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If man made himself the first object of study, he would see how incapable he is in going further.
How can a part know the whole?

(Blaise Pascal)
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Abstract

When robots leave industrial settings to enter collaborations with humans in applications as
rehabilitation, elderly care and entertainment, the haptic modality plays an important role in
guidance and object manipulation. When working with a human user, robots should be enabled
to contribute with their increasing capabilities to the shared task goal. Consequently, the robot
is no longer seen as a tool, but a partner. Communication between the two partners (human and
robot) via the haptic channel becomes a prerequisite. In order to allow an intuitive use, the robot
should show human-like characteristics in its behavioral patterns. So far, corresponding design
guidelines for robotic partners in this context are rare. The dissertation addresses this lack of
knowledge by following a systematic approach based on investigations of human dyad’s behav-
ior in haptic collaboration tasks. Four achievements towards this goal are presented. First, in
order to provide a profound theoretical background, a conceptual, control-theoretically inspired
framework for haptic collaboration between two partners isdeveloped. The framework describes
human dyads as a reference for human-robot collaboration. Further, based on an overview of ex-
isting psychological studies as well as new experimental methods and according measurements,
design guidelines for robotic partners are provided in relation to two central concerns: A) For
the first time, it is shown that haptic communication exists,and that this form of feedback actu-
ally enables the integration and negotiation of individualintentions of human partners. Thus, a
strong motivation for the integration of this modality in a human-like manner in control archi-
tectures is given. B) Focusing on dominance behavior, detailed guidelines for robotic behavior
in haptic collaboration are derived: the dominance behavior executed by human partners in a
haptic collaboration task is quantified, the changes in individual dominance behavior depending
on different partners are investigated, and prediction of dominance behavior in shared decision
making is enabled. The final contribution is realized by the impact on future research in the field
of haptic human-robot collaboration: The experimental approach to learn from human dyads
can be used as reference for further studies. The generic concept behind the framework offers a
foundation for modeling robotic partners, including the results presented here.



Zusammenfassung

Wenn Roboter nicht nur im industriellen Kontext eingesetzt werden, sondern mit Menschen
in Anwendungen wie Rehabilitation, Unterstützung f̈ur ältere Personen oder Unterhaltung zu-
sammen arbeiten, spielt die haptische Modalität eine große Rolle in der Bewegungsführung und
Objektmanipulation. Wenn Roboter mit Menschen zusammenarbeiten (kollaborieren), sollten sie
ihre zunehmenden Fähigkeiten zur Erreichung des Aufgabenziels einbringen können. Dann ist
der Roboter nicht als Werkzeug zu betrachten sondern als Partner. Die Kommunikation zwischen
den Partnern (Mensch und Roboter)über den haptischen Kanal wird eine Grundvorrausetzung.
Um eine intuitive Handhabung zu gewährleisten, sollte der Roboter menschenähnliche Charak-
teristiken in seinen Verhaltensweisen zeigen. Allerdingssind entsprechende Design-Richtlinien
für Roboter in diesem Kontext kaum bekannt. Die vorliegende Dissertation adressiert diese Wis-
sensl̈ucke, indem eine systematische Vorgehensweise gewählt wird, welche die Untersuchung
des Verhaltens menschlicher Partner in haptischen Kollaborationsaufgaben beinhaltet. Vier Er-
folge hinsichtlich dieses Ziels können verzeichnet werden. Zum einen ist ein konzeptionelles,
regelungstechnisch inspiriertes Rahmenwerk entwickelt worden, um den entsprechenden theore-
tischen Hintergrund zu bilden. Das Rahmenwerk beschreibt menschliche Partner als Referenz für
Mensch-Roboter-Kollaboration. Basierend auf einemÜberblick bisheriger Studien, neuen Expe-
rimenten und den dazugehörigen Messgr̈oßen, k̈onnen Richtlinien f̈ur Roboter gegeben werden,
die zwei zentrale Anliegen adressieren: A) Zum ersten Mal kann gezeigt werden, dass haptische
Kommunikation existiert und dass diese Form des Feedbacks daher die Verhandlung von Inten-
tionen erlaubt. Somit ist eine starke Motivation gegeben, diese Modaliẗat in menschen̈ahnlicher
Form in Regelungs-Architekturen von Robotern einzubringen.B) Das Dominanzverhalten in
den Vordergrund stellend, können weitere Richtlinien für Roboter aufgezeigt werden: das Inter-
vall von Dominanzunterschieden, dass zwischen menschlichen Partnern gefunden werden kann,
ist benannt worden; die notwendige Veränderung in Dominanzverhalten in Abhängigkeidiet
von verschiedenen Partnern ist quantifiziert worden und dasDominanzverhalten in gemeinsa-
men Entscheidungen konnte prediziert werden. Der letzte Beitrag dieser Dissertation richtet
sich an zuk̈unftige Forschung in Mensch-Roboter Kollaboration: Der experimentelle Ansatz von
menschlichen Partnern zu lernen, kann als Referenz für sp̈atere Studien dienen. Das generische
Konzept des Rahmenwerks bietet eine Grundlage für zuk̈unftige Modelle von Robotern, unter
anderem auf Basis der hier präsentierten Ergebnissen.
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1 Introduction

The goal of this dissertation is to outline a generic experimental approach to design guidelines
for robots, which are built to collaborate with a human user in a haptic task. Despite the technical
advances that enhance robots acting in dynamic, unstructured environments, their collaboration
with human users is still challenging. For successful collaboration, the robot has to be enabled
to contribute with its increasing capabilities to shared task execution. Such capabilities may be
cognitive (e.g. accurate memory, rational decision making), or physical (e.g. strength, precision,
endurance). Furthermore, the robot may need to adapt the task execution to situation-specific
capabilities (e.g. workspace restrictions). Thus, in collaborative scenarios the robot should be
seen as a partner with its own action plans, which need to be integrated with those of a human
partner. It is claimed that the robot should show human-likebehavior characteristics to offer an
intuitive understanding of its actions to the human user. AsMarble et al. [2004] state: “The hu-
man must be able to understand the reason for and effects of robot initiative. These requirements
can only be met through careful application of human factorsprinciples”, see also Clodic et al.
[2005]; Demiris [2007]; Fong et al. [2005]; Grosz [1996]; Tahboub [2004] for this line of argu-
mentation.

So far there is little known about human behavior characteristics in haptic collaboration. To
the author’s best knowledge no investigations on the integration of individual action plans exist
in this context. Therefore, this dissertation addresses the behavior of interacting human dyads
theoretically as well as experimentally, in order to understand general principles of human haptic
collaboration. Based on this systematic approach, first design guidelines for robotic partners in
haptic collaboration can be derived, and a foundation for the acquisition of further guidelines is
given.

In order to motivate the research interest in haptic human-robot collaboration, the following
section gives application examples.

1.1 Applications of Haptic Human-Robot Collaboration

In Burghart et al. [2002] a classification of haptic collaborative tasks is presented. The goal of
this classification is to reduce the complexity of haptic collaboration research by focusing on task
specific aspects. Mostly, haptic collaboration research focuses on interaction betweentwo part-
ners (dyads); however, it can take place within bigger teams as well. Following Burghart et al.
[2002], two categories of haptic collaboration are distinguished in this dissertation:

1. joint object manipulation

2. haptic collaboration without object

1



1 Introduction

Figure 1.1: Example of a human collaboratively carrying an object with a robot.

Within the first category the task may require the partners tojointly place/ removeor carry the
object1. These actions can be further specified e.g. by environmental constraints, goal positions,
and object characteristics. Whether a partner is actually necessary for successful task execution
depends on these task-related attributes (compare e.g. Richardson et al. [2007]). An example of
a haptic task in human-robot collaboration, i.e. object carrying, is given in Figure 1.1.

The second category represents tasks such asguidingin kinesthetic teaching scenarios (called
“leading” and “restricting” in Burghart et al. [2002]), which involves assistance to handicapped
people, rehabilitation or dancing. Tasks of this category are often related to dominance-,
capability- or knowledge-differences between the partners. These tasks are not defined for a
single person (with the possible exception of guiding one’sown limbs e.g. for stroke patients).

Robots can be partners in both task categories. They can collaborate in tasks taking place in
reality, or virtual reality environments (VR). Some exemplary scenarios are listed below:

• Autonomous assistants and service robots:Especially in the fields of elderly care, as-
sistance for handicapped (e.g. blind) people, but also as general household assistance,
robots are introduced as every-day partners, which are ableto support humans in haptic
tasks by collaboration. Some exemplary scenarios include a) autonomous helpers which
can help to carry bulky objects such as a fridge or a table, seeKosuge and Hirata [2004];
b) an interactive shopping trolley as developed by G?ller etal. [2009]; c) a wheelchair
which vision-based cognitive system controls the movementdirection collaboratively with
the human, see Carlson and Demiris [2008]; d) an intelligent walker, which adapts break
torque to the human and the environment presented by Hirata et al. [2005a]; e) a walker
for blind people e.g. Lacey and Rodriguez-Losada [2008].

• Entertainment: Virtual reality (VR) scenarios are often unrealistic without haptic feed-
back (when users can reach through objects without feeling restrictions), especially in
social interaction with partners (e.g. handshake scenarioin Wang et al. [2009]). In addi-
tion, robotic partners are introduced in real life entertainment such as in dancing, see e.g.
Takeda et al. [2007a].

• Medical training: In order to teach high-level motor skills as required in medical appli-
cations, haptic collaboration is employed to enhance the skill transfer between humans as

1It has to be mentioned that objects can be transformed without moving them, however, this is not considered here.

2



1.2 Open Challenges

e.g. in Esen et al. [2007]; Nudehi et al. [2005], or between a virtual agent and a human
trainee, e.g. Bettini et al. [2004]; Kragic et al. [2005].

• Rehabilitation and Therapy: The importance of haptic feedback in physical rehabilita-
tion has been stressed e.g. by Broeren et al. [2006]; Choi et al.[2010]; Fan et al. [2009];
Popescu et al. [2000]. So far robots have been used in the therapy of autistic children with
kinesthetic tasks [Robins et al., 2009]. However, the two partners (child and robot) were
not physically connected. In Morasso et al. [2007] the importance for haptic feedback in
therapy is outlined.

• Telepresence:Signal-exchange between one or more humans and a remote environment is
challenging. The development of assistance functions allows more accurate task execution
for two human operators acting in the same remote environment, or when the performance
of an individual operator is enhanced by assistance provided by a virtual agent. This is
of high relevance in situations requiring precise manipulations as in outer space, compare
e.g. Hirzinger et al. [2005]; Oda et al. [2001].

• Vehicle / aircraft control: In a first experiment Griffiths and Gillespie [2005] outlined
the benefits of partly autonomous steering-wheels when keeping a virtual car on the lane,
avoiding obstacles. Another study investigating the effect of haptic guidance in curve navi-
gation while driving was conducted by Mulder et al. [2008]. Furthermore, Field and Harris
[1998] compared different cross-cockpit linkages for commercial aircrafts.

It has to be mentioned that the precise separation between the classification of a robotic partner
and an assistance function is still subject to discussion. Here, an assistance function is considered
less autonomous than a robotic partner. Thus, the last two categories are listed as possible fields
of application. There, however, the focus is on assistance functions, as the scenarios generally
require the responsibility for the task execution to be on the human side.

1.2 Open Challenges

If the goal is to design a robotic partner, which is able to collaborate in haptic tasks, in contrast
to a tool operated by the human user, behavior guidelines forthe robot have to be established.
On the one hand the robot has to act in a way, which enables an intuitive collaboration for the
user; on the other hand it has to understand and adapt to the user’s actions. Therefore, one main
challenge in this field of research is to determine rules, which describe human behavior in haptic
tasks in order to provide the robotic partner with an appropriate model of the human user and to
derive guidelines for the robot itself.

In order to approach this goal ways have to be found to scientifically investigate human behav-
ior. This can be done by psychological experiments. However, limited knowledge exists on the
methodology of psychological experimentsin the context of haptic human-robot collaboration.
This leads to two phenomena: First, general guidelines on how to design experiments in this
context are rare. Second, this lack of pre-knowledge results in rather unsystematically related
research interests. Consequently, it is challenging to relate existing results to each other as no
integrating conceptual frameworkis established so far.
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In the author’s opinion one central challenge, which shouldbe addressed in a first step, is an
empirical proof of theexistence of haptic communication. If human dyads do not communicate
via this channel, in the sense of goal-orientedintegration of individual action plans2, there is no
point in building robots, which relate to this behavior. If haptic communication exists, further
research effort on the engineering side to overcome challenges related to instabilities due to bilat-
eral energy exchange in direct contact can be considered worthwhile. In addition, psychological
studies on human behavior can only be motivated by positive effects of haptic feedback be-
tween partners. Then, psychological experiments should focus on potential key-factors in haptic
collaboration. Fundamental knowledge of haptic collaboration so-gained is required to support
dynamic modeling as a prerequisite for building robotic partners in this context.

1.3 Definition of Haptic Collaboration & Main
Assumption

There is no clear agreement on the definition of haptic collaboration in literature. Therefore,
this section will provide a working definition. Accompanying definitions can be found in Ap-
pendix A.

This thesis investigates collaboration based on thekinestheticpart of thehaptic sense in
contrast to tactile information (though, the general term “haptic” is used in the following). “The
kinesthetic system receives sensory input from mechanoreceptors located within the body’s mus-
cles, tendons, and joints” [Klatzky and Lederman, 2002]. Haptic perception always involves the
exchange of (mechanical) energy - and therefore information - between the body and the world
outside [Hayward and Astley, 1996]. The most important characteristic of this sense is that it is
the only human sense, which is capable of perceptionandadditionally directly related to action:
the human motor system. Hence, the haptic information channel is interactive per se, as it allows
us to senseand act on our environment. It is agreed with Hayward and Astley [1996] that the
resulting “bidirectionality is the most prominent characteristic of the haptic channel”. This is the
reason why literature sometimes refers to “haptic interaction” in scenarios whereoneperson ma-
nipulates an object. However, throughout this thesis this term is reserved for interaction between
two cognitive systems, independent whether it is a human dyad or a human-robot team.

If two partners want to accomplish a task together, they do not only interact but collab-
orate. “Whereas interaction entails action on someone or something else, collaboration is
inherently workingwith others” [Hoffman and Breazeal, 2004], referring to [Bratman,1992;
J.Grosz and C., 1990]. Collaboration requires sharing task goals. This implies the recognition
of the partner’sintentions (= action plans towards a goal) and the integration into one’s own
intentions, i.e. thenegotiation of shared intentions in case of different individual intentions.
Shared intentions “are not reducible to mere summation of individual intentions” [Kanno et al.,
2003]. Hence, when two systems collaborate, the partners share at least one goal (what) and
are confronted with the challenge to find suitable action plans (how) to achieve it [Grosz, 1996;
Johannsen and Averbukh, 1993; Tomasello et al., 2005].

Haptic collaboration is based on the exchange offorce and motion signalsbetween partners,
either in direct contact (e.g. the hands in guidance) or via an object which is jointly manipulated.

2this will be defined more explicitly as “intention negotiatio” in the next subchapter
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As long as there is physical contact between the two partnersthe physical coupling leads
to a constant signal flow between partners. Thus, haptic collaboration issimultaneous and
continuousbecause the partner’s dynamics are perceived while acting.This direct feedback is
the main difference to turn-taking in talking and to forms ofcollaboration, where cooperation
takes place mostly sequentially, see e.g. Meulenbroek et al. [2007]; Schub? et al. [2007];
Sebanz et al. [2003a]; Welsh [2009]. Not all signals transferred between partners are assumed
to have a symbolic character, i.e. are meant to transport individual intentions to the partner
(compare Frith [2008]). Therefore, one challenge in hapticcollaboration research is to find out
if and how partners communicate via signals, and how shared action plans look like. Herein,
mutualhaptic feedback is a key-concept. Precisely, “mutual” refers to the fact that both partners
are able to perceive and act upon each other via this signal exchange allowing adaptation
processes, which is a prerequisite for collaboration, i.e.shared action plans.

The main assumptionof this dissertation is that most tasks, which require haptic collabo-
ration, can be described on an abstract level as the execution of a shared trajectory. This can
be the trajectory towards a goal position in joint object manipulation, or a guidance scenario.
Furthermore, the goal may lie in the actual following of the trajectory as e.g. in dancing. Thus,
when two partners collaborate in a haptic task, they have to find a task-optimal trajectory for this
interaction point or the object. This implies that the shared action plan towards a task goal in
haptic collaboration can be based on the negotiation of trajectories between partners, compare
also Evrard and Kheddar [2009] for this consideration. Thus, haptic collaboration is closely
linked to manual motor control tasks. The partners can exchange forces to push or pull in
different directions and, by doing so, influence the partnerand the shared trajectory. Depending
on the agreement between the partners on the shared trajectory these forces may vary, reflecting
the different intentions of the partners.

In addition to one’s own proprioceptive feedback, haptic feedback from the partner and the
jointly manipulated object, feedback from other modalities is also involved in most haptic collab-
oration scenarios: usually the partners can visually perceive the environmental changes which are
caused by their haptic interaction, and may also use verbal communication. However, throughout
this dissertation verbal communication is neglected in favor of a clear focus.

1.4 Approach

Two different approaches to investigate haptic collaboration between humans and robots can be
separated:

1. Studying two interacting humans with the goal of knowledge-acquisition on intuitive hap-
tic collaboration. Then, a model for one human within the dyad can be developed for the
implementation on a technical partner - one human is “substituted” by the robot. After-
wards, the model can be transformed for an increased use of the individual capabilities of
the specific partners without loosing the human-like collaboration patterns. This approach
is located early in the design process as it defines requirements of robotsbeforethey are
developed.
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1 Introduction

Figure 1.2: The chosen approach in this dissertation to design intuitive technical part-
ners for haptic collaboration tasks is to analyze and model two collaborating
human partners (HHC) in controlled experiments in a first step. Then, one
human is “substituted” by a robot on the basis of these models. Thus, the
knowledge from HHC can enhance human-robot-collaboration (HRC) in ac-
tual applications.

2. Investigating directly how humans collaborate with robots by evaluating the human-robot
interaction depending on variations in specific parameters. This, however, requires an
existing model of an interacting partner. Thus, the approach can be chosenlater in the
design process of robotic partners when pre-knowledge exists, which allowes for a first
prototype of a technical partner.

Both approaches should be combined when building technical partners. Starting with the
first approach is useful for information on key-concepts andinfluencing factors which leads to
the development of a model. Once this model or a simplified form is implemented on a robot, it
needs to be evaluated. For the successful introduction of a robotic partner for haptic collaboration
tasks, this process will be run through iteratively.

At the moment few models are available, which can be implemented on technical partners for
haptic collaboration. Thus, recent research in this field relies on human-human haptic collab-
oration (HHC) as a reference when designing technical partners i.e. follows the first approach
[Corteville et al., 2007; Evrard and Kheddar, 2009; Rahman et al., 2002a; Reed et al., 2006]. It
is argued by these authors that intuitive human-robot collaboration (HRC) has to be based on
rules and models familiar to humans. In Hinds et al. [2004] itis put forward that humans “will
be more at ease collaborating with human-like robots”, because they “may be perceived as more
predictable” and “human-like characteristics are likely to engender a more human mental model
of the robot”, when estimating its capabilities. The argument is supported by Wolpert et al.
[2003], where it is stated that if no other mental model is available, we tend to use the men-
tal model of ourselves for the partner. Therefore, this dissertation is an attempt to understand
human-like haptic collaboration behavior by studying human dyads. The gained knowledge can
then be transfered to human-robot collaboration (substitution approach), compare Figure 1.2.
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Note, that this human-likeness is not interpreted as a replay of human behavior but a deeper
understanding of key-concepts.

Independent of the approach, at least one human partner is involved in the corresponding
studies. As an implication for haptic collaboration research psychological experimentsare
required: Due to the generally high variety and complexity of human behavior, a high quality of
experimental design and analysis is necessary in order to enable causal inferences, taking into
account the variability in human behavior and still allowing for statements on a general level
representing the population of potential human partners.

Thus, this thesis will present psychological experiments on collaborating humans to under-
stand key concepts in haptic collaboration and derive guidelines for the development of robotic
partners resembling the first approach.

1.5 Main Contributions and Outline

In order to address the challenges in the research field of haptic collaboration between humans
and robots, this thesis attempts to systematically investigate haptic collaboration between two
human partners as a reference for haptic human-robot collaboration. Within a stepwise approach,
the following main contributions can be separated:

1. development of a conceptual framework for haptic collaboration

2. profound introduction of experimental methods including the introduction of new experi-
mental designs and measures in relation to state-of-the-art experiments

3. experimental investigation of the existence of “haptic communication” between humans

4. analysis of characteristics of shared actions in haptic collaboration

Based on these four steps, it is not only possible to derive first design guidelines for robotic
partners in haptic collaboration, but in addition, future work can profit from the theoretical
background and the presented methodologies. This potential impact on future research can be
interpreted as another contribution of this dissertation.

In the following, the main contributions are summarized in more detail relating to the open
challenges in this research field. At the same time, an outline of the thesis is given:

A Conceptual Framework for Haptic Collaboration is developed inChapter 2. It serves
as a basis for systematic psychological experiments and as atheoretical background for future
modeling attempts. This framework is based on theoretically derived requirements on haptic col-
laboration partners (whether human or robot) in line with existing interaction models, which are
mainly developed in the context of human-computer interaction or supervisory control. The new
framework is presented thoroughly and discussed in relation to the requirements. The purpose
of this work is two-fold: On the one hand, the close relation to control theory inspires future
models for robotic partners and supports the substitution-approach when transferring knowledge
from human dyads to human-robot collaboration. On the otherhand, the framework enables
the structuring and integration of experimental research in haptic collaboration by identifying
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Figure 1.3: Overview on the composition of Chapters 2-7

important concepts, structures and signal flows. This way, it is possible to precisely classify
which key-components are addressed in an experimental study. So far, no framework on haptic
collaboration exists in literature. Within the framework two levels of haptic collaboration are
distinguished depending on the processed intentions: The lower level refers to a collaboration
effort which integrates the two individual force outputs task oriented. Thus, dealing with the
challenge to agree on strategies onhowto move an object. The higher level is defined by shared
decision making between partners onwhereto move. These two levels structure the research
presented in the remainder of the thesis, where the experimental design and related analyses
distinguish between these levels, compare Figure 1.3.

Before new experiments are designed, within the conceptual framework to investigate human
dyad behavior in haptic collaboration, aDiscussion on Directions in State-of-the-Art Exper-
iments is presented for the first time(Chapter 3). This discussion is based on an overview of
more than 80 studies conducted in haptic collaboration, seeAppendix B. Challenges in the de-
sign of future experiments in the context of haptic collaboration are identified within this chapter.

Taking into account the conceptual framework as well as the state of the art in experimental
research on haptic collaboration, new experiments are designed (Chapter 4), separating
Experimental Designs and Measures: First, two general research questions are elaborated,
which are addressed by the experiments presented in this thesis. Then, two new psychological
experimental designs, investigating behavior on the two haptic collaboration levels, are intro-
duced. In the next step, measurements to analyze the behavioral data gained by the experiments
are derived. The experiments and measures are the basis for the results obtained in the following
chapters. Additionally, the choice of experiments and measures is motivated extensively to show
the general relevance in the research field beyond the results presented here. To the author’s best
knowledge neither the experimental design nor the measureshave been used in any other studies
on haptic collaboration than those presented here.

Experimental results are presented in relation to the theoretical considerations and ex-
periments designed in the previous chapters. The analyses address the two central research
questions: 1) Does haptic communication exist?Intention Negotiation between human partners
via mutual haptic feedback is investigated inChapter 5 employing an efficiency measure;
2) How do Shared Actions in haptic collaboration look like? As one important concept,
dominance in human dyad behavior is addressed as a measure ofindividual responsibility for
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the shared actions (Chapter 6). Within both chapters human behavior is analyzed separately
for the two levels of haptic collaboration. Thus, shared decision making is studied for the first
time in haptic collaboration. On the basis of the derived results, Design Guidelinesfor robotic
partners in haptic collaboration are identified.

The last chapter draws generalConclusionsand gives an outlook on future research in haptic
collaboration (Chapter 7). The provided theoretical knowledge in the conceptual framework, the
results on intention negotiation and shared actions, the experimentally derived design guidelines,
as well as the recorded data, which allow further analyses, go beyond the work presented here,
and are promising tools for an enhancement of robotic partners in the future.
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2 Conceptual Framework for Haptic
Collaboration

This thesis aims to broaden the understanding of human behavior in jointly executed haptic
tasks in favor of more intuitive human-robot collaboration. This is approached by addressing
the behavior of human dyads as a reference. Thus, the goal within this field of research is a
systematic investigation of human collaborative behavior. Theoretical knowledge on internal
processes leading to this behavior is required as a first attempt to structure the corresponding
experiments and to enhance modeling of robotic partners in this context.

Even though interaction models describing information processes in man-machine interac-
tion exist, they mainly focus on human-computer interaction or supervisory control. The first
group of these models does not take components specific to haptic collaboration into account,
the second group of models does not describe the behavior of two collaborating partners, but
how humans control non-autonomous systems. In [Kanno et al., 2003] (referring to [Hutchins,
1996; Paris et al., 2001]), it is stated that “the basic function of man-machine interfaces is limited
to information exchange lacking more conceptual and intentional aspects of communication that
enable humans to manage cooperative work efficiently”. Therefore, the focus of a framework
that describes internal processes of partners collaborating via haptic signals should be on inten-
tional components including adaptation towards the partner. In order to allow real collaboration,
the integration of individual intentions of two cognitive systems is required. To the best of the
author’s knowledge, so far no framework exists, which describes such processes responsible for
the resulting behavior in a collaborative haptic task.

The following chapter introduces a conceptual framework1 of haptic collaboration based on
the requirements identified by discussing existing interaction models and their relation to haptic
collaboration. The framework enables structuring of future studies on haptic collaboration and
(control-theoretic as well as statistic) modeling in general and specifically for the work presented
in the following chapters: Referring to the framework, it is possible to determine which compo-
nents are experimentally addressed or modeled, leading to ahigher quality in integration of and
comparisons between corresponding results. The close relationship of the haptic collaboration
framework introduced to control-theoretic modeling encourages the knowledge transfer between
experimentally gained design guidelines from human-humancollaboration and the actual mod-
eling of robots.

Requirements of a framework for haptic collaboration are identified in Section 2.1. Then, the
framework itself is described in Subchapter 2.2. In Subchapter 2.3 the framework is discussed in
relation to the requirements. Possible extensions and implications for experimental research and

1Note that the haptic collaboration framework is called “framework” in contrast to “model” because it consists of
a broad structure focusing on generalizability, rather than on precise predictions expected from a model. Hence,
parameters and signal flows are not described in enough detail to talk about a model. However, guidelines for
models are implicit to the framework. If the authors of citedpapers referred to their work as a “model” the term
is repeated here.
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Figure 2.1: Simple model of human information processing [Parasuraman et al., 2000]

robotic partners are outlined. The chapter ends with a conclusion including an outlook on future
work.

2.1 Requirements and Related Work

The author agrees with Johannsen and Averbukh [1993] that recent developments in human-
robot interaction demand “more comprehensive modeling of human performance than it was
necessary for traditional supervisory and control systems”. When there is haptic collaboration
with robots, the human does not control a system with abstract inputs in a supervisory manner
anymore. Instead, the human is part of the overall system andshould be allowed to interact
intuitively by developing shared action plans with the partner. To understand this process, two
humans are considered within the framework. Later researchwill have to find ways to design
robots accordingly to substitute one partner. Focus of the framework is to provide means in
order to achieve this goal. Next, necessary components for ahaptic collaboration framework are
investigated by relating to literature on interaction models.

2.1.1 Feedback Loop

In the context of human-machine interaction, Parasuraman et al. [2000] introduce a four stage
model of human information processing in general (see Figure 2.1). Here, this model is
considered as a starting point from where further requirements are added. First, information
is registered, then consciously perceived and processed. Within cognitive processes decisions
are reached, and finally an action is implemented based on these decisions. This model is
introduced to specify the capabilities of a technical partner, which are related to its autonomy,
separately for these stages. It emphasizes the importance of decision making, i.e. choosing an
action out of several possible. In this simplified model, no feedback loops are included. Thus,
the information, whether an action led to an achievement of the desired goal is not part of the
model.

In an interaction model proposed by Norman [1998] it is emphasized that the chosen actions
are expected to be goal-oriented. To ensure this, the evaluation of executed actions is required
in relation to these desired goals. This is described as a feedback loop. In a seven level model
of human task performance it is strengthened that actions are not only executed, but additionally
evaluated, see Figure 2.2. In this model “interaction” refers to an exchange between the human
and the environment. The model describes the development ofa goal towards the “intention
to act”, to a sequence of actions, and the actual execution ofthis sequence which transforms
the environment. The state of the environment is then perceived and interpreted, and finally the
interpretations are evaluated. This evaluation may influence the goal. Thus, a feedback loop is
introduced which can influence actions before (intermediate) results are reached, and which may
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Figure 2.2: This figure illustrates the feedback loop of individual goal-oriented actions
as proposed by Norman [1998]. This model is called interactive, relating to
the interaction with the world. Thus, further components have to be added
to use the feedback loop in a description of haptic collaboration.

lead to further goals and sub-goals.
This feedback loop, which allows an adaptation of goals, seems crucial for haptic collabora-

tion, where two individual actions are continuously combined. It seems reasonable to assume
that both partners should be represented by such feedback loops. In dependence on the per-
ceived partner’s action and the resulting changes in the shared environment, own action plans
may have to be transformed to achieve the shared overall goal. The continuous feedback of the
partner’s actions as provided in haptic collaboration allows receiving information on the partner’s
actions in addition to feedback of the own actionscontinuously. This should enable negotiating
or adapting intentions with/towards the partner during task execution before the final goal is
reached. However, additional components are required to model the integration of two action
plans. It is unclear, which information is exchanged between the two partners. As a first step, the
next section considers information processed by one individual before the exchange is discussed
further.

2.1.2 Levels in Information Processing

A well-known model of human performance and information processing for the design of
man-machine interfaces is developed by Rasmussen [1983], who classifies different types of
processed information. The model distinguishes between familiar and unfamiliar tasks and
resulting cognitive demands on the human. Therefore, it is differentiated between skill-, rule-
and knowledge-based task-levels, compare Figure 2.3. The processed information is grouped
in three categories: signals, signs and symbols, in relation to the task-level. According to the
author thesame physical cueis interpreted differently on each level:
1) “At the skill-based level the perceptual motor system acts as a multi-variate continuous
control system synchronizing the physical activity in suchas navigating the body through the
environment and manipulating external objects in a time space domain. For this control the
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Figure 2.3: “Simplified illustration of three levels of performance of skilled human oper-
ators. Note that levels are not alternatives but interact in a way only rudi-
mentarily represented in the diagram” Rasmussen [1983]

sensed information is perceived as time-spacesignals, continuous quantitative indicators of the
time space behavior of the environment. These signals have no meaning or significance except
as direct physical time space data”. On this level, information is processed subconsciously,
interpretation is not necessary.
2) “At the rule-basedlevel, information is typically perceived assign. The information perceived
is defined as a sign when it serves to activate or modify predetermined actions or manipulations.
Signs refer to situations or proper behavior by convention or prior experience. [...] Signs can
only be used to select or modify rules controlling the sequencing of skilled subroutines”. Signs
can also trigger skill-based actions. This level is associated with “if-then rules” by [Wickens,
2004, Chapter 7].
3) For theknowledge-basedlevel, it is stated: “To be useful for causal functional reasoning in
predicting or explaining unfamiliar behavior of the environment information must be perceived
as symbols. [...] Symbols are defined by and refer to the internal conceptual representation
which is the basis for reasoning and planning.” When no rules are stored analytic processing
using conceptual information is necessary. Symbols relateto “goals and an action plan”
[Wickens, 2004, Chapter 7].
The processing of sensory input by one or several levels leads to the execution of rule-based
or automated actions. Rasmussen’s model was established in the context of interface design
for supervisory control. The model clearly states that one sensory input can have very different
meanings. In haptic collaboration, not only physical cues from theenvironmentare processed
as signals, signs or symbols, but it is assumed that the physical cues caused by the partner’s
behaviorare processed accordingly in haptic collaboration: his/her actions may be processed
subconsciously, trigger behavior rules or may require reasoning and prediction on the underlying
intentions. Thus, the introduction of this different levels of information processing seems crucial
for intention recognition and resulting action plan negotiation as a main concept in haptic
collaboration. How negotiation of intentions between partners based on the different levels of
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Figure 2.4: This figure describes a performance model for human-machine interaction
described in Johannsen and Averbukh [1993]. A supervisory (1) and a com-
municative (2) level are differentiated, resulting in different channels of in-
teraction with the interface. Both levels refer to a knowledge base.

information can take place has to be specified further.

One model which also differentiates levels of processed information is proposed by
Johannsen and Averbukh [1993]. Only two levels are distinguished and depicted in Figure 2.4. In
contrast to Rasmussen [1983] these two different levels are also separated within the communi-
cation taking place via a man-machine interface. The first level is a control function level, which
is related to supervisory functions within a task. The second level is a communication-specific
level. On both levels the processes of information selection, problem solving and action execu-
tion take place. Both, control and communication level exchange information with a knowledge
base. The authors assume human behavior needs to be modeled for both levels. In this model,
two different channels of interaction are defined in accordance with the two levels.

When transferring concepts of this model to haptic collaboration (leaving other modalities
aside), it is important to clarify that only one channel transports information. Via haptic signals
the object is manipulated and intention negotiation with the partner via force and motion signals
takes place. Still, we can assume different levels of information processes (communicative and
supervisory) internally in the partners.

Another model which addresses the fact that the informationexchanged between partners
can relate to different internal levels is presented by Schomaker et al. [1995]. Four observation
levels of in- and outputs between two systems are distinguished:
1) Physical layer: describes characteristics of the device or the human
2) Information-theoretical layer: informs about bandwidth, data compression and other com-
munication characteristics of the two systems
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3) Cognitive layer: transforms representational, procedural aspects of interaction into syntax and
semantics such as pattern recognition and learning. This level is the bridge between low-level
and high-level (intentional) activity.
4) Intentional layer: processes goals, believes, and the information from lowerlevels
This model stresses the fact that goals are notdirectly exchanged in interaction and that the
actual information which is exchanged depends on characteristics of the involved systems.
Except for this necessary compatibility of the two systems to allow information exchange (and
thus the recognition of exchange and negotiation of intentions), this model introduces different
levels of abstraction in the context of interaction, in linewith the models presented above.

It is important to note that the action goals, which are referred to in the presented models, can
themselves have a hierarchical order [Carver and Scheier, 2001, Chapter 5]. An overall goal can
consist of different sub-goals, which can be further distinguished into desired motor commands.
Action plans therefore exist on several levels as well, as they contain the plan to achieve those
goals. Thus, depending on the task, the goal of haptic collaboration can be described differently,
e.g. the goal to empty a room full of certain objects collaboratively, contains the subgoals to
grasp, lift, and move these objects along position trajectories. For the joint achievement of a
goal, the two individual action plans need to be combined. Tomake this possible, the individual
needs a representation of what the partner is intending. Representation is addressed in the next
section.

2.1.3 Mental Models

After summarizing models with internal feedback structures and different levels of processed
information and goals, the relation between this information and the environment is now ad-
dressed. This is done by introducingmental models, which are an internal representations of
the external world, including the collaborating partner. Mental models allow to explain and
predict a system state and to recognize the relationship between system components and events
[Wilson and Rutherford, 1989]. Recently mental models receive increasing attention in interac-
tion design processes [Cooper et al., 2007; Galitz, 2007; Sharp et al., 2007]. Herein, it is aimed
to derive high system performance based on the approach thatthe user can rely on existing
mental models when interacting with technical devices. In Richardson et al. [1994], the general
action-perception loop is further extended by mental models and the concept of learning. Three
different types of mental models are distinguished:
1) “Ends models” deal with perception and information aboutwhat one is trying to accomplish
(goals)
2) “Mean models” contain plans of actions / strategies (intentions)
3) “Mean/ends models” inform on feedback structures and rules

Based on the mental models, the state of the system, which the human interacts with, is pre-
dicted and actions on this system are planned. In this context, learning is defined as “processes
by which people change their mental models” and involves changes in: action plans (means),
goals (ends), cue selection including its interpretation,and changes models of system functions
(means-ends). Learning happens via the feedback loop from the outcome of our actions. In
collaboration, both partners need to findsharedmental models, to work on the basis of the
same representations and to exchange information which canbe interpreted correctly, see e.g.
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Doyle and Ford [1998]; Klimoski and Mohammed [1994]; Levesque et al. [2001]. The concept
of shared mental models is closely related to intention recognition, common ground, theory of
mind and social cognition. The importance of shared mental models for man-machine interac-
tion is stressed by e.g. Hwang et al. [2005]; Johannsen and Averbukh [1993]; Rouse and Morris
[1998]; Staggers and Norcio [1993].

Shared mental models are assumed to be necessary componentsin an architecture modeling
behavior for successful haptic collaboration. We need to know the state of the partner and
integrate it into our own action plans. Therefore, this component should be part of the framework.

The computational framework established by Wolpert et al. [2003] introduces mental models
to kinesthetic tasks in interaction. It deals with processes of imitation learning where two
humans are not physically coupled. First, a social interaction loop is described: A motor
command causes “motor consequences” in the environment which generates a communicative
signal. When this is perceived by partners, it can have “influence on their hidden (mental) state
which constitutes the set of parameters that determine their behavior”. Therefore, “if we know
the state of someone else and have a model of their behavior, we should be able to predict their
response to a given input”. Several challenges in this procedure are mentioned:
1) There is time delay between actions and responses in a dynamic environment, making causal
inferences hard to predict.
2) Due to a generally complex, noisy, non-linear relationship between actions and consequences
of one partner, the response of the other person to this partner’s actions is hard to predict. Thus,
there is noise in both partner’s perceptions of actions and in the perception of responses.
3) Because social interaction can involve interaction with multiple partners, which have different
dynamics, there exists no general model for all of them.
Motivated by these challenges, the authors assume that the internal models of the partner have
to be learned: “An inverse social model could be used to try toachieve some hidden mental
state, and hence behavior, in another person”. Whereas for the consequences of one’s own
movements, easy to learn feedforward models are proposed byWolpert et al. [2003], for the
estimation of the partner’s hidden states inverse models are required: from the consequences we
perceive the motor command behind has to be estimated. Againsome challenges have to be met:
The degrees of freedom in the internal models of the partner are “enormous”. Furthermore, for
system identification, one would need a battery of inputs which cannot be given to a partner. It is
assumed that learning of the others hidden states can take place due to the fact that the partners
are similar. Thus, the framework proposed by Wolpert et al. [2003] provides further arguments
in favor of human-like robotic partners, which can then be predicted easier by the human user.
In agreement with models presented in the previous section,the framework from Wolpert et al.
[2003] suggests a (hierarchical) structure for the controland extraction of intentions. According
to the authors, this hierarchical, tree-like structure haselements of motor control on the lowest
level and more abstract representations as intentions and goals on higher levels. This is in line
with a statement by Frith [2008]: “the sharing must occur on many levels of representation”.

In Cannon-Bowers et al. [1993], it is reasoned that a team member has multiple mental
models of the task, and the team. The partners must understand the dynamics and control of the
equipment (object), the task, and the environment, their role in the task and they should have
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Table 2.1: Multiple Mental Models in Teams as proposed by Cannon-Bowers et al.
[1993]

Type of Model Knowledge Content Stability of Model Content
Equipment functioning

Equipment Model Operating procedures High
Equipment limitations
Likely failures
Task procedures

Task Model Likely contingencies Moderate
Likely scenarios
Task strategies
Environmental constraints
Roles / responsibilities

Team Interaction Information sources Moderate
Model Interaction patterns

Communication channels
Role interdependencies
Teammates’ knowledge

Team Model Teammates’ skills Low
Teammates’ abilities
Teammates’ preferences
Teammates’ tendencies

the knowledge, skills, preferences, and other attributes of their partner, compare Table 2.1. The
equipment model is considered quite consistent as the user will handle the object or equipment
in a certain manner. The most dynamic model is the team model,which highly depends on the
specific partner. A framework on haptic collaboration should embed according mental models
and allow for their transformation/adaptation to address the proposed dynamics.

Here, it is assumed that the individual mental models in haptic collaborations need to concep-
tualize different external counterparts: not only a model of the task but also from the partner, the
environment and possibly the object are involved and have tobe shared. The models presented
in this section emphasize learning in as representations can change with experience and require-
ments. In the next section, the state of the art in robotic architectures in relation to intention
recognition and mental models is presented.

2.1.4 Intention Recognition: Robotics

Intentionsare action plans on how to achieve a goal (compare Appendix A), and in contrast to
executed, observable actions, intentions are thoughts on actions. This section introduces two
exemplary architectures proposed for robots able of intention recognition.

Two different levels are distinguished by Avizzano and Bergamasco [1999] in a “new interac-
tive paradigm”, where areactiverobot allowing bidirectional skill-transfer is described(compare
Figure 2.5). The basis of this skill transfer is seen in intention recognition. A low and a high level
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Figure 2.5: Possible architecture for a reactive robot as proposed by
Avizzano and Bergamasco [1999]

of signal transfer between human and device are separated. The lower level is not intelligent and
only transfers raw data whereas the skill transfer takes place on a higher level. The proposed
architecture for such a reactive robot includes areaction modulewhich consists of three other
modules (reactive units): a) aninterpreter module, which interprets the signals from low level
and estimates the task b) areaction control modulewhich determines the interaction with the user
and distributes information among other modules c) amodeler moduleproviding information on
the user’s intentions, interpreted as goals. The reaction control loop exchanges signals with an
environmental model and a task model. In contrast to Johannsen and Averbukh [1993] and in
line with Schomaker et al. [1995], the two levels of the robotic architecture exchange informa-
tion with the user by an identical channel (here vision and haptic). The reactive architecture is
implemented in Solis et al. [2007]. The model introduces a robotic partner capable of intention
recognition, and explicitly names a teaching haptic interface in contrast to a cooperative part-
ner. Based on recognized intentions of the user on Japanese letters, the robot guides the user
along a preprogrammed trajectory to increase his/her performance. The importance of intention
recognition is stressed.

The robot “respects” the user’s intentions, thus, has no ownintentions and therefore, negotia-
tion of intentions is not modeled. However, in haptic collaboration, the two partners may have
different ideas on action plans due to their capabilities, personal preferences, or environmental
constraints. This model shows that intention recognition is possible by robotic partners and can
be considered a valuable reference which can be extended further.

Another architecture is presented by Schrempf et al. [2005], where intention recognition is
addressed in the context of a service robot; haptic collaboration is not addressed. In their model,
the intention recognitionmodule directly interacts with a database and the planner ofindividual
movements, compare Figure 2.6. The intention recognition module builds a model of the human
users and thus “allows for estimating the user’s intention from external cues while maintaining
information concerning the uncertainty of the estimate”. The architecture, which has not been
implemented yet, enables the robot to proactively interactwith the user to gain more information
for intention recognition. This model is close to the here presented framework. However, as no
continuous interaction is addressed, adaptation towards the partner is not modeled. Adaptation
is addressed in Section 2.1.8.
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Figure 2.6: System architecture proposed by Schrempf et al. [2005]

Thus, there are existing models for robots dealing with intention recognition on the basis of
representations of the users. However, for the framework developed here, these models need
to be extended towards intention negotiation between partners which may have different action
plans and which have to agree on them. The next section looks into action plans with more detail,
namely how actions are chosen to achieve a goal.

