MITTHEILUNGEN

AUS DEM

MECHANISCH-TECHNISCHEN LABORATORIUM

DER

K. TECHNISCHEN HOCHSCHULE

IN

MÜNCHEN

VON

J. BAUSCHINGER

O. PROFESSOR DER TECHNISCHEN MECHANIK UND GRAPHISCHEN STATIK.

DREIZEHNTES HEFT, ENTHALTEND:

MITTHEILUNG XV: ÜBER DIE VERÄNDERUNG DER ELASTICITÄTSGRENZE UND DER FESTIGKEIT DES EISENS UND STAHLS DURCH STRECKEN UND QUETSCHEN, DURCH ERWÄRMEN UND ABKÜHLEN UND DURCH OFTMAL WIEDERHOLTE BEANSPRUCHUNG.

MIT 25 GRÖSSEREN TABELLEN, 2 LITHOGRAPHIRTEN BLÄTTERN UND 1 LICHTDRUCKTAFEL.

.

.

MÜNCHEN

THEODORACKERMAN

1886.

Ueber die Veränderung der Elasticitätsgrenze und der Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmal wiederholte Beanspruchung.

1. Abschnitt.

Dass bei Eisen und Stahl durch Belasten über die ursprüngliche Elasticitätsgrenze hinaus diese letztere erhöht wird, ist eine schon längst bekannte Thatsache. Uchatius*) und ich**) haben übrigens gezeigt, dass diese Eigenschaft auch anderen Metallen, wie Bronze, Zink, zukommt und mögen die von mir am citirten Orte mitgetheilten Versuchsresultate hier nochmal eine Stelle finden.

Von fünf Flachstäben, Nr. 1-5, aus Phosphorbronze und anderen Bronzesorten von ca. 7 cm Breite und 1,25 cm Dicke wurde die ursprüngliche Elasticitätsgrenze mittelst meines Spiegelapparates ***) bestimmt, indem die Verlängerungen, welche durch allmählich anwachsende Belastungen die ursprüngliche Länge von 20 cm erlitt, bis auf 0,0002 mm genau gemessen wurden. Nach Ueberschreiten der Elasticitätsgrenze wurde jeder der Flachstäbe mit einer gewissen Belastung noch weiter gedehnt und unmittelbar, d. h. wenige Minuten darnach, die Elasticitätsgrenze auf's Neue bestimmt. So bekam ich die in der unten stehenden kleinen Tabelle 1 enthaltenen Resultate:

rabelle 1.	Γ	le 1.	abe
------------	---	-------	-----

Fünf Flachstäbe aus verschiedenen Bronzesorten, auf Zug geprüft.

_					
Nr.	Ursprüng- liche	Ange- wandte	Dadurch her- vorgebrachte	Erhöhte	Zug-
ab-	Elastici-	Belastung	bleibende	Elastici-	fertig-
chst	täts-	uber der Elastici-	Dehnung für	tätsgrenze	keit
Fla	grenze	tätsgrenze at	urspr. 20 <i>cm</i> Tausendstel <i>cm</i>	at	at
_			Tausenuster em		
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	705 583 585 535 576	1000 930 1000 890 920	1,54 od. ¹ /13000 1,56 od. ¹ /13000 1,70 od. ¹ /11800 1,38 od. ¹ /14500 1,46 od. ¹ /13700	$940 \\ 874 \\ 880 \\ 883 \\ 864$	$2170 \\ 2240 \\ 2030 \\ 1975 \\ 2020$
•			988—993. Vers	. 5.—8. Juni	1875.

*) Dinglers Journal Bd. 223 S. 242.

**) Dinglers Journal Bd. 224 S. 1.

***) Dessen Abbildung und Beschreibung s. im V. Hefte der "Mittheilungen etc."

Bauschinger, Mittheilungen, XIII.

Aehnliche Resultate ergaben fühf quadratische Prismen von $4 \times 4 \, cm$ Querschnitt und $12 \, cm$ Länge aus denselben Bronzesorten, welche auf Druck geprüft und wobei die Verkürzungen für eine Länge von 5 cm gemessen wurden. (Tabelle 2.)

Tabelle 2.

Fünf quadratische Prismen aus verschiedenen Bronzesorten, auf Druck geprüft.

Prisma Nr.	Ursprüng- liche Elastici- täts- Grenze <i>nt</i>	Ange- wandte Belastung über der Elasticitäts Grenze <i>at</i>	Dadurch hervor- gebrachte bleibende Verkürzung für ursprünglich 5 cm Tausendstel cm	Erhöhte Elastici- tätsgrenze <i>at</i>
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	625 684 568 566 686	940 1060 1070 1070 1120	1,20 oder ¹ / ₄₁₆₇ 1,64 oder ¹ / ₃₀₅₀ 1,25 oder ¹ / ₄₀₀₀ 1,27 oder ¹ / ₄₀₀₀ 1,09 oder ¹ / ₄₆₀₀	$875 \\ 933 \\ 1010 \\ 1000 \\ 1060 \\ 1000 \\ 10$

Ein Flachstab aus Belgischem Zink endlich von $6,02 \ cm$ Breite und $1,02 \ cm$ Dicke, dessen Verlängerungen für eine ursprüngliche Länge von $10 \ cm$ gemessen wurden, ergab die in Tabelle 3 niedergelegten Resultate:

Tabelle 3.

Flachstab aus Belgischem Zink, auf Zug geprüft.

Ursprüngliche Elasticitäts- Grenze	Angewandte Belastung über der Elasticitäts- grenze	Dadurch her- vorgebrachte bleibende Dehnung für ursprünglich 10 cm	Erhöhte Elasticitäts- grenze
at	at	Tausendstel cm	at
24	32 65 98	$0,04 \text{ od. } {}^{1/250000}$ $0,47 , {}^{1/21000}$ $0.84 {}^{1/12000}$	32 65 98
1		1765. Vers. 6.	März 1877.

1

Bei allen den obigen Versuchen war die Zeit zwischen der Belastung über der Elasticitätsgrenze und der darauf vorgenommenen Messung zur Bestimmung der neuen nur klein, einige Minuten. Nach dem letzten in Tabelle 3 angegebenen Versuch mit dem Flachstab aus Belgischem Zink blieb dieser Stab, nachdem entlastet und die bleibende Verlängerung 0,86 Tausendstel em constatirt worden war, 22 Stunden und 48 Minuten ruhig eingespannt, wobei jene bleibende Dehnung allmählich auf 0,73 Tausendstel cm zurückging. Als nun auf's Neue die Elasticitätsgrenze bestimmt wurde, zeigte sie sich erst bei 0.67t =106 at, also über der Grenze, mit welcher vorher belastet worden war, während bei den vorhergehenden Versuchen mit demselben Stab die Elastizitätsgrenze immer nur bis zur vorher angewandten Maximalbelastung und bei den früheren Versuchen mit Bronze-Flachstäben und -Prismen nicht ganz bis zu dieser Maximalbelastung ge-Dadurch wurde ich auf den Einfluss, stiegen war. welchen die Zeit, die nach der Maximalbelastung verfliesst, auf die Erhöhung der Elasticitätsgrenze durch jene Belastung ausübt, aufmerksam gemacht, ein Einfluss, der, wie ich nachträglich erfuhr, schon vor mir von Beardslee^{*}) und noch früher von Wöhler^{**}) beobachtet worden war.

Um diesen Einfluss näher kennen zu lernen, liess ich aus einer und derselben Stange von Bessemerstahl (Lab. Nr. 939) vier je 40 cm lange und ungefähr 2,50 cm im Durchmesser haltende Rundstäbe c, d, e, f und noch einen doppelt so langen, aber ebenso dicken fünften, a, herstellen. Die Enden waren mit konischen Verstärkungen zum Einspannen versehen. Die durch Belastung auf Zug hervorgebrachten Verlängerungen dieser Stäbe wurden auf eine Länge von 15 cm gemessen : innerhalb der Elasticitätsgrenze und etwas über dieselbe hinaus mit meinem Spiegelapparat und dann weiter mit Hülfe eines kleinen Instrumentes, das, nach denselben Principien wie jener construirt, die Verlängerungen mittelst eines Zeigers gibt, der in zehnfacher Uebersetzung auf einem, in ganze Grade von je 1 mm Länge getheilten Kreisbogen mittelst eines Nonius 0,005 mm ablesen lässt.

Die Resultate dieser Versuche habe ich gleichfalls an dem schon oben citirten Ort ***) bereits früher mitgetheilt; auch sie sollen hier in abgekürzter Form und theilweise graphisch dargestellt nochmal wieder gegeben werden. (Tabelle V, Nr. 1-12 und Blatt I.)

Die ursprüngliche Elasticitätsgrenze lag bei den fünf Stäben verschieden hoch, zwischen 1780 und 2320 at (s. die

laufenden Nummern 1, 4, 6, 7 und 12 in Tab. V).*) Bis zu ihr steigt das Diagramm, welches man erhält, wenn man die Verlängerungen als Abscissen und die Belastungen als Ordinaten aufträgt, wie es auf Blatt I für die Stäbe a, d und e geschehen ist, in einer geraden Linie steil an. Von da an wachsen die Verläugerungen rascher als die Belastungen und geht daher das Diagramm in eine, jene Gerade berührende Curve über, die sich an der Streckgrenze, die hier bei ca. 14 t Belastung oder 2800 at liegt, in einem mehr oder weniger scharfen Knie gegen die Abscissenaxe abbiegt. Bis dahin ist bei der geringen Genauigkeit, mit welcher die Verlängerungen in die Diagramme eingetragen werden konnten (0,005 mm), kein Unterschied im Verlaufe der letzteren für die drei Stäbe a, d und e bemerklich; sie fallen zusammen.

Der Einfluss der Zeit, der schon von Ueberschreitung der Elasticitätsgrenze an durch ein schwaches Wachsen der Verlängerungen unter gleichbleibender Belastung beobachtet werden konnte, macht sich nun nach Ueberschreiten der Streckgrenze in hervorragender Weise geltend.

Bei den Stäben d und e wurde, nachdem von 14tauf Null gegangen und dann der oben beschriebene Zeigerapparat angelegt worden war, sofort wieder die Belastung von 13t aufgegeben und dann in Intervallen von je 1t, ohne wieder auf Null zurückzugehen, bis 25tfortgeschritten. (Die Diagramme auf Blatt I konnten des Raumes halber nur bis 24t gezeichnet werden.) Bei 25t wurde dann, ohne die Belastung zu ändern, der Messapparat abgenommen und hierauf in Intervallen von 0,5tfortgeschritten, bis der Bruch erfolgte.

Bei dem Stabe d wurde dabei am Beginne jeder neuen Minute der bereits vorhandenen Belastung eine neue Tonne hinzugefügt, durch Nachpumpen der Wagbalken rasch gehoben und am Ende der Minute die Verlängerung abgelesen und eine weitere Tonne zugelegt, ganz unbekümmert darum, dass die Verlängerung sich unter dem Einfluss der niedrigeren Belastung noch fortwährend vergrössert haben würde. Bei dem Stabe e dagegen wurde nach Auflegen jeder neuen Tonne die dadurch vergrösserte Belastung so lange belassen, bis der Zeiger des von Minute zu Minute abgelesenen Zeigerapparates innerhalb einer Minute keine merkliche Bewegung mehr machte, wozu anfangs, nach Ueberschreiten von 14 / Belastung, sieben, später 10 Minuten erforderlich waren. Man sieht, wie sich das Diagramm des Stabes e dem für den Stab d in treppenförmigen Absätzen anschmiegt, dass nach jeder, längere Zeit wirkenden Belastung

^{*)} Journal of the Franklin Institut 1874, I S. 150 u. S. 302.

^{**)} Erbkam, Zeitschrift für Bauwesen 1863, S. 245 u. 246.

^{***)} Dingler's Journal Bd. 224 S. I. u. 129,

^{*)} Nach der schärferen Bestimmung der Elasticitäts- oder Proportionalitätsgrenze, die ich erst nach der Veröffentlichung dieser Versuche im Dingler'schen Journal zu Grunde legte (s. weiter unten).

beim Stabe e das Diagramm steiler ansteigt, um das des Stabes d wieder zu erreichen. Man kann also sagen, dass durch die längere Einwirkung einer Belastung die Elasticität erhöht wird.

Die Zugfestigkeit der beiden Stäbe ergaben sich als nahezu gleich: 5500 und 5560 at.

Beim dritten Stabe f wurde nach Ueberschreitung der Elasticitätsgrenze noch bis 13,5t fortgeschritten, dann auf Null gegangen, der Spiegelapparat abgenommen und der Zeigerapparat angesetzt, darauf sofort wieder die Belastung von 13t gegeben und nun von Tonne zu Tonne bis 17t fortgeschritten (s. Tabelle 4). Nachdem dann wieder auf Null gegangen war, wurde der Versuch um 4 Uhr 30 Min. Nachm. abgebrochen, der Stab ausgespannt und erst am nächsten Tage, um 10 Uhr 15 Min. wieder eingespannt. Der Zeigerapparat wurde auf die gestern abgelesene bleibende Verlängerung von 1,235 mm gestellt, die Belastung von 17 t aufgelegt und dann von Tonne zu Tonne fortgegangen. Dabei zeigte sich nun die aus Tabelle 4 deutlich sichtbare Erscheinung, dass nach der auf das Strecken mit 17 t folgenden, etwa 18 stündigen Ruhe der Stab durch die 18. Tonne nur um 0.02 mm, um etwa so viel verlängert wurde, als durch die Belastungszunahme um 1t innerhalb der Elasticitätsgrenze (0,0147 mm), während bei den vorigen Stäben d und e, wo die 18. Tonne 1 oder 7 Minuten nach der 17. aufgelegt worden war, diese Belastungszunahme eine Vergrösserung der Verlängerung um 0,415 bezw. 0,40 mm hervorbrachte. Auch zeigte sich die Verlängerung während einer zwei Minuten dauernden Wirkung der 18. Tonne fast ganz constant, während sie beim Stab e in 6 Minuten um 0,08 mm zunahm. Und dass die in Rede stehende Erscheinung in der That durch die längere Ruhe bedingt ist, zeigen die Zahlen der Tabelle 4 nach der Belastung mit 23t. Ein darnach vorgenommenes Entlasten und gleich darauf, nach etwa 9 Min. wieder erfolgtes Belasten mit 23 und hierauf mit 24 t ergab, dass die 24. Tonne eine Verlängerung von 0,73 mm hervorbrachte, ungefähr gleich derjenigen bei den Stäben d und e, bei denen nicht auf Null gegangen war.

Behufs weiterer Constatirung und näherer Untersuchung der Erscheinung wurden nun die in Tabelle 5 (S. 7 und 8) enthaltenen Messungen an einem vierten Stabe c angestellt. Auch hier brachte nach 24 stündiger Ruhe die 18. Tonne nur eine Verlängerung von 0,035 mm hervor und der Einfluss erstreckt sich noch bis in die 19. Tonne, die anfangs auch nur eine geringe Vergrösserung der Verlängerung von 0,035 mm erzeugt. Aber mit der Zeit wächst diese Verlängerung rasch, anfangs mit zunehmender, dann mit abnehmender Geschwindigkeit, bis sie endlich, erst nach 21 Minuten, ein Maximum von im Ganzen 0,390 mm, immerhin noch weniger als bei den Stäben d, e und f, erreicht; erst bei der folgenden, 20. Tonne tritt eine so bedeutende Verlängerung von 0,805 mm ein, dass das vorher Versäumte beinahe vollständig wieder eingebracht wird.

Tabelle 4.

Rundstab von Bessemerstahl Lab.-Nr. 939⁺, auf Zug geprüft. Dchm.: 2,52 cm

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Life for Minuten nach dem Auflegen die Verlängerung hervor: mm Differenzen 13 1 0,195 0,195 14 2 0,195 0,015 14 1 0,210 0,015 15 1 0,725 0,610 16 1 1,085 0,340 17 1 1,420 0,350 18 1,510 0,350 17 1 1,530 18 1 1,530 19 1 1,835 0,780 20 1 2,650 0,505 21 3,180 0,505 22 1 3,180 0,505 23 1 4,445 0,633 23 1 4,700 4 4 1,730 0,730 0,730 24 1 5,155 0,730 25 1 6,380 0,730 24 1 5,155 0,730 25 1 6,380 0,985 10 <td< td=""><td>Die Be-</td><td>bringt in</td><td>auf 15<i>cm</i></td><td></td></td<>	Die Be-	bringt in	auf 15 <i>cm</i>	
Iastung von Tonnen nach den Auflegen Engerting hervor: mm Differenzen hervor: mm 13 1 0,195 14 1 0,195 14 1 0,210 15 1 0,725 16 1 1,085 5 0,820 16 1 1,420 0 - 1,235 17 1 1,500 0 - 1,235 18 1 1,550 19 1 1,835 19 1 1,835 20 1 2,650 19 1 3,180 9 2,330 0,610 20 1 2,650 0,505 21 1 3,180 0,610 23 1 4,445 0,635 23 1 4,700 0 24 1 5,155 0,730 25 1 6,380 0 0 1 5,870 0 25	le stand and	Minuten	die Ver-	10.100
Tonnen Auflegen mm 13 1 0,195 14 1 0,210 15 1 0,725 16 1 1,085 16 1 1,085 17 1 1,420 0 - 1,235 16 1 1,085 0 - 1,235 17 1 1,530 18 1 1,550 19 1 1,835 19 1 2,850 20 1 2,650 19 1 3,180 9 2,330 0,780 20 1 2,650 11 3,180 0,505 22 1 3,840 0,610 6 3,965 23 1 4,700 4 4,730 0,730 23 1 4,700 4 4,700 0,730 </td <td>lastung von</td> <td>nach dem</td> <td>hervor</td> <td>Differenzen</td>	lastung von	nach dem	hervor	Differenzen
13 1 0,195 14 1 0,210 0,015 15 1 0,725 0,610 15 1 0,725 0,610 16 1 1,085 0,340 17 1 1,420 0,350 0 - 1,235 0,610 0 - 1,235 0,350 17 1 1,420 0,350 0 - 1,235 0,020 18 1 1,550 0,020 18 1 1,550 0,020 19 1 1,835 0,780 9 2,330 0,505 0,520 20 1 2,650 0,520 21 1 3,180 0,505 22 1 3,840 0,610 23 1 4,445 0,635 23 1 4,730 0 24 1 5,155 0,730 9 5,460 0 0,885 10 6,345<	Tonnen	Auflegen		
13 1 0,195 0,015 14 1 0,210 0,015 15 1 0,725 0,610 16 1 1,085 0,340 17 1 1,420 0,350 0 - 1,235 0 17 1 1,420 0,350 0 - 1,235 0 18 1 1,530 0 2 1,530 0 0,020 18 1 1,550 0,020 19 1 1,835 0,780 20 1 2,650 0,505 21 1 3,180 0,505 22 1 3,840 0,610 3 3,840 0,610 0 23 1 4,445 0,635 24 1 5,155 0,730 25 1 6,020 0,885 0 1 5,870 0 25 1 6,380 0 0 -				
15 1 0,195 0,015 14 1 0,210 0,015 15 1 0,725 0,610 15 1 0,725 0,610 16 1 1,085 0,340 17 1 1,420 0,350 18 1,510 0 0,350 17 1 1,530 0,920 18 1 1,550 0,920 19 1 1,835 0,780 19 1 1,835 0,780 20 1 2,650 0,520 11 3,180 0,505 22 1 3,840 0,610 1 4,445 0,635 21 1 3,840 0,610 1 4,600 0 1 4,465 23 1 4,445 0,635 10 23 1 4,700 4 4,730 24 1 5,155 0,730 0,885 10 6,380 3,870 <	13	1	0 105	
14 1 0,210 0.015 15 1 0,725 0,610 15 1 0,725 0,610 16 1 1,085 0,340 16 1 1,085 0,340 17 1 1,420 0,350 0 - 1,235 18 Stunden entlastet. 0 0 - 1,235 17 1 1,530 18 1 1,530 18 1 1,550 19 1 1,835 0,780 9 2,330 0 0,505 20 1 2,650 0,505 19 1 1,835 0,780 20 1 2,650 0,505 21 1 3,180 0,505 22 1 3,840 0,610 6 3,965 0 1 23 1 4,445 0,635 23 1 4,700 0 4 4,602	1.)	i -)	0,195 0.195	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	- 1	0.210	0.015
15 1 $0,725$ $0,610$ 16 1 $1,085$ $0,510$ 16 1 $1,085$ $0,510$ 17 1 $1,420$ $0,350$ 0 - $1,235$ $0,020$ 18 Stunden entlastet. 0 $-$ 0 - $1,235$ $0,020$ 18 1 $1,550$ $0,020$ 18 1 $1,550$ $0,020$ 19 1 $1,835$ $0,780$ 20 1 $2,650$ $0,505$ 21 1 $3,180$ $0,505$ 22 1 $3,840$ $0,610$ 23 1 $4,445$ $0,635$ 23 1 $4,445$ $0,635$ 23 1 $4,700$ 4 4 $4,730$ $0,730$ 25 1 $6,020$ $0,885$ 0 1 $5,870$ 25 25 1 $6,380$ $0,630$ 0 - <td< td=""><td></td><td>2</td><td>0,210</td><td></td></td<>		2	0,210	
16 5 0,820 0,540 17 5 1,160 0,350 0 $-$ 1,235 0,350 0 $-$ 1,235 0,020 17 1 1,530 0,020 18 1 $1,550$ 0,020 18 1 $1,550$ 0,020 19 1 $1,835$ 0,780 20 1 $2,650$ $0,505$ 21 1 $3,180$ $0,505$ 22 1 $3,840$ $0,610$ 23 1 $4,445$ $0,635$ 23 1 $4,700$ 4 24 1 $5,155$ $0,730$ 24 1 $5,155$ $0,730$ 25 1 $6,020$ $0,885$ 0 1 $5,870$ 25 10 $6,345$ 0 0 25 1 $6,380$ $0,985$ 0 1 $5,830$ 0 0	15	1	0,725	0,610
16 1 1.085 0,340 17 1 1,420 0,350 0 - 1,235 0,350 18 Stunden entlastet. 0 - 1,235 17 1 1,530 0,020 18 1 1,550 0,020 18 1 1,550 0,020 19 1 1,835 0,780 20 1 2,650 0,520 7 2,850 0,505 21 1 3,180 0,505 22 1 3,840 0,610 6 3,965 0 0,610 23 1 4,445 0,635 24 1 5,155 0,730 25 1 6,020 0,985 10 6,345 0 1 25 1 6,380 0,730 25 1 6,380 0,985 0 1 5,870 0,585 25 1 6,380 0,985	10	ð	0,820	
17 1 1,420 0,350 0 - 1,235 0,350 18 1 1,235 0,020 17 1 1,530 0,020 18 1 1,550 0,020 18 1 1,550 0,020 18 1 1,550 0,020 19 1 1,835 0,780 20 1 2,650 0,520 21 1 3,180 0,505 22 1 3,840 0,610 23 1 4,445 0,635 24 1 5,155 0,730 25 1 6,020 0,585 0 1 4,700 4 4,730 0,730 25 1 6,380 0 1 5,870 25 1 6,380 0 1 5,870 25 1 6,380 0 1 5,830 0 1 5,830 <t< td=""><td>16</td><td>l õ</td><td>1,085</td><td>0,340</td></t<>	16	l õ	1,085	0,340
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	5 1	1,100	0.970
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	1 5	1,420	0,350
18 Stunden entlastet. 0 - 1,235 17 1 1,530 18 1 1,530 18 1 1,550 19 1 1,835 19 1 1,835 20 1 2,650 7 2,850 21 1 3,180 5 3,355 22 1 3,840 0 1 4,445 0 1 4,445 0 1 4,465 23 1 4,465 23 1 4,700 4 4,730 0,635 23 1 4,700 4 4,730 0,730 24 1 5,155 0,730 25 1 6,380 0 1 5,870 25 1 6,380 0 1 5,830 0 - 5,830 0 - 5,830 <td>0</td> <td></td> <td>1,310 1.235</td> <td>-</td>	0		1,310 1.235	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		18 Stunder	i entlastet.	•
17 1 1,530 0,020 18 1 1,550 0,020 19 1 1,835 0,780 20 1 2,650 0,520 20 1 2,650 0,520 21 1 3,180 0,505 22 1 3,840 0,610 23 1 4,445 0,635 23 1 4,465 0,635 23 1 4,700 4 4 4,730 0,730 24 1 5,155 0,730 25 1 6,380 0,855 0 1 5,870 0,885 0 1 5,870 0,885 0 1 5,870 0,885 0 1 5,830 0,985 0 1 5,830 0,985 0 - 5,830 0,985	0	I —	1,235	1
18	17	1	1,530	
18 1 1,550 0,020 19 1 1,550 0,780 19 1 1,835 0,780 20 1 2,650 0,520 21 1 3,180 0,505 22 1 3,840 0,610 23 1 4,445 0,635 23 1 4,445 0,635 23 1 4,465 0,635 23 1 4,700 4 4 4,730 0,730 24 1 5,155 0,730 25 1 6,020 0,885 0 1 5,870 3 25 1 6,380 0,885 0 1 5,870 3 25 1 6,380 0 0 - 5,830 0 0 - 5,830 0 0 - 5,830 0		2	1,530	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	1	1,550	0,020
19 1 1,853 0,780 20 1 2,830 0,520 21 1 2,850 0,520 21 1 3,180 0,505 22 1 3,840 0,610 6 3,965 0 0,635 23 1 4,445 0,635 0 1 4,165 0,635 23 1 4,700 0,635 23 1 4,700 0,635 23 1 4,700 0,635 24 1 5,155 0,730 25 1 6,020 0,885 0 1 5,870 25 1 6,380 0 1 5,870 25 1 6,380 0 - 5,830 0 - 5,830 0 - 5,830	10	$\frac{2}{1}$	1,000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1	1,800	0,780
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1	2,550	0.520
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\hat{\tau}$	2,850	0,020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	1	3,180	0,505
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		õ	3.355	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1	$3,\!840$	0,610
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	6	3,965	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	1	4,440	0,635
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0 1	4,600 4.165	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	4 9	4,105 4 165	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	ĩ	4,100 4,700	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	4,730	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1	5,155	0,730
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	5,46 0	
$\begin{array}{c ccccc} 0 & 10 & 6,345 \\ 0 & 1 & 5,870 \\ 25 & 3 & 5,870 \\ 25 & 1 & 6,380 \\ 0 & - & 5,830 \\ \end{array}$ Der Bruch erfolgte bei 26,5 $t = 5300 \ at.$ die	25	1	6,020	0,885
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10	6,345	
25 $\begin{bmatrix} 5 \\ 1 \\ 6,380 \\ 4 \\ 6,420 \\ - \\ 5.830 \end{bmatrix}$ Der Bruch erfolgte bei 26,5 $t = 5300 \ at$, die	0	1	5,870	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95	0 1	0,070 6 390	
$\begin{array}{c c} 0 & \hline & \vdots \\ \hline 0 & \hline & \vdots \\ \hline 0 & 5.830 \\ \hline 0 & \text{Bruch erfolgte bei } 26.5 t = 5300 \text{ at. die} \end{array}$	2.)	4	6 4 9 0	
Der Bruch erfolgte bei $26.5 t = 5300 at$. die	0		5.830	
	Der Bruch	erfolgte bei	26.5 t = 5	300 <i>at.</i> die

Der Bruch erfolgte bei 26.5 t = 5300 at, die einige Minuten lang gehalten wurden.

1731. Vers. 16.-17. Febr. 1877.

Nachdem, wie in Tabelle 5 angegeben, die 20 Tonnen Belastung abgenommen und eine bleibende Verlängerung von 2,385 mm gemessen worden war, wurde behufs Neubestimmung der Elasticitätsgrenze der Spiegelapparat angebracht und mit demselben bis 14t gemessen, worauf er durch den Zeigerapparat ersetzt wurde. Man sieht, der Stab verhält sich ganz steif bis zur Belastung, mit 19t;

1*

erst bei der 20. Tonne streckt er sich etwas mehr, jedoch immerhin nur wenig, aber die 21. Tonne bringt wieder eine normale, grosse Streckung um 0,570 mm hervor. Das blosse Zurückgehen auf Null und das sofortige allmähliche Wiederaufwärtsschreiten, unterbrochen von mehrmaligem Zurückgehen auf Null, kann also über die letzte Belastung hinaus (hier 201) keine Wirkung ausüben.

Es blieb nun noch übrig, zu constatiren, ob nicht etwa die Erschütterungen beim Ein- und Ausspannen des Stabes jene Erhöhung der Elasticität über die Streckbelastung hinaus hervorgebracht haben. Zu dem Behufe wurde, nachdem die Belastung von 217 abgenommen und eine bleibende Verlängerung von 2,980 mm abgelesen war, der Stab aus- und sofort wieder eingespannt und die Messungen nach wieder angesetztem Zeigerapparat fortgesetzt. Man sieht aus dem ferneren Verlauf der Mesungen in Tab. 5, dass das blosse Aus- und Einspannen und die damit unvermeidlich verbundenen Erschütterungen nicht die Wirkung hervorbringen, wie die längere Ruhe. Und um diess nochmals bestimmt zu erreichen, wurde nach Abnahme der letzten Belastung von 22*t* Stab und Messapparat ganz ruhig und unberährt etwa 22 Stunden lang stehen gelassen, Der Zeigerapparat zeigte währenddem keinen merklichen Rückgang der bleibenden Ver-

Tabelle 5.

Rundstab von Bessemerstahl, Lab.-Nr. 939°, auf Zug geprüft. Dchm.: 2,50 cm.

Die Be- lastung von Tonnen	bringt in Minuten nach dem Auf- legen	auf 15 <i>cm</i> die Ver- längerung hervor: <i>mm</i>	Dif- ferenzen	Die Be- lastung von Tonnen	bringt in Minuten nach dem Auf- legen -	auf 15 cm die Ver- längerung hervor : mm	Dif- ferenzen	Die Be- lastung von Tonnen	bringt in Minuten nach dem Auf- legen	auf 15 <i>cm</i> die Ver- längerung hervor: <i>mm</i>	Dif- ferenzen
12 13	1	0,200 0,200	0,020	4		2,4503 2,4659	0,0156	0 Den Stab	1	2,980	. J
14	1	$0.220 \\ 0.375$	0.210	$\frac{6}{6}$		2,4000 2.4821	162	Der Stau	aus- unu	solort Wl annt	eaer em-
	8	0,460		7		2,4987	166	0	ecsl.	ann. I soen I	T
15	1	0.795	0,405	8		2,5153	100	91	1	2,980	
	7	0.865		0		2,3886		41	1 9	3,555	
16	1	1,140	0,335	8		2.5153	0,0082	22	1	3,405 3,795	0.545
	7	1,200		5 , 5		2,5235	29		8	3.950	0,545
17	1	1,495	0,370	9		2,5318	00 97	0	1	3,535	
<u> </u>	Ĩ	1,570		9,5		2,5405	88		60	3,535	i
0		1,265	1	10		2,0493	0.0	22 Stun	den Ruhe	im entlas	steten Zn.
Messappa	arat abgen	iommen, St	ab ausge	10		2,3893		stande.	Stab und	Messanna	rat unbe-
spannt, d	ann nach	ca. 24stünd	iger Ruhe	10		2,0492	0,0087		ri	ihrt.	and anot
wiederei	ngespannt	and der Me	ssapparat	10,0		2,0010	89	1			pro $1 t$
	wieder a	ngebracht.		115		2,0008	93	0	I	3,535	1
Û (1.265		19		2,0101	88	4		3,595	0,0150
17	1	1.515		$\frac{1}{0}$		2,3895		8	- 1	3,660	160
	2	1,515	}	19		2,5840	0,0097	12		3,725	175
15	1	1,540	0,035	12.5		2,5937	88	14		3,760	0.015
10	4	1,550		13		2 6025	90	15		3,775	0,015
19		1,980		13.5		2.6115	97	16	· ·	3,785	90
	9 10	1,020		14		2.6212		17		3,805	15
	10	1,090	0,390	0		2,3896		18		3,820	15
		1,000		Spigralar	Marat abov	n é na na na	d Zairon	19		3,835	20
	- 20	1,250		opiegeial	parat auge	nonmen un reschraubt	u Zeiger-	20		3,855	20
20	-1	9 600	0.805		· ·			21		3,875	20
20	$\frac{1}{7}$	2,000	0,803	0	- 1	2,3896		22	-	3,895	30
0	· · ·	2.385		14	—	2,645	0.020	23	1	3,925	
Higrauf	I Zoigon	nnurat abov	nommon	10		2,665	25		35	3,940	1
der Spien	iei Zeigei alannarat	angahrad	t und so.	10		2,690	2 5	24		5,915	0,115
fort die	Massung	wieder for	tresetzt	14		2,710	20	0-	8	4,000	1
0	I		1	10		2,755	30	29		4,900	}
1		2,5550	0,0166	15 90	1	2,700				5,900	1
9		2,4010	161	20	1 9	2,010			3	6 190	
$\frac{4}{3}$		2,4338	161		3	2,825	60		4	6 175	2,250
4		2 4499	161	91	1	3 205	0,570		10	3.975	1
ō		2.3877			ĝ	3,395			14	6 205	
~ 1	•	· -,	1			-,		h	1 1.4	1 0,000	1

Der Bruch erfolgt bei 25,5 t = 5100 at, die kaum 1½ Minuten lang getragen werden.

1739. Vers. 20. Februar 1877.

längerung; er blieb unverrückt auf 3,535 mm stehen.*) Aus dem weiteren Verlauf der Messungen aber sieht man, wie die Erhöhung der Elasticität während der Ruhe nach dem Strecken auch hier bis in die zweitnächste Tonne, die 24., hineinreicht und erst bei der 25. Tonne ein so starkes Strecken beginnt, im Ganzen um 2,250 mm, dass alles vorher Versäumte wieder eingeholt wird.

Hiemit ist also, wenigstens für das vorliegende Material, Bessemerstahl, der folgende Satz erwiesen:

Durch Strecken eines Stabes, d. h. durch Belasten desselben über die Streckgrenze hinaus, erhöht sich seine Elasticität nicht blos während der Zeit, in der die Belastung wirkt, sondern auch noch während einer, auf die Entlastung folgenden längeren Ruhe (ohne Belastung) und diese Wirkung macht sich über die Belastung hinaus geltend, mit welcher vorher gestreckt wurde.

Es finden also in der Ruhezeit, die auf das Strecken folgt, Vorgänge in dem ruhig liegenden, entlasteten Stabe statt, Veränderungen in der gegenseitigen Lage der Moleküle u. dgl., die wahrscheinlich mit der bekannten Erscheinung der elastischen Nachwirkung zusammenhängen, auf welche ich aber hier nicht näher eingehen will. Ich werde mich überhaupt hier von allen Hypothesen zur Erklärung dieser und der noch weiterhin zu beschreibenden Erscheinungen fernhalten und mich lediglich darauf beschränken, die Thatsachen mitzutheilen, wie ich sie gefunden habe.

2. Abschnitt.

Nachdem durch die oben mitgetheilten Versuche nachgewiesen war, dass die Zeit längerer Ruhe nach einer Streckung so grossen Einfluss auf die Erhöhung der Elasticität, also auf die Cohäsion hat, lag die Frage nahe, ob ein solcher Einfluss nicht auch bezüglich der Wirkungen abwechselnder Belastungen constatirt werden könne, wenn zwischen denselben eine längere Pause der Ruhe stattfindet. Auch war es wünschenswerth zu constatiren, welche Wirkungen solche wechselnde Belastungen auf die Verlängerungen haben, die sie hervorbringen.

An dem fünften Stab aus Bessemer-Stahl, Lab. Nr. 939^a , welcher doppelt so lang als die übrigen war, wurden beide Messapparate, der Spiegel- und Zeigerapparat, auf je 15 cm Länge angebracht und ersterer immer so lange abgelesen, als die Verlängerungen in seine Grenzen fielen. Grössere Ausdehnungen wurden dann mit dem Zeigerapparat allein weiter verfolgt und nach diesem der Spiegelapparat immer neu eingestellt, wenn er wieder gebraucht werden sollte. Das Diagramm der so erhaltenen totalen Verlängerungen ist auf Blatt I dargestellt; die sämmtlichen während des Versuches beobachteten Vorgänge müssen aber hier genauer beschrieben werden.

Die Belastung von 15 / brachte an dem Stab nach 5 Minuten langer Wirkung eine totale Verlängerung von 0,775 mm hervor, ungefähr so viel wie bei den anderen Stäben auch. Nachdem der Spiegelapparat eingestellt worden war, konnte ein weiteres Fortschreiten jener Verlängerung, über eine halbe Stunde lang dauernd, beobachtet werden, das anfangs rascher war, dann aber langsamer und langsamer wurde. Während in der 7. Minute die Verlängerung um 0,0039 mm gewachsen war, nahm sie in der 34. Minute nur noch um 0,0001 bis 0,0002 mm zu; sie betrug schliesslich 0,8057 mm. Durch diese längere Einwirkung der Belastung von 15t hat nun aber, obwohl während derselben die Verlängerung im Ganzen nicht viel gewachsen war, die Elasticität doch bedeutend zugenommen, denn die nun aufgelegte 16. Tonne brachte die totale Verlängerung nach 5 Minuten langem Wirken nur auf 1,055 mm, also nur um 0,250 mm weiter, während sie bei den Stäben c bis f einen Zuwachs von im Mittel 0,350 mm hervorgebracht hatte; das Diagramm steigt zwischen a₂ und a₃ merklich steiler an, als zwischen d, und d2 bezw. e2 und e3 bei den Stäben d und e. Die neu zugelegte 17. Tonne holte dies noch nicht ein, denn sie erhob die totale Verlängerung nach 6 Minuten erst auf 1,410 mm, also um nur 0,355 mm weiter, um so viel ungefähr wie bei den andern Stäben auch.

Nun wurde zwischen den Belastungen 17t und Null mehrmals, im Ganzen 23 mal, abgewechselt. Für jeden Wechsel, auf oder ab, wurde in der Regel 1 Minute verwendet, mehrmals wurde aber bei der obern oder untern Grenze auch länger gewartet und dabei von Minute zu Minute der Spiegelapparat abgelesen. Es zeigte sich dabei allemal ein anfangs schneller, dann langsamer Rückgang der bleibenden Ausdehnung bei der Belastung Null und ähnlich ein anfangs rasches, dann langsames Vorwärtsgehen der Verlängerung bei der Belastung von 17t. So war nach dem 6. Hin- und Hergang die bleibende Ausdehnung für die Belastung Null nach

1,1957 1,1947 1,1945 1,1943 mm

und nach dem 17. Hin- und Hergang die totale Verlängerung für 17 t nach

1 2 3 4 5 6 Minuten 1,4964 1,4980 1,4988 1,4995 1,4997 1,5001 mm.

Im Ganzen wurde durch dieses 23 malige Hin- und Hergehen, zu welchem etwa 63 Minuten gebraucht worden waren, die bleibende Ausdehnung bei 0t Belastung von

^{*)} Daran ist übrigens nur die geringe Empfindlichkeit des Zeigerapparates schuld; mit dem Spiegelapparate kann man die Erscheinung der sog. elastischen Nachwirkung stundenlang verfolgen.

1,135 auf 1,2352 mm und die Verlängerung für 17t von 1,410 auf 1,5067 mm, erstere also etwas mehr als letztere, gehoben, so dass die Differenz beider, die sogen elastische Verlängerung etwas verringert wurde, von 0,275 auf 0,2717 mm. Damit wären aber die Wirkungen des Hinund Hergehens noch nicht erschöpft gewesen, denn unmittelbar vorher, nach dem 22. Hin- und Hergang, waren die bleibende und totale Ausdehnung noch 1,2341 bezw. 1,5058 mm.

Dieser öftere und längere Zeit fortgesetzte Wechsel der Belastung hat nun ebenfalls eine Erhöhung der Elasticität zur Folge gehabt; denn die 18. Tonne bringt nun nach 8 Minuten langer Dauer nur eine totale Verlängerung von 1,745 mm, also eine Vergrösserung derselben um nur 0,24 mm hervor, während sie bei den Stäben d und e eine solche von 0,41 mm bewirkt hatte. Das Diagramm steigt von a_7 nach a_8 steil auf. Die totale Verlängerung ist nun um etwa 0,28 mm hinter der der letzteren Stäbe zurück.

Hierauf wurde die Belastung von 18t abgenommen, eine bleibende Ausdehnung von 1,455 mm abgelesen, der Spiegelapparat eingestellt und Stab und Messapparate bis zum nächsten Tage, 21 Stunden lang, ruhig stehen gelassen. Der Spiegelapparat zeigte dabei einen Rückgang der totalen Ausdehnung auf 1,4527, also allerdings nur um 0,0023 mm, aber doch ganz gut messbar. Die neuerdings aufgelegten 18t brachten nach 3 Minuten jetzt nur die totale Verlängerung 1,7346 mm hervor, während diese schon 1,745 mm gewesen war. und die 19. Tonne, welche nun zugelegt wurde, erhob dieselbe nur auf 1,7886 mmnach 3 Minuten langer Wirkung, also nur um 0,0540 mmgegenüber 0,45 mm bei den Stäben d und e.

Nun wurde wieder zwischen den Belastungen 19 und 0 t öfters hin und her gewechselt, je einmal in einer Minute, und es ergab sich

das 1. 2. 3. 4. 5. Mal

für die $\int 19t$: 1,7886 1,8042 1,8179 1,8479 1,8605 Belastung $\int 0t$: 1,4834 1,5021 1,5159 1,5379 -- mm. Die vorausgegangene Ruhe hatte also die Folge, dass sich die bleibende und totale Ausdehnung für die Belastungen 0 und 19t nur sehr wenig über diejenigen erheben, welche schon die Belastung von 18t vor der Ruhe hervorgebracht hatte.

Es wurden nun 20t aufgelegt und dadurch die totale Verlängerung nach 4 Minuten Dauer auf 2.635 mm gehoben, durch die 20. Tonne also um 0.775 mm, und dadurch ein guter Theil des vorher Versäumten wieder eingebracht, aber noch nicht Alles. Nach 23 maligem Hin- und Hergehen zwischen 20 und 0t, wobei für jeden Wechsel anfangs immer nur eine, dann aber stets 2 Minuten verwendet wurden, so dass im Ganzen 82 Minuten vergingen, war die bleibende Ausdehnung bei 0t von 2,30 auf 2,4860 mm und die totale Ausdehnung bei 20t von 2,635 auf 2,8268 mm gestiegen. Bei den letzten 18 Hinund Hergängen, bei denen auf jeden Wechsel genau 2 Minuten verwendet wurden, nahm die elastische Verlängerung wieder ab, von 0,3440 bis 0,3408 mm. Dabei hatte der letzte Hin- und Hergang die bleibende Ausdehnung noch um 0,0022 mm, die totale um 0,0020 mm vergrössert.

Hierauf blieb der Stab ohne Belastung 2 Tage lang ruhig liegen. Die bleibende Ausdehnung verringerte sich dabei von 2,4850 auf 2,4805 mm, um 0,0055 mm. Die alsdann vorgenommenen Belastungswechsel zwischen 0 und 20 t von je 2 Minuten Dauer gaben folgende Resultate:

	das	1.	2.	3. Mal
eine	totale Verlängerung	2,7840	2,7857	2,7870 mm
,.	bleibende von	2,4828	2,4831	2,4835 mm
	das	4.	б.	6. Mal
eine	totale Verlängerung	2,7877	2,7882	2,7884 mm
	bleibende von	2,4837	2,4838 1	nm —

Durch die vorausgegangene 2 tägige Ruhe ist also die totale Verlängerung, welche 20t hervorbringen, beträchtlich kleiner geworden, um etwa 0.04 mm, und die Zunahme dieser totalen Verlängerung mit jedem neuen Wechsel wird rasch kleiner, so dass sie nach 6 Wechseln schon fast unmerklich wird.

Auch die bleibende Verlängerung ist, wie oben gezeigt, etwas — aber nur wenig — zurückgegangen und wächst mit jedem neuen Wechsel nur sehr langsam, beim ersten um nur 0,0003, während sie beim letzten Wechsel vor der Ruhe um 0,0022 mm zugenommen hatte. Die elastische Ausdehnung endlich ist von 0,3408 mm vor der Ruhe auf 0,3044 mm nach derselben herabgegangen, beträgt also nur noch 0,0152 mm pro Tonne — ungefähr so viel wie vor der ursprünglichen Elasticitätsgrenze.

Unmittelbar nach jenem 6. Wechsel mit 0 und 20t wurde noch 1 t zugelegt und dadurch nach je 2 Minuten langem Warten eine totale Verlängerung von 2,8080 mm und eine bleibende von 2,4855 mm hervorgebracht, während nach 5 maligem Hin- und Hergehen zwischen 0 und 21t die totale Verlängerung auf 2,8136 mm, die bleibende auf 2,4882 mm, also nur ganz wenig, anwuchsen; erstere hatte noch nicht einmal die Grösse erreicht, welche sie vor der Ruhe durch Strecken mit 20 t bekommen hatte. Nachdem das 6. Mal 21 t nach 2 Minuten langem Einwirken die totale Ausdehnung auf 2,8145 mm gebracht hatten, erhöhte die aufgelegte 22. Tonne auch nach je 2 Minuten die totale Verlängerung auf 2,8493 mm und die bleibende auf 2,5023 mm und nach 6 maligem Hinund Hergehen, die totale Verlängerung auf 2,8978 und die bleibende auf 2,5473 mm. Der Einfluss der Ruhe erstreckte sich also sehr merklich bis in die 2. Tonne herein. Erst die nächste Tonne brachte wieder grössere Veränderungen hervor. Während das 7. Mal die 22t die totale Verlängerung von 2,9081 mm nach 2 Minuten erzeugten, wuchs diese durch die 23. Tonne rasch auf 4,32 mm nach 5 Minuten und nach 10 maligem Hin- und Hergehen zwischen 0 und 23t innerhalb 20 Minuten auf 4,48 mm, die bleibende auf 4,055 mm. Die 24. Tonne erhöhte alsdann nach 5 Minuten dauernder Einwirkung jene auf 5,215 mm und nach 10 maligem Hin- und Hergehen zwischen 0 und 24t auf 5,39 mm, die bleibende Ausdehnung von 4,755 auf 4,945 mm. Die totale Ausdehnung ist nun wieder ungefähr ebenso gross wie bei den Stäben d und e. Der Bruch des Stabes a erfolgte bei 26,5t, die nicht ganz erreicht wurden, also bei etwa 5200 k pro 1 qcm.

