test on the significance of a correlation requires independent data,
only values of twelve independent dyads are plotted. This limited sample
does not allow to identify a clear pattern of the relationship between the two
measures.
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values differ from zero on the population level ({; = 6.517,p < 0.001,r = 0.891; VH:
t11 = 8.149,p < 0.001,r = 0.926). This means that on average participants worked with some
dominance difference.

A paired t-test comparing thé condition (mean: 0.1729; standard deviation: 0.0919) had t
vision-haptic condition (mean: 0.1417; standard devatmb0602) reveals no significant differ-
ence between the two means of the dominance differefég;:;): t,; = —0.913;p = 0.381.
Hence, in the given experiment the feedback condition doesfluence the mean dominance
difference.

RQ2 - Physical Dominance and Performance

The relation between the empirically found mean physicahidance difference®D,; ;) and
task performancel{)/ S) is investigated separately for the two feedback conditidfigurd 6.6
depicts the correlations between dominance and perforend@escriptively no clear pattern can
be found. The lack of correlation is strengthened by infeeestatistic tests using the Pearson
correlation coefficient\(H: » = 0.298,p = 0.347; V: r = —0.217,p = 0.499): Neither of the
two conditions show a significant correlation betwééﬁdiff andRMS.

RQ3 - Consistency of Physical Dominance across Partners

The here reported results are based on the social relatiodsintsee Section 6.3.2). The re-
sults from the SRM-analysis on variances in the migalvidual dominance level .5, Dy;)
are reported in Table 8.1. The variance of the actor and @aefifects ¢, o.,) are significantly
different from zero in both conditions. The average indidtildominance behavior, which is
consistent across partners, explains 49.0% of the oveaafince in the dominance measure in
theV condition and 64.3% in th&H condition. The variances of actor and partner effects are
considered together because they both relate to pers@mdept behavior, which is not influ-
enced by the interaction itself. The third variance comportbe relationship;, determines the
dyad-specific behavior: 32.8% Whand 24.7% irWH. However, the variation in this effect is not
significant in the former condition and, thus, has to be prited with care. The higher amount
of variance in actor and partner effects compared to theioakhip effect implies that the av-
erage dominance behavior per interaction is rather peispendent than due to the interaction
with a specific partner.

The actor-partner reciprocity s, is —1.000 in both conditions, which is basically due
to the dominance complementarity. The dyadic reciproeify: states that the average
dominance behavior between partners in the three sul-tvalies in both conditionsV
055 = —0.375 VH: 055 = —0.523). Otherwise, a correlation of-1.000 would have
been found here as well. However, due to the higher coroglati VH, it can be concluded
that with haptic feedback of the partner the mean dominaahawor is more stable across time.

6.3.4 Discussion

In this section the focus has been on physical dominanceshathkes into account control of
the jointly manipulated object via forces and does not gpoad to shared decision processes.
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Table 6.1: Model estimates for relative variance partitioning (expressed in percentages)
for actor, partner and relationship effects and the error term. If the amount of
explained variance in P D, is significantly different from zero, can be inferred
from the p-values given below; significance on a 0.05 level is marked with *.

Condition Actor o | Partnero, | Relationshiprs | Error
\ estimates 0.225 0.265 0.328 0.183

P 0.038* | 0.041* 0.051
VH estimates 0.353 0.290 0.247 0.110

P 0.011* | 0.022* 0.037*

Thus, the experiment and its results address low-leveitapliaboration.

With 95% probability, no average dominance values outdidedt4 to 0.6 interval are found
in the given task, for both feedback conditions. Additidpat is shown that humans work with
some mean dominance difference in contrast to equally dltanatrol (0.5) throughout the task.
This is in line with the results found ' ' [LZO_O_ﬂ b]. The results
in this subchapter suggest that the humans collaborateimdthidually different action plans
within the shared action plan of the dyad.

The current dominance analysis is based on mean valuestperdtion sequence, which cor-
responds to the state of the art in human-robot interactibrere time-invariant parameters for
dominance distributions are implemented. For such timariamt dominance parameters, the
results found in human-human collaboration in the currertysimply, that passive following or
absolute dominant position replay does not represent htikeubehavior. Considering, how-
ever, time-varying dominance parameters, a sequentiabehiaetween these roles may represent
human-like behavior as suggested by the descriptive asallsis subject needs to be addressed
in future studies.

In line with the results presented H:y Rahman ét al. |2|002a]|@gdz_ej_ai. |2Qﬂ0], no

evidence for a large effect of mean dominance distributionperformance is found. In
IKhademian and Hashtrudi-Zaad [2007a] it is reported thefopmance is higher with unequal
physical dominance compared to absolute leadership. Tiesséis are, however, not directly
comparable as they are based on a training scenario. Béllelationship between dominance
and performance may have been found because the valuesi¢hdse dominance parameter in
this study included non-human-like values. It is possib& physical dominance does not affect
performance as long as the parameter values stay withintarvah resembling human-human
behavior. Non-human-like behavior could generally desedask performance. This line of ar-
gumentation is strengthened Mt 010], who tdpat even though the dominance-
adaptive assistance function did not increase results amedpo the control conditions it led to
higher rated human-likeness. Future work should addressvarying performance and domi-
nance measures. This may allow finding a relation betweesettwso measures.

The presented analysis allows statements on the consistéawerage dominance behavior
with a social relations model analysis: A high amount of theability in average individual
dominance behavior is consistent across partnérd9.0%,VH: 64.3%) and therefore consid-
ered as related to a character trait of domineeringnessce;l@vrobotic partner can also repre-
sent a relatively consistent dominance behavior tendéecyake over a certain dominance role
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6 Shared Actions: a Dominance Analysis

(rather dominant or rather non-dominant). However, it isvah that 32.8% of the variance in
mean individual dominance behavior in tecondition and 24.7% in the condition with mutual
haptic feedback can be explained by interaction betweerifgppartners. This is the amount the
robot has to adapt to the human partner in order to createitivetfeeling of interaction. So far,
the adaptability of dominance behavior is based on mearesger interaction. However, the
tendency already suggests that control architecturesbmtic partners should address these two
dominance components (the personal and the interactivpa@oemt) separately. The fact that
the dyadic reciprocity correlation has only small to medisize indicates that the mean domi-
nance difference between partners varies between suf tngthe haptic feedback condition the
dyadic reciprocity is higher, leading to the conclusiont thaptic feedback of the partner pro-
vides more stability (and hence predictability of the agerauman dominance behavior across
time. This is in line with the results about the individualoef distribution between partners
reported in Section 5.2, which is more fair when mutual tefetedback is provided). Therefore,
the findings of the consistency analysis support the recamdaten to provide mutual haptic
feedback for human robot haptic collaboration tasks, asetmogl of the human partner should
be simplified this way.

The analysis presented is based on an abstract experinspetially, as the task involved
only one-dimensional movements. Future work should ingat the distribution of physical
dominance in multi-dimensional environments and diffetask. It is of interest, how the phys-
ical dominance in one dimension is related to the dominan@nother dimensions (compare
MLOJLaLa_eI_aj.[LZD_dd_ZQbQ] for different responsibilities dimensions of workspace in human-
robot collaboration). Furthermore, it was shown desacrghyi that the physical dominance be-
havior changes with high frequency between partners. Irctineent experiment this could be
explained with the small inertia of the object or the lack afrgping which may lead to a higher
frequency of overshoots. As it seems still reasonable tonasghat some variance in individual
dominance behavior over time is shown even with other clarnatics of the manipulated ob-
ject, it is suggested that dominance should be consideréichasvarying parameter in robotic
architectures. As a first step to define guidelines for thexgbaf values in this parameter over
time, further analysis of human-human collaborative dataguired.

6.4 Cognitive Dominance in Shared Decision Making
(High-Level Collaboration)

In the previous subchapter on physical dominance, it wagshioat averaged across an interac-
tion sequence, one partner within the collaborating dyatbisificantly more dominant than the
other. Thus, there is evidence that the two individual acpilans differ within the shared action
plan when a given shared trajectory is jointly followed. Ratan be distinguished: One partner
is more dominant in object control, i.e. applies more foesuiting in object movement than the
other. Now, the question is raised if the role of the partneowarries more physical workload
(along with the definition of physical dominance) is necelsthe one who dominates in carry-
ing out the cognitive workload in shared kinesthetic tasks,takes decisions on the trajectory
the object should follow. Thus, cognitive dominance is regdd on the measured applied forces
but rather on the relationship between individually plathaad jointly executed trajectory. The
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Experiment

Human-Human-
Collaboration

*M

Human-Robot-

Figure 6.6: In line with the approach to learn from human dyads to enhance human-
robot collaboration, this experiment investigates haptic collaboration of two
human users with the shown setup including shared decision making.

subdivision of roles into a “workload-carrier” (executand a “decision maker” (conductor) has
been formally suggested b;LSIﬁi&DDLétLaL[iO%]. Note @vawthat so far this subdivision of
dominance exists only on a theoretically basis and is inyaigtd empirically for the first time in
the following experiment.

In terms of shared action plans the question arises if theleéwals which are proposed by
the haptic collaboration framework find evidence, i.e.  thdividual dominance within shared
action plans are non-consistent for both levels. The twoidante measures serve as indicators
in this matter.

Shared decision making (for a general overview seéﬁ@m&&%]) is a cognitive task,
which is of high importance for haptic collaboration: Wheeethe trajectory of the jointly ma-
nipulated object or the interaction point between the twaneas is not clearly defined by the
task, the two partners have to negotiate and agree on am @t4io, and thus, execute shared de-
cision making. Examples of such not fully structured taskesraumerous: two partners (whether
human or robot) want to carry an object and due to differemtrenmental information they
suggest different trajectories to do so. Or, a patient irhalpoditation scenario has limitations in
joint angles, which cannot be absolutely foreseen by a rolloérapist, who suggests an exer-
cise and guides the patient. In these applications, shatemhglans integrating these different
individual plans have to be found. Intention negotiatios t@atake place. To our best knowl-
edge, cognitive dominance in haptic shared decision makingt yet addressed experimentally
in literature.