2.1.5 Decisions on Actions

Decision makingis generally defined as the act of choosing one available option out of several
possibilities, which have different trade-offs between benefits and costs. Some researchers refer
to decision as the “forming of intentions before acting” [Hardy-Vall?e, in press], whereas others
define the exact time-point as decision, e.g. Hoffman and Yates [2005]. Wickens [2004] defines
a decision-making task with the following components:
1) “a person must select one option from a number of alternatives”.
2) “there is some amount of information available with respect to the option”.
3) “the time frame is relatively long”.
4) “the choice is associated with uncertainty”.

After a literature overview on existing models of decision making Wickens [2004] develops a
model of the decision making process based on Rasmussen’s model (Rasmussen [1983]). Three
levels of decision making are introduced based on the interpretation of environmental cues and
the resulting action execution (see also Figure 2.7):
1) Automatic informationprocessing: In accordance with the skill-based level in Rasmussen
[1983], the relation between perception and action does notneed higher cognitive considera-
tions.
2) Intuitive informationprocessing: After the environmental cues are integrated, arule which is
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Figure 2.7: Processes in decision making as described in [Wickens, 2004, Chapter 7]

learned in earlier experiences can be activated to generatean action.
3) Analytical informationprocessing: When decision time is available or the two lower stages do
not provide solutions, analytical (knowledge-based) processes are involved in decision making
based on the help of cognitive simulations (mental models) to develop hypotheses about the
state of the environment.

The decision process containsmental modelsto make mental simulations possible and eval-
uate the decisions. Furthermore, the importance offeedbackis emphasized to correct poor de-
cisions. Thus, this model integrates requirements stated in Sections 2.1.1, 2.1.3 and 2.1.2 into a
decision process model. However, a partner is not addressedin the decision process.

For a framework of haptic collaboration it is proposed here that these different layers exist
within the two individual partners. One important aspect incollaboration is that decisions on
action plans need to be shared with the partner. Inshared decision making, two partners have
to agree on a solution. In the context of human-computer-interaction, Grosz and Hunsberger
[2006] introduce shared decision making as crucial for collaboration. It is emphasized that
partners may reason differently in decision situations, but that “they must eventually choose
collectively”. Thus, they may prefer different action plans due to different information bases or
perceived options. Shared decision making is the interactive process to negotiate action plans to
reach the shared goal. Thus, the second component of decision making claimed by [Wickens,
2004, Chapter 7] that information should be available in a decision process can be extended to
information form the partner when shared decision making takes place. Then, the forth com-
ponent that decision making involves uncertainties becomes even more relevant as one partner
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has to recognize the intended decisions of the other partnerand cannot be sure to do this correctly.

In Cannon-Bowers et al. [1993] it is stated that shared decision making can be understood
in relation to shared mental models: effective team performance requires coordination and a
“common or overlapping representation of task, requirements, procedure and role responsibil-
ity”. Shared decision making is considered as a process of “gathering, processing, integrating
and communicating information in support of arriving at a task-relevant decision”. For a general
overview on shared decision making, see Castellan [1993].

In Evrard and Kheddar [2009] decisions are addressed in the context of haptic collaboration
between a human and a robotic partner. It is stated that conflict situations between the two part-
ners are likely to occur if their individually intended trajectories are not identical. It is proposed
that within a decision process this conflict needs to be negotiated and resolved. However, thus
decision processes are not implemented so far. In agreementwith Evrard and Kheddar [2009], it
is assumed that the process of shared decision making is important in haptic collaboration. The
next section will introduce a model directly addressing a partner, which so far was not included
in presented models.

2.1.6 Partner

There are few interaction models which specifically take a partner into account. One example is
introduced by Massink and Faconti [2002], where a partner isaddressed on the group level of
the layered reference model for continuous interaction. The model involves the following levels
and is depicted in Figure 2.8:
1) Physical level: where physical interaction takes place via signal exchange. Information from
the environment is processed. If the signals have certain requirements, they are processed to
higher levels. On this level interaction is described as continuous. Effective interaction takes
place here. Problems can occur when signals from the artificial system are not adapted to human
perception capabilities.
2), 3), 4) Information processing levels: 2) a perceptual information processing level which
integrates cross modal information to achieve temporal-spatial coherence; 3) a propositional
level, which mediates between skill-based (lower levels) and knowledge-based (higher levels)
behavior on the basis of pattern recognition and learning; 4) a conceptual level which deals with
goals, believes, intentions, and task requirements. On this level, conceptual interaction between
human and computer takes place. However, this communication has to be refined into physical
signals which are exchanged on the physical layer.
5) Group level: is explicitly responsible for interaction problems related to the coordination of a
task. Social aspects, shared tasks, turn-taking protocolssynchronization of activity are handled
here.

This model is considered as a valuable reference when developing a framework for haptic
collaboration. It not only addresses a partner, but in addition in levels 2) to 4) the authors explic-
itly refer to Rasmussen [1983], and the general model is further related to Norman [1998]. The
conceptual interaction is interpreted as intention negotiation by the author of this thesis, as in-
tentions relate to goals which are the conceptual basis of task execution. In Massink and Faconti
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effective
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Figure 2.8: “Reference model for continuous human computer interaction”
[Massink and Faconti, 2002]

[2002] it is stated that the reference model wants to give design guidelines for continuous inter-
faces. Even though, detailed modeling techniques are not provided, models from manual control
in tracking tasks are mentioned as a possibility to formalize the reference model. Such models
are addressed in the next section.

2.1.7 Manual Control Models

To gain information for the implementation of human behavior models on robotic partners the
framework for haptic collaboration should be related to control-theoretic models. However, it
cannot be the goal to propose detailed parameters as this would be accompanied with a reduced
generalizability. The framework should be a basis for as many shared haptic tasks, partners and
environments as possible. Signal flows and components required in all of these task should be
addressed. Actions in kinesthetic tasks require motor control. Therefore, existing control-models
for individually executed manual tasks can be consulted as areference for the manipulation of
an object. In the following, approaches are presented whichalready integrate components men-
tioned in the previous sections into a general control loop to execute motor behavior, i.e. feed-
back loops, different levels of task execution, thus information processing and mental models.

In an overview on models describing human operators interacting with dynamic systems,
such as vehicles and aircrafts, generally supervisory control is given. All these models do not
assume a partner [Sheridan, 1992]. Still, they deal with trajectory following. It is assumed by
the author of this thesis that haptic collaboration is basedon the movement of an object or an
interaction point, which follows a trajectory. In kinesthetic tasks e.g. object manipulation or
guidance, trajectories play a key role because the goal of such tasks can be defined by a position
or in the case of e.g. dancing by the trajectory following itself. Thus, the related action plans will
deal with options how to best follow such a trajectory. This is in line with the model of “path
planning” as basis of human-robot collaboration proposed by Schrempf et al. [2005]. Within the
models describing trajectory following presented in [Sheridan, 1992, Chapter 1] is the concept
of nested control loops, which is introduced in the context of aircraft control. Sheridan relates
to Hess and McNally [1984] when describing such a loop (see Figure 2.9) with a) aninner
control loop responsible for noise control, b) an intermediateguidanceloop, which is dealing
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Navigation Guidance Control Controlled

Processes

incremental motion

general heading

location in world coordinates

Figure 2.9: [Sheridan, 1992, Chapter 1] relates to Hess and McNally [1984] when pre-
senting this figure, describing “navigation, guidance, and control as nested
loops, as applied to an aircraft or another vehicle under multi-level control”.

with the general heading of the aircraft and the general fine trajectory inherence, and c) an outer
navigationcontrol loop which is concerned with planning of gross trajectories. The author
strengthens the importance of the concept of mental models for supervisory control. Mental
models are necessary to understand the controlled process,to define the objective function and
to have general operation procedures and strategies. Here,the supervisory control is related to
Rasmussen’s framework [Rasmussen, 1983].

Describing pilot behavior from a control-theoretic perspective, McRuer and Krendel [1974]
introduce a model for tracking behavior, resembling trajectory following. It was shown that
this model can describe the joint performance of two collaborating humans in a tracking task
[Feth et al., 2009a]. Furthermore, McRuer and Krendel [1974]list factors which can influence
the pilot’s behavior. This is of interest as these key variables defining behavior in a motor task
can be transferred to the motor task of haptic collaboration: 1) task variablesaddress all variables
outside the pilot and the control elements. The enormous range of possible conditions is outlined
and the direct influence on the pilot’s dynamics emphasized.Within task variables a further
distinction between 2)environmental variablesand 3)procedural variablesis made. The latter
ones are defined as aspects of the experimental procedure like training or order of trials. Finally,
4) pilot centered variablesare introduced e.g. training, motivation, physical condition. The list
of these variables resembles the list of mental models proposed by Cannon-Bowers et al. [1993].

It is argued that in haptic collaboration the environment may directly influence behavior as it
can provide restrictions influencing the observed executedbehavior. In addition, representations
of the environment may also influence the parameters in the control of motor behavior before
the movement is actually executed. Both paths should be addressed in a framework. Based on
such internal representations, discussed as mental modelsin Section 2.1.3, collaboration can take
place by integrating individual action plans. Thus, the twopartners have to adapt towards each
other as outlined in the next section.

2.1.8 Adaptation

In their overview on human performance in manual control tasks [Jagacinski and Flach, 2003,
page 350] state that the classical servomechanism point of view on human performance is
not recognizing the “adaptive nature of human performance”. It is described that already
in simple compensatory tracking tasks humans adopt a control strategy to accommodate the
system dynamics. Therefore, the classical control loop fortracking tasks is extended by
a supervisory-loop which influences the controller to optimize task-specific criteria. Each
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level contains a dynamic world model of the environment. This model is then related to the
knowledge-, rule-, and skill-based behavior model of Rasmussen [1983] to enforce the authors
opinion of qualitative differences between the sub-loops.Thus, not only the adaptive capabilities
of humans are stressed, also the possible integration of tracking behavior towards Rasmussen’s
model is introduced. This extensions of the tracking control loop will play a key-role in the
haptic collaboration framework.

Here, it is expected that adaptation does not only take placetowards the environment and the
controlled object but above all towards the partner gains. However, there is limited literature on
adaptation between partners in collaboration. In Johannsen’s model (Johannsen and Averbukh
[1993]), adaptation of a technical system towards the humanis addressed. However, the
technical system does not have the status of a partner. It is stated that interfaces should be
adaptive to increase the effectiveness of interaction and the users acceptance. For a near-optimal
adaptation the following challenges have to be addressed:
a) informative parameters for user modeling have to be selected
b) levels where adaptation is meaningful have to be defined
c) robust metrics to measure the difference between assumeduser models and online user
behavior have to be identified
d) the laws of adaptation in man-machine interaction have tobe identified

These challenges can provide guidelines how adaptation canbe integrated into the haptic col-
laboration framework. They can be transformed for a framework describing the haptic collabora-
tion between two partners. Thus, adaptive components are closely linked to intentionrecognition
as the latter provides information about how to adopt to the partner. However, for haptic collab-
oration the integration of the recognized partner’s intentions and own (possibly varying) action
plans needs to be specified further.

2.1.9 Summary of Requirements

The goal of this chapter is to establish a framework, which illustrates the processing of
information between partners and within partners to accomplish a jointly executed, kinesthetic
task. Such tasks include object manipulation as moving or placing and tasks with direct contact
between partners as in guidance. It is assumed that the overall task goal, e.g. the goal position
for an manipulated object is known to both partners. Severalaction plans can exist to reach a
goal (action plan towards goal = intention). Therefore, a key concept of the haptic collaboration
framework is the negotiation of intentions because partners do not necessarily agree on the same
action plan a priori. Furthermore, the framework should describe collaboration between two
humans as reference for human-like behavior, compare Schomaker et al. [1995]. The behavioral
models developed within such a framework can then be transferred to robots as technical
partners considering specifications according to the available hardware and tasks. Based on the
literature overview above, the following claims on a hapticcollaboration framework are asserted:

1) Haptic Collaboration: is explicitly addressed here, contrasting other forms of interaction.
Thus, signals exchanged by the partners and the environmentand between partners are motion
or force related.
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2) Feedback Loop and Manual Control Models: In contrast to pure interaction, shared goals
are a key concept to allow collaboration. To achieve goal-oriented performance the compo-
nents of the framework should address action plans (intentions) and their execution. An action-
perception-loop is thus the baseline of the framework basedon Parasuraman et al. [2000], where
feedback loops allow the evaluation of individual and jointactions [Norman, 1998]. As haptic
collaboration is closely connected to individual manual task execution, control-theoretic mod-
els established in this line of applications (see Hess and McNally [1984]; Jagacinski and Flach
[2003]; Sheridan [1992]) can provide the basis of the hapticcollaboration framework. Those
control-theoretic tracking task models can then be considered the lower level of interaction as
e.g. presented in Johannsen and Averbukh [1993] or Avizzanoand Bergamasco [1999].
3) Levels of Information Processing:Therein, the goals, intentions and actions should be de-
scribed by a hierarchical structure of processed information. The framework aims to a close
relation to Rasmussen [1983] as a well established model, which has been adopted to supervi-
sory control in guidance by Hess and McNally [1984]; Sheridan [1992] and to decision making
by Wickens [2004] both important in haptic tasks. Rasmussen’s model is integrated in the work
of Johannsen and Averbukh [1993] and Massink and Faconti [2002]. Thus, the differentiation of
automatic, rule- and knowledge-based behavior should be transferred to haptic collaboration.
4) Mental Models and Intention Recognition:Massink and Faconti [2002] state that individ-
ual behavior models are not sufficient to describe interaction. Interaction specific challenges,
such as coordination, social aspects, or synchronization of activity, have to be addressed by
modules in the haptic collaboration framework. The integration of two individual actions in a
shared action plan and the involved intention negotiation have to be addressed by the frame-
work to answer those challenges. Mental models as the basis of intention recognition have to
be introduced as described by Avizzano and Bergamasco [1999]; Cannon-Bowers et al. [1993];
Johannsen and Averbukh [1993]; Schrempf et al. [2005]; Wolpert et al. [2003]. The architec-
tures for robots as proposed by Avizzano and Bergamasco [1999]; Schrempf et al. [2005] are a
reference how to embed intention recognition in control-theoretic models. However, they need to
be extended towards a robot as a partner, which does not only recognize intentions, but actually
negotiates them based on its (semi-)autonomously developed intentions.
5) Shared Decision Making and Adaptation towards the Partner:Both, adaptation and shared
decision making, are closely related to intention negotiation. The partners can have different
action plans in mind when confronted with the task or subtask(compare Evrard and Kheddar
[2009]), they may also have different capabilities or preferences (compare team models in
Cannon-Bowers et al. [1993]). However to successfully accomplish the task, partners have to
agree on one shared action plan, as the resulting performance depends on both their inputs. This
can be achieved by shared decision making and the willingness to adapt towards the partner.
Adaptation towards the partner is considered a prerequisite of high performance especially when
aiming for a shared goal (see Johannsen and Averbukh [1993]). The haptic framework should
identify the parameters or modules, which are adapted. Thus, it will explicitly address the rela-
tion to a partner as proposed by Massink and Faconti [2002], extending existing human-machine
interaction models.
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2.2 Haptic Collaboration Framework

In this section, a conceptual haptic framework for dyadic collaboration in kinesthetic tasks is
proposed based on the requirements investigated in the lastsection.

The framework is based on the assumption that on a task-independent level haptic tasks (as
those summarized in Section 1.1) can be described as a movement along a trajectory, compare
also Section 1.3. Depending on the task, the focus lies either on reaching a goal position (e.g.
placing an object) or on following an optimal trajectory (e.g. guidance or dancing). The follow-
ing description will focus on the first case. Within Section 2.3, the generalizability towards other
tasks is discussed.

The haptic collaboration framework is depicted in Figure 2.10. It illustrates two collaborating
partners, jointly manipulating anobject. The framework presents an architecture of underlying
structures relevant to describe the process of intention integration of two human partners2. The
framework is meant to enhance the understanding of these processes towards a control archi-
tecture, which can be implemented on robotic partners allowing them human-like behavior, and
thus, intuitive human-robot collaboration. For now, two interacting humans are assumed. The
specifications required due to restrictions or variations in the perceptual or cognitive systems
when one partner is replaced by a technical system are not considered in detail in this fist ap-
proach. The two partners are depicted differently, even though, the characteristics of subsystems
and signals flows are considered identical (parameters and specific controllers however, may
vary). The motivation for the different depiction is a better overview: InPartner 2thethree main
unitswithin each partner are depicted. They will be explained in the next section. The visualiza-
tion of Partner 1is used to give a detailed image of the subsystems within the three main units.
These subsystems and the corresponding signal flows will also be described afterwards.

Haptic collaboration takes place within a certainenvironment in which the two partners
manipulate an object. This framework is focusing on free-space motions in the context of
joint object manipulation. Further extensions towards tasks involving contact forces with the
environment are possible. For now, the environment does notpresent forces associated with
contact between the object and the environment. Thus, signal flow from the environment
generally refers to non-haptic information: visual and auditory cues (and in case of a technical
partner possibly additional sensors).

The three main unitsdepicted inPartner 2 can be summarized as follows: Action plans
how to a achieve the overall task goal of moving an object towards a goal position, i.e. the
desired shared object trajectory, is developed in theplanning unit. This desired shared trajectory
is sent from theplanning unit to the control unit, where the motor command to execute the
planned action is defined. Output is the individual force applied on the object. Theplanning
unit exchanges information with theadaptation unit, which contains mental models of one’s
own system, the task, the partner and the environment. It is assumed that the overall goal is
not communicated via the haptic channel but known to both partners by other modalities. The
definition of the shared desired trajectory and the compensation of deviations from this desired
trajectory, both summarized as action plans, require intention recognition. And based on this

2It is not assumed that the defined structures and signal flows resemble the human physiological or neurological
systems.
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and according prediction on the partners behavior, integration and negotiation of action plans
between partners and an adaptation towards the partner can be achieved. These processes take
place in theadaptation unitand are derived based on an interpretation of the signals that are
received via the sensory system in thecontrol unit comparing the mental models stored there.
The adaptation unitcan then influence theplanning unitand thecontrol unit to realize the
adaptations. Now, the units are described in more detail. Note that the processes within one
partner are described, herePartner 1.

2.2.1 Control Unit

The purpose of thecontrol unit is the actual task execution, i.e. to apply appropriate forces on
the object keeping it on the desired trajectory towards the overall goal position. It is designed
as an action-perception-loop and involves a feedback structure to evaluate the performance, the
deviation between desired and actual object trajectory. The control unit consists of the three
subsystems:sensory system, motor systemandtracking controller.

The input of thetracking controller is the tracking error (e1 = xd
o,1 − xo,1), the difference

between desired and perceived trajectory ofpartner 1. Information about the desired shared
trajectoryxd

o,1 is received from theplanning unit. Output of thetracking controller, the control
signal, is the forcefd

1
partner 1desires to apply on the object. The force is executed by themotor

system, leading to a measurable behaviorf1, which due to noise and variable impedances in the
motor system is not necessarily identical withfd

1
. Summed with the force applied by the partner

f2, this force is responsible for the object movement, thus themeasurable, shared trajectoryxo.
This trajectory is perceived by the sensory system. Due to the limitations and characteristics
of this system (e.g. bandwidth, resolution, attention) theperceived object trajectoryxo,1 is not
necessarily identical to the real trajectoryxo.

Taking into account Newton’s third law it is assumed that theforce applied on the object
by partner 1 is also the forceperceivedby his/hersensory system: f1. There, however, the
signal may again be subject to noise. This also results in theassumption that the partner’s force
is not perceived directly but has to be inferred by relating the object movement to the own
applied forces (more information is given when describing the mental models in Section 2.2.3).
Furthermore, thesensory systemperceives environmental information by other modalities than
the haptic channel, e.g. the goal or obstacles can be perceived visually; information on the
partners behavior, e.g. head movements can be collected andverbal communication between
partners could take place. In addition, thesensory systemhas knowledge on configurations in
themotor system, i.e. proprioceptive feedback.

As the position of the object also depends on the partner’s actions, i.e. his/her applied forces,
there exist several possibilities how a position error can be reduced by the collaborating dyad.
The process of intention negotiation mainly takes place in theadaptation unit, but the resulting
desired behavior is executed bytracking controller: Based on estimations of the partner’s force,
a strategy is realized defining how much force is applied to execute the desired trajectory. The
structure and/or parameters of thetracking controller, and thus, the reaction to an existing track-
ing error, can be changed depending on an adaptation rule defined in theadaptation of low-level
collaboration. This adaptation component is part of the adaptation unit, described further in the
corresponding Section 2.2.3.
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The parameters of each of the three subsystems in this unit are not necessarily time-constant.
Changes can occur due to adaptation towards the environment and in relation to the physiological
system (hardware for robotic partners), e.g. after exhaustion of the muscles or depending on
angels in the limb-joints it may be necessary to change the parameters in themotor systemto
follow the desired trajectory. Similarly, thesensory systemcan change its focus of attention
or adapt to environmental conditions. These variations areinduced by thephysical interaction
adaptation component, again part of the adaptation unit.

The tracking controller is described as position controller, which can be realized e.g. with
controllers known from manual task control in tracking tasks, compare Jagacinski and Flach
[2003]; McRuer and Krendel [1974]; Sheridan [1992]. Of course, this simple structure can be
extended e.g. allowing feedforward in addition. For robotic partners, the specification of motor
and sensory system depends on the available hardware. Even though the goal of thecontrol unit
is clearly specified here, its realization may vary depending on the details considered in the motor
system. A profound description of components of this systemand their modeling is beyond the
scope of this thesis.

2.2.2 Planning Unit

Aim of the planning unit is to provide possible goal-oriented object trajectories to perform a
given haptic collaboration task. In real-life scenarios, different options for the object trajectory
towards the goal may exist, e.g. a goal may be reached by different routes; accuracy or time
can have different priorities; constraints in the environment or the partners’ capabilities may be
answered in different ways. Furthermore, the two partners can have different representations
of the task and the environment and their personal preferences can differ. Thus, two modules
are proposed for theplanning unit: a) aplanner, which examines the possible trajectories and
chooses the trajectory perceived as optimal by the individual; and b) adecision maker, which
chooses a desired trajectory considering the output from the planner andthe input from the
partner to derive asharedaction plan.

Theplannerreceives its input from theadaptation unit. Information related to e.g. environ-
mental information on object properties, the goal position, and positions of possible obstacles
is transmitted. According signals are first perceived by thesensory systemand interpreted by
theadaptation unitand together with the here-stored knowledge on the task goalfurther trans-
ferred to theplanner. In Figure 2.10 this signal flowλ is depicted in a lighter color to contrast
it from more specific signal flows. Qualitative information defined byλ can for example contain
information on the perceived physical fitness of the partner. Such information could change the
individual optimization rule, and thus, the preferences for possible trajectories. In the given ex-
ample, if the partner looks weak, the length of the trajectory can be optimized so he/she does not
have to carry the object for too long.

Based on this information, the planner can suggest a set of possible motion trajectories to
the decision maker. It is assumed that these trajectories have a discrete number. Additionally,
the plannerweights these trajectories based on preferences received from theadaptation unit.
The resulting signal for thedecision makercan thus be described asw1

jx
1

o,1...w
n
j x

n
o,1., where

w1 . . . wn are theindividual weights of the different trajectories. Note that accordingto the
hierarchical structure of task goals, there can be desired trajectories proposed for these sub-
goals. Examples of such discrete options for the desired object trajectory in these sub-goals can
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2 Conceptual Framework for Haptic Collaboration

be found in obstacle avoidance, i.e surrounding it clock- oranticlockwise.
The decision makerselects the individually desiredsharedtrajectory for the object (xd

o,1).
This is done by considering the own preferences, out of the possible trajectories proposed by the
planner, and additional input from the partner, i.e. his/her estimated intentions e.g. based onf̂2,
the estimated forces applied by the partner. The integration of two different individual action
plans towards a shared intention is challenged depending onthe deviation between the personal
preferences. Furthermore, the actual trajectory (xo,1) and the individual force input to this
trajectory (f1) can influence the decision. Thus, there is a feedback loop comparing the desired
trajectory with the actually followed trajectory (xo) via the sensory system. How this information
is processed within thedecision makerdepends on the adaptation rules defined in theadaptation
of high-level collaborationcomponent. Hence, in thedecision makerintention negotiation
takes place, i.e.shared decision making. Details on adaptation will be described in Section 2.2.3.

If a robotic partner has to generate possible desired trajectories, the planner can use path
planning algorithms and task-dependent optimizations to define the trajectories and the prefer-
ences (weights). The optimization rules can be gained from the knowledge base. One deci-
sion model which allows dynamic modeling of individual decisions is the decision field theory
proposed by Busemeyer and Townsend [1993], see also Busemeyerand Diederich [2002]. This
state-space model has successfully been introduced in research on operators in supervisory tasks
by Gao and Lee [2006] and a survey for robotic applications isgiven in Erlhagen and Bicho
[2009]. This model seems to be an adequate starting point when defining a concrete decision
maker for a robotic partner in collaboration.

2.2.3 Adaptation Unit

The adaptation unitforms the heart of the haptic collaboration framework as it addresses the
collaboration with and the adaptation towards the partner including intention recognition, inte-
gration, and definition of rules to negotiate them. It consists of mental models (stored in the
knowledge unit),related predictions, and three differentadaptation modules, which influence
components in thecontrol unitand theplanning unit.

Mental models

Mental modelsare introduced within theknowledge unitto allow a higher-level control based
on internal representations of the task, the environment, the own system, and the partner. In
haptic collaboration, it is fundamental to choose task depending optimal action plans to achieve
the desired shared overall goal. High performance as well asresource-saving does not only
depend on the individual. The partners need to adapt and negotiate their individual action plans
towards a shared intention. Theknowledge unitconsisting of the internal representations and
predictions, i.e. mental models are the basis for intentionrecognition and integration. Based
on past experiences, input from thesensory systemand feedback from the signals processed in
theplanning unitand thecontrol unit, mental models are built, which can influence adaptation
rules as the basis of intention negotiation. Those rules specify the adaptation towards the partner
and the environment, and thus, influence the action plans fortask execution. As mental models
can be advanced and specified based on experiences, learningin haptic collaboration takes place
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here [Wolpert et al., 2003].
If our goal is to change the environment together with another person, mental models of dif-

ferent aspects need to be formed. They are presented in relation to key variables introduced
by McRuer and Krendel [1974] and the models proposed by Cannon-Bowers et al. [1993]. The
factors described by [McRuer and Krendel, 1974] are defined with focus on experimental setups
and not for real scenarios. He relates to asingleperson’s free-space motions. Hence, it is neces-
sary to modify and extend the list to meet the characteristics ofdyadichaptic collaboration. The
transformed definitions of the four influencing factors on mental models are as follows:
1) Mental representations of the taskrepresent the goals, related sub goals and possible action
plans, which have to be achieved by the interacting team. They are related to the task variables in
McRuer and Krendel [1974] and the task models in Cannon-Bowers et al. [1993]. One important
aspect of the task representation is to clarify prior to taskexecution whether it is actually neces-
sary to collaborate or if it can be done alone or if dyadic sequential processes are promising. If
the task requires haptic collaboration, different action plans can be formed to combine the two
individual inputs to the tasks.
2) Mental representations of the environmentrefer to the way how the state of the environment
is presented, mainly by haptic and visual feedback. These representations are associated with
the environmental variables in McRuer and Krendel [1974]. InCannon-Bowers et al. [1993],
they are listed within the task model. Here, object characteristics are thought to be part of the
environment, summarizing all representations of the external world except for the partner. Thus,
the equipment model is associated with this mental representation. Such equipment models may
relate to the form of interaction (which can be direct human-human or direct human-robot as
well as two humans interacting mediated by a robot as in tele-presence or VR)3. Task-specific
environmental variables include object characteristics and constraints and possibilities for the
trajectory towards the goal. Whether environmental information is task specific or not is decided
with the help of theknowledge unit.
3) Mental representations of ourselvesare individual variables associated “pilot-centered vari-
ables” given by McRuer and Krendel [1974]. Again, a wide rangeof constellations is possible
here, to name some: general capabilities to accomplish the task and preferences on strategies
(e.g. being lazy) as well as situation-specific preferences. In addition, there are personal vari-
ables which directly relate to interaction as attitudes towards fair workload sharing or dominance.
There is no equivalent mental model proposed by Cannon-Bowerset al. [1993]. However it
seems intuitive that the representation of our own capabilities influences how we collaborate
with a partner.
4) Mental representations of the partnerrefer to information we have about the partner. Such
partner variables are not proposed by McRuer and Krendel [1974] because no collaboration is
assumed there. These representations are related to the team interaction model and the team
model introduced by Cannon-Bowers et al. [1993]. These two models are not separated as the
general interaction style is assumed to be human-like. Possible variations from this schema are

3If the two partners interacting mediated by devices (possibly in addition to a real object), all device characteristics
such as available degrees of freedom are considered environmental variables because they are not specific for
the collaboration: When executing the task alone, the devicecharacteristics would still be perceived. In exper-
imental setups and for the design of technical systems, the definition of coupling between partners which can
be rigid or compliant, via an object or direct, is important.The characteristics of the physical coupling between
partners are considered environmental variables.

31
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then partner dependent. Hence, the haptic signals and the inferred intentions are most impor-
tant in this context, but also general information as physical appearance, general capabilities,
authority, presumed knowledge on the task, social relationwith the partner and related emotions
or other variables which may change our mental representation of the partner. Learning takes
place in the mental models. Deviations between existing representations and perceived sensory
information are detected here and the mental models can be updated accordingly. If no infor-
mation on the partner is available at the beginning of a collaboration, it is assumed in line with
Wolpert et al. [2003] that the individual model of oneself istaken as a reference.

Input to themental modelsare signals processed by thesensory system. These signals are
interpreted by the mental models to gain representations ofthe partner’s actions or environ-
mental changes. These interpretation and the resulting representations are assumed to be task-
dependent. Thus, the mental models receive additional input from theplanneron possible tra-
jectories and information on the individually desired trajectory from thedecision makerand the
desired force from thetracking controller.

The internal representations built in the mental models have different aims in the context of
haptic collaboration: Most important is the inference on the partner’s intentions. In Kanno et al.
[2003], this is described in detail as the inference on the partners goals based on the observed
actions. As the overall task goal is assumed to be known by both partners, this claim can be
transferred to evolving sub-goals during task execution. According to Cuijpers et al. [2006], it
is most important to identify the partner’s goals to allow goal-oriented behavior for the over-
all system. In haptic collaboration, those have to be inferred from force and position signals.
Whereas the position of the object and/or the partner can be directly perceived by the sensory
systems, the forces applied by the partner cannot. Instead,one’s own forces are perceived and the
resulting object movement observed, which allows inferring the partner’s forceŝf2. Estimating
the partner’s intentions is not enough to allow efficient collaboration. The intentions have to be
negotiated to find a shared action plan, i.e. rules on how the partner’s actions are combined with
the own action plans considering task and environment need to be established. In Kanno et al.
[2003], it is stated that “team intention is not reducible tomere summation of individual inten-
tions”. Those rules are specified in the three adaptation modules. Changes in the mental models
can change adaptation rules, e.g. working together with a physically weaker person may lead to
a more sensitive adaptation in terms of partner’s forces, asthe partner is assumed to apply lower
mean forces. The information transferred from the mental models to the adaptation modules is
represented byπ as it is abstract knowledge and no physical measure. However, it is proposed
that these rules consider the inferred partner’s forcef̂2, one’s own forcef1, and the perceived
object positionxo,1 as well as the desired positionxd

o,1 as input variables. Therefore, these sig-
nals are transmitted from the mental models to the collaboration-specific adaptation units. The
adaptation modules are described in detail in the next paragraphs.

Internal representations of task are an output of the mentalmodels for theplanner. They
include the overall goal, self-representations and information about the partner and the envi-
ronment (all described byλ), which allow the planner to find possible trajectories to reach this
goal.

Knowledge bases and intention recognition modules are proposed by
Avizzano and Bergamasco [1999] and Schrempf et al. [2005] forrobotic applications. In
Hwang et al. [2006], an information theoretic approach for mental models and its formal
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modeling is proposed. Thus, there already exist first steps towards an implementation of the
required modules.

Adaptation

Based on the mental models in theknowledge unit, the individual can adapt structures and pa-
rameters in the modules of theplanning unitand thecontrol unit in relation to task requirements
for optimal performance. To address this explicitly, threeadaptation modules are introduced,
which receive information from the mental models and yield afunction of how to treat infor-
mation received by the sensory system. The high capability for such adaptations in humans is
shown for manual control tasks by Jagacinski and Flach [2003]. However, their importance in-
creases when collaborating with a partner which requires coordination of two individual inputs
and shared decision making.

The adaptation laws in the three modules can have different structures and vary in complexity,
starting from simple linear functions and fixed mappings as in gain scheduling to more complex
adaptive control or optimization rules, see Astrom and Wittenmark [1994] for an overview. Fur-
thermore, it may be suitable for the design of robotic partners that not only the parameters of the
controllers in the planning or the control unit are adapted,but the structure itself is changed, then
hybrid models need to be addressed.

Adaptation of Physical Interaction

This module is responsible for adjusting the parameters of thesensory systemand themotor sys-
temwithin thecontrol unit. The initial tension in muscles (based on the internal representation
of the object), the visual attention focus (again based on mental models about the environment),
and other behavioral parameters can be manipulated via the physical interaction adaptation. This
adaptation is not part of collaboration as it is assumed thatparameter adaptation does not take
place on the basis of recognized intentions from the partner. However, it is an interactive adap-
tation as there is reciprocal influence between partners. Thus, the partner and the related internal
representations in themental model unitmay change rules in the adaptation module, e.g. the
expected weight of the object the individual has to carry varies with the existence of a partner.
Another example is given when two people carry a table, and upand down movements due to
walking motion from the one partner are perceived by the other. Automatically (in the sense of
Rasmussen [1983]) humans balance this movement without any interpretation of the partner’s
intentions.

The focus of this framework is on collaboration. Therefore,the physical interaction adaptation
is not described in more detail.

Adaptation of Low-Level Collaboration

The desired object trajectory cab be the same for both partners (xd
0,1 = xd

0,2) because it is clearly
defined by the task or the environment. Still, it is required that strategies are derived which
determine how the overall force necessary to follow the desired trajectory is applied by the
partners. The necessary force of the overall system (both partners) can be split in different
ways between partners. Within this process, alow-level adaptation moduleis responsible to
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find adequate ways of adaptation towards the partner’s behavior, especially the force applied by
him/her in relation to the desired trajectory.

Thus, this module adapts the parameters or structure of thetracking controller, which aims
to reduce deviations from the desired shared trajectory. For this compensation different action
plans with respect to the two individually applied forces are possible. The forces one partner
would apply to the object when acting alone, change depending on the partner’s actions. To
allow a successful integration of the two individual actionplans, the parter’s intentions have to
be estimated. Therefore, this module is described as collaborative. For example, if it is clear
how the two partners maneuver an object around an obstacle (high-level collaboration), one
partner can still choose to be lazy and leave the main physical workload to the other partner
(low-level collaboration). For high task performance, this partner has to realize that he will
have to apply more forces based on the internal representation of the partner’s behavior and
according predictions of his/her behavior. Thus, the negotiation on strategies is accomplished by
interpreting the partner’s intention based on the mental models and defining an adaptation law in
the low-level adaptationmodule. This adaptation process is namedlow levelbecause it is only
dealing with action plans when a desired shared trajectory (a sub goal in the overall action plan)
is assumed to be agreed on by both partners4. Thus, this level is related to the “how”-to-do level
proposed by Johannsen and Averbukh [1993]. In the given context it describeshow to move
the object. Which adaptation law is adequate in a given situation is determined by the mental
models and perceived signals from partner and environment.Based on the according input, the
low-level adaptationmodule defines an adaptation rule. The output of the adaptation module can
be either a parameter-vector or a function, if the structureof the tracking controller is adapted.
In order to depict both cases, the output signal is not further specified and generally namedτLL,
with LL for low level in Figure 2.10.

It is proposed to relate this level of haptic collaboration,where it is defined how to move the
object, to rule-based behavior and rule-based decision making in the sense of Rasmussen [1983]
and Wickens [2004]: once a model of the partner is developed and his/her intention recognized
and integrated in the individual action plans, collaboration on this level should be smooth based
on the roles chosen by the partners (e.g. leader and follower). This decision is assumed to be
implicit. The information on the partner is perceived as signs which trigger adequate actions to
keep the object on the desired trajectory. Or, as Wickens [2004] states it, the partner’s input is
an if-then-rule, which defines the necessary output to achieve the shared goal.

The author of this thesis is confident that dynamic models of social interactive behavior known
from humanities can be adopted to approach specific control architectures for this adaptation
component focusing on partner’s signals, e.g. Felmlee and Greenberg [1999]; Gottman et al.
[2002]; Liebovitch et al. [2008]. These theories are not based on kinesthetic data and do not
take into account continuous haptic coupling between partners which is a specialty of haptic
collaboration. However, according transformations couldbe defined.

4If the two desired trajectories are not identical, the negotiation of a jointly desired trajectory takes place on the
higher level of haptic collaboration as described in the next paragraph
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Adaptation of High-Level Collaboration

Preferences on the desired object trajectory out of severalpossibilities are not per se identical for
both partners. Shared decision making may be necessary. Theadaptation of high-level collabo-
ration contains adaptation rules depending on the partner’s action to consider his/her intentions
in the decision processes on the desired trajectory. High-level haptic collaboration is required,
whenever the shared trajectory of the object in a collaboration scenario is not clearly defined.
Physical constraints as individual workspace restrictions, within the environment or in relation
to the object characteristics have to be considered in the processes of haptic shared decision
making as well as performance- or effort- (mental or physical investigation of resources) optimal
solutions. There can be large differences between the amount and kind of information on these
factors accessible by the partners, especially in human-robot-collaboration. The higher the devi-
ation between the mental models based on this information between partners is and the higher
the deviation between individual constraints, the harder it will be to agree on one shared decision.

In contrast to the low-level adaptation to the partner, in this high-level adaptation process not
the individual input of the shared object trajectory is treated (strategies how to move the object)
but the decision on a shared trajectory itself, which can be related to sub-goals in the action plan
to accomplish the overall task. Hence, thehigh-level collaborative adaptationmodule is respon-
sible for decisions onwhere to move the object - along which trajectory. Thus, the module
provides adaptation laws for thedecision maker, again based on mental models. As it is likely
that the partners have different notions on what is the optimal object trajectory (taking also into
account the task, the environment, and the personal capabilities and preferences), negotiation
on the shared trajectory may be required, see also Evrard andKheddar [2009]. Again, intention
recognition is involved to understand the partner’s actionplans. Thus, high-level adaptation is
defined as a collaborative process. This adaptation to the partner is compared to the “what”-to-
do level proposed by Johannsen and Averbukh [1993]. To give an example, two partners jointly
carrying a heavy object and standing in front of an obstacle are considered. In relation to his/her
information on the environment and personal preferences one partner may want to surround the
obstacle on the left side. However, when the other’s forces are applied in the opposite direction
he/she may change the decision and follow his/her partner tothe right side. Information flow
in this module is the same as in low-level adaptation: based on mental models and the inferred
partner’s intentions the adaptation law is defined. On high-level haptic collaboration the adap-
tation towards the partner influences thedecision makerby forwarding the adaptation law as a
parameter vector or a function to change the structure.(τHL, with HL for high level).

It is assumed that the individuals plan an object movement asan ideal trajectory. Small
deviations may be accepted or controlled by thecontrol unit. It is further supposed that there
exists a threshold, when an executed object trajectory is nolonger considered identical with the
planned trajectory. Then, a decision hast to be taken, whether a discrete adaptation of the desired
trajectory is required. Furthermore, it is assumed that there exists a rule how to treat information
of the partner. Again, a threshold could exist: If the partner pulls or pushes away from one’s
own desired trajectory, high interactive forces (oppositeforces of the partner compare Section
4.3) are a consequence. In order to reduce the physical effort, based on the believe that the
partner has good reasons for another trajectory, or other social reasons, the personally preferred
decision can be changed (e.g. towards a compromise) if theseinteractive forces increase above
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a certain threshold. It may be suitable to change this threshold depending on how goal-oriented
the partner’s behavior is perceived. Finally, the preference-weights of a specific trajectory can
be changed this way. These thresholds or alternative functions on the adaptation towards the
partner in relation to the environment are part of high-level haptic collaboration. Further, the
shared decision on the desired trajectory is related to Rasmussen [1983] symbol level, and thus,
knowledge-based decisions as described by Wickens [2004].

There exist several approaches towards the modeling of collaborative behavior in shared de-
cision processes. For example with a game-theoretic approach, Hill et al. [2005] modeled de-
cisions by cooperative pilots and Xiao et al. [2005] decisions in engineering teams. Decision
making is formally described in multi-agent systems in Panzarasa et al. [2002]. An extension
of the dynamic field theory of decision making (Busemeyer and Townsend [1993]) could be ad-
vanced towards shared decision making. These approaches are described as valuable reference,
however, they have to be adopted to continuous, haptic connection between partners.

2.3 Discussion of Framework

In the following the haptic collaboration is discussed. First, the proposed framework is related
to the requirements derived from the literature overview inthe first Subchapter 2.1. Therein, it
is especially referred to the claims summarized in Section 2.1.9. Second, possible extensions of
the framework are discussed.

2.3.1 Statement on Requirements

In haptic collaboration, the information which can be exchanged between partners is force- and
motion-based (claim 1). The proposed framework addresses haptic collaboration explicitly by
describing force and position signals and their exchange between specific modules. It is addi-
tionally referred to further modalities when task relevant, e.g. visual feedback from the object
trajectory. Some simplification on exchanged signals had tobe made, e.g. physical adaptation is
not described in detail as it is assumed that the processes taking place here are based on several
modalities and require task specific psychophysical knowledge. The same simplification holds
true for more qualitative signals processed in the knowledge unit. Again, it is assumed that this
signal flow is complex and modeled more easily in concrete scenarios which allow focusing on
specific high-level variables. The framework provides guidelines to derive a model of haptic
collaboration, including the identification of specific parameters.