Damit ist für das vorliegende Material — Bessemerstahl — erwiesen, dass die Wirkung wechselnder Belastungen, von denen wenigstens die obere die ursprüngliche Elasticitätsgrenze übersteigt, sehr verschieden ist, ob diese Wechsel unmittelbar rasch hinter einander folgen, oder ob längere Ruhepausen dazwischen liegen. Nach einer solchen Pause ist die Wirkung derselben wechselnden Belastungen auf das Material bedeutend geringer als vorher.

3. Abschnitt.

Bei weiterer Verfolgung der in den beiden ersten Abschnitten behandelten Erscheinungen legte ich mir zunächst die Frage vor, welchen Einfluss die Länge der Ruhepause, welche auf eine, nach stattgefundener Streckung vorgenommene Entlastung folgt, auf die Grösse der in ihr sich vollziehenden Erhöhung der Elasticität hat? Für Beantwortung dieser Frage war es vor Allem erforderlich, den zu unbestimmten Begriff: "Erhöhung der Elasticität" durch einen präciseren zu ersetzen. Diess suchte ich dadurch zu erreichen, dass ich in dem Vorgange der Dehnung eines Stabes durch allmählich anwachsende Zugkräfte (oder der Zusammendrückung eines prismatischen Probestückes durch Druckkräfte) zwei Stellen heraushob: die El asticitätsgrenze und die Streckgrenze (bezw. Quetschgrenze).

Die Elasticitätsgrenze wurde früher als diejenige Grenze definirt, innerhalb deren die Gestaltsveränderungen nach Beseitigung der Ursachen derselben vollständig wieder verschwinden, nach deren Ueberschreitung aber bleibende Gestaltsveränderungen beobachtet werden können. Nun ist aber die Constatirung von Gestaltsveränderungen, von Längenänderungen bei Zug oder Druck, wesentlich bedingt durch die Feinheit der Messinstrumente, die man anwendet. Die Anwendung meines Spiegelapparates, mit dem die Längenänderungen bis auf 1 Zehntausendstel Millimeter gemessen werden können, zeigt, dass bleibende Längenänderungen schon durch verhältnissmässig kleine Belastungen an Stoffen hervorgebracht werden, welche als sehr elastisch galten und noch gelten, an den gebräuchlichsten Metallen, an Holz etc. Nur bei sehr hartem Stahl, Werkzeugstahl, sind diese bleibenden Aenderungen anfangs so klein, dass sie auch der Spiegelapparat nicht mehr zu erkennen gibt. Damit musste die obige Definition der Elasticitätsgrenze fallen.

Nun zeigen aber die Messungen mit meinem Spiegelapparat, dass bei den als elastisch bekannten Materialien. bei Schmiede- oder Schweisseisen, bei Flusseisen, Stahl. Holz u. s. w. der alte Hooke'sche Satz: ut tensio sic vis, oder die Proportionalität der Verlängerung (oder Verkürzung) mit der Belastung, durch welche sie hervorgebracht wird, stets bis zu einer gewissen Grenze der Belastung gilt. Wird diese Grenze, welche man kurz Proportionalitätsgrenze nennen kann, überschritten, so wachsen die Längenänderungen rascher, als die Belastungen, oder das Diagramm, welches man erhält, wenn man die Belastungen als Abscissen und die Längenänderungen als Ordinaten aufträgt, biegt von der geraden Linie, aus der es bis zu jener Grenze bestand, in eine Curve um, welche diese gerade Linie berührt und ihre concave Seite der Abscissenaxe zukehrt.

Die Bestimmung jener Proportionalitätsgrenze hängt allerdings wieder von der Feinheit der Messinstrumente ab, von dem Grade der Empfindlichkeit, mit dem sie die beginnende Abweichung von der Proportionalität erkennen lassen. Aber diese Schwierigkeit ist hier doch ganz anderer Art. Die Aufgabe läuft darauf hinaus, den Berührungspunkt einer gegebenen Geraden mit einer gegebenen Curve, deren Bildungsgesetz unhekannt ist, zu finden. Der Punkt ist da, aber man wird ihn nur annähernd und mit um so grösserer Genauigkeit finden, je feiner die Hilfsmittel sind, die man anwenden kann.

Glücklicherweise wird aber, nach meinen Erfahrungen, unter Umständen, insbesondere bei Probestücken, die frisch von der Bearbeitung kommen und nicht kurz vorher eine Streckung oder Verkürzung durch grössere Belastungen erfahren haben, das Ueberschreiten der Proportionalitätsgrenze von einigen gleichzeitig auftretenden Erscheinungen begleitet, die ihre Bestimmung wesentlich erleichtern: Während nämlich 1) die bleibenden Längenänderungen innerhalb der Proportionalitätsgrenze nur klein sind und nur ganz allmählich mit der Belastung wachsen, werden sie nach Ueberschreitung jener Grenze mit einem Male bedeutend grösser. 2) Während bei wiederholtem Hin- und Hergehen zwischen der Belastung Null und einer innerhalb der Proportionalitätsgrenze gelegenen immer wieder dieselben bleibenden und totalen Längen-

änderungen erhalten werden, steigen beide bei einer oberen Belastung, die über der Proportionalitätsgrenze liegt, bei jedem neuen Wechsel zwischen dieser Belastung und Null. 3) Während endlich innerhalb der Proportionalitätsgrenze die Zeit auch bei längerem Warten nach Auflegen einer neuen Belastung keinen Einfluss zeigt, während also die Scalen des doch so empfindlichen Spiegelapparates an der Stelle, die sie nach Erreichen der neuen Belastung einnehmen, stehen bleiben, so lange die Belastung constant erhalten wird, sieht man sie bei einer über die Proportionalitätsgrenze hinausgehenden Belastung allmählich weiter und weiter rücken und erst nach längerer Zeit zur Ruhe kommen: es zeigt sich eine elastische Nachwirkung. Ebenso werden die, nach Ueberschreitung der Proportionalitätsgrenze auftretenden bleibenden Längenänderungen mit der Zeit, die nach der Entlastung verfliesst, kleiner, anfangs schneller. dann immer langsamer und langsamer.

Wenn diese letzteren begleitenden Erscheinungen präcis auftreten, dann wird man mit vollem Rechte die Proportionalitätsgrenze auch Elasticitätsgrenze nennen können, wie es von nun an immer geschehen soll. Manchmal bleiben freilich die eine oder die andere dieser Erscheinungen auch aus, besonders die ersteren beiden bei Probestücken, die unmittelbar oder kürzere Zeit vorher stark gestreckt (oder gedrückt, gequetscht) worden sind, bei denen sich also die elastische Nachwirkung noch geltend machen konnte, bei Probestücken also, mit denen wir es gerade bei vorliegenden Untersuchungen zu thun haben. Es bleiben dann auch nach Ueberschreiten der Proportionalitätsgrenze die bleibenden Längenänderungen, noch klein: dieselben sind anfangs, für kleine Belastungen, sogar manchmal negativ; und bei wiederholtem Belasten mit der gleichen Last ergeben sich keine grösseren, ja manchmal sogar kleinere totale Längenänderungen auch nach Ueberschreiten der Proportionalitätsgrenze.*) Da aber solche

*) Diese Erscheinung tritt in den Tabellen, in welchen ich die Resultate der in diesem Abschnitt zu besprechenden Untersuchungen zuerst im "Civilingenieur" Bd. XXVII S. 289-348 veröffentlicht habe, besonders stark auch noch eines anderen Umstandes halber hervor: Der Spiegelapparat nämlich, mit dem ich alle diese Messungen vornahm, hatte damals gerade einen ziemlich grossen todten Gang. Die Wirkung desselben auf die Messungen suchte ich dadurch zu vermeiden, dass ich nach Anbringung des Apparates an dem Probestück die Federn durch in die Nähe gehaltene heisse Blechstückchen etwas erwärmte. Bei der darauf folgenden Abkühlung der Federn machen die Wälzchen, an denen jene anliegen, und die Spiegel eine Bewegung im Sinne derjenigen, welche bei einer Verlängerung des Probestückes stattfindet. Nachdem die Federn wieder die Temperatur der Umgebung angenommen hatten, was etwa nach 15 bis 20 Minuten der Fall war, begann ich mit der Messung. Dieselbe Manipulation musste natürlich jedesmal nach der Entlastung vorgenommen werden, wenn die bleibende

Abweichungen theils durch Messungsfehler, wenn sie nur klein sind, theils im obigen Falle, wo sie grösser sind, durch die elastische Nachwirkung, welche vielleicht gerade durch das neue Belasten und Entlasten unterstützt wird, erklärt werden können, so können sie nicht als Grund gegen das Zusammenlegen der Elasticitäts- mit der Proportionalitätsgrenze angeführt werden, um so weniger, als auch bei solchen Probestücken, wie sie vorhin angeführt wurden, die dritte Erscheinung stets auftritt, die nämlich, dass die Zeit gleich oder bald nach dem Ueberschreiten der Proportionalitätsgrenze Einfluss auf die Grösse der totalen Längenänderung ausübt.

Eine nothwendige Consequenz dieser Definition der Elasticitäts- als Proportionalitätsgrenze ist dann freilich die, dass für solche Materialien, wie Gusseisen, Steine (bei ihrer Prüfung auf Druck), welche von vornherein keine Proportionalität der Gestaltsveränderungen mit der Belastung erkennen lassen, auch keine Elasticitätsgrenze gefunden wird. Aber diess liegt eben in der Natur der Sache: solche Körper haben einfach keine Elasticitätsgrenze und die Bestimmung einer solchen mittelst willkürlicher künstlicher Definitionen, wie sie Wertheim*) und Styffe**) gegeben hahen, hilft nicht darüber hinweg.

Eine andere Consequenz aus jener Definition der Elasticitätsgrenze ist die folgende, für die vorliegenden Untersuchungen besonders wichtige: Wenn in einem Stabe, welcher wechselnden Beanspruchungen zwischen einer unteren und oberen Grenze, von denen wenigstens die letztere über der ursprünglichen Elasticitätsgrenze liegt. ausgesetzt wird, die Lage der Elasticitätsgrenze nicht verändert oder erniedrigt wird, oder wenn dieselbe im Falle der Erhöhung unter jener oberen Grenze bleibt, so muss durch solche Anstrengungen, wenn sie nur oft genug wiederholt werden, schliesslich der Bruch erfolgen. Denn jede neue Anstrengung bringt eine neue Vergrösserung der Längenänderung hervor. -- Wenn aber umgekehrt beide Grenzen der wechselnden Beanspruchungen unterhalb der Elasticitätsgrenze liegen und liegen bleiben so kann auch durch noch so lange fortgesetzte Wiederholung der Anstrengungen der Bruch nicht erfolgen.

Verlängerung gemessen werden wollte. Dadurch wurde also bei jeder Entlastung eine Pause von 15 bis 20 Minuten nothwendig, in der die von der früheren Streckung des Stabes herrührende elastische Nachwirkung sich geltend machen konnte. Später wurde dieser Mangel meines Apparates durch sorgfältige Revision desselben beseitigt und seitdem waren jene Manipulationen nicht mehr nothwendig, wie sie auch früher (vgl. z. B. die Tabelle A auf S. 295 des oben citirten Bandes des "Civilingenieur") nicht angewandt zu werden brauchten.

*) Poggendorff's Annalen, Ergänzungsband II.

**) Die Festigkeits-Eigenschaften von Eisen und Stahl, S. 30 der deutschen Ausgabe.

Bei manchen Stoffen, namentlich bei Schweiss- und Flusseisen, sowie bei den weicheren Stahlsorten, tritt bei allmähliger Vergrösserung der Belastung über die Elasticitätsgrenze hinaus noch ein zweiter merkwürdiger Punkt auf, wo nämlich die Längenänderungen, die durch die fortwährend in gleichen Intervallen wachsenden Belastungen hervorgebracht werden, auf einmal sehr rasch wachsen, so rasch, dass die Scalenbilder in den Gesichtsfeldern der Fernrohre schnell durch dieselben hindurch laufen und ein Ablesen nicht mehr möglich ist. Das Diagramm, das bis dahin sich nur wenig und ganz allmählich von der geraden Linie, die es innerhalb der Elasticitätsgrenze bildet, abgebogen hat, biegt sich nun plötzlich in einem mehr oder weniger scharfen Knie gegen die Abscissenaxe um. Ich nenne den dabei stattfindenden Vorgang "Strecken" (den analogen beim Drücken: "Quetschen") und den Punkt, wo er beginnt, kurz die Streck- (Quetsch-) Grenze. Unter einer Belastung, die über dieser Grenze liegt, kommen die Scalen in den Gesichtsfeldern der Fernrohre erst nach langer Zeit, frühestens nach mehreren Stunden, zur Ruhe; d. h. die elastische Nachwirkung, unter welcher die Längenänderung bei gleichbleibender Belastung immer grösser und grösser wird, dauert mindestens mehrere Stunden, ja unter Umständen, bei höheren Belastungen, mehrere Tage. Die nach der Entlastung bleibenden Längenänderungen sind dann immer auch sehr gross und verkleinern sich, wieder unter dem Einflusse der elastischen Nachwirkung, noch lange Zeit, oft während mehrerer Tage.

Die Streckgrenze ist nach obiger Definition nicht präcis zu bestimmen. Es liegt das in der Natur der Sache. Die betreffende Stelle ist eben nur ein Ueberg ang aus einem allmählicheren in ein rasches Anwachsen der Längenänderungen. Manchmal findet allerdings dieser Uebergang fast plötzlich statt und dann kennzeichnet sich auch die Streckgrenze genauer, aber manchmal ist der Uebergang recht allmählich und dann muss man sich auch mit einer sehr annähernden Bestimmung der Streckgrenze begnügen. Bei manchen Stoffen, wie z. B. bei Messing und Bronze, auch bei Holz, bei sehr hartem Stahl, fehlt sie ganz. Bei anderen fällt sie nahezu mit der Elasticitätsgrenze zusammen, wie z. B. häufig bei sehr weichem Flusseisen.

Der Elasticitätsmodul ist nur innerhalb der Elasticitätsgrenze eine constante Grösse und wurde bei allen folgenden Messungen nur für diese Periode der Längenänderungen bestimmt. Ueber diese hinaus nimmt er fort und fort, zuerst langsamer, dann rascher ab.

Die Untersuchungen zur Beantwortung der, am Anfange dieses Abschnittes aufgestellten Frage wurden zunächst an Normal-Rundstäben von 25 mm Durchmesser Bauschinger, Mittheilungen, XIII. aus Schweiss- und Flusseisen, sowie aus Bessemerstahl durchgeführt, indem dieselben auf Zug geprüft und ihre Verlängerungen auf $15 \ cm$ Länge mittelst des Spiegelapparates gemessen wurden. Dabei wurde in der Regel in Belastungsintervallen von je 1 Tonne oder 1000 kg in der Weise fortgeschritten, dass am Beginn jeder Minute eine neue Tonne zugelegt und die dadurch hervorgebrachte Verlängerung am Ende der Minute abgelesen wurde. Nach je vier solchen Intervallen wurde entlastet und die bleibende Verlängerung bestimmt.

In dieser Weise wurde jeder der Probestäbe zuerst in dem Zustande, in dem ich ihn vom Bearbeiten her in die Hände bekam und den ich kurz den ursprünglichen nennen werde, untersucht und seine Elasticitätsgrenze und damit auch sein Elasticitäts-Modul und die Streckgrenze bestimmt. Dann wurde er mit einer, über der letzteren liegenden Belastung gestreckt und hierauf wieder entlastet. Unmittelbar darauf oder nach verschieden langen Zwischenräumen von mehreren Stunden bis zu einigen Tagen und Jahren wurden dieselben Bestimmungen der Elasticitätsgrenze und des Elasticitätsmoduls, sowie der Streckgrenze wieder vorgenommen, alsdann der Stab, natürlich unter einer höheren Belastung als vorher, nochmals gestreckt und entlastet, dann wieder gemessen u. s. w. f.

Die Resultate dieser Versuche, welche ich grösstentheils schon früher, im XXVII. Bd. des ., Civilingenieur" S. 289-348, mitgetheilt habe, sind hier mit anderen, die im 4. Abschnitte zur Besprechung kommen werden, in den Tabellen I. bis V. nochmals in abgekürzter Form so wieder gegeben, dass für jeden Versuch nur die vorausgegangene Behandlung, bezw. der Zustand des Stabes (Columne 2), dann dessen Dimensionen (Col. 4 und 5), die gefundene Elasticitätsgrenze und der Elasticitäts-Modul (Col. 6 und 7), die Streckgrenze (Col. 8), die Maximalbelastung, welche bei dem Versuch angewendet, mit welcher also eventuell der Stab getreckt wurde (Col. 9), endlich die bleibende Dehnung, welche jene Maximalbelastung hervorbrachte (Col. 10) in die Tabelle eingetragen wurde. Dabei sind die in Atmosphären (at) oder Kilogrammen pro Quadratcentimeter angegebenen Belastungen in den Columnen 2 und 6 bis 9 stets auf die Querschnittsgrössen, wie sie aus den Angaben in der zugehörigen Columne 4 bestimmt sind, berechnet.

Um ein genaueres Bild von dem Gange der Messungen bei einem einzelnen solchen Versuche zu geben, als es durch obige Beschreibung möglich war, führe ich in nebenstehender Tabelle 6 als Beispiel drei solche Messungsreihen in der Originalform auf. Sie sind beliebig herausgegriffen und mit dem ersten Rundstab aus Schweisseisen, Lab. Nr. 938[°], der I. Tabelle angestellt worden. Die Bestimmung der Elasticitätsgrenze, welche durch einfach unter-

strichene Belastungszahlen ausgezeichnet ist, ist bei der ersten und dritten Messungsreihe nicht besonders scharf, die vorausgehenden Differenzen sind ziemlich verschieden, was hier hauptsächlich von der mangelhaften, jetzt längst verlassenen Einspannweise des Stabes mittelst konischer Enden herkommen mag. Bei der zweiten Messungsreihe ist eine Elasticitätsgrenze gar nicht mehr zu erkennen; die Differenzen der Verlängerungen nehmen schon von Anfang an merklich zu, oder die Elasticitätsgrenze ist durch das unmittelbar vorausgegangene Strecken des Stabes auf Null herabgeworfen worden. Dagegen ist die Streckgrenze, welche durch doppelt unterstrichene Zahlen hervorgehoben ist, bei allen drei Messungsreihen ziemlich Während z. B. eine Zehentelstonne, scharf bestimmt. welche zu 10,6 t Belastung hinzugelegt wurde, in 3 Minuten nur eine Vergrösserung der Verlängerung um 0.95/1000 Centimeter hervorbrachte, laufen nach Auflegen einer neuen Zehentelstonne die Scalen so rasch durch's Gesichtsfeld, dass nach 3 Minuten noch nicht abgelesen werden kann und nach 15 Minuten die Verlängerung um 97.89/1000 cm grösser geworden ist. - Die Messungen nach Ueberschreiten der Streckgrenze, wie sie in Tab. 6 wiedergegeben sind, wurden übrigens nur in seltenen Fällen gemacht; in der Regel wurde diejenige Belastung, welche unmittelbar vor dem raschen Durchlaufen der Scalen durch's Gesichtsfeld getragen worden war, als Streckgrenze genommen. Die Belastungen, mit welchen gestreckt wurde, sind in Tab, 6 dreimal unterstrichen.

Bei näherer Vergleichung der Resultate in den Tabellen I – V, soweit sie hieher gehören (nämlich von Tab. I die laufenden Nummern 1—15, 17, 19—23, 25, 27—31, 36, 38—42, von Tab. II die Nummern: 1—5, 7 und 8, von Tab. III die sämmtlichen Nummern, von Tab. IV die Nummern 1—5, 8–12, 16—20, 25—29, 41—45, 58—63 und von Tab. V die Nummern 1—17) ergeben sich folgende Sätze:

1) Die Streckgrenze wird stets bis zu der Belastung hinaufgehoben, mit welcher gestreckt wurde und zwar schon unmittelbarnach dem Strecken. In der Zeit der Ruhe aber, die nach der auf das Streck en vorgenommenen Entlastung verstreicht, hebt sich die Streckgrenze über jene Maximalbelastung, mit welcher gestreckt worden ist, hinaus und zwar ist diese Hebung schon nach einem Tage sehr gut bemerkbar, dauert aber Wochen und Monate, vielleicht Jahre lang fort.

2) Die Elasticitätsgrenze wird durch das Strecken herabgeworten, oft bis auf Null, sodass die Probestücke, wenn sie unmittelbar nach dem Strecken und Entlasten wieder gemessen werden, gar keine oder eine bedeutend niedrigere Elasticitätsgrenze haben. In der Zeit der Ruhe aber, die nach der auf das Strecken vorgenommenen Entlastung verstreicht, hebt sich auch die Elasticitätsgrenze wieder, erreicht nach mehreren Tagen die Belastung, mitwelchergestreckt wurde und wird nach genügend langer Zeit, sicher nach mehreren Jahren, selbst über diese Belastung hinaus gehoben.

Diese Erhebung der Streckgrenze sowohl als der Elasticitätsgrenze scheint durch Erschüttern der Probestäbe, durch Hammerschläge z. B., die auf ihre Stirnflächen ausgeübt werden, während man sie in ungefähr senkrechter Stellung in der Hand hält, verzögert, doch nicht aufgehoben zu werden und zwar beim Schweisseisen mehr als beim Flusseisen.

Das Geradrichten eines Stabes durch Drücken und Biegen im Schraubstock scheint eine gehobene Elasticitätsgrenze sehr wirksam zu erniedrigen oder ihre Erhebung nach dem Strecken sehr wirksam zu verhindern (vgl. den nächsten Abschnitt.)

Oefter wiederholte Beanspruchung eines gestreckten Stabes zwischen den Belastungen 0 und einer, nicht über der ursprünglichen Elasticitätsgrenze gelegenen hindert die Hebung der Elasticitäts- und Streckgrenze nicht (Tab. I, Nr. 6; vgl. auch im vorigen Abschnitt die Versuche mit dem Stabe Lab. Nr. 939^a).

Oftmal wiederholte Beanspruchung eines noch nicht gestreckten Stabes zwischen den Belastungen 0 und eine unter oder knapp an der Elasticitätsgrenze gelegenen ändern diese Grenze und den Elasticitätmodul nicht (Tab. I Nr. 5; vgl. dagegen die Wirkung von sehr oft, millionenmal, wiederholten Anstrengungen im 5. Abschnitt).

Nach sehr starken Streckungen mit Belastungen, die nahe an der Bruchgrenze liegen, scheint die Hebung der Elasticitätsgrenze nur sehr langsam vor sich zu gehen, (s. Tab. IV Nr. 38 und 39, Tab. V Nr. 16) aber aufgehoben wird sie dadurch nicht (Tab. V Nr. 17).

3) Mit der Elasticitätsgrenze wird in der Regel auch der Elasticitäts-Modul durch vorausgegangenes Strecken erniedrigt; er erhebt sich, wie jene, in der Zeit der Ruhe nach dem Strecken und Entlasten wieder, wahrscheinlich aber langsamer. Nach mehreren Jahren findet er sich stets beträchtlich über seine ursprüngliche Grösse hinaus gehoben. (Einige Ausnahmen s. Tab. IV Nr. 3. 17, 18 und 19).

.

Tabelle 6.

Rundstab aus Schweisseisen Lab. Nr. 938e, auf Zug geprüft.

Im u	Nr. 1 in ' rsprüngliche	Tab. I. en Zusta	ande.	7 Mint	Nr. 2 in 7 aten nach B vorigen Ver	fab. I. Seendigu rsuches.	ing des	62 S1 de	Nr. 3 in 1 tunden nach es letzten V	'ab. I. Beendi ersuche	gung s.
L Länge	Rundboger Durchmesser f. d. Mess	1-Scala. : 2,50 <i>c1</i> ung: 15	n. ,00 cm.	D Länge	Rundbogen urchmesser: f. d. Messu	-Scala. 2,50 m 1ng: 15	n. .10 <i>cm</i> .	D Länge	Rundbogen urchmesser: f. d. Messu	-Scala. -2,495 c ing: -15.	m. ,13 <i>cm</i> .
Belastung t	Verläng. Tausendstel- cm	Diff.	Zeit	Belastung t	Verläng. Tausendstel- <i>cm</i>	Diff.	Zeit	Belastung t	Verläng. Tausendstel- cm	Diff.	Zeit
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 0\\ 4\\ 5\\ 6\\ 7\\ 8\\ 0\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 5\\ 10\\ 0\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\$	0 1.43 2,89 4,32 5,75 0,05 5,73 7,16 8,61 10,06 11,48 0,02 11,48 12,17 12,90 13,67 14,59 0,13 14,72 14,97 15,17 15,36 15,60 15,80 16,15 17,10 Scala lauft so rasch, dass nicht abgetesen werder kann. 114,99 97,30 3202. Vers	143 146 143 143 143 145 145 145 145 145 142 69 73 77 92 25 20 19 24 20 35 95 9789 Elast. Nach- wirkung merklich, aber gering. 24. Mä	4 h 19' 22' 25' 28' 31' 34' 49' rz 1880.	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 0\\ 4\\ 5\\ 6\\ 7\\ 8\\ 0\\ 8\\ 8, 5\\ 9\\ 9, 5\\ 10\\ 0\\ 10\\ 10, 5\\ 10, 6\\ 10, 7\\ 10, 8\\ 10, 9\\ 11, 0\\ 11, 1\\ 11, 1\\ 11, 2\\ 11, 3\\ 0\\ , \\ , \\ , \\ \end{array}$	0 1,49 2,99 4,52 6,07 0,05 6,07 7,63 9,20 10,84 12,51 0,15 12,51 13,33 14,22 15,10 16,13 0,45 16,28 17,50 18,06 18,91 19,79 20,86 22,47 Senia hauf so rasch, dass biddefenn 30,22 38,46 54,66 35,91 35,83 35,67 3202. Vers	149 150 153 155 156 157 164 167 82 89 88 103 56 85 88 107 161 775 824 1620	$4^{*} 56'$ 57' 58' 59' $5^{*} 0'$ 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12' 13' 14' 15' 16' 19' 22' 25' 28' 31' 5' 5' 0' 5' 1' 5' 5' 1' 1' 12' 13' 14' 15' 16' 19' 22' 25' 28' 31' 5' 5' 1' 5' 1' 1' 5' 1' 5' 1' 1' 1'' 1'' 5'' 1'' 1'' 1'' 1'' 5'' 1'' 1''' 1''''' 1''''''''''''''''''''''''''''''''''''	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 0\\ 4\\ 5\\ 6\\ 7\\ 8\\ 0\\ 8\\ 8, 5\\ 9\\ \hline 9, 5\\ 10\\ 0\\ 10, 5\\ 11\\ 11, 5\\ 12\\ 12, 1\\ 12, 2\\ 12, 3\\ 12, 4\\ 12, 5\\ 12, 6\\ \hline 12, 7\\ \hline \\ 12, 7\\ \hline 12,$	$\begin{array}{c} 0\\ 1,50\\ 3,00\\ 4,51\\ 6,02\\ 0,02\\ 6,01\\ 7,55\\ 9,06\\ 10,60\\ 12,11\\ 0,04\\ 12,11\\ 12,88\\ 13,63\\ 14,41\\ 15,19\\ 0,06\\ 15,17\\ 15,96\\ 16,75\\ 17,57\\ 18,58\\ 0,32\\ 18,69\\ 19,83\\ 22,10\\ 24,10\\ 25,78\\ 27,73\\ 31,13\\ \text{nicht}\\ abzulesen\\ 142,58\\ 120,65\\ 120,53\\ 120,47\\ 120,44\\ 120,42\\ 120,41\\ 120,37\\ 120,32\\ 2202\\ V$	150 150 151 151 151 154 151 154 151 154 151 77 75 78 78 78 78 79 79 79 79 79 82 101 114 227 200 168 195 340 11145	$\begin{array}{c} 4^{*} 39' \\ 42' \\ 45' \\ 48' \\ 51' \\ 54' \\ 57' \\ 9^{*} 0' \\ 15' \\ 15' \\ 16' \\ 17' \\ 18' \\ 19' \\ 20' \\ 25' \\ 30' \\ \end{array}$

.

Die in Satz 2) für die hier vorliegenden Materialien: Schweisseisen, Flusseisen und Bessemerstahl ausgesprochene Erniedrigung der Elasticitätsgrenze unmittelbar nach dem Strecken konnte bei den Versuchen mit Bronze- und Zinkflachstäben, deren Resultate im 1. Abschnitt in den Tabellen 1 und 3 mitgetheilt worden sind, nicht beobachtet werden, obwohl dort meistens unmittelbar oder nur wenige Stunden nach der Entlastung wieder gemessen wurde. Allerdings waren die dort mit der angewandten Maximalbelastung hervorgebrachten Verlängerungen nur sehr gering, keine Streckungen. Dass aber bei solchen Materialien auch bei bedeutenden Streckungen, ähnlich wie sie bei den Eisen- und Stahlstäben der Tabellen I-V angewendet worden sind, keine Senkung der Elasticitätsgrenze eintritt, habe ich in der schon oben citirten Abhandlung*) für drei Flachstäbe aus gewalztem Kupfer und drei Rundstäbe aus Rothguss gezeigt. **)

Immerhin aber forderten die angestellten Vergleichungen auf, den Einfluss näher zu untersuchen, den die Grösse der Dehnung oder Streckung auf die Veränderung der Elasticitätsgrenze bei Eisen und Stahl ausübt, ein Einfluss, der auch aus den Tabellen I—V schon zu erkennen ist, obwohl bei den dort niedergelegten Versuchen die Probestücke fast immer wirklich "gestreckt", d. h. über die Streckgrenze belastet wurden und dadurch in der Regel bedeutende bleibende Verlängerungen erfuhren.

Die in jener Absicht unternommenen Versuche wurden an zwei Rundstäben aus den Köpfen von Lokalbahn-Stahlschienen angestellt, in der Weise, dass man zuerst nur wenig über die ursprüngliche Elasticitätsgrenze hinaus ging, dann mit der Maximalbelastung Schritt vor Schritt höher ging, bis man nahe an die Streckgrenze kam und

·····

*) "Civilingenieur" Bd. XVII. S. 289-348.

**) Die dort gefundenen Resultate mögen hier kurz wiederhoit werden (vgl. S. 305, 307 und 308 der citirten Abhandlung).

Beim Kupfer liegt, im Gegensatz zu Eisen und Stahl, die Elasticitätsgrenze schon unmittelbar nach dem ersten Strecken und Entlasten höher als ursprünglich und rückt durch wiederholtes Strecken noch höher hinauf. Einige Zeit der Ruhe nach dem Strecken und Entlasten hebt sie noch höher, so dass nach dreimailgem Strecken und jedesmaliger Ruhe von 2 Tagen nach demselben die Elasticitätsgrenze bis über die vorige Streckgrenze hinaus erhöht wird.

Ebenso wird beim Rothguss die Elasticitätsgrenze schon unmittelbar nach dem ersten Strecken höher gefunden, als im ursprünglichen Zustande, aber nach wiederholtem Strecken rückt sie nicht mehr höher hinauf, auch dann nicht, wenn nach dem Strecken und Entlasten eine längere Zeit der Ruhe, ein oder zwei Tage, folgen.

Beim Kupfer erhebt sich auch nach zweitägigem Warten die Streckgrenze nur wenig, fast gar nicht über die Streckbelestung und bei Kothguss bleibt sie auch nach 1-2 Tagen noch etwas hinter der Streckbelastung zurück, die Zeit hat hier gar keinen Einfluss mehr. endlich diese überschritt und streckte. Jedesmal wurde, nachdem die Maximalbelastung gewirkt hatte, entlastet, die bleibende Dehnung gemessen und dann sofort die neue Lage der Elasticitätsgrenze gesucht.

Die so erhaltenen Resultate sind in der Tabelle VIII mitgetheilt, welche dieselbe Einrichtung hat, wie die I-VII. Es folgt aus ihnen:

4) Durch Dehnen mit Belastungen, die über der Elasticitäts- aber noch unter der Streckgrenze liegen, wird die Elasticitätsgrenze erhöht und zwar sofort nach dem Entlasten und um so mehr, je höher die Belastung war. Wenn letztere in die Nähe der Streckgrenze kommt, erreicht die Elasticitätsgrenze ein Maximum und wird bei Ueberschreiten der Streckgrenze herabgeworfen, entsprechend dem obigen zweiten Satze (S. 19).

Es scheint demnach ein Zusammenhang zwischen der merkwürdigen Erscheinung des Herabwerfens der Elasticitätsgrenze durch "Strecken" und der plötzlichen Volum-Verringerung zu bestehen, welche bei Schweisseisen und Stahl während des Streckens eintritt, und welche ich in meiner Arbeit: "Ueber die Quer-Contraktion und -Dilatation bei der Längen-Ausdehnung und -Zusammendrückung prismatischer Körper"*) mit den gleichzeitig auftretenden Wärmeerscheinungen nachgewiesen habe.

Es war vorauszusehen, dass ähnliche Erscheinungen, wie sie oben für Dehnen und Strecken nachgewiesen worden sind, auch beim Drücken und Quetschen auftreten würden. Versuche, die ich bei einer anderen Gelegenheit mit je einem Probestück aus Schweisseisen und Bessemerstahl anstellte, haben das bestätigt. Die Resultate dieser Versuche sind in Tabelle XII Spalte 1—5 und Tabelle XVI Spalte 1—4 enthalten; auch die Spalten 3—5 der Tabelle IX können hieher genommen werden. Diese Tabellen geben die vollständigen Messungsreihen wieder, in ähnlicher Weise wie die obige Tabelle 6 (S. 21 u. 22). Die einmal unterstrichenen Zahlen für die Spannungen bezeichnen die Elasticitäts-, die doppelt unterstrichenen, die Quetschgrenze; die dreimal unterstrichenen die Spannung, mit welcher gequetscht wurde.

4. Abschnitt.

Nachdem die im vorigen Abschnitt mitgetheilten Resultate constatirt waren, lag die Frage nahe, ob und durch welche Mittel die durch Strecken (oder Quetschen) erhöhte Elasticitätsgrenze sowie der Elasticitätsmodul wieder erniedrigt werden könnten?

^{*) &}quot;Civilingenieur" Bd. XXV. S. 81-124.

Zur Erörterung dieser Frage wurden zwei Behandlungsweisen der Probestücke angewendet, die von vornherein zum Ziele zu führen versprachen, nämlich:

- 1) Heftiges Erschüttern durch Ausschmieden mit schweren Hämmern in kaltem Zustande und nachheriges Bearbeiten (Abdrehen etc.).
- 2) Erwärmen auf verschiedene Temperaturen und darauf vorgenommenes langsames oder rasches Abkühlen.

Zu den Versuchen wurde ein Theil der Probestücke, Rundstäbe, verwendet, welche zu den im vorigen Abschnitt mitgetheilten Streckversuchen gedient hatten, nachdem sie längere Zeit, manche 2—3 Jahre, liegen geblieben waren; ausserdem noch Flachstäbe aus Flacheisen, wie es im Handel vorkommt, im ursprünglichen Zustande. Die Resultate der Versuche sind in den bisher noch nicht besprochenen Nummern der Tabellen I, II, IV, V und in den Tabellen VI und VII enthalten.

Die zwei Schweisseisenstäbe Nr. 938^a und 938^b, der Flusseisenstab Nr. 1850^a und der Bessemerstahlstab Nr. 939^b wurden nach 1 bis 3 Jahren ruhigen Liegens der ganzen Länge nach im kalten Zustande mit dem gewöhnlichen starken Handhammer, dann mit dem Schmiedehammer auf dem Ambos durchgehämmert und hierauf abgedreht. Die darnach mit ihnen angestellten Messungen ergaben die unter den Nummern 16 und 24 der Tabelle I, unter Nummer 64 der Tabelle IV und Nummer 18 der Tabelle V mitgetheilten Resultate, aus denen der Satz folgt:

1) Heftige Erschütterungen, wie sie beim Schmieden im kalten Zustande und nachfolgendem Bearbeiten vorkommen, erniedrigen die vorher durch Strecken und eine darauf verstrichene längere Ruhepause erhöhte Elasticitätsgrenze wieder. Die Streckgrenze wird durch eine solche Behandlung auch erniedrigt, aber nicht viel; sie bleibt noch weit über der Höhe, die sie im ursprünglichen Zustande des Probestückes hatte.

Wenn beim Ausschmieden keine Streckung des Stabes hervorgebracht wird, so sinkt die Elasticitätsgrenze bis zur ursprünglichen Höhe herab (s. Tab. I, 16 und V, 18), ausserdem bleibt sie darüber (Tab. I, 24 und IV, 64).

Bei den Versuchen über den Einfluss der Erwärmung und Abkühlung auf die Elasticitäts- und Streckgrenze wurden die Rundstäbe bis auf 50° im Wasserbade, bis 250° im Sandbade und von 300 bis 550° unter direkter Wirkung der Gasflamme in dem in chemischen Laboratorien gebräuchlichen Ofen für Elementar-Analysen erwärmt, das Glühen wurde im Kohlenfeuer vorgenommen. Die Temperaturen wurden unter 300° mit dem Quecksilberthermometer gemessen, die von 300 bis 550° mittelst Legirungen aus Zinn und Silber, von denen Stückchen auf den Stab gelegt und zum Schmelzen gebracht wurden.

Die Abkühlung des Stabs wurde, wenn sie langsam erfolgen sollte, durch Liegenlassen des erhitzten Stabes an der Luft oder im Ofen vorgenommen, behufs rascher Abkühlung wurde der Stab in senkrechter Richtung in kaltes Wasser getaucht und eine Verkrümmung sorgfältig vermieden.

Die Versuche in Tab. IV unter Nr. 46 bis 51, dann 21, 22 und 30-33 zeigen zunächst,

2) dass die Wirkung der Erwärmung und darauf folgenden Abkühlung auf die Lage der Elasticitäts- und Streckgrenze beim Flusseisen erst von 350° an, wenn die Abkühlung rasch und vom 450° an, wenn die Abkühlung langsam erfolgt, bemerklich wird. Für Temperaturen, welche unter jenen liegen, bringen Erwärmungen und Abkühlungen, auch wenn sie öfter (10 mal) nach einander erfolgen, keine Wirkung auf die Lage jener beiden Grenzen hervor (s. Tab. IV Nr. 22 und 49). -- Bei Schweisseisen beginnt diese Wirkung in beiden Fällen, sowohl bei rascher als auch bei langsamer Abküblung jedenfalls von 400° an (s. Tab. I., 32, 33 und 43).

Die übrigen in den Tabellen I-V enthaltenen, hieher gehörigen Versuche zeigen,

3) dass die Wirkung der Erwärmung über jene Temperaturen und der darauf folgenden langsamen oder raschen Abkühlung immer darin besteht, dass die Elasticitätsgrenze sowohl als auch die Streckgrenze erniedrigt wird, und zwar um so mehr, je höher erwärmt wurde, dass aber diese Einwirkung auf erstere Grenze bedeutend energischer ist, als auf letztere.

Einige scheinbare Ausnahmen hiervon, nämlich die in den Versuchen Nr. 44 in Tab. I, dann Nr. 9 in Tab. H und Nr. 14, 34 und 66 in Tab. IV bei langsamer Abkühlung lassen sich leicht daraus erklären, dass die durch das vorausgegangene Belasten über die Elasticitätsgrenze veranlasste Hebung der letzteren noch fortdauerte, über die Erwärmung und langsame Abkühlung hinaus. In der That zeigen die Versuche Nr. 17 und 18 in Tab. I und Nr. 38–40 in Tab. IV, dass eine Erwärmung (bis 500° C.) und darauf folgende langsame Abkühlung die mit der Zeit erfolgende Hebung der Elasticitätsgrenze eines vorher gestreckten Stabes (Satz 2 des vorigen Abschnittes) nicht verhindert, vielleicht sogar unterstützt. - Eine wirkliche Ausnahme, die ich bis jetzt nicht zu erklären vermag, bildet nur der Versuch Nr. 53 in Tab. IV, wo eine zweitmalige Erwärmung auf 400° und darauffolgende rasche Abkühlung die Elasticitäts- und Streckgrenze hob.

während sie die Tags zuvor vorgenommene gleiche Behandlung gesenkt hatte.

Weiter folgt aus den hieher gehörigen Versuchen in den Tabellen I—V der folgende merkwürdige Satz, an dessen Richtigkeit ich lange nicht glauben wollte, der sich aber ausnahmslos als giltig erwiesen hat:

4: Rasches Abkühlen nach dem Erwärmen erniedrigt die Elasticitäts- und die Streckgrenze, besonders die erstere, weit energischer als langsames Abkühlen; rasches Abkühlen wirft die Elasticitätsgrenze meist schon bei einer Erwärmung auf 500°, sicher aber beim Kirschrothglühen auf Null oder nahezu auf Null herab, und zwar sowohl bei Schweiss- und Flusseisen, als auch beim Bessemerstahl*) (vgl. die Versuche unter Nr. 18°, 35, 37, 45 in Tab. I, Nr. 6 in Tab. II, Nr. 40° in Tab. IV und Nr. 19 in Tab. V und die dazu gehörigen Ergänzungen in Tab. VII°), während langsame Abkühlung eine so tiefe Senkung der Elasticitätsgrenze selbst nach Kirschrothhitze nicht hervorbringen kann.

Bei langsamem Abkühlen konnte die Elasticitäts- und Streckgrenze nur bei dem Flusseisenstab 1850° (s. Nr. 67 in Tab. IV) bis unter die ursprüngliche Höhe herabgedrückt werden und auch da nur bei vorausgegangener Kirschrothhitze; nicht aber bei einer Erwärmung auf 550° (Nr. 36 in Tab. IV). Bei Schweisseisen brachte unter gleichen Umständen auch vorausgegangene Glühhitze keine solche Wirkung hervor (Nr. 10 in Tab. II).

Die Zeit hatte bei den vorstehend beschriebenen Erscheinungen keinen Einfluss, d. h. die durch Erwärmen und Abkühlen gesunkenen Elasticitätsgrenze und Streckgrenze hoben sich in der Zeit der Ruhe nach dem Abkühlen nicht wieder, wenigstens in den nächsten 2—3 Tagen nicht (vgl. Nr. 26 und 37 in Tab. I, Nr. 24 und 57 in Tab. IV; die scheinbare Ausnahme in Nr. 7 der Tab. IV rührt von dem, durch vorausgegangenes Belasten verursachten Steigen der Elasticitätsgrenze her).

Es war interessant, die Wirkung der Erwärmung und darauf folgenden Abkühlung auf die Elasticitäts- und Streckgrenze auch bei solchen Probestücken zn untersuchen, die vorher nicht durch Strecken und darauf folgende längere Ruhe verändert worden waren. Ich liess desshalb aus zwei Flacheisen von $^{80}/_{10}$ und $^{40}/_{10}$ mm Querschnitt (Lab. Nr. 2335 und 2336) in dem Zustande, wie sie im Handel vorkommen, je zwei Flachstäbe, aus ersterem neben-, aus letzterem hintereinander, kalt heraus-

*) Hieraus erklärt sich die im vorigen Hefte dieser "Mittheilungen" nachgewiesene rasche Ausbiegung schmiedeiserner Sanlen, wenn sie schon nach einer Erwärmung von unter 600° einseitig angespritzt und dadurch rasch abgekühlt werden. schneiden und denselben die üblichen Dimensionen und Formen geben. Die bei einer anderen Gelegenheit beobachtete hohe Lage der Elasticitäts- und Streckgrenze (vgl. Abschnitt 6) liess vermuthen, dass bei diesem Eisen durch das Walzen jene Grenzen künstlich erhöht worden seien.

Je der eine dieser beiden Paare von Stäben wurde im ursprünglichen Zustande gemessen, d. h. dessen Elasticitäts und Streckgrenze etc. gesucht, dann in Kirschrothhitze geglüht und rasch abgekühlt, während der zweite mit jenem sogleich in Kirschrothhitze geglüht und langsam im Feuer abgekühlt, dann gemessen, nach einigen Tagen nochmal geglüht, rasch abgekühlt und wieder gemessen wurde.

Es ergaben sich die in den Tabellen VI und VII niedergelegten, durchweg mit den obigen übereinstimmenden Resultate:

Durch rasches Abkühlen nach dem Glühen wurde die Elasticitätsgrenze bei den Stäben aus dem Flacheisen Nr. 2335 fast, bei denen aus dem Flacheisen Nr. 2336 ganz auf Null herabgeworfen (s. hiezu auch die Ergänzungstabelle VII^a), die Streckgrenze jedesmal erniedrigt, doch nicht bedeutend. Durch langsames Abkühlen dagegen werden Elasticitäts- und Streckgrenze nur wenig erniedrigt. (Die Erhöhung der ersteren im Versuch unter Nr. 3 in Tab. VII lässt sich recht wohl daraus erklären. dass die Elasticitätsgrenze im Stücke 2336^a schon ur. sprünglich höher war als in dem 2336^b; solche Verschiedenheiten der Elasticitätsgrenze und noch viel grössere kommen in Flacheisenstangen, Kesselblechtafeln etc. häufig vor und erklären sich ungezwungen aus der in diesem Abschnitt nachgewiesen hohen Empfindlichkeit der Elasticitätsgrenze für die Art und Weise wie die Abkühlung vor sich geht).

Alle die Probestäbe, mit denen die in diesem und den vorhergehenden Abschnitten beschriebenen Versuche angestellt worden sind, wurden zuletzt abgerissen und ihre Zugfestigkeit, ihre Contraction und ihre Dehnung bestimmt, um dadurch zu erfahren, welchen Einfluss die vorausgegangene Behandlung des Stabes auf jene Faktoren ausübt. Für diejenigen Probestücke, bei denen eine Vergleichung mit dem ursprünglichen Zustande möglich war, sind der Uebersicht wegen diese Resultate in der auf S. 29 bis 32 stehenden Tabelle 7 aus den Tabellen I-VII zusammengestellt. Dabei sind in der dritten Columne die mit dem betr. Probestücke vorgenommenen Manipulationen nur kurz aus jenen Tabellen wiederholt und wird behufs ausführlicherer Information darüber auf diese verwiesen. Zugfestigkeit, Contraktion und Dehnung beziehen sich auf die ursprünglichen Dimensionen, nur bei den kalt

ausgeschmiedeten und dann wieder abgedrehten Rundstäben sind die nach diesen Operationen abgemessenen, bezw. aufgetragenen Längen zu Grunde gelegt. Auch bei den kalt gehämmerten Flachstäben beziehen sich die Zugfestigkeit und Contraktion auf den Querschnitt nach

dem Hämmern und unmittelbar vor dem Zerreissversuch. die Dehnung aber auf 15 cm, die schon ursprünglich aufgetragen worden waren. Doch wurden hier durch jene Operation die Dimensionen nur wenig geändert.