The experiment conducted in this subchapter involves aldietbscenario of shared object
manipulation between human partners with binary sharedides. In the chosen scenario,
there is no a priori dominance differences as e.g. in thebibtaion scenario. The experi-
ment rather resembles a task between partners with an egsial &f background information
and capabilities, which can be found e.g. in obstacle avgiéacompare Figule 6.6. In the
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6 Shared Actions: a Dominance Analysis

present experiment, intention negotiation to derive ghaion plans deals with the distribu-
tion of forces to move the object (physical dominance) aredtthjectory where to move the
object (cognitive dominance). In the previous chapter aention negotiation (Sectidn 5.3) it
was shown that intention negotiation via the haptic chanaerltake place and increases perfor-
mance. The decision situations, which are analyzed in th@fimg, are designed to investigate
individual roles instead of the dyadic performance outcansidared decision making. Different
decision situations are analyzed which can be separatadycteepending on the optimal cogni-
tive dominance distributions between partners. Thus,af isterest how performance-oriented
the participants behave, i.e. if a participant dominatescsibn situation when this leads to high
performance and behaves non-dominant in other situations.

If we understand how physical and cognitive dominance ratesnterrelated in human col-
laboration, it is possible to

e gain insights on how humans integrate individual actiomgkawards shared intentions in
tasks requiring shared decision making

e understand if a separation of these two forms of dominanfsaisble

e develop (based on the previous points) design guidelirrefttrol architectures of robots,
i.e. conclude on possible inferences a human may derive fotnotic behavior and how
the robot may predict which partner is going to take the decibeforehand, which sim-
plifies online adaptation of the robot to the human partner

In order to investigate the general role of mutual haptidbeek between partners in joint
object manipulation (which may not always be present in VRIliaptions and may not fully
be used for intention negotiation if the robot behaves nomdmn-like), an experimental control
condition without mutual haptic feedback is studied addiilly.

After introducing the research questions on cognitive ag@mce, information on the analyzed
data set and the involved methods is given. Then, resuledation to the research questions are
presented and discussed.

6.4.1 Research Questions

So far no experiments have addressed cognitive dominartapitic collaboration. Due to this
lack of knowledge, the following experimental analysis basxploratory character. Within all
research questions possible differences between the hhaptic feedback condition and the
vision feedback condition are addressed. In the presetidy the following research questions
(RQ) are investigated:

e RQ1 - Cognitive Dominance Differences:What are the cognitive dominance distribu-
tions across several decision situations? The analyzesioles are designed in a way that
allows best performance wiequalcognitive dominance across all studied decision situ-
ations. The cognitive dominance difference in the behavidruman dyads is compared
with the physical dominance difference as reported in tlegipus subchapter.

e RQ2 - Cognitive Dominance and PerformanceTwo new decision situations are intro-
duced compared to the efficiency analysis in Se¢fioh 5.5dsd new situations, only one
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6.4 Cognitive Dominance in Shared Decision Making (High-¢levollaboration)

partner has the option to choose between two path alteesatiVhe other only has one
path, and thus, should clearly dominate towards this optEsembling real life scenarios
with clear restrictions. Now, the question is raised whetire can still find an advantage
of mutual haptic feedback in these decisions of clear perémice optimal cognitive dom-
inance behavior, comparing it to a decision situation wieté partners have two options
with different preferences, i.e. cognitive dominance isailearly instructed.

¢ RQ3 - Physical and Cognitive DominanceHow are physical and cognitive dominance
related? Is there empirical evidence for two different deanice concepts as assumed so
far in the conceptual framework? Can we predict which panvikcognitively dominate
in a given decision situation based on knowledge of the physlominance difference
found in the partners’ behavior before this situation?

6.4.2 Data Analysis

The experiment conducted to address high-level hapti@lsotation is described in detail in
Sectiorf4.R. Here, more specific information for the preseatysis of cognitive dominance are
provided.

Participants

The analysis is based on the data of 29 independent dyads(s&pants; 5 male, 2 female and
22 mixed dyads; age mean: 25,78 (standard deviation = 484gh is the same sample used
for the efficiency analysis for high-level haptic collabtioa in Sectiorf 5.8). Due to the small
strength necessary to collaborate in this task it is aganrasd that the physical strength of
participants does not interfere with the results.

Decision Situations

The three different decision situations, which are exanhihere, are depicted in Figure 5.7.
Taking into account the overall goal of high task perfornegribese three decision typd3T)
induce different cognitive dominance roles for the dyad:

e P1-Spartner 1 has no choice between reference paths, thushienefmts to prevent errors
(virtual object deviations from reference tastgrtnerl Should be cognitively dominant.
Thus, it is necessary to overrule partner 2 who will prefesthear trajectory due to the
preferences instructed to him by path thickness.

e P1-SNpartner 1 is in a decision situation, preferring one out af tvacks due to path
thickness. Partner 2 only has one option, a step in the ogpdisection as the preferred
path of partner 1Partnerl ShouldNot cognitively dominate here.

e P1-Cboth partners see two tracks, i.e. are in decision situstiom have opposite prefer-
ences due to path thickness: Here both partners can domimatdecide which track to
choose. Who is cognitively dominant does not influence thsipiisies in reaching high
performance. From the perspective of partnePartnerl Can be cognitively dominant
here.

121



6 Shared Actions: a Dominance Analysis

v

xl Partner 1

Partner 2

P1-S P1-SN P1-C
! Step

teccace Decision Type

Figure 6.7: Example of paired reference tracks which “scroll down” the negative z-axis.
In reality the paths are rotated by -90° see also Figure [6.6l Preference are
instructed in decision situations as thicker path segments are easier to fol-
low. The three analyzed decision types are named in relation to partner
1: P1-S Partner 1 should dominate here to show performance optimal be-
havior (stay on one of the tracks); PS-SN Partner 1 should not cognitively
dominate to achieve good performance; P1-C Partner 1 can cognitively
dominate as performance is independent of cognitive dominance behavior.
The enlarged section depicts an interval of two seconds in which physical
dominance is analyzed to compare the two different concepts in research
question three.

Thus, the experiment is designed in a way that cognitive damie behavior in decision
situations will directly affect the dyadic performance hetdecision situationB1-Sand PS-
SN Each of the three analyzed decision types was repeatednigtfithanged sides within one
trial to counterbalance a possible side bias (FbfSandP1-SNfour constellations of the two
tracks had to be considered). This led to a total of eightyaeal decision situations. Each dyad
performed one trial with and without mutual haptic feedbimalandomized order. Each trial was
executed with one of eight different tracks. These trackigedavith respect to the order of the
presented decision situations. This way learning-effeet® prevented through track repetition.

Measures

To analyze the first two research questions, the cognitiveisance measure introduced in Sec-
tion[4.3.3 is used. However, in a first approach cognitive idamce is addressed with the sim-
plified measure (defined in the following) by visual inspeti

Zf:l ¢D 11)2,2‘
k

where Y% | CDY,, are the values of cognitive dominance of partner 1 over parZnbased
on the following coding schema: The instructed individyaleésired trajectory is similar to the
executed trajectory as orc[élezﬂ. = 1; if the actual trajectory is more similar to the one desired
by the partner(JD’l’Q’i = (0. The analyzed decision situations.§) were designed in a way that
one partner had to dominate due to opposite preferences, Ehe > DS is the number of
analyzed decision situations where cognitive dominance pessible (here eight). The same

CDb, = (6.4)
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6.4 Cognitive Dominance in Shared Decision Making (High-¢levollaboration)

also holds forC' Db, For further details see Sectibn4]3.3.

In decision situatiorP1-C (compare Figur€6l7) a partner was considered cognitivety-d
inant when the cursor followed the path which was preseritaddr to her/him. In the two
remaining decision situation®{-SandP1-SN the partner, who saw only one path, was consid-
ered dominant if the cursor followed this one path and nomidant if that was not the case.

In order to compare the cognitive dominance distributiothwhe physical one as part of
research question one, the absolute difference measuhgsitpl dominance is use®Q 4y =
\PDH — P7D21|). For this comparison the mean physical dominance was leééclin a two
second interval around a step, which wem part of a decision situation, compare Figlrel 6.7.
In this way, the physical dominance values found in thisrwgkeshould be comparable to those
found in the previous chapter if there is no influence of theenexistence of decision situations
in other parts of the interaction trial.

Comparable to the calculation with dyadic measure of physloaninance, the cognitive
dominance difference in the partners’ behavior in a givéal is expressed by the absolute
difference between the individual measur€9X ;s = |C D15 — C'Dby|).

Performance is investigated with the root mean square éRdfS) based on the horizontal
displacement between the desired positiry and the actual position,, introduced in Sec-
tion[4.3.2. It is calculated in the two seconds interval abthe actual point of decision (not
depicted).

To answer research question three, both dominance corftagdo be measure®hysical
dominance can be measured in track segments with and witleaigions. Howevegognitive
dominance can only be studied in the presence of a decidigatisn. It is important to note,
that cognitive dominance is not independent from physitfalte to dominate in a given deci-
sion situation it is necessary to apply forces in the dioectf the chosen option to move the
object in this direction or communicate to the partner to aloréence, cognitive dominance im-
plies physical dominance in at least one time step here. Vigstigate if the partner who shows
more cognitive dominant behavior is the one who applies rfanees on the object throughout
task execution, the physical dominance measure is used.ndamfit whether it is predictable
if the physically more dominant partner will also take thetrgecision, physical dominance is
measured before the decision itself, i.e. in the interva fovthree seconds before the decision
(compare Figuré 617), where participants could see therajmgpdecision situation. Here, the
mean value for cognitive dominance is calculatét),,. Due to the complementarity of indi-
vidual values in both dominance measures it is possible &ayae only one partner to address
research question three.

All inference statistical results in the next section agorged on a significance level of 5%.

6.4.3 Results

Before the differences of cognitive dominance within dyads addressed, it is tested if the
distribution ofphysical dominancen human behavior found in the previous study can be repli-
cated here. The physical dominance in non-decision situstii.e. the steps in the track, is
investigated to clarify if the general existence of decissituations in the task affects physi-
cal dominance even in these task segments. As can be seeiguie[B.8 the results found
here and in the previous subchapter look descriptivelylammr his way the difference between
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Figure 6.8: Values of mean physical dominance differences between partners (mean
and one standard error) shown separately for the two feedback conditions
(V: without mutual haptic feedback and VH: with mutual haptic feedback).
The values are derived in a two second interval around a step not part of
a decision situation, compare Figure [6.7l To contrast the current findings
from the dominance differences reported in the previous subchapter, those
values are repeated with dashed lines for the standard error.

the two feedback conditions becomes clearer in the curmealysis: In contrast to the previ-
ously reported results on physical dominance differenedwden partners, the differences in
the two feedback conditions reach significance: when mutaptic feedback is provided the
absolute dominance difference between partners in thegzatdhinterval is lower than without
such feedback (paired sample t-test = 3.059;p = 0.005; = 0.501. The correlation be-
tween the values of the two conditions, however, is not &igamt: » = 0.211;p = 0.273. In
accordance with our previous results both feedback camditiead to dominance distributions
unequal to zero (meaning that the individual values diffgnisicantly from 0.5 which would
imply equal dominance; one sample t-test against 2€érot,s = 7.438;p < 0.001;r = 0.842;
VH: tys = 7.063; p < 0.001; 7 = 0.800).