The second claim in Section 2.1 addresses the control of executed actions. The framework
clearly separates an executing control unit and a planning unit. The former contains a direct
feedback structure in an action-perception loop and can be realized with control-theoretic mod-
els known from manual tracking tasks. Thus, the structure ofthe control unit enhances the
transfer of established models for individual behavior from this line of research into new col-
laborative models. Within the control unit a feedback loop from the sensory system allows for
continuous reduction of deviations from the desired objecttrajectory, compare Norman [1998].
The control unit is part oflow-level haptic collaboration as it focuses on thehow-challenges
within a given action plan (Johannsen and Averbukh [1993]).The decision maker closes another
feedback loop. Based on information of the partner’s behavior and the goal-orientation of the
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Figure 2.11: Informations in haptic collaboration is processed on different levels in the
sense of Rasmussen [1983]. To accomplish a shared haptic task the in-
dividual processes informations on the sign, signal and knowledge lev-
els (according to automation, rules and knowledge) for successful perfor-
mance in the environment. For collaborative task execution Rasmussen’s
model is described with two dimensions here: The three different levels
describe a) process in relation to the task (vertical); and b) in relation
to the partner and the environment (horizontal), i.e. adaptive processes.
Both dimensions display the SSK-structure (sign, signal and knowledge
levels). This illustration is a simplification and does not want to imply that
the two dimensions are independent of each other, nor that the modules
are clearly distinguishable.

current object trajectory decisions on the desired trajectory can be changed. The planning unit
is part ofhigh-levelhaptic collaboration and associated with thewhere-challenge when planning
the task (comparable with the what-level in Norman [1998]).

When surveying existing literature on information processing in human-machine inter-
action, a hierarchical structure is proposed by several authors e.g. Wickens [2004];
Johannsen and Averbukh [1993]; Massink and Faconti [2002],where most of them relate to
Rasmussen [1983]. It is proposed that Rasmussen’s model including the sign-, signal- and
knowledge- levels (SSK model) holds fortwodimensions within the haptic collaboration frame-
work, in contrast to its original one-dimensional description of information processing for in-
dividual task execution, see Figure 2.11.Signalsare processed automatically in physical inter-
action with the environment. On low-level task execution, deviations between the desired and
actual trajectory are reduced rule-based and information is processed assigns. Symbols, are pro-
posed to represent knowledge required for high-level task execution. This structure is in line
with the multi-level control loop proposed in Hess and McNally [1984], see [Sheridan, 1992,
Chapter 1].
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In addition, the haptic collaboration framework provides asimilar structure concerning in-
formation from the partner (horizontal axis): The trackingcontroller and the decision maker
automatically processsignsfrom modules of the adaptation unit and feedback from the partner.
The rules how to react to the partners are defined in the adaptation modules considering input
form the partner via the knowledge unit which can trigger these rules. Thus, information about
the partner is processed assignalshere. The knowledge unit processes more abstract informa-
tion on the basis of mental models of the partner and can influence lower levels based on the
processed symbols. Hence, the processes ofintention negotiation, from intention recognition
to adaptation rules and actual changes in action plans, can be related to the three levels of Ras-
mussen’s model. The two dimensions in Figure 2.11 both represent how information from the
environment (including task specific information and the partner) are processed. With the adap-
tation unit the claim to provide group specific information processing (see Massink and Faconti
[2002]) is addressed within the haptic collaboration framework.

Mental models as asked by Johannsen and Averbukh [1993]; Wolpert et al. [2003] are repre-
sented in a knowledge unit and specified to four sources of information. One of them representing
information on the partner. This mental model is the basis for intention recognition as already
proposed for robotic architectures by Avizzano and Bergamasco [1999]; Schrempf et al. [2005].

Adaptation is explicitly part of the framework as required by Jagacinski and Flach
[2003]; Johannsen and Averbukh [1993] as well as shared decision making compare
Cannon-Bowers et al. [1993]; Grosz and Hunsberger [2006]. To allow not only intention recog-
nition but also negotiation (if the two partners have differing action plans due to environmental
constraints, preferences in task execution, capabilitieset cetera) the partners actions have to be
integrated in the individual task execution. This is illustrated in the framework via the adaptation
modules, which influence the tracking controller (how, low-level) and the decision maker (where,
high-level) towards shared action plans leading to high performance. Thus, the two levels in Jo-
hannsen’s model could be integrated in one single process ofinformation exchange. However,
the two components of communication and supervisory control are still distinct and can be sep-
arately addressed in research and the development of robotic partners. Herein the challenges
Johannsen and Averbukh [1993] associated with adaptation processes are investigated. The hap-
tic signals from the partner are considered to transfer information. The levels of this information
are structured by Rasmussen’s model. The remaining challenges to measure adaptation and de-
fine adaptation laws have to be subject of experimental research and modeling.

2.3.2 Extensions

First, it has to be mentioned that this framework is the first approach towards a description
of processes taking place during haptic collaboration between human partners. As such it is
assumed to be transformed in future when more knowledge fromexperiments based on related
tasks is available. This implies further, that the distinction between the levels should not be
interpreted to strictly as it is seen as a tool for modeling complexity which may be more fuzzy in
reality.

The framework is introduced for scenarios requiring sharedobject manipulation. With the
objective to generalize this framework towards haptic interactions with direct contact between
partners (e.g. contact between two hands as in guidance), the object can be defined as zero-
object, then, named interaction point. Further, the objectmay be virtual or tele-present. Hence,
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there may be devices mediating the human output applied on the object. Within the framework,
the actual object and the device can be merged as one component. It is important to note that
the characteristics of the object (e.g. size, stiffness) influence the physical connection and thus,
signal transfer between the partners. This is also true for the devices, which may influence
collaboration e.g. by restricting the workspace to a limited number of degrees of freedoms.
Keeping the framework as general as possible, such object and device characteristics were not
specified. Furthermore, the framework does not consider contact between the object and the
environment. This additional source of forces affecting the object can be modeled additionally
for concrete tasks.

As stated earlier, the framework is based on a position controller in the control unit. The
assumption that the goal of haptic collaboration tasks is the execution of a position trajectory
should hold for most scenarios. If, however, a force trajectory is a better model of the task goal
(e.g. in rehabilitation applications), the signal flows canbe transformed accordingly. It is as-
sumed that it is possible to change the framework towards this need if required. It is proposed
to do this together with object characteristics in the context of a specific task. Another simplifi-
cation in the framework lies in the neglect of possible time delay in the signal flow between the
components. The disregard of predictive control is closelyrelated. This is in line with the state
of the art in all interaction models introduced in Section 2.1. However, time delay will be of
importance when modeling of empirical data is done on the basis of the framework. Then, these
factors have to be modeled, which again should be simpler within task-specific considerations.

The integration of the haptic collaboration framework intolarger scenarios which require
other forms of communication using different modalities isleft aside. The task-goal is assumed
to be known to both partners, probably on the basis of verbal communication. It is proposed
that it is not beneficial to add further interactive components before understanding of haptic
collaboration itself has increased. However, the framework can generally integrate other forms
of communication. The multi-modal integration of sensory information is a topic studied in
psychophysics (e.g. Ernst and Banks [2002]), which is of relevance in the sensory system and
mental models. This integration will gain the more importance the more modalities are involved.
Psychophysical studies can also help to specify the processes taking place in the sensory and
motor systems.

2.4 Conclusion

2.4.1 Summary

This chapter introduced a framework for haptic collaboration between two partners. Require-
ments for individual processes leading to collaborative behavior, i.e. task performance, have
been identified within an overview of existing interaction models, mainly derived in the context
of human-computer interaction and supervisory control. Thus, the relations between existing
models and haptic collaboration are discussed, before the haptic collaboration framework has
been presented in the next step.

The actual framework specifies components and signaling flows involved in haptic collabora-
tion, which can now be addressed more systematically by experiments as done in the remaining
chapters of this thesis. Three units are separated: a planning unit, a control unit and an adaptation
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unit. Depending on the involved structures for task execution within these units, two levels of
haptic collaboration can be distinguished: On the lower haptic collaboration level, the partners
are concerned with the question ofhow to move an object along a desired trajectory towards
a goal position. Low-level haptic collaboration involves the control unit, which is responsible
for the application of required forces. The control unit is adapted towards the partner by the
adaptation unit to allow intention negotiation, and thus, the development of a shared action plan.
The higher level of haptic collaboration deals with the challenge to derive a task-optimal desired
trajectory (where to move the object). This is the task of the planning unit, which elaborates
possible trajectories and chooses the optimal shared desired trajectory. Herein, it is required to
process information from the adaptation unit again to adaptto environmental constraints and
information perceived from the partner’s behavior.

The haptic collaboration framework has been discussed in relation to the requirements de-
fined based on existing models beforehand. A central point within this discussion has been the
extension of Rasmussen’s sign, signal and knowledge levels for information processing towards
a two dimensional representation. These two dimensions of information processing can be found
in the corresponding structures within the haptic collaboration framework. Possible extensions
of the framework have been outlined additionally.

The framework enables researchers to focus on the identification of different components
within haptic collaboration. Modeling attempts as well as psychological experiments can be
defined and planned more systematically in relation to thesecomponents. In general, the frame-
work enhances the communication, integration and comparison of results from these models and
experiments. Existing studies can be classified by the framework, allowing a more profound
theoretical background before new ones are developed.

2.4.2 Future Work

The framework addresses the requirements elaborated in therespective sections (summarized
in the claims in Section 2.1.9) when describing goal-oriented behavior in haptic collaboration.
However, there is awareness that the framework is so far not based on empirical data. The relation
to existing models can not be seen as sufficient validation. Thus, future work has to validate the
haptic collaboration framework further. Still, it is concluded that based on the answers to the
requirements, the framework can be considered as a promising starting point to broaden the
understanding and research of haptic collaboration. The framework is not considered to be at its
final state. Future research can lead to knowledge which willconcretize and possibly transform
the framework and lead to further research interests withinhaptic collaboration. This framework
is seen as a first important step to motivate such research.

The next step to validate the framework and to further identify structures and signal flows
is seen in experimental studies investigating collaborating humans. Such experiments should
address low- and high-level haptic collaboration within a standardized task to address the exis-
tence of two levels of haptic collaboration and to understand implications of the two levels for
behavioral models.

Some challenges which become evident within the framework are addressed by studies in the
remainder of this thesis. Separately the two levels of haptic collaboration are investigated to
ascertain whether intention integration actually takes place via haptic feedback as a first step to
give meaning to this framework. Then, the two levels are validated in the context of dominance
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distributions between partners when jointly executing a task. The corresponding results will
present first indications for the existence of two separate levels.

2.4.3 Implications for Modeling of Robotic Partners

The main statement of the framework is seen in the separationof low- and high-level haptic
collaboration and the introduction of the associated modules. This allows the study of the adap-
tation modules within the planning unit and the control unititeratively in experiments. Thus, the
level of haptic collaboration can be increased stepwise. Hence, the challenges involved in the
understanding of adaptation processes can be reduced. As outlined by Johannsen and Averbukh
[1993] these challenges are to measure adaptation and to findgeneric laws. Within the frame-
work, experiments can be conducted to gain empirical data for modeling of robotic partners
including the identification of parameters and signal flows responsible for adaptation.

As pointed out in the description of the modules within the framework, models exist which
can be seen as reference structure for these modules: The control unit has been described together
with a concrete signal flow and can therefore be related to models from manual tracking control.
Furthermore, path planning and decision making models are described specifying the planning
unit. However, the modules described within the adaptationunit allow only vague specifications
of exchanged signals between them. This bears the challengeto identify the partner’s intentions
based on haptic signals building a mental model from the partner (see Wolpert et al. [2003] for
details). In line with the argumentation in Wolpert et al. [2003], that when there is no mental
model available from the partner’s behavior, one’s own model is taken as reference, it is argued
by the author of this thesis, that the robotic partner shouldshow as human-like behavior as
possible. Then, we are able to assume a human model as mental representation. Thus, future
work should focus on the study of human partners in collaboration to identify the signal flow in
more detail by experimental research in specific tasks.

The goal of existing and future experimental studies in haptic collaboration is the identifica-
tion of key-factors in this context. Once this can be done for(parts of) the framework, a model
which can be implemented on a prototype for a technical partner can be derived. Then, experi-
mental studies on haptic collaboration between this prototype and a human partner can be con-
ducted within the framework. These studies can enable a systematic variation of parameters and
the investigation of resulting changes in the human partner’s behavior and overall performance.
This way, causal relations between parameter sets and control architectures and the quality of
collaboration are possible. In addition, the separation ofhaptic collaboration levels allows a
clear definition of the capabilities of existing robotic partners and helps to structure evaluation
studies.

One major challenge in realizing a model for a technical partner on the basis of the proposed
framework lies in the fact that signals from the partner can only be estimated. They can be the
result of a decision processor a certain strategy for tracking control within the partner (the clear
distinction between the levels of collaboration is not necessarily possible here). Therefore, it will
be challenging to find quantitative indicators for the interpretation of these signals. Nonetheless,
this is a key-prerequisite for successful collaboration. In the author’s opinion, the framework
manages to point out these challenges and motivates research in this direction.
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Experiments

Psychological experiments can support the acquisition of knowledge towards robotic partners,
which are able to collaborate in haptic task via an intuitivemanner for the human users. As
psychological experiments help understanding the human users’ behavior in these tasks, their
results can provide guidelines for the design of robotic partners. Furthermore, user studies are
employed to evaluate technical partners. So far no state-of-the-art overview exists on the use of
psychological experiments in the design of robots for haptic collaboration with humans. There-
fore, this chapter provides a discussion about trends in psychological experiments in this context
1.

The following overview on haptic collaboration experiments does not focus on explicit re-
sults, but stresses general trends in this research area andidentifies general components of the
conducted experiments. A sound discussion of individual studies and results relevant for the
experiment conducted as part of this thesis can be found in the beginning of Chapter 5 and 6.
The studies on haptic collaboration, on which the followingdiscussion is based, are summarized
in the overview-table in Appendix B. There, 54 experiments are described citing a total of 82
studies, which can be classified as follows:

• Experiments, which deal withsynchronoushaptic collaboration (in contrast to passing an
object, sequential interaction or communication on the basis of artificial tactile signals).

• Studies, which investigate a) collaboration between two humans (directly or technically
mediated); and b) human-robot collaboration with autonomous robots or human-like as-
sistance functions (other assistance functions as e.g. virtual fixtures are excluded).

• Experiments are included if the authors referred to them as experiments (though, in evalu-
ations designed as case studies this word can raise exaggerated expectations).

• The studies, which are cited additionally to the 54 fully reported experiments, are those
which present results reported similarly in one of the fullyreported studies.

To the best of the author’s knowledge the experiments reported in Appendix B are all pub-
lished studies under these criteria at the given time.

After defining psychological experiments, major characteristics of existing experiments are
discussed. This chapter ends with a conclusion on the state of the art in psychological studies on
haptic collaboration.

1In this thesis, the word “experiment” refers to psychological experiments only, knowing, that this is not the only
form of experiment important in the context of human-robot interaction.
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3.1 Psychological Experiment for the Design of Robotic
Partners

Before directions in the state of the art of experiments in haptic collaboration are investigated,
a short definition of psychological experiments is given andtheir meaning within the design
process of robotic partners outlined.

3.1.1 Definition of Psychological Experiment

In the way as it is conducted nowadays, the scientific method of experiments was proposed first
by Bacon [Bacon, 1926]. Wundt was the first scientist who stressed the meaning of experiments
in psychological research [Butler-Bowdom, 2006]. In generalterms psychological experiments
can be defined as follows: “In an experiment, scientists manipulate one or more factors and
observe the effects of this manipulation on behavior” [Shaughnessy, 2008]. The different levels
within manipulated factors (also named independent variables) are the experimental conditions.
The effect of a manipulation in one factor is assessed by measures of behavior, which in the
widest sense can include physiological data, behavioral information or answerers to items of
questionnaires. These measures are also termed dependent variables. In order to understand if
found differences in measures are systematically due to changes in experimental conditions or
caused by any noise, inference statistical analyses are required. They relate the found effect to the
unexplained variance (noise) in measurements. Thus, experiments in psychology do not differ in
their approach of knowledge-generation compared to other disciplines. However, the complex
behavior of humans demands extended care for unsystematic variance and disturbances in the
experimental execution (extraneous variables). When conducting a psychological experiments
the following steps are undertaken in line with the definition of experiments (these requirements
on experiments as first outlined by Wundt [1874]):

• Intentional preparation and selection of experimental conditions

• Control for unsystematic influences and differences betweenparticipants

• Systematic variation of experimental conditions

• Observation of effects [on measurement] due to variations in experimental conditions

Within the discussion of the state of the art in experimentalresearch on haptic collabora-
tion, which is presented throughout this chapter, further details on psychological experiments
are provided. However, it is beyond this thesis to give an extensive overview on methods of ex-
perimental design and analysis. The interested reader may consider Field [2009]; Field and Hole
[2002]; Groten et al. [2009d]; Howell [2007]; Rubin and Chisnell [2008]; Shaughnessy [2008];
Tabachnick and Fidell [2006a,b]; Tullis and Albert [2008].
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3.1.2 Psychological Experiments in Design Processes

Design processes for interactive systems can generally be described by the following four steps,
compare e.g. Butler et al. [2007]; Sharp et al. [2007]; ISO 9241-210 (former ISO 13407):

1. Identification of requirements

2. Design

3. Development

4. Evaluation

These steps are now interpreted for human-robot collaboration: A fundamental step is to iden-
tify requirements, which have to be met by the robot. This implies not only an understanding of
the task but a profound knowledge about the human partner. This can be achieved by conducting
experiments. Possibilities to integrate this knowledge inthe control architecture of robots are
considered in the second step. Afterwards a prototype can bedeveloped. The matching between
the requirements and the performance of the prototype are investigated in the last step, again
this can be done experimentally. Note, that this can be an iterative process based on evalua-
tion results. The actual development of a robot (step three)classically belongs to the science of
engineering, as well as the system evaluation from a technical point of view. However, a user re-
lated evaluation of robots is mainly executed with psychological methods. Within the context of
human-robot collaboration the first two steps in the design process require a close collaboration
between engineering and psychological science: Each discipline has different methods to derive
knowledge and models on the partners in human-robot collaboration.

Thus, there aretwo levels in the design process of robotic partners in haptic collaboration,
which can be enhanced by psychological experiments: a) fundamental knowledge on the user’s
behavior, capabilities and preferences can enhance the hard- and software design in terms of
requirements which have to be met (step 1); b) evaluations ofexisting robots with potential users
allow feedback on achieved progress (step 4).

In the following, it is investigated in which ways psychological experiments are employed in
haptic collaboration to date.

3.2 Development of Interdisciplinary Work over Time

As a first step to gain insights into experiments used in the research field of haptic collaboration,
the development over time of publications presenting psychological experiments in this context
is depicted in Figure 3.1. The first experiment is dated back to 1994 (conducted by Ikeura et al.
[1994]), since then an increasing trend in the numbers of publications can be found (There are
more experiments expected for 20102). However, compared to other fields of research, the total
number of 82 studies including all publications mentioned in Appendix B shows that experimen-
tal research on haptic collaboration is still young. One implication for current studies is the lack
of pre-knowledge when addressing new research questions and designing experiments. Thus, it
is not surprising that most current studies have an exploratory character.

2This dissertation was handed in on 4th of October 2010.
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Figure 3.1: Number of publications per year reporting experiments on haptic human-
robot interaction, compare Appendix B

3.3 Classification of Research Interests and Measures

In this section the motivation to conduct psychological experiments in the field of haptic col-
laboration is investigated by classifying the research interests and summarizing the employed
measures reported in the 54 main studies summarized in Appendix B.

Research Interests: Six classes of research interests could be identified, compare Figure
3.2. If reported studies had several research interests, those where counted separately. In total
76 research interests were examined. The percentages givenin Figure 3.2 and reported in the
following, however, are calculated in relation to the 54 main studies to allow statements on the
percentages of research interests in relation to the numberof publications.

We can see that 44% of studies in haptic collaboration research take place late in the
design process, meaning that they deal with the evaluation of existing setups/artificial partners.
Three research interests are addressed with similar frequency in existing literature on haptic
collaboration: dominance (26%), feedback (26%) and partner ( 30%). These experiments focus
on effects of these factors on human behavior. Thus, there aim is to gain fundamental knowledge
on human behavior in haptic collaboration. Herein, dominance-related studies investigate the
distribution of control, i.e. the influence of each partner on the jointly manipulated object, when
executing a haptic task together. It is assumed that the dominance is of such interest because this
aspect becomes more evident in haptic collaboration than inother forms of interaction i.e. verbal
communication or other sequential interaction. The two individual actions of partner’s plans
are combined synchronous and continuous in haptic collaboration, which makes integration of
individual actions towards a shared goal a major aspect in this kind of collaboration. Dominance
measures, how similar the degree of responsibility for the shared goal is between partners.
Furthermore, dominance is a key concept in training scenarios, where a trainee should gain
more independence from the trainer (higher dominance in thetask) within the learning process.
The other two research fields focus on the effect of additional haptic feedback (mainly in
addition to visual feedback conditions where no haptic feedback is given at all) and the effect
of performing a task alone or together with a partner. Hence,they analyze the effect of haptic
collaboration by contrasting it to these control conditions. The related studies address how
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Figure 3.2: Research interests investigated in the 54 publications presented in the
state-of-the-art-table in Appendix B. If several research interests are inves-
tigated in one study, they are counted separately, leading to a total amount
of 76 research interests. The percentages reported here are calculated in
relation to the number of investigated publications (54).

measures (mainly performance) changes when haptic collaboration takes place compared to
these control conditions. The interest in the effect of feedback and the partner hint towards an
interest in fundamental knowledge on principals of haptic collaboration: What changes if haptic
feedback is provided and a task is done with a partner? Research interest in time delay (7%) is
above all motivated by tele-present scenarios. These scenarios have to deal with the challenge
of network latencies, and thus, it is crucial to know how thisfactor influences the collaboration
between partners. This knowledge can then allow to predict consequences in human behavior
or find adequate ways to compensate time delay. Striking in this overview is the fact that only
another 7% of the investigated studies have the goal to gain information on potential dynamic
models of human behavior in haptic collaboration. Models describing human behavior over
time are a prerequisite for direct transfer of human behavior models on robots. The small
number of studies toward dynamic models is interpreted as a lack of fundamental knowledge on
human behavior in haptic collaboration. So far, the state ofthe art seems to be concerned with
knowledge on the general role of the haptic channel contrasting precise modeling of behavioral
patterns.

Measures: The research interests determine the experimental conditions to address a cer-
tain topic (e.g. partner vs. single person task execution and variation of provided feedback).
Furthermore, they require measures, which give insights tochanges between these conditions
on variables of interest. Figure 3.3 gives an overview on themeasures involved in the existing
experiments on haptic collaboration. If studies used several measures, those were counted sepa-
rately. This results in an absolute number of 90 different measures investigated. Percentages are
reported as a fraction of the 54 studies independently listed in Appendix B.

In accordance with the goal of performance-optimal collaboration, 61% of the investigated
experiments address performance measures. The low percentage of subjective measures (ques-
tionnaires: 15%) in these studies can be explained by the fact that behavioral measures are con-
sidered more reliable than those. Even more important, behavior can be recorded continuously
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Figure 3.3: Measures involved in the analysis of experiments on haptic collaboration
reported in Appendix B. If several measures were used in one study, they
are counted additional. The percentages reported here are calculated in
relation to the absolute amount of 54 independent studies.

and online with behavioral measures, which is of high interest for the development of artificial
partners as it is more cloesly linked to the design of models for robots. Only half of the conducted
studies measure forces or power/energy (37% + 13% = 50%, bothrequiring force measures).
This percentage is lower than expected in research on hapticcollaboration, where the exchange
of force signals is assumed to be a key-component in the communication with a partner. Only
few experiments (17%) analyze (position, velocity or force) trajectories over time to understand
the actual behavior in haptic collaboration. This analysisof trajectories is done by inspection,
a valuable tool to find qualitative differences in behavior.However, to gain knowledge for the
design of technical collaboration partners, more quantitative descriptions have to be involved in
future studies as it is hard to derive design guidelines for parameters in the control architecture
of artificial partners on the basis of qualitative statements. Keeping the goal to develop technical
partners which understand human behavior in mind, it is surprising, that most studies measure
performance based on position signals, but not force related measures. The latter measures allow
describing the collaborative behavior itself, in contrastto its results. However, these findings can
be explained by the high amount of evaluation studies in thisstate of the art, which do not focus
on the understanding of behavior. Depending on the specific research interest, several more spe-
cialized measures such as, lifting altitude of the object [Evrard and Kheddar, 2009], or success
rates in dancing steps [Takeda et al., 2007a] are used in 24% of the investigated experiments. The
majority of those measures can be interpreted task-dependent only. Thus, they are of importance
in the evaluation of specific scenarios, rather than for gaining fundamental knowledge on haptic
collaboration.

3.4 Interaction Types and Collaboration Levels

When conducting experiments to evaluate robotic partners for haptic collaborations or to find
generic principles of human behavior in this context, interaction between partners, whether
human-human or human-robot, is per definition part of the experimental design. This section
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Figure 3.4: Overview on used interaction types as part of the experimental design in
studies reported in Appendix B. HRI refers to human-robot interaction;
HRHI refers to robot-mediated human-human interaction. HHI describes
human-human interaction which is not technically mediated. Within these
categories natural visual feedback is distinguished from virtual reality.

investigates the interaction types used in the experimental setups in the 54 studies reported in
Appendix B.

The more standardized an experiment, meaning high control on the presented conditions, the
more precise is the statement on causality between the controlled variations in the experimental
conditions and the resulting measurements (internal validity). The drawback of such highly
standardized experiments is that they do not necessarily represent real applications, leading
to a lack of external validity. In contrast, the high complexity in real applications can easily
lead to a high amount of data, especially noisy data, which are difficult to analyze and draw
conclusions on. Thus, an important decision when designingexperiments in the context of
haptic collaboration has to be taken on the validity focus. In the majority of cases there is
a trade-off between both types of validity. Hence, an experiment can either focus on the
identification of causal rulesor the examination of real applications.

Interaction Types: One component, which has to be taken into account when considering
the validity of results, is the constellation of collaboration partners in a given experiment: The
advantage in investigatingtwo human partners (HHI)is that found results will represent natural
human behavior. This is of importance when following the user-centered design approach
to substitute one out of two human partners by a robot, based on models gained in the first
step. This constellation is of high interest when collecting basic knowledge, which can then
be transferred to the design of technical partners. Within the investigated studies 12% analyze
human-human behavior. The need to measure performance and forces is challenging within
natural (meaning non-mediated) interaction between two users, which may explain the low
number of studies with this interaction type. However, the focus on two interacting humans
reveals the agreement of the research community towards a user-centered design approach when
developing robotic partners. To enhance behavior measurement, technically mediated setups to
investigate two collaborating humans (HRHI)are required. In addition, haptic interaction in
virtual realities or multi-user tele-present scenarios use this setup. Hence, this is the approach
chosen by most experiments (50%) conducted in haptic collaboration. Thus, the experiments
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allow for a controlled manipulation of the connection between partners. Last,existing technical
partners and humans (HRI)can collaborate. This constellation enables to study the reaction
of human users to partners showing standardized or non-human-like behavior. It is the chosen
approach in 31% of the experiments discussed here. It is assumed, that the number of studies
addressing this interaction type increases in line with advanced knowledge in the filed of haptic
collaboration: For now, the knowledge of haptic collaboration is not profound enough allowing
for a high number of autonomously acting robots. Figure 3.4 illustrates the frequencies in
which interaction types of collaborating partners are addressed in the state of the art. Here, it is
further distinguished how the visual feedback in the given experiment is provided, contrasting
real feedback or virtual feedback (including all artificialvisual information from e.g. computer
monitors). Technical mediated visual feedback is another possibility to control the perceived
signals of the human user within an experimental setup.

Collaboration Levels: Within the conceptual framework described in Chapter 2,two levels
of haptic collaboration based on the task complexity can be distinguished. The lower level deals
only with the shared action plans of the two partners how to move the jointly manipulated object,
i.e. howto combine the two individual force applied on the object. Inaddition, high-level haptic
collaboration requires shared decisions onwhereto move the object (along which trajectory).
The studies reported in Appendix B are classified within thisframework. The classification
criterion by the description of the two levels is not totallydistinct. Here, the level of each
experiment is decided in relation to amount of possibilities for goal-directed object trajectories in
the given task, i.e. if shared decision making on the object trajectory is required. This separation
allows describing a general trend in this overview on hapticcollaboration experiments: 70%
of the experiments involve designs and setups which imply low-level haptic collaboration (low
complexity) and only 30% deal with more complex scenarios. This finding is related to the
recency of the research field. Once the underlying rules and key-factors in low-level haptic
collaboration are understood, experimental setups more linked to real life applications, i.e. higher
complexity, can be employed.

3.5 Participants and Statistical Analysis

In the given context, the goal of psychological experimentsis to understand aspects of human
behavior and information processing in order to derive design guidelines for robotic architec-
tures and associated signal flows. In haptic collaboration research, this implies to describe
typical, interactive behavior. To derive these general statements, a representative sample out
of a theoretical user population is a key-requirement. Herein we differentiate between content
representativity, i.e. if the participants are typical forthe population and statistical representa-
tivity. Here, it is intuitively accessible that results based on a small group are less reliable than
those based on larger samples. As a rule of thumb, representativity is given, when each cell in
the experimental plan (related to the experimental conditions) contains a minimum of 10 units
of analysis, e.g. Richter and Fl?ckiger [2010]. The recommended overall sample size depends
on several factors: a) the experimental design (e.g. whether it is a between-subject design,
where each cell of the experimental plan contains differentunits, or a repeated-measurement
design, where the same units are tested under the different conditions; or the expected effect
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size); b) the goal of the study, i.e. if it is an exploratory study (which requires less participants)
or a hypothesis-testing study (which involves more participants); c) for hypothesis testing: the
recommended sample size depends on the yielded experimental power (related to the expected
effect size, and thus, requires pre-knowledge), and the significance level. For a calculation of
the required sample size it can be referred to e.g. Cohen [1977]. The degrees of freedom in
human behavior are immense. Thus, if studies are conducted as case studies based on only one
or two participants, it is questionable if a typical behavior in haptic collaboration is shown,
which can be generalized to a broader population. Hence, thedanger of spuriously found effects
in measurements is high. The reason for talking aboutunits of analysisinstead ofparticipants
in the context of haptic collaboration research is the following: One assumption of inference
statistic tests is that the tested values areindependent. When studying any kind of interaction,
this independence can not be assured due to a possible adaptation to the partner. This holds true
especially for haptic interaction where the partners are coupled through a (rigid) connection.
There are several possibilities to deal with this challenge:
1) The experiment is designed such that one participant onlyinteracts withoneother partner.
Thus, the dyads taking part in the experiment are independent (contrasting the studies where all
participants interact in all possible dyad combinations).Then, thedyad is the unit of analysis
and independence of measures is achieved. Still, individuals within an interacting dyad cannot
be analyzed this way.
2) Another approach which aims to examine individual behavior is to have anstandardized
partner, who is interacting with participants. This way, one partner is assumed to show identical
behavior, i.e. not influencing the experiment or all participants in the same way. Only the
second partner, theone participant, is the unit of analysis. This can be realized in two manners:
a) HRI, the robot can be programmed to perform exactly the sameactions in each interaction;
b) HHI or HRHI, where a confederate of the experimenter team tries to act in a standardized
way interacting with participants. The drawback of this procedure is that collaboration involves
adaptation towards the partner. However, the trained partner cannot adapt naturally to the partner
as his/her aim is to present a standardized partner. In the author’s opinion this is contradictory
to the goal of studying collaboration.
3) A third possibility to deal with the question of how to examine the effect of the interaction
partner is to directly address it bymodeling the interdependencies. This can be done by using an
experimental design which allows participants to interactwith several partners (e.g. round robin
design [Kenny et al., 2006]) and use more advanced methods such as hierarchical modeling
(compare e.g. Fitzmaurice et al. [2004]; Gelman and Hill [2008]) for analysis. The disadvantage
of this approach is that the dyadic data is no longer independent and cannot be investigated
additionally with standard methods .

Participants: The number of participants involved in the state-of-the-art experiments is
reported in Figure 3.5. Only 41% of publications involve more than the recommended minimum
of ten units of analysis. In contrast, 26% of the experimentsare executed with less than five
participants. Even though results in those studies are often interpreted as general statements,
their generalizability towards the population of users is questionable.

Analysis: In the context of the generalizability of found results, it is also of interest how
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Figure 3.5: Number of units of analysis in the experimental studies on haptic collab-
oration reported in Appendix B. Units of analysis which can be dyads if
both partners are participants or individuals if one partner is a standardized
partner. If more than one experiment is conducted in one publication, the
mean number of units of analysis is reported. One study reported only to
have “several” participants involved [Kosuge and Kazamura, 1997], which
is interpreted as a number between five and nine. If all dyad combinations
within a given group of participants are tested, we report the number of
participants, not the dyads.

the data is analyzed. Inference statistic tests lead beyonddescriptive statistics, which describe a
given data set by reducing the data to some parameters (typically mean and standard deviation).
Inference statistic techniques inform on the representativity of results under a given confidence
level. In the state of the art only 39% of the studies are analyzed with inference statistic methods,
33% report descriptive results. Thus, it is not investigated whether found differences between the
experimental conditions are due to noise (as inter- or intrapersonal differences) or if a significant
effect is found. Note, that the significance of an effect doesnot only depend on its actual size
and the amount of noise, but in addition on the number of participants (via the standard error,
see e.g. Field [2009]; Howell [2007] for more information).

3.6 Related Experimental Studies

While literature on experiments in haptic collaboration wasexamined so far, this section gives a
brief summary on related experiments, which do not directlyaddress the research field. Those
studies are of high importance to gain a full picture of haptic collaboration and to design future
experiments. This following list is not complete and servesas on overview only:

• Studies (psychophysical) on the perception of haptic signals and execution of kinesthetic
tasks, by individuals e.g. [Groten et al., 2008; Pongrac et al., 2006] and between persons
e.g. [Shergill et al., 2003].

• Studies which address non-human-like assistance functions, e.g. [Bayart et al., 2005;
Morris et al., 2007; U. Unterhinninghofen, 2008].

• Experiments which focus on jointly executed haptic tasks which require sequential
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interaction between participants, contrasting parallel actions on the manipulated ob-
ject or interaction point, e.g. [Giannopoulos et al., 2008;Knoblich and Jordan, 2003;
Meulenbroek et al., 2007; Sebanz et al., 2003a,b].

• Experiments investigating the affordance to collaborate by physiological variables, e.g.
arm-span [Isenhower et al., 2010; Richardson et al., 2007].

• Studies addressing “haptic communication´´ based on newly-learned signals, e.g. hap-
tic gestures [Oakley et al., 2001], tactile signals [Chang etal., 2002], haptic icons
[MacLean and Enriquez, 2003], via foot-devices [Rovers and van Essen, 2006] or via
hand-held device [Fogg et al., 1998].

• Experiments dealing with the short-timed haptic interaction when passing objects, e.g.
[Sallnäs and Zhai, 2003].

• Studies on interaction in kinesthetic tasks where no hapticfeedback is given, e.g.
[Groten et al., 2007, 2009c; Heldal et al., 2005; Ruddle et al., 2002, 2003; Smith et al.,
1998].

3.7 Conclusion

For the first time this chapter has provided an overview on howresearch in haptic collaboration
is conducted with psychological experiments to date, referring to the overview-table on exper-
iments in Appendix B. The discussion revealed the increasinginterest in haptic collaboration
research during the last 15 years. However, it was found thatexperimental research in hap-
tic collaboration is still in its beginnings. The research interests and the related measurements
above all focus on performance and evaluation studies. Eventhough the exchange of forces is
essential in haptic collaboration, only half of the reported experiments measure those. Model-
ing attempts of human behavior are rare. Thus, little is known about underlying mechanisms of
how humans conduct haptic collaboration tasks. This may notonly be explained by the short
existence of this research field, but additionally by challenges related to interdisciplinary work.

Together with Appendix B this chapter provides an overview on already conducted studies,
which can enhance the design of those future experiments by hinting open research questions. In
addition, this chapter clearly states the need for further experiments on haptic collaboration.

Based on the overview on state-of-the-art experiments and the related discussion on trends
presented in this chapter, the next chapter will introduce methods to conduct new experiments:
Experimental designs and corresponding measurements are described in detail.
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Whereas the last two chapters provided a theoretical background to conduct research in hap-
tic collaboration, the current chapter will introduce an experimental paradigm and behavioral
measures, which are required to find new experimentally gained insights into this topic. This
chapter is divided into three subchapters. The first one presents the two main research interests
addressed via experiments in this thesis. These interests influenced the decisions on the exper-
imental paradigm and the measures presented in the following two subchapters. However, it
is the major goal of this chapter to present both the experimental designs and the measures in
general terms. This way, future research can profit by using the same designs and measures with
different research questions. The argumentation in favor of variations in design and measures are
precise enough to enrich related decisions future work. Theexperimental paradigm introduced in
the second subchapter allows a manipulation of the jointly desired object trajectory, representing
the shared action plan. The two different levels proposed inthe haptic collaboration framework
can be studied iteratively by two different experimental designs. Next, the subchapter on mea-
sures provides an overview on force and energy components ofrelevance in haptic collaboration,
which so far has not been reported in literature. Then, an efficiency measure is provided which
allows one to relate task performance to the physical effortrequired to achieve it. Until now, the
latter component has been neglected in haptic collaboration research. Even though dominance
measures exist in literature, they have not been compared profoundly. In addition, a new measure
called cognitive dominance is proposed. The experimental designs and measures presented are
the basis of the results reported in the remainder of this thesis.

4.1 General Research Questions

Next to the theoretical background given by the framework (Chapter 2) and the discussion
of the state of the art on haptic collaboration research (Chapter 3), this dissertation provides
experimental results on two research interests, which are outlined in the following:

4.1.1 Intention Negotiation

One fundamental question, which should be answered before the challenges of developing be-
havior models in the context of haptic collaboration, is whether “haptic communication” exists.
If the integration of two human partners‘intentions, possibly including a negotiation of individ-
ually different intentions, cannot be executed via this channel, it is not necessarily required that
technical partners show an corresponding behavior. So far,no studies have investigated system-
atically if intention integration in haptic collaborationtasks is actually enhanced by additional
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information exchange via force and position signals between human partners1. In this thesis,
task performance as an indicator of successful collaboration is related to physical effort as a
measure of the negotiation costs. The relation between these two measures is called efficiency.
The following subchapters will introduce the experimentaldesigns and measures to address this
research interest.

It is possible not to provide haptic feedback at all in virtual scenarios. Artificial forms of haptic
feedback, contrasting the feedback resulting from human-like behavior in haptic collaboration,
can be implemented in robotic assistant partners (as passive following). To show the potential
benefit in deriving models dealing with the challenges of implementing human-like behavior
in haptic collaboration, efficiency of haptic collaboration between humans is experimentally
addressed. Herein, it is the goal to identify important factors, which can affect efficiency in
haptic collaboration. Relating to the research overview on existing experiments in Chapter 3 the
following factors are addressed: a) the effect of a partner by introducing experimental conditions,
where the task is executed by a single user and b) the effect ofmutual haptic feedback between
partners by introducing a control condition without such feedback. Furthermore, efficiency will
be studied for each level of haptic collaboration separately (compare Chapter 2) to derive insights
into an effect of the need to negotiate intentions. The results of the related experiments are then
presented in Chapter 5.

4.1.2 Dominance

Each of the collaborating partners in jointly executed haptic tasks is only partly responsible for
the resulting behavior of the overall system, and thus, contributes only partly to the joint task
performance. A key-concept in haptic collaboration are shared actions, which are based on in-
dividual intentions. The challenge lies in modeling of the robotic partner to behave human-like
when executing such shared actions. Here, it is not enough tohave a model, which performs
well in a given task that is executed individually. The collaboration with a partner has to be
considered explicitly in the integration of individual action plans. Intention integration should
be possible in an intuitive manner to gain high performance and user-friendly interactions. By
investigating the dominance distribution between two human partners, it is possible to gain in-
formation on roles of humans in haptic collaboration when sharing the responsibility of a task
outcome. The identification of such dominance roles enablesprecise quantitative guidelines for
robotic partners.

The influence of mutual haptic feedback will be analyzed by employing a control condition
without such feedback2. Again, the need to negotiate intentions is experimentallymanipulated
by conducting two different experimental studies for the two levels of haptic collaboration as
introduced in Chapter 2. The results and related guidelines for robotic partners, are presented in
Chapter 6.

1except for the studies by the author of this thesis related toin Chapter 5
2In the dominance context the effect of a partner is not investigated as this measure requires two inputs
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4.2 Experimental Design

In order to address the research questions raised above, associated experiments are described in
the following. The experiments separately address the two haptic collaboration levels proposed
in the conceptual framework. The focus is on two general concepts: efficiencyof intention
integration via mutual haptic feedback anddominancedifference in the collaborating partners’
behavior.

Haptic collaboration is no well-studied subject yet as elaborated in Chapter 3. Hence, there
is only little theoretical knowledge available. Therefore, it is decided against experiments in
complex setups of real applications. High complexity wouldhave led to a high amount of in-
terdependent, multi-dimensional data. Without pre-knowledge on what to look for in this data,
experiments in real-life scenarios do not seem promising tofind fundamental insights into hap-
tic collaboration. Drawback of the decision in favor for fundamental, structured experiments
is that the generalizability to real applications is not necessarily given and has to be proofed
in additional experiments. However, standardized experiments lead to higher internal validity.
The reduction of the complexity is desired for both collaboration levels. For these reasons, the
experiments in this thesis are based on a jointly executed tracking task where two persons ma-
nipulate a virtual object together. In line with the generalapproach in this thesis, the experiments
presented in the following are conducted with human dyads togain knowledge about “natural”
human behavior in haptic collaboration. In contrast to existing experiments in this context, the
new designs and setups offer the following advantages:

• The latent concept of the individually desired trajectory is made measurable and experi-
mentally controllable.

• For the first time, it is possible to investigate shared decision making via mutual haptic
feedback.

• An experimental manipulation of the need to negotiate intentions between partners is real-
ized.

Furthermore, the experiments allow the introduction of control conditions without mutual
haptic feedback in order to understand the effect of this feedback. In addition, the setup enables
exact measurements of position and force signals. The two presented experimental designs ad-
dress the two levels of haptic collaboration presented in the framework (Chapter 2) iteratively as
a first attempt to investigate the proposed components separately and allow a first validation of
the framework.

Components of the experimental setup and design are described in detail in the following.