Tabelle 7.

	nung s ückes		ug- ekeit	tion	Deh	nung	
Material	Bezeich des Probest	Behandlung vor dem Zerreiss-Versuche	at at	0 er Prov.	auf mm	Betrag Proc.	Bruchausschen
	1					•	
Schweisseisen- Rundstäbe s. Tab. I.	938	Dreimal gestreckt, darauf abgerissen	3870	43	250	24,8	- Feinschnig mit einigen kry- - stallinischen - Punkten,
	938'	Zweimal gestreckt, ausserdem über hundertmal theils unter, theils bis zur Elasticitäts- und Streckgrenze und einigemal auch etwas über letztere belastet, dann abguören.	2910	48	250	24,8	Wie vorhin,
	938ª	Dreimal gestreckt, dann im kalten Zustande ausge- schmiedet und wieder abgedreht, dann wieder ge- streckt, dann auf 500° C erwärmt und langsam, andlich kinzebach gedäht med nue abgedählt.	4750	27	150	15,8	Fast durchaus grobkrystal- linisch mit einigen kleinen schnigen Stellen.
	938 ^b	Dreimal gestreckt, dann kalt ausgeschniedet und wieder abgedreht und noch einmal gestreckt, end- lich bis 500° C erwärmt und rasch abgekühlt.	4900	27	150	12,7	Krystallinisch mit kleiner schniger Stelle auf einer Seite : auf dieser Seite
	938°	Dreimal gestreckt und dann zweimal auf 400°C er- wärmt und einmal langsam, einmal rasch abge- kühlt, dann zweimal auf 500°C erwärmt und rasch abgekühlt.	4400	36	250	20.3	ausserüch aufgerissen. Zur Hälfte sehnig, zur an- deren Hälfte, jene halb- mondförnig umgebend, krystallinisch: ausserlich ein Längsspalt auf der
	938ª	Dreimal gestreckt, dann auf 400° C erwärmt und rasch, hieranf auf 500° C erwärmt und langsam, endlich wieder auf 500° C erwärmt und rasch ab- gekühlt.	4090	41	250	23,0	sehnigen Seite. Wie bei e und f.
Schweisseisen, Flacheisen s. Tab. VI u. VII.	2335	Ursprünglicher Zustand	4050	24	150	12,6	Feinsehnig, feingeschieh- tet, etwas zerrissen. Aeus- serlich aufgerissen. Vergl.
	2335 ¹⁾	Zehnmal geglüht und einmal bis 250° C erwärmt und theils rasch, theils langsam abgekühlt, zuletzt langsam, endlich noch mit 60 mässig starken Hammerschlägen mittelst des Schmiedbammers unter dem Vorsetzhammer auf der Breitseite be- arbeitet.	4670	25	150	15,8	100. XXI Mr. 1. Feinschnig, feingeschichtet.
	2335"	Achnlich wie beim vorigen Stab, jedoch zuletzt mit 60 starken Hammerschlägen bearbeitet.	4380	22	····· `	·	Wie vorhin.
	23 36	Ursprünglicher Zustand	4020	33	-	- :	Feinschnig,feingeschichtet,
	$2336^{ m b}$	Behandlung ähnlich wie bei den Stäben 2335 ^{a alb} jedoch nicht gehämmert: zuletzt kirschroth ge- olüht und langsam abgekühlt.	4290	36	150	20,3	Wie vorhin.
	233 6ª	Behandlung ähnlich wie bei dem Stab 2335°	4790	34	150	18,7	Wie vorhin.
Flusseisen-Rund- stäbe s. Tab. IV.	1850 ²	Ursprünglicher Zustand	4610	62	250	28,9	Ausserordentl. feinkörnig, fast sehnig, mit aufge- zogenenn lände
	1850^{h}	Ursprünglicher Zustand	4610	60 3 9	250	28,5	Wie vorhin,
_·	1850 '	Dreimai gestreckt, dann einmal auf 500° C erwarnt und rasch abgekühlt, endlich, kurz vor dem Ab-	4420	- 56 .	250	25,3	sehnig, mit hoch aufge- zogenen Rand.
	$1850^{ m e}$	Dreimal gestreckt, dann dreimal auf 500° C erwärmt und die beiden erstenmale langsam, das letztemal rasch abgekühlt; endlich kurz vor dem Abreissen	4700	63	250	23,0	Wie vorhin.
	1850-1	breinal gestrieckt, dann einmal auf 300, einmal auf 350, einmal auf 400, zweimal auf 450, einmal auf 500, einmal auf 550°C erwärmt und stets langsam abgekühlt, dann wieder auf 500° erwärmt und rasch, hierauf wieder auf 500° erwärmt und lang- sam, endlich kirschroth geglüht und rasch ab- gekühlt.	5120	62	250	21,7	Bruch wie bei g und h.
	1850°	Dreimal gestreckt, dann elfmal auf 250° erwärmt und allemal langsam, endlich auf 500° C erwärmt und rasch abgekühlt.	5200	62	250	28,8	Wie vorhin.

)

			1					
	ing		ig- gkei	n- tion	Dehnung			
Material	ezeichm des obestüc	Behandlung vor dem Zerreiss-Versuche	at festig	trac C Proc.	auf mm	Betrag Proc.	Bruchaussenen	
•• •••	a 4,		<u>Lanna</u> - 27 - 2			1		
	1850°	Dreimal gestreckt, dann elfmal auf 50°, elfmal auf	5270	62	250	24,8	Wie vorhin.	
	1850*	250°, einnal auf 300°, einnal auf 350°, zweimal auf 400°, einmal auf 450°, zweimal auf 500° er- wärmt und jedesmal rasch abgekühlt. Dreimal gestreckt, dann kalt geschmiedet und wieder abgedreht, dann auf 500° erwärmt und langsam, hierauf kirschroth geglüht und gleichfalls langsam abgekühlt.	4590	65	250	15,1	Feinsehnig, mit hoch auf- gezogenem Rand.	
Bessemerstahl-	939'	Einmal gestreckt	5310	5			Grobkörnig mit sehnigem Kerne.	
Rundstäbe s. Tab. V.	939°	Ursprünglicher Zustand ; Dauer des Zerreissversuches	5560	5			Wie vorhin.	
	939^{4}	" " Dauer des Zerreissversuches	5500	5		-	Wie vorhin.	
	9391	., ,, Dauer des Zerreissversuches	5200	5	-		Wie vorhin.	
	9 3 .9*	", ", Dauer des Zerreissversuches	5300	5		-	Wie vorhin.	
	939 ⁵	Dreimal gestreckt, dann kalt ausgeschmiedet und wieder abgedreht, später kirschroth geglüht und rasch abgekühlt.	5480	1	150	0,5	Wie vorhin.	

5. Abschnitt.

Die in den vorausgehenden Abschnitten mitgetheilten Versuche wurden sämmtlich mit Belastungen angestellt, die von Null aus nur nach einer Seite hinwirkten, entweder auf Zug oder auf Druck. In den Anwendungen kommt es aber vor, dass ein und dasselbe Stück, ein Maschinen- oder Brückentheil, abwechselnd auf Zug und Druck angegriffen wird, direkt oder bei hin- und hergehender Biegung, wie sie z. B. die Eisenbahnwagenachsen oder die Probestäbe bei einem grossen Theil der Wöhler'schen Dauerversuche erfahren. Um die Wirkung solcher wechselnder Anstrengungen auf die Elasticitätsgrenze zu untersuchen, liess ich Probestücke von der in Fig. 1 auf Blatt II abgebildeten Gestalt herstellen und zwar zunächst 4 aus Schweisseisen, Lab. Nr. 2867^{a-4}, und 4 aus Bessemerstahl, Lab. Nr. 2868a-d. Dieselben passten mit ihren trapezförmig profilirten Enden in die ebenso gestalteten Mäuler der Zugköpfe der Werder'schen Prüfungsmaschine, konnten aber auch auf ihre genau eben und parallel abgeglichenen Stirnflächen gedrückt werden. Die durch punktirte Linien angedeuteten Löcher wurden nicht weiter verwendet, sie rührten nur davon her, dass ursprünglich beabsichtigt war, die Einspannung auf Zug mittelst dieser Löcher und durch sie gesteckter Bolzen zu bewerkstelligen.

Die Resultate der mit diesen Stücken angestellten Versuche sind in den Tabellen IX-XVI enthalten und zwar mussten hier, der bedeutenden Aenderungen halber, welche die Elasticitätsgrenze erleidet, und behufs kräftigerer Beweisführung für die daraus abgeleiteten, merkwürdigen Sätze die Messungsreihen selbst in ihrer ganzen Ausdehnung vorgeführt werden. Die Einrichtung der Tabellen ist ähnlich wie die der Tabelle 6 auf S. 21 u. 22. Die fortlaufende Nummerirung der Spalten in jeder Tabelle gibt die Reihenfolge, in welcher die Messreihen an dem in der Ueberschrift genannten Probestück angestellt worden sind. Darunter ist die zwischen dem betreffenden und dem vorausgegangenen Versuch verstrichene Zeit und die Behandlung, die das Probestück gegebenen Falles erfahren hat, angemerkt, dann ob die Prüfung auf Zug oder Druck geschah und endlich Durchmesser und Länge des der Messung unterworfenen Theils des Probestückes, der selbstverständlich die Mitte des cylindrischen Theils dieses letzteren einnahm.

Die vorn (links) an jeder Seite befindliche Columne, welche für alle die nebenstehenden Spalten gemeinschaftlich ist, enthält die angewandte Zug- oder Druckbelastung für den ganzen Querschnitt und die erste Columne jeder Spalte die dadurch hervorgebrachten Zug- oder Druckspannungen in Atmosphären oder kg pro qcm. Die einfach unterstrichenen Ziffern in diesen Columnen bedeuten die Elasticitätsgrenze, die doppelt unterstrichenen die Streck- oder Quetschgrenze; die letzte Zahl ist immer die angewendete Maximalbelastung.

Die 2. Columne in jeder Spalte enthält die mittelst des Spiegelapparates gemessenen Verlängerungen oder Verkürzungen in Tausendstel-Centimetern für die Länge, wie sie im Kopf der Spalte angegeben ist (ca. 6 cm), die dritte die Differenzen dieser Längenänderungen und die vierte den Elasticitätsmodul innerhalb der Elasticitätsgrenze.

Wir folgen nun den einzelnen Versuchen in den

Tabellen ungefähr in der Ordnung, in der sie angestellt worden sind.

Probestück aus Schweisseisen, Lab. Nr. 2867*, Tabelle IX, Spalte 1-14. Die 2. Spalte in Vergleichung zur 1. zeigt nur, dass durch die vorausgehende Belastung auf Zug bis zur Elasticitätsgrenze der Elasticitätsmodul für Zug vergrössert worden ist. Durch Ueberschreiten der bei 2091 ut gefundenen Elasticitätsgrenze für Zug um nur 123 at wird aber die in der 3. Spalte bestimmte Elasticitätsgrenze für Druck bis 738 at erniedrigt. Sie erhebt sich durch wiederholtes Drücken, entsprechend den im vorigen Abschnitt angeführten Resultaten, allmählich wieder (Spalte 4 und 5); nachdem aber die so gehobene Elasticitätsgrenze für Druck um nur weniges überschritten worden war, sinkt die, eine Stunde nachher bestimmte Elasticitätsgrenze für Zug ganz auf Null herab (6. Spalte), und als hiebei wieder nur mit derselben, bisher angewandten Maximalbelastung gestreckt worden war, sank die, kurze Zeit darauf bestimmte Elasticitätsgrenze für Druck bis Null herunter (7. Spalte). Durch wiederholten Druck, 30¹/₂ Stunden nachher angewandt, hebt sich diese Elasticitätsgrenze wieder (8. Spalte), aber die für Zug bleibt auf Null (9. Spalte) und kann nur durch wiederholt angewandten Zng (10. und 11. Spalte) allmählich gehoben werden. Durch geringe Ueberschreitung aber fällt sofort die Elasticitätsgrenze für Druck wieder auf Null herab. Nachdem dann durch wiederholten Druck die Elasticitätsgrenze wieder erhöht, aber überschritten worden (13. Spalte), wurde die Elasticitätsgrenze für Zug wieder ganz auf Null heruntergeworfen und zwar bleibend, wenigstens zeigte sie sich noch nach 3 Tagen auf dieser niedrigsten Stufe (14. Spalte).

Ganz ähnliche Resultate ergaben die in Tab. X, Spalte 1—14 enthaltenen Messungen an dem Stücke Nr. 2867⁺, bei dem mit Druck begonnen wurde, und ebenso die Messungen an den Bessemerstahlstücken 2868⁺ und 2868⁺, wie die Spalten 1--3 in Tab. XIII und 1-4 in Tabelle XIV zeigen. Es folgt daraus:

1) Durch Belasten auf Zug oder Druck über die Elasticitätsgrenze hinaus wird die Elasticitätsgrenze für Druck oder bezw. Zug bedeutend erniedrigt, um so mehr, je höher jene Belastungen über der betr. Elasticitätsgrenze liegen, und werfen schon verhältnissmässig geringe Ueberschreitungen der Elasticitätsgrenze für eine Belastungsart die Elasticitätsgrenze für die Belastung im entgegengesetzten Sinne bis auf Null herab. Wenn eine so erniedrigte Elasticitätsgrenze durch Belasten im gleichen Sinn wieder gehoben wurde und dann überschritten wird, so fällt sofort die Elasticitäts-

Bauschinger, Mittheilungen, XIII.

grenze für die Belastung im entgegengesetzten Sinn wieder auf Null oder fast auf Null herab. — Die Zeit ist bei diesen Vorgängen ohne, oder doch nur von geringem Einfluss, d. h. die durch Zug oder Druck erniedrigte Elasticitätsgrenze für bezw. Druck oder Zug hebt sich, wenigstens im Verlaufe der nächsten 3-4 Tage, nicht wieder, und im Verlaufe der nächsten Wochen, wenn überhaupt, doch nur wenig.

Zum völligen Beweise des letzten Satzes habe ich noch die Versuche in den Spalten 11, 12 und 13 der Tab. XI, 6 und 7 der Tab. XII, 13 der Tab. XV und 5 und 6 der Tab. XVI angestellt, welche zeigen, dass die durch vorausgegangene Belastung im entgegengesetzten Sinne erniedrigte Elasticitätsgrenze auch noch nach 3-4 Tagen und selbst nach mehreren Wochen einen sehr niederen Stand einnimmt oder ganz bei Null liegt.

Die Stücke 2867 und 2868 wurden dazu verwendet, um zu untersuchen, ob durch allmähliches Wachsen der zwischen Zug und Druck wechselnden Belastungen von unten herauf nicht etwa eine frühere als die ursprüngliche Elasticitätsgrenze erreicht werden kann, durch deren Ueberschreiten die Elasticitätsgrenze für die Belastung im entgegengesetzten Sinne erniedrigt werden würde. Die in den Tabellen XI und XV niedergelegten Resultate zeigen, dass das nicht der Fall ist.

2) Durch allmählich anwachsende, zwischen Zug und Druck wechselnde Spannungen kann die Elasticitätsgrenze für entgegengesetzte Beanspruchung erst dann erniedrigt werden, wenn jene Spannungen die ursprüngliche Elasticitätsgrenze überschreiten.

Die Stücke 2867* und 2867*, 2868* und 2868*, bei denen durch die vorausgegangene, oben beschriebene Behandlung die Elasticitätsgrenze für Zug und Druck auf Null oder fast bis Null erniedrigt war, wurden nun weiter dazu verwendet, um zu untersuchen, ob durch allmähliche, von unten auf wachsende und zwischen Zug und Druck wechselnde Belastungen die Elasticitätsgrenze wieder gehoben werden könne. Die in diesem Sinne angestellten Beobachtungen sind in den Spalten 15-23 der Tab. IX, 15-24 der Tab. X, 4-12 der Tab. XIII und 5-12 der Tab. XIV enthalten. Sie zeigen, dass durch die angegebenen Manipulationen die Elasticitätsgrenze des Stückes 2867^a bis auf ca. 1214 at, die des Stückes 2867^b auf etwa 1193 at. die des Stückes 2868° auf ca. 1476 at und die des Stückes 2868° auf höchstens 1486 at gehoben werden konnte, dass aber Ueberschreitungen dieser Grenzen in dem einen Sinne ein Herabfallen der Elasticitätsgrenze für Belastungen im entgegengesetzten Sinne hervorbringen würden. Jene

Grenzen liegen aber bedeutend unter den ursprünglichen Elasticitätsgrenzen der Probestücke.

3 Wenn die Elasticitätsgrenze für Zug oder Druck durch vorausgegangene Belastung auf Druck, bezw. Zug, die **über** der ursprünglichen Elasticitätsgrenze lag, erniedrigt worden ist, so kann sie durch allmählich anwachsende, zwischen Zug und Druck wechselnde Belastungen wieder gehoben werden, aber nur bis zu einer Grenze, die beträchtlich unter der ursprünglichen Elasticitätsgrenze liegt.

Es war mir, später anzustellenden Betrachtungen halber (vgl. den 7. Abschnitt), von Wichtigkeit, die Giltigkeit dieses Satzes noch für zwei andere Probestücke nachzuweisen, die ich in derselben Form, wie sie Fig. 1 auf Blatt II zeigt (das eine nur in etwas geringeren Dimensionen), aus einer Achswelle von Thomasstahl, A II, und Schienenstücken C, D aus dem gleichen Material, Bruchstücke, die bei früheren Biegungsversuchen erhalten worden waren, anfertigen liess. Die damit angestellten Versuche sind in den Tabellen XVII und XVIII enthalten. Man sieht, wie die durch Ueberschreiten der ursprünglich bei 2914, bezw. 2899 at gelegenen Elasticitätsgrenze für Zug erniedrigte Elasticitätsgrenze durch abwechselnde Anstrengungen auf Druck und Zug nicht über 1457 bezw. 1561 at hinauf gebracht werden kann.

6. Abschnitt.

Im Jahre 1881 wurde es mir durch Gewährung besonderer Mittel von Seiten der kgl. bayerischen Staatsregierung, welcher ich auch an dieser Stelle meinen Dank für ihre stets bereitwilligst geleistete Unterstützung meiner Bestrebungen ausspreche, möglich, eine der bekannten Wöhler'schen Maschinen für oftmals wiederholte Anstrengungen (Dauerversuche) für das mechanisch-technische Laboratorium anzuschaffen. Ich wählte, aus Gründen, die sogleich einleuchten werden, die Maschine für wiederholte Beanspruchung auf Zug, welche in der Wöhler'schen Schrift: JUeber die Festigkeitsversuche mit Eisen und Stahls Berlin 1870. auf Blatt III und in Erbkam's »Zeitschrift für Bauwesens, Jahrgang 1870, Blatt G im Text, abgebildet ist. Sie wurde, mit einigen unwesentlichen Abänderungen, nach einer grösseren und genaueren Zeichnung, die mir der verstorbene Professor Spangenberg gütigst besorgt hatte, im Laboratorium selbst hergestellt natürlich unter Benützung hiesiger Maschinenfabriken und Giessereien und kam im Oktober 1881 in Gang. Es können 4 Probestäbchen, jedes von ungefähr 1 gem Querschnitt zugleich eingespannt werden: die Maschine wird neben den Arbeitsmaschinen des Laboratoriums

durch einen Otto'schen Gasmotor von 2 Pferdekräften betrieben. Sie ist immer nur am Tage im Gange, über Nacht steht sie still, auch über Mittag in der Regel 2 Stunden.

Der Plan, den ich bei den Versuchen zu Grunde legte, ist der folgende: Aus einem grösseren Stück Material sollten auf kaltem Wege mindestens 4, unter Umständen auch mehr Probestäbchen für die Wöhler'sche Maschine nebeneinander herausgearbeitet werden. Das eine derselben sollte in der Werder'schen Prüfungsmaschine auf seine Elasticitätsgrenze und seine Zugfestigkeit untersucht, die andern aber in die Wöhler'sche Maschine so eingespannt werden, dass die obere Grenze der wiederholten Beanspruchung bei dem ersten in der Nähe der Elasticitätsgrenze lag, bei dem zweiten etwas höher u. s. w. Die untere Grenze war bei all meinen bisherigen Versuchen immer Null. Von Zeit zu Zeit sollten dann die Stäbchen, nachdem sie einige Hunderttaussende oder Mil. lionen Anstrengungen erlitten hatten, aus der Wöhler'schen Maschine genommen und in der Werder'schen ihre Elasticitätsgrenze bestimmt werden. Zu diesem Behufe musste die Einspannweise in beiden Prüfungsmaschinen die gleiche sein, was ja auch leicht zu erreichen war.

Ich habe bis jetzt 49 Probestäbchen auf die eben beschriebene Weise geprüft, nämlich:

1) Sechs Vierkantstäbchen (Nr. 1-5 und 49), aus einer Schweisseisen-Blechtafel von 11 mm Dicke (Lab. Nr. 2330) so herausgeschnitten und von solcher Form, wie es Fig. 2 auf Blatt II zeigt.

2) Siebenzehn ebensolche Vierkantstäbchen (Nr. 6-19 und 46-48), aus einer Stahl- oder besser Flusseisen-Blechtafel von 11 mm Dicke (Lab. Nr. 2333) so herausgeschnitten, wie Fig. 3 auf Blatt II darstellt.

3) Sechs Vierkantstäbchen (Nr. 20––25), aus einem $^{80}/_{10}mm$ Flacheisen (Lab. Nr. 2335) neben und hintereinander so herausgeschnitten, wie Fig. 4 auf Blatt II zeigt.

4) Vier Vierkantstäbchen (Nr. 26–29), aus einem $^{40}/_{10}$ mm Flacheisen (Lab. Nr. 2336) hintereinander so herausgeschnitten, wie Fig. 5 auf Blatt II angibt.

5) Vier Rundstäbchen (Nr. 30-33), aus dem einen Bruchstück einer 12,8 cm dicken, auf Biegungsfestigkeit geprüften Achswelle aus Thomasstahl (bez. mit AII) so herausgeschnitten, wie Fig. 6 auf Blatt II zeigt.

6) Vier Rundstäbchen (Nr. 34-37), aus den Köpfen der Bruchstücke einer auf Biegungsfestigkeit geprüften Eisenbahnschiene aus Thomasstahl (bez. mit C, D) so herausgeschnitten, wie Fig. 7 auf Blatt II darstellt.

7) Acht Vierkantstäbchen (Nr. 38-45), aus einer 12 mm dicken Kesselblechtafel von Thomasflusseisen so herausgeschnitten, wie Fig. 8 auf Blatt II zeigt.

Die Resultate der Versuche sind in den sieben Ta-

bellen XIX-XXV niedergelegt, deren Einrichtung keiner weiteren Erläuterung bedarf.

Ich ziehe aus diesen Resultaten folgende Schlüsse: 1) Wenn bei wiederholten Anstrengungen auf Zug, deren untere Grenze Null ist, die obere Grenze in der Nähe der ursprünglichen Elasticitätsgrenze liegt, so wird auch durch 5-16 Millionen malige Wiederholung dieser Anstrengungen der Bruch nicht erreicht (vgl. die Stäbchen Nr. 1 in Tab. XIX, Nr. 47 in Tab. XX, Nr. 21 in Tab. XXI, Nr. 27 in Tab. XXII, Nr. 30 in Tab. XXIII, Nr. 34 in Tab. XXIV und Nr. 44 in Tab. XXV.

Bei Anwendungen dieses Satzes auf die Praxis sind aber zwei wichtige Punkte nicht zu übersehen: Erstens muss das Material vollständig fehlerfrei sein. Die geringsten Fehler, die ursprünglich nicht oder kaum bemerklich sein konnten, veranlassen, namentlich bei den homogenen Materialien (Flusseisen und Flussstahl), den Bruch schon nach einer verhältnissmässig geringen Zahl von Wiederholungen auch bei Anstrengungen, die unter oder nur wenig über der Elasticitätsgrenze liegen.

So zerrissen die Stäbchen Nr. 9, 46 und 48 aus Flusseisenblech (Tab. XX) schon nach 6, bezw. 3 und 7 Millionen Anstrengungen zwischen 0 und 2440 at, während ihre ursprüngliche Elasticitätsgrenze bei 2400 at lag, zeigten aber auch auf ihren Bruchflächen sämmtlich wenn auch nur sehr geringe Fehler, namentlich eingewalzte Schiefer u. dgl. die äusserlich oft kaum bemerkbar waren. Erst durch vollständiges Polieren der äusseren Oberfläche (Stäbchen Nr. 47 in Tab. XX) konnte eine längere Dauer dieser Stäbchen aus dem Flusseisenblech erzielt werden. Aehnlich verhält sich das Kesselblech von Thomas-Flusseisen (Tab. XXV). Hier zerrissen die Stäbchen Nr. 38, 42 und 43 schon nach bezw. 4,8, 6,3 und 0,4 Millionen Anstrengungen zwischen 0 und bezw. 2800, 2500 und 2850 at, während die ursprüngliche Elasticitätsgrenze bei 2580 bis 2800 at liegt. Auch hier waren es Materialfehler, hauptsächlich auf der Oberfläche liegend, die den Bruch herbeiführten. Die Stäbchen Nr. 44 und 45, deren Oberflächen allerseits blank polirt wurden, haben bis heute 5,8 Millionen bezw. 4,2 Millionen Anstrengungen zwischen 0 und 2500, bezw. 2850 at ausgehalten, ohne zu zerreissen.

Ich glaube, hier nochmal besonders hervorheben zu sollen, dass besonders das homogene Material, Flusseisen und Flussstahl, sehr empfindlich gegen kleine Materialfehler zu sein scheint, und unter diesem wieder besonders das Blech mit seiner grossen, kleinen Beschädigungen so leicht ausgesetzten Oberfläche. Die kleinsten eingewalzten Schiefer und sonstigen Fehler an dieser Oberfläche führen einen baldigen Bruch herbei. Bei den Rundstäbchen aus der Achswelle A II (Tab. XXIII) und der Schiene C,D (Tab. XXIV), welche aus dem Innern dieser Stücke herausgeschnitten und deren Oberflächen ohnehin polirt wurden, kann sich natürlich der Einfluss solcher Oberflächenfehler nicht bemerkbar machen. — Schweisseisen dagegen, sowohl in Stab- als in Blechform (Tabellen XIX, XXI und XXII), scheint für kleine Oberflächenfehler fast unempfindlich zu sein. Für dieses Material darf also in dieser Hinsicht der oben ausgesprochene Satz unbedenklich angewendet werden.

Der zweite Punkt, der bei der Anwendung jenes Satzes nicht übersehen werden darf, ist der, dass die sog. ursprüngliche Elasticitätsgrenze eines Materials, wie in den vorigen Abschnitten gezeigt worden ist, sehr veränderlich, sehr abhängig von der vorausgegangenen Behandlung des betr. Probestücks ist. Sie kann sehr tief liegen, kann aber auch bis nahe an die Bruchgrenze gehoben werden. So liegt sie gewiss bei all den Materialien der Tabellen XX bis XXV ungewöhnlich hoch. Man muss sich also erst Rechenschaft darüber zu geben wissen, ob die für ein bestimmtes Material gefundene Elasticitätsgrenze nicht künstlich, durch Strecken, Walzen, Schmieden etc. gar zu hoch gehoben worden ist, bevor man sicher sein kann, dass es Anstrengungen, deren obere Grenze in der Nähe der Elasticitätsgrenze liegt, auf unbeschränkte Dauer auszuhalten vermag (vgl. weiter unten).

2) Durch oftmal wiederholte Anstrengungen zwischen Null und einer oberen Spannung, welche in der Nähe oder auch mehr oder weniger über der ursprünglichen Elasticitätsgrenze gelegen ist, wird diese gehoben und zwar bis über, manchmal weit über die obere Grenze der Anstrengungen hinaus und um so höher, je grösser die Anzahl der Anstrengungen ist, ohne jedoch eine gewisse Höhe überschreiten zu können.

Den Beweis dieses wichtigen Satzes findet man unter den laufenden Nummern 1-16 der Tabelle XIX, 1--7, 14-15 und 16-18 der Tabelle XX, 2-6 der Tab. XXI, 2-5, 6-9 und 10-13 der Tab. XXII, 1-4 und 7-9 der Tabelle XXIII, 1-4 der Tabelle XXIV und 11-12 der Tabelle XXV. - Ausnahmen geben nur die Versuche unter Nr..13 der Tabelle XX, Nr. 6 der Tab. XXII und Nr. 10 der Tabelle XXV. Ich kann mir dieselben nur durch die bedeutende Höhe der bereits gehobenen Elasticitätsgrenzen erklären; ausserdem hebt sich in den beiden ersten Fällen die Elasticitätsgrenze durch fortgesetzte Anstrengungen wieder und sehr wahrscheinlich auch in dem letzten. - Andere in den Tabellen vorkommenden Fälle von Senkungen der Elasticitätsgrenze durch wiederholte Anstrengungen fallen in das Gebiet des folgenden Satzes.

3*

Der obige Satz steht offenbar in gewisser Analogie zu dem 2. Satze des 3. Abschnittes. Wie dort eine vorher durch Strecken erniedrigte Elasticitätsgrenze sich im Laufe der Zeit von selber wieder hebt und zwar unter Umständen über die Belastung hinaus, mit welcher gestreckt wurde, und jedenfalls über ihre ursprüngliche Lage hinaus, so ist jetzt eine Hebung der Elasticitätsgrenze durch oft wiederholte Anstrengungen und zwar unter Umständen über die obere Grenze dieser Anstrengungen hinans constatirt. Mir erscheint aber der obige Satz besonders desshalb von grosser Wichtigkeit, weil die in ihm ausgesprochene Eigenschaft der hier in Rede stehenden Materialien die Erklärung dafür gibt, warum dieselben Anstrengungen, deren oberen Grenze über ihrer ursprünglichen Elasticitätsgrenze liegt, doch in unbegrenzter Anzahl auszuhalten vermögen, eine durch Wöhler nachgewiesene Thatsache, die ausserdem in Widerspruch mit dem oben (S. 16) aus der Definition der Elasticitätsgrenze gezogenen Schlusse stünde. Denn nach dieser Definition, die im Ganzen doch mit der früher schon allgemein verbreiteten Ansicht über das Wesen der Elasticitätsgrenze übereinstimmt, ist eigentlich der erste Theil des von Wöhler entdeckten Gesetzes: "Der Bruch des Materials lässt sich auch durch vielfach wiederholte Schwingungen, von denen keine die absolute Bruchgrenze erreicht, herbeiführen," selbstverständlich. Das merkwürdige Resultat der Wöhler'schen Versuche war eigentlich das, dass Schwingungen, deren obere Grenze über der Elasticitätsgrenze liegt, den Bruch nicht nothwendig herbeiführen müssen, sondern, wenn sie nur in gewissen Schranken blieben, in unbeschränkter Zahl ausgehalten werden.

In Uebereinstimmung mit dem Vorstehenden folgt aus den Resultaten der Tabellen XIX—XXV der folgende Satz, der eigentlich nur eine Umschreibung des aus der Definition der Elasticitätsgrenze (S. 16) gefolgerten Schlusses oder Grundsatzes ist:

3) Wiederholte Anstrengungen (Schwingungen zwischen 0) und einer oberen Grenze, welche die ursprüngliche Elasticitätsgrenze noch über ihre obere Spannung hinaus zu heben vermögen, führen den Bruch nicht herbei; wenn aber ihre obere Grenze so hoch liegt, dass die Elasticitätsgrenze nicht mehr darüber hinaus gehoben werden kann, so muss der Bruch nach einer beschränkten Anzahl solcher Anstrengungen erfolgen.

Die praktische Wichtigkeit dieses Satzes, wenn er sich bestätigt, liegt auf der Hand: er gibt ein Mittel an die Hand, durch Dauerversuche, die sich auf eine verhältnissmässig kleine Anzahl von Anstrengungen beschränken, auf vielleicht 5-10 Millionen, beurtheilen zu können, welche obere Grenze (die untere immer als 0 genommen) solche wiederholte Anstrengungen höchstens haben dürfen, wenn sie in unbeschränkter Anzahl ertragen werden sollen.

Suchen wir diesen Satz aus unseren 7 Tabellen nachzuweisen und die soeben angedeutete Folgerung aus ihm zu ziehen.

Aus Tab. XIX ist sofort ersichtlich, dass noch durch Anstrengungen zwischen 0 und 2000 at nach 5,2 Millionen maliger Wiederholung die Elasticitätsgrenze über jene obere Spannung, wenn auch nicht viel, nämlich auf 2200 at gehoben wird, dass aber Anstrengungen zwischen 0 und 2500 at nach 2,1 Millionen Wiederholungen die Elasticitätsgrenze nicht mehr über 2500 at hinaus bringen und nach 2,3 Millionen Wiederholungen in der That den Bruch herbeiführen. Ich schliesse daraus, dass von dem vorliegenden Materiale, Schweisseisenblech, Anstrengungen zwischen den Grenzen 0 und 2000 at in unbegrenzter Dauer ertragen werden können, obwohl die ursprüngliche Elasticitätsgrenze bei 1040 at liegt.

Aehnliche Betrachtungen werden bei den folgenden Tabellen erschwert durch die schon einmal erwähnte hohe Lage der ursprünglichen Elasticitätsgrenze der betreffenden Materialien und bei den Tabellen XX und XXV noch besonders durch den ebenfalls schon oben hervorgehobenen grossen Einfluss, den die in reichlicher Anzahl vorkommenden Material- und Fabrikationsfehler auf das Resultat der Dauerversuche ausüben. Setzen wir sie demungeachtet fort.

Aus Tab. XX folgt, dass Anstrengungen zwischen O und 2440 at die Elasticitätsgrenze bis auf 2960 at hinaufheben können, dass sie aber doch schon den Bruch herbeizuführen im Stande sind (vgl. laufende Nr. 8, 11, 19), wobei freilich allemal ein Materialfehler als wahrscheinliche Ursache nachgewiesen werden konnte. Das Stäbchen Nr. 47 dagegen (lauf. Nr. 12—15) mit allerseits polirter Oberfläche ist nach 10,3 Millionen Anstrengungen zwischen jenen Grenzen noch intakt. Aber Schwingungen zwischen 0 und 3000 oder gar 3500 und 4000 at vermochten die Elasticitätsgrenze nicht mehr über die obere Spannung hinaus zu heben und führten immer den Bruch herbei, auch ohne dass äusserlich ein Fehler zu erkennen war.

Es folgt hieraus, dass vom vorliegenden Material, Bessemer-Flusseisenblech, Schwingungen zwischen 0 und 2400 at sicher in unbegrenzter Anzahl ertragen werden, vorausgesetzt, dass es fehlerfrei ist.

Tab. XXI zeigt, dass durch Schwingungen zwischen 0 und 2000 at die Elasticitätsgrenze bis 3270 at gehoben wurde, ohne dass nach 9,1 Millionen Wiederholungen der Bruch herbeigeführt worden wäre, dass aber Schwingungen zwischen 0 und 2500 at die Elasticitätsgrenze kaum noch über sich hinaus heben und nach 7,4 Millionen Wiederholungen auch den Bruch herbeiführen. Daraus folgt, dass das vorliegende Material, Flacheisen 80/10 mm, Anstrengungen zwischen 0 und etwa 2200 at in unbegrenzter Anzahl aushalten kann.

Aus Tab. XXII folgt, dass Schwingungen zwischen O und 2100 at die Elasticitätsgrenze des betr. Materials bis zum Maximum von 2480 at hinaufrücken und nach 16,5 Millionen Wiederholungen den Bruch noch nicht herbeiführen, dass aber Schwingungen zwischen O und 2630 at die Elasticitätsgrenze nicht mehr mit Sicherheit über ihre obere Grenze hinaus heben können, immerhin aber noch in 9,3 Millionen maliger Wiederholung ertragen wurden. Das vorliegende Material, Flacheisen von 40/10 mm, vermag also Anstrengungen zwischen O und etwa 2400 at in unbeschränkter Anzahl zu ertragen.

Tabelle XXIII zeigt ferner, dass durch Schwingungen zwischen 0 und 2480 at die Elasticitätsgrenze im Maximum bis auf 3120 at erhoben wird und 9,6 Millionen solcher Schwingungen auch wirklich ausgehalten werden, dass Schwingungen zwischen 0 und 3000 at die Elasticitätsgrenze noch bis 3180 at erheben und über 9 Millionen mal ausgehalten werden, dass aber Anstrengungen zwischen 0 und 4000 at schon nach einer verhältnissmässig geringen Anzahl von Wiederholungen den Bruch herbeiführen. Das vorliegende Material, Thomasstahl in Form von Achswellen (Eisenbahnaxen), vermag also sehr wahrscheinlich Schwingungen zwischen 0 und 3000 at in unbegrenzter Dauer zu ertragen.

Tab. XXIV zeigt, dass Schwingungen zwischen 0 und 2500 at die Elasticitätsgrenze bis 3650 at im Max. hoben und in mehr als 10 Millionen maliger Wiederholung ertragen wurden, dass aber Schwingungen zwischen 0 und 3000 at selbst nach 7,9 Millionen Wiederholungen die Elasticitätsgrenze nur bis 2690 at brachten. (Wahrscheinlich lag sie bei dem Stäbchen Nr. 35 ursprünglich doch tiefer als bei den im Kopf der Tabelle angeführten Normal-Rundstäben). Es dürfte also das vorliegende Material, Thomas Stahl in Eisenbahnschienenform, Anstrengungen zwischen 0 und 2800 at in unbeschränkter Anzahl zu ertragen im Stande sein.

Aus Tab. XXV endlich folgt, dass Anstrengungen zwischen 0 und 2500*at* die Elasticitätsgrenze nicht mehr mit Sicherheit über sich hinausheben können (Nr. 10) und solche zwischen 0 und 2800 und 2850*at* überhaupt nicht mehr, auch nach 3 bezw. 2.7 Millionen Wiederholungen (Nr. 1 und 12). Da aber Schwingungen zwischen 0 und 2500*at* von dem Stäbchen Nr. 44 mit allerseits blank polirter Oberfläche bis jetzt doch in 5,8 Millionen Wiederholungen ertragen wurden, so wird wohl geschlossen werden dürfen, dass das vorliegende Material. Kesselblech aus Thomas Flusseisen. Schwingungen zwischen 0 und 2400 *at* in unbegrenzter Anzahl ertragen kann, vorausgesetzt, dass es fehlerfrei ist.*)

Aus meinen Dauerversuchen im Zusammenhange mit den, an denselben Materialien angestellten Proben mit ruhender Belastung geht ferner der Satz hervor:

4) Die Zugfestigkeit zeigt sich durch Millionen mal wiederholte Anstrengungen nicht vermindert, eher erhöht, wenn das Probestuck nach jenen Anstrengungen mit ruhender Belastung abgerissen wird.

Die Richtigkeit dieses Satzes beweisen alle die Versuche der Tabellen XIX-XXV, wo Probestäbchen nach einer grossen Anzahl von Schwingungen, welche sie aus gehalten hatten, mit ruhender Belastung abgerissen wurden, nämlich die Versuche unter Nr. 6, 11 und 16 in Tab. XIX, unter Nr. 6 in Tab. XXI, 9 und 14 in Tab. XXII, 9 in Tab. XXIII, sowie 4 und 5 in Tab. XXIV. Im Versuch 9 der Tabelle XX wurde das eine Bruchstück des Stäbchens Nr. 9, nachdem dieses 6,6 Millionen Anstrengungen zwischen 0 und 2440 at erlitten und in der Wöhlerischen Maschine abgerissen war, nochmal in der Werder'schen Maschine eingespannt, natürlich nachden sein Querschnitt verschwächt worden war, und abgerissen. Die Festigkeit ergab sich zwar etwas kleiner, als bei dem Stäbchen Nr. 10. das vorher gar keine Anstrengungen erlitten hatte, aber nicht so viel, dass der Unterschied nicht auch aus Ungleichmässigkeiten im Material erklärt werden könnte.

Bei allen den soeben angeführten Versuchen ist das Aussehen der Bruchfläche genau so, wie bei denjenigen Stäbchen aus gleichem Material, die abgerissen wurden, ohne vorher Dauerversuchen unterworfen worden zu sein. Dagegen zeigen alle diejenigen Stäbchen, die während der Dauerversuche in der Wöhler'schen Maschine abgerissen sind, die von Spangenberg^{**}) hervorgehobenen charakteristischen Zeichnungen, welche in der letzten Columne der Tabellen XIX—XXV näher beschrieben und auf der Lichtdrucktafel Blatt III ersichtlich sind. Daraus folgt, dass die Struktur-Veränderungen, welche das Ansehen der letzteren Brüche zeigt, nur in der Bruchfläche selbst stattgefunden haben, und das wird auch noch direkt bewiesen dadurch, dass man jene Bruchflächen in der bekannten

^{*)} Diese Voraussetzung muss selbstverständlich bei allen Materialien erfüllt sein; aber hier und oben beim Bessemer Flusseisenblech glaubte ich es noch besonders hervorheben zu müssen.

^{**;} Ueber das Verhalten der Metalle bei wiederholten Anstrengungen, Berlin 1875.

43

Weise ätzt. In der geringsten Tiefe unter der Bruchoberfläche kommt die ursprüngliche Struktur wieder zum Vorschein. Solche Aetzversuche habe ich, mit dem gleichen Erfolg, auch an einigen Bruchflächen von S Federn der Wöhler'schen Maschine angestellt, die mir nach einer verhältnissmässig geringen Anzahl von Anstrengungen (Biegungen) während des Ganges der Maschine gebrochen waren und die Spangenberg'schen Figuren sehr schön zeigten.

Damit ist nun, meine ich, die immer noch von Vielen gehegte Ansicht über die Struktur-Veränderung des Eisens und Stahls durch oft wiederholte Anstrengungen gründlich widerlegt und der Satz erwiesen:

5) Oftmal, millionenmal wiederholte Anstrengungen des Eisens und Stahls bringen keine Aenderung der Struktur hervor. Die eigenthümfichen Zeichnungen, welche an Brüchen ersichtlich sind, die während solcher wiederholter Anstrengungen entstunden, rühren von einer Struktur-Aenderung her, die sich lediglich auf die äusserste Oberfläche der Bruchstellen beschränkt.

Wann diese letzteren Struktur-Aenderungen sich vollziehen, ist freilich schwer zu sagen. Ich glaube, erst im Momente des Bruches oder unmittelbar vorher. Der Versuch No. 14 in Tabelle XXII mit dem Stäbchen No. 28, welches nach den 9,3 Millionen Anstrengungen zwischen O und 2630 *at.*, wie seine tief herabgesunkene Elasticitätsgrenze zeigt, wahrscheinlich nahe daran war, in der Wöhler schen Maschine abzureissen, scheint dafür zu sprechen, dass sich jene Struktur-Aenderung der Bruchfläche längere Zeit vorher vorbereitet, weil die Fläche des mit ruhender Belastung erhaltenen Bruches schon einen Anklang an die charakteristische Zeichnung der Brüche in der Wöhler schen Maschine zeigte. Aber dem widerspricht doch wieder der Umstand, dass die Zugfestigkeit des Stäbchens nicht verringert worden war.

Die Contraktion des Querschnitts ist bei den Brüchen, welche bei den Dauerversuchen erfolgen, wesentlich kleiner, als bei den unter ruhender Belastung erhaltenen, besonders auf der Seite, wo die charakteristischen Zeichnungen jener Brüche auftreten. Das Gleiche gilt von der Verlängerung nach dem Bruch. Solche Probestäbchen dagegen, welche nach einer grossen Anzahl Anstrengungen, die sie erlitten haben, mit ruhender Belastung abgerissen werden, zeigen, wie dieselbe Zugfestigkeit und dasselbe Bruchaussehen, auch nahezu die gleiche Querschnittscontraktion und Dehnung nach dem Bruche, wie die Stäbchen aus gleichem Material, die vorher keine Anstrengungen erlitten haben.

7. Abschnitt.

Wöhler spricht das von ihm entdeckte Gesetz in folgenden Sätzen aus:*)

"Der Bruch des Materials lässt sich auch durch vielfach wiederholte Schwingungen, von denen keine die absolute Bruchgrenze erreicht, herbeiführen. Die Differenzen der Spannungen, welche die Schwingungen eingrenzen, sind dabei für die Zerstörung des Zusammenhanges massgebend."

"Die absolute Grösse der Grenzspannungen ist nur insoweit von Einfluss, als mit wachsender Spannung die Differenzen,welche den Bruch herbeiführen, sich verringern."

"Für solche Schwingungen, bei denen dieselbe Faser aus Zugspannung in Druckspannung übergeht und umgekehrt, werden die Zugspannungen als positiv, die Druckspannungen als negativ betrachtet, so dass also in diesem Falle die Differenz der äussersten Faserspannungen gleich der grössten Zugspannung plus der grössten Druckspannung ist."

Wöhler gibt dann folgende aus seinen Versuchsresultaten entnommene Zusammenstellung**) von Schwingungsgrenzen, bei denen der Bruch nicht mehr eingetreten ist:

1) Bei Stäben aus Achsen, die im Jahre 1857 von der Gesellschaft Phönix geliefert worden waren:

Schwingungen zwischen

+ 160 Ctr. u. — 160 Ctr. pro □ Zoll Faserspannung***	;)								
+ 300 ,, ,, Null ,, ,, ,,									
+ 440 " " 240 Ctr. " " "									
2) Bei Stäben aus Gussstahlachsen, die Krupp im	ı								
Jahre 1862 geliefert hatte:									
Schwingungen zwischen									
+ 280 Ctr. u. – 280 Ctr. pro 🗆 Zoll Faserspannung									
+ 480 ,, ,, Null ., ,, ,,									
+ 800 " " + 350 Ctr. " " "									
3) Bei Stäben aus ungehärtetem Gussfederstahl:									
Schwingungen zwischen									
+ 500 Ctr. u. Null Ctr. pro 🗆 Zoll Faserspannung									
4-700 ,, ,, 250 ,, ,, ,, ,, ,,									
+ 800 ,, ,, 400 ,, ,, ,, ,, ,,									
+ 900 ,, ,, 600 ,, ,, ,, ,, ,,									

Wenn man diese Resultate graphisch aufzeichnet, indem man die untere Spannungsgrenze α_p als Abscisse und die Spannungsdifferenz α_k als Ordinate senkrecht zur Abscisse abträgt, so erhält man Punkte, welche, wie Gerber zuerst gezeigt hat, sich am besten durch eine

*) "Die Festigkeits-Versuche mit Eisen und Stahl" Berlin 1870
S. 6 oder Erbkam's "Zeitschrift für Bauwesen" Jahrgang 1870 S. 83.
**) Ebenda, S. 7 bezw. S. 85.