There are three possible reasons why in the current anahesighysical dominance differ-
ence is found to be significantly bigger without reciprocaptic feedback: a) the sample size
is higher compared to the previous analysis allowing moliabidity of the results. A medium
effect of haptic feedback is found here (compare effect siggessed i), which may not
have been detected in the earlier study with less statigtov@er. This argument is strengthened
as the tendency to have more equal distributions betweedngparis shown descriptively in
the previous study as well; b) the effect of feedback may Ipeaally evident during the step
response. Such an effect may then loose parts of its sigmifcaver the whole trial as it was
analyzed in the previous experiment; c) the mere existehckeasion situations throughout
the interaction influences the dominance behavior. Howelierdifference between feedback
conditions is still found. Only the size of the differenceaolded compared to the previous study.
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The hypothesis found in the previous subchapter is furttrengthened: with 95% confidence
one partner will show more physical dominance than the otheraddition, this difference
in pyhsical dominance is even stronger when no mutual hdpédback between partners is
provided.

RQ1 - Cognitive Dominance Differences

In order to investigate theognitive dominancealifferences in human dyads, the absolute
differences across ten different dominance situationsuidied (C'D?;,; all side combinations
for each of the three types). The results on cognitive donuealifferences between partners
are descriptively similar to those of physical dominancen{pare Figuré 619). However, the
difference in individual values for the vision conditionnst significantly higher than that of
the vision-haptic condition as found in the current analygiphysical dominance and, thus, the
patterns resemble the dominance difference reported ipréweous subchapter (dashed lines in
Figure[6.8): paired sample t-tegty = 1.394;p = 0.174; r = 0.254; the Pearson correlation be-
tween two conditions is not significant:= 0.132; p = 0.495). Again, both feedback conditions
lead to significantly unequal mean dominance distributiogtsveen partners (one sample t-test
against zeroV: tog = 14.520;p < 0.001; 7 = 0.940; VH: t55 = 13.020;p < 0.001; 7 = 0.926).
Thus, research question one can be answered by statingpéhaddgnitive dominance difference
between partners shows the same pattern as the physicalaloreidifference, i.e. one partner
is significantly more dominant. This implies that one parttekes more decisions than the
other, independent of the provided feedback. This is truen ghough the chances to cognitively
dominate are equally distributed between partners withgtén decisions.

RQ2 - Cognitive Dominance and Performance

In haptic human-robot collaboration it is of general ingtte find performance-optimal behavior
between partners. Research question two addresses tlidjoanalyzing the relation between
the three decision types and the resulting performancefoffgnce (M .S error) difference
between the two feedback conditionsgndVVH) and the three decision typeRX-S P1-SNand
P1-C) is depicted in Figuré 6.10. A 2*3 repeated measurement AN@eals that mutual
haptic feedback does not influence the performarfGes( = 0.200;p = 0.658). Thus, the
performance benefits of mutual haptic feedback found in theaency analysis in Sectidn 3.3,
cannot be generalized to the current study, where instiucdeks are more restrictive and thus
unfavorable dominance behavior can result in higher errors

However, a significant effect of the decision type factbs {; = 15.691;p < ().()01;77]2, =
0.359) was found. Bonferroni adjusted pairwise comparisons fedgrcision type factor showed,
that there was no difference in performance whether paftreer2 had to dominateP1-S P1-
SN), but a significant difference to situations where both @nthcould dominateR1-C, com-
pare Tablé 6]2). This is in accordance with the instructedepences and the task definition:
In decision type$?1-SandP1-SNone partner was assigned to show cognitive dominance by
experimental design. If the corresponding partner doeslamtinate, i.e. makes the decision,
this leads to an increased error as the dyad is then folloaitrgck, which is only instructed
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Figure 6.9: Values of mean cognitive dominance differences across decision situations

(mean and one standard error) shown separately for the two feedback con-
ditions (V: without mutual haptic feedback and VH: with mutual haptic feed-
back). The partner whose intended trajectory resembles the actual object
trajectory is considered cognitively dominant.
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Figure 6.10: Mean performance values within in 2 seconds interval around decision sit-
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uation (measured as RM S error, mean and one standard error) shown
separately for the two feedback conditions (V: without mutual haptic feed-
back and VH: with mutual haptic feedback) and the three different deci-
sion types, instructing different performance-optimal cognitive dominance
behavior for partner 1 and 2 correspondingly (P1-S: partner 1 should dom-
inate; P1-SN: partner 1 should not dominate; P1-C: partner 1 can domi-
nate)
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Table 6.2: This table reports the p-values of Bonferroni adjusted pairwise comparison
for the effect of the decision type factor on performance. Significant values
on a 5% level are marked with *

Factor level P1-S P1-SN P1-C
P1-S - 1.000 < 0.001*
P1-SN 1.000 - 1.000
P1-C < 0.001* | < 0.001* -

to one partner. This problem cannot occur in decision typeC. Thus, performance analysis

suggests that not all participants dominate or are non+t@miwhen they should. This implies

that participants did not want to collaborate or were noedbldo so successfully in all deci-

sion situations. As participants were instructed to caltake and were told to be paid (for their
participation in the experiment) based on the joint taskqgoerance, the results are interpreted
towards the latter argument. One reason, why intention tregm was not always success-
ful could lie in the physical dominance executed by the martrit may be challenging to the

physically less dominant person to communicate his/h@niiins in decision situations to a
partner who is controlling the object movement most of tisi.t& he relation between the two

dominance concepts will therefore be examined in more Idatdie next section.

RQ3 - Physical and Cognitive Dominance

In this paragraph the relation between physical and cagnitbominance is analyzed. Keeping in
mind the overall goal teredictthe cognitive dominance, the physical dominance is catedla
as a mean value in a 2s interval five to three secbedisrethe decision PD,,). Cognitive dom-
inance C'D%,) is coded binary (0 = non-dominant, 1 = dominant) in a givedigien situation
and thus, a dichotomous variable. As a first approach, a tondi density plot is examined,
depicted in Figuré 6.11. It describes how the conditionatritiution of cognitive dominance
values change over physical dominance values. Only pattisesinalyzed in the following. Due
to the complementarity of the measures the values of pa2taee implied. The plot suggests a
relation between the two dominance concepts: highBr, values lead to a higher probability
for CD%, = 1 (lighter area in plot) and vice versa.

Motivated by these descriptive results the goal is now toehtte individual cognitive dom-
inance behavior. There are several predictors, which dafllienceC D?,, above allPD,, and
the factor decision typeXT, with three levels). A regression approach is chosen toyaeaahe
influence of these variables 6hD?,. Due to the fact that cognitive dominance is coded binary in
the current analysis, this cannot be done with ordinaryt legsare (OLS) regression, which as-
sumes interval scaled outcome variables Cohen| eh_aL[ZOﬁm]aad a generalized linear model,
in particular a logistic regression is chosen, which prisdite probability (binomial distribution)
for being either one of the cases. Thus, the probahitity’) for a variableY” to be 1 implies that
(1 — P(Y)) = 0. Herein,Y is defined to be= C'D?,. The relation between these probabilities
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Figure 6.11: Conditional density plot describing the conditional distribution in cognitive
behavior (C D3, € [0, 1]) depending on physical dominance values (P D;,)

and a predictoX can than be described in a non-linear, s-shaped way:

P(Y =1)
1-P(Y =1)

whereB, + B, X (X is a predictor and3, and B; regression coefficients) is the linear formula
for a single predictor known from OLS regression.

Another challenge when applying a regression model to tigaittee dominance data is the
repeated measurement design, given by the fact that pemits provided data for all levels of
the feedback and the decision situation factor. The passibendence in data for the different
levels breaks the independent error assumption of regressodels. The solution used here is
the explicit modeling of a random dyad factor which addregke variance in cognitive domi-
nance ') due to a dyad specific offset (thus, a varying intercept rhisdgpplied). This means
that the above described logit model has to be extended mdamaeffect §,), which is assumed
to be normally distributed with mean zero and variaageFurther considering the fact that the
number of possible predictor( is not yet specified, a general matrix multiplication isdise
to describe the general model. Thus, the generalised Imead model for binary responses
assumes a Bernoulli distribution for each resporige with d = 1,...,[, (as index for dyads)
andk = 1,...,n (as index for a measurement within a dyad), given the subptific random
effectd,. The conditional mean ofy, depends on the fixed(;) and random{,) effects via
the following linear predictor:

logit = In( )= By+ B1 X (6.5)

Nk = XJkB + by,
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Figure 6.12: Empirical logits of individual cognitive dominance behavior with physical
dominance as only predictor. This is done across all decision types, sepa-
rately for the two feedback conditions (V and VH). The dotted lines show
the standard errors.

foralld=1,...,landk =1,... ng with

I {M} .
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The model can be extended to include also random influenca=rtaiin covariates, but in our
case a model with randomly varying mtercept is eno &ahér details on generalized linear
mixed models the reader may refet to Fitzmaurice & Eﬂ]&éld@elman_and_tlhm@&.

When modeling the binary respon§é?,, a numerical covariate of interest is physical dom-
inanceP D, before the decision situation, and a number of possibleyostml covariates (fac-
tors) such aslecision typdDT) andfeedbackFB). Furthermore, the possibility exists that par-
ticipants have greference for one sidef motion (pushing or pulling the object), which then
should result in a trade-off in cognitive dominance depegdin the instructed side of decision
preference. However, the more predictors involved in a rtdelower its statistical power.
Therefore, the following descriptive analyses have the gogain information on which predic-
tors should be included.