4.2.1 Jointly Executed Tracking Task

The tasks mostly used in existing experiments on haptic collaboration are pointing or position-
ing tasks (e.g. Mateo et al. [2005]; Rahman et al. [2002b]; Reedand Peshkin [2008]), tracking
tasks (e.g. Basdogan et al. [2000]; Glynn et al. [2001]; Glynnand Henning [2000]), and cube
manipulation/lifting of an object (e.g. Evrard and Kheddar[2009]; Hamza-Lup et al. [2009];
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Salln̈as et al. [2000]; Salln̈as [2001]). Mostly one-dimensional tasks are chosen to reduce com-
plexity. Here, a jointly executed tracking task as a structured experiment representing real sce-
narios based on haptic collaboration is chosen for the following reasons:
A) As stated in Chapter 2, intention integration is assumed to bea key-concept in haptic collab-
oration. Intentions can only be addressed in an experiment where the individual and (resulting)
shared intentions, i.e. the desired behavior, are not only cognitive representations, but are made
explicit in the experimental design. In a one DoF pointing task only the final position is clearly
defined and the movement trajectory in time is not experimentally controlled. In contrast, the
joint tracking task paradigm allows instructing the desired behavior/goal at each time point.
B) A virtual task, in contrast to a task taking place in reality (compare e.g. Reed and Peshkin
[2008]), is chosen because virtual reality offers the advantage of controlled manipulation of the
visual information of the track, resembling the individualaction goals. Thus, the visual feedback
given can be experimentally controlled and reduced to enhance a focus on the haptic modality in
a first step. In particular, this setup allows studying high-level haptic collaboration by introducing
different individually preferred action plans. Thus, shared decision making in accordance with
the described framework (see Chapter 2) can be investigated.
C) When studying the effects of a partner and mutual haptic feedback it is required that adequate
control conditions can be realized within the experimentaldesign. The virtual tracking task
paradigm allows to be executed by one person only (controlling the effect of a partner) and to be
executed without haptic feedback from the partner (addressing the effect of haptic interaction).
D) The joint tracking task paradigm enables the implementation with several devices and in
virtual realities of varying complexity (e.g. visual information, degrees of freedom, dynamics of
manipulated object). Thus, once generic models are found and key parameters in a scenario of
low complexity are identified, the generalizability of these results can easily be tested.
E) The tracking paradigm is well studied for individual performers (e.g. Jagacinski and Flach
[2003]; McRuer and Jex [1967]; Rasmussen [1983]; Wickens [2004]) and thus, there are de-
scriptive and control theoretic models provided for the single person behavior, which may be
adoptable for two persons, see Feth et al. [2009a] and compare Section 2.1.7.
F) As Rasmussen [1983] points out, the tracking task is non-challenging when it is operated by
a single individual and is therefore handled on the skill-based level. Hence, when participants
are asked to execute a tracking task collaboratively, it is ensured that enough higher cognitive
resources are still available to focus on the collaborationwith the partner.

To the author’s best knowledge, this experimental task has so far only been used on lower
level haptic collaboration, i.e. with identical referencepaths for both parters, by Basdogan et al.
[2000]; Glynn et al. [2001]. The here introduced shared decision making in a tracking task,
i.e. different reference paths for the partners as part of high-level collaboration, has not been
investigated so far in literature.

4.2.2 Two Levels of Haptic Collaboration

To gain insights into the two different levels of haptic collaboration, the meaning of the decision
module introduced in Chapter 2 is taken literally. In accordance with the low-complexity ap-
proach, binary decision making is represented by the higherlevel haptic collaboration within the
joint tracking task paradigm. In Figure 4.1 the relation between the experimental design and real
life applications (table carrying) is demonstrated together with the substitution of one partner
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Figure 4.1: One approach to design intuitive technical partners in kinesthetic tasks is
to substitute one human partner of the interacting dyad. The knowledge
gained on HHC in controlled experiments can enhance HRC in actual ap-
plications.

(towards real human-robot collaboration, here on high-level collaboration). However, it should
again be noted that both haptic collaboration levels address basic concepts of haptic collabora-
tion; the joint tracking task is not supposed to meet the complexity of a real life scenario.

4.2.3 Control Conditions

For a deeper understanding of haptic collaboration, control conditions have been introduced in
literature which allow the investigation of the effect of a partner and haptic feedback on var-
ious measures. By eliminating either one of the two key parameters in haptic collaboration,
the advantages of haptic collaboration can be addressed. Inthe existing literature, conditions
without collaboration, i.e. without a partner (compare e.g. Reed and Peshkin [2008]) or with-
out haptic feedback are introduced (compare e.g. Basdogan etal. [2000]; Salln̈as et al. [2000];
Salln̈as [2001]). Depending on these control conditions, the conclusions, which can be drawn
from differences between the experimental conditions, vary. In the following, an overview on
(dis-)advantages of possible control conditions is presented:
A) Single-person, single-hand control condition:In this condition, interaction does not take
place by definition. Mental models of the partner and action plan integration are not necessary.
Hence, differences between the single-person condition and the haptic interaction condition can
have several reasons, i.e. the effect of the haptic feedback, the increased workload due to action
plan integration, the task simplification due to the supportof the partner, and possible social
effects (to name some sources of variations in measurements) are confounded.
B) Single-person, dual-hand condition:This control condition does not require mental models of
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a partner but still interaction takes place due to the fact that the two hands have to be coordinated.
The dual-hand condition can be presented with and without haptic feedback, and thus, allows to
study the effect of feedback separately from the effect of interaction in motor-coordination. The
effect of shared mental models can be examined. The challenge lies in the fact that the single
person has only one dominant hand, whereas the partners in a dyad can both work with their
dominant hands. Therefore, the comparability of task execution between those two conditions is
not fully given.

C) Without-haptic-feedback control condition:Here, interaction takes place as in the haptic con-
dition on the physical coordination level as well as on the cognitive level, because mental models
of the partner are required. However, providing visual feedback from the partners actions only,
potentially leads to inconsistencies when two persons jointly manipulate an object. For the in-
dividual the proprioceptive movement of the muscles and theso-estimated object movement is
not necessarily consistent with the real object movement, which is also influenced by the partner.
Therefore, this control condition confounds the effect of additional haptic information from the
partner with effects due to disturbances related to this feedback. In addition, two cases have to be
separated: a) the haptic feedback of the object is still provided in this control condition as in the
here presented experiments or b) no haptic feedback at all isgiven (e.g. Basdogan et al. [2000];
Salln̈as et al. [2000]). In the latter case, the overall effect of haptic feedback cannot be separated
from the effect of haptic feedback on the actual interaction, thus communication between part-
ners. In relation to the general research interests in Section 4.1, haptic feedback from the object
is provided in the control condition. This seems to be the best solution in the given context as
further discussed in Section 5.1.

D) Technical partner:Comparing a technical partner to a human partner is foremost done to
evaluate a model of an interactive haptic partner. Differences between the two conditions allow
defining the quality of such a model. Because the model needs tobe defined beforehand, this
control condition is added for the sake of completeness but its use depends on the development
of advanced technical partners.

In the experiments described in the following, control condition A and B are chosen to study
low-level haptic collaboration. To the author’s best knowledge no studies, other than the one
presented here, have so far used conditions without haptic feedback (control condition A) and a
partner (control condition B) within the same experiment. For higher level haptic collaboration
involving shared decision making, the single-person control condition is of no use as shared
decision making can only be studied within dyads.

4.2.4 Experimental Setup

After the presentation of the task and the experimental conditions in the last section, the spe-
cific realization of the experiments on low- and high-level haptic collaboration are shown in the
following. First, the general design of the experiments andtheir setup is described for lower
level haptic collaboration. Then, the undertaken extensions in order to address high-level haptic
collaboration are introduced.

58



4.2 Experimental Design

Virtual Environment

Haptic 

Feedback

Haptic

Feedback

Human

Action

Human

Action

Visual

Feedback

Visual

Feedback

Human

Operator 2

Human-

System

Interfaces

Human

Operator 1

Haptic

InterfaceScreen Screen

Haptic

Interface

Figure 4.2: Experimental setup where two users can jointly manipulated a virtual ob-
ject. Except for the visual task instruction, the setup is identical for the ex-
periments in low- and high-level collaboration. The figure shows the signal
flow between the two operators and the virtual environment.

Low-Level Haptic Collaboration

The general design of the setup to study virtual haptic collaboration between two human users
is depicted in Figure 4.2. A description of the underlying control of the haptic devices is given
in Appendix C. To match the definitions of low-level haptic collaboration within the conceptual
framework introduced in Chapter 2, the experiment conductedto study this level was designed
in the following way:

Participants are asked to move a virtual object, visually presented by a cursor (red ball) along
a given reference path (see Figure 4.3). As introduced in more detail below, four different con-
ditions, two single person and two interaction conditions (two partners), are defined. All four
conditions have in common that the reference path is designed as a random sequence of the same
components (triangles, curves, straight lines, jumps). Itis displayed as a white line on two black
screens (both showing the same scene). As the path scrolls down the screen along they-axiswith
a constant velocity of15 mm/s, participants are asked to track it as accurately as possible. The
overall path length is constant for all trials and experimental conditions. One trial takes161 s.
The horizontal position of the red ball renders the resultant position of the haptic interfaces the
participants use to interact with each other. These haptic interfaces have one degree of freedom
(1 DOF) and allow movements along thex-axis (traversal plane of operator). Each interface
is equipped with a force sensor (burster load cell 8542-E), ahand knob and a linear actuator
(Thrusttube). Their control is implemented in Matlab/Simulink and executed on a PC running
the Linux Real Time Application Interface (RTAI). The sampling rate was 1kHz. The graphical
representation of the path is rendered on another computer;communication between both PCs
is realized by an UDP connection in a local area network. Hence, negligible time delay can be
assumed.

The control of the haptic interfaces is designed to model a jointly carried virtual object. The
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Figure 4.3: Photo of the experimental setup consisting of two linear haptic interfaces
and two screens with the graphical representation of the tracking path. Dur-
ing experiments a wall was placed between the participants blocking the
view on the other participant’s screen.

virtual object is defined to be a pure inertia, which can be by the differential equation:

fsum(t) = f1(t) + f2(t) = mẍo(t) (4.1)

wherefsum is the sum of the forces applied by the participant/s,m is the virtual inertia and̈xo

is the acceleration of the virtual object and, hence, of the haptic interfaces. The corresponding
transfer function in the Laplace domain

Go(s) =
Xo(s)

Fsum(s)
=

1

ms2
(4.2)

is realized by a position-based admittance control (for more details refer to Feth et al. [2009b]).
This setup allows not only the measurement of the resulting forcefsum(t) but also of the indi-
vidual forcesf1(t) andf2(t) applied by each participants as would be the case in real object
manipulation.

In order to investigate the effect ofhaptic collaborationin the joint pursuit tracking task, a
condition with mutual haptic feedback between partners andthree different control conditions
are examined. The resulting four conditions are described below:
1) Vision-haptic condition (VH): The partners receive visual feedback of the virtual object, which
they jointly manipulate. In addition, they are connected via the haptic channel. Next to the
inertial forces of the virtual object (m=20 kg), they can feel the forces applied to the objectby
their partner. This is achieved by introducing a virtual rigid3 connection between the interacting
partners. Thus,xo(t) = x1(t) = x2(t) and the virtual object (cursor) position is determined by
transforming Equation (4.2) to the time-domain and solvingit for xo(t)

xo(t) = fsum(t) ∗ go(t) (4.3)

with go(t) is the inverse Laplace transform ofGo(s).
2) Vision condition (V): Again, visual feedback is provided. The inertia (m = 20 kg) of the
cursor is divided into two parts, such that each partner has to move10 kg, which presents an
equal sharing of the workload. The participants feel only the inertia, but not the forces applied
by their partner. This contrasts with haptic interaction studies in the literature where no haptic

3realized with a high gain PD-controller, compare Appendix C
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feedback at all is provided in the interactive control condition. In contrast, environmental force
feedback from the object (mass) is provided in all conditions. Thus, solely the effect of the haptic
feedbackbetweenpartners can be investigated. The cursor position is definedas the mean of the
two individual device positions. Therefore, each partner can only infer what the other is doing
from inconsistencies between his or her own movements and the resulting cursor position (for
further research on inconsistencies in this context see Groten et al. [2009c]). Here, the object
position is calculated by

xo(t) = (x1(t) + x2(t))/2. (4.4)

3) “Alone” condition with full interial mass (AF): The participant executes the task alone. He/she
has to move the virtual inertia in the same way as two participants do in the VH trials (m =

20 kg).
4) “Alone” condition with half intertial mass (AH): The participant executes the task alone.
He/she has to move only am = 10 kg inertia, which is identical to the workload of an individual
in an interaction task with equally shared workload or the workload in the vision condition.

Participants are not allowed to speak to each other during the experiment. In this way, it is
guaranteed that only haptic communication is studied. Theyare informed about each condition
beforehand. In addition, they know that the first curve of thetracking path is for practice and
will be excluded from the analysis.

The sequence in which the conditions are presented to the participants is randomized. For a
further standardization of the test situation the following arrangements are made: a wall is placed
between the two participants to block visual information about the movements of their partner;
participants use their right hand to perform the task (all ofthe participants are right-handed);
white noise was played on headphones worn by the participants, so the noise of the moving
haptic interfaces would not distract and verbal communication cannot take place. Further, the
position (left or right seat) was randomized with the order of experimental condition. The task is
considered intuitive enough to neglect a possible effect ofpre-knowledge on haptic devices. To
be sure to eliminate this factor, a repeated measurement design is chosen where conditions are
counterbalanced.

High-Level Haptic Collaboration

The experiment developed to study high-level collaboration is designed employing shared de-
cision making. Shared decision making is e.g. required whentwo persons carry an object and
face the challenge how to surround an obstacle in their way, compare Figure 4.1. Except for
this deviation from the setup described above, the two experiments are kept as similar as possi-
ble. However, on this level of haptic collaboration, no “alone” conditions are considered as the
focus is on shared decision making which has no equivalent within one person. Thus, two differ-
ent conditions regarding the feedback between partners arecompared: The interactive condition
with and without haptic feedback between partners.

Again, participants are asked to move a virtual inertia visually represented by a cursor along
given reference paths. This time, the reference paths partly differ for the two partners and involve
binary shared decision situations: Each participant sees apath on an individual screen and the
cursor is again jointly controlled, see Figure 4.3. The velocity of 15 mm/s is kept constant
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Figure 4.4: Exemplary path combination for binary decision making in the joint tracking
task.

compared to the low-level experiment. One trial takes190 s. The same interfaces are used. The
dynamics of the virtual object are again defined by Equation (4.2).

To introduceshared decision makingto the tracking task paradigm, it is necessary to fork the
track to meet the requirement of available options when defining decisions. The track is forked
with an angle of 180◦ between the two options leading to a rectangular path, whichrequired clear
decision statements. These decision situations offering two options are separated by intermedi-
ate no-decision track sections, see Figure 4.4. The track could be foreseen by 5s. All decision
situations (defined as the 2s interval around the bifurcation of the track) are identical except for
the instructed preferences explained below: They all require step responses of the cursor. There-
fore, if the cursor is following the track accurately (possible only in theory), the task execution
alone requires the same effort in all conditions. Differences in measures between decision types
are therefore causally determined by the decision factor.

Part of the definition of shared decision making is intentionrecognition, or, in other words,
the forming of mental models from the partner’s preferences. When approaching the decision,
participants do not know the partner’s intentions in terms of the preferred path a priori. Thus,
negotiation of the shared trajectory is required. However,there are two challenges in the experi-
mental design of such situations:

A) the dyad could agree on one of the two options (either left or right track) at the beginning of
the trial, stick with this solution and thus make no decisions in the remaining trials.

B) one of the partners could behave passively in decision situations - then the experiment would
no longer address shared decision making.

To overcome these challenges, preferences are externally introduced to the decision situation.
Hence, partners do not receive the same visual representation of the path. Although the general
form is the same, the thickness in the analyzed decision types varied: A track segment can
be depicted in normal path thickness or in forty times the normal path thickness. In Figure
4.4 one paired path is shown as an example. The variation of the path thickness introduces
individual preferences into the tracking task because the path is easier to track when thicker.
These preferences are equivalent to different informationbetween partners in real scenarios.
This leads to preferences in decision situations such as: a)one of the two tracks between which
the decision had to be taken was thicker than the other, leading to a preference for the thicker path
as it was easier to follow; b) only one path was depicted for anindividual, thus no decision was
possible but there was a clear preference for the depicted path. To make sure that the resulting
step in the track presenting the latter situation was not associated with this situation only, the
step was repeated in the track for both partners, so no decision had to be taken.

The preferences in these decision situations represent different information or possibilities
for the partners in real life applications. As an example, one partner may be aware of different
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options to accomplish a task but prefers one of them due to easier task execution or is limited by
his/her workspace. It is necessary that both partners communicate their preferences/recognize
each others intentions to allow a smooth task execution and an overall high performance. To
transfer this goal of high performance to our experiment, participants are instructed that their task
was to reach the highest possible overall performance as dyad, not as individuals. Performance
is defined as the deviation to the closer path of the two which was available for both partners
(described in detail when reporting the experiments in Chapters 5 and 6). In order to strengthen
this motivation, participants were informed beforehand that they would be paid performance-
related. This, however, was not true; all participants gained the same amount of monetary reward.

Note, that this experimental design does not allow to study high-level haptic collaboration
independent of the lower level. This is considered to be equivalent to real life applications and
can be inferred directly from the structure of the conceptual framework introduced in Chapter 2.
Next measures are introduced which allow an analysis of behavior in the presented experiments.

4.3 Measures

The last subchapter introduced the experimental design andsetup developed in line with the
research interests on intention integration and efficiency, as well as dominance in shared actions
in haptic collaboration tasks. This section introduces measures, which enable a description of
human behavior in these tasks, and thus, build the foundation for future modeling of technical
partners.

As a first step, force and energy components, which are relevant in haptic collaboration, are
presented and challenges involved in those measurements are discussed. Then, an efficiency
measure is introduced that allows combining performance measures with physical effort mea-
sures such as forces and power. This efficiency measure is motivated by existing literature
on haptic collaboration (summarized in Section 3), where experiments addressed performance-
related measurements above all others, only 50% of the publications measured forces or power,
and no studies (except for publications by the author of thisthesis) combines these two most
important behavioral measures in haptic collaboration. Therefore, only little is known about the
relation between these two components. Next, dominance measures as a strategy to investigate
action plans between partners are presented. Again, these measures are motivated by the interest
in the research community as stated in Section 3. Within the dominance measure, two different
components are differentiated: physical dominance and cognitive dominance, which is related
to decision making processes. This division is in line with the two levels of haptic collaboration
presented in the conceptual framework in Chapter 2.

It is important to note that this dissertation focuses on behavioral measures in contrast to
subjective measures, which can be gained from questionnaires and in contrast to physiological
measures. Here, behavioral measures are chosen because theoverall goal is to achieve the same
behaviorfor robotic partners compared to humans. Nevertheless, there is awareness that in later
steps, especially in the evaluation of developed robotic partners, several measures should be
combined to allow a full picture of haptic collaboration.
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Figure 4.5: Comparison of the external, interactive and difference forces in three 1 DoF
examples. The measure fdiff was introduced by Reed et al. [2005]

4.3.1 Force and Power Components

In Pan et al. [2005] a force decomposition of the applied forces by a human intowork andnone-
work forces is given in the context of assistant robots. This decomposition is based on the fact
that due to environmental constraints not all forces applied to an object lead to a movement of
this object. In Pan et al. [2005] the vectors forwork andnone-workforces are defined to be
independent (orthogonal), which can only be assumed with time-invariant constraints. In haptic
collaboration, the constraints can be caused by the partner, who is applying forces in the opposite
direction. Thus, the constraints are no longer time-invariant. Therefore, a different type of force
decomposition is introduced here. In relation to the experimental setup described in Section
4.2, all of the relevant forces are restricted to a dyad manipulating a rigid object in a 1 DoF
environment. However, the definitions can consistently be extended for more DoFs and more
partners, as well as in direct haptic interaction without anobject (e.g. guidance). The variables
f1 andf2 4 are the forces applied by each of the interaction partners onthe object. Two different
components of these forces are proposed in relation to Pan etal. [2005]: The external forcefE

and the interactive forcef I . Thus, the force applied by partner 1 can be described as:

f1 = fE
1
+ f I

1
. (4.5)

The movement of the object is caused by the sum of the externalforces (related towork

4All measures derived in this sub-chapter can be defined for over time(t). However, this is not explicitly mentioned
in each equation.
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Figure 4.6: Measurements corresponding to all force types introduced so far are plotted
over time for an exemplary trial in the joint tracking task experiment (low-
level haptic collaboration, haptic feedback condition)

forces), which also equals the sum off1 andf2

fsum = fE
1
+ fE

2
(4.6)

= f1 + f2 (4.7)

and, thus, implies
f I
1
≡ −f I

2
. (4.8)

Interactive forces occur if the two individuals do not applyforces in the same direction, but
rather push against or pull away from each other (related tonone-workforces). Thus, interactive
forces are contradictory and do not contribute directly to task execution, i.e. do not lead to an
acceleration of the object. Hence, interactive forces can be interpreted as wasted effort from a
purely physical point of view. However, they could play an important role in communicative
aspects of haptic collaboration. Interactive forces are defined to be non-zero only if the two
partners apply forces in opposite directions. Furthermore, the absolute value of interaction forces
is defined to be identical for both partners:

f I
1
=











0 if sgn(f1) = sgn(f2)

f1 if sgn(f1) 6= sgn(f2) ∧ |f1| ≤ |f2|
−f2 if sgn(f1) 6= sgn(f2) ∧ |f1| > |f2| .

(4.9)

The interactive force of the other partnerf I
2

is determined correspondingly by (4.8). Based on
the obtained interactive forces, the external forcesfE

1
andfE

2
are calculated by applying (4.5).
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Human arm 1 Virtual object Human arm 2

Figure 4.7: Energy flow in haptic human-human interaction, see also Feth et al. [2009b]

Figure 4.5 illustrates schematically interactive and external forces. Due to our definition of
coordinate systems, partners push against each other iff1 > 0 and pull away from each other if
f1 < 0.

In Reed et al. [2005] another form is chosen to describe the relation between two individual
force inputs, the difference force, defined as:

fdiff = f1 − f2. (4.10)

The difference forces are also displayed in Figure 4.5 to contrast them with the interactive forces
defined above. The difference force has been claimed to be “a measure of disagreement of the
members” (Reed et al. [2006]) that “has no effect on acceleration” (Reed et al. [2005]). The
author of this dissertation does not agree with the latter statement as onlyf I has no effect on
the object movement. The measurefdiff is presented here to clearly contrast it with interactive
forces. Figure 4.6 gives further explanations of the relation between the different force measures
by plotting an exemplary measure over time.

The separation of internal and external forces has formallybeen proposed by
Yoshikawa and Nagai [1991] in a different context. Note, that the definition off I as it is
introduced here can be applied to translatory movements andis valid in static situations only:
Forces measures due to the dynamics of the object or an activepartner, who has to move the
inertia of a passively behaving partner (the active partnerhas to move the passive partner’s arm
by the other partner in addition to the object) are not taken into account. Hence, these factors
can be interpreted as error within the force measures. To thebest knowledge of the author no
dynamic definition could be derived in literature yet. At this early stage of haptic collaboration
research the static definition is considered precise enoughto investigate basic behavior patterns.

In addition to the force components, measurement of power allows characterizing behavior in
haptic collaboration. Power-based measures combine the two aspects of haptic interaction sig-
nals: force and velocity. Corresponding, energy flows can be analyzed between the two partners:

P1 = f1ẋ1 (4.11)

whereP1 is thepower / energy flowfrom partner 1 to the environment (here including partner
2), f1 is the force applied by partner 1 andẋ1 is the velocity of the object. The velocity is
equivalent for both partners only when they hold on to the same interaction point. The energy
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Figure 4.8: Exemplary measurement of position and force data in the joint tracking task
experiment (low-level, haptic feedback condition). When both partners ap-
ply forces in the same direction (sign-wise) the measurements represent
active manipulations of the object. This is not necessarily true for forces
applied in opposite directions.

flow between partner 2 and the environment is defined correspondingly. The different systems,
human operators and environment, and the respective energyflows are introduced in Figure 4.7.

After the force and power components have been introduced, specialties of behavioral mea-
surements in haptic collaboration are addressed now:
1) Measurements in haptic collaboration are based on physicalvariables, which results intime-
series datawhen collected. Specific information (parameters) has to beextracted to make inter-
pretation possible. This can be done by methods, such as statistical analysis, time series analysis,
or control-theoretic modeling.
2) It is important to differentiate between data representinginteractingindividualsanddyads.
Depending on the analysis level, modeling assumptions haveto be checked (i.e. two indi-
vidual data streams within a dyad are not independent) and conclusions of data analysis have
to be adapted to the level of the unit of analysis. The individual behavior within a dyad is
the data most interesting to find hints for human-like modelsof technical partners. How-
ever, it is also the data most difficult to investigate as standard procedures of inference statis-
tics cannot be applied, due to the dependent data. In methodsfor social psychology these
problems are addressed, and the knowledge can be transferred to haptic collaboration re-
search David A. Kenny [1996]; Griffin and Gonzalez [1995, 2003]; Kashy and Snyder [1995];
Kenny et al. [2001, 2006]; Maguire [1999]. Furthermore, to be able to make statements about
individual behavior it is necessary to have two force-torque sensors involved in the setup. Using
only one sensor to measure theinteractive forcesonly allows analysis of dyadic behavior which
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is of limited use when one individual partner should be modeled.
3) The measurement of forces in haptic interaction comprises some challenges in relation to the
definition of the cause / theresponsible partnerfor a specific measured force. The interpretation
of the so gained force signals is not straightforward. In line with Pan et al. [2005], measured
forces can be actively applied or result from passive behavior, e.g. whenpartner 1is pulling the
object not only this forces will be recorded but the second partner’s force sensor will measure
forces in the opposite direction as well, due to his/her arm inertia. This is true even ifpartner 2
did not willingly pull in the opposite direction. Hence, it cannot be separated if the recorded
individual force with the lower absolute value is actively applied or not. Figure 4.8 gives an
example of individually measured forces in relation to the resulting object movement along a
reference trajectory.
4) Due to the above described dynamics in this interactive taskexecution, one fundamental prob-
lem in haptic collaboration is thatindividual errors in action plans, i.e. forces which do not lead
to a performance increase by reducing the distance between cursor and path, cannot be measured.

4.3.2 Efficiency Measures

Efficiency is generally defined byperformancein relation to thecostsnecessary to achieve it.
The concept of workload (cost or effort, which are considered equivalents here) in the evaluation
of human-machine-systems was introduced by Hart and Wickens [1990]. After a short moti-
vation, a general overview on efficiency measures is presented. Then, performance and effort
measures relevant in haptic collaboration tasks are described. Finally, an efficiency measure for
this purpose is provided.

In the context of haptic interaction the existing literature tends to focus on performance rather
than cost (or benefits) due to the physical coupling between partners, i.e. the physical workload.
However, physical effort is intuitively related to kinesthetic tasks: a) the existence of a partner
may reduce the physical individual workload as the individual needs to handle only parts of the
dynamics of the objects; or b) contrasting only visual coupling between partners (as possible in
VR), the presence of a physical connection between partners may also be perceived as hindrance
because the necessity of coordination between partners could be increased. Low coordination
may thus result in additional physical costs (in terms of interactive forces as defined above).
Hence, in this thesis the focus lies on physical effort contrasting mental effort as a key concept
of haptic collaboration. In the following it is always referred to physical effort measures if not
stated otherwise. Besides the research interest to investigate the efficiency of haptic feedback
between partners for information exchange, there is further motivation to derive such a measure
for haptic collaboration research:

1. The found relationship between physical costs and performance can give insights into the
nature and utility of the forces or energies exchanged between partners. Based on this
knowledge, more advanced forms of artificial haptic feedback for autonomous helping
robots, avatars in virtual reality, and assistance functions in tele-present scenarios can be
established in early stages of the design process.

2. Evaluations in the context of haptic interaction based onboth dimensions (performance
and effort) will give a more complete picture of possible coupling algorithms between
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partners, having in mind the design of assistance functionsand the model of artificial
partners (compare e.g. Schaußet al. [2010]).

Next, efficiency measures from several disciplines (such aseconomics, (electrical) engineer-
ing, cognitive science, usability and human factors) are introduced. On this basis an appropriate
measure for haptic collaboration is developed.

Efficiency measures are most widely used in economics. A common feature is the structure of
measures as a ratio between an output and a resource input (e.g., purchase per staff, contracts per
buyer, administrative dollars per contract [Moncka et al.,1979]. In Dumond [1994] efficiency is
defined as “the amount of resources used to produce a unit of output”. This efficiency measure
is relative. That is, it allows different persons or situations to be rated against each other, but
it is only meaningful within the particular comparison. Themeasures introduced in economics
contribute to understand the general concept of efficiency,but they cannot be used to establish a
specific measure in the haptic interaction context, becausethe performance and effort measures
involved are too general.

Therefore, an efficiency measure related more closely to haptic interaction is examined: In
the engineering context, the definition of efficiency conveys the benefit to describe anabsolute
measure, meaning that it can be directly interpreted without a comparison: Efficiency is “the
ratio, expressed as a percentage, of the output to the input of power” (Parker [1993]) and can be
formulated as

Efficiency=
Useful Power
Total Power

(4.12)

Because input and output are measured on the same scale, this formula enables a percentage to
be specified, which allows for intuitive interpretation of agiven efficiency. Such an absolute
measure would be desirable for efficiency in haptic interaction. However, this would require a
measure equivalent to power, which is universal to all applications of haptic collaboration.

In Zhai and Milgram [1998] a modified version of this absoluteefficiency measure is applied
in a kinesthetic task, in order to quantify the efficiency of the coordination of multi-degree-of-
freedom movements. Here, the authors take into account the path length that the object (or a
specific edge) was moved in comparison to the path length necessary to move to accomplish the
goal:

Efficiency=
AP −NP

NP
(4.13)

whereAP is the actual path executed by participants andNP the necessary path, which is the
shortest distance between two positions.AP −NP can thus be thought of as the “wasted effort”
(Zhai and Milgram [1998]). Therefore, this formula describes an inverse measure of efficiency,
hence calledINefficiency of the coordination movement. The disadvantage of this measure is that
it only indirectly describes the workload by position trajectories in contrast to force measures.
The author of this dissertation considers this measure to bea performance measure instead of an
efficiency measure as it describes a standardized deviationfrom the desired path.

Another research field that provides efficiency definitions potentially relevant to haptic in-
teraction is human-computer interaction or human-factorsanalysis: In addition to satisfaction,
effectiveness and efficiency are the central criteria of usability in computer science. The follow-
ing definitions can be found: “Measures of efficiency relate the level of effectiveness achieved
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to the expenditure of resources” Bevan [1995] in accordance with ISO 9241-210. Hereby, effec-
tiveness is described by two components: a) the quantity of atask that is completed in a given
time [speed] and b) the quality related to the task goals [accuracy] (ISO 9241; Frokjaer et al.
[2000]). Depending on the involved resources, several efficiency measures exist. Generally,re-
sources may be mental or physical effortwhen “human efficiency” is measured Bevan [1995];
Paas and Merri?nboer [1993]; Tullis and Albert [2008]. The authors stress the fact that these
measures of efficiency arerelative. They can be used to investigate different tasks, users [partic-
ipants], or products [displays, interfaces], but are meaningful only in a specific comparison.

One specificrelative efficiency definition in the field of human factors analysis isgiven in
Camp et al. [2001]; Paas et al. [2005]; Paas and Merri?nboer [1993]: Efficiency is defined as a
combination of performance measures and cognitive load (mental effort), where mental effort
corresponds to the “total amount of controlled cognitive processing in which a subject is en-
gaged” (Paas and Merri?nboer [1993]). In Camp et al. [2001] itis stated that ”high performance
with a low mental effort is most efficient and a low performance combined with high mental
effort is least efficient”. The authors express this conception of efficiency in terms of a two-
dimensional space with a performance-axis (y-axis) and an effort-axis (x-axis), where the two
measures arez-score standardized (mean = 0, std. deviation, = 1) to accommodate differences
in measurement scales, see Figure 4.9. A reference line where Efficiency = 0 is defined by the
linear function, Performance = Effort (both z-scored). This reference line is representing mean
efficiency (in the given sample) under the assumption of a linear relation between effort and
performance. Any particular observation of effort and performance defines a point in this space,
and the corresponding efficiency can then be calculated by the perpendicular distance of the
point along r to the reference line. The distance, or the absolute value of the relative efficiency
measure, can be calculated as follows:

|Efficiency| = |Effort - Performance|√
2

(4.14)

The sign of this efficiency measure is defined in the followingway: If (Effort - Perfor-
mance)< 0, efficiency is positive, otherwise negative. It is mentioned by the authors that the
linear relationship constitutes an oversimplification, because in many tasks performance will
reach an asymptote that becomes independent of the additional invested effort.

The advantage of this measure is that due to the z-standardization, it is independent of factors
that are constant across conditions of the experiment, suchas the specific task that is performed.
Thus, it allows comparisons of efficiency across experiments having similar manipulations, but
quite different measures of performance or effort as the reference values for both dimensions are
the mean of the given sample.

In Ikeura et al. [1997] an energy-based measure for cooperation efficiency is presented. How-
ever, this measure does not take performance into account, and thus, can hardly be adopted to a
general efficiency measure in haptic collaboration.

Common to all the efficiency definitions noted above (except for Ikeura et al. [1997]) is that
they relate two variables: one measuring the quality of behavior (output, useful power, effec-
tiveness, performance) and the other relating to resourcesinvolved (input, costs, total power,
effort, workload). Here, these words are considered synonymous [Robert and Hockey, 1997].
In general,an efficiency measure expresses a relation between performance and effort, where
efficiency is high when high performance is gained with low effort. It is desirable to derive an
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Figure 4.9: Efficiency as function of performance and effort based on the distance
between a measure and the reference line the efficiency is calculated
[Camp et al., 2001].

absolute measure of efficiency for haptic collaboration. This, however, requires to measure per-
formance and effort on the same scale. Therefore, possible measures of these two dimensions
are introduced in the following.

Exemplary Performance Measures in Haptic Collaboration

Task performance is described either by speed or accuracy, compare e.g. Bevan [1995];
Kerzel and Prinz [2003]. The following list of performance measures only considers objective
behavioral measures, in contrast to subjective ratings.

As summarized in Appendix B, most publications in the state ofthe art measure position
errors, time to task completion or single event errors when addressing performance in haptic col-
laboration tasks. Here, within these performance measuresthe focus is on position errors, based
on the main assumption in this thesis (compare Chapter 2) thatmost haptic collaboration scenar-
ios can be abstractly represented by shared trajectory following. Thus, any kind of displacement
measure between the desired and actual trajectories is of interest and represents the accuracy
aspect of performance. The so-derived measurement will allow us to analyze the experiments
presented in Section 4.2. However, there is a clear drawbackin performance measures based on
differences between desired and actual trajectories: the shared trajectory needs to be known to
use displacement performance measures. This is mainly the case in experimental setups, but not
necessarily in real life applications where the environment can be less structured. Thus, this mea-
sures can serve only to find generic rules but can not be part ofcontrollers for robotic partners.
Some exemplary performance measures are summarized here:
A) Root-mean-square error (RMS) is based on the displacement between the desired and the
actual position of a given object over several time steps or repetitions. Here, an example is given
for the one-dimensional case:
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RMS =

√

∑N

k=1
(xd

o,k − xo,k)2

N
(4.15)

wherexd
o,i is the desired position,xo,i the actual position andN the number of samples in the

examined interaction sequence. The advantage of theRMS in contrast to the mean absolute
error is that theRMS punishes large displacements stronger. Hence, it is assumed that the
signal to noise ratio in this measure is increased.RMS and other displacement measures give
precise information on accuracy but do not take into accountthe speed of a task.
B) Time on target (TOT ) is the percentage of desired behavior throughout one trial.By distin-
guishing only between correct and erroneous behavior for each time step, an absolute measure
can be derived. Thus, it represents the time when the task wasperformed “correctly”.

TOT = 100

∑N

k=1
OTk

N
(4.16)

OTk =

{

1 if xd
o,k − xo,k ≤ TOL

0 otherwise
(4.17)

wherexd
o,i is the desired position,xo,i the actual position,N the number of samples in the task

length examined andTOL a possible tolerance value for the accuracy.
Because of its binary nature (on/off target), this measure isgenerally less precise than theRMS

but offers other advantages: Using Bevan [1995]’s definitionof temporal efficiency, TOT is
already an efficiency measure, as it relates a qualitative behavior aspect (correct/incorrect) to a
resource, here time. However, the goal in this section is to introduce physical effort as costs, and
henceTOT can be utilized as performance, but not as efficiency measure.
C) Time to Task Completion (TTC) is another well-known performance measure. It relies on
speed aspects exclusively and is not addressing accuracy.
D) Single-event errors: Examples for this measure in the context of haptic tasks aree.g.
dropping a box (e.g. Sallnäs [2001]) or bumping into the wall of a labyrinth (e.g. Glynnet al.
[2001]). The measure is highly task specific and thus, no listis given here.

Performance measures are highly task-related (for an overview on further measures see e.g.
Jagacinski and Flach [2003]). Hence, depending on a given task, more specialized performance
measures might be suitable. Furthermore, it is important tobe aware of the correct interpretation
of the performance measures: While highTOT measures describe good performance, it is the
other way around forRMS andTTC, because here smaller values are desirable. Hence, the
two latter measures lead to inverse performance statementsand in relation to the effort measure
would lead toINefficiency measures rather than to efficiency scales. To summarize it can be
stated that there is a variety in possibilities to measure performance in haptic collaboration. By
choosing a task to conduct an experimental study in this context, the performance measure is
indirectly derived depending on the task goals.

Effort Measures in Haptic Collaboration

In jointly executed kinesthetic tasks a physical effort measure has to be related to forces. Only
in this way can we address the effort (= the costs arising for the individual accomplishing the
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Individual level (i) Dyadic level (d)

Movement effort MAFE
1,i = fcn(fE

1
(t)) MAFE

d = MAFE
1,i + MAFE

2,i

Interaction effort MAFI
1,i = fcn(f I

1
(t)) MAFI

d = MAFI
1,i + MAFI

2,i

Total effort MAFT
1,i = MAFE

1,i + MAFI
1,i MAFT

d = MAFE
d + MAFI

d

Table 4.1: Effort measures based on interactive and external forces separated for indi-
vidual and dyadic level; the individual level is shown as indexed for partner
1.

task, here the physical effort) which arises from coordination with the partner in addition to the
forces necessary to manipulate an object. Furthermore, effort can be measured by the movement
executed during object manipulation. The combination of this movement effort with forces leads
to power- or energy-based measures, which consider forceandmotion.
A) Force-based Effort Measures: Based on the forces components introduced in Section 4.3.1,
an effort measure for a given haptic collaboration task is now derivedMAF (= mean absolute
forces, see Equation (4.18)). To derive this measure in a meaningful way, movement and in-
teraction effort are distinguished.Movement effortis based on individual external forces and
directly influences the position of the object. Therefore, it is also related to the accuracy part
of performance, the qualitative outcome of such movements.Interaction effort, however, could
influence the communication between partners, helping to establish mental models of the partner
or determining roles. Thus, interaction effort could lead to high performance indirectly. Hence,
the total effort MAFT is the sum of the movement effort based on external forces MAFE and
the interaction effort MAFI in a given interaction sequence. Because the sign of the forces is
defined by direction, which does not influence effort, the absolute force is considered (MAF =
mean absolute force).

MAF =
1

N

N
∑

k=1

|f(k)| (4.18)

with N the length of the task, one trial or data set and f the respective force component.

MAFT = MAFE + MAFI (4.19)

where MAF is the mean absolute force.
In general, effort can be described on an individual (MAFi) or dyadic level (MAFd, which

is indicated by the subscripti andd, respectively). Based on this analysis, effort measures are
defined as a function of the respective forces and listed in Table 4.1.

One important control condition in haptic collaboration research is a condition where no hap-
tic feedback between partners and possibly the object is provided. Thus, the effort measure
should be applicable to this condition as well, to allow a comparison of efficiency values result-
ing from those control conditions. However,f I is not relevant in vision feedback condition, as it
is not felt and has no meaning. Instead, the partners are coupled by some algorithm determining
the object position without feeling each others forces (in the experiments presented here the ob-
ject position resembles the mean of the two individual inputs). Under this condition,f I measures
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only the forces required to move the inertia of the object. Thus, they represent the error due to the
static definition. Therefore, the force-based effort measures are not directly comparable between
a mutual haptic feedback and a vision condition. In addition, it is assumed that in this condition
the physical effort arising for a partner is rather motion than force determined: The individ-
ual can only infer what the partner is doing by comparing his/her own input with the resulting
cursor position (compare Groten et al. [2007, 2009c]). In the case of misinterpretations, addi-
tional movements are required to produce the desired objectmovements. A power-based effort
measure, which considers the movement effort, is presentednext to overcome those drawbacks.

B) Power-based Effort Measures: While overcoming some of the disadvantages of the force-
based effort measure, a power-based effort measure also offers the following benefits: effort
measures in engineering are mainly based on powerP = vf or energyE =

∫

P . Conse-
quently, energy-based approaches are widely used in robotics in the context of haptic inter-
action, especially in teleoperation (Anderson and Spong [1988]; Hokayem and Spong [2006];
Niemeyer and Slotine [1991]). Power as a mean of measuring effort is considered in relation to
the definition given in Section 4.3.1.

It is intuitively clear that a higher energy flow relates to a higher physical effort. But, not only
a positive energy flow, i.e. energy injection to the system (e.g. acceleration of the virtual object),
causes physical effort for the operator, but also a negativeenergy flow, i.e. dissipating energy
from it (e.g. deceleration of the virtual object). For this reason, this effort measure is defined as
the mean absolute power (MAP ) in a given interaction sequence:

MAPd = MAP1,i +MAP2,i =
1

N

N
∑

k=1

|P1,k|+
1

N

N
∑

k=1

|P2,k| (4.20)

whereP1,k andP2,k is the energy flow at the respective interfaces/interactionpoints at a given
time stepk (k = 1 . . . N ). Again, the indicesi andd indicate if the measure is on the individual
or dyadic level.

Despite the above mentioned advantages of this measure, it also has some drawbacks: Only
total physical effort can be considered with power based effort measures, and no distinction
between movement and interaction effort is possible. Furthermore, in the case that both partners
push against each other without moving the object, the effort is measured as zero, which does
depict the workload in accordance with the physical definition. However, it may still require
isometric contraction of the partner’s muscles, leading toperceived workload. Despite this
definition problem, this measure allows us to compare effortvalues from conditions with and
without haptic feedback between partners, as a common comparison in haptic collaboration
research.

Note, that in line with the static definition of force components proposed in Section 4.3.1,
the effort measures introduced here are not able to measure effort due to object dynamics or
effort related to a partner, which has to be move a passive partner’s arm in addition to the object.
Furthermore, it is important to note that we took the mean of the effort measures to derive
one value representing an interaction sequence/trial. Then, a comparison between interaction
sequences is only given when the trial length is constant. With varying trial length it is advisable
to integrate over time instead.
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Efficiency Measures in Haptic Collaboration

To approach the targeted absolute measure of efficiency for haptic collaboration, it is necessary
to express effort and performance on the same measurement scale. Describing the effort by
the deviation from the desired and actual path as in Zhai and Milgram [1998] does not seem
appropriate here, as the forces exchanged between partnersare of high interest and should be
addressed in the effort measure. Thus, the solution to this absolute measure problem could lie
in a force based performance measure. However, that would require knowing the desired force,
which is the necessary effort, in a given task. This is possible in individual task execution as it
can be derived from a known, desired object trajectory. Though, when working with a partner,
the desired force to achieve maximum task performance applied by partner 1 is highly depending
on the force applied by partner 2 as stated before. This forceapplied by the partner cannot be
predicted. Furthermore, at this point there is no information on how much effort is necessary
for the interaction itself. Due to the interaction between partners in haptic collaboration, such a
force-based performance measure could only be derived on a dyadic measurement level. As a
general goal in this line of research is to gain an individualmodel and to understand the interac-
tion between partners to develop shared action plans out of individual action plans, this solution
is refused here, even though, in specific tasks and with more pre-knowledge on the interactive
behavior such an absolute measure may be developed in future. Hence, a relative measure is
introduced in the following.