***) 1 Ctr. (Handelscentner) = 46, 77 kg, 1 \Box Zoll = 6,8406 qcm. folglich 1 Ctr. pro \Box Zoll = 6,84 kg pro qcm oder at.

Parabel verbinden lassen, deren zur Abscissenaxe conjugirter Durchmesser durch den Anfangspunkt des Coordinatensystems geht und durch den Punkt, der gleichen + und — Spannungen (5) entspricht, so dass die tg. seines Winkels mit der Abscissenaxe gleich 2 ist.

Die Gleichung dieser Parabel ist:

 $(\alpha_{p} + \frac{1}{2} \alpha_{k})^{2} + \varkappa \alpha_{k} = \alpha_{p}^{2} \qquad 1)$ wo die Constanten \varkappa und α_{p} folgende Bedeutung haben:

Für $\alpha_k = 0$ wird $\alpha_p = \pm \alpha_0$, also ist α_0 nichts anderes als die Zug- (bezw. Druck-)festigkeit, diejenige Spannungsgrenze, bei welcher keine Schwingungen mehr stattfinden dürfen, um den Bruch herbeizuführen.

Für $\alpha_p = -\frac{1}{2} \alpha_k = -\sigma$, so dass $\alpha_p + \frac{1}{2} \alpha_k = 0$ und die obere Grenze $\alpha_p + \alpha_k = +\sigma$ wird, ergibt sich

$$\varkappa = \frac{\alpha_0^2}{\alpha_k} = \frac{\alpha_0^2}{2\sigma}$$

und umgekehrt, die Grenze der Schwingungen zwischen gleich grossen + und — Spannungen:

$$\sigma = \frac{\alpha_0^2}{2\varkappa}.$$

Die Werthe von α_r für $\alpha_s = 0$. d. h. die Zugfestigkeiten, finde ich nur für die beiden ersten der drei obigen, von Wöhler gepräften Materialien angegeben, nämlich für die Stäbe aus den Phönix-Achsen zu 440–450, im Mittel 445 Ctr. pro \Box Zoll (Tab. XIV a. der obigen Schrift) und für die Stäbe aus Gussstahlachsen zu 1025–1050–1050, im Mittel 1040 Ctr. pro \Box Zoll (Tab. XVI a.).

Fügt man diese Werthe den oben von Wöhler gegebenen Werthen von α_p und α_k hinzu und setzt dann sämmtliche Werthe in die Gleichung 1) der Gerber'schen Parabel ein, so erhält man für jedes der drei obigen Materialien 4 Gleichungen zwischen den Constanten \varkappa und α_a , aus denen man mittelst der Methode der kleinsten Quadrate diese Constanten bestimmen kann, so dass alsdann die Parabeln, welche sich mit möglichst grosser Genauigkeit jenen 4 Punkten anschliessen, gezeichnet werden können. Man erhält so:

1. Für die Stäbe aus Phönixachsen:

$\alpha_{p} = -$	160	Ctr	•,	α <u>.</u> ==	320	Ctr.	pro	\Box Zoll	und	daraus:	$\alpha_0^2 = 320 \varkappa = 0$
α _p ===	0	"	;	$\alpha_k =$	300	,,	۰,	,,	,,	,,	$\alpha_{o}^{2} - 300 x - 22500 = 0$
$\alpha_p =$	240	,,	;	$\alpha_{k} =$	200	,,	,,	,,	,,	,,	$\alpha_{s}^{2} - 200 z - 115600 = 0$
$\alpha_p = =$	445	,,	;	α _k ===	0	"	,,	,,	,,	,,	$\alpha_{s}^{2} = -198025 \approx -0$

 $\mathbf{2}$

woraus sich $\varkappa = 607$ und $\alpha_0 = 456$ Ctr. pro \Box Zoll und aus diesen beiden wieder $\sigma = 172$ Ctr. per \Box Zoll ergeben, welch' letztere beide Werthe hinlänglich mit den für $\alpha_{\kappa} = 0$ und $\alpha_{\kappa} = 320$ Ctr. direkt gefundenen Werthen von α_{ρ} , nämlich 445 und 160 Ctr. pro \Box Zoll stimmen. Die durch \varkappa und α_0 bestimmte Parabelgleichung:

 $(\alpha_p + \frac{1}{2} \alpha_k)^2 + 607 \alpha_k = 456^2$ ergibt dann für die Werthe:

 $\alpha_p = 0$ und 240 Ctr. pro \Box Zoll die Werthe $\alpha_k = 305$, 170 , , ,

statt der von Wöhler direkt beobachteten:

 $\alpha_{k} = 300$ und 200 Ctr. pro \Box Zoll,

eine Uebereinstimmung, die auch genügend erscheinen dürfte, wenn man erwägt, dass in dem 2. Fall der Werth von $\alpha_k = 200$ oder der oberen Schwingungsgrenze zu 440 Ctr. pro \Box Zoll von Wöhler in seinen Ausführungen auf S. 6 der oben citirten Schrift gegenüber den vorhergehenden etwas zu hoch gegriffen erscheint.

2. Für die Stäbe aus Kruppischen Gussstahlachsen:

α _p == -	-280	Ctr	.;	$\alpha_{k} = 56$	50 Ctr.	pro	\Box Zoll	und	daraus:	$\alpha_{\beta}^{2} - 560 \varkappa = 0$
a, ===	0	,,	;	$\alpha_{k} = 48$	30 ,,	,,	,,	,,	,,	$\alpha_0^2 - 480 \varkappa - 57600 = 0$
$\alpha_p = =$	350	,,	;	$\alpha_{p} == 43$	50 ,,	,,	,,	"	,,	$\alpha_0^2 - 450 \mathrm{x} - 330625 - 0$
a ^b ===	1040	,,	;	$\alpha_k =$	0 ,,	,,	,,	"	"	$\alpha_0^2 = 1081600 = 0$

woraus sich x = 1938, $\alpha_0 = 1044$ Ctr. pro \Box Zoll und aus folgt dann für $\alpha_p = 0$ und 350 Ctr. pro \Box Zoll $\alpha_{k} = 530$, 405 , , , diesen beiden $\sigma = 281$ Ctr. pro \Box Zoll ergeben. Letztere .. statt 480 ,, 450 ., beiden Werthe stimmen wieder recht gut mit den direkt beobachteten 1040 und 280 Ctr. pro Zoll. Aus der durch welche Wöhler direkt beobachtet hat. \varkappa und α_0 bestimmten Gleichung der Gerber'schen Parabel: 3. Für die Stäbe aus Gussfederstahl : $(\alpha_{\rm p} + \frac{1}{2} \alpha_{\rm k})^2 + 1938 \alpha_{\rm k} = 1044^2$ $\alpha_{\rm p} = -0$ Ctr.; $\alpha_{\rm k} = 500$ Ctr. pro \Box Zoll und daraus: $\alpha_{\rm p}^2 = 500$ z - 62500 ± 0 $\alpha_{o}^{2} - 400 \varkappa - 360000 = 0$ $\alpha_{p} = 400$, ; $\alpha_{k} = 400$, , , ·· · · · ·

woraus sich z = 2462, z = 1150 Ctr. pro \Box Zoll und aus diesen beiden z = 2677 Ctr. pro \Box Zoll ergeben. Aus der durch z und z_{c} bestimmten Parabelgleichung:

$$(\mathbf{x}_{p} + \frac{1}{2} | \mathbf{x}_{k})^{2} + 2462 | \mathbf{x}_{k} = 1150^{\circ}$$

folgen dann für die Werthe von

 $\alpha_{\rm p} = -0, 250, 400$ und 600 Ctr. pro []Zoll die Werthe von

 $z_k = 510, 445, 395$, 305 , n , n welche mit den direkt von Wöhler beobachteten

 $\alpha_{\rm k} = 500, 450, 400$ und 300 Ctr. pro \Box Zoll so gut übereinstimmen, als nur erwartet werden kann.

Meine Dauerversuche ergeben durchweg nur den Werth von α_s für $\alpha_p = 0$; ich will ihn kurz mit α bezeichnen und habe ihn bei den im vorigen Abschnitt, S. 40-42, angestellten Betrachtungen aus den Versuchen der Tabellen XIX-XXV ermittelt. Da ich für jedes der geprüften Materialien auch die Zugfestigkeit α_0 bestimmt habe, so kann in der Formel 1) der Gerber'schen Parabel die Constante z berechnet werden, nämlich

$$x = \frac{\alpha_0^2 - \frac{1}{4} \alpha^2}{\alpha}$$

und hieraus die Parabel construirt, sowie

$$\sigma = \frac{\alpha_{s}^{2}}{2\alpha} = \frac{\frac{1}{2}\alpha^{2}}{1 - \left(\frac{\frac{1}{2}\alpha}{\alpha_{s}}\right)^{2}}$$

berechnet werden.

Auf diese Weise findet sich:

1) Für das Schweisseisenblech, Tab. XIX: aus $\alpha = 2000 at$ und $\alpha_0 = 3480 at$

$$z = \frac{x^{2} - \frac{1}{2}x^{2}}{x} = 5555 \ at$$
$$z = \frac{x^{2}}{2x} = 1090 \ at.$$

2) Für das Bessemerflusseisenblech, Tab. XX: aus α = 2400 at und α₀ = 4360 at α = 7320 at σ = 1300 at.
3) Für das Flacheisen ⁵⁰/10 mm, Tab. XXI: aus α = 2200 at und α₀ = 4050 at α = 6900 at σ = 1190 at.
4) Für das Flacheisen ⁴⁰/10 mm, Tab. XXII:

aus $\alpha = 2400 at$ und $\alpha_0 = 4020 at$

 $x = 6130 \ ut$

$$5 = 1320 \ at$$

5) Für die Achswelle aus Thomasstahl, Tab. XXIII: aus $\alpha = 3000~at$ und $\alpha_{\rm s} \approx 6120~at$

z == 11780 at

5 - 1600, at

6) Für die Eisenbahnschiene aus Thomasstahl, Tab. XXIV: aus $\alpha = 2800 \ at$ und $\alpha_0 = 5940 \ at$

х — 11900 at

 $\sigma = 1480 at.$

7) Für das Kesselblech aus Thomasflusseisen, Tab. X X V aus $\alpha = 2400 at$ und $\alpha_0 = 4050 at$

 $\varkappa = -6230 \ at$

 $\sigma = 1320 at.$

Aus den im 5. Abschnitt mitgetheilten und besprochenen Versuchen folgt, dass die Grenze von Schwingungen zwischen gleichgrossen + und — Spannungen die Elasticitätsgrenze nicht überschreiten darf, wenn solche Schwingungen in unbegrenzter Anzahl ertragen werden sollen, da durch jede Ueberschreitung in dem einen Sinne sofort die Elasticitätsgrenze für den entgegengesetzten erniedrigt wird.

Ich habe den Maximalvorrath jener Schwingungsgrenzen oben mit 5 bezeichnet; er wurde von Wöhler für die beiden ersten oben aufgeführten Materialien direkt bestimmt; ausserdem habe ich ihn für diese, wie für alle anderen obigen Materialien auch aus der Gerber'schen Parabel berechnet, in welcher er dem Anfangspunkt des zur Abscissenaxe conjungirten Durchmessers entspricht. Prüfen wir obige Schlussfolgerung an den Werthen für die Elasticitätsgrenze, so weit diese bekannt sind.

Für das Eisen aus Phönix-Achsen findet sich aus dem in Erbkam's Zeitschrift für Bauwesen, Jahrgang 1860 S. 611-612 mitgetheilten Biegungsversuche Wöhlers an einem Stabe aus einer auf Biegung hin und her geprüften und gebrochenen Achse die Elasticitätsgrenze bei 160 Ctr. pro \Box Zoll, also genau derselbe Werth, den Wöhler durch Dauerversuche mit diesem Material für σ gefunden hat; die Parabel ergibt $\tau = 172$ Ctr. pro \Box Zoll.

Für einen Stab aus einer ungehärteten Gussstahlachse, welche 1861 von Krupp geliefert worden war und im Betriebe 4980 Meilen zurückgelegt hatte, findet sich aus dem von Wöhler in Erbkams Zeitschrift für Bauwesen angeführten Biegungsversuche die Elasticitätsgrenze bei ca. 300 Ctr., während Wöhler durch Dauerversuche an Stäben aus ebensolchen, freilich erst im Jahre 1862 gelieferten Achsen σ direkt zu 280 Ctr. fand und die Parabel 281 Ctr. pro \Box Zoll ergibt. Die Uebereinstimmung ist immerhin befriedigend.

Für das dritte Material, den Gussfederstahl habe ich nirgends eine Angabe betreffend dessen Elasticitätsgrenze finden können und Reste jenes Materials waren auf mein Nachfragen in Berlin leider nicht mehr vorhanden.

Die Elasticitätsgrenze des von mir geprüften Schweisseisenbleches (Tab. XIX) liegt bei 1040 at, während sich aus der Gerber'schen Parabel $\sigma = 1090 at$ ergab, in genügender Uebereinstimmung damit.

Aber bei allen 6 anderen von mir geprüften Materialien liegt die "ursprüngliche" Elasticitätsgrenze bedeutend höher als das aus der Gerber'schen Parabel oben berechnete σ . Nun habe ich schon verschiedenemale darauf aufmerksam gemacht, dass die Elasticitätsgrenze bei jenen Materialien sehr hoch liegt, auf künstliche Weise durch Strecken, Walzen. Schmieden erhöht worden sein muss. Man muss sich also bei Anwendung der obigen, aus den Versuchen des 5. Abschnitts gezogenen Schlussfolgerung ebenso, wie bei der Anwendung des 1. Satzes des vorigen Abschnitts, immer zuerst Rechenschaft darüber geben, welche von den vielen Elasticitätsgrenzen, die einem Material gegeben werden können, dabei zu nehmen sei.

Ueberlegt man nun, dass eine durch Strecken erniedrigte Elasticitätsgrenze für Zug sich im Laufe der Zeit von selbst wieder hebt (3. Abschnitt), und dass die Elasticitätsgrenze für Zug durch oftmal wiederholte Anstrengungen zwischen 0 und einer oberen Zugspannung gehoben wird, auch über diese obere Zugspannung (6. Abschnitt), dass dagegen bei abwechselnder Beanspruchung auf Zug und Druck die Ueberschreitung der Elasticitätsgrenze für die Beanspruchung in einem Sinne diese Grenze für den entgegengesetzten Sinn tief und bleibend herunterwirft, so liegt die Analogie nahe, dass abwechselnde Anstrengungen auf Zug und Druck, welche unterhalb einer künstlich gehobenen Elasticitätsgrenze liegen und sehr oft wiederholt werden, diese Elasticitätsgrenze bis zu einer gewissen Grenze herab wieder erniedrigen und zwar bis zu derjenigen, welche sie nach dem 3. Satz des 5. Abschnittes nicht mehr überschreitet, wenn durch allmählich anwachsende, zwischen Zug und Druck regelmässig wechselnde Belastungen eine ganz herabgesunkene Elasticitätsgrenze wieder nach und nach gehoben wird. Dass einige wenige Wechsel zwischen Zug und Druck, wie sie bei den Versuchen in Tab. XI und XV angewendet worden sind, die über ihnen liegende Elasticitätsgrenze nicht erniedrigten, kann hiegegen so wenig als Beweis angeführt werden, als die Nichterhebung der Elasticitätsgrenze durch einige wenige Schwingungen zwischen 0 und einer oberen Zugspannung gegen den vollständigen erwiesenen Satz 1 des 6. Abschnittes.

Ich möchte jene Grenze, dieselbe also, die auch im 3. Satze des 5. Abschnittes gemeint ist, in Erinnerung daran, dass sie auf künstliche Weise durch Strecken, Walzen etc. gehoben, ebenso aber auch durch Beanspruchung des Materials im entgegengesetzten Sinne oder durch Erwärmen und plötzliches Abkühlen künstlich gesenkt werden kann, nat ür liche Elasticitätsgrenze nennen und diese ist es eigentlich, mit der τ , der Maximalwerth Bauschinger, Mittheilungen, XIII. gleichgrosser Zug- und Druckspannungen, übereinstimmen müsste.

Bei den von Wöhler auf ihre Elasticitätsgrenze etc. geprüften Stäben aus einer Phönixachse und aus einer Krupp'schen Gussstahlachse, welche beide, die eine bei Dauerversuchungen, die andere im Betrieb, eine grosse Anzahl Hin- und Herbiegungen erlitten hatten, war sehr wahrscheinlich die gefundene Elasticitätsgrenze die natärliche. Sie stimmt in der That nahe genug mit 5 überein. Bei dem von mir geprüften Schweisseisenblech liegt die Elasticitätsgrenze so tief, dass sie wahrscheinlich ebenfalls die natürliche ist; auch sie stimmt mit 5 nahe genug überein. Hiernach scheint also der tolgende Satz ausgesprochen werden zu dürfen.

Die Grenzen 5 der Schwingungen zwischen gleich grossen Zug- und Druck-Spannungen dürfen die natürliche Elasticitätsgrenze nicht überschreiten, wenn das Material eine unbegrenzte Anzahl solcher Schwingungen soll ertragen können.

Die Richtigkeit dieses, allerdings vorerst noch mit Vorsicht aufzunehmenden Satzes müsste zunächst noch dadurch geprüft werden, dass passende Stäbchen aus den sechs anderen Materialien, welche ich durch Dauerversuche auf Zug zwischen den Spannungen 0 und einer oberen Zugspannung geprüft habe, auf abwechselnden Zug und Druck, also auf Biegung hin und her probirt und darauf untersucht würden : 1) ob dadurch ihre Elasticitätsgrenze bis auf eine gewisse Höhe, die dann eben die natürliche Elasticitätsgrenze sein würde, erniedrigt wird. und 2) ob diese so gefundene Elasticitätsgrenze mit dem oben durch Berechnung erhaltenen Werth von 5 in Uebereinstimmung ist. Diese Versuche werde ich vornehmen, sobald die Wöhler'sche Maschine für Hin- und Herbiegungen (continuirliche Drehungen), welche ich eben anfertigen lasse, vollendet sein wird. (Die Construktion einer solchen Maschine für direkten abwechselnden Zug und Druck unterliegt zu grossen Schwierigkeiten, als dass man hoffen dürfte, darüber Herr werden zu können.)

Der oben ausgesprochene Satz, wenn er sich bestätigt, würde noch eine weit höhere Bedeutung für die Prüfung der Materialien auf ihren Widerstand gegen wiederholte Beanspruchung erlangen. wenn es gelänge, die natürliche Elasticitätsgrenze eines Materials, anstatt durch oftmals wiederholte Schwingungen zwischen Zugund Druckspannungen, durch solche Manipulationen herzustellen und zu bestimmen, die in kürzerer Zeit und durch ruhende Belastungen, also mit den gewöhnlichen Prüfungsmaschinen ausgeführt werden könnten. Denn in diesem Falle würde man durch solche Versuche neben dem Schnittpunkt der Gerber'schen Parabel mit der Abscissenachse, welcher sich aus der Zugfestigkeit α_{σ} ergibt, auch noch den Endpunkt des zur Abscissenachse conjugirten Durchmessers erhalten mit den Cordinaten — σ und + 2 σ , gleich der einfachen und doppelten natürlichen Elasticitätsgrenze, also diese Parabel selbst und würde daher graphisch oder durch Rechnung aus der Gleichung

$$(\alpha_p + \frac{1}{2} |\alpha_k)^2 + \frac{\alpha_o^2}{2\sigma} |\alpha_k - \alpha_o|$$

für jede untere Grenze α_p die Differenz α_k und tolglich die obere Grenze der Schwingungen erhalten können, welche das Material in unbeschränkter Dauer aushalten kann.

Einen Weg zur Ermittelung der natürlichen Elasticitätsgrenze auf jene Weise habe ich schon oben (S. 49) angedeutet. Man wirft die Elasticitätsgrenze für Zug oder Druck durch Belasten auf bezw. Druck oder Zug über die Elasticitätsgrenze hinaus auf Null oder fast auf Null herab und hebt sie dann durch allmählich wachsende, regelmässig zwischen Druck und Zug abwechselnde Belastungen wieder, so weit es möglich ist. Ich habe diesen Weg an zwei "Probestücken für Zug und Druck," die ich in Gestalt der Fig. 1 auf Blatt II aus Bruchstücken der Achswelle AII (Tab. XXIII) und der Eisenbahnschiene C. D (Tab. XXIV) aus Thomasstahl herstellen liess, erprobt. Die angestellten Versuche sind in den Tabellen XVII und XVIII enthalten, die schon am Schlusse des 5. Abschnittes besprochen worden sind. Sie ergeben die natürliche Elasticitätsgrenze bei 1457 bezw. 1561 at während 5 durch die oben angestellten Berechnungen gleich 1600 bezw. 1480 at gefunden wurde, eine Uebereinstimmung. die vorläufig wohl befriedigen dürfte.

Aber solche Probestücke, die sowohl gezogen als auch gedrückt werden sollen, lassen sich aus manchen Materialien, wie aus Blechen, Flacheisen, Façoneisen u. dgl. nur sehr schwer herstellen. Wegen ihrer geringen Querdimension in einer Richtung darf ihre Länge nicht großs werden, wenn bei Druck nicht sehr bald schon eine Ausbiegung eintreten soll, und so kurze Stücke lassen sich in den gewöhnlichen Vorrichtungen nicht mehr auf Zug einspannen, zumal wenn auch der Messapparat augebracht werden muss.

Ich dachte desshalb zuerst daran, die im 4. Abschnitt beschriebenen Aenderungen der Elasticitätsgrenze durch Erwärmen und Abkühlen oder durch Erschüttern beim Schmieden dazu zu benützen, eine künstlich erhöhte Elasticitätsgrenze auf die Höhe der "natürlichen" herab-Aber die Versuche, die ich in dieser zubringen. Richtung anstellte, führten nicht zum Ziel. Zwar kann man durch Erwärmen und darauf folgendes rasches Abkühlen oder durch Erschüttern mit Hammerschlägen die Elasticitätsgrenze herunter werfen und durch wiederholtes Erwärmen und langsames Abkühlen wieder erhöhen, aber die Grösse der Veränderungen der Elasticitätsgrenze hiebei ist ausserordentlich abhängig von der Zahl und Stärke der Hammerschläge, von der Höhe der Temperatur, von der Art der Abkühlung etc., und dann fehlt auch, was die Hauptsache ist, jedes sichere Kriterium darüber, ob eine so erreichte Elasticitätsgrenze auch die natürliche ist. Bei dem Schweisseisenblech E 11 (Tab. XIX) zwar erhielt ich, nachdem ein Stäbchen davon kirschroth geglüht, dann rasch abgekühlt, hierauf wieder ebenso geglüht und langsam abgekühlt worden war, dieselbe Elasticitätsgrenze von 1040 at wieder, die es ursprünglich hatte, und diess spricht auch dafür, dass diese die natürliche ist. Aber Lamellen aus den Flacheisen Lab. Nr. 2335 und 2336 (Tab. XXI und XXII) ergaben, auf gleiche Weise behandelt, bald bedeutend geringere, bald bedeutend höhere, bald wieder ungefähr ebenso hohe Elasticitätsgrenzen als das oben berechnete 5, und bei Probestäbchen aus den Flüsseisenblechen der Tabellen XX und XXV konnte auf dieselbe Weise die Elasticitätsgrenze nicht erniedrigt werden, obwohl, wie ich mich direkt überzeugte, auch bei ihnen durch das erstmalige Erwärmen und darauf vorgenommene rasche Abkühlen die Elasticitätsgrenze ganz bis auf Null herabgeworfen worden war.

Es bleibt also doch nichts Anderes übrig, als solche Formen von Probestücken aus Blechen, Flacheisen etc. und solche Einspannvorrichtungen zu ersinnen, dass jene Stücke sowohl auf Druck, als auch auf Zug geprüft werden können.

4*

Tabelle I.

Sechs Rundstäbe aus Schweisseisen, Lab. Nr. 938^{a-t}, auf Zug geprüft.

Die Stäbe c-f Normalstäbe von 25 mm Durchm. und 250 mm Gebrauchslänge, a und b von doppelter Länge.

1	2.	3.	4.	5.	6	7	8.	9.	10.
			Ergeb	nisse d	er vorgenom	nenen l	Prüfung	auf Z	ug
Laufende N	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem Dchm. <i>cm</i>	Länge f. d. A Messung <i>cm</i>	Elastieitäts- Modul at	Elast. Grenze at	Streekgrenze at	Max. Belast. am Ende <i>at</i>	Bleibende Dehnung ¹ /1000 cm
1	Rundstab 938°. Ursprünglicher Zustand	3202	2,50	15,00 15 10	2'120000	1830	2180 2240	2200 2310	97,30
2 3	 62 Stunden nach dem Strecken mit 220 at	3202	2,50	15,13	2*040000		2590	2590	
	Rundstab 938 ^{r.}								
4	 Nach 7maliger Belastung mit 4t und 2maliger Belastung mit 8t (unterhalb der Elasticitätsgrenze) An demselben Tage wurde der Stab noch 2mal mit 4, dann 2mal mit 8t, dann wieder 2mal mit 4 und 2mal mit 8t; am folgenden Tage 2mal mit 4 und 2mal mit 8t belastet, hierauf durch das Ausspannen ziemlich stark und dann absichtlich noch dadurch erschüttert, dass man den Stab öfter aus einer Höhe von 20 cm in vertikaler Stellung auf dem Ambos fallen liess; dann wurde er am gleichen Tage noch 3mal mit 4 und 2mal 	3209	2,50	15,00	2'070000			1630	0,33
6	mit 8, 2mal mit 4, 2mal mit 8, Imal mit 4 und 7mal mit 8t, hierauf 29mal mit 9t und am dritten Tage nachher endlich noch 11mal mit 9t belastet, ohne dass die Elastieitätsgrenze, die (s. die nächste Messung) gerade bei 9t liegt, überschritten worden wäre. Die hierauf fortgesetzte Messung ergab Am gleichen Tage wurde der Stab 2mal mit 4, 4mal mit 10 und dann 2mal mit 13 $t = 2670 at$ belastet und dadurch so ge- streckt, dass die Entfernung der Marken von 15,00 auf 15,35 cm wuchs. Nachdem dann am 2. Tag darnach noch 2mal mit 4, 9mal mit 8, 25mal mit 9, 8mal mit 8 und end-	3 213	2,50	15,00	2`070000	1830	>2040	2040	0,36
	lich noch 2 mal mit 9 t belastet worden war, ergab die Messung	3214	2,49	15,35	2'010000	2050	>2670	2670	0,31
7 8	Drei Tage nachher, inzwischen nur einigemal bis 4t belastet und wieder entlastet Unmittelbar nachdem zu Ende des vorigen Versuches noch mit	3216	2,49	15,35	2'030000	2670	3020	3040	188,09
0	13t = 3110 at belastet, dann entrastet und wieder int $15tbelastet worden war$	3216	2,48	15,54	2.000000	830	>3110	3110	2.16
9 10	 21 Stunden bachner, nachdem inzwischen hur smar mit 47 be- lastet worden war 4 Tage darnach, nachdem inzwischen der Stab, der eingespannt geblieben war, viermal mit je 20 Hammerschlägen, in seiner Längsrichtung auf die Backen der Einspannköufe gegeben. 	3216	2,48	15,54		sehr ver- wischt	>3310	3310	0,97
	 erschüttert worden war. Hierauf wurde der Stab mit 19,2t abgerissen. Zugfestigkeit = 3910 at, auf den ursprünglichen Querschnitt bezogen. Contraktion = 43%/0, auf den ursprünglichen Querschnitt bezogen. Dehnung = 24,8%/0 für ursprünglich 25 cm. Bruch feinsehnig mit einigen krystallinischen Punkten. 	3218	2,48	15,58	2'100000	3000	3470		
	Rundstab 9384.								
11	Ursprünglicher Zustand	3279	2,51	15,00	2'050000	1410	1920	2220	180
12	20 Minuten nach dem Strecken mit $11t = 2220 at$ am Ende des vorigen Versuchs	3279	$2,\!51$	15,18	1'950000	1010	2220	2830	420
13	20 Minuten nach dem Strecken mit $14t = 2935 at$ am Ende des vorigen Versuchs	3279	2,465	15,60	1'940000	1050	2935	3350	600
14	20 Minuten nach dem Strecken mit $16t = 3480 at$ am Ende des vorigen Versuchs	3279	2,42	. 16,20	1'930000	1090	3480	3480	0,67
19	3 Janre und 31 Tage nach dem letzten Versuch runig liegen geblieben	3851	2,43	16,19	2.130000	3670	>3880	3880	0,12
-			and a second sec	a de la companya anna	• • • •	and the first statement			

	Tabelle I. E	'ortset	zung.						
1.	2.	3.	4.	5.	6.	7.	8.	9.	10. Ng
<u>.</u>			Erge ¹	onisse d	ler vorgenom	nenen .	Prutung	gaur Z	ug
~	and the transformation of the base of the	Vara	Vor den	i Versuch	Elasticitäts-	2nze	nze	ast. de	Bleibende
-ndr	Zustand und Behandlung des Probestuckes	, ver-	Datum	L.d.	Modul	at a	it it	Bel En	Dehnung
uté.		such	Denni.	l agu Issu	at	st.	a'se.	X. n	¹ /1000 cm
- - -		Nr.	- cm	Me	a	Ella		R e	
		dana (s. 1927) 1							1
			1	1					
16	Einen Tag nach dem letzten Versuch wurde der Stab im kalten								
	Zustande der Lange nach mit dem gewohnlichen starken Handbenumer dann mit dem Schmiedehammer auf dem	1		1					
ļ	Ambos durchgehämmert, ohne dass sich jedoch die Ent-					i I			
	fernung der Marken (ursprünglich 15 <i>cm</i>) vergrösserte. Hieraut wurde der Stab wieder nachgedreht und im Ganzen drei								
	Tage nach dem letzten Versuch gemessen	3855	2,30	$15,\!00$	24150000	1450	3610	3610	5,90
17	Zwei Jahre und 58 Tage nach dem letzten Versuch blieb der Stab robig liegen dann wurde er mit $18 t = 4340 at$ ge-								
	streckt und einen Tag darauf gemessen	4392	2,30	15,14	1'970000	480	4220	4340	
18	Unmittelbar nach der letzten Messung wurde der Stab auf 500° C. erwürnet dann Langs am abgekühlt und 2 Tage darauf				1				
	wieder gemessen	4399	2,30	15,15	1,880000	3370	4000	4100	
18a	19 Tage nachher: Tags zuvor in Kirschröthnitze geglüht und rasch im kalten Wasser abgekühlt (s. Tab. VII ^a I. Spalte)	4506	2,29	15.15		0	2670	2800	
	39 Tage nachher bei einem Durchmesser von 2.29 cm mit			,					
	19,75 t abgerissen Znøfestigkeit == $4750 at$ auf den Durchmesser 2.30 cm nach	4596							:
	dem Hämmern und Abdrehen bezogen.								
	Contraction $= 27^{\circ}/_{\circ}$, auf den Durchmesser 2,30 cm nach dem Hämmern und Abdrehen bezogen.								
	Dehnung = 15.8% für $15 cm$ nach dem Hämmern und Abdrehen.								
	Bruchausschen: fast durchaus grobkrystallinisch mit einigen kleinen schniven Stellen.								
	R u n d s t a b 938%								
10	Userwünschahren Zustand	3960	9 51	15.00	24030000	1410	2020	2220	140
$\frac{10}{20}$	19 Stunden nach dem Strecken mit $11 t = 2240 at$	3292	2,50	15,00 15,14	2.025000	2040	2440	2850	350
21	27 Stunden nach dem Strecken mit $14 t = 2910 at$	$\frac{3295}{3297}$	2,475 2.455	15,49 15.84	1,980000 1,980000	2490 2800	3120 >3380	$3330 \\ 3380$	350
$\frac{22}{23}$	Drei Jahre und 23 Tage nach dem letzten Versuche ruhig liegen	0	2,105	10,01	1 200000	2000	20000	0000	0,92
••.1	geblieben Nach dem letzten Versuch wurde der Stab ebenso behandelt wie der	3852	2,45	$15,\!83$	2'140000	3500	>3820	3820	0,10
- T	938+ Nr. 16 und dadurch die Länge von 15,83 cm auf 15,85 cm		1						
	gebracht; hierauf wurde der Stab abgedreht und 17 Stunden nach Beendigung der letzten Messung wieder geprüft	3854	2 36	15.00	24150000	1790	3550	3660	8.73
25	Zwei Jahre und 60 Tage ruhig liegen gelassen, dann mit 18 t		-,			1.20	5500		0,.0
26	= 4120 at gestreckt und 2 Tage darauf gemessen . Unnittelbar nach Beendigung der letzten Messung auf 500° C.	4398	2,36	15,05	1'970000	2170	4230	4350	-
	erwärmt, dann im Wasser von eirea 15°C, rasch abgekühlt								
	58 Tage nachher bei einem Durchmesser von 2,36 <i>cm</i> mit 21,4 <i>t</i>	4398	2,36	15,05	1.960000	1370	3200	3220	—
	abgerissen .	4596	-						
	Häramern und Abdrehen bezogen.							ĺ	
	Contraction = $27^{-0}/_{4}$, and denselben Querschnitt bezogen.								
	Bruchausschen: krystallinisch mit kleiner schniger Stelle auf						1		
	einer Seite: auf dieser Seite äusserlich aufgerissen,						1	1	
	•	:							
	Rundstab 938%								
27	Ursprünglicher Zustand	3276	2.50	15.00	9415000	1690	90.10	9940	100
28 29	51 Stunden nach dem Strecken mit $11t = 2240 at$	3280	2,50	15,00 15,10	1,880000	1990	2440	2850	440
$\frac{2}{30}$	45 Stunden nach dem Strecken mit $16t = 3240 at$	$\frac{3284}{3286}$	$2,45_{5}$ 2.44	$15,54 \\ 15.84$	1'990000 1'970000	2750	3170	3380	300
31	Drei Jahre und 21 Tage nach dem letzten Versuch ruhig liegen ge- blieben	0007	_,	~0,0 T	1 010000	0400		U440	0,34
32	Unmittelbar nach dem vorigen Versuch auf 400° C. erwärmt.	3835	2,44	15,84	2'140000	3750	>3850	3850	0,07
	dann langsam an der Luft abgekühlt und 24 Stunden nach Beendigung jenes Versuches gemosteren.	0.007			_ /				
33 (Unmittelbar nach dem vorigen Versuch auf 400° C. erwärmt.	3837	2,44	15,84	2'150000	3000	>3400	3400	0,43
:	dann im Wasser von circa 15° C. rasch abgekühlt und sofort wieder gemessen	0.07-7							
34	18 Standen nach dem vorigen Versuch ruhig liegen geblieben.	3838 3840	2,44 2,44	15,84	24120000 24140000	1930	>2550	2550	0,37
35	Einige Stunden nach dem vorigen Versuch auf 500° C. erwärmt,	0010	-,	10,04	A 140000	2000		3000	0,33
;	gemessen	3845	2 44	15.84	94190000	490	1-10	1 1 7 7 0	
		0010	-,**	10,04	a 120000	430	~1,10	1710	1,51
			,	'	t	1	1	1	1

Tabelle I. Schluss.

1.	2.	3.	4.	5.	. ŭ.	· _	8.	9.	10.
÷			Ergel	misse d	ler vorgenom	nenen	Prüfun	g auf Z	Lug
Laufende N	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor den Dehm, <i>cm</i>	Länge f. d. A Messung <i>cm</i>	Elasticitäts- Modul <i>at</i>	Elast. Grenze at	Streekgrenze at	Max. Belast. am Ende <i>at</i>	Bleibende Dehnung ¹ ₁₀₀₀ cm
36 37	Nach Beendigung des vorigen Versuchs mit $17 t = 3640 at$ be- lastet und dann 2 Jahre und 62 Tage unverändert liegen gelassen Unmittelbar nach dem vorigen Versuch auf 500° C, erwärmt,	4388	2,43	16,07	2.000000	3450	3770	3880	
	 dann rasch abgekühlt und 2 Tage darauf gemessen (s. Tab. VII^a Spalte 2.) 59 Tage nachher bei einem Durchmesser von 2,42 cm mit 21,6 t abgerissen Zugfestigkeit = 4400 at, auf den ursprünglichen Querschnitt bezogen. 	4395 4596	2,43	16,07		••••	2800	3020	4
	Contraction = $36\%_0$, auf den ursprünglichen Querschnitt bezogen. Dehnung = $20,3\%_0$ für ursprünglich $25cm$ Bruchaussehen: Zur Hälfte sehnig, zur andern Hälfte, jene halbmondförmig umgebend, krystallinisch. Acusserlich ein Längsspalt auf der sehnigen Seite.								
38 39 40 41 42 43	R un dst ab 938 ⁴ . Ursprünglicher Zustand 80 Stunden nach dem Strecken mit 11 $t = 2240 at$ 68 Stunden nach dem Strecken mit 14 $t = 2900 at$ 64 Stunden nach dem Strecken mit 16 $t = 3410 at$ 63 Jahre und 31 Tage nach dem letzten Versuch ruhig liegen ge- blieben Unmittelbar nach dem vorigen Versuch auf 400° C. erwärmt und in Wasser von circa 15° C. r a s c h abgekühlt, 24 Stunden darnach gemessen	3283 3291 3296 3301 3836 3841	2,515 2,50 2,48 2,445 2,445 2,445	15,00 15,14 15,47 15,76 15,76	2°050000 2°020000 1°980000 2°010000 2°180000 2°150000	1610 2240 2480 3090 3630	2110 2440 3110 >3410 >3480 >2560	$2210 \\ 2850 \\ 3310 \\ 3410 \\ 3840 \\ 2560$	$ \begin{array}{c} 140 \\ 330 \\ 290 \\ 0.29 \\ 0.12 \\ 0.34 \end{array} $
44	Unmittelbar nach dem vorigen Versuch auf 500° C. erwärmt, dann lang sam abgekühlt und endlich, im Ganzen nach 43 Stunden gemessen	3843	2,113	15,76	2'170000	2130	>2560	2560	0.51
45	 6 Stunden nach dem vorigen Versuch, nachdem der Stab unmittelbar vorher auf 500° C. erwärmt und dann rasch abgekühlt worden war (s. Tab. VH^a Spalte 3.) Hierauf wurde der Stab mit 20,3 t abgerissen: Zugfestigkeit = 4090 at, auf den ursprünglichen Querschnitt bezogen. Contraction = 41^{0/6}, auf den ursprünglichen Querschnitt bezogen. Dehnung = 23,0% auf ursprünglich 25 cm. Bruch feinschnig mit krystallinischen Stellen, wie bei e und f 	3846	2,445	15,76		0	>1700	1700	3,26

.

Tabelle II.Rundstab aus Schweisseisen, Lab. Nr. 1908, aus Eisenbahnbetriebs-Material, auf Zug geprüft.
Normalform von 25 mm Durchmesser und 250 mm Gebrauchslänge.

I۰	2.	3.	4.	5.	6.	7.	8.	9.	10.
÷			Ergel	onisse d	er vorgenom	menen	Prüfung	e auf Z	lug
Lanfende N	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem Dehm. <i>cm</i>	Länge f. d. A. Messung <i>cm</i>	Elasticitäts- Modul <i>at</i>	Elast, Grenze at	Streekgrenze at	Max, Belast. am Ende <i>at</i>	Bleibende Dehnung ¹ , 1909, <i>cm</i>
1	Ursprünglicher Zustand	3293	$2,50_{2}$	15.00	2.020000	1620	2130	2430	210
2	20 Minuten nach dem Strecken mit $12t = 2480 at$	3293	2.48	15.21	1'980000	1035	2480	3000	420
3	63 Stunden nach dem Strecken mit $14.5t = 3050 at$	3298	$2,45_{3}$	15,63	1'960000	2960	3380	3590	430
4	20 Minuten nach dem Strecken mit $17t = 3650 at$	3298	2,435	16,06	1.870000	1070	>3650	3650	1,24
5	3 Jahre und 18 Tage nach dem vorigen Versuch ruhig liegen geblieben	3842	$2,43_{5}$	16,06	$2^{\circ}090000$	>3870	>3870	3870	-0.07
6	Unmittelbar nach dem vorigen Versuch auf 500°C. erwärmt, dann in Wasser von 15°C. rasch abgekühlt, 42 Stunden darnach gemessen (s. Tab. VII ^a 4. Snalte)	3844	2 43-	16.06	_	0	_	860	117
7	Zwei Jahre und 62 Tage ruhig liegen geblieben, dann mit 18 t	5011	2,19.	10,00				000	A ,L4
	= 4050 at gestreckt, 2 Tage darauf gemessen	4394	2,38	16,80	1.950000	2470	:>4270	4270	0,80
8	Drei Tage nach dem letzten Versuch ruhig liegen geblieben	4401	2,38	16,80	$1^{\circ}950000$	3150	>4270	4270	0,40
9	Unmittelbar nach dem letzten Versuch auf 500° C. erwärmt, dann	4400	0.00	10.00	1.0.20000	0170		0710	
10	an der Luft langsam abgekunt und solort wieder geniessen Nach 14 Tagen. Tage zuvor in Kirschrothhitze geglüht und dann	4403	2,38	16,80	1.300000	3190	3,10	3110	_
	über Nacht langsam im Feuer abgekühlt	4503	$2,\!38$	$16,\!81$	2'000000	2020	2590	2750	
	39 Tage darnach bei einem Durchmesser von 2,37 cm mit 18,6 t abgerissen	4596							
	Zugfestigkeit = 3770 at, auf den ursprünglichen Querschnitt		i				1	1	
	bezogen.		1						
	Contraction $= 32^{\circ}/_{\circ}$, auf den ursprünglichen Querschnitt bezogen.		* 5	:		1		-	-
	Dennung = $26,5\%$ für ursprunglich $25 cm$. Bruchausschen in schning hell und dunkel unsessimissig (m.		1				1	(1
	mischt mit feinem Spalt.						}		
,	Share	1		1		5			

Tabelle III.

Lauene III.	··
Zwei Bundstäbe aus Schweisseisen, Lab. Nr. 1907 ^{au, b} , Eisenbahnbetriebs-Material, auf Zug gep	ruit.
Normalrundstäbe von 25 mm Durchm. und 250 mm Gebrauchslänge.	

		9	4	5.	6,	7.	8.	9.	10.
1.	2.	э.	Ergel	bnisse d	er vorgenomn	ienen P	rüfung	auf Zu	g
Laufende Nr.	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem Dchm. <i>cm</i>	And the second terms of terms o	Elasticitäts- Modul at	Elast. Grenze at	Streckgrenze at	Max. Belast. am Ende at	Bleibende Dehnung ¹ /1000 cm
* *									
1 2	Rundstab 1907* Ursprünglicher Zustand . $48^{1/2}$ Stunden nach dem Strecken mit $12 t = 2510 at$; am Zwischen-	3277	2,49	15,00	2'080000	1950	2260	2460	330
	flächen erschüttert, wobei der Stab in ungefähr senkrechter Richtung in der Hand gehalten wurde.	3281	2,47	15,33	2'005000	1880	2610	3030	300
3	$44^{1/2}$ Stunden nach dem Strecken mit $14,5t = 3090 at$; am Zwischentage erschüttert wie vorhin	3285	2,445	15,63	1'995000	2345	3200	3625	600
4	49 Stunden nach dem Strecken mit $17t = 3730 at$, am Zwischen- tage erschüttert wie vorhin	3288	2,41	16,23	2'020000	1750	>3730	3730	0,57
5	3 Jahre und 23 Tage nach dem letzten Versuche ruhig hegen geblieben, dann in den 2 nächsten Tagen wiederholt im Schraubstock durch Drücken und Biegen gerade gerichtet und an den Einspannköpfen durch Nachdrehen adjustirt 7 Monate nach dem letzten Versuch, inzwischen ruhig liegen ge- blieben	3842 3947	2,41 2,41	16,23 16,23	2'150000 2'070000	1750 2200	>2190 >3070	2190 —	0,27
	 Hierauf wurde der Stab mit 20,4t abgerissen. Zugfestigkeit = 4190 at, auf den ursprünglichen Querschnitt bezogen. Contraction = 33 %, auf den ursprünglichen Querschnitt bezogen. Dehnung = 13,5% für ursprünglich 25 cm. Bruchaussehen : feinsehnig mit krystallinischen Punkten, stark zerklüftet. 								
	Rundstab 1907 ⁿ								
7	Ursprünglicher Zustand . 47 Stunden nach dem Strecken mit $12t = 2510 at$ und dann so-	3 289	2,51	15,00	2'010000	1410	2120	2420	340
	gleich darauf in der gleichen Weise wie bei Stab a vorge- nommenem Erschüttern	3294	2,47	15,34	2'000000	1880	2710	3030	250
9	sogleich darauf, wie vorhin, vorgenommenem Erschüttern	3299	2,45	15,59	2'000000	1910	3185	8610	510
10	 42½ Stunden nach dem Strecken mit 17t = 3700 at und dann sogleich darauf, wie vorhin, vorgenommenem Erschüttern. Hierauf wurde der Stab mit 20,5t abgerissen. Zugfestigkeit = 4140 at, auf den ursprünglichen Querschnitt bezogen. Contracting = 32 % auf den ursprünglichen Querschnitt bezogen. 	3302	2,42	16,10	2'070000	1300 sehr ver- wischt	>3700	3700	0,99
	Dehnung = 14.6% für ursprünglich $25 cm$.		1					1	

Tabelle IV.

Sechs Rundstäbe aus Bessemer-Flusseisen, Lab. Nr. 1850^{a-r}, aus einer und derselben Stange gedreht, auf Zug geprüft. Normalstäbe von 25 mm Durchm. und 250 mm Gebrauchslänge.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Ŀ.		Ergebnisse der vorgenommenen Prüfung auf Zug							
Laufende N	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem Dchm. cm	Versuch fessung <i>cm</i>	Elasticitäts- Modul at	last. Grenze at	treckgrenze at	lax. Belast. am Ende <i>at</i>	Bleibende Dehnung ¹ /1000 cm
		<u> </u>		14		<u> ¤</u>	02		
1 2 3 4 5 5	 Rundstab 1850⁴ Ursprünglicher Zustand 30 Minuten nach dem Strecken mit 16 t = 3300 at 30 Minuten nach dem Strecken mit 18 t = 3750 at 30 Minuten nach dem Strecken mit 20 t = 4330 at 3 Jahre und 30 Tage nach dem vorigen Versuch ruhig liegen geblieben 21 Stunden nach dem vorigen Versuch auf 500° C. erwärmt, dann in Wasser von 15° C. rasch abgekühlt und sofort geprüft 	3274 3274 3274 3274 3274 3832 3833	2,532,4852,462,4252,4252,4252,425	15,00 15,56 15,84 16,41 16,43 16,43	2'190000 2'160000 2'205000 2'135000 2'340000 2'340000	2485 930 630 870 >4330 1190	$\begin{array}{c} 2580\\ 3300\\ 3790\\ 4330\\ >4330\\ >1720\end{array}$	3180 3710 4210 4330 4330 1720	560 280 570 6,06 0,07 0,32

.