First, the effect of physical dominance is examined on theigoal logit of the cognitive
dominance values, see Figlre 6.12. As can be seen, a (nkaely) relationship between the
two dominance variables exists (for more information on ieitgd logits compare e.@m

). Descriptively comparing the slopes, the relatitip between the predictoP(;,)
and the dependent variablé'D},) seems stronger when mutual haptic feedback is provided
(compare slopes). Therefore, a model should be fitted withtaraction between the predictors
physical dominance and type of feedback to address theseatites.

In Table[6.8 a possible side bias is investigated by comgadhia relative frequencies to move
to the left or the right in a decision situation in relatiorctignitive dominance. The bias towards
the right side in dominant behavior is considered small ghda neglect it in this early stage of
modeling the relationship between the two dominance cdecep

Depending on the decision typd31-S P1-SN P1-C), which instruct certain dominance be-
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6 Shared Actions: a Dominance Analysis

Table 6.3: Proportions of cognitive dominance behavior separately for the two sides of
the instructed preferences in the decision situation.

| | left side || right side |

CDl, =0 0474 ] 0.529
CDb, =11 0526 | 0.471

Table 6.4: Proportions of cognitive dominance behavior shown separately for the
behavior instructed by the decision type (DT) via different decision op-
tions/preferences for the two partners.

| [ DT: P1-S] DT: P1-SN| DT: P1-C|
CD%, =0 069 | 0304 | 0500
CDby=1| 0304 | 0.696 0.500

havior, differences between the proportions of cognitigenthance are more distinct (compare
Table[6.4): in nearly 70% of the observed cases partner 1vbsha the optimal way when
he/she should dominate (conditi®i-§ or should not do so (conditioR1-SN (compare also
the discussion of results related to the previous researektipn). The relative frequencies for
the two possible outcomes in cognitive dominance are of dngessize when both partners can
dominate P1-C). Taking into account all three levels and their descrgégtifect on the cognitive
dominance, it is decided to include this factor in the mo&eenthough the introduction of fur-
ther predictors and interactions between predictors maphéeretically possible. It is decided
against this to ensure the statistical power of the modeltaradtt in line with Ockham’s razor
[IEDQLQI_Qp_e_dla.B_LIIa.DnJieL_ZQhO] However, there is awasertbat future work may consider

different predictors in this context.

Based on these considerations the generalized linear migeélnvhich will be fitted to the
experimental data can be described as:

P(Clezdk = O]b,n)

where FB (feedback factor) an®T (decision type) are both categorical variables which are
dummy coded here. The indéxepresents the different decicision situations.

P(CD?Q ar = 1|0r) ¥ 3
n - = B(] + BIPDIQ,k + BQFB + BgPDlgFB + B4DT (66)

In Table[6.5 the estimated model parameters are given,hegetith the standard error and
the p-value to address the significance of the parameteesanélysis is designed such that the
model predicts the probability of cognitive dominance, id@minant behavior. The fact that
the intercept does not reach significance suggests a safficexplained variance in th€ D%,
values by the fitted model. The reference category of thebfgadfactor EB) is the condi-
tion without mutual haptic feedback/). The positive sign of the physical dominance predictor
(PD,,) therefore implies that cognitive dominance increasesjyfsical dominance was given
by this person before the decision situation. This predigaches significance. In the feedback
factor the vision condition\{) is chosen as reference category and the predictor thusmisfo
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6.4 Cognitive Dominance in Shared Decision Making (High-¢levollaboration)

Table 6.5: Estimated parameters of the fixed effect coefficients in the model described
in Equation along with corresponding standard errors and p-values. For
the categorical predictors the level of the factor is named towards which the
reference category changes (reference categories: for feedback factor, FB:
V and for decision type factor DT: P1-S). Significant effects on a 5% level
are marked with *.

Estimate| Std. Error p
(Intercept): -1.232 0.798 0.123
PDs: 4.305 1.551 0.006*
FB: VH: -2.263 1.363 0.097
DT: P1-C -0.887 0.291 0.002*
DT: P1-SN -1.748 0.305 <0.001*
PDi, * FB: VH: 4.032 2.622 0.124

on the changes in cognitive dominance when haptic feedisgofovided VH). The interaction
between physical dominance and the feedback factor doegach significance. Instead, the
main feedback effect is examined: The negative sign in thenate of the feedback predictor
states that with haptic feedback it is less likely for thetparto dominate compared to the vision
condition. However, this predictor is not significant on a Eel. In relation to the descriptive
results given in Figurie 6.12, an effect of this factor maydmesmall to be detected with the given
sample size. The factor decision type has a larger effecbgnitve dominance as it reaches
significance. The reference category here is decisiont®tuB1-S where cognitive dominance
is instructed. Interpreting the sign of the estimate of thedjctor for a decision situation of
type P1-C, it is concluded that it is less likely to dominate in thisusition compared t®1-S
For decision typd?1-SN the estimate is larger and again negative, stating thapribleability

to show cognitive dominance is even more decreased whenegpdrtshould not be dominant.
These results are in line with the instructed behavior.

The random effect considers a different intercept for edcth® 29 dyads. The estimated
variance of these intercepts is rather sma]l£ 0.0948). This shows that the dyads behave very
similar. In Figurd 6.13 the empirical quantiles of the esiied random intercepts are compared
to the quantiles of a normal distribution. Since there isyditlle deviation from the straight
line (representing normally distributed values), the agstion of a normally distributed random
effect seems to hold. The differences in the intercepts &etwmthe dyads is, thus, modeled
correctly but can be disregarded due to its size.

To investigate the fit of the model and to illustrate its petide capabilities for the given
scenario, Tablé 6l6 reports the expected (from the model)eanpirically observed values of
cognitive dominance. The fitted values are shown separttetire two feedback condition¥/(
andVH). Even though this factor did not reach significance as aigi@cdescriptive differences
in the relation between physical and cognitive dominanegf@und. For application in robotic
research itis of interest to find out how well the model predinder which feedback condition.
As the instructed cognitive dominance is equally disteloubetween partners across the ten
observed decision situations, the probability to show @agndominance 9.5 without applying
a model:
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Normal Q-Q Plot
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Figure 6.13: Normal qg-plots of estimated residuals (compare e.g. ] for more
information on qg-plots)
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The probability of predicting cognitive dominance behaworrectly is increased to over
70% when the model is applied in the haptic condition. Thuswking the individual constrains
in decision situations (decision types) as well as the glayslominance measured before this
situation gives valuable information about which partndt take the decision. When haptic
feedback is not provided, the chance of a correct predictidhe cognitive dominant partner is
around 65%. Predictability of the partner increases withualhaptic feedback. However, the
model does not describe the data well enough to make ablyotaterect predictions (100%);
a error probability of 27-29% is still high. Thus, the resushow a relation between the two
dominance concepts on the one hand, but also motivate cbsednich addresses physical and
cognitive dominance separately.

6.4.4 Discussion

In this subchapter cognitive dominance in a shared dectsiskibased on haptic collaboration
was investigated in relation to physical dominance. Firsights how individual action plans are
integrated into a shared action plan could be gained.

The cognitive dominance difference is similar to the oneortgal in the previous analysis on
physical dominance: in both dominance concepts it is folwad participants preferred to work
with unequal dominance, i.e. one partner is leading morettmaother. The results reported here
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6.4 Cognitive Dominance in Shared Decision Making (High-¢levollaboration)

Table 6.6: Comparison of a) cognitive dominance predicted by the above described
model, and b) observed cognitive dominance. Percentages for correct and
false prediction are given within the cells. The colored cells indicate the cor-
rect classification of dominance behavior.

predictedC DY, VH Vv
CDpb,=0|CDY=1| CD'=0|CDt, =1

observed” DY, CDb, =0 0.724 0.276 0.640 0.3601
CcDb, =1 0.709 0.345 0.655

are in line with the finding of Rahman et aL[;QbZa] on physd@hinance. In this subchapter,
reporting mean values of preferred cognitive dominanceuimdmn dyad behavior could extend
those results. This is the first time that cognitive domirabehavior of humans was explicitly
studied.

The experiment reported here was designed in a way that Ia@jkoperformance errors if
participants did not dominate when they should or vice vefsa interpretation of the result-
ing performance is therefore highly dependent on the agp@liealysis. However, independent
of the performance measures underlying this analysis, ffereince depending on the provided
feedback could be found. This is contradictory to the res@ported in the efficiency analysis
of intention negotiation in shared decision making in SEd%.3. The performance benefit in
relation to mutual haptic feedback found there could nottbengthened in the current study.
Even with mutual haptic feedback participants where notagbsvable to show performance-
optimal cognitive dominance behavior (only in 70% of theeasys One explanation for this
findings may be found in the fact that different decision sypdere analzed in the two studies.
Further, the different results may be due to the fact thaistets had to be made under time
pressure (reference path scrolling down) and that a thig$boshowing physical dominance
to convince the partner towards one’s own cognitive donteagxists. Further investigations
in this direction will be part of future studies. The relatship between physical and cognitive
dominance has been introduced only on a theoretical bags. ow,for the first time an exper-
imental study was performed to test the predictability gjritive dominance based on physical
dominance showbeforethe decision situation. Next to physical dominance the rhtaited
feedback and decision type as possible predictors anddemesi a dyadic level random effect.
Only the physical dominance and the decision type influeogaitive dominance in the given
data set. The probability to show cognitive dominance, lead in a shared decision, changes
in accordance with the task requirements in the situatien, if the reference paths instructed
cognitive dominance. The physical dominance significamétermines the cognitive dominance
in a subsequent decision situation. However, cognitiveidante can only be predicted with
70% accuracy based on the applied model, considering ¢onslivith mutual haptic feedback.
Thus, cognitive dominance is not fully explained by phys@@minance even though a corre-
lation exists. Therefore, it is recommended to measureethws concepts separately in future
studies. Furthermore, the model evaluation shows a 5%relifée of accuracy depending on
the provided feedback. The current study should be intexgras a frist attampt to model the
realationship between the two dominance concepts. Resillitslearly motivate the usage of
more adavanced, time-dependent models in this contextunefu

133



6 Shared Actions: a Dominance Analysis

6.5 Conclusion

6.5.1 Summary

In this chapter dominance behavior between two humans itid@aglaboration was experimen-
tally investigated. Herein, physical dominance, which sueas how individual force inputs are
combined when moving the object along a trajectory, and itiwgrdominance, which measures
which partner is dominant in decisions on where to move thjeabbi.e. which trajectory is
followed, were considered separately. The two dominane¢yaes on human behavior enable
an investigation of how the individual partners contribiat¢he shared actions within the haptic
collaboration task.