A modified version of the measure introduced in the field of human factors is adopted be-
cause it is more precise than definitions found in the economic or usability context and allows
considering physical effort. The efficiency measure is based on the distance efficiency measure
[Camp et al., 2001; Paas et al., 2005; Paas and Merri?nboer, 1993], depicted 4.9. It allows for
comparing efficiency, for example,

• between dyads in a given sample

• between two partners of a dyad

• between conditions such as different partners, displays, tasks and feedback conditions

For the following experiments on haptic collaboration the efficiency measure is defined to be:

Λ(B,Γ) =
Z(B)− Z(Γ)√

2
(4.21)

whereZ(B) is a z-standardized performance measure andZ(Γ) a z-standardized effort
measure. In contrast to the procedure presented by Camp et al.[2001]; Paas et al. [2005];
Paas and Merri?nboer [1993], the absolute values are not calculated first and the sign corrected
afterwards, but this is done directly in the formula. Being scale-independent due to the z-
standardization the performance and effort measures now represent deviations from the mean
values found in the overall data set. Whether this measure expresses the dyadicΛd or individual
Λ1,i, efficiency depends on the level of the performance and effort measures involved. Further-
more, it is distinguished between interactiveΛI , externalΛE, and totalΛT efficiency; again
depending on the implied effort measure. This efficiency measure is discussed in more detail in
relation to the specifically used performance and effort measures in the context of the efficiency
analysis in Chapter 5.
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4.3.3 Dominance Measures

Addressing the second research interest outlined in Subchapter 4.1, this section develops dom-
inance measures for haptic collaboration research. The dominance concept plays an important
role in action plan negotiation on both levels of haptic collaboration. In line with the framework
presented in Chapter 2, on the lower level it needs to be negotiated how the two individual force
inputs are chosen to follow a shared trajectory. Due to the relation to the applied forces, this dom-
inance on this level is calledphysical dominance. On the higher level, the shared trajectory itself
needs to be negotiated, if several possible trajectories exist. The decision on this trajectory is
related to higher levelcognitive dominance. In the following, these two dominance measures are
outlined in detail. The first part deals with dominance in low-level, the second with dominance
in high-level haptic collaboration.

Dominance Measure for Low-Level Haptic Collaboration

Before an overview on dominance measures in literature is given, a definition of dominance in
low-level haptic collaboration is derived: the partner whoapplies higher forces (in one dimen-
sion) on the object is controlling the object movement to a higher degree (in this dimension) and
can thus be considered dominant (in this dimension) on the low-level of haptic collaboration.
This partner determines the shared action plan on how to follow the desired trajectory to a larger
extend than the partner. This dominance type is also referred to as physical dominance.

Dominanceparameters(mainly termedα) are used in state-of-the-art control architectures
for human robot interaction and technically mediated interactions between two humans, e.g.
Evrard and Kheddar [2009]; Khademian and Hashtrudi-Zaad [2007a,b, 2009a,b]; Nudehi et al.
[2005]. However, to the author’s best knowledge, only two approaches exist which deal with the
measurementof dominance:

A measure of dominance for experimental human-human interaction data is developed in
Reed et al. [2005]. There, dominance of one dyad member is defined on the basis of individually
applied forces:

C1 =
f1

fsum
(4.22)

C2 is calculated correspondingly. The authors assume that these two measures range from 0
to 1, and the two measures add up to 1. However, it is importantto note that this measure
of dominance can only be considered standardized when individual forces of both partners are
applied in the same direction, meaning that no interactive forces occur.Only thenis C1 ∈ [0, 1]

and thusC1 + C2 = 1. Using these measures also in situations when interactive forces are
applied, comparability of dominance across different dyads or experimental conditions is not
ensured. The authors changed this measure in Reed and Peshkin[2008] and divided

∫

f1 by
∫

fsum. The integral was calculated over phases of contemporaneous acceleration or deceleration
of both partners, neglecting phases with interactive forces. This also implies that calculation per
time-step is no longer possible, limiting the usage in modeling technical partners.

It has to be mentioned that in Corteville et al. [2007] an assistance function for one DoF point-
to-point movements is designed which allows a scaling of theassistance level. This scaling (de-
noted asα) allows to vary the control of the assistance function over joint movements between 0
and 100%. In contrast to all other two approaches , thisα -value is velocity and not force related.
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Figure 4.10: Relation between the framework introduced in Chapter 2 and the domi-
nance measures. Note, that dominance is introduced as measures and
not as parameters of the human model. CD refers to cognitive dominance
and PD to physical dominance. Physical dominance is based on the ratio
of individually applied forces which accelerate the object, i.e. fE and the
forces summed from both partners, which operate on the object (f sum).
The force decomposition into interactive (f I) and external forces (fE) is
calculated by the force summation in the jointly manipulated object. Cog-
nitive dominance is position-based and is calculated as the difference be-
tween the individually planned object trajectory (xd

o,2 or xd
o,1) and the actual

object trajectory resulting from haptic collaboration. It is position-based
and relates to the deviation between the actual object trajectory and the
desired individual trajectories.

Therefore, speed-profiles of a given task have to be implemented in advance, which reduces the
generalizability of this approach. Furthermore, in case that the estimated speed-profile does not
match the actually executed one, the domiannce measured in the actual interaction between as-
sistance and human may vary from the a priori setα-value. Thus, the comparison to force-based
dominance measures is limited.

Now a dominance measure for haptic collaboration, which canserve as a basis for controller
design and evaluation of haptic human-robot collaborationis developed. Based on the force
components introduced in the previous section, a force-based physical dominance measure is
extending the above summarized state of the art. This dominance measure is derived for one
dimension only. But, it can be generalized to multidimensional object motions by e.g. taking
the mean dominance of all dimensions. It may, however, be advantageous to know dimensions
specific which partner is dominant. The dominance measure isfounded on the measure proposed
by Rahman et al. [2002a]: A dominance factorα is introduced as “distribution ratio” or “factor
of inertia”. The individual values can range from 0 to 1 and are complementary (i.e.α1 +

α2 = 1). This complementarity of dominance variables is consistent with definitions from social
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psychology (compare Chapter 6). The research group (Rahman etal. [2002a]) experimentally
investigated the dominance between two human partners in a 1DoF pointing task. As they
claimed measuring interactive forces between two human partners is impossible (being right for
the dynamic case, not the static one), they used a correlation analysis between the acceleration
of the jointly manipulated object and the individually applied forces to address the dominance
distribution. The disadvantage of this procedure, beside limited explanatory power (correlations
do not reflect the amplitude of forces) is that the correlation can only be calculated offline. The
distribution ratio is defined as follows:

f1 = αmẍ+ fint (4.23)

f2 = (1− α)mẍ− fint (4.24)

wherefint are defined as internal forces by the authors, equivalent to the here defined interactive
forcesf I . After illustrating that a mathematical calculation ofα is impossible, the authors state
that “it is also difficult to determine the value ofα analytically because the nature of internal
forces is unknown”. This seems to be correct for a dynamic measurement of the internal forces,
which is not available. However, the internal forces can be measured in a static way, as shown in
Section 4.3.1, where different force components are defined. As stated there, the static measure
is assumed to be appropriate when the object has a small mass and is moved in free space (no
damping). The static measure can still give valuable insights into haptic collaboration. Thus, the
low-level dominance measure can be defined in accordance with Rahman et al. [2002a].

Equation (4.23) is also related to Reed et al. [2005]. However, it considers the individual
external forces instead of the overall forces applied by theindividual. This has to reasons: a)
the dominance measure should describe which partner has higher control of the object move-
ment. As only external forces are responsible for object acceleration it seems intuitive to employ
them when developing a dominance measure; b) The measure defined by Reed et al. [2005] can
measure dominance only if both partners apply forces in the same direction. This problem is
overcome by using the external forces. The interactive forces are important for describing the
individual effort a partner applies, but they do not contribute to the dominance measure.

Consequently, the individual dominance of partner 1 over 2 (PD12) can be defined as

PD12,t =
fE
1,t

fsum,t

(4.25)

where t is the corresponding time step. The same also holds forPD21,i. The attributes
common to most dominance measures in literature are existent as well: PD12 ∈ [0, 1] and
PD12 + PD21 = 1. Thus, a partner is absolutely dominant with a value of one, and absolutely
non-dominant with a value of zero. If there are interactive forces in the time step, the partner
who applies only interactive forces (the smaller amount of forces, compare Equation (4.9)) is
per definition non-dominant. A value of 0.5 means, that both partners equally share the work-
load required to accelerate the object. The individual dominance measure is independent of the
direction of the individual forcesf1 andf2. It can be calculated for each time step, contrasting
Reed and Peshkin [2008]. To describe the dominance distribution between partners for the whole
task or interaction sequence, the absolute mean dominance behavior ( ¯PD12) can be calculated.

For some analyses in haptic collaboration, a measure which describes the dominance behavior
on adyadic levelcan be necessary. Hence, a measure describing the amount of the dominance
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difference, meaning the amount to which one partner dominates the other is derived additionally:

¯PDdiff =
∣

∣ ¯PD12 − ¯PD21

∣

∣ (4.26)

This measure circumvents the problem of interchangeability of the interacting partners. The
value is independent of the constellation, i.e. if partner 1dominates partner 2 or vice versa.

Figure 4.10 depicts the relation between the measure of physical dominance and the con-
ceptual framework presented in Chapter 2. It is illustrated how the applied forces influence the
physical dominance measure (PD). It can be seen that the physical dominance relates to forces
only. Next, the position-based cognitive dominance (CD) measure is introduced.

Dominance Measure for High-Level Haptic Collaboration

A measure on high-level haptic collaboration has to addresswhich partner is dominating the
decision on the shared trajectoryof the jointly manipulated object if there exist different possi-
bilities for this trajectory. In contrast to the physical dominance defined above, this dominance
measure is, thus, not force- but position-based. It is namedcognitive dominanceand the measure
is related to physical dominance and the framework described in Chapter 2 in Figure 4.10.

It is evident that those two measures are not independent of each other: To convince one
partner via the haptic communication channel to lift an object higher (choosing this trajectory)
while the overall goal is to execute a horizontal movement for example implies that forces are
applied in this direction. Thus the cognitive dominant partner needs to be physically dominant
at some point. However, it is questionable that it is always true that the partner who carries
more weight, thus is more dominant on the lower level, also decides on the object trajectories.
This question will be addressed in Chapter 6. For now it is assumed that in a given interaction
sequence the cognitive dominance (CD) in decision situations is related to physical dominance
in this situation (PD12) by some functionf which is unequal to zero:

CD12 = fcn(PD12),with fcn 6= 1 (4.27)

For cognitive dominance to take place, it is necessary that different object trajectories exist.
Furthermore, it is a prerequisite to know the individual action plans about the trajectory, i.e. the
individually desired trajectories. Then, a cognitive dominance measure should quantify to which
amount the shared action plan, and thus, the resulting object movement is following each of the
individually planned trajectories. This is fulfilled by

CD12 =

{

0.5 if xd
1
= xd

2

min(1,max(0,
xo−xd

2

xd
1
−xd

2

)) else.
(4.28)

whereCD12 is the cognitive dominance of partner 1 over 2 in a given decision situation (DS),
xo is the actual position of the virtual object andxd

1
andxd

2
the individually desired trajectories

of the two partners. Due to the fact that the actual object trajectory does not necessarily lie
between the two desired trajectories (e.g. when there is an overshoot due to falsely assumed
object dynamics) the above given saturations have to be made. Cognitive dominance, thus, takes
the Euclidean distance between the individually planned and actually jointly executed trajectory
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into account to determine, which partner is influencing the decision on the object trajectory to a
higher amount. The measured values lie between 0 and 1 and arecomplementary for the partners.
A values of 0 implies non-dominance which his given when there was a difference between
individual desired trajectories and that the dyad then executed the trajectory planned by the other
partner. A values of 0.5 in cognitive dominance can have two origins: a) the executed trajectory
lies exactly between the two individually desired trajectories; b) the two desired trajectories are
identical as it representsxd

1
= xd

2
. Both situations are considered equal in terms of dominance as

no partner overrules the other. A value of1 implies high dominance.
The actual object trajectory is observable; no challenges for measurement exist here. How-

ever, gaining knowledge on the individually desired trajectories can be difficult as they are latent
cognitive concepts (not observable). The desired trajectories can be addressed by questioning the
participant or user during task execution. Another way is tocontrol these individual desired tra-
jectories experimentally by explicit instructions as it isgiven in the here presented experiments
(compare Section 4.2.4). In the author’s opinion that is thebest way to investigate the individual
action plans, however, the procedure is based on the assumption, that participants actually plan
to follow the path exactly.

Generally, the data on latent concepts can be of lower reliability than direct measures as
they are inferred indirectly. Therefore, a simplified measurement of cognitive dominance for
exploratory use of this concept is proposed:CDb. It can be applied if the following conditions
hold:

• a finite number for possible object trajectories (as in the example of obstacle avoidance)

• an individual preference on one of these options is instructed, and thus, its execution mea-
surable

which is true for the experiments introduced in Section 4.2.It is required to code the dom-
inance in a decision situations where the individually desired trajectory is equivalent with the
executed as one and coding the opposite case as zero. If both partners agree on an action plan,
i.e. there is no negotiation the joint trajectory in a given decision situation, cognitive dominance
can be coded as 0.5. When several decision situations (

∑

DS) are part of the given interaction
sequence, the value for mean cognitive dominance is defined as the sum of these coded values
standardized by the total amount of decisions taken. The mean cognitive dominance for partner
1 is then:

¯CDb
12

=

∑k

i=1
CDb

12,i

k
(4.29)

where
∑k

i=1
CDb

12,i are the values of cognitive dominance of partner 1 over partner 2 in a
sequence ofk decision situation (k =

∑

DS) based on the above-described coding schema. The
same also holds for ¯CDb

21
.

4.4 Conclusion

This chapter introduced tools for the experimental investigation of human behavior in haptic
collaboration. Two new experimental designs and the corresponding setups have been explained
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to enable an investigation of the two central research questions raised in this thesis: A) if inten-
tion negotiation via mutual haptic feedback is possible (addressed by an efficiency measure) and
B) how two individual contributions to a shared action are combined (addressed by a dominance
measure). The two experiments are investigated in the two levels of haptic collaboration, i.e.
how and where to move an object, iteratively. Thus, they can serve as a tool to validate the haptic
collaboration framework presented in this dissertation. The experiments introduced here are a
profound method to study far more research questions than the two mentioned. Shared decision
making and intention negotiation can now be studied on an experimentally controlled manner.
The form in which the individually desired trajectory is transformed from a latent concept
to a measurable one, enables a quantitative investigation of deviations from the individually
desired trajectories due to the collaboration with a partner. Thus, a general contribution to future
investigations on haptic collaboration could be made.

In addition, measurements in the context of haptic collaboration have been introduced.
For the first time, force and energy components of relevance in this line of research have
been discussed in detail. Again, this serves as a general basis to conduct future analyses of
haptic collaboration experiments. Two explicit measures were introduced then: The presented
efficiency measure allows for the first time in haptic collaboration research to relate task
performance to required physical effort. This is a valuablemeasure to evaluate robotic partners
and assistance functions in haptic tasks as can e.g. be seen in Schaußet al. [2010]. The measure
is also suitable for individual task execution. The efficiency measure can easily be adapted to
different tasks and various performance and effort measures, and thus, is of general interest.
The second measure introduced is a dominance measure. This measure is subdivided into
two types in line with the levels of haptic collaboration introduced in the framework. The
physical dominance measure enables statements on the individual force contribution to the
acceleration of a jointly manipulated object. Cognitive dominance measures on the other hand
can derive knowledge on the accordance between individually planned trajectories and jointly
executed trajectories of an object in shared decision situations as e.g. part of obstacle avoidance.
The two dominance measures are of high relevance to gain insights into human behavior as
parameters corresponding to physical dominance in roboticarchitectures are already state of the
art. However, only little knowledge exists on appropriate physical dominance behavior in haptic
collaboration with humans. Cognitive dominance has not beenaddressed in literature so far. As
a first attempt to measure latent concepts in haptic collaboration, here the desired trajectory, this
measure can clearly enhance research towards human-like behaving robotic partners in haptic
collaboration.

Based on the experimental designs and measures presented here, the next two chapters report
analyses of these experiments addressing the two research questions.
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Analysis

The possibility to integrate the individual intentions is aprerequisite for collaboration between
two partners. Then, intention negotiation is required in case the individual intentions differ.
Despite this interest in intention negotiation, in haptic collaboration no experiments have been
conducted yet, which show that “haptic communication” exists1. If, however, intentions cannot
be negotiated via this channel, it is doubtful that the implementation of corresponding behavior
on robotic partners is necessary. Taking into account the challenges of implementing mutual
haptic feedback, it is of high interest to know the scenarios, which benefit from this potential
communication channel. The design of haptic interaction control architectures is challenging
enough [Arai et al., 2000; Buss et al., 2007; Kazerooni, 1990;Wang et al., 2004], even if the
transfered signals are not considering intentions communicated with human users.

After the presentation of a conceptual framework of haptic collaboration (Chapter 2) and the
introduction of experimental designs and measures, which enable systematic research within
the framework (Chapter 4), this chapter describes the analyses of two experiments. These ex-
periments answer the question of whether intention negotiation via mutual haptic feedback2 is
possible between human partners.

Mutual haptic feedback, which is optional in virtual scenarios, could positively influence the
joint task performance. However, it could also generate disturbance for the individual part-
ner, who eventually has to overcome the partner’s forces relating to different individual action
plans. Therefore, it is argued that an analysis should not only investigate the performance (dis-
)advantages of human-like mutual haptic feedback for intention negotiation, but also the phys-
ical effort related to it. Hence, in this chapter, efficiencyanalyses are executed, which address
the performance in relation to physical effort. This measure helps to draw conclusions on the
existence of intention negotiation. Results will show stable performance in situations, which re-
quire increased intention negotiation indicating that intention negotiation takes place. The effort
measure provides evidence that the haptic communication channel is actually utilized. Haptic
collaboration between two human partners is studied as a reference for human-like behavior
within a jointly executed tracking task. In order to understand the role of mutual haptic feedback
for intention negotiation between humans in kinesthetic tasks, a control condition where such
feedback is not provided is required. Therefore, in the two experiments reported separately in
the next subchapters, a control condition is employed wherehaptic feedback is given from the
manipulated object only. Furthermore, in these two experiments, intention negotiation on the
basis of mutual haptic feedback is investigated iteratively in line with the two levels of haptic
collaboration, see Figure 5.1. These levels relate to the two types of intentions, which have to be

1apart from the related publications by the author of this dissertation [Groten et al., 2009b, 2010]
2Mutual refers to the fact that both partners are able to perceive and act upon each other via this signal exchange

allowing adaptation processes, which is a prerequisite forcollaboration. Thus, it is associated with human
behavior here, compare also Section 1.3.

82



5.1 Literature Overview

Adaptation Unit

Object

Environment

Environment

P
a

rt
n

e
r 

2

Control UnitPlanning Unit

P
a

rt
n

e
r 

1

Adaptation Unit

Control UnitPlanning Unit

Low Level Haptic 

Collaboration

High Level Haptic 

Collaboration

Subchapter 5.3 Subchapter 5.2

Figure 5.1: Structuring this chapter within the haptic collaboration framework as de-
scribed in Chapter 2: The efficiency analysis presented in the following ad-
dresses intention negotiation on how (lower level) and where (higher level)
to move a jointly manipulated object.

negotiated: On the lower level it has to be decidedhowto move an object. Strategies to combine
the individual force inputs have to be found. On the higher level it has to be decidedwhereto
move the object, i.e. shared decisions on the object trajectory have to take place.

First, a literature overview on effects of haptic feedback on performance and effort is pre-
sented. The following two subchapters experimentally address efficiency on the two different
levels of haptic collaboration to gain insights on the benefit of mutual haptic feedback for in-
tention negotiation. This chapter ends with a general conclusion including guidelines for the
development of robotic partners inferred from the results on human-human collaboration pre-
sented in this chapter.

5.1 Literature Overview

Human-robot haptic collaboration is not yet a well studied subject (see Hoffman and Breazeal
[2004] and compare Section 3). However, studies exist whichare of relevance in the context
of efficiency, i.e. the relation between effort and performance, and intention negotiation in joint
tasks. These are discussed in the following.

Several authors suggest that providing haptic feedback from the virtual environment, where
task execution takes place by one individual, leads to higher performance (Biocca [1992];
Burdea and Coiffet [1994]; Gupta et al. [1997]). Also, in the context of supervisory con-
trol and tele-operation a positive effect of haptic feedback on individual task performance
could be shown (Das et al. [1992]; Hannaford et al. [1991]; Howe [1992]; Lee and Kim [2008];
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Massimino and Sheridan [1994]; Sheridan [1992]). Furthermore, in training contexts, i.e. learn-
ing of motor skills it was found that haptic guidance leads toan increase of performance
in individual task execution (Avizzano et al. [2002]; Feygin et al. [2002]; Morris et al. [2007];
Oguz et al. [2010]; Str̈om et al. [2006]).

To investigate the question whether the advantage of hapticfeedback in performance can be
found in joint task execution(two collaborating humans) as well, several experimental studies
have been conducted: In Basdogan et al. [2000] a non-haptic condition is contrasted with a hap-
tic condition that provided feedback from the environment,including the interaction partner, in
a “ring-on-wire game”. The task completion time as well as the time per successful trial were
higher when haptic feedback was provided. The same conditions (with either none or full haptic
feedback) were compared by Sallnäs et al. [2000]; Salln̈as [2001]; Salln̈as and Zhai [2003]. Par-
ticipants were asked to jointly manipulate cubes in a virtual scenario. Performance did not differ
in terms of task completion time, but the number of cubes falling down because of insufficient
interaction was decreased with haptic feedback. In a two DoFself-paced tracking task for two
persons with different control-architectures of input devices Glynn et al. [2001] compared force
feedback conditions to those without such feedback. Not providing force feedback led to better
performance than a condition with force feedback, where partners were coupled with a virtual
spring. However, the results are challenging to interpret as the experimental plan with the two
control-architectures and feedback conditions was not fully crossed. In all these experiments,
the haptic feedback was either given from the partnerand the environment, i.e. the manipulated
object or no haptic feedback at all was provided. Hence, the found advances in performance can
possibly be explained by the effect of haptic feedback provided by the object, which has been
shown in individual task execution research. Thus, whethermutual haptic feedback between the
two partners, i.e. the haptic communication channel leads to increased performance can not be
answered explicitly by those studies. One study, which suggests that a general effect of haptic
feedback instead of a collaboration specific effect, is presented by Ullah et al. [2010]. There, in
a virtual reality experiment, artificial forms of haptic feedback provided by coordination con-
trollers between partners did not increase performance compared to simple force feedback from
the object.

In the studies described in the following, individual and dyadic task performance have been
compared when executing the same task with haptic feedback.Hence, the feedback condition is
constant, and the effect of a partner can be studied instead of a general haptic feedback effect:
Interaction with haptic feedback was contrasted with single-person task execution by Reed et al.
[2004, 2006]; Reed and Peshkin [2008]. The authors analyzed real human-human interaction
in a one DoF pointing task. Results showed that dyads performed better than individuals with
respect to task completion time. Theindividual forces were higher when acting alone compared
to acting within a dyad. This may be caused by the partner as a hindrance to smooth task ex-
ecution. The authors report that few dyads had a feeling of cooperation, most perceived the
partner as interference [Reed and Peshkin, 2008]. To overcome the challenge that performance
advances in dyadic task execution could be explained by the additional physical resources of a
partner the rotational inertia has been adjusted (doubled for dyads) to provide equal workload
for the individual whether interacting with a partner or not. Similar experiments with one DoF
rotational pointing tasks have been executed by Gentry et al. [2005] and Ueha et al. [2009]. Both
studies report increased performance for dyads compared toindividuals. In Feth et al. [2009b]
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performance and energy of dyads in contrast to two individual conditions has been studied, using
the experimental tracking task setup reported in this thesis. Performance was higher for dyads,
and an energy exchange between partners was found. In one of the “alone” conditions the ob-
ject dynamics where adjusted to achieve comparable workload conditions for the individuals in
the “alone” and the collaborative task execution. The other“alone” condition was not adjusted
to serve as a control condition. Taking this into account, the here mentioned studies suggest a
positive effect of haptic interaction on performance, as the advantage of a reduced workload is
experimentally adjusted. However, it remains unclear if the advantages of mutual haptic feed-
back are due to an efficient intention recognition between partners, or if there are alternative
explanations as a stabilization of the movement due to interactive forces. The idea that “con-
tradictory forces” lead to an advanced control of perturbations is experimentally addressed in
Reed and Peshkin [2008], but was not supported by results.

There is one study which compares a) a collaborative haptic feedback condition to b) an in-
dividual task execution and c) dyadic performance with haptic feedback from the manipulated
object but not from the interacting partner [Feth et al., 2009c]. The task conditions did not in-
fluence the error in a two dimensional pointing task, executed telepresent with four dimensional
interfaces. However, task completion time was significantly decreased in the collaborative haptic
feedback condition, whereas there was no significant difference between the other two condi-
tions. Again, this implies evidence for a benefit in performance based on the communication
channel provided by the haptic feedback.

The only studies in the above mentioned kinesthetic interaction experiments which recorded
effort measures such as force and energy next to performanceare the ones by Reed et al. [2004,
2006]; Reed and Peshkin [2008] and Feth et al. [2009b,c]. However, the effort measures are
not related to the performance in these tasks. Thus, to the best of the author’s knowledge, no
experimental study has been conducted to date addressing efficiency in haptic human-human
collaboration (except for the publications based on this chapter: Groten et al. [2009b, 2010]).

Efficiency has not been investigated in joint kinesthetic tasks with mutual haptic feedback be-
tween partners. However, theoretical, task-independent knowledge of the relation between effort
and performance can provide information on basic mechanisms: It is generally assumed, that
humans prefer to achieve their action goals with a minimum ofeffort, whether this is mental or
physical effort. For example, Robert and Hockey introduced acognitive-energetical framework
(Robert and Hockey [1997]) with a compensatory control mechanism within a human operator
to address the trade off between performance and costs (effort) based on Kahneman [1973]. The
idea is, that performance is “protected” by allocation of further resources. The alternative to this
behavior is seen in a stable amount of involved resources leading to a possible lower performance
with increased task requirements. In this model those resources are related to subjective mental
effort. However, in the given context a generalization of this thought towards physical effort is
proposed as research topic.

Based on findings that group performance is influenced by the ability of group members
to exchange and coordinate information [Driskell and Salas, 1992; Shaw, 1932] identified two
types of team members experimentally. It was shown thategocentricteam members did not
take the information of the partners into account in sequential binary decision tasks for dyads.
This behavior led to poorer performance than those ofcollectively orientedteam members.
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Based on the results found in Driskell and Salas [1992] it is assumed that this additional channel
of communication leads to increased performance. This ideafounds further support in an
experiment executed by Knoblich and Jordan [2003], where anexperimental setup of a dyadic
pursuit tracking task is used to understand anticipatory object control in interaction with a
partner. In this setup participants did not have haptic feedback from their partner because they
did not execute the linear movement of the virtual cursor in parallel. Instead, each of the partners
had a different action to perform: one had to press a button responsible for the acceleration of
the object, the other a button responsible for deceleration. The partners could not see each other
or talk but in some conditions the partners had external feedback on what the partner is doing
(auditory cues for pushes on the button). Performance increased with these auditory cues of the
partners task execution. As proposed by the authors, the most likely reason for this is that with
external cues the partner’s actions can be integrated in ones own action plans. The idea that
information from additional modalities (here vision) enhances verbal communication has been
addressed experimentally by Gergle et al. [2004], too. Basedon the approach that grounding is
a key concept of communication (Clark and Brennan [1991]), i.e. that common ground / shared
knowledge / shared mental models (all considered synonym here) simplifies communication
Gergle et al. [2004] set up a dyadic puzzle experiment. They varied the amount of shared visual
information. The more information was shared between partners, the higher was performance.
This effect was stronger, when task complexity increased.

To summarize, it is so far unclear if mutual haptic feedback enhances intention negotiation,
especially, if it leads to higher performance and to which costs such an improvement can be
achieved. Thus, the usefulness of the haptic channel for collaborative scenarios cannot fully be
answered by existing literature.

5.2 Efficiency in Low-Level Collaboration

In this subchapter low-level haptic collaboration is examined, where intentions have to be negoti-
ated onhowto move a jointly manipulated object. Herein, efficiency is investigated as a manner
to relate task performance to the physical workload (effort), and thus, understand possible ad-
vantages of mutual haptic feedback in human collaboration.

Executing a joint tracking task (introduced in detail in Section 4.2), two human partners were
asked to move a virtual object along a given reference path, which scrolled down on the two
screen. The task was executed with two one-degree-of-freedom devices, compare Figure 5.2.
The instructed desired trajectory is kept identical for both partners, so intention negotiation on
where to move the object (high-level haptic collaboration)is not required.

In order to understand the effect of mutual haptic feedback in human haptic collaboration, an
interactive condition with haptic feedback from the partner (VH) was contrasted to an interactive
condition without such feedback (V), where haptic feedback was provided from the object only.
It is important to note, that haptic feedback from the environment (here the object) is nonethe-
less given in this condition. Thus, difference between the two collaborative conditions are not
influenced by a general advantage of haptic feedback but are related to the forms of intention ne-
gotiation provided: with only visual feedback from the partner, the inconsistencies between own
movements and resulting object movements allow inferenceson the partner’s actions. In con-
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Figure 5.2: Photo of the experimental setup consisting of two linear haptic interfaces
and two screens with the graphical representation of the tracking path. Dur-
ing experiments a wall was placed between the participants blocking the
view on the other participant’s screen.

trast, the partner’s actions can be directly perceived if mutual haptic feedback is implemented.
Furthermore, two “alone” conditions are used to analyze theeffects of a partner and show how
well the task is executed if intention negotiation is not required. As this efficiency analysis is
focusing on physical workload, which depends on the inertiaof the manipulated object, the inter-
active conditions are compared to an “alone”-condition where the same inertia has to be moved
(AF) and one where only half of the inertia has to be manipulated (AH) (compare Section 4.2.4
for details).

After raising research questions on the efficiency of mutualhaptic feedback in a task requiring
intention negotiation within low-level haptic collaboration, details on the analysis of the above
described experiment are given. Then, statistical resultsare reported and discussed in the end of
this subchapter.

5.2.1 Research Questions

Most studies reported in literature suggest a performance advantage due to additional feedback
from the partner, here, provided by mutual haptic feedback.The relation between the task per-
formance and the accompanying physical effort has not been addressed experimentally so far.

Contrasting the experiments reported in literature, in the experiments presented in the follow-
ing, the amount of exchanged information is not treated as result of interpersonal differences,
which are balanced out within the sample as in [Driskell and Salas, 1992; Shaw, 1932], but is
experimentally varied by the provided communication channel, i.e. whether there is mutual hap-
tic feedback between partners or not. Even though, in these experiments verbal communication
(as in Gergle et al. [2004]) is not allowed (in order to address the effects of haptic collabora-
tion only), the mutual haptic feedback is additional information compared to visual information
on the partner’s motions. Therefore, when generalizing theresults from Gergle et al. [2004]
and Knoblich and Jordan [2003], it can be expected that additional information, as it is given
with mutual haptic feedback, helps to establish common ground/shared action plans, and thus
increases joint task performance. However, it is unclear towhich extent these results can be
generalized to haptic collaboration. Thus, there is not enough theoretical knowledge to raise
concrete hypotheses here. Instead, the focus is on two research questions examined by an ex-
ploratory study:

87



5 Intention Negotiation: an Efficiency Analysis

• RQ1 - Effect of mutual haptic feedback on efficiency:Is haptic feedback from the part-
ner efficient in collaborative trials where intention negotiation is only required to decide
how to move the object? The mutual haptic feedback conditionis compared with two
control conditions: a) individual execution and b) interaction without this communication
channel to understand this effect. This question combines the control conditions proposed
by different studies in the literature overview (Section 5.1) in a single experiment. It is
assumed that good performance results from good collaboration. The measured physical
effort is an indication to which degree the haptic collaboration channel is used, as the ef-
fort for optimal task execution is controlled experimentally (via the adjusted inertia and
equivalent paths). The efficiency measure relates performance and physical effort.

• RQ2 - Efficiency distribution between partners3: How is efficiency distributed between
partners (within a dyad), comparing trials with and withoutmutual haptic feedback in
low-level of haptic collaboration? This sub chapter focuses on the efficiency of interactive
behavior in a task, where strategies on how to move the objecthave to be defined in a shared
action plan. Thus, this question allows first insights into the differences in strategies when
mutual haptic feedback is provided compared to the control condition.

5.2.2 Data Analysis

Participants

The shared tracking task experiment (for details see Section 4.2.4) was conducted with 24 par-
ticipants (age mean: 27.6, std. deviation: 2.5) forming 12 independent mixed-gender dyads.4

In the “alone”-conditions only one randomly selected partner of a dyad is analyzed to guarantee
statistical independence of data points within this condition.

Measures

Efficiency is analyzed with the measure described in detail in Section 4.3.2. This measure relates
performance to physical effort. For the efficiency analysisassociated with the first research ques-
tion, the relativedyadic efficiencymeasure (ΛT

d ) is used for all four conditions as a description of
theoverall system(whether it contains one or two humans, see Equation 4.21 fordetails). The
root mean square error (RMS) is chosen as the performance measure with the goal to punish
larger deviations from the desired trajectory harder. Because in this efficiency definition, per-
formance values are positively defined,RMS is transformed to receive a positive measure (i.e.
high values mean good performance) as follows:

B = 1− RMSj

RMSmax

(5.1)

3As performance in this jointly executed task is identical for both partners, difference in efficiency are only due to
effort measures.

4For the sake of completeness it has to be mentioned that the 24participants formed six groups of four persons
each. Participants interacted in accordance with a round robin design (Kenny et al. [2006]), such that each
performed in partnership with each of the group members as well as alone. In the results presented in this
section, due to the assumptions in inference statistical analyses (Kenny et al. [2006])only independent dyads
were considered, i.e. each analyzed participant was part ofonly one dyad.
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whereRMSmax is the maximumRMS found in a given data set (here: maximum of the whole
experimental data,RMSmax = 0.0055m) andRMSj is the error of trial j.

Effort Γd can be expressed as power- (MAP ) or force-based (MAF ) measure. The focus
here is on the first, as it is more representative for theV condition (for further argumentations on
the use of a specific effort measures see Section 4.3.2).

To compare the power-based effort in“alone” and dyadic trials it is necessary to define
a single measure for both cases: MAP T

d is a dyadic measure which is used in the “alone”-
condition as well. In the “alone”-condition, the influence of the (nonexistent) partner is set to
“0” (MAP T

d = MAP T
i1 + MAP T

i2 = MAP T
i1 + 0). Thus, the efficiency measureΛT

d based
on this overall effort measure can be used to describe all four experimental conditions. Both
performance and effort are reported per trial. This leads tothe efficiency measure:

ΛT
d =

Z(B)− Z(Γd)√
2

(5.2)

The z-standardization,Z(B) andZ(Γd), takes place over all experimental conditions.

To answer the second research question, it is required to approachindividual efficiencyΛT
i

within a dyad(contrasting dyad members). This, of course, can only be examined in the in-
teractive conditions. Here, efficiency has to be defined for asingle partner rather than at the
dyadic level: To define the former, the performance and the effort measure have to be described
individually for both partners. Due to the fact that performance in the haptic task is described
in relation to the object involved (i.e., it is the same measure for both partners), the efficiency
varies between partners in relation to the effort measure only. The individual efficiency (ΛT

1,i)
is calculated correspondingly to the dyadic formula, but based on(MAP T

1,i)and(MAP T
2,i) for

partner 1 and 2, respectively.

It is not possible to quantify the difference or similarity of the individual efficiency of dyad
members with the Pearson correlation measure, because the two dyad members are exchange-
able. Exchangeability here means, that there is no clear role distribution by which the individuals
can be distinguished. For example, if we develop our data sheet for correlations, we build two
columns, one for a certain variable of each partner. It is arbitrary if we allocate a particular indi-
vidually measured efficiency to the columnpartner 1or partner 2. Thus, various possible groups
of data can be built, leading to different correlations. Oneway to overcome this problem is the
pairwise intraclass correlation (Griffin and Gonzalez [1995]; Kenny et al. [2006]), which can be
based on the double entry method: all possible within-grouppairings of scores are built before
calculating the correlation on this dataset. For dyads, that means that the individual measures
of a couple are entered in the dataset in both possible configurations. In this way the relation
between the individual variables can be determined by a Pearson product-moment correlation.
Based on this method, the intraclass correlations and the adjusted significance level from the
doubled data entries (Griffin and Gonzalez [1995]) is calculated. The z-transformation of the
efficiency-variable is conducted on the double entry data set across the data from both interac-
tive conditions.
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Figure 5.3: Performance B is measured as positively transformed RMS (higher value
= high performance). Effort is defined as mean absolute power per trial.
Comparison between the four experimental conditions AF (“alone” with full
mass), AH (“alone” with half mass), V (visual interactive = no mutual haptic
feedback), VH (haptic interactive = mutual haptic feedback): mean and one
standard error.

5.2.3 Results

This section presents the experimental results in relationto the research questions raised in the
beginning of this subchapter.

RQ1 - Effect of mutual haptic feedback on efficiency

Descriptive results of the effect of the four conditions on effort, performance and efficiency are
depicted in Figure 5.3 and Figure 5.4. A one-way, repeated-measurement ANOVA was con-
ducted separately for each measure. Because of a lack of sphericity for the effort and efficiency
measures, the corresponding ANOVAs were Greenhouse-Geisser corrected. The results for all
three analyses are presented in Table 5.2. Given a significant main effect of the feedback factor
on all three measures, pairwise comparisons between experimental levels were executed with
Bonferroni adjusted post-hoc tests. Table 5.1 shows the descriptive statistics and the pairwise
comparisons for each measure and condition.

Performance(measured as positively transformedRMS: B ) is better in interactive trials (V,
VH) than in individual trials (AF, AH), as the relevant post-hoc comparisons reach significance,
as shown in Table 5.1. Hence, even in this haptic collaboration task, which can be done alone,
the participants profited from interaction with a partner. This is true even when the interactive
conditions are compared with theAH condition, where the mass was halved, thus instantiat-
ing optimal mass sharing between two partners. Despite the descriptive tendency that reducing
the mass in individual performance conditions and providing mutual haptic feedback increases
performance compared toAF andV, respectively, these tendencies do not reach significance.
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Figure 5.4: Efficiency ΛT
d compared between the four experimental conditions AF

(“alone” with full mass), AH (“alone” with half mass), V (visual interactive
= no mutual haptic feedback), VH (haptic interactive = mutual haptic feed-
back): mean and one standard error. The horizontal line refers to the ref-
erence value of zero efficiency, representing average efficiency within the
given sample, compare Figure 4.9.

Table 5.1: Descriptive results for the four conditions on performance (B), effort MAP T
d

and efficiency (Λd) and the pairwise comparisons. Significant comparisons
on a 0.05 level are marked with *

Measure Condition Mean Std. Deviation AF AH V VH
Performance AF 0.155 0.110 - 0.052 0.001* <0.001*

B AH 0.289 0.033 0.052 - 0.028* 0.002*
V 0.384 0.027 0.001* 0.028* - 0.127

VH 0.440 0.017 <0.001* 0.002* 0.127 -

Effort AF 0.028 0.008 - <0.001* 1.000 0.89
MAPT

d
AH 0.015 0.003 <0.001* - <0.001* 0.013*
V 0.030 0.005 1.000 <0.001* - 0.077

VH 0.065 0.044 0.89 0.013* 0.077 -

Efficiency AF -0.631 0.674 - 0.007* 0.005* 1.000
ΛT

d
AH 0.346 0.595 0.007* - 1.000 1.000
V 0.432 0.498 0.005* 1.000 - 0.290

VH -0.147 1.045 1.000 1.000 0.290 -
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Table 5.2: ANOVA results for the four conditions on performance B, effort ΓT
d and effi-

ciency ΛT
d . Adjusted ANOVAs are Greenhouse-Geisser corrected

Measure DoF F Sign. partialEta2

Performance 3, 33 28.415 <0.001 0.721
adjusted Effort 1.051, 11.561 11.631 0.005 0.514

adjusted Efficiency 1.935, 21.281 6.671 0.006 0.378

Effort (Γd) is analyzed with thepower-based effort measureMAP T
d first, as it is considered

more appropriate when analyzing theV condition, compare Section 4.3.2: The “alone” condition
with the reduced mass elicits lower effort compared to the other conditions, which is due to the
fact that here, the overall cursor mass is halved (10 kg) compared to all other conditions (20 kg).
No significant difference is found between the effort inAF, V andVH. The mass that has to be
moved (by either one or two humans) is equal in these conditions. That the effort betweenV and
AF is identical suggests that no additional effort was necessary for interaction. Therefore, it is
concluded that the effort is dependent on the mass rather than on the interaction, when no haptic
feedback of the partner is provided. In theVH condition, however, the deviation from the mean
effort values is much higher within the sample, this may be the reason why the descriptively
higher effort in this condition does not reach significance,compared toAF andV. To examine
the effort in the mutual haptic feedback condition in more detail, theforce-based effort measure
is applied in a second step. Note that, even though interactive forces can be measured inV, they
are not felt by the participants. A descriptive comparison of the two respective force-based effort
measuresMAFE

d andMAF I
d is illustrated in Figure 5.5; descriptive statistics can befound in

Table 5.3. The external forces, which are responsible for the object manipulation and hence, task
execution, are comparable in both conditions. The interactive forces are not only increased in
theVH condition compared toV, but also have a high variance. This allows the conclusion, that
the high variance in the power-based effort measureMAP T

d for the condition with mutual haptic
feedback is due to the interactive forces.

Efficiency is analyzed by using the power-based effort measure only, corresponding to Equa-
tion (5.2). This allows considering the workload due to movement in addition to forces, which
is more representative in theV condition. Efficiency is highest in theV and AH conditions,
which do not differ statistically. That is, two people interacting with visual feedback (V) and
20 kg mass are as efficient in this task as one person performing with half the mass (AH). The
comparable efficiency between these conditions reflects a trade-off:V requires higher effort but
yields improved performance compared toAH. The efficiency for theAF condition is lowest
and differs significantly from that ofV andAH. The mean efficiency for the interactive haptic
feedback conditionVH lies between these two extremes and is not statistically different from
any of the others. This means that with experimental power5 in the current analysis, haptic feed-
back interaction is found neither to improve nor to worsen efficiency compared to other feedback
conditions or doing the task alone. The finding thatVH-efficiency does not significantly differ
from V-efficiency is consistent with the previously described findings that mutual haptic feed-

5Power here means the capability of an analysis to detect differences in conditions. The power depends not only
on the actual effect size (this difference) but also on the significance level, the sample size and the number of
analyzed conditions
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Figure 5.5: Box-whiskers-plot comparing external effort ΓE
d and interaction effort ΓI

d

based on the force-based effort measures: mean absolute interactive forces
and mean absolute external forces. Only the two interactive conditions are
compared, as otherwise no interactive forces are involved in task execution.