1254597889102Zestand und Behandling der ProberinkesZestand und Behandling der ProberinkesFacher Versen- and Erlehn, die ging die <b< th=""><th></th><th></th><th></th><th>aung.</th><th></th><th></th><th></th><th></th><th></th><th>·</th></b<>				aung.						·
2 and and and the stand and metabolizing dev ProbestickesExplosible der Vergenommenen Pröfing and Zag Ver Ver Werder Verstein No. der Standen in Verstein Mehlen Umgenommenen Pröfing and Zag Werder Mehlen Umgenommenen Pröfing and Zag Mehlen Umgenommenen Pröfing and Zag Werder Mehlen Umgenommenen Version Mehlen Umgenommenen Pröfing and Zag Werder Mehlen Umgenommenen Pröfing and Zag Werder Mehlen Umgenommenen Pröfing and Zag Werder Werder Mehlen Umgenommenen Pröfing and Zag Werder Mehlen Umgenommenen Pröfing and Zag Werder Werder Mehlen Umgenommenen Pröfing and Zag Werder Mehlen Umgenommenen Pröfing and Zag Werder Werder Mehlen Umgenommenen Pröfing and Zag Werder Werder Werder Werder Werder <br< td=""><td>1.</td><td>2.</td><td>3.</td><td>4.</td><td>5.</td><td>б.</td><td>7.</td><td>8.</td><td>9.</td><td>10.</td></br<>	1.	2.	3.	4.	5.	б.	7.	8.	9.	10.
2^{-1} Zartani und Behandlung des TrobestinkesVer. hard lehnn, $\frac{1}{2}$ wird bilden, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 	۲r.			Ergel	onisse d	er vorgenom	menen	Prüfun	g auf 2	lug
TotalLemma on Astronomy or SchoolsmanVert $\sum_{i=1}^{n}$ $\sum_$	e 1	Westen I und Pahandlung des Drahastäsles	1.	Vor den	ı Versuch		1ZC	ze	st.	: :
9999999999111 <th< td=""><td>end</td><td>Zustand und Benandlung des Probestuckes</td><td>Ver-</td><td></td><td></td><td>Elasticitäts-</td><td>ren</td><td>ren</td><td>elas nde</td><td>Bleibende</td></th<>	end	Zustand und Benandlung des Probestuckes	Ver-			Elasticitäts-	ren	ren	elas nde	Bleibende
2 37. $cm = \frac{d}{d}$ $d' = \frac{d}{d}$ $\frac{d}{d}$	auf		such	Dehm.	ge f. Bur	Modul	at C.	ckg at	19 H &	Dehnung
2 41 Structer and don vorgen Verende ring legen gelfahen. der Style herrichter vorgen Verende ring ergingelien utgeschaft der Style hierien. der Style h	T	·	Nr.	сm	Mer	at	las	tre	Aan an a	- 1/1000 CM
1 34 Standar and dan varjen Vanada ship lega of akada. ar Stat matterial variable value kandendi agendi akada ar Stat matterial variable value kandendi agendi akada ar Stat matterial variable value kandendi agendi akada ar Stat matterial variable value kandendi agendi akada bertanseten value value kandendi agendi akada bertanseten value value kandendi agendi akada bertanseten value value ar Stat Matterial variable bertanseten value value ar Stat Matterial value ar Stat Matteri	•		يد بية جانبة المراجع. ا	iniri singa i		e e at mai la		, x		1947 (1979) - 1987 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -
1 1 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 1	-	1. Guerten wich dass musigan Vananah milia Barra at Bitta		;]			1			
der Stal ummittellar vordne Kreckenuth gegliht und inngemin dass aber Stal ummittellar vordne Kreckenuth 4505 Zugfortigkeit = 4190 of, auf den negeringibelen Querechnik 4505 Bernhausseinn zwhig mit becändigezogenen Rame. 7216 2.51 15.00 27270000 2000	'	2 Jahre und 97 Tage nach dem letzten Versuch und nachdem	3839	2,425	16,43	2'320000	1950	>2380	2380	0,61
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		der Stab unmittelbar vorher kirschroth geglüht und langsam	1					1 1	1	
Zugistickiet2100 statistic2100 st		mit 22.25 t abgerissen	4596					ļ		
Interview Interview Determine 2 More The ampointight Some Termine 1 for the ampointi for the ampointight Some Termine 1 for the ampointi for the amp		Zugfestigkeit = 4420 at, auf den ursprünglichen Querschnitt	1.000	Ì				1	1	
Defining = $25,9^{\circ}$ for unspectingliche 35.0°. Brichausscheit: schuling in der Lab 1850° 1245 2.51 15.00 22.70000 27.60 29.60 31.60 15.00 8 Copyringlicher Zustand. 124 2.51 15.00 22.70000 27.60 29.60 31.60 15.0 10 25 Minuten mach dom Strecken mit 18.7 = 37.20 of und Er- schüttern wie vorhin 16.7 22.0000 110 32.45 2.50 15.46 2720000 110 32.45 2.50 15.46 2720000 110 32.45 2.50 14.00 12 25 Ministern wie vorhin		Contraktion == 66 ^{°/} , auf den ursprünglichen Ouerschnitt bezogen.								
Branch seeking: submit mit hold aufgeorgemen Ranke. Rund stab 1850* 2247 2,51 15,00 2270000 2650 2960 4960 49		Dehnung = $25,3^{\circ}/_{\circ}$ für ursprünglich 25 cm.	ļ					: !		
BUsupstingleber Zastand32402.5415.002.27000029502960316045030Minuten mach den Minskan und 101 121 ± 2210 af und 15132402.5415.002.2700002950296031604501020Minuten mach den Minskan und 101 21 ± 2370 af und 15132462.5615.602.27000010022153.5002201020Minuten mach dem Strecken mit 1201 42200 af und 151 2246 2.5615.672.100000105 4730 41440011203.5001and 1601600° C, creatmat, dam m and Nach dem 15100° C, creatmat, dam m and Nach dem 1500° C, creatmat, dam m and Nach dem 150° C, and the transma abgedibilit und dam m and Nach dem 150° C, and the transma abgedibilit und dam m and Nach dem 150° C, and the transma abgedibilit und dam m and Nach dem 150° C, and the transma abgedibilit und dam m and Nach dem 150° C, and the transma abgedibilit und dam m and 150° C33302.4416.072.33000024200242004000.0810UmmitHeisten Nach mith 20 (and the transminglich 150° C, creatmat, dam m and 2000 A, and dem transminglich 150° C33302.4416.072.330000270027002004000.03810UmmitHeisten Nach mith 20 (and the transminglich 100° C, and the transminglich 110° C, and the t		Bruchaussehen; sehnig mit hochaufgezogenem Rande.								
8 Capacity Billser Zastand 5216 2,51 1,6,00 2270000 2500 2900 31.60 42.0 10 25 Minuten mach dem Strecken mit 18 f = 3730 af und Er- schütten wit verfin 3246 2,55 1,6,46 22200,00 410 321.5 36.50 220 11 25 Minuten mach dem Strecken mit 20 f = 4260 af und Er- schütten wit verfin 3246 2,48 1,6,57 2700000 102.5 37.30 4110 400 8,56 13 Jahre und 85 Täge nach dem letzten Versuch röch 180° C, ervärnt hoch nat mächsten Tage gemessen 10.55 16,07 2300000 1075.00 2420 240 0.10 14 Umittelbar nach dem vorigen Versuch af fög ⁰ C, ervärnt noch nat mächsten Tage 3831 2,44 16,07 2300000 2420 2420 0.10 15 Umittelbar nach dem vorigen Versuch af fög ⁰ C, ervärnt noch mat mächsten mäcksten Nachmittage gemessen 3234 2,44 16,07 2300000 2420 2420 0.10 2 der Stab umittelber och den vorigen Versuch af fög ⁰ C, ervärnt noch mat mächsten mäcksten Nachmittage gemessen 33		Rundstab 1850°					1			
3 3 Mindren maid dem Streeken mit $16t = 3236 at'$ und $15t' = 3330 at'$ und $15t' = 3350 a'$	8	Ursprünglicher Zustand	29.16	9.51	15.00	9:07/00/00	9660		9120	
schuttern mit je 10 Hammerschägen auf die beken Strangten, wolei der Stalb in ungeführt sechtredber lichtung in der Hand gehalten worde.22462,5015,452'220000410324530.502201025 Miniten mie vorlin11 25 Miniten mie vorlin11 25 Miniten mie vorlin11 25 Miniten mie vorlin12 24 320 d' und Er1125 Miniten mie vorlin22462,4616,072'10000010354700420042008,6312 3 Jahre und 68 Tage nach dem letzten Versuch ruhg liegen gre gemessen10 2004200242024202420242045006,0013 Sonder eine dem vorigen Versuch nochmal auf 60° C er- wirnt, dann rasch dem jetzten Versuch nochmal auf 60° C er38302,4416,072'300002420>420040040014 Unmittelbar nach dem jetzten Versuch nochmal auf 60° C er wirnt, dann rasch dem jetzten Versuch und langsam an ächsten Nachmiltage genessen38302,4416,072'300002420>42004100,382 Jahre und 95 Tage nach dem betten Versuch und nachden der Stab unmittelbar vorher Kirschroft gerühlt und langsam an der furt abgektöhlt wort auf stab 1850°32352,5315,002'230000247025702570250152 Stamden nach dem Streeken mit 15 d = 3500 d/ 2 3 Jahre und 63 Tage nachder in Streeken mit 15 d = 3500 d/ 2 3 Jahre und 63 Tage nachder in Streeken mit 15 d = 3500 d/ 2 3 Jahre und 75 Tage ruhg liegen geblichen 2 Tages wieder genessen32352,53 </td <td>9</td> <td>25 Minuten nach dem Strecken mit 16 $t = 3245 at$ und Er-</td> <td>0240</td> <td>2,04</td> <td>10,00</td> <td>2.270000</td> <td>2660</td> <td>2960</td> <td>3150</td> <td>450</td>	9	25 Minuten nach dem Strecken mit 16 $t = 3245 at$ und Er-	0240	2,04	10,00	2.270000	2660	2960	3150	450
10 250 Minten mach dem Strecken mit $8k = 3730 d'$ und $Erschnutten wie vorhin 3246 2,60 15,45 2220000 110 3213 = 8n50 2230 250 Minten mach dem Strecken mit 20 f = 3200 d' und Erschnutten wie vorhin 3246 2,48 16,07 2730000 103 23240 2,48 16,07 2730000 1040 4250 8,65 13 Safare and an vorigen Versuch and 200° C, erwärnt, dnm an an Excelen mit 200° C, erwärnt, dne mach dem vorigen Versuch nochwal auf 600° C, erwärnt, dne mach dem strecken mit 200° C, algekrillt und an anterken Xasht in 00 fm Jangsam algekrillt und dam anterken Xasht in 00 fm Jangsam algekrillt und dam anterken Xasht in 00 fm Jangsam algekrillt und an anterken Xasht in 00 fm Jangsam algekrillt und anna anterken Xasht in 00 fm Jangsam algekrillt und anterken Xasht is 15 t = 3000 dt 3250 2311 16,00 2230000 2120 2120 410 6,05 16 Ursprünglicher Zustand Kasht 1850° 223000 2170 2570 250 3410 410 430 17 Stunden nach dem Strecken mit 15 t = 3000 at 3239 $		schüttern mit je 10 Hammerschlägen auf die beiden Stirn-					ļ			1
10 25 Minuten mein dem Strecken mit 18 f = 3730 uf und Ersechnikten wie vorhin 2326 248 16,67 2'100000 1635 5730 410 400 11 25 Minuten mein dem Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 20 t = 4200 at und Ersechnikten Strecken mit 15 t = 3700 at und Ersechnikten Strecken mit 15 t = 4700 at und Ersechnikten Strecken mit 15 t = 3700 at und Ersechnikten Ersechnikten Strecken mit 15 t = 3700 at und Ersechnikten Strecken mit 15 t = 3700 at und Ersechnikten Ersechnikten Strecken mit 15 t = 3700 at und Ersechnikten Ersechni		in der Hand gehalten wurde	3246	2,505	15.45	2'220000	410	3945	: : 3650	220
126024815.6727100001055573041401001225Minta mad. dem Streken mit 20 t = 4200 at und Er2482,4815.67119756001075420042608,6513Sofort nach dem vorigen Versuch auf 500°C. erwärnt, dann langsan an der Loft abgekhöht und ann am äkehen Mage gemessen	10	25 Minuten nach dem Strecken mit $18 t = 3730 at$ und Er-	0040		.,			-2 - 2 - 2 - 2		
12 schüttern wie vorhin 2346 2,44: 16,07 1975000 1070 4200	11	25 Minuten nach dem Strecken mit 20 $t = 4260 at$ und Er-	3246	2,48	15,67	2'100000	1035	3730	: 4140 :	400
12 3 Aarre und os lage naen dem lerzten versich rubig legen ge- blieben. 3829 2,44 16,07 2370000 >4260 >1260 4200 -0,20 13 Söder mach an der Loft speckhilt und an nächsten Tage gemessen 3830 2,44 16,07 230000 >4260 >1260 4200 -0,20 14 Unmittelbar nach dem vorigen Versuch nochmal af 500°C, er- wärnt, darn räsch in Øfs langsan algeköhlt und am Sachmittelbar rach dem vorigen Versuch nochmal af 500°C, er- wärnt, darn räsch in Wässer von 15°C, abgeköhlt und der Stab unnittelbar vorher Kirsehroth gelütt und langsan algeköhlt vär, vurde or bei einen Durchmessen von 2,44 om mit 23,87 aften urspringliehen Querschnitt bezogen. 3834 2,44 16,07 2330000 2780 >3410 0,38 16 Urspringlicher Zastad	10	schüttern wie vorhin	3246	2,445	16,07	1'975000	1070	4260	4260	8,63
13 Sofort mach dem vorigen Versuch auf 500° C. erwärnt, dann Isargsam an der Luft abgekühlt und ann indeksten Tage genessen 3830 2,44 16,07 2360000 4050 >4260 4260 0,10 14 Ummittelbar nach dem vorigen Versuch nochnal auf 600° C. erwärnt, ührer Nacht time gervfüh. 3831 2,44 16,07 2360000 4050 >4260 >4260 9200 0,08 15 Ummittelbar nach dem vorigen Versuch nochnal auf 500° C. erwärnt, nach dem vorigen Versuch noch and tage 500° C. erwärnt, und rangsam an der State vorigen Versuch noch and tage 500° C. erwärnt, und langsam an der State vorie Versuch noch and tage 500° C. erwärnt, und langsam an der State vorie Versuch noch and tage 500° C. erwärnt, und langsam an der State vorie Versuch in und langsam auf state 150°. 3834 2,44 16,07 2'330000 2780 >3410 0,38 16 Ursprünglicher Zustad 3834 2,44 16,07 2'330000 2170 2570	12	3 Jahre und 58 Tage nach dem letzten Versuch ruhig liegen ge- blieben.	3829	2 445	16.07	24370000	1960	- 19e0	1960	0.90
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	Sofort nach dem vorigen Versuch auf 500° C. erwärmt, dann	0020	2,110	10,01	2010000	-1200	-9200	1 1200	
14 Umättelbar nach dem vorigen Versuch nochmal auf 500° C. er- wärnt, über Nacht im Ofen langsam algeskählt und lang am Nachmittage geprüft. 3831 2,44 16,07 2'30000 >4260 >4260 0,08 15 Umättelbar nach dem vorigen Versuch nochmal auf 500° C. er- wärnt, dam räsch in Masser von 15° C. algeskählt und lang am Rehsellabar vorhe ischerotti gedillt und langsam algeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt war, warde er bel einem Durdlinesser von 2,44 en angeskählt ward han gas an an der Laft algeskählt, wodurch der Stab tiefban geworden war; 8 Stunden nach dem Strecken mit 187 = 3760 af 2, 2330 af 2,43 2330 2,43 16,20 2'30000 >1290 >12		langsam an der Luft abgekühlt und am nächsten Tage	3830	9 14.	16.07	95260000	4050	- 1020	1920	0.10
wärnt, über Nacht im Ofen langsam abgekühlt und dann am nachten vorigen Versuch nochmal abgekühlt und ihne am nächsten Nachnuttage genüßen.38312,44a16,072'340000>1260>1260>1260>1260	14	Unmittelbar nach dem vorigen Versuch nochmal auf 500° C. er-	0000	2,995	10,07	2 300000	4050	>4260	4200	0,10
15 Unmätheline mach des Vorigen Versich nochmal auf 100° C er 23 10000 24 100000 24 100000 24 100000 24 1000000 24 100000 24 100000		wärmt, über Nacht im Ofen langsam abgekühlt und dann	9991	5.44.	10.07	91910000	1000	- 1010	10-10	0.00
warmt, dam rasch in Wasser von 15° C. abgekählt und am nächsten Nachmittage gemessen38342.44.U,072*3300002750>34100,382Jahre und 99 Tage nach dem letzten Versuch und nachdem abgekählt war, wurde er bei einem Durchmesser von 2,44 cm mit 23,87 abgerässen38342,44.16,072*3300002750>34100,382Zagfestigkeit = 4700 dr, and den urspringlichen Querschnitt bezogen. Dehnung = 23,0% für urspringlich 25 cm. Bruchausschen: schnig mit hochaufgezogenen Rande.32392,53115,002*23000024702570257025016Urspringlicher Zustand32392,53115,552*240000180303034:04400172 Stunden nach dem Strecken mit 18 / = 3740 at art 250° C. erwärmt und lang sam and chaft für der Atsb in der Zuschenzeit Iomal and 250° C. erwärmt und lang sam and 250° C. erwärmt und lang sam abgekühlt war. 2 Jahren und 70 Tagen, nachdem der Stab in der Zuschenzeit Iomal and 250° C. erwärmt und jedesmal langsam abgekühlt war. 2 Jahren nach dem Erwärmen gemessen art 250° C. erwärmt und jedesmal angsam abgekühlt und nach 2 Tagen sieder gemessen a Stunden nach dem Erwärmen gemessen a Stude und 70 Tagen, andehe urspringlichen Querschnitt bezogen.38112,44516,202300000>4290>4290429042000,0124Stunden nach dem Erwärmen gemessen a Tagen sieder gemessen a Stunde nach dem Strecken mit 256 cm. T	15	Unmittelbar nach dem vorigen Versuch nochmal auf 500° C. er-	0001	2,445	10,01	2 340000	>4200	>4260	4260	0,08
Init Mathem Value 193 Figure 1940Restant in Mathem Value 193 Figure 1940 2330000 2130 2130000 2130 2130 23410 3140 6334 2 Jahre und 99 Tage nach den leinen Durchmesser von $244 em$ mit 23, 84 abgerissen $3700 d_1$ auf den ursprünglichen Querschnitt 4596 4596 4596 2 mit 23, 84 abgerissen $-1000 d_1$ auf den ursprünglichen Querschnitt 2230 2150 2210000 2170 2570 2570 2570 16Ursprünglicher Zustand $-1000 d_1$ auf den ursprünglichen $2000 d_1$ 3239 $2,531$ $15,55$ 22300000 2170 2570 2570 16Ursprünglicher Zustand $-1000 d_1$ $32300 d_1$ 3239 $2,531$ $15,55$ 22300000 2170 2570 2570 172 Stunden nach dem Strecken mit $18 t = 3740 at$ 3239 $2,451$ $15,55$ 22300000 $21200 + 2200$ $21100 + 42500 + 42200 + 42200 + 42200 + 42200 + 42200 + 42200 + 42200 + 42200 + 42200 + 42200 + 42200 + 4220 + 42200 + 4220 + 4$		wärmt, dann rasch in Wasser von 15°C. abgekühlt und	9004			2/222222				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2 Jahre und 99 Tage nach dem letzten Versuch und nachdem	3834	2,445	16,07	2.330000	2780	>3410	3410	0,38
abgekunti war, würde er bei einem Durchmesser von 2,44 cm 45% Zugfestigkeit = 4700 af, auf den ursprünglichen Querschnitt 45% Zugfestigkeit = 4700 af, auf den ursprünglichen Querschnitt 45% Dehnung = 23,0%, äuf den ursprünglichen Querschnitt bezogen. 25.3 Dehnung = 23,0%, äuf den ursprünglichen Querschnitt bezogen. 3239 2,53 15,00 2230000 2470 2570 2570 2570 2570 360 16 Ursprünglicher Zustand		der Stab unmittelbar vorher kirschroth geglüht und langsam								
Zugfestigkeit = 4700 at, auf den ursprünglichen Querschnitt Dehmag = 23,0%, auf den ursprünglich 25 ca. Bruchaussehen: sehnig mit boehaufgezogenen Rande.Zugfestigkeit = 5200 at, auf den ursprünglich 25 ca. Bruchaussehen: sehnig mit boehaufgezogenen Rande.Zugfestigkeit = 5200 at, auf den ursprünglich 25 ca. Stunden nach dem Strecken mit 18 t = 3740 at 3239 2,53, 15,55 2,53, 15,55 2,254, 15,50 2,254, 15,50 2,254, 15,50 2,250, 1250		abgekuhlt war, wurde er bei einem Durchmesser von $2,44 cm$ mit $23.8 t$ abgerissen	4596							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Zugfestigkeit = 4700 at, auf den ursprünglichen Querschnitt								
Definiting = 23.0% fit ursprüngliche 25 cm. Bruchaussehen: sehnig mit bochaufgezogenem Rande. Rundstab 1850° 16 Ursprünglicher Zustand 3239 17 Stunden nach dem Strecken mit 15 $t = 3030 at$ 3239 18 Ursprünglicher Zustand 3239 19 Stunden nach dem Strecken mit 15 $t = 340a at$ 3239 19 7 Stunden nach dem Strecken mit 18 $t = 3740 at$ 3239 20 3 Jahre und 53 Tage ruhip liegen geblieben 3239 21 Drei Tage nachen ande der Strecken mit 20 t = 4290 at 3806 22 Nach 5 Tager, nachdem der Stab tiefblau geworden war; 8 Stunden nach dem Strecken genessen 3811 23 Jahre und 79 Tage ruhip liegen geblieben 3814 24 Jahre und 79 Tage ruhig liegen geblieben 3814 24 Jahre und 79 Tage ruhig liegen geblieben 4300 24 Jahre und 79 Tage ruhig liegen geblieben 4307 24 Tagen wieder gemessen 4307 24 Tage wieder gemessen 4307 24 Tage wieder gemessen 4307 26,25 t abgerissen 240 26,25 t abgerissen 250° </td <td> </td> <td>bezogen. Contraktion == 63%, auf den ursprünglichen Ouerschnitt bezogen</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>8</td>		bezogen. Contraktion == 63%, auf den ursprünglichen Ouerschnitt bezogen							4	8
Bruchaussehen: sehnig mit bochaufgezogenem Rande. Rundstab 1850°Rundstab 1850°223000024702570297035016Ursprünglicher Zustand32392,5115,052°230000247025702970350172 Stunden nach dem Strecken mit 18 $t = 3740$ at32392,45115,752°23000024702570400197 Stunden nach dem Strecken mit 20 $t = 4290$ at32392,45115,752°230000126037404160450103 Jahre und 53 Tage ruhig liegen geblieben38062,43516,202'350000>429042903,67121Drei Tage nachder and Stab tiefblaben38112,4316,202'350000>4290>4290-0,0321Nach 5 Tager, nachdem der Stab tiefblau geworden auf 250° C. erwärmt und jedesmal langsam abgekühlt war. 2 Tager uhrig liegen geblieben38112,4316,202'350000>4290>4290-0,0324Unmittelbar hierauf bis 500° erwärmt, rasch abgekühlt war. 2 Tager uhrig liegen geblieben<		Dehnung = $23,0\%$ für ursprünglich 25 cm.								
Rundstab 1850*22300002470257025702570257035016Ursprünglicher Zustand		Bruchaussehen: sehnig mit hochaufgezogenem Rande.								
16Ursprünglicher Zustand32392,5315,002*2300002470257025702570350172 Stunden nach dem Strecken mit 15 $t = 3030 at$ 32392,4115,352*230000810303036404001815 Stunden nach dem Strecken mit 18 $t = 3740 at$ 32392,47515,552*230000125037404160450203 Jahre und 53 Tage ruhig liegen geblieben38062,43316,202*370000>429042903,6721Drei Tage nachlen hach dem Erwärme genessen38062,43316,202*360000>4290>4290-0,0322Nach 5 Tagen, nachdem der Stab in der Zwischenzeit 10mal auf 250° C. erwärmt und jedesmal langsam abgekühlt war.38142,43316,202*36000>4290>4290-0,0323Jahre und 79 Tage ruhig liegen geblieben43902,4516,212*20000044304480-124Unmittelbar hierauf bis 500° erwärmt, rasch abgekühlt war43972,4516,212*1800002550386024Unmittelbar hierauf bis 500° erwärmt, rasch abgekühlt war43972,4516,212*1800002550386024Stordfausei <td></td> <td>Rundstab 1850°.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Rundstab 1850°.								
10 Orispindiciter Zustandi, i. e. i.	16	Urannünglighen Zustand	9990	0-0	15.00	8000000	0.50		0050	ar a
18 15 Stunden nach dem Strecken mit $18 t = 3740 at$ 2323 2,475 15.75 223,000 1250 37.40 4160 450 20 3 Jahre und 53 Tage ruhig liegen geblieben 3241 2,435 16,20 2230000 >4290 4290 3,67 21 Drei Tage nachher im Sandbade auf 250° C. erwärnt und langs am an der Luft abgektühlt, wodurch der Stab in der Zwischenzeit 10mal auf 250° C. erwärnt und jedesmal langsam abgekühlt war. 3811 2,435 16,20 2236000 >4290 4290 -0,03 22 Nach 5 Tagen, nachdem der Stab in der Zwischenzeit 10mal auf 250° C. erwärnt und jedesmal langsam abgekühlt war. 3814 2,435 16,20 2350000 >4290 >4290 -0,03 23 Vach 6 Tagen, nachdem lersup bisbeen	17	2 Stunden nach dem Strecken mit $15 t = 3030 at$	3239 3239	2,535 2,51	15,00 15,35	2'230000 2'240000	2470	2570	2970 3640	350 400
19 A Stinden hach dem Strecken hin 207 = 4290 df 3241 2,435 16,20 2270000 1070 4290 4290 3,61 21 Drei Tage nachher im Sandbade auf 250° C. erwärnt und langsam an der Luft abgekühlt, wodurch der Stab tiefblau geworden war; 8 Stunden nach dem Erwärmen gemessen 3806 2,435 16,20 2'360000 >4290 >4290 -0,03 22 Nach 5 Tager, nachdem der Stab tiefblau geworden war; 8 Stunden nach dem Erwärmen gemessen 3811 2,435 16,20 2'360000 >4290 >4290 -0,03 22 Nach 5 Tager, nachdem der Stab tiefblau geworden war; 8 Stunden nach dem Erwärmen gemessen 3814 2,435 16,20 2'350000 >4290 >4290 -0,03 23 2 Jahre und 79 Tage ruhig liegen geblieben . . . 4390 2,45 16,21 2'180000 >4290 >4290 4290 -0,03 48 Tage darnach bei einem Durchmesser von 2,44 cm . 4397 2,45 16,21 2'180000 2550 3860 3930 - 26 25 t abgerissen 4596 </td <td>18</td> <td>15 Stunden nach dem Strecken mit $18 t = 3740 at$</td> <td>3239</td> <td>2,475</td> <td>15,75</td> <td>2'23,000</td> <td>1250</td> <td>3740</td> <td>4160</td> <td>450</td>	18	15 Stunden nach dem Strecken mit $18 t = 3740 at$	3239	2,475	15,75	2'23,000	1250	3740	4160	450
21Drei Tage nachher im Sandbade auf 250° C. erwärmt und lang sam an der Luft abgekühlt, wodurch der Stab tiefblau geworden war; 8 Stunden nach dem Erwärnen gemessen38112,43.16,202'360000>4290>12904290 $-0,03$ 22Nach 5 Tagen, nachdem der Stab in der Zwischenzeit 10mal and 250° C. erwärmt und jedesmal langsam abgekühlt war. 2 Jahre und 79 Tage ruhig liegen geblieben38142,43.16,202'360000>4290>4290 $-0,03$ 232 Jahre und 79 Tage ruhig liegen geblieben43902,4516,212'200000>4290>4290 $-0,03$ 24Unmittelbar hierauf bis 500° erwärnt; rasch abgekühlt und nach 26,25t abgerissen43972,4516,212'180000255038603930-48Tage nieder gemessen26,25t abgerissenZuffestigkeit= 5200 at. auf den ursprünglichen Querschnitt bezogen. Dehnung = 23,3 % für ursprüngliche 25 cm. Bruchaussehen: auserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand,2621/s Stunden nach dem Strecken mit 15t = 3055 at und unmit- teloar darnach vorgenomeneme Erschüttern mit 20 Hammer- schläge auf die Stirnfläche, wobei der Stab ungefähr senk- recht in der Hand gehalten wurde <tr<< td=""><td>20</td><td>3 Jahre und 53 Tage ruhig liegen geblieben</td><td>$\frac{3241}{3806}$</td><td>$2,43_5$ 2.43_5</td><td>$16,20 \\ 16,20$</td><td>2.330000</td><td>1070 >4290</td><td>+4290 >4290</td><td>$4290 \\ 4290$</td><td>3,67 0.11</td></tr<<>	20	3 Jahre und 53 Tage ruhig liegen geblieben	$\frac{3241}{3806}$	$2,43_5$ 2.43_5	$16,20 \\ 16,20$	2.330000	1070 >4290	+4290 >4290	$4290 \\ 4290$	3,67 0.11
an der Litt abgekundt, wödurch der Stab berblau gewörden war; 8 Stunden nach dem Erwärmen gemessen <t< td=""><td>21</td><td>Drei Tage nachher im Sandbade auf 250° C. erwärmt und langsam</td><td></td><td>_,</td><td></td><td></td><td></td><td>- 14.0</td><td></td><td>~,</td></t<>	21	Drei Tage nachher im Sandbade auf 250° C. erwärmt und langsam		_,				- 14.0		~,
22Nach 5 Tagen, nachdem der Stab in der Zwischenzeit 10mal auf 250° C. erwärmt und jedesmal langsam abgekühlt war. 2 Jahre und 79 Tage ruhig liegen geblieben3814 2 (2,43)16,20 (2,45)2350000 (2,450)24200 (2,450)24200 (4350)		an der Luit abgekühlt, wodurch der Stab tiefblau geworden war; 8 Stunden nach dem Erwärmen gemessen	3811	2.43_{2}	16.20	2,360000	>4290	>1200	4290	0 03
212 Jahre und 250° C. erwärmt und jedesmal langsam abgekuhlt war. 2338142,43516,202*350000>4290>429042:00,1124Unmittelbar hierauf bis 500° erwärmt, rasch abgekühlt und nach 2 Tagen wieder gemessen232,4516,212*20000043504780488048Tage darnach bei einem Durchmesser von 2,44 cm mit 26,257 abgerissen2,4516,212*18000025503860393020Zugfestigkeit = 5200 at, auf den ursprünglichen Querschnitt 	22	Nach 5 Tagen, nachdem der Stab in der Zwischenzeit 10mal		-,-00		2 0.0000	- 1200		12.00	0,00
24Unmittelbar hierauf bis 500° erwärmt, rasch abgekühlt und nach 2 Tagen wieder gemessen100001000010000100001000010000100001000010000 <th< td=""><td>23</td><td>auf 250° C, erwärmt und jedesmal langsam abgekühlt war. 2 Jahre und 79 Tage ruhig liegen geblieben</td><td>$\begin{array}{c} 3814 \\ 4390 \end{array}$</td><td>2,435 2 4 5</td><td>$\begin{array}{c} 16,\!20 \\ 16,\!21 \end{array}$</td><td>2°350000 2°200000</td><td>>4290 4350</td><td>>4290</td><td>4290</td><td>0,11</td></th<>	23	auf 250° C, erwärmt und jedesmal langsam abgekühlt war. 2 Jahre und 79 Tage ruhig liegen geblieben	$\begin{array}{c} 3814 \\ 4390 \end{array}$	2,435 2 4 5	$\begin{array}{c} 16,\!20 \\ 16,\!21 \end{array}$	2°350000 2°200000	>4290 4350	>4290	4290	0,11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	Unmittelbar hierauf bis 500° erwärmt, rasch abgekühlt und nach	1000	2,10	10,21	2 200000	4000	4100	4000	
1026,25 tabger issen2010 att, auf den ursprünglichen Querschnitt bezogen. Contraction = 62 %, auf den ursprünglichen Querschnitt bezogen. Dehnung = 23,3 % für ursprünglich 25 cm. Bruchaussehen: ausserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand.459625Ursprünglicher Zustand262 ¹ /s Stunden nach dem Strecken mit 15 t = 3055 at und unmit- telbar darnach vorgenommenem Erschüttern mit 20 Hammer- schläge auf die Stirnfläche, wobei der Stab ungefähr senk- recht in der Hand gehalten wurde.32402,5015,362'260000815305536703402715 ¹ / ₂ Stunden nach dem Strecken mit 18 t = 3730 at und Er- schüttern wie vorhin32422,4815,702'26000083037304140390		2 Tagen wieder gemessen	4397	2,45	16,21	2'180000	2550	3860	3930	—
Zugfestigkeit == 5200 at, auf den ursprünglichen Querschnitt bezogen. Contraction = 62 %, auf den ursprünglichen Querschnitt bezogen. Dehnung = 23,3 % für ursprünglich 25 cm. Bruchaussehen: ausserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand.Zugfestigkeit == 5200 at, auf den ursprünglichen Querschnitt bezogen. Dehnung = 23,3 % of für ursprünglich 25 cm. Bruchaussehen: ausserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand.Zugfestigkeit = 5200 at, auf den ursprünglichen Querschnitt bezogen. Dehnung = 23,3 % of für ursprünglich 25 cm. Bruchaussehen: ausserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand.Zuter ausserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand.25Ursprünglicher Zustand		26,25t abgerissen .	4596							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Zugfestigkeit $= 5200 at$, auf den ursprünglichen Querschnitt								
Dehnung = $23,3^{\circ}/_{0}$ für ursprünglich $25 cm$. Bruchaussehen: ausserordentlich feinkörnig, fast sehnig, mit aufgezogenem Rand.Nund stab 1850^{4} .Stund stab 1850^{4} .25Ursprünglicher Zustand		Contraction = $62^{\circ}/_{\circ}$, auf den ursprünglichen Querschnitt bezogen.								
Brüchnäussenen : Ausserordentilen Teinkornig, Tast seinig, Init aufgezogenem Rand.Rund stab 18504.25Ursprünglicher Zustand		Dehnung = $23,3$ % für ursprünglich 25 cm .								
Rund stab 1850432402,5315,002°28000023902780298036025Ursprünglicher Zustand32402,5315,002°280000239027802980360262 ¹ /sStunden nach dem Strecken mit 15 t = 3055 at und unmit- teloar darnach vorgenommenem Erschüttern mit 20 Hammer- schläge auf die Stirnfläche, wobei der Stab ungefähr senk- recht in der Hand gehalten wurde32402,5015,362°260000815305536703402715 ¹ /2Stunden nach dem Strecken mit 18 t = 3730 at und Er- schüttern wie vorhin32422,4815,702°26000083037304140390		aufgezogenem Rand.								
25Ursprünglicher Zustand32402,5315,002'28000023902780298036026 $2^{1}/_{2}$ Stunden nach dem Strecken mit $15t = 3055$ at und unmittelbar darnach vorgenommenem Erschüttern mit 20 Hammerschläge auf die Stirnfläche, wobei der Stab ungefähr senktrecht in der Hand gehalten wurde.32402,5015,362'2600008153055367034027 $15^{1}/_{2}$ Stunden nach dem Strecken mit $18t = 3730$ at und Erschüttern wie vorhin32422,4815,702'26000083037304140390		Rundstab 1850 ⁴								
26 $2^{1/s}$ Stunden nach dem Strecken mit $15t = 3055$ at und unmit- teloar darnach vorgenommenem Erschüttern mit 20 Hammer- schläge auf die Stirnfläche, wobei der Stab ungefähr senk- recht in der Hand gehalten wurde.27 3240 $2,50$ $15,36$ 2260000 815 3055 3670 340 27 $15^{1/s}$ Stunden nach dem Strecken mit $18t = 3730$ at und Er- schüttern wie vorhin 3242 $2,48$ $15,70$ 2260000 815 3055 3670 340	25	Ursprünglicher Zustand	3240	2.53	15.00	2'280000	2390	2780	2980	360
teloar darnach vorgenommenem Erschüttern mit 20 Hammer- schläge auf die Stirnfläche, wobei der Stab ungefähr senk- recht in der Hand gehalten wurde.32402,5015,362*2600008153055367034027151/2 Stunden nach dem Strecken mit 18 t = 3730 at und Er- schüttern wie vorhin32422,4815,702*26000081530553670340	26	$2^{1/2}$ Stunden nach dem Strecken mit $15t = 3055$ at und unmit-		-,00			-0VU	2:00	-00U	0.00
27 recht in der Hand gehalten wurde. .		telbar darnach vorgenommenem Erschüttern mit 20 Hammer- schläge auf die Stirnfläche wohei der Stah ungefähr senk-								
27 15 ¹ / ₂ Stunden nach dem Strecken mit $18t = 3730 at$ und Er- schüttern wie vorhin	_	recht in der Hand gehalten wurde.	3240	2,50	15,36	2'260000	815	3055	3670	340
$\begin{bmatrix} 330 \\ 330 \\ 330 \end{bmatrix}$	27	$15^{1/2}$ Stunden nach dem Strecken mit $18t = 3730 at$ und Er-	3949	910	15 70	94980000	000	9794	1110	900
	1		0410	-,*0	19,10	- 200000	000	9636	4140	996
	l				-		I i			

,

ı.

	Labelle IV. 10	1050020	<u>115</u>				0		10
1.	<u>2</u> ,	3.	4.	5.	б.	7.	8.	9.	10.
			Erge	bnisse d	er vorgenomr	aenen P	rüfung	auf Zu	g
						1 22	g	L	
-	Zustand und Pohandhung des Propostädice	Ver-	Vor dem	Versuch	Elasticitäts-	enz	2110	te s	Bleibende
nde.	Zustand und Behändrung des Flobestuckes	1 ,		р ы	Madul	Gr	11	Em	Dehnung
ufe		such	Denm.	ne f m	Mouth		- 1 2		1/
La		Nr.	cm	fing	at	las	T	a a	/1000 Cm
		+= -= -= -=		127		<u> </u>			
			1			1			i
- 0 U	The standard made days structure wit $20t \rightarrow 4250 at$ and Er-	1	i						-
20	schüttern wie vorhin	3244	2,45	16,09	$2^{\circ}180000$	850	4250	4250	5,95
29	3 Jahre und 53 Tage ruhig liegen geblieben	3807	2,44	16, 12	$2^{\circ}360000$	>4270	>4270	4270	0,02
30 .	9 Tage ruhig liegen geblieben, dann auf 300° C. erwärmt und	0017		10.15	91920000	-1270	> 4970	4270	-0.02
	ian gsam abgekühlt, 6 Stunden darant gemessen . Für ist Bas und daran Versich auf 250° C arwärmt	6815	2,44	10,12	2.200000	1410	1-1-10	1210	, ,
	dann ha nos a m-abackühlt und am Tage darauf gemessen.	3817	2.44	16,12	2'356000	>4270	>4270	4270	0,05
32	Unmittelbar nach dem vorigen Versuch auf 400° C. erwärmt,		ĺ,	ĺ ,				1070	0.00
5 8	dann langsam abgekählt und Tags darauf gemessen	3819	2,44	16, 12	2.370000	>4270	>4270	4270	0,00
33	Unmittelbar nach dem vorigen Versuch auf 450" C. erwarmt,	28.91	944	16 19	25340000	4060	>4270	4270	0.07
31	6 Stunden nach dem vorigen Versuch nachdem der Stab zum	,,021	-,44	10,12	2 910000	1000			
	zweitenmal auf 450° C. erwärmt und langs am abgekühlt war	3823	2,44	16,12	2'350000	4170	>4270	4270	0,10
35	Unmittelbar nach dem vorigen Versuch auf 500° C. erwärmt und					0070	1050	1070	0.96
	langsam abgekühlt: am Tage darauf gemessen	3825	2,44	16,12	2,360000	3,890	4240	4270	0,50
a0	der Zwischenzeit auf 550° (* erwärnst und langsam abge-								
	kühlt war	3827	2,44	16,12	$2^{i}350000$	3630	4040	4270	23,19
87	Unmittelbar nach dem vorigen Versuch auf 500° C. erwärmt,			ĺ		1	-		
1	dann im Wasser von 15° C. rasch abgekühlt und 2 Tage	1 0000	0.1.	10.14	0620000	9000	~ 2110	9140	0.82
00	darnach gemessen 2 Jahr 66 Tage milie liegen geblieben dann mit $20t - 4390 at$	3828	2,435	16,14	2.360000	2800	->3440	5440	0,00
	gestreckt und 2 Tage darauf gemessen	4393	2.41	16.58	2'150000	1860	4390	4600	_
39	3 Tage unverändert liegen geblieben	4400	2,41	16,58	$2^{\circ}180000$	1860	4600	4820	-
40	Unmittelbar nach dem letzten Versuch auf 500° C. erwärmt, lang-	1			0,00000	1.000		1000	
10.	s am abgekühlt und dann sofort wieder gemessen.	4402	2,41	16,58	2.200000	4600	4600	4820	-
40a	dann rasch in kalten Wasser abgekühlt	4504	2 40	16.64	$2^{\circ}240000$	660	3650	3800	_
	39 Tage nach dem letzten Versuch bei einem Durchmesser von	1501	2,10	10,01			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	2,40 cm mit $25,75 t$ abgerissen	4596						i İ	
1	Zugfestigkeit = $5120 at$, auf den ursprünglichen Querschnitt								
Ì	bezogen. Contraction — 62% auf den propringlichen Ouerschnitt bezogen								
	Defining = 24.7 % für ursprünglich $25 cm$.								
	Bruchaussehen: ausserordentlich feinkörnig, fast sehnig, mit								
	aufgezogenem Rand.								
1	Rundstab 1850 [°]								
41	Ursprünglicher Zustand	3238	$2,52_{5}$	15,00	$2^{\circ}275000$	2690	2790	2990	360
42	51 Stunden nach dem Strecken mit $15 t = 3080 at$; am Zwischen-		Ĺ	ŕ					1
13	tage durch Hammerschläge erschüttert, wie die Stäbe e und d	3243	2,49	15,36	2.220000	3080	3490	3700	340
43	47 Stunden nach dem Strecken mit $18t = 3730 at$; am Zwischen-	3945	9.19	15 70	25220000	2000	2020	4140	270
44	46 Stunden nach dem Stree' en mit 20 $t = 4260 at$: am Zwischen-	0230	2,40	19,10		2,700	9990	4140	010
i	tage erschüttert wie vorhin	3245	2,445	16,07	$2^{\circ}210000$	2880	>4260	4260	0,40
45	Drei Jahre und 50 Tage ruhig liegen geblieben	3805	$2,44_{5}$	16,07	2,330000	>4260	>4260	4260	0,06
46	Einen Tag darnach, nachdem eirea "/4 Stunden vor der neuen Mussung der Stalt im Wasserbade auf 50° C erwärmt und					ļ			
	hieranf in 14° C, warmen Wasser rasch abgekühlt worden war	3808	2 445	16.07	2'330000	>4260	-1260	1260	_ 0.08
47	Zwei Tage nachher, in der Zwischenzeit 10mal nacheinander auf		_,	10,01		- 1000	1200	1200	0,00
	50°C, erwärmt und jedesmal in Wasser von 15°C, rasch	0000			010000000		-		
10	abgekühlt . 2 Stur han mister kommunisen Vereuch im Samiliado his zu 2502 C	3809	$2,44_{5}$	16,07	$2^{\circ}330000$	>4260	>4260	4260	-0,06
40	erwärmt dann in Wasser von 15 ⁰ (* rasch abgekühlt und								
	19 Stunden darnach gemessen	3812	2,445	16.07	$2^{\circ}330000$	>4260	>4260	4260	0.04
49	4 Tage nachher, nachdem der Stab in der Zwischenzeit 10mal		,	, i				100	0,01
	nacheinander bis 250°C, erwärmt und jedesmal rasch ab-	0.10	~						
50	2 Tage nachter nachten der Stab unmittellier vor der neuen	9219	2,445	16,07	2.830000	>4260	>4260	4260	0,07
	Messung auf 300° C. erwärmt und dann rasch abgekühlt								
	worden war	3816	$2,44_{5}$	16,07	2'330000	>4260	>4260	4260	0.04
51	15 Stunden nach dem vorigen Versuch auf 350°C. erwärmt, in								0,01
	wasser von 15°U, rasch abgekühlt und 6 Stunden darnach	9910	a 44	10.0-	0(040000				
52	24 Stunden nach dem vorigen Versuch und nachdem souleich	9019	2,445	16,07	2.340000	3840	>4260	4260	0,25
	nach diesem der Stab auf 400° C. erwärmt und rasch ab-								
	gekühlt worden war	3820	2,445	16,07	2'340000	3630	4050	4050	0.31
53	24 Stunden nach dem vorigen Versuch und nachdem der Stab			·				1000	0,91
	zom zwenemmar am 400°C, erwarmt und rasch abgekühlt worden war	3899	I	10.05	01010000	I			
54	17 Stunden nach dem vorigen Versuch und nachdem unmittelbar	0042	4,445	10,07	2.340000	>4260	>4260	>4260	0,02
to and the second	vor der neuen Messung auf 450°C, erwärnit und rasch						1	-	
l	abgekühlt worden war	3824	$2,44_{5}$	16,07	$2^{\cdot}330000$	3630	>4050	4050	0.21
									0,41
							1		
	:	1	1	ł	i		-		

,

,

Tabelle IV. Schluss.