Human-likephysical dominancebehavior is characterized by non-equal dominance values
for the interacting partners in the analyzed tasks. i.e pamer is more dominant than the other.
For the first time, quantitative information on how humansiboe their force inputs in a haptic
collaboration task can be reported: the 95% confidencevaitésr the mean individual physical
dominance behavior is 0.4 to 0.6, implying thehe-invariantpassive following and position
replay do not resemble human-like behavior. No correlatietween task performance and the
executed physical dominance behavior was found. Analythiegvariance in mean individual
physical dominance behavior across different partnerssabttials revealed that mutual haptic
feedback leads to higher consistency in dominance behakimr both feedback conditions, a
higher amount of variance in the individual behavior canX@aned by the partner compared
to variance explained by dyad-specific interaction.

Similar results could be found farognitive dominance one partner shows significantly
more dominance in decision situations than the other, iedégnt of the provided feedback. In
this task, the correlation between cognitive dominance @arébrmance could not be directly
addressed as it is partly determined by the experimentajmleblowever, again no differences
depending on the provided feedback could be found. To theoastbest knowledge, the anal-
ysis reported here is the first approach to address thearlb@tween physical and cognitive
dominance, investigating whether the partner, who is aylsi dominant before the decision,
also leads in the following shared decision situation. Tiygliad model showed that cognitive
dominance could be predicted correctly in 70% of the caseswiie mean physical dominance
value before the decision and the decision situation (tfiny the individual environmental re-
strictions) was known and mutual haptic feedback was peakidven though it is not clarified
yet how relevant the results found are when executing otagtiticollaboration tasks, quantita-
tive information on human dominance behavior could be ghitNow that clear hypotheses on
dominance behavior can be defined, the methods used in #ilisseacan easily be employed to
investigate further tasks to increase knowledge on thgiaten of individual actions in haptic
collaboration.

6.5.2 Future Work

The experiments conducted consisted of a simplified scemédijoint object manipulation in-
volving only one degree of freedom movements. The abstmadtf real life scenario enabled
a focus on basic rules, which are harder to detect in more [Epnggenarios. Results suggest
promising rules to describe human-like behavior in haptitaboration and thus, how the shared
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actions are derived from individual inputs. As a next stepdbminance measures should be ap-
plied in experiments of higher complexity to test the geleadility of these rules. The studies
reported here provide substantial motivation to do so.

Further experiments should address physical dominancdimea/arying parameter. To the
author’s best knowledge no robotic architecture provitiesfeature yet. However, it could be
implemented easily once the characteristic of the humaawehover time is known and there
is experimental evidence that there is explainable vardtiom a constant value.

In the studies reported here, no correlation between theuéx@ dominance behavior and per-
formance was shown. It was suggested that this is the casesethe dominance behavior was
human-like. In Khademian and Hashtrudi-jahd_@ma] ieorted that equal dominance dis-
tribution and clear leadership (non-human-like behawiegrease performance. For the design
of performance-optimal robotic partners further studiesreecessary.

For a first approach on the relation between cognitive angipalydominance a simplified
binary measure for cognitive dominance was used. To inyastithis relation in more detail,
future studies can additionally rely on the continuous ddgndominance measure introduced
in Section 4.3.13. Furthermore, it is suggested to shedduiiht on the relationship between
the two types of dominance measures, as well as the relatphsetween them and performance
by conducting analyses on the basis of questionnaire datatigating the similarity to human
behavior.

6.5.3 Design Guidelines for Robotic Partners

Based on the above-summarized results on dominance, dasugliges for technical partners
can be derived in line with the goal to develop robots, whitdwafor an intuitive collaboration.

For physical dominance values, a precise interval in whedtelvior can be considered human-
like could be detected. Thus, time-invariant physical deance values in robotic architectures
should be within this interval for one-dimensional tasksisIsuggested to conduct follow-up
studies for more complex scenarios. For variation withiis thterval two different sources
could be found: consistent behavior, which is interpretedwe to a character trait of domineer-
ingness and an interactive component, which changes wibafg partner. The percentages of
explained variance of these two components allow a pretagersent on the required changes
in time-invariant physical dominance parameters of a teehpartner for a specific human user.
As the first component the consistent dominance behavidaspmore than 64%, it can be
concluded that only limited change in the physical domiegp&rameter is necessary as long as
mutual haptic feedback is provided. This general advanbthgeutual haptic feedback to stabi-
lize the individual behavior, already reported in Secfid®, Sinds further evidence here. Thus,
it is generally recommended to provide mutual haptic feelluespite the technical challenges
as it promises a higher predictability of the human partnertherefore, easier interpretation of
the required actions from the robotic partner.

Architectures of technical partners should contain défeémmodules for cognitive and physi-
cal dominance, as these concepts do not correlate high briowgpnsider them to be identical.
Cognitive dominance can partly be predicted from physicatidance. Therefore, the design of
a module related to physical dominance (ecgvalues, comparb_EMLaLd_and_KheﬂldALLﬁOOQ];
Khademian and Hashtrudi-Z a]d_[;QHﬂ’a{;t_;i 200094,b]; Nudeti| ¢2005];[ Oguz et 1.[[2010])

may influence the mental model of interacting humans witpeesto upcoming decisions and
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related assumptions on restrictions in the partner’'s enmient. Again, additional studies are
required to provide further information on tasks of highienéinsions. Limiting the statements to
one-dimensional haptic collaboration, the following nexnendation for robotic partners can be
given: It is advisable that a robotic partner reduces itspaf dominance if he has information
on an approaching decision situation, however, does nat khe optimal option. This should
indicate to the human user that the robot is not taking thésaecand thus, a smooth shared
action plan can be established by the human.

The proposed dominance measures and the experimentahslesigployed in this chapter
enable further investigations of dominance. The develamrdinance measures (Section 4.3.3)
are seen as a promising tool when aiming understanding at@pprocesses between collabo-
rating partners in haptic tasks. Therefore, future workregate to the presented analyses when
investigating the structure of adaptation modules in rigbpartners as proposed in the haptic
collaboration framework (Chapter 2).
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7 Overall Conclusion and Future Direction

7.1 Concluding Remarks

This dissertation has explored human dyad behavior inhaptiaboration tasks with the goal of
identifying requirements for the design of robotic parti@rorder to enable intuitive collabora-
tion in this context. This goal has been approached suadbsy the followingcontributions:

e A conceptual framework for haptic collaboration has been presented. It summarezes
quirements of models for partners in haptic collaborat®uidelines for control-theoretic
models are provided. One important aspect of the framewsothd separation into two
levels of haptic collaboration: The higher level is defingdriention negotiation between
partnersvhereto move, i.e. shared decision making. The lower level fosusehowto
move, i.e. on strategies how to combine the two individuetémutputs.

e A discussion on characteristics of state-of-the-art expements in the research field
has been given, stating an increased interest in inteptilsary research of haptic col-
laboration. A need for further, systematic investigationshaptic collaboration has been
identified.

e Two new experimental designdhave been introduced with the corresponding setups in
order to enable studies on haptic collaboration. The erparis have been conducted to
address the two levels within the haptic collaboration famrk iteratively. It is now pos-
sible to study shared decision making in haptic collaboratin additionneasuresn the
context of haptic collaboration are presented based onergetescription of force com-
ponents of relevance in haptic collaboration. One effigieara two dominance measures
have been introduced.

e Intention negotiation was investigated via an efficiency analysis. For the firsttinoould
be shown that intention negotiation is actually possibtehfamans via the haptic channel.
Furthermore, the physical effort related to haptic collation has been investigated for
the first time.

e Shared actionsin haptic collaboration require the integration of two widual force out-
puts and an agreement on the jointly followed desired ttajgc How the individual in-
tentions are combined towards a shared action has beersaddrey an analysis of dom-
inance distributions. Physical and cognitive dominaneedastinguished referring to the
lower and higher level of haptic collaboration. A correspence between the two dom-
inance types has been shown. The degree of adaptation ircahgieminance behavior
towards different partners has been quantified. Changegmteee dominance behavior
depending on different shared decision situations has ineestigated.
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¢ Design guidelinedor robotic partners in haptic collaboration have beenriefé based on
these experimental results. They state, for example, umdieh conditions mutual haptic
feedback leads to performance- or effort-optimal collation, or the required changes in
dominance across different human partners.

The work presented here provides the followingplications for future research in haptic
collaboration:

e The framework structures the research presented, buti@ully serves as a tool when
integrating existing research. It simplifies the plannimgfture studies in haptic collab-
oration by enabling a specification of the experimentallgradsed concepts in a broader
context. Future attempts in dynamic modeling of hapticadmration partners find guide-
lines on required components and signal flows in the framlewor

e The discussion on existing experiments in haptic collaiimmgprovides tools and exam-
ples to conduct interdisciplinary research in future. Teely developed experiments and
the introduced measures allow for analyses beyond thoseteejin this dissertation, and
thus, provide a valuable contribution to the research field.

e The relevance of insights and design-guidelines expetatigrderived in this thesis is
already shown by ongoing control-theoretic modeling araluation experiments at the
Institute of Automatic Control Engineering at Technischevdrsitat Miinchen.

7.2 Outlook

The results reported here enabled the identification ofifsignt behavior rules. These are de-
rived in an abstract, one dimensional object manipulatask.t Within this limited setup, the
influence of factors such as mutual haptic feedback, a pacinthe need to negotiate inten-
tions could be shown. Guidelines on dominance behavior baea presented. Future work
will have to investigate how generalizable the results dtle mespect to more complex scenarios
in terms of the manipulated degrees of freedom, the task @sd object characteristics. The
framework, the experimental methods and the measuresiuteal in this dissertation provide
profound information on This thesis has focused on behalimeasures when describing the
human behavior. These measures are of high relevance fotigi@e statements required for
the design of future robotic partners, and are in generaémaiable than subjective measures,
i.e. questionnaires. However, future work in haptic cadlation research should focus on an
integration of these two measurements, e.g. identifyingvadents between both types to gain
a more complete picture of the user experience in collalworand simplify its measurement
by focusing on the most significant. Questionnaire data Goieficy, presence, collaboration
and dominance are available for all conducted experimertte tused in future analyses. Addi-
tionally, one particular challenging measure of interestental effort (compare e.gi_[w—igkéns,
2004, Chapter 13]).
In future, the data gained through the experiments conduetthin this dissertation will

allow dynamic models of the human partner to be derived. Withe conceptual framework
potential models for motor control and decision-makingehbeen mentioned. These should
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be elaborated based on simulations and experimental studen first dynamic models are
derived, their implementation on a robot allows for a systgonvariation of parameters within
psychological experiments. This opens new ways of expetiahe€ontrol, which will lead to
further insights into haptic collaboration. For a succelsasfiplementation of a robotic assistance
in the tracking task reported here, see E.g. Feth eh_ﬂlZOll

So far, the analysis of efficiency and dominance focused erege behavior per interaction
sequence, which provided valuable insights on causal imfleebetween the feedback provided
and the need to negotiate intentions on resulting efficieftgisk execution and dominance dis-
tributions. However, the acquired data enables extendlieget analyses by applying time series
methods. Therein, one focus in future work could lie in qifgimg the information transmitted
via mutual haptic feedback.