Table 5.3: Mean and standard deviation of external effort MAFE
d and interaction effort

MAF I
d for the two interactive conditions

Condition Mean Std. Dev. Mean Std. Dev.
MAFE

d MAFE
d MAF I

d MAF I
d

V 1.102 0.135 0.130 0.049
VH 1.204 0.166 1.659 1.840

back neither improved performance nor required greater effort relative to interaction with vision
alone.

RQ2 - Efficiency distribution between partners

In the aforementioned results efficiency was analyzed on a dyadic level. Now, it will be ex-
amined on an individual level and differences or similarities in this measureΛT

i between the
two partners are compared. In Figure 5.6, the efficiency measure of each dyad member is plot-
ted in relation to the partner. Each dyad is entered twice as proposed by Griffin and Gonzalez
[2003], corresponding to the two columns in the double-entry data set. The closer the dots to
the 45◦ diagonal, the more similar the dyad members are. The values of the intraclass corre-
lations show that the efficiency of the two partners is generally very similar in both feedback
conditions. Due to the rigid connection between partners the performance measures, on which
these efficiency values are based, are equal for both partners. Corresponding, efficiency values
differ between individuals within a dyadonly on the basis of the effort values. The intraclass
correlations on individual efficiency values within a dyad for the two interactive conditions are
V : r = 0.867; pone−tailed = 0.002 andVH : r = 0.983; pone−tailed < 0.001, stating a high
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Figure 5.6: Similarity of individual efficiencies (ΛT
i ) within dyads. Each dyad is pre-

sented twice by a dot (based on the double entry method) The closer the
mirrored dots are to the diagonal, the more similar the values of the two
partners are . Differences in efficiency between the partners reflect differ-
ences in the applied effort, as the performance measure is equal for both
partners in this task.

similarity between the two individual mean effort values, which lead to these efficiency values.
The two intraclass correlations calculated for the two interactive conditions differ significantly
from each other, when testing the hypothesis of equality with Fisher z-transformed values as pro-
posed by Kenny et al. [2006] (z = 2.3674; ptwo−tailed = 0.018). Taking into account Figure 5.6
this causes more similarity (closer to the45◦ diagonal) between partners when mutual haptic
feedback is provided.

5.2.4 Discussion

The presented analysis considered performance and effort as well as the relation between them,
i.e. efficiency, in a low-level haptic collaboration task, where the desired object trajectory is
identical for both partners. Thus, the results allow conclusions on the efficiency of providing
mutual haptic feedback in tasks where individual intentions on how to move the object have to
be integrated.

With respect to theperformance measure, it can be stated that participants benefit from a
partner. The advantages of interaction (which can e.g. be two sensory systems able to perceive
errors faster reaction times allowed for by strategies of task sharing like acceleration-deceleration
specializations between partners) outbalance the challenges related to intention negotiation. No
difference in performance between the mutual haptic feedback condition compared to the inter-
active condition without such feedback was observed. Thus,the benefit of additional feedback
from the partner found in other task [Gergle et al., 2004; Knoblich and Jordan, 2003] can not be
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reported here. One possible explanation may be the low complexity of the current task, which
may have led to a ceiling effect here and could explain the different findings compared to other
haptic collaboration Feth et al. [2009c].

It is not surprising, that the results reported by studies which compare haptic feedback from
the partner and the object/environment to a none-haptic feedback condition [Basdogan et al.,
2000; Glynn et al., 2001; Sallnäs et al., 2000; Salln̈as, 2001; Salln̈as and Zhai, 2003] are not re-
peated here. There, the focus was on the general effect on haptic feedback whereas here the
effects of mutual haptic feedback as communication channelare examined by providing haptic
feedback from the object in all conditions. Hence, it is possible that the performance advantage
reported in previous studies is mainly due to the feedback perceived from the object, which may
allow a higher general control of it. The current results, however, show that with the presented
experimental setup, the haptic channel and its theoreticalcommunication advantage does not in-
crease performance in highly structured tasks where only intentions on how to move the object
have to be negotiated.

The mutual haptic feedback condition requires mosteffort , measured as power, on the dyadic
level. Striking is the high standard deviation in this condition. This variance is due to the high
inter-dyadic differences in the mean interactive forces applied during task execution and not the
external forces. Reasons for this differences are manifold.Personality variables and differences
in capabilities to execute the task are considered the most important factors, which should be
addressed in future research. As mentioned in Section 4.3.2, the effort measure is only defined
for the static case, resulting in errors in this measurementdue to the dynamic interaction. The
differences in the found average behavior per condition areconsidered clear enough, to neglect
this noise in the interpretation of results.

Turning to the measure ofefficiency, the interactive condition without mutual haptic feedback
led to increased efficiency relative to doing the task alone with full mass. However, when indi-
viduals performed in a half-mass condition, representing shared workload, their efficiency was
equal to the vision-only interactive condition. Thus, as long as no haptic feedback was provided,
the overall efficiency was influenced by the inertia of the object, rather than by the fact that the
task was performed with a partner or not. When haptic feedbackwas brought into play, the mean
efficiency tended to be lower than dyadic interaction using vision alone. The effect, however,
was not statistically significant, given the variability inefficiency under haptic feedback. This
in turn reflects the variance in interactive forces. Hence, the resulting efficiency values can be
explained by the performance and effort results. Mutual haptic feedback cannot be considered
as more efficient in the presented interaction task in general as it leads to higher effort without
increasing performance. If there is intention negotiationbetween partners (on this lower level of
haptic collaboration: strategies how to move the object) via the haptic channel, it does not pay
off in better performance. One possible explanation is thatthe given task does not allow for a
further increase due to haptic interaction because the maximum performance (considering the
dynamics of the human action-perception system) is alreadyachieved with visual-only feedback
from the partner. Or, the task may have been too simple (it could be performed alone and was
highly structured) to make an explicit negotiation of intentions necessary. In any case, mutual
haptic feedback seems to be a hindrance rather than a supportin the current task, in line with the
suggestions from Reed and Peshkin [2008].

It is an open issue whether these results can be generalized to higher level haptic collaboration
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scenarios involving the negotiation of the shared trajectory in addition to the strategies as part
of the joint action plan. Therefore, in the next section thistopic is addressed by experimentally
varying the amount of needed intention negotiation to accomplish the task. The complexity of
the task is then increased as it now incorporates shared decision making, thereby representing
higher level haptic collaboration.

The fact that the effort is distributed more fairly between partners when mutual haptic feed-
back is provided, may suggest a negation of strategies within the dyads. The shared action plan
would then have the goal to share the task workload equally. Within the following chapter (sub-
chapter 6.3), strategies on how to distribute forces applied on the object among dyad members
are addressed more explicitly with adominancemeasure.

5.3 Efficiency in Shared Decision Making (High-Level
Collaboration)

In the previous subchapter, it was reported that mutual haptic feedback does not increase effi-
ciency in a one DoF joint tracking task when intention negotiation is only required in relation
to action plans dealing withhow to move the object. This was due to the fact that performance
was equal in both interactive conditions, with and without mutual haptic feedback, but inter-
action forces between partners were increased in the lattercondition. These findings may be
explained by the low task complexity, which did not allow forbenefits of mutual haptic feedback
in more challenging intention negotiation tasks. Therefore, in the current subchapter an effect of
mutual haptic feedback on efficiency is investigated by experimentally controlling and increas-
ing the need to negotiate intentions. The focus is on high-level haptic collaboration, where the
negotiation of action plans does not only require to agree ona strategyhow to move an object
but additional requires decisions on the shared desired trajectory, i.e. whereto move the ob-
ject, compare Figure 5.1. To explicitly increase task complexity towardshaptic shared decision
making(HSDM), binary decision situations with different preferences on the two options for the
individual partners are introduced.

Whenever the environment or capabilities of interacting partners (whether humans or robots)
offer several action plans to achieve a shared goal, shared decision making plays a key-role.
Decision makingis generally defined as the act of choosing one available option out of several
possibilities which may have different trade-offs betweenbenefits and costs. Some researchers
refer to decision as the “forming of intentions before acting” [Hardy-Vall?e, in press] whereas
others define the exact point of time as decision [Hoffman andYates, 2005]. Inshared decision
makingtwo partners have to agree on a solution. Even though, they may prefer different action
plans due to different information bases or perceived options. Shared decision making is the
interactive process of negotiating action plans to reach the shared goal. Thus, shared decision
making is one form of collaboration and allows to study intention recognition between partners
i.e. the construction of a mental model of the partner’s decision state. For a general overview on
shared decision making see Castellan [1993]. In Payne et al. [1993] it is assumed that an effort
accuracy trade-off exists in decision making: people are assumed to be motivated to use as little
effort as necessary to solve a decision problem. This theorycan be directly investigated with the
use of the efficiency measure. As a first step towards the realization of robotic partners, which are
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Figure 5.7: In line with the approach to learn from human dyads to enhance human-
robot collaboration, this experiment investigates haptic collaboration of two
human users with the shown setup including shared decision making.

able to show human-like behavior-patterns in haptic collaboration, the following study investi-
gates the efficiency of intention negotiation via mutual haptic feedback in a task involvinghaptic
shared decision makingto find out, whether the process of shared decision making is actually
enhanced by this additional modality available to transfersignals between partners. In line with
the general approach followed in this thesis, collaboration between two humans is investigated
to derive guidelines for robotic partners in VR, tele-presence and autonomous assistance robots.

Except for the decision situations the experimental designis identical with the one used in
the previous study on efficiency in low-level haptic collaboration, compare Figure 5.7. Binary-
shared decision-making in haptic collaboration has application in real-life scenarios as obstacle
avoidance.

In the following hypotheses on the efficiency of mutual haptic feedback in a joint tracking
task containing binary-shared decision-making are presented. Next, detailed information on the
data analysis are given. Afterwards the results are presented. Their discussion is given in the last
section of this subchapter.

5.3.1 Hypotheses

An interactive tracking task is executed by two human partners. It includes binary, shared deci-
sion situations. The effect of mutual haptic feedback on efficiency is addressed by comparing it to
a control condition with haptic feedback from the object only. Three different types of decisions
are contrasted (details see Figure 5.8):A) decisions where the experimentally instructed pref-
erences of the two human partners on the two tracking path options are equivalent;B) decision
types where only one partner has a preference whereas the other is undetermined;C) decisions
where the preferences of the two partners are opposite. The need for negotiation between part-
ners is expected to increase in the order of the presented decision types (representing an upward
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5 Intention Negotiation: an Efficiency Analysis

trend in task complexity, which is experimentally controlled). The following hypotheses are
raised:

• H1: Performance decreases with an increase in the need for negotiation of intentions
in decisionsituations (A to C). In addition, mutual hapticfeedbackshould lead to higher
performance (especially in decision typeC, where the task is most challenging) because
of the additional communication channel to negotiate on intentions.

• H2: Effort (measured as energy) is higher whendecisionpreferences between partners
are less compatible, expressing the negotiation activities. Furthermore, mutual hapticfeed-
back is assumed to generally cost higher effort in accordance with the results reported in
the previous subchapter and as an effect of the actual use of this channel for intention
negotiation.

• H3: Efficiency, meaning the relation (within the given sample of participants) between
performance and physical effort, is higher fordecisiontypes with low need of negotiation
(typeA andB) than in decision typeC. This is expected because task execution should be
easier and no effort is necessary for intention negotiationin the latter case. The relation
of the assumed performance benefit from mutual hapticfeedbackcompared to the effort
costs cannot be predicted due to missing previous knowledge. Thus, the effect of mutual
haptic feedback on efficiency is formulated as open researchquestion.

5.3.2 Data Analysis

In the current analysis, only the two interactive conditions VH and V (with haptic feedback
from the partner, and without, respectively) are compared.Focusing onshareddecision making,
the individual conditions loose their meaning in the current study. However, participants also
conducted an “alone” condition containing binary decisions. This is mentioned for the sake of
completeness and is not part of the analysis reported here. The two interactive conditions are the
same as in the experiment on efficiency in low-level haptic collaboration (for details compare
Section 4.2.4).

Participants

In this study, 58 participants (total of 29 dyads: five male, two female and 22 mixed dyads; mean
age: 25,78 (standard deviation = 4,87)) are involved, extending the sample size on which the
results reported in Groten et al. [2010] are based (a publication in relation to this subchapter).
The tracking task including binary decisions was originally conducted by 32 participants form-
ing eight groups of four persons each. Only independent dyads (16) were analyzed due to the
independent error assumptions in inference statistical analyses (Kenny et al. [2006]). Here, this
sample is increased by another 13 dyads. The reason is found in some interesting descriptive
results which did not reach significance in the previous analysis but which may do so with the
larger sample size.

Participants were informed about the feedback condition beforehand. In addition, they knew
that the first curve of the tracking path was for practice and would be excluded from the analysis.
Participants had an extended test run where they could view both screens and thus gathered
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Figure 5.8: Exemplary paired reference tracks which “scroll down” the negative z-axis.
In reality, the track is rotated by -90◦ compared to this picture, see also
Figure 5.7. The instructed individual preferences (thickness of the path) are
varied between partners to make action plan negotiation necessary. The
enlarged section depicts which part of the decision is analyzed (2s). This is
identical for all three decision types.

information on the different types of decision situations.Therefore, participants were aware of
the fact that they had to negotiate intentions with the partner.

Analyzed Decision Types

The three decision types are depicted in Figure 5.8. Based on the assumption that a thicker path
is preferred as it is easier to follow, the decision types aredefined in the following:

• Decision type A: requires no negotiation of action plans as both partners prefer the same
option (instructed via the individual path thickness).

• Decision type B: instructs a preference to only one partner. Negotiation ofaction plans
may be necessary because it is unpredictable how the partner, who has no instructed pref-
erences, may prefer to accomplish the task to stay on the track.

• Decision type C: The negotiation of the executed trajectory is inevitable,because opposite
preferences are instructed to the partners.

To answer a possible side bias in decision situations, each decision type was presented in all
possible left / right combinations. That leads to 8 analyzeddecision situations (2 decision type
A + 4 decision typeB + 2 decision typeC).

Summarizing, the experiment allows investigating two factors which may have an effect on
the efficiency of interacting dyads in kinesthetic tasks: a)the three decision types, representing
the need for trajectory negotiation and b) the presence of mutual haptic feedback. This results in
a 2*3 fully crossed experimental design which was conductedas repeated-measurement study,
meaning that all participants provided data for each of the six conditions. Whereas the decision
types varied within one trial, the feedback conditions wereinvestigated in different trials. Each
trial was executed with one of eight different tracks. The tracks alter with respect to the presented
order of the path sections including the eight analyzed decision types. In this way learning-
effects through track repetition are prevented. In addition, the sequence in which the feedback
conditions were presented to the participants were randomized .
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Figure 5.9: Mean and one standard error of performance measured as positively trans-
formed RMS error (higher value = higher performance), contrasting the two
feedback and three decision conditions. With mutual haptic feedback (VH)
performance is higher compared to the control condition without such feed-
back (V ).

Measures

In the current analysis the efficiency measure presented in Section 4.3.2 is used. This measure
relates performance to physical effort.

Due to the dynamics of the human arm and negotiations on the executed shared trajectory,
participants were not able to accurately follow the step in the path during decision situations.
Therefore, performance, effort and the resulting efficiency are calculated in a two second interval
around each decision (interval size defined by inspection),see Figure 5.8. Thez-standardization
of the performance and effort values to obtain the efficiencyvalues took place across all decision
types and repetitions as well as across both experimental conditions.

5.3.3 Results

H1: Performance

Descriptive results on performance are depicted in Figure 5.9. A 2(feedback)*3(decision type)
repeated measurement ANOVA shows that performance is significantly influenced by the pro-
vided feedback (and thus possibilities to communicate) between partners (F1,24 = 12.056; p =

0.002; η2p = 0.334): The positive performance measure (transformed root meansquare error) is
higher when mutual haptic feedback is provided. In addition, the decision type significantly af-
fects performance (F2,48 = 6.568; p = 0.003; η2p = 0.215): The mean performance across both
feedback conditions is lower with higher complexity in decision types. Hypothesis 1 is strength-
ened. However, only decision typeA is significantly different from the other two (A vs. B: p
= 0.035;A vs. C: p = 0.006), whereas there is no significant difference between decision type
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Figure 5.10: Mean and standard error of effort values (measured as MAP T ) contrast-
ing the two feedback and three decision conditions: Increased decision
complexity leads higher effort. With reciprocal haptic feedback (VH) effort
is increased compared to the control condition without such feedback (V ).

B andC (p = 0.721) as tested with Bonferroni adjusted pairwise comparisons. Figure 5.9 illus-
trates that the need to negotiate a decision with a partner negatively influences performance with
“vision-only” feedback from the partner. If mutual haptic feedback is provided the performance
stays more stable. This interaction between the two factorsreaches significance (Greenhouse-
Geisser corrected due to a lack of sphericity:F1.374,32.340 = 12.085; p = 0.001; η2p = 0.334). The
stable performance suggests that intention negotiation can take place via mutual haptic feedback
as otherwise a decrease in performance would be expected with higher need to negotiate inten-
tions. Judging from the effect size (η2p), feedback has a higher influence on performance than the
decision type.

H2: Effort

Effort results are shown in Figure 5.10. Descriptively effort is higher with mutual haptic feed-
back and is highest within each feedback condition for decision typeC. Effort is again analyzed
with a 2(feedback)*3(decision type) repeated measurementANOVA. Results support the de-
scriptive findings: effort is significantly affected by the feedback factor (F1,24 = 22.352; p <

0.001; η2p = 0.482). Furthermore, the effort significantly increases when theinvolved prefer-
ences in the decision types are opposite, meaning that the effort in decision type C is signifi-
cantly higher than in the other two decision types (Greenhouse-Geisser corrected due to a lack
of sphericity:F1.391,33.379 = 16.799; p < 0.001; η2p = 0.412; Bonferroni adjusted pairwise com-
parisons:A vs. B: p = 1.000;B vs. C: p < 0.001 andA vs. C: p < 0.001). Hypothesis two can
be assumed to be correct for the given task. The effect of the two factors on effort is similar as
can be seen from the effect size (partialη2), interaction between factors is not significant. As
the necessary effort to execute the task is equal in all six experimental cells (resulting form fully
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Figure 5.11: Scatter plots showing the efficiency values resulting from z-standardized
performance and effort separately for the two feedback conditions. The
three different decision types are color-coded. The zero of each axis rep-
resents the mean of the z-standardized values across all conditions. Ef-
ficiency is calculated as distance from the diagonal reference line which
represents an efficiency value of 0, representing average efficiency. Posi-
tive/negative efficiency values describe efficient/inefficient behavior.

crossing the two factors), any additional effort is relatedto interaction between partners. Effort
increases with the need to negotiate intentions comparing conditionsA andB to C.

H3: Efficiency

Efficiency values are depicted in Figure 5.11, which shows scatter plots visualizing the calcu-
lation of dyadic efficiency values based on the z-standardized performance and effort values.
Results are depicted separately for the control condition without haptic feedback between part-
ner (V, left side in plot) and the mutual haptic feedback condition(VH, right side). The zero line
of each axis presents the mean of the z-standardized values across all conditions. Even though,
for the latter condition a larger amount of values is above the reference line (zero efficiency) than
for the control condition, the descriptive differences between the two conditions are low.

In Figure 5.12 the means of these efficiency values per condition are shown. The reference
value of zero efficiency is depicted as horizontal line here.A 2(feedback)*3(decision type)
repeated measurement ANOVA reveals no evidence that the feedback factor is influencing ef-
ficiency. Thus, the research question related to hypothesisthree can be answered by reporting
that there is no effect: The linear relationship between effort and performance is similar for
both feedback conditions across all decision types. Efficiency values are affected by decision
type (Greenhouse-Geisser corrected due to a lack of sphericity: F1.344,32.247 = 15.919; p <

0.001; η2p = 0.399. Bonferroni adjusted pairwise comparisons show that all decision types lead
to significantly different efficiency values (A vs B: p = 0.035;B vs. C: p < 0.001;B vs. C: p
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Figure 5.12: Efficiency measure depending on the feedback (VH and V ) and deci-
sion type factor (A, B, C): mean and standard error. The horizontal line
is the reference value of zero efficiency, expressing the linear mapping
of z-standardized performance and z-standardized effort within the given
sample. Only the decision factor had significant influence on efficiency:
With increased need to negotiate intentions in decisions, the efficiency
decreased.

= 0.017). Efficiency decreases with the need to negotiate intentions in decision situations. The
lower this need is, the higher performance and effort neededto negotiate are, resulting in high
efficiency for decision type A and low efficiency for decisiontypeC.

5.3.4 Discussion

In the following the results from an efficiency analysis relating performance and effort measures
are discussed. The haptic collaboration task in this experiment was designed to investigate high-
level haptic collaboration including shared decision making. The effects of two factors where
examined: the presence of mutual haptic feedback and the need to negotiate intentions in decision
situations.

From Gergle et al. [2004] and Knoblich and Jordan [2003] it was expected that the additional
source of information on the partner’s behavior additionalinformation as it is given with mutual
haptic feedback, increases joint task performance. This can be support by the presented results:
Performance is higher with mutual haptic feedback than without, averaged across the decision
types. In average, across the two feedback conditions, performance decreases with the need of
intention negotiation between partners. However, the significant statistical interaction tells us
that performance is more stable with mutual haptic feedbackacross the decision situations when
the need to negotiate intentions increases.

Across all decision types, the effort with mutual haptic feedback is higher compared to the
vision control condition. It was shown that with opposite preferences between partners in deci-
sion situations (highest need of intention negotiation within the three decision types) the amount

103



5 Intention Negotiation: an Efficiency Analysis

of physical effort is highest, which is interpreted as additional negotiation effort. This is equally
true for both feedback conditions.

Overall, a higher need to negotiate between partners leads to more inefficient behavior: In-
creasing task challenge results a) in higher effort, especially for the mutual haptic feedback
condition and b) in lower performance in the vision condition. As the efficiency measure relates
those two components, the resulting overall (across decision types) efficiency for the two feed-
back conditions is comparable. The additional effort related to reciprocal haptic feedback pays
off with better performance which is in line with “protection of performance” by the allocation
of further resources, which is predicted by the cognitive-energetical framework introduced by
Robert and Hockey [1997] and the trade-off described by Payneet al. [1993] (see Section 5.1).

Based on the findings in this experiment the following conclusions on mutual intention nego-
tiation via mutual haptic feedback can be drawn: The higher effort in the mutual haptic feedback
condition compared to the control condition shows that there are forces exchanged between part-
ners in excess to those needed to move the object task-optimal (which required the same forces
in both conditions). However, this does not necessarily imply that intention negotiation takes
place via these signals. Performance is considered as an indicator for communication via the
haptic channel. It is assumed that when keeping factors suchas haptic feedback from the object
comparable, variations in performance between the two feedback conditions have to be caused
by either a better negotiation of action plans between partners (communication via the added
haptic modality) or so far unknown additional advantages ofmutual haptic feedback. An ex-
amples for such unknown advantages may be found in the “contradictory forces” between the
dyad members, which were not task related, were examined andassumed to serve as increased
stiffness (comparable to muscle contractions) with the goal to deal with perturbations. In the
related study by Reed and Peshkin [2008], this hypothesis wasnot strengthened. Another ad-
vantage of haptic feedback may lay in the consistency between proprioceptive and visual feed-
back from the object position, which is not necessarily the case in theV condition Section 4.2.
However, if such factors cause the performance benefits found when mutual haptic feedback is
provided, a decrease in performance with higher need of negotiation would still be expected be-
cause those advantages would not simplify the complexity ofshared decision situations. But, the
performance with mutual haptic feedback is stable across decision types with increasing need
for intention negotiation. Therefore, the first explanation, the actual use of the haptic channel
to negotiate the shared action plan finds support. These findings justify further research on this
modality in haptic collaboration and show that it is not arbitrary which force and motion sig-
nals are exchanged between human and robotic partners, requiring consideration in the design
processes.

5.4 Conclusion

5.4.1 Summary

This chapter addressed the question as to what extent intention negotiation between two partners
in a haptic collaboration task is possible via mutual hapticfeedback. In a first attempt, an ex-
periment was conducted which required intention negotiation only on the lower level of haptic
collaboration, meaning that strategies on how to move the object had to be found. In a second
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study including binary decision making, high-level hapticcollaboration was examined. Thus,
this study additionally includes intention negotiation onwhere to move the object. In both ex-
periments the effect of mutual haptic feedback was addressed by contrasting a condition where
this feedback was provided to one where feedback was only provided from the object. The in-
fluence of mutual haptic feedback was measured in task performance, and the physical effort
required for task execution, as well as efficiency, which combines these two measures.

For low-level haptic collaboration, it was shown that mutual haptic feedback does not signif-
icantly increase performance compared to a condition without such feedback. Combined with
increased effort for the mutual haptic feedback condition,this feedback from the partner does not
result in efficient task execution. However, it led to a fairer effort distribution between partners.
For high-level haptic collaboration efficiency of mutual haptic feedback is again comparable to
that of the control condition without such feedback. However, performance with mutual haptic
feedback is higher. This benefit is achieved by the application of higher effort. The necessary
effort to keep performance constant increases as the challenges of intention negotiation on the
shared trajectory become higher. Together with the fact that without mutual haptic feedback per-
formance decreases with the increase in negotiation necessity, it is concluded that mutual haptic
feedback can be a valuable channel for intention negotiation in joint kinesthetic tasks.

The presented results are based on individual mean measurements per interaction and it is un-
known if they hold beyond the given task. However, for the first time, evidence for the existence
of “haptic communication” is reported. The results clearlyjustify further effort in investigating
mutual haptic feedback, especially for tasks of higher complexity.

5.4.2 Future Work

In future, task complexity can be investigated further (e.g. object size and dynamics, degrees of
freedom in individual movements, different tasks) as an influence factor on the relation between
effort and performance in haptic tasks. Furthermore, cognitive in addition to physical effort could
be addressed in haptic collaboration to obtain deeper insights into the costs of collaboration.

Investigating haptic collaboration over time may enable anidentification of signals relevant
for intention negotiation. Especially, it may allow insights onhow intention negotiation takes
place. This will be of importance when defining the range of signals which can be executed
by robotic partners without risking misinterpretation by ahuman user. Time series analysis and
information-theoretic approaches seem to be promising as e.g. proposed by Schreiber [2000].
One way to address the communication via the haptic channel further could be the explicit ma-
nipulation of the reliability of information transfer by experimentally controlling the physical
connection between partners.

The effect of mutual haptic feedback was investigated by comparing this condition to one
where no haptic feedback between partners was exchanged. Infuture, the efficiency measure can
be employed to investigate differences between human-likeand non-human-like haptic feedback
as provided by artificial partners. This way the significanceof human-like behavior can be
understood further. As a first attempt in this matter compareFeth et al. [(submitted].

Because the results show that humans negotiate intentions inshared decision situations via
mutual haptic feedback, the described experimental setup could serve as a tool to understand
more about human collaboration in general. Social science is traditionally dominated by sub-
jective data (e.g. from questionnaires after a social interaction). However, the experiments
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presented here may allow enhancement these measures by the recording of high sample rate
behavioral data to investigate generic rules of human interaction behavior when the development
of shared action plans is required.

5.4.3 Design Guidelines for Robotic Partners

As most tasks in real-life applications request a performance-optimal behavior, the results found
in the second study advise the implementation of mutual haptic feedback. The analyses have
compared mutual haptic feedback as exchanged between humanpartners with a condition with-
out haptic feedback between partners. The results indicateconclusions for virtual reality applica-
tions where these two forms of feedback can be implemented: The fact, that humans are capable
of negotiating intentions via haptic feedback does imply that human-like feedback is also worth-
while in other human-robot collaboration scenarios where the alternative would be to provide
non-human-like feedback. Even if the robot does not transfer human-like haptic feedback to the
human partner, attention should be paid to its actions as theresulting force and motion signals
may still be interpreted as intentions by the human partner.The advantages of human-like haptic
feedback in contrast to these alternatives should be subject to future studies.

The first experiment revealed that the effort distribution between partners is more balanced
for both partners with mutual haptic feedback than in a vision-only partner feedback condition
as was shown from the individual efficiency analysis. This suggests that haptic feedback should
be implemented if the goal is a fairer effort distribution between partners. However, this may
not necessarily be advantageous in any human robot interaction scenario, as the robotic partner
could be defined as the partner carrying most physical effort. The next chapter addresses this
topic more explicitly as dominance distribution between partners.

Altogether, the results found provide a motivation for further engineering effort to overcome
stability challenges related to the implementation of mutual haptic feedback.

106



6 Shared Actions: a Dominance Analysis

In general, collaboration between two partners requires that they develop a shared action plan
towards the task goal (shared intentions). Such a shared action plan has to define how the in-
dividual actions are integrated task-oriented. Especially in collaborations where a continuous
interaction takes place, dominance distributions betweenpartners are a prominent concept when
describing action integration. Therefore, intuitive haptic human-robot collaboration should con-
sider the distribution of dominance between partners: It isclaimed that the dominance behavior
measured when two human users collaborate can inspire dominance behavior of a robotic part-
ner collaborating in a kinesthetic task. However, little isknown about the dominance behavior
humans show in haptic collaboration.

Thus, this chapter investigates dominance distributions between two human users experimen-
tally as a first attempt to learn about the integration of individual action plans. In two subchap-
ters, dominance is addressed separately for the two levels of haptic collaboration (as introduced
in the haptic collaboration framework, compare Chapter 2) byexperimentally controlling the
intentions, which have to be negotiated between partners distinguishing between two dominance
types, see Figure 6.1: In the lower level of haptic collaboration intentions onhow to move an
object along a desired trajectory towards a goal have to be negotiated by the partners.Physical
dominance measures the distribution of applied forces for object-acceleration between partners
in this context. High-level haptic collaboration including shared decisions on the desired trajec-
tory additionally requires shared intentions onwhereto move an object.Cognitivedominance is
used to measure the extent to which decision situations are dominated by a partner.

In contrast to the state of the art, which can so far only provide qualitative statements on
dominance behavior in haptic collaboration, explicit intervals for both types of dominance be-
havior executed by human dyads are reported in this chapter.For the first time, it is investigated
to what extend the distribution of physical dominance between partners changes across collab-
orations with different partners1. The influence of dominance differences on performance is
studied. Furthermore, the relation between physical dominance before shared decision situa-
tions and cognitive dominance in these decision situationsis modeled. No equivalent attempts
to predict human behavior in haptic shared decision making can be found in the state of the art.

After an overview on related literature is given, two experimental studies on dominance dif-
ferences shown by collaborating humans in a joint haptic manipulation task are presented. The
chapter ends with a general conclusion including design guidelines for robotic partners in terms
of dominance in collaborative haptic tasks.

1However, the results reported on physical dominance have been published in part by the author of this thesis in
Groten et al. [2009a]
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Figure 6.1: The figure shows two collaborating partners (P1 and P2), who jointly ma-
nipulate an object, in a simplified illustration of the framework introduced in
Chapter 2. Signal flows relevant for dominance measures are depicted (for
details see Section 4.3.3). The force-based measure PD refers to physical
dominance addressed in Subchapter 6.4, and the position based measure
CD to cognitive dominance addressed in Subchapter 6.3, and .

6.1 Dominance Definitions

Dominance can be defined as follows: It “refers to context- and relationship-dependent inter-
action patterns in which one actor’s assertion of control ismet by acquiescence from another”
[Rogers-Millar and Millar, 1979] and is described as “a relational, behavioral, and interaction
state that reflects the actual achievement of influence or control over another via communicative
actions” [Burgoon et al., 1998]. It is important to note that dominance is a dyadic variable and
hence is only present in interaction (unlike domineeringness, which is a character-trait and hence,
an individual variable). Dominance complementarity therefore implies that when one partner is
dominant to a certain amount, the other one is non-dominant by the same amount [Tiedens et al.,
2007]. In Burgoon and Dunbar [2000] and Mast and Hall [2003] itis emphasized that domi-
nance is a function of individual characteristics and situational effects, especially the specific
relationship between the two partners.

These definitions of dominance are transferred to the two concepts of dominance in haptic
collaboration as follows:

• Physicaldominance: the relative (compared to the partner) amount ofexternal force (re-
sponsible for object acceleration) applied to the jointly manipulated object, leading to a
control over the trajectory in space.

• Cognitivedominance: the relative control over the jointly desired trajectory in decision
situations, in the case where several object trajectories are possible.
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6.2 Literature Overview

Physical dominanceplays an important role in haptic collaboration as the actual object trajec-
tory is directly influenced by the forces applied by the two partners. In the following a overview
on literature related to physical dominance is presented:

Some approaches in haptic human-robot interaction focusedon implementing robots as
passive followers, e.g. Arai et al. [2000]; Hirata et al. [2002]; Kosuge and Hirata [2004];
Y. Hirata et al. [2010]. This, however, does not lead to real interaction because the two involved
systems do not influence each other mutually. The same holds when the robot is the leader by re-
playing a prerecorded trajectory (Bayart et al. [2005]), which meansabsolute dominance2 of the
robot. These two approaches represent the extreme cases of physical dominance in haptic col-
laboration. More recent research in HRI addresses shared physical dominance ininteractivesce-
narios to allow more intuitive interaction. Even though a theoretical physical dominance param-
eter has been used in control architectures (e.g. theα-parameter in Evrard and Kheddar [2009];
Khademian and Hashtrudi-Zaad [2007a,b, 2009a,b]; Nudehi et al. [2005]; Oguz et al. [2010]),
only few studies empirically investigated physical dominance in human behavior in a haptic
interaction task to gain reference values for designing robotic partners (Rahman et al. [2002a];
Reed et al. [2005]). In the following, experiments are summarized which examine human phys-
ical dominance behavior. Herein, two different types of studies are distinguished: Experiments
which investigate human dyads, and experiments which address human-robot interaction.

To the author’s best knowledge only two studies address physical dominance in haptic human-
human behavior without manipulating the dominance distribution: An interactive one DoF point-
ing task was applied by Rahman et al. [2002a] and showed that one partner within a dyad can
be characterized as leader and the other as follower. These results are based on a correlation
analyses between the individually applied forces and the resulting object acceleration. Thus, the
results allow no statement on the actual amount of dominance, i.e. the distribution of object
control between partners. No correlation between dominance and performance was studied. In
another study on human dyads conducted by Reed et al. [2005], ameasure is introduced which
describes the individual contribution of one partner (out of a human dyad, HHI) on the object
movement in tasks, where forces are only applied in the same direction. Based on the average
individual contribution (which is interpreted as physicaldominance here) the authors derive the
conclusion that some, though not all, dyads show specialized behavior, meaning that the individ-
ual contribution, and thus dominance of one partner, is higher in some phases of collaboration
than in others.

Several studies address dominance in technically mediatedsetups which allow an experimen-
tal control of the dominance distribution: In Evrard and Kheddar [2009] collaboration between
a virtual partner and a human partner jointly lifting an object across an obstacle was examined.
A specialization in strategies was expected correspondingto Reed et al. [2005]. Different con-
trollers were implemented for the virtual partner to provide haptic input of different dominance:
the technical partner was leading, following or switching once or twice between those two phys-
ical dominance behaviors. However, the resulting force trajectories of both partners (the virtual
and the human partner) did not show specialization, i.e. adaptation to each other. The contradic-

2which is intuitively accessible, however, cannot be measured with the physical dominance measure proposed in
this thesis which assumes partners who are willing to collaborate
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tion to the results presented by Reed et al. [2005] is explained by the higher task complexity in
the experiment reported in Evrard and Kheddar [2009]. It hasto be pointed out that according
to the definition of dominance given above, the study published by Evrard and Kheddar [2009]
investigates domineeringness rather than dominance: the dominance parameter responsible for
the avatar behavior is determined before the actual collaboration, such not a result of interaction
but a “character trait” of the avatar. The physical dominance factor which is implemented in
the control architecture in Khademian and Hashtrudi-Zaad [2007a,b] is not based on empirical
findings. However, in Khademian and Hashtrudi-Zaad [2007a]the effect ofα on performance
in a 2 DoF trainer/trainee tracking task scenario (HHI) was investigated. For the six participants
acting as trainees, performance increased when a dominancevalue between 0.25 and 0.75 was
given (where 0 and 1 are the extreme values of this complementary parameter). These findings
further emphasize the necessity to develop technical partners, which are neither designed to pas-
sively follow nor to pure replay. Humans seem to perform better with shared dominance. In an
experiment conducted by Oguz et al. [2010], two assistance functions and a no-guidance control
condition were evaluated in a virtual game played by one human. A ball had to be moved in
a plane where several targets in form of cylinders are given.The cylinder, which served as the
current target, changed color. Thus, the other potential targets could be seen as obstacles. There-
fore, this study can be seen as the only study wherecognitive dominancecould be of relevance,
as a decision on the trajectories around the obstacles needed to be taken. However, the assistance
functions were designed in a way that the partners either hadequal control of the ball position or
that the assistance function was adaptive in the way that it reduces its dominance “if the user and
the controller have discordant preferences”. Thus, the cognitive control is per definition with the
participants and not the assistance function, and no subject of investigation. It could be shown
that with a technical partner who adapts its dominance towards the user (based on variations
in force parameters between the current interactive task and “alone behavior” of the participant
recorded earlier), performance did not increase. However,the technical partner was rated more
human-like in this case.

To summarize, it can be stated that humans seem to work with a physical dominance dif-
ference, leading to distinguishable leader or follower roles. However, so far no precise values
of physical dominance in human-human collaboration are reported. The results concerning a
correlation between dominance distribution and performance are contradictory: In Oguz et al.
[2010]; Rahman et al. [2002a] no relationship between the twomeasures was found, whereas
Khademian and Hashtrudi-Zaad [2007a] report a performanceincrease with shared dominance.
So far, an analysis of cognitive dominance (decisions on object trajectories) is not yet reported
in literature.

6.3 Physical Dominance (Low-Level Collaboration)

This subchapter reports the results of an experiment investigating physicaldominance of hu-
man parters’ behavior in a joint object manipulation task. Due to the fact that the theoretical
knowledge on dominance differences in haptic tasks is limited, the experiment is conducted as
an exploratory study. As the focus is on physical dominance,low-level haptic collaboration is
studied with a jointly executed tracking task, where the instructed desired trajectories are iden-
tical for both partners, thus, no decisions on where to move (high-level haptic collaboration) are
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Figure 6.2: Photo of the experimental setup consisting of two linear haptic interfaces
and two screens with the graphical representation of the tracking path. Dur-
ing experiments a wall was placed between the participants blocking the
view on the other participant’s screen.

involved in the shared action plans. The experimental setupis depicted in Figure 6.2: The cursor
representing a virtual object has to be moved along the reference trajectory, which scrolls down
automatically. Thus, the task is executed by one-dimensional movements along the y-axis only.
For details on the experimental design see Section 4.2.4.

As this subchapter focuses exclusively on physical dominance (PD), it is always referred to
this type when talking about dominance. The next section defines the research questions. Then,
the experimentally gained data and its analysis are described. Afterwards, results are presented
and discussed.

6.3.1 Research Questions

The following research question are addressed by the following analyses:

• RQ1 - Physical Dominance Distribution:Which physical dominance differences can be
found in the behavior of two human partners executing a collaborative haptic task?

• RQ2 - Physical Dominance and Performance:Which physical dominance differences
lead to high performance?

• RQ3 - Consistency of Physical Dominance across Partners:How consistent are physi-
cal dominance differences between human partners across several partners and sub-trials?
The gained knowledge will give hints on the required amount of dominance adaptability
of a robotic partner.

In order to gain information about the role of the haptic communication channel on dom-
inance, a mutual haptic feedback condition (VH) is compared with a condition without such
feedback, called vision condition (V), where only haptic feedback form the virtual object, which
has to be moved along the reference path, is given.
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6.3.2 Data Analysis

Participants

The analysis of dominance is based on 24 participants (age M:27.6, sd: 2.5, 12 males) forming
six groups of four persons each3. Participants interacted in accordance with a round robin design
[Kenny et al., 2006], such that each participant performed the task with every group member.
All participants were randomly assigned to a group. Due to the small strength necessary to
collaborate in this task it is assumed that the physical strength of participants does not interfere
with the results.

Measures

For the analysis of the experimentally gained behavior data, the physical dominance measure
based on the ratio of individual external forces (forces that accelerate the object, thus are related
to the control over the object) and the summed applied forcesis employed (details in Section
4.3.3):

PD12,t =
fE
1,t

fsum,t

(6.1)

wherePD12,t is the individual dominance of partner 1 over partner 2 and the indext the analyzed
time point. The measure is force-based and describes the individual contribution to the object
motion.

In order to analyze the effect of haptic feedback on the average dominance difference across
the whole trial (RQ1), trials with and without mutual haptic feedback from the partner are con-
sidered (two conditions). The data analysis is based on the meandyadicphysical dominance
difference measure (̄PDdiff =

∣

∣ ¯PD12 − ¯PD21

∣

∣) per trial, where ¯PD12 andbarPD21 are the in-
dividual means per analyzed interaction sequence. By takingthe difference measure the problem
that the mean of the individual dominance values for the two partners is 0.5 per definition can
be overcome. The analysis of̄PDdiff is conducted using 12 mixed-gender dyads from the given
dataset, which are independent (meaning that an individualis part of only one dyad). The same
physical dominance measure and the same sample of 12 dyads are considered when addressing
research question two. In addition, the Euclidean distancebetween the cursor and the reference
track is used to quantify task performance. It is measured asroot mean square errorRMS to
provide statements on the performance across a whole condition (see also Section 4.3.2).

To address the necessary adaptability of a potential robotic partner towards the human user’s
dominance, a method to describe the empirically found consistency of human physical dom-
inance behavior across different partners is required. Such a method was found in the so-
cial relations model (SRM, introduced in Bond and Lashley [1996]; David A. Kenny [1996];
Kenny et al. [2001, 2006] in the context of social psychology). This method is related to multi-
level linear regression, also known as hierarchical linearmodeling as it introduces random co-
efficients to the regression model [Gelman and Hill, 2008; Snijeders and Kenny, 2005]. Thus,

3which is the same overall sample as in the study on efficiency in low-level haptic collaboration (Section 5.2.2).
As dominance distributions are of no relevance in individual task execution, the “alone trials” are not considered
here.
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SRM explicitly models interdependence between two partners. As the method is not derived by
the author, it is stated here for the sake of completeness, but is only summarized in brevity for
the dominance analysis conducted here:

The amount to which partner 1 dominates partner 2 on average per trial and vice versa can be
expressed as follows for a given condition:

¯PD12,j = µ+ β1 + γ2 + δ12 + ǫ12,j (6.2)
¯PD21,j = µ+ β2 + γ1 + δ21 + ǫ21,j . (6.3)

The parameterµ reflects a fixed effect, namely the mean individual physical dominance mea-
sure in a given group. This parameter is of no relevance as theSRM investigates variances. In
the following, the first equation referring to partner 1 is described. Partner 2 can be analyzed
correspondingly. The first random effect isβ1 which presents the actor effect, i.e. thegeneral
tendency of partner1 to dominate others, across thek sub-trials and the different partners in the
group. The random effectγ2 describes thegeneral tendency of partner2 to be dominated by
othersacross thek sub-trials and the different partners in the group. The third random effect is
δ12 reflecting theunique dominance constellation within a specific dyad, here partner1 and part-
ner2. The last componentǫ12,j is the variance in the dominance measure in a given sub-trialj,
which cannot be explained by the other components (error term). In the given data set there are
three sub-trials and three different partners. It is important that the SRM is not directly interested
in the size of the effect of this components as there is no causal effect due to specific predictors
involved here, as it would be in ordinary regression approaches. Instead, the variance in these
effects is the focus of the model. To give an example, the actor variance can be interpreted as
an “estimate of the overall amount of variation in dyadic scores that is potentially explainable
by characteristics of the individuals who generated them´´[Kenny et al., 2006]. Thus, a large
variance in the actor effect actually means that changes in the dominance measure are due to
characteristics of the actor in contrast to interactive behavior towards the partner.