1.	2.	3.	4.	5.	6.	ī.	8.	9.	10.
			Ergel	bnisse d	er vorgenomn	ienen P	rüfung	aur Zu	К
N.			Vor dem	Versuch		IZC	aze	.	
ende	Zustand und Benaudlung des Probestuckes	Ver-	D.L.	<u>ы</u> 20	Elasticitäts-	t €	tren.	Sela Sndt	Bleibende
aufe		such	Dehm.	ge f Ssui	Modul	е е -	eck9	- 4 9 	Dennung
Ţ		.Nr.	ст	Me	at	Elar	Str	Ma. au	5 1000 CM
i statu i I							1		
55	24 Stunden nach dem vorigen Versuch, nachdem der Stab		:					1	
	rasch abgekühlt worden war	3826	$2,44_{5}$	16,07	2'340000	1920	3200	4260	230
56	2 Jahre und 72 Tage nach jenem Strecken mit $20 t = 4310 at$	1280	•) (1)	10.20	9-100000	1120	1520	1590	
57	Unnittelbar hierauf auf 500°C. erwärmt, rasch abgekühlt und	4993	2,40	10,50	2 130000	44-0	4.000	4000	
	sogleich wieder gemessen 60 Tage darnach hei einem Durchmesser von 2.42 cm mit 26.4.t	4389	2,43	16,30	2'180000	3020	3880	4000	
	abgerissen	4596	1						
	Zugfestigkeit = 5270 at, auf den ursprünglichen Querschnitt							1	-
	Contraktion $= 62^{\circ}/_{\circ}$, auf den ursprünglichen Querschnitt bezogen.	(1]		
ļ	Dehnung = 24.8% für ursprünglich 25 cm. Bruchausseben ausserordentlich feinkörnig, fast sehnig mit								
	aufgezogenem Rande.							'	
• ^	Rundstab 1850 ^{3.}								
58	nit 8, dann 6mal mit 4, 2 mal mit 8, 8 mal mit 4, 5 mal mit 8 t		1						
	belastet worden war.	3821	2,53	15,00	2*250000	2485	2580	2980	430
- <u>59</u> - 60	54 Stunden nach dem Strecken mit $15t = 3000 at$ $44^{1/2}$ Stunden nach dem Strecken mit $18t = 3770 at$	$\frac{3222}{3225}$	2,505 2,465	$15,43 \\ 15.81$	2.190000 2.200000	2935	3350	$\frac{3690}{4190}$	380 410
61	$45^{1/2}$ Stunden nach dem Strecken mit $20t = 4290 at$	3226	$2,43_{5}$	16,22	$2^{\circ}200000$	3000	>4290	4290	0,31
62	mit 20 t belastet, dann 10 Tage ruhig gelegen	3236	2,43	16,23	2'270000	4330	>4330	4330	0,00
63 64	1 Jahr und 36 Tage ruhig liegen geblieben	3440	$2,43_{5}$	$16,\!22$	$2^{\cdot}340000$	>4290	>4290	4290	0,02
64	ganzen Länge nach im kalten Zustande zuerst mit dem ge-								
	wöhnlichen starken Handhammer, dann mit dem Schmiede-								
	von 16,22 cm auf 16,27 cm gebracht, hierauf wurde er abge-			1					
es	dreht und blieb dann 2 Jahre und 19 Tage ruhig liegen	3804	2,34	15,00	2:360000	2790	>4650	$4650 \\ 5000$	2,74
66	Unmittelbar nach dem vorigen Versuch auf 500° C. erwärmt,	4091	2,30	10,00	2 1:0000	4010	3000	5000	
67	langsam abgekühlt und dann 2 Tage ruhig gelegen .	4396	2,35	15,00	2'180000	4720	4720	4840	
01	langs am über Nacht im Feuer abgekühlt	4505	2,36	15.00	$2^{\circ}190000$	2060	2290	2520	
	39 Tage nach dem letzten Versuche wurde der Stab, dessen Drehm, 2.34 cm war mit 19.75 f abgerissen	4596				4			
:	Zugfestigkeit = $4590 at$, auf den Querschnitt (d = $2,34 cm$) nach	2020							
	dem Hämmern und Abdrehen bezogen Contraction = 65% auf denselben Ouerschnitt bezogen								
	Dehnung = $15,1^{\circ}/_{\circ}$ für ursprünglich $25 cm$ nach dem Hämmern.								
	Bruchaussehen : feinsehnig mit hoch aufgezogenem Rand.]

Tabelle V.

Sechs Rundstäbe aus Bessemerstahl, Lab. Nr. 939^{a-t}, auf Zug geprüft.

Die Stäbe c-f sind Normalstäbe von 25 mm Durchm. und 250 mm Gebrauchslänge; a und b haben die doppelte Länge.

1.	2.	3.	4.	5.	6,	7.	8.	9.	10,
÷			Ergeb	nisse d	er vorgenomi	nenen	Prüfung	g auf Z	ng
Laufende N	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem Dehm. <i>cm</i>	Länge f. d. Messung <i>cm</i>	Elastieitäts- Modul <i>at</i>	Elast, Grenze af	Streekgrenze <i>at</i>	Max. Belast. am Ende <i>at</i>	Bleibende Dehnung ¹ /1009 cm
	Rundstab 939".				- 10.00 Mar				
1 2 3	Ursprünglicher Zustand . Unmittelbar nach dem Entlasten von $13,5 \ t = 2710 \ at$. 18 Stunden nach dem Strecken mit $17 \ t = 3420 \ at$. Bei fortgesteigerter Belastung erfolgt der Bruch mit $26,5 \ t$ plötzlich mit starkem Schlag. Zugfestigkeit: $5310 \ at$, auf den ursprünglichen Querschnitt be- zogen. Bruchaussehen und Contraktion wie bei e.	1731 1731 1731	2,52 2,52 2,515	15,00 15,00 15,12	2,050000 	1960 —	>2710 2810 3620	2710 3410 -	1,18 129.5
		e management for a second of a	I						

Bauschinger, Mittheilungen, XIII.

 $\mathbf{5}$

_		• 501	nuco.						
1.	2.	3.	4.	ā.	6.	7.	8. D-#£	9.	10.
2			rrge	bnisse c	ter vorgenom	menen	Prutur	ig aur .	Lug
÷.	Zustand und Behandlung des Probestückes	Ver-	Vor de	m Versue	h Elasticitäts)ZU	inzo	ast le	Bleibend
Ē		such	Dehn	n n n	Modul	Gre	t.	Bel Emi	t: Dehnni
		Nr.	cm	nge	at	ast.	- Pool	N E	1/1000 Cm
				N.		12	ž	N a	
	Rundstab 9395					ł			
4	Ursprünglicher Zustand	1732	2,51	15,00	2'080000	232	20 > 283	0 2830	1.31
5.	Unmittelbar nach dem Entlasten von $14t = 2830 at$	1732	2,51	15,00	_	-	293	0	_
	bis 24 <i>t</i> alle 10 Minuten je eine weitere Tonne zugelegt,				I	1			
	nach Auflegen der 25. Tonne 13 Minuten gewartet und von				1		i	i.	1
	gesteigert. So erfolgte der Bruch mit 27,5 <i>t</i> .		i V	ः गे. die o	raphische Da		nor an f	Blatt I	
	Zugfestigkeit: 5560 at, auf den ursprünglichen Querschnitt be-			1					1
	Contraktion : 5%, auf den ursprünglichen Querschnitt bezogen.		•						
;	Bruch grobkörnig mit sehnigem Kern.						;		
	Rundstab 9394								1
	Ursprünglicher Zustand . Bei 24 t wurde nach is 1 Minute sine, neue Tenne, suzelest	1738	2,50	15,00	2'080000	198	0^{1} 2850)	· -
ł	die 25. Tonne wirkte 5 Minuten, jede weitere zugelegte							1	
	halbe Tonne 2 Minuten. Bruch mit 27 <i>t</i> .		vg	l. die g	raphische Da	rstellur	ng auf	Blatt I	i
	zogen.			-				-	
-	bruchaussenen und Contraktion wie bei e.								
1	Rundstab 939%								i
	Ursprunglicher Zustand. Einen Tag nach dem Strecken mit $17t = 3480 at$ und nach-	1739	2,50	15,00	1'990000	1780	2650	3460	126,5
	dem der Stab aus- und wieder eingespannt worden war .	1739	$2,49_{3}$	15, 13	-	_	3790	4090	112.0
1	nicht ausgespannt	1739	2 49	15.94	140.20000	1000	1110	1010	,-
	Unmittelbar nach dem Entlasten von $21 t = 4310 at$; der Stab	1.7.0.	-,	10,24	1 990000	1230	9 4110	4310	59,5
	Einen Tag nach dem Entlasten vou $22 t = 4540 at$; inzwischen	1739	2,49	15,30			4310	4520	55,0
1	Alles ruhig stehen gelassen Nach dem Auflegen von 55t fällt der Wogeballtan plätz	1739	$2,\!48_{5}$	15,35			4950		
-	lich herunter; es werden kaum mehr 24t getragen. Doch								
1	erhebt er sich durch Nachpumpen wieder und erfolgt der Bruch erst bei 255 <i>t</i> mit starken Schlage			-			1 1		
	Zugfestigkeit : 5200 at, auf den ursprünglichen Querschnitt be-								
	zogen. Bruchaussehen und Contraktion wie bei e.								
	Pup datab 020s								
	Ursprünglicher Zustand								
	Der weitere Gang der Messung ist auf Blatt I graphisch dar-	1742	2,51	15,00	2'130000	1870	2830		-
	gestellt. Der Bruch erfolgt bei 26,25 t mit starkem Schlag. Zugfestigkeit 5300 at				1				
	Bruchaussehen und Contraktion wie bei e.						1		
	Rundstab 939%								
	Ursprünglicher Zustand	2070	0.70	15 00	0/000000				
	69 Stunden nach dem Strecken mit $16t = 3245 at$ ruhig liegen geblieben	0418	∠,905	19,00	z.090000	1830	2840	3245	80
	Stunde nach dem Strecken mit $20t = 4110 at$ und Gerade-	3282	$2,50_{3}$	15,08	2.060000	3040	3650	4060	170
	68 Stunden nach dem Strecken mit $24t = 4930 at$ ruhig liegen	3282	2,49	15,25	2'030000	620	3900	4930	260
	geblieben 3 Jahre und 27 Tage nach dem letzten Vorsnah milie V	3287	2,46	15,51	2'110000	1050	>5050	5050	2 37
	blieben. Nach dem vorigen Versneh abares bei	3853	$2,45_{5}$	15,51	2'280000	>5070	>5070	5070	-,~,
	1850 ^a (s. Tab. IV Nro. 64), nämlich der ganzen Länge nach						- 0010	0010	0,10
	im kalten Zustande zuerst mit dem gewöhnlichen starken Handhammer, dann mit dem Schwiedelsen				· · · · · · · · · · · · · · · · · · ·				
	hämmert, wodurch jedoch die Messlänge 15,51 cm unver-								
	Ganzen 2 Tage nach Beendigung des latztan Vorsush		-						
	messen Nach 2 Jahren und 70 Tagon Tagon -	3856	2.39_{5}	15,00	2'250000	1000	4000	4800	
	geglüht und in kaltem Wasser rasch abgekühlt is. Tab. VII.»		1			1900	4090	4890	5,19
	o. Spalte) 39 Tage nacher bei einem Durchmesser von 941 aus die 970	4507	$2,\!41$	15,00	_	0	3730	3840	
	abgerissen. Zugfestigkeit $= 5480 \text{st}$ and 1st	4596				-	5190	oomu .	
	zogen. C. zielen han en burchmesser 2,41 cm be-					-			
								T 1	
	Contraction = 1.5, auf den Durchmesser 2,41 cm bezogen, : Dehnung = $0.5^{\circ} \circ $ für 15 cm nach dem Hämmers und $11 + 1$:	1		

;

¥

$\mathbf{70}$

Tabelle VI.

Zwei Flachstäbe, aus einem $\frac{80}{10}$ mm Flacheisen, Lab. Nr 2335^{acu.b}, neben einander herausgeschnitten, auf Zug geprüft. Querschnitt 24 \times 10 mm; Gebrauchslänge 150 mm.

1.	2.	3.	4.	5,	б.	7.	8.	9.	10.
.:			Ergebi	usse de	r vorgenomme	nen Pri	ifung a	uf Zug	
🛴 Laufende Nı	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem V Querschn, cm	Länge I, d. Messung <i>cm</i>	Elasticitäts- Modul at	Elast, Grenze al	Streckgrenze at	Max, Belast, am Ende at	Bleibende Dehnung Union citi
	Flachstab 2335'								
$\frac{1}{2}$	Ursprünglicher Zustand In Kirschrothhitze ausgeglüht und rasch in kaltem Wasser ab-	4454	2,44×1,00	10,00	2.210000	1740	3380	3480	
	gekühlt Nach 41 Tagen bei einem Querschnitt von 2,41 \times 1,00 cm mit 11,25 t abgerissen In der Zwischenzeit noch 9mal geglüht und Imal bis 250° erwärmt und theils langsam, theils rasch abgekühlt: zuletzt mit 60 mässig starken Schlägen des Schmiedchammers unter dem Vorsetzhammer bearbeitet. Zugfestigkeit = 4670 at; Contraktion = 25% auf obigen Quer- schnitt bezogen; Dehnung = 15,8% für 15 cm (vor dem Hämmern aufgetragen). Bruchaussehen: feinsehnig, feingeschichtet.	4494 4596	2,44×1,00	10,00 ;	5,446000	110	2870	3070	
	Flachstab 2335ª.		1						
3 4	In Kirschrothhitze ausgeglüht und langsam im Feuer abgekühlt. Nochmals in Kirschrothhitze ausgeglüht und rasch im kalten	4456	2,38×1,00	10,00	2*300000	1680	<u>2630</u>	2730	-
	Wasser abgekühlt Nach 41 Tagen bei einem Querschnitt von 2,38 \times 0,98 cm mit 10,2 t abgerissen Inzwischen ähnlich behandelt, wie den vorigen Stab, jedoch zuletzt mit 60 star ken Schlägen mit dem Schmiedehammer bearbeitet. Zugfestigkeit = 4380 at; Contraktion = 22% (auf obigen Quer- schnitt bezogen). Bruchaussehen wie beim vorigen Stab.	449 3 4596	2,38×1,00	10,00	2.580000	420	2310	2520	

Tabelle VII.

Zwei Flachstäbe, aus einem $\frac{40}{10}$ mm Flacheisen, Lab. Nr. 2336^{a a. b}, hintereinander herausgeschnitten, auf Zug geprüft. Querschnitt 24 \times 10 mm; Gebrauchslänge 150 mm.

		_							
1.	2. · · · · · · · · · · · · · · · · · · ·	3.	; 4.	5.	6.	7.	В.	9.	10.
.:			Ergeb	nisse de	r vorgenomme	nen Pr	üfung :	nuť Zug	
Laufenne Ni	Zustand und Behandlung des Probestückes	Ver- such Nr.	Vor dem Querschn Cum	Messurg Messurg Messurg Messurg	Elasticitäts- Modul at	last. Greuze at	streekgrenze al	Max, Belast, am Faide <i>at</i>	Bleibende Dehnung ¹ ₁₀₀₀ Cut
				-		<u>د</u>).		
	Flach stab 2336%								
1	Ursprünglicher Zustand	4453	2.39×1.00	10,00	2.120000	1680	2720	2930	
2	In Kirschrothhitze ausgeglüht und in kalten Wasser rasch- abgekühlt (s. Tab. VII ^a 6. Spalte.)	4492	2.39×1.00	10,00	,	0	2510	2720	
	10.0 t abgerissen In der Zwischenzeit so behandelt, wie die Stäbe 2335 ^{a. u. h} , aber	4596							
	nicht gehämmert. Zuletzt kuschroth gegluht und langsam - abgekühlt								
	Zugfestigkeit = $4290 at$; Contraction = 36^{9}_{70} (auf obigen Quer- schnitt bezogen); Dehnung 20.3^{0}_{70} für $15 cm$. Bruchaussehen : feinsehnig, feingeschichtet.								
	$\mathbf{F} = [\mathbf{a} + \mathbf{b} + \mathbf{a} + \mathbf{b} + 222\mathbf{g}^{a}]$								
ą	In Kircohrothhitze ansredüht und langsam im Feuer abge-								
••	kühlt	4455	$2,39 \times 1,60$	10,00	2.546660	1750	2620	2720	
4	Nochmal in Kirschrothhitze ausgeglüht und im kalten Wasser	1161	9 26 V L 06	:0.00		~			
	rasch abgekühlt (s. Tab. VII [*]). Spatte: Nach 41 Tagen bei einem Oberschnitt von $2.32 \times 1.00 \text{ cm}$	4491	2.59 × 1.00	10,00		- 10	2010	2720	
	mit 11,1 t abgerissen	4596							
	In der Zwischenzeit ebenso behandelt, wie der Stab 2335 ⁵ in vorigen Tabelle								
	Zuofestiakeit $=$ 4790 at: Contraction $=$ 34 % (auf obigen								

Zugfestigkeit = 4790 at: Contraction = $34^{10} a$ (auf obigen Querschnitt bezogen). Dehnung 18.7 ⁶ für 15 cm (vor dem) Hämmern aufgetragen). Bruchaussehen : feinsehnig, feingeschiehtet.

22

Tabelle VII^{a.} Ergänzungen zu den Tabellen I bis VII.

•

.

.

Tabelle VIII.

Zwei Rundstäbe aus den Köpfen von Localbahn-Stahlschienen, Lab. Nr. 2901 und 2902, auf Zug geprüft.

1.	2.	3.	4.	5.	6.	7.	8.	9,	10.
<u>.</u>			Ergeł	onisse d	er vorgenomi	nenen	Prüfung	auf 7	lug
ende N	Zustand und Behandlung des Probestückes	unter Ver-	Vor dem	Versuch	Elasticitäts-	irenze	grenze t	Selast. Inde	Bleibende
ufe		such	Denm.	ge f m	Modul	it. (a	a e		Dennung
I.8		Nr.	ст	Ne	at	F.Jas	Stre	Ma: ai	- 1/1000 CM
1 2 3 4 5 6 7	R u n d s t a b Nro. 2902. Ursprünglicher Zustand	4515 4515 4515 4515 4515 4515 4515 4515	2,102,102,102,102,102,102,07	15,0015,0015,0015,0015,0015,0415,37	$2^{4}180000$ $2^{5}180000$ $2^{1}170000$ $2^{4}170000$ $2^{5}170000$ $2^{5}140000$ $2^{6}180000$	2310 2460 2530 2530 2600 2310 2530	>2750 >3040 >3160 >3210 3370 >4460 >4460	$2750 \\ 3040 \\ 3160 \\ 3210 \\ 3380 \\ 4340 \\ 5890$	$0,29 \\ 0,71 \\ 2,58 \\ 1 80 \\ 40 \\ 330 \\ 1600$
8 9	 ³/4 Stunden nach dem vorigen Versuch	4515	1,99	16,97 16,97	2120000 21010000	1930 1770	wischt >5150	5150 5150	0,58
10 11 12 13 14	Rundstab Nro. 2901. Ursprünglicher Zustand Unmittelbar nach dem vorigen Versuch Unmittelbar nach dem vorigen Versuch Unmittelbar nach dem vorigen Versuch Unmittelbar nach dem vorigen Versuch Der Bruch erfolgt bei 12,85 t. Zugfestigkeit = 5740 at, auf den ursprünglichen Querschnitt bezogen. Contraktion = 54%, auf den ursprünglichen Querschnitt be- zogen. Dehnung = 18,5 für 20 cm. Bruch sehr feinsehnig, mild, mit aufgezogenem Rand.	$\begin{array}{r} 4516\\ 4516\\ 4516\\ 4516\\ 4516\\ 4516\end{array}$	1,69 1,69 1,69 1,685 1,665	15,00 15,00 15,00 15,02 15,50	$2^{\circ}200000$ $2^{\circ}225000$ $2^{\circ}226000$ $2^{\circ}200000$ $2^{\circ}140000$	1900 2120 2350 1900 1030	>2460 >3130 3330 3480 >4590	2460 3130 3350 4490 4590	0,29 0,65 20,54 479

٠

Tabelle IX.

.

Probestück für Zug und Druck aus Schweisseissen, Lab. Nr. 2867*, von der Form der Fig. 1 auf Blatt II.

		1.				2.				3.		i:		4.		6		5.				б.		
5	Imm	soringl."	Zus	tande	. в	Tave n	achł	ier	51 M	inuten	nachhei	5	Minut	en na	ichhe	er	20 Stu	ınden	nach	her	1 St	unde na	ichhe	r
шн	the di	Zuu	, ,			Zu	(r			Dru	e k		Dг	u e	k		I) r u d	e k		ì	Zug		
÷	1 1	55.cm+1-	6	0070	ul == 4	55 cm : 1	 25.0	5.00 cm	d = 4.	55 cm; 1	= 6,00 c	m ⁱ d ···	4.55 <i>ci</i>	n:1	6.00	cm	d = 4,5	5 cm : 1:	=6,0	00 cm	d = 4.5	55 cm : 1 -	= 5,00) cm
.= સ	54 Sec. 1		Ę	Ξ			Ę	Ē	· · · · · · · · · · · · · · · · · · ·	<u>5</u> 1.	e E	a c	1		lu]		51	يد تر	en	dul	50	-10 #	una Luba	
tun	un.	E S	112(10	iun;	line in the	-In zet	Mor	i nu	- zul	-nzu-	, mu	rzn	cm.	enz	+	1 1 1	nzu • <i>cu</i>	- LL	Mo t	nn t	និង ខ	nen.	t, ji
-las	atita at	rlâu um;	Ere.	ť.) "/	ann at	rtai un	ler.	it.)	anı at	kü	st. st	an an	rkü	1001	ller st.		ann	rkű [100	ffier	at.	und 9	erli u '/tee	iffe	
ä.	Ť	<u>, </u>	bid	Slav	Ť.		Dit	Ellar	Ĵ.	· · · ·	Dit Fla	Ţ.		-	ici Ella		ĩ.	2	Ē	Ыŗ	x	~	<u> </u>	<u>.</u>
				- .							·	in de la car e			1	، مے سیو								
0	0	0			- 0	0			Ō	0		0		0	do .		0	0	69		0	0	72	
4	246	0,66	- 660		246	0,63	45.3		246	0,69		$2 \cdot$	6	0,60	an .		246	0,63	66		246	0,12	83	
8	492	1,34			492	1,31	1.5		492	1.36		49	2	1,26			492	1,29	64		492	1.55	86 (
12	738	2,02	- 68		738	1.95			738	2,04	1.5	73	8	1,90	04 84		738	1,93	66		738	2,41	93	
16	984	2,70	68		984	2,62	57		984	2,76	12	. 98	4	$2,58^{-1}$:		984	2.59			984	3.34	:	
0	0	0,07		•	0	0,02			0	0,18		0		0,02			0	$0,\!02$			0	0,76		
16	984	2.72		. 000	984	2,63		÷	984	2,79	: 	- 98	4	2,55		2	984	2,57	47	9	984	3.37	100 .	
20	1230	3.39	- 67	2.16	1230	3,28	- 65	000	1230	3,51	÷ 000	123	0	3,23	03 0 : 0	00	1230	3,24	66	:00	1230	4,37	111	
24	1476	4,04	45	• •	1476	3,92		97,7	1476	4,24	5-12	: 147	6	3,87	70	27. 77. 77.	1476	3,90	67	ត្ត	1476	5,48	119	
28	1722	4,74			1722	4,58	- 65		1722	-5,07	1.10	172	2	4,57	70		1722	4,57	68		1722	6,67	132	
32	1968	5.42	108		1968	5,24	60		1968	$6,\!16$	100	196	8	5,27			1968	5.25			1968	7,99		
0.	0	0,16			0	0,01			0	0,94		. 0		0,02			0	0,05			0	2,88	-	
32	1968	5,46			1968	5,22			1968	6,31		196	8	5,29			1968	5,28			1968	8,12		
34	2091	5.80	-1-8		2091		93				245				373				97				147	
36	1007	Name di t	har	1005	2244	6.15			2214	8,76		221	4	8,02			2214	6,25			2214	9,59		
40	4997.	vers. 5, v	æ.	1	0	0,41			0	2,90		0		1,15		i	0	0,28			θ	3,71		
0					1104 -	Vars 10	Oet	1885	1101 3	Cers. 19	Oct. 1885	0		1,06 1	n. 20 S	td.	and v	ers 12	i i Oct	1885	4404 3	Ters 15 (net 18	85
					·1·10·1.	1018, 12,	oet.	1100.	1101.	• (17• 14•	Sector and the	440	. Vers.	12. 0	et. 188	85.	1101 1	C.P. 10.	oct.	a 1929.84	ET./ T. V	C 1.7. 101. 1		<i></i>

		7.					8.				9.				10.				11.				12.		
nen	46 Min	uten	nach	nher	nen	$30^{1}/_{2}$ S	tunden	nac	hhei	$15^{1}/_{2}$ S	tunden	naehb	ei	2 Stu	nden n	achh	\mathbf{er}	9 Minuter inzwisch	inachne en 4 ma	r, nach l zwise	chen	27 St	unden	nach	her
Ē	· D	гu	e k		lon.]) r u c	• k			Zug				Zug	;		und dadi	irch die	totale	Ver]	Dru	e k	
Ξ	d = 4.5	5em; 1	= 6.	00 car	, ui	d4,5	5cm;1	-: 6,6	00 <i>em</i>	$1 = 4, \epsilon$	55 <i>cm</i> :1	6.00	m d	==4.5	5 <i>cm</i> ;1=	= 6,0	0 cm	bende au	$f 0,72/_{100}$	o cm erl	höht	1 = 4.5	55cm: 1	= 6,0	00 <i>cm</i>
ž	5(Ę	10.	អ្	20	24	Ξ	Ξ	50	÷ _	en ful		as	2	. .	Ξ	a – 1		6.00	em	50	ä	E	E
stu	1 1	nz.i			E I z	1	nzu 1 CM	e i z	Mor	nun t	ogu H S	enz Mo		unu /	nge B	C D Z	4 N	<u> </u>	±c ,, ≇	- 0,00	5	1 1	rzu trza	enz	No.
se la	w una	rka		7	se la	ы 11 р	rkű /1000	E	at.	una B	urla Munit	filter Inter	ت ا	an a	erla m /100	ffer	з. ЗТ.	ann ng at	nlän 2010- 2010-	iff.	et j	nned Maria	rkü /100	ller	3 . X
_	Ī.		<u> </u>	물		·7.		Ē	E j	<i>7</i> .	~	E B		Г.	2	<u> </u>	2	<i>.</i>	5 5 <u>1</u>			<i>7.</i>	2	Ē	E.H.
						-																			
£ :	Û	0			0	0	0	66		0	0	82		0	0	69		0	0	69 [0	0	48	
4	246	0.7	, , ,	.	+	246	0.66	65	00	246	0.82	97		246	0,69	44	•	246	0,69	+13	0	246	0,68	71	
5	492	1.6	5 . 97		8	492	1,31	65	250(492	1.79	114		492	1,33	67	000	492	1.32	64	8	492	1,39	75	
12	738	2.6	2 te	1	12	738	1.96	- 66	21	738	2,93	140		738	2,00	76	21	738	1,96	65	9 91 -	738	2.14	76	
16	584	3.6	5 		16	984	2,62			984	4,33			984	2,76	66	24	$\frac{984}{1}$	2.61	37	21	984	2,90	40	
0	0	0,9	9 () 2		18	0	0,00			0	1.70			1107	3,42			1107	2,98			1107	3,30		
15	984	- 3.6 	9 10		0	4406. A	ers, 14.	Oet,	1885.	4406, 3	Jers. 15. (net. 1883	5.	0 :	$0,\!48$			Ō	0,06			0	0,31		
: e 	1230	- 4.4 5.0	1 - 11 	1	18									406. V	ers. 15. ()et. 18	885.	4406. Ve	ars. 15	et. 18	85, -	1107	3,31	47	
24	1470	ə,8 	2 13 13		20																	1230	3,78	95	
.40 ⊡ગ	1629	0.0	2 0	u I	24 10																	1476	4,73	Π0.	
-04 -0	1509	9.0 9.2	• : e :		20																	1722	5,83	135	
0 99	1645	0,0 0,3	e i		92 6																	1968	7.18		
94 सन	-0914	scale	n lar	ulen																		0	1,79		
-90	2217	darch 1990	. Sein Asein	wach eu																		1968	7,33	37	
	CONT. M.																					2214	10, 40	1475	
	A1997, A3	271 C.F.			43																	2460	25, 15		
																						2644 >	tark geo	Detsel	ht
				1																		4409. Ve	ers, 16, 4	⊷t. I	•• 7

,

.

Tabelle IX. Schluss.

-	····	13.				14.				15.				16.				17.				18.		
nen	30 M	inuten	nael	her	3]	fage na	achh	er	21	fage na	achh	er	2 1	fage na	ther		5 Stu	nden i	nach	her	Am 1	folgende	n T	age
lonr]	Drue	k			Zu	g			Dru	e k			Zu	g	5	1) r u e	e k			Zug	ç	
n T	d _= 4,5	58 cm ; 1	- 5,	93 cm	d _4.	58 <i>cm</i> :1	· = 5.	93 <u>cm</u>	d ==4,	58 <i>cm</i> ;1	5.	94cm	d = 4,	58 cm : 1	5.94	cm ²	l 4,5	8 <i>cm</i> :1	5,	9 4 cm	d 4,	58 <i>cm</i> :1	5,)4 cm
Belastung i	Spannung at	Verkürzung ¹ /1000 <i>CM</i>	Differenzen	Elast. Modul at	Spanning at	Verlänger- ung	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 r.m	Differenzen	Elast, Modul at	Spannung at	Verlänger- ung ¹ 1am em	Differenzen Elast, Modul	at	Spanning at	Verkürzung ¹ /1000 cm	Differenzen	Elast. Modul at	Spannung at	/ Verhinger- ung ¹ . how etti	Differenzen	Elast, Modul
0	0	0		:	0	0			0	: 0			. 0	0			0	0			0	. 0		
4	243	0,69	. 69		243	0,74	74	-	243	0,66	. 66	: •	243	0,64			243	0,62	62		243	0,65	- 65 -	
8	486	1,37	, 68 1 as		486	1,82	108		486	1,32	. 66	. 000	486	1,29	- 60 - 20	B.	486	1,25	-511		486	1,32	67	
12	729	2,05	: 0.5 : 85		729	3,09	145		729	1,98	- 10	51 21	729	1,92	10 m	ने हैं। न	729	1,88		000	729	1,96		990
16	971	2,70	00		971	4,74			971	$2,\!81$.,.,		971	2,57	10		971	2,50		310	971	2,63		200
0	0	0,00			0	2,11		} . :	0	0.15		:	0	0,02			0	0,00		ις.	0	0.03		ζı.
16	971	2,70	70	0	971	5,01	913			Ters 91	: Oet	1555	1 1157 -	Vors 92	0et 188	5	<u> </u>	2,50	34		971	2.65	34	
20	1214	3,40	: 70	000	1214	7,14	293	1	4111.		0	1	- 1 107,	· (· · · · · · · · · · · · · · · · · ·	cier. pr		1092	2,84			1092	2,99		
24	1457	4,10	70	2,1(1457	10,07	324										0	0,00			0	0,13		
28	1700	4,80	69		1700	13,31	669						1			5	4462. V	ers. 23.	Oct	1885.	4468.	7 Vers. 23.	Oct	1885.
32	1943	5, 49			1943	20,00										l.								
0	0	0,09			0	14,61										5								
32	1943	$5,\!52$	86		1943	$20,\!62$	763						1											
36	2186	6,38	164		2186	28,25	1400		- 															
40	2429	8,02	188		2429	$42,\!25$																		
42	2550	9,90																						
44	2671	Scalen la	ufen	durch	2671	Scalen l ohne d	aufen ass 4	durch 1 t er-												-				
	4406. V	ers. 16.	Oet.	1885.	4423. V	reich /ers, 19.	t wer Oct.	den 1885																

		19.				20.				21.				22.				23.			
nen	2 T	'age na	ehh	er	$2^{1}/_{2}$ St	unden	nac	hher	$4^{1/2}$ S		spi	iter	1 7	l'ag nac	chhe	er	9 Stu	inden d	larn	aeh	
on1		Drue	k			Z 11 g				Drue	k.			Zug				Drue	k		
E I	d = 4.5	8 cm:1	5.	94 cm	d = 4.5	8 cm : 1	=5.	94cm	d = 4.5	8 cm : 1	= = 5.'	94 <i>cm</i>	d==4.5	8 cm : 1 =	== 5,'	94 cm	d = 4.5	8 cm : 1	5.	.94 cm	
ng ir	ੁੱਸ ਸ	ä	E E	-Tel	స్తు	бш	. E	dal	ਸ਼ 	50 E	E.	լոր	ä	Ĕ	uəş	dut	že	sc M	tion	ŢŦŢ	
astu	nnui at	Arzu em	erenz	Mo at	nnuı at	nger cm	srens	at at	nnu at	ะติเระเ cm	stens	t. Mo at	nnui at	nger cin	erens	t. Mo at	nnun at	cürzu cm	erens	L. Mo	
Bel	Spa	Verk	Diff	Elast	s pa	Verlä	Diff	Elast	Spa	VerI	Diff	Flas	Spa	Verlä	Diff	Elas	s. S.	Ver	Diff	Elas	
0	0	0			0				0	0	1		0	0	-		0	0		- Linestern 	
4	949	0.69	63		049	0.09	63		949	0.67	67		949	0.67	- 67		919	0.65	65		
ч 0	490	0.05	62		 	1.00	68	0	-102	1.20	63	-	498	1.95	- 69	0	186	1.30	65	8.	
8	485	1,25	62	000	485	1,36	64	000	: 480 : 500	1,50	64	00	400 Fac	1,55	65	000		1,50	66	000	
12	729	1,87	62	310	729	2,00	64	130	729	1,94	-63	260	129	2,01	67	.15(729	1,95	64	- 51	
16	971	$2,\!49$		rî ;	971	2,64		21	971	2,57		ά\	971	2,68		21	971	2.60			
0	0	0,00	1 5 1	1	0	0,06		1	0	0,00			0	0.06			0	0,01			
16	971	2,49	:	3	971	2,64	1		971	2,57			971	$2,\!68$			971	2,58			
18	1092	2,81	32	ł	1092		68			1	63				68			1	64		
20	0	0,00	:		1214	3,32			1214	3,20	45		1214	3.36	; 83		1214	3,22		4	
22					0	0,08	:		1335	3,65			1335	3,69	199	ļ			85		
24				- -	- 	: '			0	0,10	-		0	0,10			1457	4.07			
					ч. -	:	*				1						0	0.25			

4474. Vers. 26. Oct. 1885. 4478. Vers. 26. Oct. 1885. 4452. Vers. 26. Oct. 1885. 4486. Vers. 27. Oct. 1885.

4405, Vers, 27, Oct. 1885, 1

.

Tabelle X.

Probestück für Zug und Druck aus Schweisseisen, Lab. Nr. 2867^h, von der Form der Fig. 1 auf Blatt II.

		1.				2.				3.		-		4.				ð.	<u> </u>			6.		
fonnen	Ursp	rüngl. 2 Druc	Zust k	tand	$1^{1}/_{2}$ St	unden Zug	nael	iher	6 Mi	nuten (Zug	larna	ach	15 Sti	ınden Z u g	nach	her	45 M	inuten Druc	nacl k	nher	45 Mi	nuten Zug	nach e i	her
	d 4,6	3 cm ; 1	× 6,	.00 cn	4,6	3 cm; 1	6,(00 cm	d = -4, 6	3 cm ; 1	6,0	00 cm	d = 4,6	3cm;1	-= 6,0	00 cm	d = 4,6	2 cm; 1 =	= 6,0	55 CM	a = 4, 0	$\frac{2 cm; 1}{50}$	== 0,•	05 Cm
Belastung in	Spanning at	Verkürzung ¹ 1.000 cm	Differenzen	Elast. Modul at	Spanning at	Verlängerung ¹ 1000 <i>cm</i>	Differenzen	Elast, Modul at	Spannung at	Verjängerung ¹⁷ 1-mit cut	Differenzen	Elast. Modul at	Spanning at	Verlängerung ^{1/1000} cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 <i>CB</i> 6	Differenzen	Elast. Modu at	Spannung at	$\left \begin{array}{c} \operatorname{Verlängerung} \\ ^{1} \right _{1000} \ cm \end{array} \right $	Differenzen	Elast. Modu at
0	0	0			÷ 0	0			0	0			0	0			0	0			0	0		
1	238	0.62	62		238	0,59	69		238	0,60	60		238	0,64	64		239	0,83	83	5	239	0,66	00	
8.	475	1.25	. :::		475	1.26	67	~	475	1,22	62 -		475	1,27	63		477	1,89	106		477	1,50	01	
12	713	1,90	65		713	1,91	65	000	713	1,85	63	0	713	1,93	66	0	716	$3,\!16$	127	}	716	2,41	91	
16	950	2,54	. 64		950	2,57	603	12	950	2,50	65	000	950	2,57	64	000	955	4,75	159		955	3,42	101	
- ñ	Ð.,	0,03		-	. 0	0.08		17	0	0,00		5,52	0	0,00		5,18	0	$2,\!06$	1		0	0,78		-
16	950	2 5.5	:	000	950	$2,\!58$			950	2,50			950	2,56			955	4,90			955	3,48		
20	1188	3,19	64	- 0 <u>7</u>	1188	3,25	67		1188	, 3,15	65		1188	3,23	67		1193	6,86	196		1 193	4,53	105	(
24	1425	3.86	+)7	,	1425	3.93	64		1425	3,80	65		1425	3,87	64		1432	9,69	283		1432	5,89	136	1
28	1663	4,51	45 :		1663	4,63	70		1663	4,42	62		1663	4,55	68		1671	$13,\!88$	419		1671	7,57	168	ł
32	1900	5,17	66		1900	5,33	70		1900	5,12	79		1900	5,22	67	1	1909	20,33	- 645 		1909	9,72	215	ł
0	0	0,11			0	0,24			0	0,01	Stoss	sen in ler	0	0,02	1		0	14,81			0	4,20		
32	1900	5,18			1900	5,31			1900	5,10	Mas	enine	1900	5,22					1	i .				4
36	2138	6,00	52		2138	6,00	69		2138	5,77	67		2138	5,96	74	i	4405. V	čers, 14.	Oct.	1885.	4405. V	ers. 14.	Oct.	1885.
40.	0	0,28			2375	6,96	- 96		2375	Scalen l	aufen	rasch	$\overline{2375}$	Scale	n lau	fen								
;					0	1,70				, d	ureh			durch.	Stree	eken				1				
	4405, V	'ers. 10.	Oct.	1885.		ł			4405. 3	Jers. 13.	Oct.	1885.	4405. V	ers. 14.	Oet.	1885.								
					4405,	Vers 13.	Oet.	1885.												1				
Ì																								
																					1 14			

-		7.				8.			:	9,		_		10.				11.				12.	-	
50	$5^1 \pm 80$	unden	darn	ach :	5 Mi	nuten	nachhe	er	30 M	inuten	nach	her	15 ¹ 2 M	inuten	nae	hher	1 Stu	inde n	achl	ıer	37 Mi	nuten	darr	nach
1.01		Zug				Zug	ŗ			Drue	k			Zug				Drue	k			Zug		
Ē	d = 4,6	2 cm : 1	6,0	5 cm	1 = 4,6	2cm; 1	-6.05	cm.	d = 4,6	2 cm; 1	= 6,0)5 cm	d = 4,6	2 cm ; 1 =	= 6,0	05 cm	d = 4,6	2cm;1	= 6,0	05 <i>cm</i>	d = 4,6	2cm;1	= 6,0	05 cm
Belastung	Spannung at	Verlängerung ¹ /1000 CM	Differenzen	Plase. Modul at	Spannung at	Verlängerung ¹ /1000 cm	Differenzen Elast. Modul	at	Spunning <i>at</i>	Verkürzung ¹ /1000 cm	Differenzen	Flast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>CM</i>	Differenzen	Elast. Modul at	Spannung at	Verkürzung ^{1/1000} cm	Differenzen	Elast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Flast, Modul at
0 4 8 12 16 0 16 18 20	0 239 477 716 955 0 955 1074 1193	0 0,66 1,36 2,07 2,80 0,04 2,77 3,50	69) 70 71 73 73	· · · · · · · · · · · · · · · · · · ·	0 239 477 716 955 0 955 <u>1074</u> 1193	0 0,66 1,34 2,03 2,71 0,01 2,71 3,41	66 00000000000000000000000000000000000	000001.7	0 239 477 716 955 0 955 0 955	0 0,68 1,35 2,08 2,90 0,26 2,93 0,32 2,97	68 67 73 82	2'140000	0 239 477 716 955 0	0 0,66 1,21 1,98 2,66 0,02	66 65 67 68 Oct.	000021,7	$\begin{array}{c} 0\\ 239\\ 477\\ 716\\ 955\\ 0\\ 955\\ 1074\\ 0 \end{array}$	0 0,66 1,32 1,99 2.67 0,05 2,66 3,01 0,06	66 66 67 68 35	5,160000	0 239 477 716 955 0 955 1074 0	0 0,67 1,33 2,00 2,66 3,00 0,05	67 66 67 66 34	5,170000
() ()	· Ð	0.04			0	0,02			0	0,33		-					4405. V	ers, 15.	Oct.	1885.	4405. V	'ers, 15.	Oet.	1885.

(165, Vers. 14, Oct. 1885) 4405, Vers. 14, Oct. 1885, 4405, Vers. 14, Oct. 1885,

,

Tabelle X. Schluss.

	1	13.	_			14.			· · · · · · · · · · · · · · · · · · ·	15.				16.			1	17.				18.		
nen	Einer	ı Tag n	achl	her	Drei	Tage 1	nach	her	Zwe	i Tage	spät	ter	1 St	unde na	achh	er	Zwei	Tage	spät	er	5 ¹ /2 St	unden	nact	ther
lon		Druc	k			Druc	k	ļ		Zug				Druc	k			Zug	•			Drue	k	
E	d == 4,6	2 cm ; 1	- 6,0)5 cm	d 4,6	2cm:1	6,	05 cm	d = 4,6	2 cm ; 1	-6,	05 cm	d 4,6	2cm;1	6,0)5 cm	d 4,6	2cm;1	6,6	5 cm	d 4,69	2cm;1	- 6,0	05 cm
ង្ហ	50	ង្ខ	Ξ	Ţ	50	ця П	en	լոր	50	bug '	en	Iml	50	ž	Ę	lul	±0	gui	Ę	[n]	50		a	Tim
ustu	t	urzu o ch	enz	Mod	nun tt	irzu # <i>Ch</i>	zuə.	Mo	11 I I	n Ser	enz	Moc	t t	uzu • <i>C</i> 0	enz	Mo	t num	ger Ser	enzo	Moi t	1 1 1	rzu) c <i>m</i>	enze	Mot 1
Bela	a ban	rkü /100	ffer	ist.	ban	trki 1/100	iffer	ist.	bun	rlän ∏/™	itter	ist. a	o Dan	liků 1	ffer	ist.	und n	lân w	Ĥer	151. 	brun	rkü //	tter	ist. a
	x	2	Â,	Ē	<u>x</u>	Ă	А	ធី	x	-ei -	9	Eli	T.	÷.	ā	ã	L		D	E	Ϋ́,	e	ğ	Ela
0	0	0			0	0	-		0	0			0	0			0	0			0	0		
4	239	0,68	68	ED	239	0,62	62	l	239	0,65	65		239	0,64	64	-	239	0,62	62		239	0,62	62	1
8	477	1,33	65		477	1,24	62		477	1,27	62	000	477	1,30	66	000	477	1,25	-63		477	1,25	63	
12	716	1,97	64	000	716	1,89	63		716	1,91	64	51(10	716	1,95	65	22(716	1,88	- 43 I	000	716	1,89	64	
16	955	2,63	66	,500	955	2,51	62		955	2,54	63	21	955	$2,\!60$	65	21	955	2,51	63	300	955	2,51	62 	300
0	0	0,00		51	0	0,00			0	0,02		-	0	0,00		!	0	0,01		î.	0	0,01		<u>ें</u> ।
16	955	2,63			955	2,51			:						!		955	2,51			955	2,51		
18								90									1074	2,86	35		1074	2,82	31	
20	1193	3,28	65		1193	3,13	62	8000									0	0,05			0	0,01		-
24	1432	4,00	72		1432	3,74	61	5,5															1	
28	1671	5,01	101		1671	4,39	1 65									1				3				
32	1909	6,85	104		1909	5,06										1								
0	0	1,58			0	0,02																		
32	1909	7,05	609		1909	5,06	64																	
36	2148	13,14	2104		2148	5,10 6 45	75																	
40	2387	34,18	6	J	2001	0,40																		
44	2000	scalen la	unen	uuren	2625	8 15	170																	
48					2864	Scalente	 mfen	durch									1			, i				
•	4410. V	Vers. 16.	Oct.	1885.	4424. 1	ers. 19.	Oet.	1885.	4442 V	'ers. 21.	Oet.	1885.	4445, V	'ers, 21.	Oet. :	1885.	4458. V	ers. 23.	Oet.	1885.	4463. V	ers. 23.	Oct.	1885.
								1				-	1											

		19.				20.			i	21.			 	22.				23.				24.		
Tonnen	Ein	en Tag Zug	spät	er	Zwei	Tage : Druc	nach k	her	$2^{1/_{2}}$ S	tunden Zug	darı	nach	4 St	unden Druc	spät k	er	16 ¹ /2 S	Stunden Zug	dari	nach	9 Sti	inden (Drug	larn: k	ւ∙հ
.=	d = 4,6	2 cm; 1=	=6,	05 cm	d = 4,6	2cm;1	= 6,	05 cm	$\mathbf{d} = 4, 0$	52cm;1	=6,	05 cm	d 4,6	$2\mathrm{cm};1$	== 6,	05 cm	d = 4,6	2 cm; 1 =		05 <i>cm</i>	d = 4,6	2cm;1	=6,0	15 cm
Belastung	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast, Modul at	Spannung at	Verkürzung ¹ /1000 cm	Differenzen	Elust, Modul at	Spanning at	Verlängerung ¹ /1000 CM	Differenzen	Elast. Modul at	Spannung at	Verkürzung	Differenzen	Elast. Modul at	Spannung af	Verlängerung ¹⁷ 1080 <i>cm</i>	Dìfferenzen	Elast, Modul at	Spannung at	Verkürzung	Differenzen	Flast, Modul at
0	0	0			0	0	-		0	0			0	0			0	0			0	0		
4	990	0.64	64		920	0.62	63		930	0.69	62		930	0.65	65		920	0.64	64		. 930	0.69	63	
+	209	0,04	65		200	0,00	61		400	1.05	65		177	1.00	63		477	1.90	64		200	1.0-	: 1. 64	
8	477	1,29	83		477	1,24	62		+11	1,27	. 64		= +11	1,28	63		+()	1,28	07		((±+++)) ((±+++))	1,21	65	
12	716	1,92	00		716	1,86			716	1,91	e1		: 716 :	1,91	23	_	716	1,95	45	-	716	1.92		
16	955	2,57	60	000	955	$2,\!49$	0.5	000	955	2,56	05	000	955	2,54	0.7	000	955	2,60	1	000	955	2,58	1	000
0	0	0,04	ļ	200	0	0,00	1	340	0	0,02		560	0	0,00		280	0	0,05		215	0	0.01		260
16	955	2,60		57 7	955	$2,\!49$	i.	5	955	$2,\!58$		57	955	2,53		51	955	2,60		1	955	2,58		21
20	1193	3,25	65		1193	3,09	60		1193	3,20	62		1193	3,17	64		1193	3,26	66		1193	3,20	62	
22	1312	ĺ			0	0,00			1312	3,59	39] :										;	
24	1432	3,92	67		:			í	0	0,19			1432	3,84	67		1432	4,14	54		1432	3,83	ē0	
0	0	0,09		1									0	0,03			0	0,34			. 0	0,01		
		-					1					, : ,	• •											
	4470. V	/ers. 24.	Oet.	1885. '	4475. V	'ers. 26.	Oet.	1885.	4479, N	Jers. 26.	Oet.	1853.	4483, V	'ers. 26.	04:t,	1885.	4487. V	'ers, 27,	Oct.	1884.	: 14143, N	ers. 27.	Ont.	1885.