Even though this dissertation had the clear goal to suppedévelopment of robotic partners
in haptic collaboration, the relevance of the experimesédilip for social studies became also
evident. Dynamic models of social behavior have gained nattention recently. However,
data-acquisition is still challenging and mainly based oesgionnaires. The experimental setups
proposed here offer continuous behavior measurementrieyga@al control of the connection
between partners, and manipulation of individual task gjodlhis enables an investigation of
generic rules in social interaction.
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A Working Definitions

Adaptation: the capability of a system to adapt towards an environmBifterent definitions
can be found in theory of evolution, control theory or phi®yy. Here, the focus is on a general
definition appropriate to describe human behavior. Adaptas “a general term for any pro-
cess whereby behaviour or subjective experience altersitoviith a changed environment or
circumstances or in response to social press@l]ZO

Collaboration is a specific type of interaction. Different interactiong aistinguished in de-
pendence on the intentions of the two (or more) partnerstésys If intentions are shared,
the interaction is called collaboration and involves comroation. In literature collaboration
is also called cooperatio@)%] or joint actionintlactions are defined as a form of
social interactionwhere “two or more individuals coordinate their actions pace and time to
bring about a change in the environment”_[Sebanz et al., #00B Basdogan et al. [2000]
collaboration is divided into simultaneous and sequeiitgraction. The first one is defined
as cooperative action, the latter as collaborative act;orjﬂv—glﬂ [@]. Another author who
distinguishes between the two constrchOﬂﬂre, interaction to achieve different
individual goals of the partners is called collaboratiomeneas interaction for the achievement
of shared goals is cooperation. Still, most authors usedhstoucts collaboration, cooperation
and joint action interchangeable and then clarify thereigoaf investigation further. Here, the
three constructs are considered synonymous. Collabonaeprres sharing goals and therefore
the consideration of intentions. Hence, when two (or moysjesns collaborate, the partners
share at least one goal and are confronted with the challenfyed a suitable action plan for
each system. According to_Sebanz etlal. |2b03a] the follgwimee steps are involved: (a)
sharing representations, (b) predicting actions of thénparand (c) integrating the predicted
effects. Thus in collaboration, intentions are the origimdéormation, which we would like to
communicate to allow our partner to infer our intentions gmatly form action plans.
Communicationrelates to the exchange of information as “a process inngliwo information-
processing devices. One device modifies the physical envient of the other. As a result, the
second device constructs representations similar to septations already stored in the first
device” LSpﬁLb_QLa.ndAMJibh._lQ%]. Information is exglichot physical. But it can be trans-
ported via physical signals. Hence communication can bee@fas “the exchange of mean-
ings between individuals through a common system of sy EsisyclopediaBritannica [2010].
Communication is based on mutual influence between bothragstlus interaction. But, here
a cognitive component, able to process information and @ammng is obligatory.

Decision makingis generally defined as the act of choosing one availabl®womut of sev-
eral which have different trade-offs between benefits arsiscaSome researchers refer to the
“forming of intentions before acting’| [Hardv-VaIIf?b,_hmB:k] whereas others define the exact
time-point as decisioﬂ_LHQﬁman_andldtéi_dOOS]. Howetlegre is accordance that decision
making is a high cognitive skill. Irshared decision makingthe interaction partners have a
shared goal, but the environment proposes several optams$diachieve it. Because of a differ-
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ent information base the individuals may prefer differgotians. Shared decision making is the
interactive process to agree on one option/action planachréhe shared goal. This requires the
recognition and integration of the partners’ intentiogn building a mental model of decision
statse requires communication between the two partnergs, Bhared decision making is one
form of collaboration. For an overview on shared decisiorkin@seéﬁ_asjeﬂéﬁ_[LQbB].

Haptics is a term describing one part of the human sensory systenrte Hre two subsystems
involved in haptic feedback: tactile (cutaneous) feedlauik kinesthetic (proprioceptive) feed-
back: The first one gives awareness about stimuli on the sginemperature, pain and forces.
The latter subsystem deals with forces, body positions amegements which are perceived in the

joints, the tendons and the muscles [Hayward and Astleye:1@Ritzky and Lederman, 2002].
InKlatzky and Lederméﬂ_[;QbZ] active and passive touch dferdntly defined in dependence

of an involved motor system. In this dissertation, the forsusestricted to active kinesthetic
collaboration but consider the commonly used term “hagE$ynonym throughout the thesis.
Intentions: Even though, interaction can happen between two non-tegnsystems as
e.g. in chemical processes, cognitive processes are afteived: The two systems in-
teract/communicate with certain intentions. Intentioms defined as “states of minds that
are usually seen to precede thoughtful action, in striviogards sought-after outcomes”
ﬂLepp?.nﬂn_el_élL_ZQbﬂ. In_Tomasello et éL[2|005] it is eamphed that intention involves not
only the commitment to pursuit a goal but also an action ptadd so. Thus, intentions are
action plans towards a goal But intentions are only thoughts on such actions in contoasal
actions 2]. Not all actions have to be basedhtentions [[Q@/_id_ﬁdl%O]: unin-
tended behavior is possible (e.g. mistakes) and furthexthere is no distinct matching between
actions and intentions: the same action can be done duedcasévtentions and the other way
round lTQmasgIIQ et AilLlQbS]. The two concepts “plan” amdention” are not strictly sepa-
rated conceptually in literature, instead both are parttoéearchicalorganization, where a plan
is a higher order intention including lower intentions, ckésed as action plans and their accessi-

[%;foects on the environments_[Bratman, 1987; Heinze, Z08i8ard, 2002| Tomasello et al.,
1.

Intention recognition is the process of becoming aware of the intention of the pafsystem),
more technically speaking: to infer from an agent’s actionsis intentions and their effects in
the environmentm 04]. “Understanding intergis foundational because it provides
the interpretive matrix for deciding precisely what it ismttsomeone is doing in the first place”
EQmaSBlIQ_eI_dI.LLZO_CbS]. The research fieldsmtial cognitionis addressing the key-function of
shared minds for interaction, for an overview see d]@]

Interaction is defined as “relationship between two or more systemsthat results in mutual
or reciprocal influence” |Vanden30|§,ﬂ07]. Interactiorate$ to physical signals which are
exchanged. To allow interaction, it is a prerequisite tihat two involved systems have sen-
sors and actuators, which allow mutual perception, andthtigastates of one system change in
dependence of the other and vice versa.

Learning: change of internal dynamics of a system due to changes freperience
EngyglgpediaBritannit];al_[;QhO]. In QQIr_rlab[LbOQ] it is redrto alasting change in be-
havior, knowledge and skills based on interaction with theirenment and experience. In
[Rjghar_dsgn_el_éll_ﬂQ_M] learning is defined as “processestghnpeople change their men-

tal models”.
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B Overview-Table of Experimental Studies on

Haptic Collaboration

In the following studies, which experimentally investig&iaptic collaboration, are summarized.
A discussion of the table is given in Sectidn 3. The task asdlte are challenging to interpret
without knowledge on the whole publication. However, thel¢aallows for a fast keyword
search. The table is structured by
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Authors and References

Research interesR(): the parameter which are experimentally varied or the gegoal,
e.g. evaluation of a controller design

Interaction type between collaborating partneidRI refers to human-robot interaction;
HRHI refers to robot-mediated human-human interactidH] describes human-human
interaction which is not technically mediated. Within tbategory it is distinguished if the
visual feedback of the manipulated object or the point iigiin reality or in VR If the
haptic feedback was manipulated can be derived from a @sederest in "feedback”.

Task: the task which participants had to perform is summarized.
Environment describes the experimental setup, i.e. the used hardware

Participants: informs about the number of participants taking part in shedy. Here,
std. pdescribes designs where one partner was standardizedingdlaat he was part of
the experimenter team and interacted with each participhatdsrefers to cases where
both partners are participants, being part of only one dg#lder designs are described
explicitly.

Measures the analyzed measures are reported (abbreviatibds: time on targetTTC.
time to task completion)

Analysis. describes the data analysis by separating knowledge dyanespection and
descriptive statisticdsfrom inference statistic analysis

Results gives a short overview on the results

Level: reports the level of haptic collaboration which is definad-elation to the con-
ceptual framework introduced in Chaplér 2: Low level coliation focuses on intention
negotiatiorhowto move an object/interaction point, whereas high levdbtaration deals
with intention negotiationvhereto move an object/interaction point.