The goal of the social relations model is to examine the variance of the three random ef-
fects (σβ, σγ, σδ). Hence, the variance found in all dominance measures in ourdataset can
be partitioned into the three above-explained sources, assuming an additive, linear relationship.
Furthermore, the SRM distinguishes two types of reciprocity:
a) Actor-partner reciprocityor generalized reciprocity (covariance ofβ1 andγ1 has no mean-
ing when analyzing dominance. This is due to the complementarity of dominance (¯PD12 =

(1− ¯PD21), compare Section 4.3.3: Negative generalized reciprocity(σβ,γ) implies that persons
who dominate others are not dominated by others. Thus, the parametersβ1 andγ1 correlate with
r = −1 by definition.
b) Dyadic-reciprocity(covariance ofδ12 andδ21: σδ,δ

′ ) reflects the unique association between
the dominance value of partner1 and partner2. This reciprocity provides information on the
consistency of the dominance differences in the behavior oftwo partners across the three subtri-
als.

The analysis of the social relations model is conducted using the whole round robin dataset.
The five variance/covariance parameters of the model are identified with the SOREMO program
[Kenny, 1994]. All inference statistical results in the next section will be reported on a signifi-
cance level of 5%.
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Figure 6.3: Exemplary dominance behavior of an individual participant (D12,i) over time,
condition with mutual haptic feedback (VH). The reference track is plotted
independently of the scaling on the y-axis.

6.3.3 Results

In the following, the effect of mutual haptic feedback on physical dominance, the relationship
between performance and physical dominance as well as the consistency of physical dominance
behavior across several partners are analyzed taking into account the overall (mean) behavior per
trial. This is in line with the state of the art in robotic implementation of dominance parameters,
which are all time-invariant. Nonetheless, in Figure 6.3 anexample of an individual physical
dominance behavior is shown. The frequency of switching between dominant and non-dominant
behavior is high, compared to the frequency of external forces, which are necessary to complete
the task. These external forces necessary for task completion can be inferred from the reference
track depicted in the same plot. It is concluded that the highfrequency in the physical dominance
measure is due to the fact that in our experiment the object has a low inertia and no damping is
implemented which may lead to a higher frequency of overshoot than expected otherwise. As
the following analyses focus on mean dominance behavior, the analysis of parameters causing
dominance switches between partners is left for later studies.

RQ1 - Physical Dominance Distribution

The mean of the dominance difference (¯PDdiff ) in the two conditions with and without mutual
haptic feedback of the partner is shown in Figure 6.4. In the vision-only condition the average
difference was 17.29 percent points on the dominance scale (ranging from zero to 1) and in the
vision-haptic condition 14.17 percent points . For the individual dominance it is observed that
with a probability of 95% ¯PD12 will not be higher than 0.6 (consequently not lower than 0.4 due
to the complementarity of the measure) in the given task, independent of the feedback condition.
A one-tailed t-test for each condition was conducted, to show that the dominance difference
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Figure 6.4: Comparison of dominance difference ( ¯PDdiff ) in the two conditions (V and
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Figure 6.5: Correlation between the performance RMS and the physical dominance
difference between partners ( ¯PDdiff ) separately for the two feedback con-
dition with (VH) and without (V ) mutual haptic feedback. As an inference
statistic test on the significance of a correlation requires independent data,
only values of twelve independent dyads are plotted. This limited sample
does not allow to identify a clear pattern of the relationship between the two
measures.
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values differ from zero on the population level (V:t11 = 6.517, p < 0.001, r = 0.891; VH:
t11 = 8.149, p < 0.001, r = 0.926). This means that on average participants worked with some
dominance difference.

A paired t-test comparing theV condition (mean: 0.1729; standard deviation: 0.0919) and the
vision-haptic condition (mean: 0.1417; standard deviation: 0.0602) reveals no significant differ-
ence between the two means of the dominance difference (¯PDdiff ): t11 = −0.913; p = 0.381.
Hence, in the given experiment the feedback condition does not influence the mean dominance
difference.

RQ2 - Physical Dominance and Performance

The relation between the empirically found mean physical dominance difference (̄PDdiff ) and
task performance (RMS) is investigated separately for the two feedback conditions. Figure 6.5
depicts the correlations between dominance and performance. Descriptively no clear pattern can
be found. The lack of correlation is strengthened by inference statistic tests using the Pearson
correlation coefficient (VH: r = 0.298, p = 0.347; V: r = −0.217, p = 0.499): Neither of the
two conditions show a significant correlation between¯PDdiff andRMS.

RQ3 - Consistency of Physical Dominance across Partners

The here reported results are based on the social relations model (see Section 6.3.2). The re-
sults from the SRM-analysis on variances in the meanindividual dominance level (̄D12, D̄21)
are reported in Table 6.1. The variance of the actor and partner effects (σβ, σγ) are significantly
different from zero in both conditions. The average individual dominance behavior, which is
consistent across partners, explains 49.0% of the overall variance in the dominance measure in
theV condition and 64.3% in theVH condition. The variances of actor and partner effects are
considered together because they both relate to person-dependent behavior, which is not influ-
enced by the interaction itself. The third variance component, the relationshipσδ, determines the
dyad-specific behavior: 32.8% inV and 24.7% inVH. However, the variation in this effect is not
significant in the former condition and, thus, has to be interpreted with care. The higher amount
of variance in actor and partner effects compared to the relationship effect implies that the av-
erage dominance behavior per interaction is rather person-dependent than due to the interaction
with a specific partner.

The actor-partner reciprocityσβ,γ is −1.000 in both conditions, which is basically due
to the dominance complementarity. The dyadic reciprocityσδ,δ

′ states that the average
dominance behavior between partners in the three sub-trials varies in both conditions (V:
σδ,δ

′ = −0.375; VH: σδ,δ
′ = −0.523). Otherwise, a correlation of−1.000 would have

been found here as well. However, due to the higher correlation in VH, it can be concluded
that with haptic feedback of the partner the mean dominance behavior is more stable across time.

6.3.4 Discussion

In this section the focus has been on physical dominance, which takes into account control of
the jointly manipulated object via forces and does not correspond to shared decision processes.
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Table 6.1: Model estimates for relative variance partitioning (expressed in percentages)
for actor, partner and relationship effects and the error term. If the amount of
explained variance in ¯PD12 is significantly different from zero, can be inferred
from the p-values given below; significance on a 0.05 level is marked with *.

Condition Actor σβ Partnerσγ Relationshipσδ Error
V estimates 0.225 0.265 0.328 0.183

p 0.038* 0.041* 0.051
VH estimates 0.353 0.290 0.247 0.110

p 0.011* 0.022* 0.037*

Thus, the experiment and its results address low-level haptic collaboration.
With 95% probability, no average dominance values outside the 0.4 to 0.6 interval are found

in the given task, for both feedback conditions. Additionally, it is shown that humans work with
some mean dominance difference in contrast to equally shared control (0.5) throughout the task.
This is in line with the results found by Khademian and Hashtrudi-Zaad [2007a,b]. The results
in this subchapter suggest that the humans collaborate withindividually different action plans
within the shared action plan of the dyad.

The current dominance analysis is based on mean values per interaction sequence, which cor-
responds to the state of the art in human-robot interaction,where time-invariant parameters for
dominance distributions are implemented. For such time invariant dominance parameters, the
results found in human-human collaboration in the current study imply, that passive following or
absolute dominant position replay does not represent human-like behavior. Considering, how-
ever, time-varying dominance parameters, a sequential change between these roles may represent
human-like behavior as suggested by the descriptive analysis. This subject needs to be addressed
in future studies.

In line with the results presented by Rahman et al. [2002a] andOguz et al. [2010], no
evidence for a large effect of mean dominance distribution on performance is found. In
Khademian and Hashtrudi-Zaad [2007a] it is reported that performance is higher with unequal
physical dominance compared to absolute leadership. Theseresults are, however, not directly
comparable as they are based on a training scenario. Still, the relationship between dominance
and performance may have been found because the values chosen to the dominance parameter in
this study included non-human-like values. It is possible that physical dominance does not affect
performance as long as the parameter values stay within an interval resembling human-human
behavior. Non-human-like behavior could generally decrease task performance. This line of ar-
gumentation is strengthened by Oguz et al. [2010], who report that even though the dominance-
adaptive assistance function did not increase results compared to the control conditions it led to
higher rated human-likeness. Future work should address time-varying performance and domi-
nance measures. This may allow finding a relation between those two measures.

The presented analysis allows statements on the consistency of average dominance behavior
with a social relations model analysis: A high amount of the variability in average individual
dominance behavior is consistent across partners (V: 49.0%,VH: 64.3%) and therefore consid-
ered as related to a character trait of domineeringness. Hence, a robotic partner can also repre-
sent a relatively consistent dominance behavior tendency,i.e. take over a certain dominance role
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(rather dominant or rather non-dominant). However, it is shown that 32.8% of the variance in
mean individual dominance behavior in theV condition and 24.7% in the condition with mutual
haptic feedback can be explained by interaction between specific partners. This is the amount the
robot has to adapt to the human partner in order to create a intuitive feeling of interaction. So far,
the adaptability of dominance behavior is based on mean values per interaction. However, the
tendency already suggests that control architectures for robotic partners should address these two
dominance components (the personal and the interactive component) separately. The fact that
the dyadic reciprocity correlation has only small to mediumsize indicates that the mean domi-
nance difference between partners varies between sub trials. In the haptic feedback condition the
dyadic reciprocity is higher, leading to the conclusion that haptic feedback of the partner pro-
vides more stability (and hence predictability of the average human dominance behavior across
time. This is in line with the results about the individual effort distribution between partners
reported in Section 5.2, which is more fair when mutual haptic feedback is provided). Therefore,
the findings of the consistency analysis support the recommendation to provide mutual haptic
feedback for human robot haptic collaboration tasks, as modeling of the human partner should
be simplified this way.

The analysis presented is based on an abstract experiment; especially, as the task involved
only one-dimensional movements. Future work should investigate the distribution of physical
dominance in multi-dimensional environments and different task. It is of interest, how the phys-
ical dominance in one dimension is related to the dominance in another dimensions (compare
Wojtara et al. [2008, 2009] for different responsibilitieson dimensions of workspace in human-
robot collaboration). Furthermore, it was shown descriptively that the physical dominance be-
havior changes with high frequency between partners. In thecurrent experiment this could be
explained with the small inertia of the object or the lack of damping which may lead to a higher
frequency of overshoots. As it seems still reasonable to assume that some variance in individual
dominance behavior over time is shown even with other characteristics of the manipulated ob-
ject, it is suggested that dominance should be considered astime-varying parameter in robotic
architectures. As a first step to define guidelines for the change of values in this parameter over
time, further analysis of human-human collaborative data is required.

6.4 Cognitive Dominance in Shared Decision Making
(High-Level Collaboration)

In the previous subchapter on physical dominance, it was shown that averaged across an interac-
tion sequence, one partner within the collaborating dyad issignificantly more dominant than the
other. Thus, there is evidence that the two individual action plans differ within the shared action
plan when a given shared trajectory is jointly followed. Roles can be distinguished: One partner
is more dominant in object control, i.e. applies more force resulting in object movement than the
other. Now, the question is raised if the role of the partner who carries more physical workload
(along with the definition of physical dominance) is necessarily the one who dominates in carry-
ing out the cognitive workload in shared kinesthetic tasks,i.e. takes decisions on the trajectory
the object should follow. Thus, cognitive dominance is not based on the measured applied forces
but rather on the relationship between individually planned and jointly executed trajectory. The
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Experiment

Human-Human-

Collabora on

Applica onApplica on

Human-Robot-

Collabora on

Human-Robot-

Collabora on

Figure 6.6: In line with the approach to learn from human dyads to enhance human-
robot collaboration, this experiment investigates haptic collaboration of two
human users with the shown setup including shared decision making.

subdivision of roles into a “workload-carrier” (executer)and a “decision maker” (conductor) has
been formally suggested by Stefanov et al. [2009]. Note, however that so far this subdivision of
dominance exists only on a theoretically basis and is investigated empirically for the first time in
the following experiment.

In terms of shared action plans the question arises if the twolevels which are proposed by
the haptic collaboration framework find evidence, i.e. if the individual dominance within shared
action plans are non-consistent for both levels. The two dominance measures serve as indicators
in this matter.

Shared decision making (for a general overview see e.g. Castellan [1993]) is a cognitive task,
which is of high importance for haptic collaboration: Whenever the trajectory of the jointly ma-
nipulated object or the interaction point between the two partners is not clearly defined by the
task, the two partners have to negotiate and agree on an action plan, and thus, execute shared de-
cision making. Examples of such not fully structured tasks are numerous: two partners (whether
human or robot) want to carry an object and due to different environmental information they
suggest different trajectories to do so. Or, a patient in a rehabilitation scenario has limitations in
joint angles, which cannot be absolutely foreseen by a robotic therapist, who suggests an exer-
cise and guides the patient. In these applications, shared action plans integrating these different
individual plans have to be found. Intention negotiation has to take place. To our best knowl-
edge, cognitive dominance in haptic shared decision makingis not yet addressed experimentally
in literature.

The experiment conducted in this subchapter involves a simplified scenario of shared object
manipulation between human partners with binary shared decisions. In the chosen scenario,
there is no a priori dominance differences as e.g. in the rehabilitation scenario. The experi-
ment rather resembles a task between partners with an equal basis of background information
and capabilities, which can be found e.g. in obstacle avoidance, compare Figure 6.6. In the
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present experiment, intention negotiation to derive shared action plans deals with the distribu-
tion of forces to move the object (physical dominance) and the trajectory where to move the
object (cognitive dominance). In the previous chapter on intention negotiation (Section 5.3) it
was shown that intention negotiation via the haptic channelcan take place and increases perfor-
mance. The decision situations, which are analyzed in the following, are designed to investigate
individual roles instead of the dyadic performance outcomein shared decision making. Different
decision situations are analyzed which can be separated clearly depending on the optimal cogni-
tive dominance distributions between partners. Thus, it isof interest how performance-oriented
the participants behave, i.e. if a participant dominates a decision situation when this leads to high
performance and behaves non-dominant in other situations.

If we understand how physical and cognitive dominance rolesare interrelated in human col-
laboration, it is possible to

• gain insights on how humans integrate individual action plans towards shared intentions in
tasks requiring shared decision making

• understand if a separation of these two forms of dominance isfeasible

• develop (based on the previous points) design guidelines for control architectures of robots,
i.e. conclude on possible inferences a human may derive fromrobotic behavior and how
the robot may predict which partner is going to take the decision beforehand, which sim-
plifies online adaptation of the robot to the human partner

In order to investigate the general role of mutual haptic feedback between partners in joint
object manipulation (which may not always be present in VR applications and may not fully
be used for intention negotiation if the robot behaves non-human-like), an experimental control
condition without mutual haptic feedback is studied additionally.

After introducing the research questions on cognitive dominance, information on the analyzed
data set and the involved methods is given. Then, results in relation to the research questions are
presented and discussed.

6.4.1 Research Questions

So far no experiments have addressed cognitive dominance inhaptic collaboration. Due to this
lack of knowledge, the following experimental analysis hasan exploratory character. Within all
research questions possible differences between the mutual haptic feedback condition and the
vision feedback condition are addressed. In the presented study the following research questions
(RQ) are investigated:

• RQ1 - Cognitive Dominance Differences:What are the cognitive dominance distribu-
tions across several decision situations? The analyzed decisions are designed in a way that
allows best performance withequalcognitive dominance across all studied decision situ-
ations. The cognitive dominance difference in the behaviorof human dyads is compared
with the physical dominance difference as reported in the previous subchapter.

• RQ2 - Cognitive Dominance and Performance:Two new decision situations are intro-
duced compared to the efficiency analysis in Section 5.3. In those new situations, only one
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partner has the option to choose between two path alternatives. The other only has one
path, and thus, should clearly dominate towards this option, resembling real life scenarios
with clear restrictions. Now, the question is raised whether we can still find an advantage
of mutual haptic feedback in these decisions of clear performance optimal cognitive dom-
inance behavior, comparing it to a decision situation whereboth partners have two options
with different preferences, i.e. cognitive dominance is not clearly instructed.

• RQ3 - Physical and Cognitive Dominance:How are physical and cognitive dominance
related? Is there empirical evidence for two different dominance concepts as assumed so
far in the conceptual framework? Can we predict which partnerwill cognitively dominate
in a given decision situation based on knowledge of the physical dominance difference
found in the partners’ behavior before this situation?

6.4.2 Data Analysis

The experiment conducted to address high-level haptic collaboration is described in detail in
Section 4.2. Here, more specific information for the presentanalysis of cognitive dominance are
provided.

Participants

The analysis is based on the data of 29 independent dyads (58 participants; 5 male, 2 female and
22 mixed dyads; age mean: 25,78 (standard deviation = 4,87),which is the same sample used
for the efficiency analysis for high-level haptic collaboration in Section 5.3). Due to the small
strength necessary to collaborate in this task it is again assumed that the physical strength of
participants does not interfere with the results.

Decision Situations

The three different decision situations, which are examined here, are depicted in Figure 6.7.
Taking into account the overall goal of high task performance, these three decision types (DT)
induce different cognitive dominance roles for the dyad:

• P1-Spartner 1 has no choice between reference paths, thus if he/she wants to prevent errors
(virtual object deviations from reference task)Partner1 Should be cognitively dominant.
Thus, it is necessary to overrule partner 2 who will prefer another trajectory due to the
preferences instructed to him by path thickness.

• P1-SNpartner 1 is in a decision situation, preferring one out of two tracks due to path
thickness. Partner 2 only has one option, a step in the opposite direction as the preferred
path of partner 1.Partner1 ShouldNot cognitively dominate here.

• P1-Cboth partners see two tracks, i.e. are in decision situations, but have opposite prefer-
ences due to path thickness: Here both partners can dominate, i.e. decide which track to
choose. Who is cognitively dominant does not influence the possibilities in reaching high
performance. From the perspective of partner 1:Partner1 Can be cognitively dominant
here.
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Before Decision

Decision Type

P1-SN P1-CP1-S

Partner 1

Partner 2

3
s

x
z

2
s

Step

2
s

Figure 6.7: Example of paired reference tracks which “scroll down” the negative z-axis.
In reality the paths are rotated by -90◦ see also Figure 6.6. Preference are
instructed in decision situations as thicker path segments are easier to fol-
low. The three analyzed decision types are named in relation to partner
1: P1-S Partner 1 should dominate here to show performance optimal be-
havior (stay on one of the tracks); PS-SN Partner 1 should not cognitively
dominate to achieve good performance; P1-C Partner 1 can cognitively
dominate as performance is independent of cognitive dominance behavior.
The enlarged section depicts an interval of two seconds in which physical
dominance is analyzed to compare the two different concepts in research
question three.

Thus, the experiment is designed in a way that cognitive dominance behavior in decision
situations will directly affect the dyadic performance in the decision situationsP1-SandPS-
SN. Each of the three analyzed decision types was repeated withinterchanged sides within one
trial to counterbalance a possible side bias (ForP1-SandP1-SNfour constellations of the two
tracks had to be considered). This led to a total of eight analyzed decision situations. Each dyad
performed one trial with and without mutual haptic feedbackin randomized order. Each trial was
executed with one of eight different tracks. These tracks varied with respect to the order of the
presented decision situations. This way learning-effectswere prevented through track repetition.

Measures

To analyze the first two research questions, the cognitive dominance measure introduced in Sec-
tion 4.3.3 is used. However, in a first approach cognitive dominance is addressed with the sim-
plified measure (defined in the following) by visual inspection:

¯CDb
12

=

∑k

i=1
CDb

12,i

k
(6.4)

where
∑k

i=1
CDb

12,i are the values of cognitive dominance of partner 1 over partner 2 based
on the following coding schema: The instructed individually desired trajectory is similar to the
executed trajectory as one:CDb

12,i = 1; if the actual trajectory is more similar to the one desired
by the partner:CDb

12,i = 0. The analyzed decision situations (DS) were designed in a way that
one partner had to dominate due to opposite preferences. Then, k =

∑

DS is the number of
analyzed decision situations where cognitive dominance was possible (here eight). The same
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also holds for ¯CDb
21

. For further details see Section 4.3.3.
In decision situationP1-C (compare Figure 6.7) a partner was considered cognitively dom-

inant when the cursor followed the path which was presented thicker to her/him. In the two
remaining decision situations (P1-SandP1-SN) the partner, who saw only one path, was consid-
ered dominant if the cursor followed this one path and non-dominant if that was not the case.

In order to compare the cognitive dominance distribution with the physical one as part of
research question one, the absolute difference measure of physical dominance is used (̄PDdiff =
∣

∣ ¯PD12 − ¯PD21

∣

∣). For this comparison the mean physical dominance was calculated in a two
second interval around a step, which wasnot part of a decision situation, compare Figure 6.7.
In this way, the physical dominance values found in this interval should be comparable to those
found in the previous chapter if there is no influence of the mere existence of decision situations
in other parts of the interaction trial.

Comparable to the calculation with dyadic measure of physical dominance, the cognitive
dominance difference in the partners’ behavior in a given trial is expressed by the absolute
difference between the individual measures (¯CDb

diff =
∣

∣
¯CDb

12 − ¯CDb
21

∣

∣).

Performance is investigated with the root mean square error(RMS) based on the horizontal
displacement between the desired positionxref and the actual positionxo, introduced in Sec-
tion 4.3.2. It is calculated in the two seconds interval around the actual point of decision (not
depicted).

To answer research question three, both dominance conceptshave to be measured.Physical
dominance can be measured in track segments with and withoutdecisions. However,cognitive
dominance can only be studied in the presence of a decision situation. It is important to note,
that cognitive dominance is not independent from physical effort: to dominate in a given deci-
sion situation it is necessary to apply forces in the direction of the chosen option to move the
object in this direction or communicate to the partner to do so. Hence, cognitive dominance im-
plies physical dominance in at least one time step here. To investigate if the partner who shows
more cognitive dominant behavior is the one who applies moreforces on the object throughout
task execution, the physical dominance measure is used. To find out whether it is predictable
if the physically more dominant partner will also take the next decision, physical dominance is
measured before the decision itself, i.e. in the interval five to three seconds before the decision
(compare Figure 6.7), where participants could see the upcoming decision situation. Here, the
mean value for cognitive dominance is calculated:¯PD12. Due to the complementarity of indi-
vidual values in both dominance measures it is possible to analyze only one partner to address
research question three.

All inference statistical results in the next section are reported on a significance level of 5%.

6.4.3 Results

Before the differences of cognitive dominance within dyads are addressed, it is tested if the
distribution ofphysical dominancein human behavior found in the previous study can be repli-
cated here. The physical dominance in non-decision situations, i.e. the steps in the track, is
investigated to clarify if the general existence of decision situations in the task affects physi-
cal dominance even in these task segments. As can be seen, in Figure 6.8 the results found
here and in the previous subchapter look descriptively similar. This way the difference between
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Figure 6.8: Values of mean physical dominance differences between partners (mean
and one standard error) shown separately for the two feedback conditions
(V : without mutual haptic feedback and VH: with mutual haptic feedback).
The values are derived in a two second interval around a step not part of
a decision situation, compare Figure 6.7. To contrast the current findings
from the dominance differences reported in the previous subchapter, those
values are repeated with dashed lines for the standard error.

the two feedback conditions becomes clearer in the current analysis: In contrast to the previ-
ously reported results on physical dominance differences between partners, the differences in
the two feedback conditions reach significance: when mutualhaptic feedback is provided the
absolute dominance difference between partners in the analyzed interval is lower than without
such feedback (paired sample t-test:t28 = 3.059; p = 0.005; r = 0.501. The correlation be-
tween the values of the two conditions, however, is not significant: r = 0.211; p = 0.273. In
accordance with our previous results both feedback conditions lead to dominance distributions
unequal to zero (meaning that the individual values differ significantly from 0.5 which would
imply equal dominance; one sample t-test against zero:V : t28 = 7.438; p < 0.001; r = 0.842;
VH: t28 = 7.063; p < 0.001; r = 0.800).

There are three possible reasons why in the current analysisthe physical dominance differ-
ence is found to be significantly bigger without reciprocal haptic feedback: a) the sample size
is higher compared to the previous analysis allowing more reliability of the results. A medium
effect of haptic feedback is found here (compare effect sizeexpressed inr), which may not
have been detected in the earlier study with less statistical power. This argument is strengthened
as the tendency to have more equal distributions between partners is shown descriptively in
the previous study as well; b) the effect of feedback may be especially evident during the step
response. Such an effect may then loose parts of its significance over the whole trial as it was
analyzed in the previous experiment; c) the mere existence of decision situations throughout
the interaction influences the dominance behavior. However, the difference between feedback
conditions is still found. Only the size of the difference changed compared to the previous study.
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The hypothesis found in the previous subchapter is further strengthened: with 95% confidence
one partner will show more physical dominance than the other. In addition, this difference
in pyhsical dominance is even stronger when no mutual hapticfeedback between partners is
provided.

RQ1 - Cognitive Dominance Differences

In order to investigate thecognitive dominancedifferences in human dyads, the absolute
differences across ten different dominance situations is studied ( ¯CDb

12; all side combinations
for each of the three types). The results on cognitive dominance differences between partners
are descriptively similar to those of physical dominance (compare Figure 6.9). However, the
difference in individual values for the vision condition isnot significantly higher than that of
the vision-haptic condition as found in the current analysis of physical dominance and, thus, the
patterns resemble the dominance difference reported in theprevious subchapter (dashed lines in
Figure 6.8): paired sample t-test:t28 = 1.394; p = 0.174; r = 0.254; the Pearson correlation be-
tween two conditions is not significant:r = 0.132; p = 0.495). Again, both feedback conditions
lead to significantly unequal mean dominance distributionsbetween partners (one sample t-test
against zero:V: t28 = 14.520; p < 0.001; r = 0.940; VH: t28 = 13.020; p < 0.001; r = 0.926).
Thus, research question one can be answered by stating that the cognitive dominance difference
between partners shows the same pattern as the physical dominance difference, i.e. one partner
is significantly more dominant. This implies that one partner takes more decisions than the
other, independent of the provided feedback. This is true, even though the chances to cognitively
dominate are equally distributed between partners within the ten decisions.

RQ2 - Cognitive Dominance and Performance

In haptic human-robot collaboration it is of general interest to find performance-optimal behavior
between partners. Research question two addresses this topic by analyzing the relation between
the three decision types and the resulting performance. Performance (RMS error) difference
between the two feedback conditions (V andVH) and the three decision types (P1-S, P1-SNand
P1-C) is depicted in Figure 6.10. A 2*3 repeated measurement ANOVA reveals that mutual
haptic feedback does not influence the performance (F1,28 = 0.200; p = 0.658). Thus, the
performance benefits of mutual haptic feedback found in the efficiency analysis in Section 5.3,
cannot be generalized to the current study, where instructed tracks are more restrictive and thus
unfavorable dominance behavior can result in higher errors.

However, a significant effect of the decision type factor (F2,56 = 15.691; p < 0.001; η2p =

0.359) was found. Bonferroni adjusted pairwise comparisons for the decision type factor showed,
that there was no difference in performance whether partner1 or 2 had to dominate (P1-S, P1-
SN), but a significant difference to situations where both of them could dominate (P1-C, com-
pare Table 6.2). This is in accordance with the instructed preferences and the task definition:
In decision typesP1-SandP1-SNone partner was assigned to show cognitive dominance by
experimental design. If the corresponding partner does notdominate, i.e. makes the decision,
this leads to an increased error as the dyad is then followinga track, which is only instructed
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Figure 6.9: Values of mean cognitive dominance differences across decision situations
(mean and one standard error) shown separately for the two feedback con-
ditions (V : without mutual haptic feedback and VH: with mutual haptic feed-
back). The partner whose intended trajectory resembles the actual object
trajectory is considered cognitively dominant.
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Figure 6.10: Mean performance values within in 2 seconds interval around decision sit-
uation (measured as RMS error, mean and one standard error) shown
separately for the two feedback conditions (V : without mutual haptic feed-
back and VH: with mutual haptic feedback) and the three different deci-
sion types, instructing different performance-optimal cognitive dominance
behavior for partner 1 and 2 correspondingly (P1-S: partner 1 should dom-
inate; P1-SN: partner 1 should not dominate; P1-C: partner 1 can domi-
nate)

.
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Table 6.2: This table reports the p-values of Bonferroni adjusted pairwise comparison
for the effect of the decision type factor on performance. Significant values
on a 5% level are marked with *

Factor level P1-S P1-SN P1-C
P1-S - 1.000 < 0.001*

P1-SN 1.000 - 1.000
P1-C < 0.001* < 0.001* -

to one partner. This problem cannot occur in decision typeP1-C. Thus, performance analysis
suggests that not all participants dominate or are non-dominant when they should. This implies
that participants did not want to collaborate or were not able to do so successfully in all deci-
sion situations. As participants were instructed to collaborate and were told to be paid (for their
participation in the experiment) based on the joint task performance, the results are interpreted
towards the latter argument. One reason, why intention negotiation was not always success-
ful could lie in the physical dominance executed by the partner. It may be challenging to the
physically less dominant person to communicate his/her intentions in decision situations to a
partner who is controlling the object movement most of the task. The relation between the two
dominance concepts will therefore be examined in more detail in the next section.

RQ3 - Physical and Cognitive Dominance

In this paragraph the relation between physical and cognitive dominance is analyzed. Keeping in
mind the overall goal topredict the cognitive dominance, the physical dominance is calculated
as a mean value in a 2s interval five to three secondsbeforethe decision ( ¯PD12). Cognitive dom-
inance (CDb

12
) is coded binary (0 = non-dominant, 1 = dominant) in a given decision situation

and thus, a dichotomous variable. As a first approach, a conditional density plot is examined,
depicted in Figure 6.11. It describes how the conditional distribution of cognitive dominance
values change over physical dominance values. Only partner1 is analyzed in the following. Due
to the complementarity of the measures the values of partner2 are implied. The plot suggests a
relation between the two dominance concepts: higher¯PD12 values lead to a higher probability
for CDb

12
= 1 (lighter area in plot) and vice versa.

Motivated by these descriptive results the goal is now to model the individual cognitive dom-
inance behavior. There are several predictors, which couldinfluenceCDb

12
, above all ¯PD12 and

the factor decision type (DT, with three levels). A regression approach is chosen to analyze the
influence of these variables onCDb

12
. Due to the fact that cognitive dominance is coded binary in

the current analysis, this cannot be done with ordinary least square (OLS) regression, which as-
sumes interval scaled outcome variables Cohen et al. [2002].Instead a generalized linear model,
in particular a logistic regression is chosen, which predicts the probability (binomial distribution)
for being either one of the cases. Thus, the probabilityP (Y ) for a variableY to be 1 implies that
(1 − P (Y )) = 0. Herein,Y is defined to be= CDb

12
. The relation between these probabilities
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Figure 6.11: Conditional density plot describing the conditional distribution in cognitive
behavior (CDb

12
∈ [0, 1]) depending on physical dominance values (PD12)

and a predictorX can than be described in a non-linear, s-shaped way:

logit = ln(
P (Y = 1)

1− P (Y = 1)
) = B0 +B1X (6.5)

whereB0 + B1X (X is a predictor andB0 andB1 regression coefficients) is the linear formula
for a single predictor known from OLS regression.

Another challenge when applying a regression model to the cognitive dominance data is the
repeated measurement design, given by the fact that participants provided data for all levels of
the feedback and the decision situation factor. The possible dependence in data for the different
levels breaks the independent error assumption of regression models. The solution used here is
the explicit modeling of a random dyad factor which addresses the variance in cognitive domi-
nance (Y ) due to a dyad specific offset (thus, a varying intercept model is applied). This means
that the above described logit model has to be extended by a random effect (br), which is assumed
to be normally distributed with mean zero and varianceσ2

b . Further considering the fact that the
number of possible predictors (X) is not yet specified, a general matrix multiplication is used
to describe the general model. Thus, the generalised linearmixed model for binary responses
assumes a Bernoulli distribution for each responseYdk, with d = 1, . . . , l, (as index for dyads)
andk = 1, . . . , n (as index for a measurement within a dyad), given the subjectspecific random
effect br. The conditional mean ofYdk depends on the fixed (Xdk) and random (br) effects via
the following linear predictor:

ηdk = X⊤
dkB + br ,
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Figure 6.12: Empirical logits of individual cognitive dominance behavior with physical
dominance as only predictor. This is done across all decision types, sepa-
rately for the two feedback conditions (V and VH). The dotted lines show
the standard errors.

for all d = 1, . . . , l andk = 1, . . . , nd with

ln

{

P (Ydk = 1|br)
P (Ydk = 0|br)

}

= ηdk .

The model can be extended to include also random influences ofcertain covariates, but in our
case a model with randomly varying intercept is enough. For further details on generalized linear
mixed models the reader may refer to Fitzmaurice et al. [2004] and Gelman and Hill [2008].

When modeling the binary responseCDb
12

, a numerical covariate of interest is physical dom-
inance ¯PD12 before the decision situation, and a number of possible categorical covariates (fac-
tors) such asdecision type(DT) andfeedback(FB). Furthermore, the possibility exists that par-
ticipants have apreference for one sideof motion (pushing or pulling the object), which then
should result in a trade-off in cognitive dominance depending on the instructed side of decision
preference. However, the more predictors involved in a model the lower its statistical power.
Therefore, the following descriptive analyses have the goal to gain information on which predic-
tors should be included.

First, the effect of physical dominance is examined on the empirical logit of the cognitive
dominance values, see Figure 6.12. As can be seen, a (nearly)linear relationship between the
two dominance variables exists (for more information on empirical logits compare e.g. Abraham
[1999]). Descriptively comparing the slopes, the relationship between the predictor (̄PD12)
and the dependent variable (CDb

12
) seems stronger when mutual haptic feedback is provided

(compare slopes). Therefore, a model should be fitted with aninteraction between the predictors
physical dominance and type of feedback to address these differences.

In Table 6.3 a possible side bias is investigated by comparing the relative frequencies to move
to the left or the right in a decision situation in relation tocognitive dominance. The bias towards
the right side in dominant behavior is considered small enough to neglect it in this early stage of
modeling the relationship between the two dominance concepts.

Depending on the decision types (P1-S, P1-SN, P1-C), which instruct certain dominance be-
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Table 6.3: Proportions of cognitive dominance behavior separately for the two sides of
the instructed preferences in the decision situation.

left side right side

CDb
12

= 0 0.474 0.529
CDb

12
= 1 0.526 0.471

Table 6.4: Proportions of cognitive dominance behavior shown separately for the
behavior instructed by the decision type (DT ) via different decision op-
tions/preferences for the two partners.

DT: P1-S DT: P1-SN DT: P1-C

CDb
12

= 0 0.696 0.304 0.500
CDb

12
= 1 0.304 0.696 0.500

havior, differences between the proportions of cognitive dominance are more distinct (compare
Table 6.4): in nearly 70% of the observed cases partner 1 behaves in the optimal way when
he/she should dominate (conditionP1-S) or should not do so (conditionP1-SN) (compare also
the discussion of results related to the previous research question). The relative frequencies for
the two possible outcomes in cognitive dominance are of the same size when both partners can
dominate (P1-C). Taking into account all three levels and their descriptive effect on the cognitive
dominance, it is decided to include this factor in the model.Eventhough the introduction of fur-
ther predictors and interactions between predictors may betheoretically possible. It is decided
against this to ensure the statistical power of the model andto act in line with Ockham’s razor
[EncyclopediaBritannica, 2010]. However, there is awareness that future work may consider
different predictors in this context.

Based on these considerations the generalized linear mixed model which will be fitted to the
experimental data can be described as:

ln

{

P (CDb
12,dk = 1|br)

P (CDb
12,dk = 0|br)

}

= B0 + B1
¯PD12,k + B2FB+B3

¯PD12FB+ B4DT (6.6)

whereFB (feedback factor) andDT (decision type) are both categorical variables which are
dummy coded here. The indexk represents the different decicision situations.

In Table 6.5 the estimated model parameters are given, together with the standard error and
the p-value to address the significance of the parameters. The analysis is designed such that the
model predicts the probability of cognitive dominance, i.e. dominant behavior. The fact that
the intercept does not reach significance suggests a sufficiently explained variance in theCDb

12

values by the fitted model. The reference category of the feedback factor (FB) is the condi-
tion without mutual haptic feedback (V). The positive sign of the physical dominance predictor
( ¯PD12) therefore implies that cognitive dominance increases if physical dominance was given
by this person before the decision situation. This predictor reaches significance. In the feedback
factor the vision condition (V) is chosen as reference category and the predictor thus informs
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6.4 Cognitive Dominance in Shared Decision Making (High-Level Collaboration)

Table 6.5: Estimated parameters of the fixed effect coefficients in the model described
in Equation 6.6 along with corresponding standard errors and p-values. For
the categorical predictors the level of the factor is named towards which the
reference category changes (reference categories: for feedback factor, FB:
V and for decision type factor DT : P1-S). Significant effects on a 5% level
are marked with *.

Estimate Std. Error p
(Intercept): -1.232 0.798 0.123

¯PD12: 4.305 1.551 0.006*
FB: VH: -2.263 1.363 0.097

DT: P1-C: -0.887 0.291 0.002*
DT: P1-SN: -1.748 0.305 <0.001*
¯PD12 * FB: VH: 4.032 2.622 0.124

on the changes in cognitive dominance when haptic feedback is provided (VH). The interaction
between physical dominance and the feedback factor does notreach significance. Instead, the
main feedback effect is examined: The negative sign in the estimate of the feedback predictor
states that with haptic feedback it is less likely for the partner to dominate compared to the vision
condition. However, this predictor is not significant on a 5%level. In relation to the descriptive
results given in Figure 6.12, an effect of this factor may be too small to be detected with the given
sample size. The factor decision type has a larger effect on cognitive dominance as it reaches
significance. The reference category here is decision situation P1-S, where cognitive dominance
is instructed. Interpreting the sign of the estimate of the predictor for a decision situation of
type P1-C, it is concluded that it is less likely to dominate in this situation compared toP1-S.
For decision typeP1-SN, the estimate is larger and again negative, stating that theprobability
to show cognitive dominance is even more decreased when partner 1 should not be dominant.
These results are in line with the instructed behavior.

The random effect considers a different intercept for each of the 29 dyads. The estimated
variance of these intercepts is rather small (σ̂2

b = 0.0948). This shows that the dyads behave very
similar. In Figure 6.13 the empirical quantiles of the estimated random intercepts are compared
to the quantiles of a normal distribution. Since there is only little deviation from the straight
line (representing normally distributed values), the assumption of a normally distributed random
effect seems to hold. The differences in the intercepts between the dyads is, thus, modeled
correctly but can be disregarded due to its size.

To investigate the fit of the model and to illustrate its predictive capabilities for the given
scenario, Table 6.6 reports the expected (from the model) and empirically observed values of
cognitive dominance. The fitted values are shown separatelyfor the two feedback conditions (V
andVH). Even though this factor did not reach significance as a predictor, descriptive differences
in the relation between physical and cognitive dominance are found. For application in robotic
research it is of interest to find out how well the model predicts under which feedback condition.
As the instructed cognitive dominance is equally distributed between partners across the ten
observed decision situations, the probability to show cognitive dominance is0.5without applying
a model:
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Figure 6.13: Normal qq-plots of estimated residuals (compare e.g. Field [2009] for more
information on qq-plots)

CDb
12

=

{

0 with P = 0.5

1 with P = 0.5
(6.7)

The probability of predicting cognitive dominance behavior correctly is increased to over
70% when the model is applied in the haptic condition. Thus, knowing the individual constrains
in decision situations (decision types) as well as the physical dominance measured before this
situation gives valuable information about which partner will take the decision. When haptic
feedback is not provided, the chance of a correct predictionof the cognitive dominant partner is
around 65%. Predictability of the partner increases with mutual haptic feedback. However, the
model does not describe the data well enough to make absolutely correct predictions (100%);
a error probability of 27-29% is still high. Thus, the results show a relation between the two
dominance concepts on the one hand, but also motivate research, which addresses physical and
cognitive dominance separately.

6.4.4 Discussion

In this subchapter cognitive dominance in a shared decisiontask based on haptic collaboration
was investigated in relation to physical dominance. First insights how individual action plans are
integrated into a shared action plan could be gained.

The cognitive dominance difference is similar to the one reported in the previous analysis on
physical dominance: in both dominance concepts it is found that participants preferred to work
with unequal dominance, i.e. one partner is leading more than the other. The results reported here
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6.4 Cognitive Dominance in Shared Decision Making (High-Level Collaboration)

Table 6.6: Comparison of a) cognitive dominance predicted by the above described
model, and b) observed cognitive dominance. Percentages for correct and
false prediction are given within the cells. The colored cells indicate the cor-
rect classification of dominance behavior.

predictedCDb
12

VH V
CDb

12
= 0 CDb

12
= 1 CDb

12
= 0 CDb

12
= 1

observedCDb
12

CDb
12

= 0 0.724 0.276 0.640 0.3601
CDb

12
= 1 0.291 0.709 0.345 0.655

are in line with the finding of Rahman et al. [2002a] on physicaldominance. In this subchapter,
reporting mean values of preferred cognitive dominance in human dyad behavior could extend
those results. This is the first time that cognitive dominance behavior of humans was explicitly
studied.