) Bauschinger, Mittheilungen, XIII.

6

Tabelle XI.

Probestück für Zug und Druck aus Schweisseisen, Lab. Nr. 2867°, von der Form der Fig. 1 auf Blatt II.

		1.		····	;	2.				3.				4.				5.				6.		
юn	Das Pro vorher	bestück zuerst r	war : nit 1	1 Tage 6 /	5 ¹ /2 Ste	I. nach	Bee	ndig-	2 Str	inden r	nach	her	15 St	unden	nacl	nher	2 Stu	ınden ı	nach	her	1 ³ /4 St	unden	nacl	her
onn	950 <i>at</i> a weit a	uf Zug, d auf Druck	lann e k-beli	ebenso astet	ung de 1	svorig. Druk	ver : k	suchs		Zug	5		J) r u e	e k			Zug	3		I) ruc	k	
E -	worden, iticitätsg	ohne da renze - üt	iss die bersch	e Elas- aritten	d 4,6	3 <i>cm</i> ;1	6,	00 cm	d 4,6	33 cm; 1	.: 6,	00 <i>cm</i>	d 4,	3 cm ; 1	=6,	00 cm	d = 4, t	3 cm;1	6,	00 cm	d ==4,6	3 cm ; 1 =	=6,0	$\frac{00 cm}{2}$
Belastung in	Spann ung at -	Verläng- 29 erung - magno ¹ , 1000 - Chi - Ta	vare 6,0 HIU	Elast. M. 5 at	Spannung at	Verkürzung ^{1/} 1000 CM	Ditterenzen	Elast. Modul at	Spannung at	Verlängerung ^{1/1000} <i>cm</i>	Differenzen	Elast, Modul at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at
0 4 8 12	0 238 475 713	0 0,63 1,26 1,90	63 63 64 63	10000	0 238 475 713	0 0,6 3 1,27 1,91	64 64 63	250000	0 238 475 713	0 0,62 1,26 1,90	62 64 64 62	270000	0 238 475 713	0 0,65 1,30 1,95	65 65 65 65	215000	0 238 475 713	0 0,61 1,22 1,86	61 61 64 64	265000	0 238 475 713	0 0,64 1,28 1,92	64 64 64	240000
16 0 16 20	950 0 950 1188	2,53 0,02 2,54 3,18	64	51 ·	950 0 950 1188	2,54 0,00 2,55 3,17	62	6,6	950 0 950 1188	2,52 0,00 2,52 3,14	62	30	950 0 950 1188	2,60 0,00 2,60 3,23	63 63	24	950 0 950 1188	2,50 0,00 2,50 3,13 3,78	63 65	56	950 0 950 1188 1425	2,56 0,01 2,57 3,20 3 82	63 62	τ ς
24 26 28 30 0	0 4421. V	0,02 Jers. 19.	0et,	1885.	0 4425. V	0,00 Ters. 19.	Oct.	1885.	1425 0 2428. V	3,76 0,00 Vers. 19.	Oct.	1885.	1425 1544 0 4430. V	3,80 4,18 0,00 ers. 20.	32 Oct.	1885.	1423 1663 0 4433. V	4,40 0,02 Vers. 20.	62 Oct.	1885.	1423 1663 1781 0	4,45 4,77 0,01	63 32 Oct	1885
	er me.												-											·

		7.			8.			1	9.		5		10.			11.				12.				13.	
nen	1 Stu	nde n	achher	$1^{1}{}_{2}$	Std. n	achl	her	15 Stu	nden r	nachh	er 6	Stun	iden i	nachher	3 Т	ige na	chhe	•	4 Ta	age n	achl	her	22 T	age na	achher
Tot		Zug	;.	Е) r u	e k			Zug	5		D	ru	e k		Zu	ž		D	ru	c k			Zug	g
Ξ.	d = 4.6	3 em; 1	= 6,00 cm	$\mathbf{d} = 4.6$	33 cm ; 1	= 6,	00 cm 	$\mathbf{d} \coloneqq 4,6$	3 cm; 1 =	= 6,00	- <i>m</i> d =	=4,63	3 cm ; 1	= 6,00 cm	d = 4,6	3 cm ; 1	= 6,00	<i>cm</i> d =	= 4,6	2 cm; 1	. = . ⁱⁱ	.04 cm	d = 4,6	35cm; 1	= 5,99 cm
Belastung	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen Elast, Modul at	Spannung at	Verkürzung ¹ /1000 cm	Differenzen	Elast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen Elast. Modul	at Spanning	at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen Flast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen Elast, Modul	at Spannung	at	Verkürzung ¹ /1000 cm	Differenzen	Elast, Modul at	$\operatorname{Spannung}_{at}$	Verlängerung	Differenzen Elast. Modul at
0	0	. 0		0	0			0	0			0	0		0	0			0	0			0	0	
4	238	0,62	62	2 38	0,65	65		238	0,64	64		238	0,68	68	238	0.62	62	1 2	239	0,64	64		237	0,60	60
8	475	1,25	. 00	475	1,30	55		475	1,29	65	4	475	1,36	68 .	475	1,31	69	4	177	1,29	65		474	1,23	63
12	713	1,89	ື ເ	713	1,94	n-1		713	1,94	35		713	2,02	66 :	713	2,17	86		716	2,04	75	-	711	1,83	60
16	950	2,52	63 <u>G</u> 1	950	2,56	02	00	950	2,57	° 0	1	950 :	2,67		950	3,28	111	Ş	955	3,13	109	00	948	2,53	70
0	0	0,00		0	0,01		700	0	0,00	100		0	0,03	050	0	0,81			0	0,63		350	0	0,07	
16	950	$2,\!51$	62	950	2,57	÷1	55	950	2,56	5.5	· •	950	2,67	ୁ କା	950	3,39	191		955	3,23	150	2,2	948	2,53	
20	1188	3,13	63	1188	3,18	69	10 T	1188	3,20	94 j 20	1	188	3,31	- 0-1 8-3	1188	4,70	190	1	193	4,76	133		1186	3,34	81
24	1425	3,76	64	1425	3,80	61		1425	5,83	20	14	425	3,93	69	1425	6,50	240	1.	432	7,20	1244		1423	4,48	114
28	1663	4,40	64	1663	4,41	61		1663	4,45	34	1	663	4,55	62	1663	8,90	305	1	671	11,00	540	1	0	0,79	
32	1900	5,04		1900	5,02			1900	5,09		1	900	5,17		1900	11,95		1	909	16,40		* 1	4556 37) and 10-1	1 : Non 1921
0	0	0,03		0	0,01			0	0,04		Ì	0	0,03		0	6,80			0	11,04	• •		40-00. V	ers. 19.	NOV. 1859,
32	4437, Ve	•rs, 20.	Oct. 1885.	1900	$5,02^{+}$	34		<u>1900</u>]	5,09	1	1	900	5,18		1900	12,15		1	909	16,95					
34				2019	5,36			{		67				63			375				768				
36:				0	0,05 :	2	2 2 2	2138	5,76	Ì	2	138	5,81		2138	15,90		2	148	$24,\!63$					
-10				4138, V e	ers. 20. 6)et. 1	1385.	0	0,05		2	256	16,88			Ş					1262				
-+0 -							1000	4440. V	ers. 21. (Det. 18	\$5.	0	11,65		2375	24.96		2	387	37,25					
+											-14	148, V	ers, 21.	Oct. 1887	2494	Streek	en								
* *															4472. 1	ers. 24	Oet, 1	21 885.	625	Seal. v	erse	hwind.			
																		41	199. V	fers, 2 ^s	. Oe	t. 1885,			

.

Tabelle XII.

Probestück für Zug und Druck aus Schweisseisen, Lab. Nr. 2867⁴, von der Form der Fig. 1 auf Blatt II.

		1.		1		2.			3.			4.				5.			<u>б.</u>		, 	7.	
nen	Vor 5 Tag 2 Tagen a	en auf Drue uf Zug mit 1	k und $6t := 9$	vor 84 at	3 1	'age nach	her	50 Min.	nach Bee	endigung orsuchs		4 Tage spi	ter	1	$6^{1/2}$ Sf	unden	snäter	3 1	'age nac	ther	19	Tage sr	äter
Con	belastet , grenze	ohne die E zu übersch	dastici reiten,	täts-		Druck		ucs v	Drucl	k		Druel	τ		• / • •	Drne	k		Zug			Drue	ĸ
L u		D r u e k			d = 4,5	$7 \ cm$; 1 =	: 5,96 cm	d = 4,	59 cm; 1 =	= 5,85 cm	d =	$1,60\ cm;\ 1=$	- = 5,80 cm	d	l = 4,61	. <i>cm</i> ; 1=	 =5,79 cm	d = 4,6	$2_{5}cm; 1=$	= 5,78 cm	d = 4,6	1 cm; l =	 = 5,83 cm
i B	d = 4,5	5 cm ; 1 ==	: 6,00	ст	ຽມ	50 C	en dul	50	<u>ನ</u> ್ನು ದ	en dul	50	ស្ព	en dul		5 0	80 0	dul	36	50	en Jul	50	ະພ	en dul
stui	gu	ង ខ្ល		lođ.	1 1 1	rzu o <i>em</i>	$\frac{1}{t}$	nun t	nzu o <i>cm</i>	enz Mo	+ +	rzu • <i>cm</i>	enz		nun t	rzu cm	enzo Moo	uun +	geru Cm	enz Mo	un t	rzu c <i>m</i>	enzo Moo
sela	at	rzu rzu 10 (Э́Н.	at a	an a	rkü /1000	ffer st. a	pan a	rkü /100	ffer st.		rkü /100	ffer st.	0	ana	rkü /1000	ffer st. a	an a	läng /1000	ffer st. a	an	rkû /1000	ffer st.
-	Spa	kür '/'t	I	Elas	\vec{x}	Ve	Di Ela	S.	V.e	Di Ela	<i>5</i> .	V.e.	Di Ela	Ĵ	2	Ve.	Elas	$\mathbf{S}_{\mathbf{I}}$	Ver	Ela	5		Di Elas
					· · ·					c							0			6		() () () () () () () () () () () () () (
0	0	0	67	ļ	0	0	63	0	0	64 00	0	0	59	l	0	0	61 000	0	0	63	0	0	000
4	246	0,67	68		244	0,63	63	242	0,64	62 F Gi G	241	0,59	58		240	0,61	5-5-5 5-5-5	238	0,63	62 5	240	0,60	380 380
8	492	1,35	69		488	1,26	64	$\frac{483}{100}$	1,26	66	481	1,17	59	l	479	1,26	62	476	1,25	65	479	1,18	يي 18
12	738	2,04	66	-	732	1,90	62	725	1,92	69	722	1,76	64 9	1	719	1,88	62	714	1,90	78	719	1,76	59
16	984	2,70		000	976	2,52	000	967	2,61		F 963	2,40	000	ł	959	2,50		952	2,68		959	2,35	
0	0	0,00		-25(0	0,00	30(007	0,04		0	2.40	6,6	1	050	0,00		4 U 059	0,27		0	0,00	
16	1990	2,70	63	21	976	2,52	64 [©] 1	1969	2,01	68	604 604	2,40	64	,	909 1108	2,00	63	1100	1 2,12	106	999	2,35	66
20	1478	0,00	65		1 1489	380	64	1450	3.90	70	1200	3,65	61		1498	9,10 9,00	69	1190 1190	5.30	161	1 1 9 8	3,01	75
- 24 - 90	1709		63	ļ	1707	4.49	63	1609	4 70	71	1685	3,00	61		1479	0,02 1 4 40	67	1927	5,55	228	1400	3,10	86
40	1968	5.95	61		1051	4,40 5.05	62	1994	5.41	71	1005	1,25	63		1010	5 17	68	1905	11.99	355	1078	4,04	
0- 0-		0,20			0	9,09		1001	0.19		0	0.00			0	0.09		0	6.27		Ū	0,42	
9.9	1968	5.95			1951	5.05		1934	5.89		1925	4.92			1917	5.19		1905	11.65		4554. 1	Zers. 19. 5	lov. 1885.
36	92(4)	6.01	76			5,00	66	2175	6 13	74	9166	5.53	61		2157	5.89	70	2143	16.00	435			
40	2460	39.06	2605		2439	6.40	60	2417	6.89	76	$\frac{2100}{2407}$	6.18	65		2397	6.60	71	2381	23.02	702			
42	$\frac{2100}{2583}$	Sadan an	! Satada	ulan	1100	0,10	76		.,		2.01					0,00	74	:		014			
41		inter Q	uetsch	en	2683	7,16		2659	7,71		2647	6,83	00		2636	7,38		2619	32,16				
48					2927	9,80	' 204 I	2900	8,62	91	2888	7,67	64	2	2876	8,17	79	2857	46,83	1467			
0						2,35		0	0,34		0	0,09			0	0,17		0	38.01				
-18	1450.	Vers. 21, C)et. 18/	8ā,	2927	10,80		2900	8,63		2888	7,66		2	2876	8,18		2857	$47,\!62$				
52					3171	Scalen ve	rschwinden	3142	9,80	1+7	3129	8,45	79		3116	9,00	82	3095	Scalen v	erschwinden			
á 6						unter (Inctschen	3384 (Scalen la	aufen dure	h 3369	9,85	140		3355	10,10	110						
60									unter	Quetschen	3610	Sealen vo	: rsehwinde	n 8	3595	13,26				;			
64								j.	i		i	laı	gsam	1	3835	Scalen ve	erschwinden						
					4460	5. Vers. 21.	Oct. 1885.	4460	5. Vers. 21.	Oct. 1885.								4509.	Vers. 31.	Oct. 1885.			
					1						1				1								
											4-	00, Vers. 28,	Oct. 1885.		4502. A	fers. 23.	0et, 1885,						
s.																							
																					:		
					-) 1												

....

86

Tabelle XIII.

Probestück für Zug und Druck aus Bessemerstahl, Lab. Nr. 2868^a, von der Form wie Fig. 1 auf Blatt II.

	1	1.			K	2.				3.	=			4.			1	5.				6.		
nen	Ursp	rüngl.	Zust	and	223/4 5	stunden	nac	hher	5 St	unden	spä	ter	41	lage na	chhe	er	2 T	age na	chhe	er	5 ¹ /2 S	tunden	spä	iter
Loni		Zuj	r.			Druc	k			Zug				Drue	k			Zug]	Oruc	k	
Ē	d == 4,4	56 cm ; 1	== 6,	00 cm	d 4,	64 cm; 1	6,0	05 cm	d = 4,5	6 <i>cm</i> ; 1	=6	00 <i>cm</i>	d = 4,5	5 cm; 1	= 6,0	03 cm	d = 4,5	5 cm; l =	= 6,()3 cm	d = 4,5	5 cm; 1 =	=6,0)3 cm
Belastung	Spannung at	Verlängerung ¹ 1000 CM	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ , tooo <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verlängerung ^{1/1000} cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Flast. Modul at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Flast, Modul <i>at</i>
0	0	0			0	0		Q	0	0		00	0	0		g	0	0		00	0	0		
4	245	0,66	60		247	0,66	66	3000	245	0,65	65	000	246	0,65	65	500	246	0,64	64 85	100	246	$0,\!62$	62	
8	490	1,32	66		494	1,31	- 65	5,5	490	1,40	75	2,2	492	1,32	67	5,5	492	1,29	64	2,3	492	1,24	65	2
12	735	1,99	67		741	2,07	76		735	2,30	90		738	1,98	66		738	1,93	67		738	1,89	63	1000
16	980	2,66	61	000	988	3,19	112		980	3,46	119		984	2,69	31		984	2,60			984	2,52		5,3
0	0	0,03		230	0	0,63			0	0,81			0	0,12			0	0,04			0	0,00		
16	980	2,66	67	5	988	3,37	149		980	3,50	114		984	2,72	78		984	$2,\!60$	67		984	2,52	65	
20	1225	3,33	66		1235	4,86	205		1225	4,64	138		1230	3,50			1230	3,27			$\frac{1230}{1}$	3,17	67	1
24	1470	3,99	67		1482	6,91	235		1470	6,02	162		0	0,30			0	0,04			$\frac{1476}{2}$	3,84		ĺ
28 39	1060	4,00	65		1729	9,26	304		1110	7,64	195			l							0	0,10		
0	1500	0.06			1911	8.03			1900	9,59 4 28			Ì								ļ			
32	1960	5,32			1977	12.65			1960	9.79														
36	2205	5,98	66	l	2224	15,63	298		2205	11,78	199		4446.	Vers. 21	. Oct.	1885.	4459.	Vers. 23	. Oct	1885.	4464.	Vers. 23	. Oct.	1885.
40	2450	6,63	65		2471	19,68	405		2450	14,69	291													
44	2694	7,28	65		2718	24,50	482	ľ	2694	18,31	362													
48	2939	7,96	65		2965	30,17	567	l	2939	22,36	405									l				
0	0	0,05			0	22,00			0	14,08														
48	2939	7,96	57		2965	30,64	550		2939	22,92	441													
52	3184	8,53	68		3212	36,14	873		3184	27,33	727	1												
96	=	9,21			3459	44,87			3429	34,60														
60	3674	Scaler	n lau urch	fen	3706	Scal	en ve den r	r- asch	3674	Scale	n lau	fen												
64																								
0	4408	Vers. 16	. Oet	1885	4415	Vers. 17	. Oet	1885	4417	Vers 17	. Oct	1885												

																				_				
-		7.				8.				9.				10.			1	11.				12.		
nei	211/2 Stu gung de	nden na s vorige	ich E n Ve	leendi rsuchs	2 T	age na	chhe	er ;	4 Stu	inden 1	nael	her	21/4 S	tunden	spä	iter	16 S	tunden	spà	iter	23 St	unden	nacł	her
Tor		Zug				Druc	k			Zug	5			Drue	k			Zug	5			Druc	k	
E.	d = 4,5	5 cm ; 1	= 6,	03 cm	d == 4,5	5 <i>cm</i> ; 1	6,	03 cm	d = 4,5	5 cm; 1	≃ 6,	03 cm	d = 4,5	5 cm; 1	= 6,	03 cm	d = 4,5	5 <i>cm</i> ; 1	= 6	,0 3 cm	d == 4,5	55 cm; 1	= 6.	0 3 cm
Belastung	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 cm	Differenzen	Elast. Modul at	Spannung af	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Flast. Modul at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verlängerung ¹ /1000 cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 cm	Differenzen	clast. Modul at
_		0	1		0	0	1			1]								<u>-</u>					<u></u>
	0	0	63		0	0	64		0	0	67		0	0	64		0	0	70		0	0		
4	240	0,63	64		246	0.64	65		246	0,67	67	-	246	0,64	65		246	0,70			246	0,67	01	
8	492	1,27	64		492	1,29	61		492	1,34	60		492	1,29			492	1,37	64		492	1,32	65	
12	738	1,91	67	00	738	1,93		00	738	2,00	00	9	738	1,94	65	0	738	2.04	67	0	738	1,98	66	
16	984	2,58		000	984	2,57	04	000	984	$2,\!68$	55	000	984	2,61	67	000	984	2,71	67	000	984	2.62	64	00
0	0	0,02)8,7	0	0,00		530	0	0,01			0	0,01		.55	0	0.06		22(0	0.00		260
16	984	2,57			984	$2,\!57$	1		984	2,67			984	2,62		57	984	2 71	ĺ	61	984	0,00		จ้า
20	1230)	3,22	65		1230	3,22	95		1230	3,33	66		1230	3.28	66		1230	3 36	65		1990	2,02	64	
24	1476	3,89	67		1476	3,87	65		1476)	4.00	67		1476	3 95	67		1476	1.01	65	:	1230	3,25	68	
28^{+}	${0}$	0.06			0	0,00			$\frac{1}{17226}$	4 69	69		1799	1 71	76		1710	4,01	74		1476	3,94	73	
	;					ŕ		۰.		0.05				T , 1 1		1	1723	4,10			1722	4,67		
1									Ť	0,00		1	U	0,14			0	0,10			0	0,07		
,	1469. V	ers, 24,)	Oet.	1885.	4476, V	ers, 26, 6	0et.	1885.	1180. V	ers. 26, 0	Det.	1885.	4484. V	ers. 26. (Det, I	1885,	4488. V	ers, 27,	Oet.	1885,	4497. V	ers, 28, (Det. 1	1885.

.

Tabelle XIV.

Probestück für Zug und Druck aus Bessemerstahl, Lab.-Nr. 2868b, von der Form wie Fig. 1 auf Blatt II.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ronnen	Ur	1. sprüngl Zustar Druc	liche nd	r	25 Bee vori	2. Minuter endigun gen Ve	n na 1g de ersue	ich es chs	4 Stu	3. Inden o Zug	larna	ach	3 Т	4. age na Druc	chhei k	r	24 Sti	5. inden d Zug	darnaet	11/2 8 20 at a später lastet,	6. tunden d uf Druck, mit 247 endlich nachhei	arnach dann : auf Zi P/2 St auf	mit 2 Tage 1g be- under
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. <u>.</u>	$d = 4, \epsilon$	53 cm; 1	= 6,	,00cm	d = 4, i	55cm; 1:	=5,	95 cm	d = 4,5	5 cm; 1	= 5,9	93 cm	d = 4,5	3 cm;1=	=6,0	0 cm	d = 4,5	35 <i>cm</i> ;1:	=5,98c	$n a \sim a$	Dru (535 <i>em</i> ;	tk ∣arrō,	98.cm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Belastung	Spannung at	Verkürzung ^{1/1000} cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ^{1/1000} cm	Differenzen	Elast. Modul at	spannung at	Verlängerung ^{1/1000} cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ^{1/1000} cm	Differenzen	Elast. Modul at	Spannung at	Verlängerung ^{1/} 1000 CM	Differenzen Elast. Modul	ar Spannung at	Verkürzung ¹ 1000 CM	Differenzen	Elast. Modul
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 4 8 12 16 0 16 20 24 28 32 0 32 36 40 44 48 52 56 60	0 248 496 744 993 0 993 1241 1489 1737 1985 0 1985 2233 2481 2730 2978 3226 3474 3722	0 0,67 1,34 2,02 2,70 0,00 2,71 3,37 4,05 4,69 5,33 0,00 5,33 5,98 6,60 7,26 7,98 0,03 7,96 8,59 14,60 Scale schv	67 67 68 68 64 64 64 64 64 64 64 65 62 66 72 66 72 63 601 901 901 901 901 901 901 901 901 901 9	5,520000	0 246 492 738 984 0 984 1230 1476 1722 1968 0 1968 2214 2460 2706 2952 0 2952 3198 3444 3690	0 0,65 1,30 1,95 2,62 0,10 2,62 3,31 4,00 4,65 5,35 0,16 5,38 6,08 6,76 7,51 8,34 0,21 8,33 9,11 10,16 Scaler langsa 4416 17. 0	65 65 65 67 69 69 69 69 69 65 70 68 75 83 75 83 75 83 75 83 76 105 70 6.5 83	0000927.7	0 246 492 738 984 0 984 1230 1476 1722 1968 0 1968 2214 2460 2706 2952 0 2952 3198 3444 3690	0 0,65 1,35 2,57 3,84 1,29 3,94 5,33 7,05 9,20 11,81 6,46 12,08 14,80 18,94 23,62 29,32 20,91 29,81 35,92 44,84 Sca sch 441 17.	65 70 122 127 215 261 272 414 468 570 611 892 201 8. Ve Oct.	000077.7	0 248 496 744 993 0 998 1241 1489 1737 1985 0 1985 2233 2481 2730 2978 0 2978 3226 3474 3722	0 0,68 1,34 1,99 2,64 0,02 2,66 3,43 4,40 5,59 7,13 1,10 7,38 9,10 11,89 15,23 19,37 11,24 19,92 24,01 30,53 Scall schu 443: 20, C	63 66 65 65 65 119 154 181 270 334 414 409 652 en ver winder 2. Version, 18	000096,7	0 248 495 743 991 0 991 1238 0	0 0,64 1,32 2,00 2,83 0,21 2,85 3,79 0,50 4443 21. C	64 0000 68 51 69 94 94 8. Vers. bct. 1885.	0 248 499 74: 99 0 99 <u>1233</u> 148 0	$\begin{array}{c ccccc} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 4 \\ 2 \\ 3 \\ 1 \\ 2 \\ 4 \\ 2 \\ 3 \\ 1 \\ 2 \\ 4 \\ 2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	60 61 63 64 63 66 56 55. Ve	- 00006.7

_	ļ	7.		l		8.				9.				10.				11.				12.	-	
onner	22 Sti	nden : Z	nach	her	2 T	age da	rnac	h	4 Stu	nden n	ach	her	2 ¹ / ₂ St	unden	nacl	her	16 St	unden 7 n a	späi	er	Eine	n Tag	spä:	er
L 1	3 4 5	2 u g		00.	1 4 -	Drue	к _			Zug				Druc ozl	:к -			Zug		00	1_4 -	17 E U C 97 1	к г	
-= 	a = 4, b	35 Cm; 1	= 5,	98cm	a = 4, b	35cm;1:	=,	98 <i>cm</i>	a = 4, 3	35 Cm; 1		98, <i>cm</i>	a = 4, b	35 <i>cm</i> ;1:	$=$ \mathbf{b} ,	98cm	a = 4, 0	35 <i>cm</i> ; 1	==0,	98cm	a = 4, b	<i>5→cm</i> ; 1	ə,	98cm
lastun	nung tt	gerung o <i>cm</i>	enzen	Modu ut	ut	hrzung • cm	uəzuə.	Modu zt	nung at	ngerun, o <i>cm</i>	enzen	Modu t	nung ut	ltrzung 10 <i>CM</i>	enzen	Modu 21	anung at	ngerun o <i>cm</i>	enzen	Modu ut	nung t	(irzung oo <i>cm</i>	renzen	Modu ut
Be	Spar	Verlän 1/100	Differ	Elast.	Span	Verki 1/100	Diffe	Flast,	Spar	Verlär 1/100	Diffe	Elast.	Spar	Verki	Diffe	Elast.	Spar	Verlär 1/100	Diffe	Elast,	Span ,	Verki '/100	Diffe	Elast.
0	0	0			0	0	ca		0	0	69		0	0	85		0	0	69	1 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	0	0	na	
4	248	0,64	1 04		248	0,66	00		248	0,65	50		248	0,65	aa		248	0,62	60		248	0,66		
8	495	1,29	63		495	1,31	00		495	1,38	10		495	1,31	64		495	1,31	20	-	495	1,30	. 9 +	
12	743	1,92	1 03	0	743	1,97	00	0	743	2,18	60		743	2,00	87		743	2,00	69		743	1,96	66	
16	991	2,57	03	000	991	2,63	00	000	991	3,04			991	$2,\!67$		000	991	$2,\!68$		000	991	2,62		000
0	0	0,04	ļ	2'28	0	0,03		2,54	0	0,39			0	0,03		530	0	0,08		10	0	0,00		260
16	991	$2,\!60$	65		991	$2,\!64$	- 66		991	3,11			991	$2,\!66$	-87	r,	991	2,68	64	÷1	991	2,62	65	-1
20	1238	3,25	37		1238	3,30	- 67		1238	4,03	. 93		1238_{1}	3,33	69		1238	3,32	-134		$1238_{ }$	3.27	rj N	
24	1486	3,92			1486	3,97			1486	5,10	107		<u>1486</u>	4,02	-69		1486	4,01	79		14861	3.95		
28	0	0,09			0	0,05			1734	6,30	120		1734	4.71			1734	4.80			1734	4,64		
	4471. \	/ers. 24.	Oct.	1885.	4477. N	7ers. 26.	Oct.	1885.	0	$1,\!65$		1	0	0.13			0	0.29			Û.	0,07		
				l	4				4481, V	'ers. 26.	Oct,	1885.	. 4.485. V	ers. 26.	Qef.	1885.	1 4489. V	ers. 27,	oet.	1855.	, 498. V	er. 25,	oet,	יייני.

.

.

Tabelle XV.

Probestück für Zug und Druck aus Bessemerstahl, Lab. Nr. 2868°, von der Form wie Fig. 1 auf Blatt II.

	1.	2.	3.	4.	5.	6.
en	3 Tage vorher mit 20 t zuerst	5 Stunden nachher	2 Stunden nachher	15 Stunden nachher	2 Stunden nachher	4 Stunden nachher
onn	han Zug, dann am Druck be- hastet, ohne dass die Elasti-	Druck	Zug	Druck	Zug	Druck
-1 -	wäre	d 4,57 cm; 1 - 6,00 cm	d $4,57 cm; 1 = 6,00 cm$	d == 4,57 cm; 1 == 600, cm	d = 4,57 cm; l = 6,00 cm	d = 4,57 cm; 1 = 6,00 cm
Belastung in	Spannung r r $rerläng. Verläng. r pr rung r r r pr rung r r r r rr rung r r r r rr rung r r r r rr r r r r r r r r r $	Spannung at ^{1, Jaon} Cm Differenzen Elast. Modul	Spannung at Verlängerung 1/1000 cm Differenzen Fläst. Modul	Spannung at Verkürzung ^{1/1000} cm Differenzen I ¹ Jast. Modul	Spannung at Verlängerung $\frac{1}{1/1000}$ cm Differenzen Elast. Modul	Spannung at Verkürzung ¹ /1000 cm Differenzen Elast. Modul
$\begin{array}{c} 0\\ 4\\ 8\\ 12\\ 16\\ 0\\ 16\\ 20\\ 24\\ 28\\ 30\\ 32\\ 0\\ 32\\ 0\\ 32\\ 36\end{array}$	$\begin{array}{c cccccc} 0 & 0 & & & & & & & & & & & & & & & & $	$\begin{array}{c cccccc} 0 & 0 & & & & & & & \\ 244 & 0,68 & & & & & & \\ 488 & 1,35 & & & & & & \\ 5732 & 2,00 & & & & & & \\ 976 & 2,63 & & & & & & \\ 976 & 2,65 & & & & & & \\ 1220 & 3,30 & & & & & \\ 1463 & 3.93 & & & & & \\ 0 & 0,03 & & & & & \\ 4426, Vers. 19. Oct. 1885. \end{array}$	0 0 0 244 0,64 68 732 1,99 67 976 2,65 66 0 0,01 976 1220 3,29 67 1463 3,96 67 1463 3,96 65 1707 4,61 65 0 0,02 4429. Vers. 19. Oct. 1885.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		7.			1	8.			1	9.				10.			1	11.				12.		1		13.		
nen	$1^{3/4}$	Std. n	achł	her	3/4 Sti	ınden	nae	ehher	21 Stu	ınder	na	chher	5 ³ /4	Std. 1	nach	nher	2 T	age na	achl	her	1 T	'ag na	chł	ner .	26 T	age n	ach	her
Lon		Ζu	g		I) r u	c k	τ.		Zu	g		I) r u	c k	L L		Zu	g	1	D	rud	c k			Zu	g	
E	$\mathbf{d} = 4,$	57 cm ; 1	6,0	00 em	1 = 4,	$57\ cm$; 1		5,00 cm	d = 4,5	57 cm;	1 ==	6,00 cm	d == 4,	57 cm ; 1	= 6	3,00 cm	d = 4, 5	57 cm; 1	= 6	$00 \ cm$	d = 4.5	7 cm ; 1	= 6	,00 cm	d = 4,5	9 cm ; 1	= 5,	94 cm
Belastung	Spannung at	Verlängerung ¹ 1000 CM	Differenzen	at	Spannung at	Verkürzung ^{1/1000} cm	Differenzen	Elast. Modul at	$^{ m Spannung}_{at}$	Verlängerung ^{1/1000} <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul • at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	$\operatorname{Verktirzung}^{1/1000\ cm}$	Differenzen	Elast. Modul at	${ m Spannung} at$	Verlängerung ¹ /1000 cm	Differenzen	Elast. Modul
$\begin{array}{c} 0 \\ 4 \\ 8 \\ 12 \\ 0 \\ 16 \\ 0 \\ 16 \\ 23 \\ 23 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 244 488 732 976 0 976 1220 1463 1707 1951 2195 2439 0 4438, V	0 0,66 1,30 1,96 2,64 0,00 2,62 3,28 3,92 4,57 5,22 5,88 6,51 0,02 5,88 6,51 0,02	60 64 66 66 65 65 65 65 65 65 65 65 65 65 65	ق 2 2250000	0 244 488 732 976 1220 1463 1707 1951 2195 2439 2683 0	0 0,67 1,31 1,98 2,61 0,02,62 3,24 4,555 5,19 0,00 5,19 5,83 6,46 7,09 0,01 rs. 20, 0	67 64 63 63 65 64 65 64 65 64 65 67 Det.	00002.7,7	0 244 488 732 976 0 976 1220 1463 1707 1951 2195 2439 2683 2927 0	0 0,66 1,32 2,67 3,32 2,67 3,397 4,63 5,26 5,92 6,55 7,19 7,82 0,02 15,21 0,02	666 667 657 655 666 63 64 63 64 63	0000967.2	0 244 488 732 976 0 976 1220 1463 1707 1951 2195 2439 2683 2927 0 <u>2927</u> <u>3171</u> 0 4449. V	0 0,64 1,27 1,91 2,55 0,00 2,55 3,20 3,83 4,45 5,09 0,01 5,10 5,75 6,39 7,02 7,66 0,03 7,66 8,31 0,05	64 63 64 64 64 65 64 65 64 65 64 65 64 65 64 65 7 0ct	000067,7	0 244 488 732 976 1220 1463 1707 1951 2195 2439 2683 2927 3171 3415 0 4461. V	0 0,64 1,29 1,92 2,54 0,00 2,52 3,13 3,75 4,37 4,98 0,02 5,00 5,62 6,23 6,86 7,46 0,03 7,50 8,12 8,74 0,09 ers. 23.	64 65 63 62 62 61 62 61 62 61 63 60 82 82 82 00 ct.	000098;8 1885. 48 <i>t</i> 52 60 0 60 64 68 70	$\begin{array}{c} 0\\ 244\\ 488\\ 732\\ 976\\ 0\\ 976\\ 1220\\ 1463\\ 1707\\ 1951\\ 2195\\ 2439\\ 2683\\ 2927\\ 3171\\ 3415\\ 3659\\ 0\\ 2927\\ 3171\\ 3415\\ 3659\\ 0\\ 2927\\ 3171\\ 3415\\ 3659\\ 0\\ 3902\\ 4146\\ 4268\\ 4473, Vertex \\ 0 \end{array}$	0 0,62 1,23 1,87 2,52 0,000 2,55 3,17 3,76 4,36 5,00 0,000 5,02 5,63 6,25 6,82 7,45 8,13 8,60 9,12 -0,18 7,45 8,06 8,67 9,27 9,75 1 Minin dann h Scaler Queters, 24, 6	62 61 64 65 62 59 60 64 61 62 57 63 61 47 52 80 61 47 52 80 61 47 52 80 61 47 52 80 63 64 65 65 65 65 65 65 65 65 65 65	000098. t 0,000 stellt ruhig, en, 1885.	0 242 483 725 967 1208 1450 1692 1934 0 4457. V	0 0,61 1,22 1,84 2,47 3,05 3,65 4,63 6,32 1,43	61 61 62 63 58 60 98 169	000098.7

Tabelle XVI.Probestück für Zug und Druck aus Bessemerstahl, Lab. Nr. 2868^d, von der Form wie Fig. 1 auf Blatt II.

		1.				2.				3.				4.			L	5.				б.		
nnen	Nachder 4 Tagen Druck di 2 Tagen belastet	n das Pro mit 20 <i>t</i> ann auf Z mit 24 <i>t</i> worden	bestu zuer Lug u auf war,	ick vor rst auf nd vor Druck ohne	25 Mi endigu	nuten ing des Versuel	nach 3 vo hes	Be Berigen	Drei	Tage 1	nach	her	8 Min endigu	uten n ng des Versueli	ach voi ies	Be- rigen	Drei	Tage r	achl	ner	23	Tage s	päte	r
n To	Uebersel	nreitung (tätsgrenz Dr.u.e	derE ze • k	lastici		Dru	c k			Dru	c k			Drue	k			Ζug	ŗ) rue	k	
10	d = 4,5	3 cm; 1	6,	00 cm	d 4,8	55 cm; 1	÷ 5,	95 cm	d = 4,8	56 <i>cm</i> ; 1	- 5,	91 <i>cm</i>	d = 4, l	58 cm; 1	5,8	87 cm	d =4,5	9 <i>cm</i> ;1	. 5,8	84 cm	d 4,58	Bem; 1	5,	89 cm
Belastur	$\operatorname{Spannung}_{at}$	Verkürzung 1/1000 cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ /1000 cm	Differenzen	Elast. Modul. at	Spannung at	Verkürzung ^{1/1000} <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verkürzung ¹ , ₁₀₀₀ cm	Differenzen	Elast, Modul at	Spannung at	Verlängerung ¹ 1000 CM	Differenzen	Flast, Modul at	$s_{pannung}$	Verkürzung ¹⁷ Auge CM	Differenzen	Flast. Modul ¹ at
0	0	0			0	0			0	0			0	0		•	0	0		_	0	0		_
4	248	0.65	65	:	246	0.70	70		245	0.61	61		242	0.62	- 62	000	242	0.60	60	000	242	0.60	60	000
8	496	1,33	68		492	1.39	69		490	1.22	41	f I i	486	1,22	60)18,	483	1,20	60	,35(486	1,19	59	-39(
12	744	1,98	65		738	2,06	67		735	1,85	63		729	1,85	63	וכ	725	1,80	60	- F1	729	1,78	59	- 64
16	993	2,67	69		984	2,72	68	0	980	2,47	62	00	971	2,48	63		967	2,40	60		971	2,39	-61	
0	0	0,00			0	0,00		800	0	0,00	1	400	0	0,00			0	0,16			0	0,00		
16	· 993	2,66			984	2,71		L,Z	980	2,48		2.3	971	2,48			967	2,40			971	2,39		
20	1241	2,31	65		1230	3,37	66		1225	3,09	61		1214	3,09	61		1208	3,13	73		1214	3,00	-61	
24	1489	3,95	64		1476	4,05	68		1470	3,71	62		1457	3,71	62		1450	4,39	125		1457	$3,\!68$	-08 -05	
28	1737	4,63	65	000	1722	4,72	67		1715	4,32	61		1700	4,35	65		1692	6,39	254		1700	4,33	67	
32	1985	5,28		310,	1968	5,40	00		1960	4,94			1943	5,00	0.1		1934	8,93			1943	5,00		ł
32	1085	5 29		5,	1069	0,01			1060	0,04			1049	5.00			1934	9.90			1943	5.01		
36	2233	5,93	64		2214	0,31 6.04	67		2205	4,90	62		2186	5,63	63		2175	12.10	281		2186	5.71	70	
40	2461	6,54	61		2460	6.78	74		2450	6,20	65		2429	6,32	69		2417	16,29	419		2429	6,51	80	
44	2730	7,16	62		2706	7,50	72		2694	6,82	62		2672	7,00	68		2659	21,19	490		2672	7,36	85	
48	2978	7,78	02		2952	8,23	73		2939	7,48	66		2914	7,70	70		2900	$27,\!03$	584		2914	8,31	95	
0	0	0,03			0	0,09			0	0,07			0	0,10			0	18,92			0	0,85	1	
48	2978	7,83	61		2952	8,23			2939	7,49	62		2914	7,70	66		2900	$27,\!63$			4555. Ve	rs. 19. N	ίον,	1885.
52	3226	8,44	60		3198	8,99	76		3185	8,11	71		3157	8,36	73		3142	$33,\!92$	629					
56	3474	9,04	61		3444	9,88	89		3429	8,82	68		3400	9,09	74		3384	43,30	0.05					
60	$\frac{3722}{2070}$	9,65			3690	11,03	412		3674	9,50	70		3643	9,83	77		3625	Scalen schw	sind under	ver- n.				
04	3970	nahezu dann sir	erre ikt d	Wage	3936	15,15			3919	10,20			3886	10,60	4 91 ⁻ 40-		4490. V	ers. 97	Oct	1842				
64	Ū	die Sca	ien sch	durch	3936	3,92			3919	10.94			3886	10.61	1			-						
68	4451 X	ane 21 (Dot	1995	4182	29.16	1306		4164	10,24	71		4129	11.34	73									
72	4401. V	C15, 21. (1000.	4428	Scalen	verse	hwin-	4409	11,82	87		4372	12,21	87									
76						den, Q	uetse	hen.	4654	13,11	129		4615	13,08	87									
80					4451. V	ers. 21, (Det. 1	.885.	$\overline{4899}$	31,79	1903		4857	14,23	115									
0									0	18,61		l	0	0,77										
80				and the second se					4899	34,12			4857	14,34	225									
84 99					1				$\frac{5144}{=}$	Scalen den, Q	versel uetsel	hwin- hen.	$\frac{5100}{5243}$	16,59										
00				2 					A167 X7	ore 9 4 /	0t 1	007		Quet	schen	lurch								
									4407. 1	CIS. 24.	001. 1	.ceo.	4467. V	ers. 24. C)et. 1	885,								
					}											4								
					1																			
								it U				ŀ				4								
																				-				
	-																							
				1												l;								
												-				l.								
	ĺ																							
																l. A								

Tabelle XVII.

Probestück für Zug und Druck aus dem einen Bruchstück einer 12,8cm dicken, auf Biegungsfestigkeit geprüften Achswelle von Thomas-Stabl, bez. mit AII.