Table B.1: Experiments on Haptic Collaboration (with quantitative analysis)

Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
Allison et al. [2004] feedback, | HRHI, VR pointtask main-| 3 DoF custom-| 12 with std. | TTC, position errors,| ds performance worse with increased de-low
delay taining constant| made  robots| p. inverse TOT lay in both feedback conditions; par-
interaction but only 1 ticipants were faster with visual feed-
force between| DoF used,; back
partners in the haptic
condition there
is no vision,
simulated
spring between
end-effectors
[Arai et al. [2000] evaluation | HRI, real planar move-| 7 DoF in-| 1 comparison of object| ds assistance method using nof high
ment of alu-| dustrial robot trajectories resulting holonomic  constraint leads t
minum pipe to| (PA-10, MHI): from different assis- smoother object trajectory co
target position | 6 DoF at wrist tance algorithms by pared to method based on impeda
and a gripper inspection, observa control; when the operator can a
tion of side-slips at ply only translational forces, the
robot gripper non-holonomic constraint algorithn
suppresses side-slips at the rob
gripper (method is extended t
three dimensional movements i
Takubo et al.[[2002])
m.mﬁ] dominance| HHI, real 1 DoF vertical | object with 3D | 5, all pos-| questionnaire for par{ ds participants divided into master and low
motions position camera| sible combi- | ticipants instructed to (blind-folded) slave group, two object
system and| nations represent "slaves” on weights, three speed values and two
force sensors task difficulty motion trajectories (20cm and 40cm)),
heights of master and slave (standing
on a box), up or downward movements
are distinguished: fast movements are
easier to detect, even more if heights
between master and slave varies
[Bakar et al. [[2009b], see als{ dominance| HHI, VR 1 DoF pointing | object with | 20 = 10| force and veloc-| ds when the follower knew the target pg low
[Bakar et al. 8, [ 2007 task force and LED | dyads ity profiles, TTC, sition of the object his/her motion
[20094.c] (position) sen- position error were smoother than when this info
sor, monitors mation was not given
[Basdogan et al. [2000] feedback | HRHI, VR | path following: | 2 PHANToMs | 10 with std. | TTC, TOT, question-| is performance better with haptic feed- low
ring on wire p. naire on presence an back, togetherness increased with hap-
game togetherness tic feedback compared to no-haptic-
feedback condition
m.mﬂ evaluation | HRI, real 1 DoF pointing | linear actuators | 1 forces ds interaction force is reduced by abo( low

task

50N when a 75% assistance is given
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
|[Esen et al1[2007] evaluation,| HRHI, VR medical bone-| two 4*8  with | performance: multi-| ds learning effect descriptively strongest low
feedback drilling training | ViSHaRD10 std. p. dimensional Eu- with verbal tutoring, followed by
hyper- clidean distance force/velocity leading and force
redundant measure betweer demonstration
haptic displays; trainer and student in
conditions: no force, velocity and
training, verbal time
tutoring by
trainer,  force
demonstration
to student,
forcel/velocity
leading by tutor
m@bg] dominance| HRI, VR pointing task | PHANToM 1 plots of lifting altitude | ds after introducing a leader-follower; high
including (position), forces metrics, two different leader-followe!
obstacle avoid- sequences within the motion wer
ance; compared: no force-specializatio
was found
m@bﬂ evaluation | HRI, real transport a 2m| mobile manipu-| 1 position  trajectory,| ds it is concluded that the intention high
rigid object | lator (not speci- forces recognition (HMM) based active
around the| fied further) coordination-module allows coopera-
corner in a tive following behavior of the robot;
corridor though, at this state behavior is not ro-
bust enough
[Feth et al.[[200¢b] partner, HRHI, VR | 1 DoF tracking | two linear ac-| 24 = 12| position error, forces, is performance increased in dyadic co| low
feedback task tuators; in the| dyads energy dition; evidence for energy flow be
visual condition tween partners found
there is no force
feedback from
the partner,
only from the
object
m.ma] partner, HRHI, VR 1 DoF tracking | two linear actu-| 12=6dyads| position error, forces | is McRuer's model for individual track-| low
feedback, task ators ing behavior explained the empirical
model data in this task and was extended fpr
dyadic behavior; individuals within g
dyad behave not in accordance with
this model

umge|joD andeH uo saipn)s [eluawiliadxy JO 8|jqel-MBINIBAO g



Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
Feth et al..[2009c] evaluation,| HRHI, VR joint 2 DoF | jointly ma- | 26 = 13| position error and| is comparison of three conditions: singl high
feedback, pointing task nipulated dyads TTC operator, two operators either with ¢
partner tele-robot with without mutual force feedback; con
two masters ditions did not influence error, bu
(all admittance- task completion time was significant!
type haptic decreased with haptic feedback cor
input  devices pared to other two conditions, no dif
with 6 DOF) ference in individual and visual feed
back condition
Gentry and Murray-Smith dominance| HRHI, real following PHANTOM, 5 position errors by in-| ds misclassification of dance steps can bdow
[2003] "dancing without ob- spection identified , evidence for haptic signals
moves” led by | ject, no visual found
robot feedback from
task
Gentry et al.[[2003] dominance| HRHI, real following  in | PHANToM 6 with std. | errors by inspection | ds no performance differences betweg low
dancing  with p. human and robot leader
human or robot
Gentry et al.|[2005] partner HRHI, real rotational wheel with two | 5 all pos-| TTC, errors ds Schmidt’s law predicts the relation bg- low
pointing task handles sible dyad tween task difficulty and TTC; dyads
combina- made more errors than individuals but
tions moved faster.
Glynn et al. [2001] feedback, | HRHI, VR 2 DoF tracking | two studies: a)| a) 22 dyads;| TTC, position error;| is a) less errors without force feedbac| low
delay task in maze second order| b)24 dyads | coordination measure lower position error, no difference ir
system, b) = zero-lag cross corre TTC; b) with force feedback faste
zero-order; lation between input and with lower position error, damag
joysticks identical; team coordination was be
ter with haptic coupling; delay lead
to higher TTC and damage, no diffe|
ence in position error
Goncharenko et al. [2004] partner, HRHI, VR 1 DoF rota-| two PHaN- | 1 force and force-| ds movements can be predicted by force-low
model tional move- | ToMs derivative profiles change-based criterion rather than by
ment (without force-based criterion
target)
Groten et al. [[2009b], compar¢ feedback, | HRHI, VR 1 DoF tracking | two linear actu-| 24 = 12| position error, forces, is comparing conditions where the track low
Sectiorf 5.2 partner task ators dyads power, efficiency ing task is executed alone / with par

ner and force feedback only fron
the object / partner and force feeg
back between partners: interaction i
creases performance; haptic feedbg
between partners cannot be conside
efficient as performance does not i
crease further but interaction effort in
creases
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
|Groten et al. [[2009a], compare feedback, | HRHI, VR 1 DoF tracking | two linear actu-| 24 = 12| forces, dominance is haptic feedback between partners |islow
Sectior 6.8 domi- task ators dyads, compared to a condition without such
nance round robin feedback: in both cases the dom-
design inance distribution between partners
is unequal; haptic feedback leads to
higher consistency in dominance be-
havior across partners
[Groten etdl. [[2010], compar¢ feedback | HRHI,VR | 1 DoF track-| two linearactu-| 32 = 18 | position error, power, is with increased need of haptic neg¢ high
Sectior[ 5.8 ing task with | ators dyads efficiency tiation (different preferences in indi
binary decision vidual decisions) haptic feedback b
making tween partners leads to higher pe
formance; compared to a visual par
ner feedback condition no differenc
in efficiency was found as the effor
[Hamza-Lup et 41/ [2009] delay HRHI, VR | stack cubes by| two "haptic de- | 22 (no | TTC, errors ds (RoeRdRTERSAR 2548 Worse perfar-high
lifting and ma- | vices” further in- mance
neuvering formation)
ma] see als( evaluation | HRI, real path following | WalkingHelper | 9 integrated error be- ds maneuverability of system is imj low
_ 2003, 2007, 2008] (s-shaped) prototype robot tween desired and ac proved by proposed control law
[Nejatbakhsh and Kosuge [200: with  walking tual path
[2006] support system
[Hirata et al. @2}, see also evaluation | HRI, real move large | two passive mo-| 1 difference  between ds distributed motion control algorithm low
Me |_[_2Qb0] object along a| bile robot PRP actual and desireq leads to smaller deviations compared
-[lb [2002]; path with robot path to non-distributed algorithm
|_L_ZQb 0] assistance
[fﬁt?éet -7] Sudaetlal.
m.mﬂ evaluation | HRI, real 1 DoF pointing | 6 DoF Robot| 15 guestionnaire on mov- is comparison of 3 different impedanc) low
task (PUMA 562) ability, ease of po- controllers (constant low, constar
sition, stability and high, variable) for robotic partner
human-likeness variable impedance controller is pe
ceived better in easiness of pos
tioning and stability than constantl
low impedance; the variable con
troller outranges the high consta
impedance controller in movability
and human-likeness
.7] dominance| HHI, real carried object| 1 DoF pointing | 2 =1 dyad force, velocity, energy| ds if the follower is blindfolded he/shg low
model with force | task can be described with variable damp-
sensors; lasel ing control model, coordination is

sensors to track
object position

considered more efficient the more

passive the follower
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
|[Khademian and Hashtrudi-Zaad dominance| HRHI, VR path following | 3 DoF planar| 6 (trainee)| error ds different dominance distribution val; low
[20074] (square), twin  Panto- | with std. p. ues between partners introduced
graph  jointly | (trainer) 0.25, 0.5, 0.75, 1: dominance sha
control virtual ing (% 0,1) increases performanc
slave, only of trainee compared to full control by
the trainer has trainer
visual feedback
-Zaad evaluation,| HRHI, VR move a salve| 2 Quansar 3| 6 (trainees)| questionnaire on| ds three control architectures a) weightedlow
2009a] domi- robot along an| DoF planar | with std. p. | sense of environment sum of position and force between two
nance oval virtual path | twin Pan- | (trainer) maneuverability, operators depending am, b) same as|
tographs  and guidance by trainer| 1 but also withae = 0 or 1 the non-
a simulated (not described in dominant user receives feedback, [c)
model of this detail) constant stiff connection = equal po-
device as the sitions regardless aof) crossed with
jointly - manip- three different levels of dominance
ulated virtual (o = 0,0.5,1): architecture a) leads
slave to higher sense of environment, b)
leads to better guidance and maneu-
verability
|Khademian and Hashtrudi-Zaaq evaluation,| HRHI, VR move a slave| 2 Quansar 3| 5 (trainees)| TTC, error, energy is comparing effects of viewpoint, envii low
] domi- robot along a| DoF planar | with std. p. (not ronmental mushiness, virtual fixture
nance square path twin Pan- | (trainer) re- and dominance distribution betwee
tographs and ported | partners (not fully crossed factorial de
a simulated in de- | sign) shows that dominance is not ir
model of this tail) fluencing the measures, higher must
device as the ness and virtual fixtures lead to lowe
jointly - manip- TTC and higher energy
ulated virtual
salve
[Kim et all [2004] feedback | HRHI, VR jointly lifta vir- | two PHaN- | 20 with std. | questionnaire on subt is haptic feedback increases co-low
tual cube for as| ToMs p. jective performance,| (not presence, no information on pef-
long as possible| and (co-)presence re- formance is given
ported
in de-
tail)
Kosuge and nggm!ir97] evaluation | HRHI, real 2 DoF tracking | industrial robot| "several” participants’ com-| ds comparison of damping an¢ low
task 6 (DoF) with ments, intentional impedance controller:  with lowe
pen forces, inspection of] damping coefficient in damping