The experiment reported here was designed in a way that led tohigh performance errors if
participants did not dominate when they should or vice versa. An interpretation of the result-
ing performance is therefore highly dependent on the applied analysis. However, independent
of the performance measures underlying this analysis, no difference depending on the provided
feedback could be found. This is contradictory to the results reported in the efficiency analysis
of intention negotiation in shared decision making in Section 5.3. The performance benefit in
relation to mutual haptic feedback found there could not be strengthened in the current study.
Even with mutual haptic feedback participants where not always able to show performance-
optimal cognitive dominance behavior (only in 70% of the cases). One explanation for this
findings may be found in the fact that different decision types where analzed in the two studies.
Further, the different results may be due to the fact that decisions had to be made under time
pressure (reference path scrolling down) and that a threshold for showing physical dominance
to convince the partner towards one’s own cognitive dominance exists. Further investigations
in this direction will be part of future studies. The relationship between physical and cognitive
dominance has been introduced only on a theoretical basis sofar. Now,for the first time an exper-
imental study was performed to test the predictability of cognitive dominance based on physical
dominance shownbeforethe decision situation. Next to physical dominance the model tested
feedback and decision type as possible predictors and considered a dyadic level random effect.
Only the physical dominance and the decision type influence cognitive dominance in the given
data set. The probability to show cognitive dominance, i.e.lead in a shared decision, changes
in accordance with the task requirements in the situation, i.e. if the reference paths instructed
cognitive dominance. The physical dominance significantlydetermines the cognitive dominance
in a subsequent decision situation. However, cognitive dominance can only be predicted with
70% accuracy based on the applied model, considering conditions with mutual haptic feedback.
Thus, cognitive dominance is not fully explained by physical dominance even though a corre-
lation exists. Therefore, it is recommended to measure those two concepts separately in future
studies. Furthermore, the model evaluation shows a 5% difference of accuracy depending on
the provided feedback. The current study should be interpreted as a frist attampt to model the
realationship between the two dominance concepts. Results will clearly motivate the usage of
more adavanced, time-dependent models in this context in future.
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6 Shared Actions: a Dominance Analysis

6.5 Conclusion

6.5.1 Summary

In this chapter dominance behavior between two humans in haptic collaboration was experimen-
tally investigated. Herein, physical dominance, which measures how individual force inputs are
combined when moving the object along a trajectory, and cognitive dominance, which measures
which partner is dominant in decisions on where to move the object, i.e. which trajectory is
followed, were considered separately. The two dominance analyses on human behavior enable
an investigation of how the individual partners contributeto the shared actions within the haptic
collaboration task.

Human-likephysical dominancebehavior is characterized by non-equal dominance values
for the interacting partners in the analyzed tasks. i.e. onepartner is more dominant than the other.
For the first time, quantitative information on how humans combine their force inputs in a haptic
collaboration task can be reported: the 95% confidence interval for the mean individual physical
dominance behavior is 0.4 to 0.6, implying thattime-invariantpassive following and position
replay do not resemble human-like behavior. No correlationbetween task performance and the
executed physical dominance behavior was found. Analyzingthe variance in mean individual
physical dominance behavior across different partners andsubtrials revealed that mutual haptic
feedback leads to higher consistency in dominance behavior. For both feedback conditions, a
higher amount of variance in the individual behavior can be explained by the partner compared
to variance explained by dyad-specific interaction.

Similar results could be found forcognitive dominance: one partner shows significantly
more dominance in decision situations than the other, independent of the provided feedback. In
this task, the correlation between cognitive dominance andperformance could not be directly
addressed as it is partly determined by the experimental design. However, again no differences
depending on the provided feedback could be found. To the author’s best knowledge, the anal-
ysis reported here is the first approach to address the relation between physical and cognitive
dominance, investigating whether the partner, who is physically dominant before the decision,
also leads in the following shared decision situation. The applied model showed that cognitive
dominance could be predicted correctly in 70% of the cases when the mean physical dominance
value before the decision and the decision situation (including the individual environmental re-
strictions) was known and mutual haptic feedback was provided. Even though it is not clarified
yet how relevant the results found are when executing other haptic collaboration tasks, quantita-
tive information on human dominance behavior could be gained. Now that clear hypotheses on
dominance behavior can be defined, the methods used in this analysis can easily be employed to
investigate further tasks to increase knowledge on the integration of individual actions in haptic
collaboration.

6.5.2 Future Work

The experiments conducted consisted of a simplified scenario of joint object manipulation in-
volving only one degree of freedom movements. The abstraction of real life scenario enabled
a focus on basic rules, which are harder to detect in more complex scenarios. Results suggest
promising rules to describe human-like behavior in haptic collaboration and thus, how the shared
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actions are derived from individual inputs. As a next step the dominance measures should be ap-
plied in experiments of higher complexity to test the generalizability of these rules. The studies
reported here provide substantial motivation to do so.

Further experiments should address physical dominance as atime-varying parameter. To the
author’s best knowledge no robotic architecture provides this feature yet. However, it could be
implemented easily once the characteristic of the human behavior over time is known and there
is experimental evidence that there is explainable variation from a constant value.

In the studies reported here, no correlation between the executed dominance behavior and per-
formance was shown. It was suggested that this is the case because the dominance behavior was
human-like. In Khademian and Hashtrudi-Zaad [2007a] it is reported that equal dominance dis-
tribution and clear leadership (non-human-like behavior)decrease performance. For the design
of performance-optimal robotic partners further studies are necessary.

For a first approach on the relation between cognitive and physical dominance a simplified
binary measure for cognitive dominance was used. To investigate this relation in more detail,
future studies can additionally rely on the continuous cognitive dominance measure introduced
in Section 4.3.3. Furthermore, it is suggested to shed further light on the relationship between
the two types of dominance measures, as well as the relationship between them and performance
by conducting analyses on the basis of questionnaire data investigating the similarity to human
behavior.

6.5.3 Design Guidelines for Robotic Partners

Based on the above-summarized results on dominance, design guidelines for technical partners
can be derived in line with the goal to develop robots, which allow for an intuitive collaboration.

For physical dominance values, a precise interval in which behavior can be considered human-
like could be detected. Thus, time-invariant physical dominance values in robotic architectures
should be within this interval for one-dimensional tasks. It is suggested to conduct follow-up
studies for more complex scenarios. For variation within this interval two different sources
could be found: consistent behavior, which is interpreted as due to a character trait of domineer-
ingness and an interactive component, which changes with a specific partner. The percentages of
explained variance of these two components allow a precise statement on the required changes
in time-invariant physical dominance parameters of a technical partner for a specific human user.
As the first component the consistent dominance behavior explains more than 64%, it can be
concluded that only limited change in the physical dominance parameter is necessary as long as
mutual haptic feedback is provided. This general advantageof mutual haptic feedback to stabi-
lize the individual behavior, already reported in Section 5.2, finds further evidence here. Thus,
it is generally recommended to provide mutual haptic feedback despite the technical challenges
as it promises a higher predictability of the human partner and therefore, easier interpretation of
the required actions from the robotic partner.

Architectures of technical partners should contain different modules for cognitive and physi-
cal dominance, as these concepts do not correlate high enough to consider them to be identical.
Cognitive dominance can partly be predicted from physical dominance. Therefore, the design of
a module related to physical dominance (e.g.α values, compare Evrard and Kheddar [2009];
Khademian and Hashtrudi-Zaad [2007a,b, 2009a,b]; Nudehi et al. [2005]; Oguz et al. [2010])
may influence the mental model of interacting humans with respect to upcoming decisions and
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related assumptions on restrictions in the partner’s environment. Again, additional studies are
required to provide further information on tasks of higher dimensions. Limiting the statements to
one-dimensional haptic collaboration, the following recommendation for robotic partners can be
given: It is advisable that a robotic partner reduces its physical dominance if he has information
on an approaching decision situation, however, does not know the optimal option. This should
indicate to the human user that the robot is not taking the decision and thus, a smooth shared
action plan can be established by the human.

The proposed dominance measures and the experimental designs employed in this chapter
enable further investigations of dominance. The developeddominance measures (Section 4.3.3)
are seen as a promising tool when aiming understanding adaptation processes between collabo-
rating partners in haptic tasks. Therefore, future work canrelate to the presented analyses when
investigating the structure of adaptation modules in robotic partners as proposed in the haptic
collaboration framework (Chapter 2).
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7 Overall Conclusion and Future Direction

7.1 Concluding Remarks

This dissertation has explored human dyad behavior in haptic collaboration tasks with the goal of
identifying requirements for the design of robotic partners in order to enable intuitive collabora-
tion in this context. This goal has been approached successfully by the followingcontributions:

• A conceptual framework for haptic collaboration has been presented. It summarizesre-
quirements of models for partners in haptic collaboration.Guidelines for control-theoretic
models are provided. One important aspect of the framework is the separation into two
levels of haptic collaboration: The higher level is defined by intention negotiation between
partnerswhereto move, i.e. shared decision making. The lower level focuses onhow to
move, i.e. on strategies how to combine the two individual force outputs.

• A discussion on characteristics of state-of-the-art experiments in the research field
has been given, stating an increased interest in interdisciplinary research of haptic col-
laboration. A need for further, systematic investigationson haptic collaboration has been
identified.

• Two new experimental designshave been introduced with the corresponding setups in
order to enable studies on haptic collaboration. The experiments have been conducted to
address the two levels within the haptic collaboration framework iteratively. It is now pos-
sible to study shared decision making in haptic collaboration. In addition,measuresin the
context of haptic collaboration are presented based on a general description of force com-
ponents of relevance in haptic collaboration. One efficiency and two dominance measures
have been introduced.

• Intention negotiation was investigated via an efficiency analysis. For the first time it could
be shown that intention negotiation is actually possible for humans via the haptic channel.
Furthermore, the physical effort related to haptic collaboration has been investigated for
the first time.

• Shared actionsin haptic collaboration require the integration of two individual force out-
puts and an agreement on the jointly followed desired trajectory. How the individual in-
tentions are combined towards a shared action has been addressed by an analysis of dom-
inance distributions. Physical and cognitive dominance are distinguished referring to the
lower and higher level of haptic collaboration. A correspondence between the two dom-
inance types has been shown. The degree of adaptation in physical dominance behavior
towards different partners has been quantified. Changes in cognitive dominance behavior
depending on different shared decision situations has beeninvestigated.
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• Design guidelinesfor robotic partners in haptic collaboration have been inferred based on
these experimental results. They state, for example, underwhich conditions mutual haptic
feedback leads to performance- or effort-optimal collaboration, or the required changes in
dominance across different human partners.

The work presented here provides the followingimplications for future research in haptic
collaboration:

• The framework structures the research presented, but additionally serves as a tool when
integrating existing research. It simplifies the planning on future studies in haptic collab-
oration by enabling a specification of the experimentally addressed concepts in a broader
context. Future attempts in dynamic modeling of haptic collaboration partners find guide-
lines on required components and signal flows in the framework.

• The discussion on existing experiments in haptic collaboration provides tools and exam-
ples to conduct interdisciplinary research in future. The newly developed experiments and
the introduced measures allow for analyses beyond those reported in this dissertation, and
thus, provide a valuable contribution to the research field.

• The relevance of insights and design-guidelines experimentally derived in this thesis is
already shown by ongoing control-theoretic modeling and evaluation experiments at the
Institute of Automatic Control Engineering at Technische Universiẗat München.

7.2 Outlook

The results reported here enabled the identification of significant behavior rules. These are de-
rived in an abstract, one dimensional object manipulation task. Within this limited setup, the
influence of factors such as mutual haptic feedback, a partner or the need to negotiate inten-
tions could be shown. Guidelines on dominance behavior havebeen presented. Future work
will have to investigate how generalizable the results are with respect to more complex scenarios
in terms of the manipulated degrees of freedom, the task itself and object characteristics. The
framework, the experimental methods and the measures introduced in this dissertation provide
profound information on This thesis has focused on behavioral measures when describing the
human behavior. These measures are of high relevance for quantitative statements required for
the design of future robotic partners, and are in general more reliable than subjective measures,
i.e. questionnaires. However, future work in haptic collaboration research should focus on an
integration of these two measurements, e.g. identifying equivalents between both types to gain
a more complete picture of the user experience in collaboration and simplify its measurement
by focusing on the most significant. Questionnaire data on efficiency, presence, collaboration
and dominance are available for all conducted experiments to be used in future analyses. Addi-
tionally, one particular challenging measure of interest is mental effort (compare e.g. [Wickens,
2004, Chapter 13]).

In future, the data gained through the experiments conducted within this dissertation will
allow dynamic models of the human partner to be derived. Within the conceptual framework
potential models for motor control and decision-making have been mentioned. These should
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be elaborated based on simulations and experimental studies. When first dynamic models are
derived, their implementation on a robot allows for a systematic variation of parameters within
psychological experiments. This opens new ways of experimental control, which will lead to
further insights into haptic collaboration. For a successful implementation of a robotic assistance
in the tracking task reported here, see e.g. Feth et al. [2011].

So far, the analysis of efficiency and dominance focused on average behavior per interaction
sequence, which provided valuable insights on causal influences between the feedback provided
and the need to negotiate intentions on resulting efficiencyof task execution and dominance dis-
tributions. However, the acquired data enables extending these analyses by applying time series
methods. Therein, one focus in future work could lie in quantifying the information transmitted
via mutual haptic feedback.

Even though this dissertation had the clear goal to support the development of robotic partners
in haptic collaboration, the relevance of the experimentalsetup for social studies became also
evident. Dynamic models of social behavior have gained moreattention recently. However,
data-acquisition is still challenging and mainly based on questionnaires. The experimental setups
proposed here offer continuous behavior measurement, experimental control of the connection
between partners, and manipulation of individual task goals. This enables an investigation of
generic rules in social interaction.

139



A Working Definitions

Adaptation: the capability of a system to adapt towards an environment.Different definitions
can be found in theory of evolution, control theory or physiology. Here, the focus is on a general
definition appropriate to describe human behavior. Adaptation is “a general term for any pro-
cess whereby behaviour or subjective experience alters to fit in with a changed environment or
circumstances or in response to social pressure” [Colman, 2009].
Collaboration is a specific type of interaction. Different interactions are distinguished in de-
pendence on the intentions of the two (or more) partners / systems. If intentions are shared,
the interaction is called collaboration and involves communication. In literature collaboration
is also called cooperation [Grosz, 1996] or joint action. Joint actions are defined as a form of
social interactionwhere “two or more individuals coordinate their actions in space and time to
bring about a change in the environment” [Sebanz et al., 2003a]. In Basdogan et al. [2000]
collaboration is divided into simultaneous and sequentialinteraction. The first one is defined
as cooperative action, the latter as collaborative action by Broll [1995]. Another author who
distinguishes between the two constructs is Parker [2008].There, interaction to achieve different
individual goals of the partners is called collaboration, whereas interaction for the achievement
of shared goals is cooperation. Still, most authors use the constructs collaboration, cooperation
and joint action interchangeable and then clarify there focus of investigation further. Here, the
three constructs are considered synonymous. Collaborationrequires sharing goals and therefore
the consideration of intentions. Hence, when two (or more) systems collaborate, the partners
share at least one goal and are confronted with the challengeto find a suitable action plan for
each system. According to Sebanz et al. [2003a] the following three steps are involved: (a)
sharing representations, (b) predicting actions of the partner and (c) integrating the predicted
effects. Thus in collaboration, intentions are the origin of information, which we would like to
communicate to allow our partner to infer our intentions andjointly form action plans.
Communication relates to the exchange of information as “a process involving two information-
processing devices. One device modifies the physical environment of the other. As a result, the
second device constructs representations similar to representations already stored in the first
device” [Sperber and Wilson, 1998]. Information is explicitly not physical. But it can be trans-
ported via physical signals. Hence communication can be defined as “the exchange of mean-
ings between individuals through a common system of symbols” EncyclopediaBritannica [2010].
Communication is based on mutual influence between both systems, thus interaction. But, here
a cognitive component, able to process information and its meaning is obligatory.
Decision making is generally defined as the act of choosing one available option out of sev-
eral which have different trade-offs between benefits and costs. Some researchers refer to the
“forming of intentions before acting” [Hardy-Vall?e, in press] whereas others define the exact
time-point as decision [Hoffman and Yates, 2005]. However,there is accordance that decision
making is a high cognitive skill. Inshared decision makingthe interaction partners have a
shared goal, but the environment proposes several options how to achieve it. Because of a differ-
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ent information base the individuals may prefer different options. Shared decision making is the
interactive process to agree on one option/action plan to reach the shared goal. This requires the
recognition and integration of the partners’ intentiosn i.e. building a mental model of decision
statse requires communication between the two partners. Thus, shared decision making is one
form of collaboration. For an overview on shared decision making see Castellan [1993].
Haptics is a term describing one part of the human sensory system. There are two subsystems
involved in haptic feedback: tactile (cutaneous) feedbackand kinesthetic (proprioceptive) feed-
back: The first one gives awareness about stimuli on the skin e.g. temperature, pain and forces.
The latter subsystem deals with forces, body positions and movements which are perceived in the
joints, the tendons and the muscles [Hayward and Astley, 1996; Klatzky and Lederman, 2002].
In Klatzky and Lederman [2002] active and passive touch are differently defined in dependence
of an involved motor system. In this dissertation, the focusis restricted to active kinesthetic
collaboration but consider the commonly used term “haptic”as synonym throughout the thesis.
Intentions: Even though, interaction can happen between two non-cognitive systems as
e.g. in chemical processes, cognitive processes are often involved: The two systems in-
teract/communicate with certain intentions. Intentions are defined as “states of minds that
are usually seen to precede thoughtful action, in striving towards sought-after outcomes”
[Lepp?nen et al., 2007]. In Tomasello et al. [2005] it is emphasized that intention involves not
only the commitment to pursuit a goal but also an action plan to do so. Thus, intentions are
action plans towards a goal. But intentions are only thoughts on such actions in contrastto real
actions [Taillard, 2002]. Not all actions have to be based onintentions [Davidson, 1980]: unin-
tended behavior is possible (e.g. mistakes) and furthermore there is no distinct matching between
actions and intentions: the same action can be done due to several intentions and the other way
round [Tomasello et al., 2005]. The two concepts “plan” and “intention” are not strictly sepa-
rated conceptually in literature, instead both are part of ahierarchicalorganization, where a plan
is a higher order intention including lower intentions, described as action plans and their accessi-
ble effects on the environments [Bratman, 1987; Heinze, 2003; Taillard, 2002; Tomasello et al.,
2005].
Intention recognition is the process of becoming aware of the intention of the partner (system),
more technically speaking: to infer from an agent’s actionson his intentions and their effects in
the environment [Tahboub, 2004]. “Understanding intentions is foundational because it provides
the interpretive matrix for deciding precisely what it is that someone is doing in the first place”
Tomasello et al. [2005]. The research field onsocial cognitionis addressing the key-function of
shared minds for interaction, for an overview see e.g. Frith[2008].
Interaction is defined as “relationship between two or more systems[. . .] that results in mutual
or reciprocal influence” [VandenBos, 2007]. Interaction relates to physical signals which are
exchanged. To allow interaction, it is a prerequisite that the two involved systems have sen-
sors and actuators, which allow mutual perception, and thatthe states of one system change in
dependence of the other and vice versa.
Learning: change of internal dynamics of a system due to changes from experience
EncyclopediaBritannica [2010]. In Colman [2009] it is referred to a lasting change in be-
havior, knowledge and skills based on interaction with the environment and experience. In
Richardson et al. [1994] learning is defined as “processes by which people change their men-
tal models”.

141



B Overview-Table of Experimental Studies on
Haptic Collaboration

In the following studies, which experimentally investigate haptic collaboration, are summarized.
A discussion of the table is given in Section 3. The task and results are challenging to interpret
without knowledge on the whole publication. However, the table allows for a fast keyword
search. The table is structured by

• Authors and References

• Research interest (RI ): the parameter which are experimentally varied or the general goal,
e.g. evaluation of a controller design

• Interaction type between collaborating partners:HRI refers to human-robot interaction;
HRHI refers to robot-mediated human-human interaction;HHI describes human-human
interaction which is not technically mediated. Within thiscategory it is distinguished if the
visual feedback of the manipulated object or the point is given in reality or in VR. If the
haptic feedback was manipulated can be derived from a research interest in ”feedback”.

• Task: the task which participants had to perform is summarized.

• Environment describes the experimental setup, i.e. the used hardware

• Participants: informs about the number of participants taking part in thestudy. Here,
std. pdescribes designs where one partner was standardized, meaning that he was part of
the experimenter team and interacted with each participant; dyadsrefers to cases where
both partners are participants, being part of only one dyad;other designs are described
explicitly.

• Measures: the analyzed measures are reported (abbreviations:TOT: time on target;TTC:
time to task completion)

• Analysis: describes the data analysis by separating knowledge gained by inspection and
descriptive statisticsdsfrom inference statistic analysisis

• Results: gives a short overview on the results

• Level: reports the level of haptic collaboration which is defined in relation to the con-
ceptual framework introduced in Chapter 2: Low level collaboration focuses on intention
negotiationhowto move an object/interaction point, whereas high level collaboration deals
with intention negotiationwhereto move an object/interaction point.
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Table B.1: Experiments on Haptic Collaboration (with quantitative analysis)
Authors RI Interaction Task Environment Participants Measures Ana-

lysis
Results Level

Allison et al. [2004] feedback,
delay

HRHI, VR point task main-
taining constant
interaction
force between
partners

3 DoF custom-
made robots
but only 1
DoF used;
in the haptic
condition there
is no vision,
simulated
spring between
end-effectors

12 with std.
p.

TTC, position errors,
inverse TOT

ds performance worse with increased de-
lay in both feedback conditions; par-
ticipants were faster with visual feed-
back

low

Arai et al. [2000] evaluation HRI, real planar move-
ment of alu-
minum pipe to
target position

7 DoF in-
dustrial robot
(PA-10, MHI):
6 DoF at wrist
and a gripper

1 comparison of object
trajectories resulting
from different assis-
tance algorithms by
inspection, observa-
tion of side-slips at
robot gripper

ds assistance method using non-
holonomic constraint leads to
smoother object trajectory com-
pared to method based on impedance
control; when the operator can ap-
ply only translational forces, the
non-holonomic constraint algorithm
suppresses side-slips at the robots
gripper (method is extended to
three dimensional movements in
Takubo et al. [2002])

high

Bakar et al. [2006] dominance HHI, real 1 DoF vertical
motions

object with 3D
position camera
system and
force sensors

5, all pos-
sible combi-
nations

questionnaire for par-
ticipants instructed to
represent ”slaves” on
task difficulty

ds participants divided into master and
(blind-folded) slave group, two object
weights, three speed values and two
motion trajectories (20cm and 40cm),
heights of master and slave (standing
on a box), up or downward movements
are distinguished: fast movements are
easier to detect, even more if heights
between master and slave varies

low

Bakar et al. [2009b], see also
Bakar et al. [2008, 2007,
2009a,c]

dominance HHI, VR 1 DoF pointing
task

object with
force and LED
(position) sen-
sor, monitors

20 = 10
dyads

force and veloc-
ity profiles, TTC,
position error

ds when the follower knew the target po-
sition of the object his/her motions
were smoother than when this infor-
mation was not given

low

Basdogan et al. [2000] feedback HRHI, VR path following:
ring on wire
game

2 PHANToMs 10 with std.
p.

TTC , TOT, question-
naire on presence and
togetherness

is performance better with haptic feed-
back, togetherness increased with hap-
tic feedback compared to no-haptic-
feedback condition

low

Corteville et al. [2007] evaluation HRI, real 1 DoF pointing
task

linear actuators 1 forces ds interaction force is reduced by about
50N when a 75% assistance is given

low
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Esen et al. [2007] evaluation,
feedback

HRHI, VR medical bone-
drilling training

two
ViSHaRD10
hyper-
redundant
haptic displays;
conditions: no
training, verbal
tutoring by
trainer, force
demonstration
to student,
force/velocity
leading by tutor

4*8 with
std. p.

performance: multi-
dimensional Eu-
clidean distance
measure between
trainer and student in
force, velocity and
time

ds learning effect descriptively strongest
with verbal tutoring, followed by
force/velocity leading and force
demonstration

low

Evrard and Kheddar [2009] dominance HRI, VR pointing task
including
obstacle avoid-
ance;

PHANToM 1 plots of lifting altitude
(position), forces

ds after introducing a leader-follower-
metrics, two different leader-follower
sequences within the motion were
compared: no force-specialization
was found

high

Fernandez et al. [2001] evaluation HRI, real transport a 2m
rigid object
around the
corner in a
corridor

mobile manipu-
lator (not speci-
fied further)

1 position trajectory,
forces

ds it is concluded that the intention
recognition (HMM) based active-
coordination-module allows coopera-
tive following behavior of the robot;
though, at this state behavior is not ro-
bust enough

high

Feth et al. [2009b] partner,
feedback

HRHI, VR 1 DoF tracking
task

two linear ac-
tuators; in the
visual condition
there is no force
feedback from
the partner,
only from the
object

24 = 12
dyads

position error, forces,
energy

is performance increased in dyadic con-
dition; evidence for energy flow be-
tween partners found

low

Feth et al. [2009a] partner,
feedback,
model

HRHI, VR 1 DoF tracking
task

two linear actu-
ators

12 = 6 dyads position error, forces is McRuer’s model for individual track-
ing behavior explained the empirical
data in this task and was extended for
dyadic behavior; individuals within a
dyad behave not in accordance with
this model

low
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Feth et al. [2009c] evaluation,
feedback,
partner

HRHI, VR joint 2 DoF
pointing task

jointly ma-
nipulated
tele-robot with
two masters
(all admittance-
type haptic
input devices
with 6 DOF)

26 = 13
dyads

position error and
TTC

is comparison of three conditions: single
operator, two operators either with or
without mutual force feedback; con-
ditions did not influence error, but
task completion time was significantly
decreased with haptic feedback com-
pared to other two conditions, no dif-
ference in individual and visual feed-
back condition

high

Gentry and Murray-Smith
[2003]

dominance HRHI, real following
”dancing
moves” led by
robot

PHANToM,
without ob-
ject, no visual
feedback from
task

5 position errors by in-
spection

ds misclassification of dance steps can be
identified , evidence for haptic signals
found

low

Gentry et al. [2003] dominance HRHI, real following in
dancing with
human or robot

PHANToM 6 with std.
p.

errors by inspection ds no performance differences between
human and robot leader

low

Gentry et al. [2005] partner HRHI, real rotational
pointing task

wheel with two
handles

5 all pos-
sible dyad
combina-
tions

TTC, errors ds Schmidt’s law predicts the relation be-
tween task difficulty and TTC; dyads
made more errors than individuals but
moved faster.

low

Glynn et al. [2001] feedback,
delay

HRHI, VR 2 DoF tracking
task in maze

two studies: a)
second order
system, b)
zero-order;
joysticks

a) 22 dyads;
b) 24 dyads

TTC, position error;
coordination measure
= zero-lag cross corre-
lation between input

is a) less errors without force feedback,
lower position error, no difference in
TTC; b) with force feedback faster
and with lower position error, damage
identical; team coordination was bet-
ter with haptic coupling; delay leads
to higher TTC and damage, no differ-
ence in position error

low

Goncharenko et al. [2004] partner,
model

HRHI, VR 1 DoF rota-
tional move-
ment (without
target)

two PHaN-
ToMs

1 force and force-
derivative profiles

ds movements can be predicted by force-
change-based criterion rather than by
force-based criterion

low

Groten et al. [2009b], compare
Section 5.2

feedback,
partner

HRHI, VR 1 DoF tracking
task

two linear actu-
ators

24 = 12
dyads

position error, forces,
power, efficiency

is comparing conditions where the track-
ing task is executed alone / with part-
ner and force feedback only from
the object / partner and force feed-
back between partners: interaction in-
creases performance; haptic feedback
between partners cannot be considered
efficient as performance does not in-
crease further but interaction effort in-
creases

low
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Groten et al. [2009a], compare
Section 6.3

feedback,
domi-
nance

HRHI, VR 1 DoF tracking
task

two linear actu-
ators

24 = 12
dyads,
round robin
design

forces, dominance is haptic feedback between partners is
compared to a condition without such
feedback: in both cases the dom-
inance distribution between partners
is unequal; haptic feedback leads to
higher consistency in dominance be-
havior across partners

low

Groten et al. [2010], compare
Section 5.3

feedback HRHI, VR 1 DoF track-
ing task with
binary decision
making

two linear actu-
ators

32 = 18
dyads

position error, power,
efficiency

is with increased need of haptic nego-
tiation (different preferences in indi-
vidual decisions) haptic feedback be-
tween partners leads to higher per-
formance; compared to a visual part-
ner feedback condition no difference
in efficiency was found as the effort
(power) increases as well

high

Hamza-Lup et al. [2009] delay HRHI, VR stack cubes by
lifting and ma-
neuvering

two ”haptic de-
vices”

22 (no
further in-
formation)

TTC, errors ds increased delay leads to worse perfor-
mance

high

Hirata et al. [2005a], see also
Hirata et al. [2003, 2007, 2008];
Nejatbakhsh and Kosuge [2005,
2006]

evaluation HRI, real path following
(s-shaped)
with walking
support system

WalkingHelper
prototype robot

9 integrated error be-
tween desired and ac-
tual path

ds maneuverability of system is im-
proved by proposed control law

low

Hirata et al. [2002], see also
Hirata and Kosuge [2000];
Hirata et al. [2001,b, 2002];
Sato and Kosuge [2000];
Seto et al. [2007]; Suda et al.
[2003]

evaluation HRI, real move large
object along a
path with robot
assistance

two passive mo-
bile robot PRP

1 difference between
actual and desired
path

ds distributed motion control algorithm
leads to smaller deviations compared
to non-distributed algorithm

low

Ikeura et al. [2002] evaluation HRI, real 1 DoF pointing
task

6 DoF Robot
(PUMA 562)

15 questionnaire on mov-
ability, ease of po-
sition, stability and
human-likeness

is comparison of 3 different impedance
controllers (constant low, constant
high, variable) for robotic partner:
variable impedance controller is per-
ceived better in easiness of posi-
tioning and stability than constantly
low impedance; the variable con-
troller outranges the high constant
impedance controller in movability
and human-likeness

low

Ikeura et al. [1997] dominance,
model

HHI, real carried object
with force
sensors; laser
sensors to track
object position

1 DoF pointing
task

2 = 1 dyad force, velocity, energy ds if the follower is blindfolded he/she
can be described with variable damp-
ing control model, coordination is
considered more efficient the more
passive the follower

low
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Khademian and Hashtrudi-Zaad
[2007a]

dominance HRHI, VR path following
(square),

3 DoF planar
twin Panto-
graph jointly
control virtual
slave, only
the trainer has
visual feedback

6 (trainee)
with std. p.
(trainer)

error ds different dominance distribution val-
ues between partners introduced (0,
0.25, 0.5, 0.75, 1: dominance shar-
ing (6= 0, 1) increases performance
of trainee compared to full control by
trainer

low

Khademian and Hashtrudi-Zaad
[2009a]

evaluation,
domi-
nance

HRHI, VR move a salve
robot along an
oval virtual path

2 Quansar 3
DoF planar
twin Pan-
tographs and
a simulated
model of this
device as the
jointly manip-
ulated virtual
slave

6 (trainees)
with std. p.
(trainer)

questionnaire on
sense of environment,
maneuverability,
guidance by trainer
(not described in
detail)

ds three control architectures a) weighted
sum of position and force between two
operators depending onα, b) same as
1 but also withα = 0 or 1 the non-
dominant user receives feedback, c)
constant stiff connection = equal po-
sitions regardless ofα) crossed with
three different levels of dominance
(α = 0, 0.5, 1): architecture a) leads
to higher sense of environment, b)
leads to better guidance and maneu-
verability

low

Khademian and Hashtrudi-Zaad
[2009b]

evaluation,
domi-
nance

HRHI, VR move a slave
robot along a
square path

2 Quansar 3
DoF planar
twin Pan-
tographs and
a simulated
model of this
device as the
jointly manip-
ulated virtual
salve

5 (trainees)
with std. p.
(trainer)

TTC, error, energy is
(not
re-
ported
in de-
tail)

comparing effects of viewpoint, envi-
ronmental mushiness, virtual fixtures
and dominance distribution between
partners (not fully crossed factorial de-
sign) shows that dominance is not in-
fluencing the measures, higher mushi-
ness and virtual fixtures lead to lower
TTC and higher energy

low

Kim et al. [2004] feedback HRHI, VR jointly lift a vir-
tual cube for as
long as possible

two PHaN-
ToMs

20 with std.
p.

questionnaire on sub-
jective performance,
and (co-)presence

is
(not
re-
ported
in de-
tail)

haptic feedback increases co-
presence, no information on per-
formance is given

low

Kosuge and Kazamura [1997] evaluation HRHI, real 2 DoF tracking
task

industrial robot
6 (DoF) with
pen

”several” participants’ com-
ments, intentional
forces, inspection of
robot behavior

ds comparison of damping and
impedance controller: with lower
damping coefficient in damping
controller the motion of the pen is less
smooth but more accurate

low
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Maeda et al. [2001] evaluation HRI, real 1 DoF trans-
portation of
object

6 DoF JS2 two studies:
a) 1; b) 3

velocity profile, en-
ergy

ds a) motion estimation (based on mini-
mum jerk model) leads in the authors’
opinion to more human-friendly ma-
nipulation; b) motion estimation re-
duces unnecessary energy

low

Mateo et al. [2005] partner,
delay

HRHI, VR pointing task PHANToM 2 best and
2 worst per-
formers out
of 7 indi-
viduals = 4
dyads

TTC ds with partner and increased delay: per-
formance decreased

low

Miossec and Kheddar [2008] partner,
model

HHI, real lift object from
one position to
another

real object:
object in
individual
condition had
half the weight
as in dyadic
condition

3 dyads position and velocity
trajectories

ds minimum jerk model not verified, ten-
dency to average the alone behavior in
dyadic trials

high

Mulder et al. [2008] feedback,
evaluation

HRI, VR driving in simu-
lation

fixed-based
driving sim-
ulator with
pedals and
actuated steer-
ing wheel and
virtual driving
scene; either
haptic guidance
(based on devi-
ation between
reference path
and future posi-
tion of vehicle)
or no guidance
was provided

12 performance: RMS,
control activity:
standard deviation
in steering wheel
angle; control effort:
standard deviation in
steering forces

is performance is increased, control ac-
tivity decreased but effort higher with
haptic guidance

low

Nudehi et al. [2005] evaluation HRHI, no
vision

trainee had to
imitate men-
tor’s actions

two identical
wrists, each
with 2 DoF
along the hor-
izontal and
vertical axes

1 dyad force tracking (imita-
tion) error by inspec-
tion

ds two controllers were compared, one
led to a descriptively smaller error; the
goal to show that it is possible to de-
sign multiple candidate controllers is
reached

low

Oakley et al. [2001] feedback HRHI, VR dyadic com-
puter program-
ming

PHANToM,
monitors

8 dyads TTC, question-
naire on usability,
workload, presence,
collaboration

ds haptic feedback more demanding in
terms of subjective workload, leads to
higher presence, better usability

high
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Oguz et al. [2010] dominance,
evaluation

HRI, VR hitting obsta-
cles with a ball
on a plane in
instructed order
with assistance
controller

PHANToM
Omni

10 questionnaire on
performance, human-
likeness, collabora-
tion, control (in the
sense of dominance);
TTC, path length,
energy, error

is
(not
re-
ported
in de-
tail)

different assistance modes are com-
pared a) equal control on both axes;
b)shared control dependent on user’s
forces; c) no assistance): performance
lowest without guidance, energy high-
est with equal control, shared control
leads to tradeoff between accuracy and
energy with high subjective rating

high

Rahman et al. [1999], see
also Ikeura and Inooka
[1995]; Ikeura et al. [1994];
Rahman et al. [2002b]

dominance,
model

HRI, real 1 DoF pointing
task

1 DoF robot,
force sensor

3 parameter identifica-
tion of human arm
impedance: position,
velocity, stiffness,
damping

ds when robot is leading in cooperation
the velocity of human and impedance
model follows minimum jerk trajec-
tory

low

Rahman et al. [2002a], see also
Rahman et al. [2000]

dominance HRHI, real 1 DoF pointing
task

linear motor,
two force
sensors

10, all pos-
sible dyad
combina-
tions

forces, acceleration,
correlation

ds one participant is always leading and
the other following

low

Reed et al. [2004] partner HRHI, real rotational
pointing task

1 DoF two-
handled crank,
inertia doubled
in dyadic trials

4 dyads TTC ds faster performance for dyads than in-
dividuals

low

Reed et al. [2005], compare also
Reed and Peshkin [2008]

partner HRHI, real 1 DoF rota-
tional pointing
task

two-handled
crank, inertia
doubled in
dyadic trials

56 = 28
dyads

TTC, forces ds no specialization in movement
direction but partly acceleration-
deceleration specialization was found;
steady dyadic opposition forces found

low

Reed et al. [2006], compare also
Reed and Peshkin [2008]

partner HRHI, real 1 DoF rota-
tional pointing
task

two-handled
crank, inertia
doubled in
dyadic trials

30 =15
dyads; 11
with robot

TTC, forces ds dyads faster than individuals, dyadic
specialization: deceleration and accel-
eration, higher forces in dyads (*2.1);
force profile when interacting with
robot similar to individual profile

low

Reed et al. [2007], compare also
Reed and Peshkin [2008]

partner HRHI, real
and HRI,
real

1 DoF rota-
tional pointing
task

two-handled
crank

22= 11
dyads

TTC participants’
comments on partner

is Turing test (replay trajectory for
robotic partner): human dyads per-
form better than individuals but
human-robot teams do not; robot not
recognized as such

low

Salln̈as et al. [2000] feedback HRHI, VR stacking of
virtual cubes in
given patterns,
moving along
the cubes

PHANToM,
participants
were allowed to
talk

14 dyads questionnaire on per-
formance, (co- )pres-
ence, TTC

is no difference in co-presence, TTC bet-
ter, presence higher and perceived per-
formance higher with haptic feedback

high

Salln̈as [2001] feedback HRHI, VR stacking cubes
and putting
them in a given
order

PHANToM,
participants
were allowed to
talk

14 dyads video analysis: errors is explains results from Sallnäs et al.
[2000]: without haptic feedback TTC
was higher, because significantly more
cube-lifting failed

high
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Sankaranarayanan and Hannaford
[2008a]

evaluation,
delay

HRHI, VR object has to
follow tar-
get in 1 DoF
movements

Omni haptic
device , the
object provides
color cues on
interaction
forces between
users

10 with std.
p.

position error, forces is
(not
re-
ported
in de-
tail)

comparison of three different con-
trollers to handle time delay in telep-
resent setup: tuned pd, wave variable
and time domain passivity controllers:
pd-controller was best in terms of po-
sition error and wave variable based
approaches in terms of forces

low

Sankaranarayanan and Hannaford
[2008b]

evaluation HRHI, VR object has to
follow tar-
get in 1 DoF
movements

Omni haptic
device , the
object provides
color cues on
interaction
forces between
users

18 with std.
p.

position error, forces is
(not
re-
ported
in de-
tail)

three transmission rates (100, 500,
1000 Hz) and three virtual coupling
shemes (rigid, local, central) between
users and four delay conditions where
evaluated (factorial design not fully
crossed): performance with central
coupling is best, but rigid coupling is
preferred

low

Schaußet al. [2010] evaluation HRHI, VR pick and place
of real object
(multi-user
telepresence)

masters: two
haptic inter-
faces (4 DoF);
slaves: two
tele-operator
arms with 4
DoF

20 = 10
dyads

TTC, forces, effi-
ciency

is comparison of assistance controllers:
pure damping of the individual move-
ments does not increase performance,
but increases effort (forces) whereas
the introduced damping based virtual
coupling increases both

high

Solis et al. [2007] evaluation HRI, VR learn writing of
Japanese char-
acters

pen-stylus
designed by
PERCRO,
Monitor, com-
paring intention
recognition
based guid-
ance using
hidden Markov
model (HMM)
to classical
guidance

10 TTC, force, recogni-
tion rate by HMM
in % comparing it to
traing session results

is
(not
re-
ported
in de-
tail)

the assitance recognized Japanese let-
ters correctly in 81% of cases and pro-
vided assistance in 56%; howvever,
performance was not increased com-
pared to classical guidance

high

Takeda et al. [2007a], see
also Nakayama et al. [2009];
Sakai et al. [2007]; Takeda et al.
[2005, 2007b,c]

evaluation HRI, real ballroom dance MSDanceR
with
force/torque
sensor in waist

3 success rate if dance
steps are recognized

ds based on hidden Markov models the
robot should estimate the human lead-
ers intention to dance the correct
steps: success rate between 50%
and 98.88%, higher than with neu-
ral network control in previous studies
Hirata et al. [2005b]

high
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Ueha et al. [2009] partner,
domi-
nance,
evaluation

a) HHI, VR;
b) HRI,VR

1 DoF rota-
tional pointing
task

two handed
crank and a
5DoF (only 3
used) robot arm

a) 16 = 8
dyads; b) 1

TTC, forces ds a) dyads perform faster with part-
ner than alone; participants are ei-
ther responsible for radial or tangen-
tial forces; b) separation of tangen-
tial and radial forces in a Turing test
where robot is applying radial forces
increases performance

low

Ullah et al. [2010] feedback,
evaluation

HRHI, VR peg-in-hole task two string
based parallel
robots, screen,
3 DoF move-
ments, four
haptic guide
conditions: a)
spring towards
object, b) speed
coordination c)
simple force
feedback from
cylinder, d) no
force feedback

10 with std.
p.

performance: TTC,
detachment from
cylinder, subjective
rating, co-presence

is
(not
re-
ported
in de-
tail)

simple force feedback led to best per-
formance and subjective rating, co-
presence highest with speed coordina-
tion

high

Wang et al. [2009] evaluation HRI, real active and pas-
sive handshak-
ing with robot

10 DoF
robotic arm
(ViSHaRD10)

training: 4;
evaluation:
unknown

position and force tra-
jectories

ds the handshake is realized with a
position-based admittance controller
and an additional HMM controller es-
timating human intentions (active vs.
passive handshake): artificial hand-
shake trajectory resembles reference
trajectory and interaction forces de-
crease with interaction

low

Wojtara et al. [2008, 2009] evaluation HRI, real positioning flat
object at target
position

6 DoF robot
prototype

3 TTC, error ds comparison of three different algo-
rithms (DoF separation between hu-
man and robot, weighted control
of DoFs, robot following algorithm)
shows that with following algorithm
accuracy is highest

high



C Control Architecture and Parameters of
Haptic Interfaces

C.1 Control Architecture

In Figure C.1 the control architecture for the virtually coupled linear devices as employed in
the experiments is depicted. Due to the high gain PD-controller (compare Table C.1), a rigid
connection between the two partners in this mutual haptic feedback condition can be assumed.
The admittance resembles the virtual object which is rendered as a inertial mass only. Thus, the
related transfer function is

Go(s) =
Xo(s)

Fsum(s)
=

1

ms2
. (C.1)

Human

Operator

Admittance /

Object

PD-Controller
Haptic Interfaces:

Linear Devices

PD-Controller
Haptic Interfaces:

Linear Devices

Human

Operator

-

-

f1

f2

xd

x

x

Figure C.1: Control architecture for both linear devices used in the experimental setup
described in detial in Section 4.2.4. Here, the mutual haptic feedback con-
dition is depicted.
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C.2 Parameters

C.2 Parameters

The parameter values for the above shown architecture, which is used to realize the experiments
in this dissertation, are listed in Table C.1.

Table C.1: Parameter values of PD-controller and the mass of the admittance. The
value of the inertial mass is set to 20kg except for one “alone conditions” in
the experiment conducted on intention negotiation in low-level haptic collab-
oration (compare Sections 4.2.3 and 5.2).

Parameter Value
kp 70000 N/m
kd 530 Ns/m
m 20kg (10kg)
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