robot behavior

controller the motion of the pen is leg
smooth but more accurate
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
Maeda et al.[2001] evaluation | HRI, real 1 DoF trans-| 6 DoF JS2 two studies: | velocity profile, en-| ds a) motion estimation (based on minj- low
portation of a)l;b)3 ergy mum jerk model) leads in the authors’
object opinion to more human-friendly mar
nipulation; b) motion estimation re
duces unnecessary energy
Mateo et al.|[2005] partner, HRHI, VR pointing task PHANToM 2 best and| TTC ds with partner and increased delay: pe low
delay 2 worst per- formance decreased
formers out
of 7 indi-
viduals = 4
dyads
Miossec and Kheddalr [2008] partner, HHI, real lift object from | real object: | 3 dyads position and velocity| ds minimum jerk model not verified, tent high
model one position to| object in trajectories dency to average the alone behavior|in
another individual dyadic trials
condition had
half the weight
as in dyadic
condition
Mulder et al. [2008] feedback, | HRI, VR driving in simu- | fixed-based 12 performance: RMS,| is performance is increased, control a low
evaluation lation driving  sim- control activity: tivity decreased but effort higher witl
ulator with standard  deviation haptic guidance
pedals and in steering wheel
actuated steer angle; control effort:
ing wheel and standard deviation in
virtual driving steering forces
scene;  either
haptic guidance
(based on devi-
ation between
reference path
and future posi-
tion of vehicle)
or no guidance
was provided
Nudehi et al.|[2005] evaluation | HRHI, no | trainee had to| two identical | 1dyad force tracking (imita- | ds two controllers were compared, one low
vision imitate  men- | wrists, each tion) error by inspec- led to a descriptively smaller error; the
tor’s actions with 2 DoF tion goal to show that it is possible to dg-
along the hor- sign multiple candidate controllers is
izontal and reached
vertical axes
Oakley et al. [20C1] feedback | HRHI, VR dyadic com-| PHANToM, 8 dyads TTC, question-| ds haptic feedback more demanding | high
puter program-| monitors naire on usability, terms of subjective workload, leads

ming

workload, presence

collaboration

higher presence, better usability
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
|Oguz et al.[[2010] dominance| HRI, VR hitting  obsta- | PHANToM 10 guestionnaire on| is different assistance modes are com-high
evaluation cles with a ball| Omni performance, humani (not pared a) equal control on both axes;
on a plane in likeness, collabora- re- b)shared control dependent on usef’s
instructed order tion, control (in the| ported | forces; c) no assistance): performance
with assistance| sense of dominance); in de- | lowest without guidance, energy high-
controller TTC, path length,| tail) est with equal control, shared control
energy, error leads to tradeoff between accuracy and
energy with high subjective rating
ahman etal. [[1999], se¢ dominance| HRI, real 1 DoF pointing | 1 DoF robot, | 3 parameter identificaq ds when robot is leading in cooperatio| low
also g model task force sensor tion of human arm the velocity of human and impedang
M]i [Ikeura et al. @4}; impedance: position, model follows minimum jerk trajec-
|[Rahman et all [2002b] velocity, stiffness, tory
damping
[Rahman et al. [200Pa], see algodominance| HRHI, real | 1 DoF pointing | linear motor, | 10, all pos-| forces, acceleration| ds one participant is always leading and low
||_[TQQ()O] task two force | sible dyad| correlation the other following
sensors combina-
tions
[Reed et 21/[2004] partner HRHI, real rotational 1 DoF two- | 4dyads TTC ds faster performance for dyads than i low
pointing task handled crank, dividuals
inertia doubled
[Reed et 81..[2005], compare also partner HRHI,real | 1 DoF rota- | {NEYRdGEAIS | 56 = 28| TTC, forces ds no specialization in  movement low
mimw] tional pointing | crank, inertia| dyads direction but partly accelerationt
task doubled in deceleration specialization was foung;
dyadic trials steady dyadic opposition forces found
I.6], compare alg partner HRHI, real 1 DoF rota-| two-handled 30 =15 | TTC, forces ds dyads faster than individuals, dyadj low
|[Reed and Peshkin [2008] tional pointing | crank, inertia| dyads; 11 specialization: deceleration and acce
task doubled in | with robot eration, higher forces in dyads (*2.1
dyadic trials force profile when interacting with
robot similar to individual profile
[Reed et d1..[2007], compare also partner HRHI, real | 1 DoF rota- | two-handled 22= 11 | TTC  participants’ | is Turing test (replay trajectory for low
[Reed and Peshkih [2008] and HRI, | tional pointing | crank dyads comments on partner robotic partner): human dyads pef-
real task form better than individuals bu
human-robot teams do not; robot not
recognized as such
[Sallras et al.[[20d0] feedback | HRHI, VR | stacking of | PHANTOM, 14 dyads questionnaire on per{ is no difference in co-presence, TTC be high
virtual cubes in| participants formance, (co- )pres ter, presence higher and perceived p
given patterns,| were allowed to ence, TTC formance higher with haptic feedbac
moving along | talk
the cubes
[200f1] feedback | HRHI, VR | stacking cubes| PHANTOM, 14 dyads video analysis: errors| is explains results from_Salis etal. | high
and putting | participants [@‘J]: without haptic feedback TTC
them in a given| were allowed to was higher, because significantly mofe

order

talk

cube-lifting failed
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
|Sankaranarayanan and Hannaf{ evaluation,| HRHI, VR object has to| Omni  haptic | 10 with std. | position error, forces | is comparison of three different con low
M] delay follow tar- | device , the| p. (not trollers to handle time delay in telep
get in 1 DoF | object provides re- resent setup: tuned pd, wave variah
movements color cues on ported | and time domain passivity controllers
interaction in de- | pd-controller was best in terms of pd
forces between tail) sition error and wave variable base
users approaches in terms of forces
Sankaranarayanan and Hanndfprévaluation | HRHI, VR object has to| Omni  haptic | 18 with std. | position error, forces | is three transmission rates (100, 500,low
[M)] follow tar- | device , the| p. (not 1000 Hz) and three virtual coupling
get in 1 DoF | object provides re- shemes (rigid, local, central) betwegn
movements color cues on ported | users and four delay conditions whefe
interaction in de- | evaluated (factorial design not fully
forces between tail) crossed): performance with central
users coupling is best, but rigid coupling is
preferred
[SchauRet all [2010] evaluation | HRHI, VR pick and place| masters: two| 20 = 10| TTC, forces, effi-| is comparison of assistance controller; high
of real object| haptic inter- | dyads ciency pure damping of the individual move
(multi-user faces (4 DoF); ments does not increase performan
telepresence) slaves: two but increases effort (forces) where
tele-operator the introduced damping based virtu
arms with 4 coupling increases both
DoF
m.mﬂ evaluation | HRI, VR learn writing of | pen-stylus 10 TTC, force, recogni-| is the assitance recognized Japanese |etigh
Japanese chart designed by tion rate by HMM | (not ters correctly in 81% of cases and pro-
acters PERCRO, in % comparing it to| re- vided assistance in 56%; howvever,
Monitor, com- traing session results | ported | performance was not increased coin-
paring intention in de- | pared to classical guidance
recognition tail)
based guid-
ance using
hidden Markov
model (HMM)
to classical
guidance
[Takeda etal. |[2007a], se( evaluation | HRI, real ballroom dance | MSDanceR 3 success rate if danc¢ ds based on hidden Markov models th high
also |Nakayama etal. | [2009] with steps are recognized robot should estimate the human lea|
force/torque ers intention to dance the corre

[Sakai et al. [2007]: Tak al
[2005,2007h)

c]

sensor in waist

steps: success rate between 5(

and 98.88%, higher than with ned

ral network control in previous studie
[2008b]
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Authors RI Interaction Task Environment Participants | Measures Ana- Results Level
lysis
|Ueha et al.l[2009] partner, a)HHI,VR; | 1 DoF rota-| two handed| a) 16 = 8| TTC, forces ds a) dyads perform faster with part- low
domi- b) HRI,VR tional pointing | crank and a| dyads;b)1 ner than alone; participants are €i
nance, task 5DoF (only 3 ther responsible for radial or tangen-
evaluation used) robot arm tial forces; b) separation of tangen-

evaluation

HRI, real

active and pas-
sive handshak-|
ing with robot

10 DoF
robotic arm
(ViSHaRD10)

training: 4;
evaluation:
unknown

position and force tra-
jectories

tial and radial forces in a Turing test
where robot is applying radial force
increases performance

the handshake is realized with jalow
position-based admittance controller
and an additional HMM controller es|
timating human intentions (active vs.
passive handshake): artificial hang-
shake trajectory resembles reference
trajectory and interaction forces de-
crease with interaction




C Control Architecture and Parameters of
Haptic Interfaces

C.1 Control Architecture

In Figure[C.1 the control architecture for the virtually cteglinear devices as employed in
the experiments is depicted. Due to the high gain PD-cdetr@¢ompare Tablg_C.1), a rigid
connection between the two partners in this mutual hapdadidack condition can be assumed.
The admittance resembles the virtual object which is rezatlas a inertial mass only. Thus, the
related transfer function is

G, C.1
(s) Fons) ~ ms? (C.1)
Human |-
Operator
Y Haptic Interfaces: r
1 PD-Controller F»Q— Linear Devices
d
Y | Admittance / _'x
E Object
fo — _
‘ ) ptic Interfaces:
PD-Controller —>CA)—> Linear Devices -

Human
Operator |

Figure C.1: Control architecture for both linear devices used in the experimental setup
described in detial in Section[4.2.4. Here, the mutual haptic feedback con-
dition is depicted.
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C.2 Parameters

C.2 Parameters

The parameter values for the above shown architecture jvigigsed to realize the experiments
in this dissertation, are listed in Talile C.1.

Table C.1: Parameter values of PD-controller and the mass of the admittance. The
value of the inertial mass is set to 20kg except for one “alone conditions” in
the experiment conducted on intention negotiation in low-level haptic collab-
oration (compare Sections and5.2).

Parameter Value
k, 70000 N/m
kq 530 Ns/m
m 20kg (10kg)
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