=		1				2.				3.	······································		1	4.			1	5.				6.		
nen	Urs	prüngl.	Zus	tand	7 8	tunden	darı	nach	16 S	tunden	nac	hher	5 S	tunden	spä	ter	17 St	unden	nacl	hher	$1^{3}/4$ S	tunden	nao	chher
Tor	t	Ζu	ц			Dr u	e k		l	Zug	g			Druc	e k			Zug	5			Druc	e k	
E	d 4.	58 cm:	1 . 6.	,00 cm	d -= 4	,58 <i>cm</i> ; l	== 6,	00 cm	d = 4, d	58 cm; 1	6	,00 cn	$d = 4, \delta$	58 <i>cm</i> ; 1	=6,	00 cm	d = 4,5	8 cm; 1	=6,	<u>00 cm</u>	d = 4, 6	58 cm; 1	= 6	,00 cm
Belastung	Spannung <i>wt</i>	Verlängerung ¹ , 1900 <i>cm</i>	Differenzen	Elast. Modu at	Spannung at	Verkürzung ¹ /1000 CM	Differenzen	Elast. Modu at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modu at	Spannung at	Verkürzung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modu at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modu at	Spannung at	$\frac{\mathrm{Verk}\mathrm{\ddot{u}rzung}}{\mathrm{^{1}/_{1000}}\ cm}$	Differenzen	Elast. Modu at
0	0	0		1	0	0	ea		0-	0	05		0	0	6.0		0	0			0	0		
-1	243	0,62	63		243	0,66	68		243	0,65	65	8	243	0,62	61	8	243	$0,\!64$	04		243	$0,\!62$	62	
8	486	1,25	65		486	1,34	67		486	1,30	67	200	486	1,23	62	400	486	1,29	64		486	1,23	61	
12	729	1,90	62		729	2,01	70		729	1,97	65	5,5	729	1,85	64	2'3	729	1,93	63		729	1,85	69	1
16	971	2,52		000	971	2,71			971	$2,\!62$			971	$2,\!49$			971	$2,\!56$		000	971	$2,\!47$		000
0	0	0,00		280	0	0,19			0	0,10			0	0,00			0	0,01		,56(0	0,00		350
16	971	2,51	62	5	971	2,71	72		971	2,64	76		971	$2,\!49$	62		971	2,57	64	จา	971	2,47	62	~
20	1214	3,13	65		1214	3,43	71		1214	3,40	82		1214	3,11	66	1	1214	3,21	65		1214	3,09	63	
24	1457	3,78	65		1457	4,14	71		1457	4,22			1457	3,77			1457	3,86	69		1457	3,72	66	
20	1019	4,43	64		1700	4,85	74		0	0,37			0	0,02			1700	4,55			1700	4,38		
0	1940	3,07			1943	0,59								-			0	0,07			0	0,05		
32	1943	5.08			v 1943	5.60			1	1	1			l			1				l			
36	2186	5.73	65		2186	6.35	75		4524, V€	ers. 10. N	lov.	1885.	4525. Ve	ers. 10. N	lov. 1	1885.	4527. Ve	rs. 11. N	lov.	1885.	4529. Ve	ers. 11. N	lov.	1885.
40	2429	6,38	65		2429	7.07	72													4				
44	2672	7,02	64		2672	7,84	77													÷				
48	2914	7,67	65		2914	8,60	76																	
0	0	0,02			0	0,96		100				i i								1				
48	2914	7,69	119		2914	8,69	106													4				
52	3157	8,81			3157	9,75						4												
	0	0,65			0	1,51														1				
	4518, V	'ers. 9, N	for, 1	885.	4521. V	'ers. 9. N	ov. 1	885.				4								1				
p		<u> </u>																					_	

=		7.				8.				9.				10.				11.				12.			ł	13	•	
oune	1 St	unde	nael	hher	2^{3}_{4} .	Stund.	na	chhei	11/4 8	tunde	n s	päter	1 Stu	nde 1	nac	hher	15 St	unden	sp	öäter	2 St	unden	$^{\mathrm{sp}}$	äter	3 ³ /4 S	tunde	ns	päter
5		Ζu	g		1	Dru	c k			Ζu	g			Dru	e k			Zu	g		-	Dru	c k			Ζu	g	-
Ĩ.	d = 4,	58 cm ;	1 = 6	5,00 ~ 10	d = 4,	58 cm ;	1 = (5,00 em	d = 4,5	8 cm; 1	= 6	5,00 cm	d = 4,5	8 cm; 1	= (5,00 cm	$\mathbf{d} = 4,5$	58 <i>em</i> ; 1	6	,00°cm	d = 4.5	8 cm ;]	= 6	5.00 cm	d = 4.5	8 cm :	0 = f	3 00 cm
Belastung	Spannung at	Verlängerung ¹ /1000 cm	Differenzen	Elast. Modul at	Spannung at	Verkürzung ^{1/1000} <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	Verlängerung ¹ /1000 <i>cm</i>	Differenzen	Elast. Modul at	$s_{pannung}$ at	Verkürzung ¹ /1000 cm	Differenzen	Elast. Modul at	Spannung at	Verlängerung ^{1/1000} <i>cm</i>	Differenzen	Elast. Modul at	Spannung at	$\operatorname{Verkürzung}_{1/1000\ CM}$	Differenzen	Elast, Modul at	$\operatorname{Spannung}_{at}$	Verlängerung	Differenzen	Elast, Modul S at
0 4 8 12 16 0 16 20 24 28 32	0 243 486 729 971 0 971 1214 1457 1700 0	0 0,64 1,31 1,96 2,62 0,06 2,62 3,29 3,97 4,68 0,17	64 67 65 66 67 69 71	5,520000	0 243 486 729 971 0 971 1214 1457 1700 0	0 0,60 1,19 1,77 2,34 0,00 2,35 2,96 3,60 4,23 0,05	60 59 58 57 61 64 63	2:400000	0 243 486 729 971 0 971 <u>1214</u> <u>1457</u> 1700 1943 0	0 0,64 1,30 2,61 3,27 3,95 4,63 5,52 0,30	64 66 68 68 89	000087.7	0 243 486 729 971 0 971 1214 1457 1700 0	0 0,64 1,30 1,96 2,58 0,00 2,56 3,21 3,85 4,52 0,06	64 66 62 63 64 67	0000127.7	0 243 486 729 971 0 971 1214 1457 1700 0 4540. Ve	0 0,65 1,31 1,95 2,60 0,02 2,59 3,25 3,91 4,58 0,09	65 66 64 65 66 97	0000 7,530000	0 243 486 729 <u>971</u> 0 971 1214 1457 1700 0	0 0,62 1,25 1,89 2,52 0,03 2,52 3,18 3,83 4,51 0,10	62 63 64 63 65 65 68	8 ;310000	0 243 486 729 971 0 971 1214 1457 1700 0 1700 1943 0	0 0,64 1,29 1,93 2,60 0,03 2,59 3,26 3,91 4,59 0,07 4,57 5,28 0,13	64 65 64 67 65 69 71	2'230000

 Tabelle XVIII.

 Probestück für Zug und Druck aus dem einen Bruchstück D einer auf Biegungsfestigkeit geprüften Eisenbahnschiene aus Thomas-Stahl (Fig 7, Blatt II).

						•)			3						11/1			·					
en	Lux une	r. reninal	Znet	mala	15 St		ողջիկե	r 9 S	-		101	: [1/,		т. 	mabha		94 Ann Ion		-				
onn	mus	Z u (r	ance	10 00	Dru-	· k	· · ·	Z u	g g		; 0 / 4 • 1	Dr	n en n	k		Z u		ier :) r n e	- k	(e.t
n T	d = 3.3	38cm:1:	- ==5,	00 <i>cm</i>	d == 3.3	38 <i>cm</i> ;1	= 5,01	m d = 3	,38 cm :	 1==5,€)0 cm	d 3	,38 c.	m:1	5,00 m	nd 3	.38 <i>cm</i> :1	5 - 5,0	: 0 <i>ет</i> с	1 3,38	8 <i>cm</i> :1	5.0)0 <i>~m</i>
.ા સ		ac D	. =	lul	51	50 []	n In	50	ы Е	Ę	[n]	ar	2	<u>r</u>	n In		i.	= 2	111	50	ы П	Ę	Ξ
stun	guni	leru cm	azu	Moo	unu -	nz.	onze Moe	uni.	geru -	nze	Π ⁰ Π	unt		in the second se	Mod	un	nno Ling	-DZC-		funt	mu huai	-nze	Ne.
sela	anna 100	läng /1000	ffere	st. a	a nua	rkü /1000	ffer st.	a a a	lan	ffere	st. a	ann a	- rkñ	- Tean	st.	anna anna	lang	liere.	₹ Ĵ	una B	láng.	liere	Ξ
-	\vec{x}	Ver	Di	Ela	·7.	~	Ela	5	l.er	iU	F.la	<i>.</i> 7.			Ela Ela	ī.	1. 1	ЦС I	<u>-</u>	· 7 .	V.er	Ē	Ela
	0			1	0	0	c	> 0				0	i	n		:	1 0	•					
2	223	0.50	50	-	223	0.47	47 00	223	0.5	50)		223	. ().52 .52	58	223	0.50	501		223	0.45	15	
4	446	1,00	50		446	0,97	50 O O	446	1,0	- 57 7		446	1	.04	52 .	440	. 1.00	500 · ·	<u> </u>	446	0,92	17	-
6	669	1,49	49		669	1,46	49	669	1,6	57 1		669	1	1,53	₽ .000	663	, 1,49	49)00C	669 .	1,40	15	000
8	892	1,96	-17		892	1,95	49	892	2.2	59 3	1	892	2	2,02	17 C	892	1,99	50	553	892^{+}	1,89	10 1	5.335
0	0	0.00		9	0	0,05		0	0,2	5		0	0),03		0	0,01		£4 ;	0	0,00		.,
8	892	1,97	50	2000	892	1,98	53	892	2,28	8 62		892	2	2,03	30	892	2,00	51		892	1,89		
10	1115	2,47	48	5.55	1115	2,51	63	1115	2,90	0		1115	. 1	2,53	56	1115	2,51	50		1115	2,38	-49	
12	1338	2,95	49	1	1338	3,14	61	1338	3,5	3 76		1338		3,09		1338	3,01	49		1338	2,87	89	
14	1561	3,44	48		1561	3,75	102	1561	4,29	9		0	0	0,10		$\frac{1561}{1}$	3,50	56	i.	$\frac{1561}{1}$	3,34	47 50	
16	1784	3,92	ļ		1784	4,77		0	0,80	0	1	4526.	Vers.	10. No	ov. 1885	. 1784	4,06			1784)	3,84	.,,	
0	0	0,01			0	0,84		4523.	Vers. 10	Nov.	1885.					0	0,08			0	0,03		
16	1784	3,92	49		1784	4,87	111									4528.	Vers, 11.	Nov. 1	885.	1784	3,84	55	
18	2007	4,41	49		2007	0,98 7 59	154	and the second sec											ļ	2007	4,09		
20 22	2453	6.35	45		2453	9.30	178												100 March 100 Ma	v	0,10		
24	2676	5,85	50		2676	11,73	243				ĺ									4530. Ve	rs, 11. 1	Nov.	1885.
0	0	0,02			0	5,38		1			1												
24	2676	5,85	· 10		1700 1		с [т.н. т.о.									ц. С							
26	2899	6,34	- 40 56		4522. A	ers, 10.	NOV. 158	a. '															
28	3122	6.90																	1				
30	3345	Scalen la	uten	durch				14 17 1															
	0	9,68														p F							
	4519, 1	Vers, 9. 1	Nov.	1885.							ĺ												
<u></u>	11 				0		1					1 						1.0			10		<u> </u>
E	f	i.			0.	•		9.			10	. .			11.			12.			10	•	
nn(³∕₄ Stur	nden na 	ehhe	er 3 S	tunden	nachh	er 1 S	tunde na	uchher	1',4	Std.	naehl	ıer	14 Stu	ınden ı	nachhe	$r 1^{3}/4$	std. na	ichhe	er 3 ³ /4	Std. 1	nach	her
T.	a	Zug	5.00		Dru	. e k 1 . 5 00		Zug	- 5.00 -) r t	1 C K		7 9.	Zuş	g 5.00	D a pos	rue	; k - 100	и Ц П. А. ше 9	Zu	g -	<i></i>
.Е ъс	a = 3,38	em;1= 월 -	<u>, 00 /</u>	 	5,55 cm ; 50	- 5,00	$c_m \alpha = i$	<u> 20 em ; 1 =</u>	- 5.00 en	$r \mathbf{u} = \mathbf{o}_{\mathbf{v}}$	55 rm; 50	1 = 0,1	ю <i>ет</i> Е	u = 5.4	57 cm ; 1 몇	= 5,00 <i>ch</i>	n a ≕ ə,ə 	5400 ; 1 = 54	- 300 - 3	<i>еш</i> а та а	<u>्र</u> ्थः ह्य		
tun	gun	erui cm nzei	lodi	gun	zun C#D	10du	ទំពោ	erm	nzei Jody	nng	Zun	uzei		ដ ហារ	erui cm	nzer 10d1	gun	zun	Lodu	зun	erui	nzei	101
elas	ann at	äng toor i erei	(,) ,	41 1111	at kür	ere t. N	ann at	n n n n n n n n n n n n n n n n n n n	iere. st. A <i>at</i>	ann at	kür	ere	at a	ann af	ing.	forel at. N	at	kür Lom	. ۲ ۲	ann et	äng	ere	ε(.)
Å	Î.	/erb // Diff	Glas	$s_{\rm p}$	Ver 1/	Diff	$\hat{\mathbf{x}}$	Verl. /	Elar Flar	$\hat{\vec{x}}$	Ver	> Hid	- RIV	ź	Zerls 	Elas Elas	Ŷ.	10 N	Diff Flas	ŕ.	ferl.	tri t	Elar F
		-	1								1 - -						1			a nin tat. A			
0	$\begin{array}{c} 0\\223\end{array}$	$\begin{array}{c c}0\\0.52\end{array}$		0 29		48	$ \begin{array}{c} 0 \\ 27 \\ \end{array} $	$ \begin{bmatrix} 0 \\ 0.52 \end{bmatrix}^{-5} $	2	$0 \\ 223$	$\begin{bmatrix} 0\\ 0.4 \end{bmatrix}$	94 1 9		$\frac{0}{223}$	$\begin{array}{c} 0\\ 0.48 \end{array}$	48	$\begin{array}{c} 0\\223\end{array}$	$\frac{0}{0.47}$	¥7 .	0	$\begin{array}{c} 0\\ 3 & 0.51 \end{array}$	51	
4	446	$1,04$ $^{52}_{51}$	00	44	6. 0,9	49 . 59	44	1,05	3 00 1 00	446	0,9	8 49	8	446	0,98	50 00	446	0,95	18 00 19 00	44	5 1,01	_50 50 -1	000
6 8	$\frac{669}{892}$	1,55 2.06 51	500	60 89	59 + 1,4 02 + 1,99	52	669 89	2 2,08	" 1400	669 892	1,4 1,9	4 47	3000	$\frac{669}{892}$	1,47 1,97	50 082	669 892	1,40. 1,95	 	-561 -892	2 + 1,51 2 + 2.03	52	2200
0	0	0,07	2,1	0	0,0	2	U	0,07	Š	0	0,0	0	5	0	0.02	5,7	0	0,02	÷.	0	0,01		21
$\frac{8}{10}$	$\frac{892}{1115}$	2.09 2.61 52		89	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 51	89:	2,12 5,2.67	5	$892 \\ 1115$	1,9 2.4	4 50 L	3	$\frac{892}{1115}$	$-1,99^{\circ}$ 2.48	49	$\frac{892}{1115}$	1,95 2.43	18	$\frac{892}{111}$	$2 2.01 \\ 5 2.51$	59	
12	1338	3,11		133	3,00	$)^{-51}_{-52}$	133	3,20	8 6	1338	2,9	6 ⁵² 53		1338	2,99	51 50 -	1338	2,92	19 19 -	1338	3 3,01	59 (55	
14	$\frac{1561}{1784}$	3,63		150	51 3,5:	2 53	156	1 3 ,76	5	1561	3,5	1		1561	3,49	52	$\frac{1561}{1784}$	3,41	51	1561	L 3,56		
<u>то</u> 0	0	4,18		178	*+ 4,0 0,0	9 }	178- 0	+ +,31 0,38	-	U	0,1	1		0	0,08		0	0,07		U	0,09		
$\frac{16}{18}$	$\frac{1784}{2007}$	421 4.77 ⁵⁶		178	84 4,00	6 - 51	178	1 4,38 1 96	8	4539, V	'ers, 11	l. Nov. 1	1885.]	$\frac{1784}{2007}$	4,02 4.58	56	1784 2007	$\frac{3.93}{4.46}$	53	4545.	Ver4, 12,	Nov.	1885.
20	0	0,30		223	30 5,1	1 54 59	2230	5,62	1 6	a de la composición de la comp				0	0,14		0	0,10	:				
22	4532, Vei	i rs. 11. Nov	: . 188	5.245	$53 + 5.70 \\ - 0.3$	1	0	0.68	1					4541. V	ers, 12. N	Sov, 1885	:4543. Ve	rs. 12, N	lov, 15	sad			
				4535	, Vers, 11	Nov. 18	85. ⁽⁴⁵³⁷ ,	Vers. 11. N	ov, 1885	.11													
	Bausel	hinger. M	litthe	i ilunger	ı, XIII.					H							6			î.	7		
		/			,																•		

. .

Tabelle XIX.

Dauer-Versuche mit 6 Vierkantstäbchen (Nr. 1-5 und 49), welche aus einer 11 mm dicken Schweissenblechtafel so herausgeschnitten wurden, wie Fig. 2 auf Blatt II zeigt.

-																				
			ę		ц.	Juder		erg	iebt	die	Prüfu	ig mit ri	hender	Bela	istun	g	Nacl mit ode	i d. E wechse r ruhe Selastu	Bruche eluder auder ing	
-			, n it.		tage	sil.	3 2		nitt		2 4	lul		ધ	ung v	1	<u>.</u>	Deh	nung	
~	mue		sehe anne	ž	ulu:	N.C.	istuu ieh	-	1.7.1	щ	ness.	ωW	enze	51 H	ehn « Cu	rkeit	Con	agu	-	Bruchaussehen etc.
		N 11	1	3		bei	Beda ersu		, lue	×.		ats- at	tir at	sela at	 ಎ	atig	n. 7.00	I.a.	50 ×	
107	Bez	7	den		uru.		 		Ē	ш		ticit	ast.	x. I	end Tei.	urfi	- Sec.	die m	$P_{P'}$	
						erfi	mte	1	5		un für	Elas		Ma	dal	N	Que	Į.	R	
							:					-	1							
													1	ł	-					
	5	• • •					347)	s 1,1:	$^{2}\times$	1,03	10,00	2,050000	1048	- 1		3840	20	150	15,5	Feingeschichtet mit feinem Spalt in
													an a chao anna an			_				der Richtung der Schichtung.
:	: 1	378971	0-108	0	0		350:	; 1,10	; x	1,01	10,00	2.056091) 1620) 171(0.17		_		-	
:	: 1	1 0 13 4 2 2	0-108	0	()		351:	3 1,16	۶X	1,01	10,00	2.010000	1620	1710	0,28	3	_		_	
1	1	12096141	0-108	0	5		3517	1,1	γХ	1,01	10,00	2.000000	1710	1880	0,13	-		-		
5	1	5-082884	0 - 108	0	0		353	1,14	×	1,01	10,00	2.050000	1620	1880	0,20)		-		
¢;	1	5.170528	0 - 108	0 7	50		.3571	1,16	; X	1,01	10,00	2.050000	1880	2051	0,22	3600	24	150	8,1	Bruch wie bei Nr. 5.
			1		:										1					
7	2	369800	0	θ.	0		3502	21.14	х	1.04	10,00	2.030000	>1670	1670	0.09					
8	2	1.029189	0 150	0	0	~~	3512	: 1,1(××	1,04	10,00	2.065000	>1670	1670	0.01		_	_		
9	2	1414623	0-150	Ú.	-1		3516	1,10	×	1,04	10,00	2.020000	>1670	1670	0,24	_	_			
10	2	2.104366	0	D	0		3533	1,10	X	1,04	10,00	2'025000	>1670	1670	0,08	_		_	<u> </u>	
11	2	54189005	0150	0.5	0	_	3570	1,16	X	1,04	10,00	2.100000	2020	2270	0,55	3710	28	150	10,4	Bruch wie bei Nr. 5.
																	ļ	ļ	ĺ	
12	3	364456	0-2000		0		3501	: 1.16	X	1.62	10.00	- 25036000	1525	2030	0 ee		,			
13	з	1.025506	02000	,	0	1	3511	1,16	X	1.02	10,00	2.02000	>2030	2030	0.07		_	-		
14	3	1110940	0~~2004)	4		3515	1,16	X	1,02	10,00	2.020000	>2030	2030	0.11	_	_	_		
15	3	25098014	0-200)	0		3532	1,16	X	1,02	10,00	2.020000	>2030	2030	0,08		_			
16	3	$5^{\circ}182653$	0 - 2000) 4	8	a	3569	1,16	Х	1,02	10,00	24100000	2200	2460	0,49	3730	19	150	12,5	Bruch wie bei Nr. 5.
17	4	353569	0-2500	•	0		::500	1 15	. 🗸	1.05	18.00	29055000	9910	2100	0.43	İ				
18	4	992525	0-2500	, (0		3510	1.15	∘.∧. sX	1.04	10.00	1.985000.	2310	2480 2500	0,42		-	-	-	
19	4:	1:086227	02500).	ŧ		3514	1,15	××	1,04	10,00	2'050000	2290 ⁻¹	2500 2500:	0.21			-	-	
20	4	24066685	0 2 500	•	0		3531	1,15	»X	1,04	10.00	2.020000	2506	2500	0.21	_				
21	4	2.288446	0-2500		- B	rue	h. —				· · · · ·		_	-	-	_	10	150	0.9	Bruch, ausserhalb der 150mm liegend
																		100	0,0	ist zum grösseren Theil eigen- thümlich hell, glänzend und kry-
	1										:	-								stallinisch, gegen den übrigen kleineren, sehnigen Theil scharf
22°	1 9	14708010	0-2000	1	4 4		4514	1,12	X	1,10	10,00	2.060000	1790	2110	0,62	_	_		_	abgegrenzt. Die Walzoherffische zwei bille
0.0		010 -0 00 4	0 0000	ı											, I					geschliffen.
2.3	1	a 014004 j	0-2000		•		4012	1,12	Х	1,10	10,00	2160000	2190	2440	0,78	-	-	-		Noch im Betrieb.
	;													i		ł				
-	ł											i	-				,			
												4 - -		i i						
	1				÷					-							ļ			
	1				÷											- 1 - 1 - 1 - 1				
				i i									- Martin dan K	1						

Tabelle XX.

Dauer-Versuche mit 17	Vierkantstäbehen (Nr. 6-19 und 46-48), welche aus einer 11 mm dicken Fl	usseisenblechtafel
	so herausgeschnitten wurden, wie Fig. 3, Blatt II zeigt.	

er.	•			nder		ergiebt d	e Prüfu	ng mit ru	hender	Bela	stung		Nach mit y oder B	d. Br vechsel Truher distum	uehe Inder ider	
Laufende Numn Bezeichnung Ni	Nach Anstrengungen	zwischen den Spannunge <i>at</i> bis <i>at</i>	und Ruhetager	erfølgt bei wechsel Belastung	unter Versuch Nr.	bei dem Querschnitt cm × cm	und der Länge für die Messung <i>cm</i>	Elasticitats-Modul at	Elast, Grenze at	Max. Belastung at	Bichende Debnung daheit ¹ inn cm	Zugfi-tipkeit at	Querschn. Contr. Proc.	Dehr ann ann ann	Petraz în E	Bruchaussehen etc. •
1 1() 0				3541	11,05 imes1.0	3 10,00	2.160000	2385			4360	60	150	21,3	Feinschnig, mit Spalt.
2 \$ 3 \$ 4 \$ 5 \$ 6 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5) 0 1.859826 3.666435 4.422300 5,568081 6.235000 6.675923 6.675923	- 0-2440 0-2440 0-2440 0-2440 0-2440 0-2440 0-2440	48 1 54 0 4		354(3602 3621 3730 3762 	$\begin{array}{c c} 0 & 1,05 \times 1,0\\ 5 & 1,05 \times 1,0\\ 5 & 1,05 \times 1,0\\ 1,05 \times 1,0\\ 1,05 \times 1,0\\ 3 & 1,05 \times 1,0\\ 3 & 1,05 \times 1,0\\ \end{array}$	10,000 33 10,000 33 10,000 33 10,000 33 10,000 33 10,000 34 10,000 35 10,000 	2*120000 2 050000 2*150000 2*150000 2*160000	2410 2500 2870 2870 2870 2960	278(278(315) 296(315) 315() 0,46) 0,37)) 0,08) 1,82 				0,8	Bruch, von einer Stelle ausgehend, wo ein Schiefer an der Oberfläche war, zeigt um diese Stelle herum die charakteristische matte und feinkörnige Struktur innerhalb einer Viertelsellipse, die gegen den übrigen feinschnigen Theil scharf abgegrenzt ist. Zwei feine Spalten. Einschnürung nur an der schnigen Seite. Feinschnig, wie Nr. 10.
	0 010020	0 2110				1,00 × 0,0	-	4 					.,.,	••••		Temperang, with the
10 46 11 46	2·197786 3·553388	0-2440	1/8	Bruch	4341	1,09×0.9: —	5- 10,00 	2,110000	2745		0,17		21			Das Stabchen hatte ursprünglich eine Walzdalle: der Bruch erfolgt aber nicht durch diese. Die Bruch- fläche zeigt an einer Ecke eine schwärzliche Stelle und von dieser ausgehend das charakteristische Anseben der Brüche in der Wöhler'schen Maschine, namlich eine mattglasige, durch einen Ellipsenbogen scharf begrenzte Fläche: der ausserhalb derselben liegende Theil ist feinschnig, wie bei Nr. 10. Feine Spalten. Ein- schnörung nur an der schnigen Seite.
$ \begin{array}{c} 12 \\ 13 \\ 47 \end{array} $	2°290801 4'488587	0-2440 0-2440	1 ³ /4 1/6		4295 4342	$1,07 \times 1,01$ $1,07 \times 1,01$	1 10,00 1 10,00	2*220090 2*1450000	2685 1670	3060 2220	0,29 0,52					Mit allerseits gut polierter Oberfl. Das Stabehen zeigte beim Aus- spannen aus der Wohler'schen Maschine die flammigen Zeich- nungen, welche beim Beginn des Streckens auftreten.
14 47	4488587	0-2440	$\frac{2^{1}}{6}$		4344	$1,07 \times 1.0$ 1.07×1.0	1, 10,00 1, 10,00	2.185000	2410 2590	2780 - 2960	10,30 10,94					
15 47	8'864189	0-2440 0-2440	716 1/a		4512	1.07×1.0	1 10.00	2.160000	2550 2780	2980	0,10			_		
-47	11'028776	0-2440	3/4	<u>`</u>	4613	1,07 ×1,0	1 10,00	2'270000	3060	3330	0,22	_	—	<u> </u>	_	Noch im Betrieb.
16 48 17 48 18 48	2 891519 5'089305 7'168207	0-2440 0-2440 0-2440	2 1/5 1/4	-	4297 4343 4374	$1,09 \times 0.9$ $1,09 \times 0.9$ $1,09 \times 0.9$	9 10,00 9 10,00 9 10,00	2.060000 2.180000 2.150000	2500 2685 2500	2780 2960 2960	0,28 0,28 3,91					Mit ursprünglicher, rauher, aber dem Anscheine nach unverletzter Oberfläche.
19 48	7'348246	0-2440		Bruch						-			21			Aussehen der Bruchfl, fast genau so, wie bei Nr. 46, nur liegt das Cen- trum des schwärzl. Fleckens ca. 2 mm von der Ecke der Bruchfl, entfernt. Ein eingewalzter Schiefer an dies. Stelle bemerkbar.

7*

.

Tabelle XX. Fortsetzung.

ner ir.		U.	n	hder		ergie	bt die	e Prüfi	ung mit r	uhende	er Bel	astur	ng	Na mi oč	ch d. . wech ler rul Belast	Bruch selnde iender ing	e r
Laufende Nunn Rezeichaung N	Nach Anstrengurge	zwischen den Spæmung at bis at	und Ruhetage	erfølgt bei weehse Belastung	unter Versneh Nr.	bei dem Querschnitt	ст Х ст	und der Länge für die Messung	Fur Flasticitäts-Modul at	Elast. Grenze of	Max. Belastung	Bleibende Dehnung deboi 1/ 0000	Zugfestigkeit	$\underbrace{\text{Querselun. Contr.}}_{Dame}$	für die Länge ad	Betrag in	g Bruchaussehen etc.
20 7	67512)	5 0 3000 		Bruch			_							23	15	0 1,8 bis 2,9	Um eine Ecke der Bruchfläche zu- nächst ein kleiner, tiefschwarzer Viertelskreis, dann ein heller mit körniger Struktur, dessen Grenzen gegen den übrigen sehnigen Theil etwas verwischt sind.
21 15	0	-			3585	1,12 >	< 1,05	10,00	2.270000) 2650	308) 1,84	4 _	_		_	
22 15	655938 1-013788	0-3000	ə4 — I	 3ruch		1,05 >	< 0,82	10,00			302() 1,2:	>	13	15) 0,5 bis 1,8	Um einen Punkt in der einen Seite der Bruchfläche eine scharf be- grenzte schwarze Halbellipse und darum die hellfarbige körnige Struktur, welche gegen den üb- rigen sehnigen Theil nicht scharf begrenzt ist. Aeusserlich kein Fehler bemerkbar.
24 6	0	_ ·	_	_	3574	$1,05 \times$	1,015	10,00	2.100000	2900	3000	1,39		_	_	_	- -
25 6	321990	0-3500	— B	ruch	-	~	-							32	150	7,4 bis 9,5	Schwarzer, elliptisch begrenzt. Fleck um einen Punkt in der Mitte der Seite der Bruchfläche, wo äusser- lich ein Schiefer eingewalzt ist, darum herum die charakteristi- sche helle feinkörnige, elliptisch begrenzte Fläche, gegen den üb- rigen sehnigen Theil scharf ab- gegrenzt. Contraktion und Dehn- ung auf der sehnigen Seite grösser, als auf der entgegengesetzten.
26 11	0		, 	-	3581	1,05 imes	1,14	10,00	2.220000	2900	3000	0,40				_	
	(64225	0-3900	— Bi	ruch	-			_			-	-	-	20	150	0,2 bis 1,8	Scharf begrenzte matte, feinkörnige Viertels-Ellipsenfläche um eine Ecke der Bruchfläche.
8 14 9 14	0		- '	- :	3584-1	,09×1	1,055	10,00	2'230000	3040	3100	3,65		-	-		
	10/110	0	- 51	ruen	_			-		_	-	-		22	150	2,6 bis 4,2	Bruch durch die Einschnitte für die Messlänge 10,00 cm. Elliptische matte, feinkörnige Zeichnung um die Mitte der Seite, wo äusserlich ein solcher Einschnitt war.
0 16 1 16	0 440118	03500	– Br	— 3 ueb	3623 1	,05 × —	1,03	10,00	2·205000 —	2500 	2960 —	2,19	_	 20	— 150	3,1 bis 4,6	Bruch wie bei Nr. 7.
2 17 3 17 6	0 21191	 0-3500	Br	— 3 ueh	624 1 —	,05 X —	1,03	10,00 —	2'180000 —	2310	2960 —	1,56	-		- 150	 5,1	Bruch wie bei Nr. 6; äusserlich kein ursprünglicher Fehler währ- zunehmen.
4 8 5 8 3:	0 37966 ()4()()()) -	– Bri	– 3 ach	1572 1. —	05 × -	1,03	10,00	2'170000	3050	3150	3,28			 150		Bruch ähnlich wie bei Nr. 6; ellip- tische Zeichnung um eine Stelle, wo ursprünglich ein Schiefer ein- gewalzt ist.

Tabelle XX. Schluss.

er				-	Inder		ergiel	ot die	Prüfur	ig mit rul	lender	Belas	stung		Nach mit w oder Be	d. Br echsel ruhen lastuu	uche nder der	
I Laufende Numm	Bezeichnung Ni	Nach Anstrengungen	zwischen den Spannunge <i>at</i> bis <i>at</i>	und Ruhetage	erfolgt bei weehsel Belastung	unter Versuch Nr.	bei dem Querschmitt	ст 🗙 ст	und der Länge für die Messung <i>cut</i>	Elasticitäts-Modul at	Elast. (Trenze at	Max. Belastung at	Bleibende Dehnung dabei, ¹ 10.6 <i>cm</i>	Zuglestigkeit at	Querschm. Contr. Proc.	Depu	Proc. E	Brachaussehen etc.
36	12	0		_		3582	1,05 ;	× 1,13	10,00	- 2'230000	3070	3190	14.21					
36 37	12 12	385204 485131	0-4000 0-4000	1	 Bruch	3600	1,03> 	< 0,61: 	10,00	2°140000 —	1590 —	3175	1,08	-	19	150	0,2 bis 1,9	Aehnlich wie bei Nr. 11, aber eine schwarzeStelle an der Ecke scharf markirt. Aeusserlich kein Fehler bemerkbar.
38 39	13	0 75251	04000		 Bruch	3583	1,05 ;	× 1,13 -		2.210000	2730	2940	1,95		22	150	8,1	Bruch erfolgt durch das eine Paar Schnitte für Anbringung des Spiegel - Apparates, Beiderseits symmetrische elliptische Zeich- nung mit dem Mittelpunkte in den Mitten der Seiten und jener Schnitte, Bruch merkwürdig bez, des Einflusses ursprünglicher Fehler.
40	18	0				3625	1,05 >	× 1,03	10,00	2°200000	1850	2590	0,50					
41	18	113794	0—4000		Bruch	-	_	-				·	—		25	150	10,6 bis 11,9	Scharf markirte charakteristische Zeichnung im Viertelskreis um eine Ecke der Bruchfläche. An dieser Ecke äusserlich kein Fehler bemerkbar.
4 2	19	0				3626	1,05 >	× 1,02	10,00	2'210000	1720	2620	1,11	_		:		
4 3	19	38033	0-4000		Bruch	_	-					;		—	48	150	16,3	Bruch feinschnig, ohne Spur einer Zeichnung, aber zerrissen.
										2 7 1								
										• •								
							•			-		1	: :		i			
							-											

Tabelle XXI.

Dauerversuche mit 6 Vierkantstäbchen (Nr. 20–25), aus einem ⁸⁰/10 mm Flacheisen (Lab. Nr. 2335) so herausgeschnitten, wie Fig. 4 auf Blatt II zeigt.

ner .r.	E	E		Inder		ergiebt die	Prüfu	ng mit ru	hender	· Bela	ıstun	g	Nac mit od	ch d. 1 wechs er ruh Belasti	Bruche elnder ender ing	
Laufende Numr Bezeichnung N	Nach Anstrengunge	zwischen den Spannung of Vis of	nach Rubatan	erfolgt hei wechse	uuter Versuch Nr.	bei dem Querschnitt cm × cm	und der Länge für die Messung cm	Elasticitäts-Modul at	Flast. Grenze at	Max. Belastung at	Bleibende Dehnung dabei ⁴ 6000 690	Zugfestigkeit at	Querschn. Contr. D_{max}	für die Länge D mm eine	Betrag in $Proc.$ 60	Bruchaussehen etc.
1 20	0				372	6 1,04 $ imes$ 1,01	10,00	11970000	1810	-	- -	4050	24	15() 12,6	Bruch feinsehnig, feingeschichtet, etwas zerrissen; äusserlich anf- gerissen.
$2\ 21$	0	-	-		372°	$7 _{1,04 \times 1,00}$	10,00	1'950000	1730	1920	0,18	3 —			_	
$3\ 21$	667681	02000) 4	-	376	1,04 imes 1.00	10,00	1.850000	2310	2690	0,17	- 1	-	_		
4 21	4'30013	5 0 - 2000	0 0	2	378	1,03 imes 0,99	10,00	2'080000	2750	2940	0,08	3	-	-	—	
5 21 6 91	0(11946)	0 - 2000	$\frac{1}{1}$)	384	1,03 imes 0,98	10,00	2.110000	2970	3170	0,41	· · · · · ·	-	_	-	
0 21	9113402	2 0-2000	1.1/2		387	$[1,03 \times 0.98]$	10,00	2'150000	3270		·	4310	15	150	12,4	Bruch ähnlich wie bei Nr. 20.
722	0			_	3799	31.04×0.00	10.00	1940000	1050	10.10						
822	667681	0-2500	4	_	3762	21.04×0.95	10,00	1'940000	1050	1940	0,24 7.00	-	-	-		
9 22	4'330767	0-2500	0	_	3788	1.04×0.94	10.01	2.100000	2550	2650	2 62		_			
$10\ 22$	6,593670	0-2500	1		3848	1.04×0.94	10.03	2'170000	1630	2860	1.88					
J 1 22	7'404448	0-2500		Bruch	n —	_						-	11	_	_	Bruch feinsehnig, mit einem unregel- mässig begrenzten feinkrystallin- ischen oder körnigen Theil.
19.23	0				2-20	1.04.54.0.00	10.00									
13 23	641677	0			3129	$1,04 \times 0,99$	10.00	1.980000	1650	1950	0,22		-	-	-	
10 20	011077	0		Druen			- ,						17	150	4,2	Bruch feinsehnig mit hellfarbiger, körniger, zum Theil krystallinischer, rechteckig begrenzter Stelle an einer Ecke der Bruchfläche.
14 24	0				3764	1.04×1.07	10.00	14920000	1690	0100	0.00					
15 24	243987	0-3000		Bruch			10,00	1 930000	1620	2160	0,39	-			-	
16.25	0		A A A A A A A A A A A A A A A A A A A		3765	1.04 × 1.01	10.00		· · · · · · · · · · · · · · · · · · ·				9	150	1,9	Bruch einerseits durch die Marke für den Spiegelapparat und durch dieselbe etwas beeinflusst. Schwarz gefärbte Stelle an einer Ecke, welche der Mittelpunkt eines eliptischen Umrisses ist, innerhalb dessen die charakteristische helle, feinkörnige und krystallinische Struktur der Brüche in der Dauermaschine ist, doch wird der elliptische Umriss durch einzelne helle unregelmässig begrenzte Stellen überragt.
17 25	842082	0		Bruch	5105		10,00	1.910000 1	670 2	220 0	,20		- :			
													9	150	2,5] bis 4,7	Bruch sehr eigenthümlich. Im Gan- zen wie bei Nr. 20 mit einem, um eine Ecke gezogenen Ring eines Viertelskreises von ca. $5 mm$ Halb- messer und $0,5 mm$ Breite von heller Farbe und körniger oder krystal- linischer Struktur. Eine $1,5 mm$ dicke Lamelle gar nicht durchge- rissen.
					Ì		ţ				i		1		:	
											and the second se					
		1	÷							1	Ì			:	1	
-										-	-	1				

.

Tabelle XXII.

Dauerversuche mit 4 Vierkantstäbchen (Nr. 26-29), aus einem 40/10 mm Flacheisen (Lab. Nr. 2336) so heraus-

			!	nder	1	ergie	bt die	Prüfun	g mit rul	hende	r Bel:	astun	g	Nacl mit ode	i d. B weehse r ruhe	ruche Inder nder	
I.aufende Numme Bezeichnung Nr.	Nach Anstrengungen	zwischen den Spannungen at bis at	und Ruhetagen	erfolgt bei wechselt Belastung	unter Versuch Nr.	hei dem Onerschmitt	em × cm	und der Länge für die Messung <i>em</i>	Elasticitäts-Modul <i>at</i>	- Flast, Grenze at	<u>Max.</u> Belastung at	Bleibende Dehnung dabei, ¹ noo <i>cm</i>	Zugfestigkeit at	Querschn. Contr. Droc.	für die Länge d	Betrag in m ^r a Proc. B	Bruchaussehen etc.
1 26	0		-		3774	1,02	\times 0,95	10,00	1,590000	2270	_		4020	33	100	14,2	Bruch fiegt ausserhalb der 100 mm; sehr feinschnig, feingeschichtet,
$2\ 27$	0	-	-	-	3775	1,05	imes 1,01	10,00	2'030000	2075	2260	0,34	,		_	-	dieht.
327	2'675518	0-2100	0		3790	1,05	\times 1.00	10,00	2.062000	2000	2290	0,35		—	·		
4 27	4'914984	0-2100	0		3850	1,05	imes 1,00	10.00	2'150000	2475	2860	0,34		-	·		
527	7'474377	0-2100	0		3879	1,04	imes 1,01	10,00	24170000	2760	2950	_				·	
6 27	9,678951	0-2100	¹ /4	-	3916	1,04	imes 1,01	10,00	2.110000	2290	2810	4,39	_		-		
7 27	11'824287	02100	³ /4	_	3941	1,04	imes 1,01	10,00	2'020000	2380	2860	4,49		-	-	-	
8 27	13'715438	0-2100	1	-	3969	1,04	imes 1,01	10,00	1'960000	2480	2670	0,56	_		-		
9 27	16'480816	0-2100	1/4		4033	1,04	imes 1,01	10,00	2'060000	2480	2670	0,40	4140	32	150	16,0	Feinsehnig wie bei Nr. 26.
1028	0			-	3776	1,01	imes 1,00	10,00	2'060000	2180	2380	0,24	—				
11 28	2'308442	0-2630	0		3 789	1,00	× 0,94	10,00	2'070000	2550	2770	0,14		_			
1228	4'547908	0-2630	0	_	3849	1,01	imes 0,94	10,00	2.150000	2320	2530	0,10	—	—	-	_	
1328	7'107301	0-2630	0		3878	1,01	imes 0,94	10,00	$2^{\circ}200000$	2840	2840	••		_		_	
14 28	9'311875	0-2630	¹ +		3917	1,01	imes 0,94	10,00	2.170000	740			4050	35	150	19,6	Schon bei 2800 <i>at</i> starkes Strecken. Bruch sehr feinsehnig, mit eigen- thümlich matter Stelle am Rande, an die charakteristischen Stellen der Brüche in der Wöhler'schen Maschine erinnernd.
$15\ 29$	0				3777	1,04	imes 1,01	10,00	2'0100 00	1810	2290	0,42	—		—		
16 29	672802	0-3000	_	Bruch										14			Grosse hellfarbige, körnige und krystallinische Viertelsellipse um eine Ecke der Bruchfläche, scharf begrenzt gegen den übrigen sehn- igen Theil.
								and moments of the second									
n () a la sua dage tradição non de la sua dara de la sua desta de la sua de la sua de la sua de la sua de la s												· · · · · · · · · · · · · · · · · · ·					
an an an an an an an an an an an an an a																	

geschnitten, wie Fig. 5 auf Blatt II zeigt.

Tabelle XXIII.

Dauerversuche mit 4 Rundstäbchen (Nr. 30—33), aus dem einen Bruchstück einer 12,8 cm dicken, auf Biegungsfestigkeit geprüften Achswelle von Thomas-Stahl (bez. mit A II) so herausgeschnitten, wie Fig. 6, Blatt II zeigt.
Ein Normal-Rundstab aus einem nebenanliegenden Stück derselben Achswelle ergab: Elast. Mod. = 2¹/₂70000 at: Elast. Grenze bei 2680 at: Zugfestigkeit = 6120 at; Dehnung für ursprüngl. 25 cm = 18,7 %; Contraction = 38 %.

ner G			Ę	n,	inder	e	rgiebt (lie Prü	fung mit	ruhen	ler B	elasti	ung	Nac mit od	h d. I wechs er ruh Belastu	Bruche elnder ender ing	
Laufende Num Bezeichnung N	Nach	Anstrengunge	zwischen den Spannung <i>at</i> bis <i>at</i>	mach Raharge	erfolgt hei wechse Belastung	unter Versuch Nr.	bei dem Querschn. Dehm. <i>cm</i>	und der Länge für die Messung <i>cm</i>	Elasticitäts-Modul at	Elast. Grenze at	Max. Belastung . at	Bleibende Dehnung dabei, '/1000 cm	Zugfestigkeit at	Querselm. Contr. Proc	für die Länge d	Betrag in nu <i>Proc.</i> 35	Bruchaussehen etc.
1.3() ⁱ 54	13510	0-2480	0		3880	1.12_{5}	10.00	2'300000	2720	3020	0.13			·	—	
2 30) 2.74	18084	0-2480	0	_	3918	1,125	10,00	2'210000	3120	3220	0,02		_	·		
3 3(⁶ 4-91	8378	0-2480	V_{B}		3943	1,125	10,00	24170000	3120	3220	0,82	. —	-		. —	
4 30	ⁱ 9*57	7098	0-2480	4/3	_	4035	1,125	10,00	2.220000	3120	3220	0,25		-		_	
5 30	i 9'57	7098	0-2480	1^{5} e		4038	0,88	10,00	2'090000	2470	2630	0,35				_	Das Stäbchen war nach Beendigung
630	61	8352	04000	· · · · ·	Bruch	-						· · · · · · · · · · · · · · · · · · ·		3			des vorigen Versuches auf 0,88 cm Dehm. abgedreht worden. Die Bruchfläche zeigt am Rande eine schwarze Stelle und um diese, als nun ein Mittelpunkt, die durch einen Bogen scharf abgegrenzte matte, feinkörnige Struktur, die für die Brüche durch wechselnde Belastung charakteristisch ist. Im Uebrigen ist die Struktur be- deutend gröber, aber noch immer feinkörnig
731	2'20	4574	0	1	—	3919	1,02	10,00	2'290000	2810	2940	0,13	-			_	in the second se
8 31	4 '38	2122	0	0	—	3944	1,02	10,00	2.290000	3060	3300	5,70		-	-		
9 31	9'04	0842	0-3000	5/6		4036	1,02	10,00	2'290000	3180	3430	4,78	630 0	44	150	17,8	Bruch sehr feinsehnig, mild.
10 32 11 33	21: 60	9981 0875	0-4000 0-4000		Bruch Bruch	-	_	-	'		-	-	_				Bruch erfolgt durch die Marke am einen Ende. Aussehen wie bei Nr. 30. Bruch wie bei Nr. 30, mit einem Guss- fehler in der matten, feinkörnigen Stelle.

Tabelle XXIV.

Dauerversuche mit 4 Rundstäbchen (Nr. 34-37), aus den Köpfen der Bruchstücke einer auf Biegungsfestigkeit geprüften Eisenbahnschiene aus Thomas-Stahl so herausgeschnitten, wie Fig. 7 auf Blatt II zeigt.
Zwei Normal-Rundstäbe (25 mm Dehm.) aus den Köpfen anliegender Stücke derselben Schiene ergaben : Elast. Mod. = 2*230000-2*250000 at; Elast. Grenze bei 2800-3100 at: Zugfestigkeit = 5930-5950 at; Contr. = 34-46 %; Dehnung auf 250 mm : 19,6-22,0 %.

te :			=	=	Inder	er	giebt (lie Prü	fung mit	ruhen	ler B	elastu	ing	Nach mit ode B	n d. B wechse r ruhe elastur	ruche Inder nder	
Laufende Nunn Romanie V	Nach	Аляtrengunger	zwischen den Spannunge af bis af	nach Ruhetage	erfolgt bei wechse Belastung	unter Versuch Nr.	bei dem Querschn. Dehm <i>cm</i>	und der Länge für die Messung <i>cm</i>	Flasticitäts-Modul at	Elast. Grenze at	Max. Belastung at	Bleibende Dehnung dabei, ¹ /1000 <i>cm</i>	Zugfestigkeit at	Querschu. Contr. Proc.	für die Länge den mun	Betrag in Bunu	Bruchaussehen etc.
13	4 1.7	84718	0-2500	0	_	3942	1,12	10.00	2'210000	2840	3050	0,25	·		_	-	
2^{-3}	4 - 3*€	66441	02500	1		3968	1,12	10,00	2'150000	3250	3350	3,65		-	_		
3 _. 3	4 64	50692	0-2500	²/3		4034	1,12	10,00	$2^{\circ}230000$	3650	3760	15,82				—	
43	4,10.1	89642	0-2500	0		4190	1,12	10,00	2.250000	3650			6000	54	150	20,9	Bruch sehr feinsehnig mit aufgezogenem
53	5 7.9	05567	0-3000	1 ³ /4	_	4294	1,02	10,00	2*140000	2690			5750	50	150	21,1	Rand. Bruch wie vorhin.
6.3	6 5	73276	0-4000		Bruel	ı		—						15			Bruch hellfarbig, matt und feinkörnig
																	um eine Stelle am Rand der Bruch- fläche, die anscheinend einen Fehler enthält; im Uebrigen feinsehnig; Grenze zwischen beiden bogenförmig aber etwas verwischt.
្បា	, ,	56190	04000		Bruch	۱ <u> </u>	viatur			-			 .	12	—		Bruchaussehen wie vorhin.

Tabelle XXV.

Dauerversuche mit 8 Vierkantstäbchen (Nr. 38-45), aus einer 12 mm dickenKesselblechtafel von Thomas-Flusseisen so herausgeschnitten, wie Fig. 8 auf Blatt II zeigt. Vier aus derselben Tafel herausgeschnittene Lamellen a-d ergaben die untenstehenden Resultate:

er I			=		lnder		ergiebt die	Prüfm	ig mit ru	hender	Bela	stung		nach mit y ode Ba	d, Bi vechse r ruhe dastur	uche . Inder nder	
Laufende Numm	Bezeichnung Ni	Nach Anstrengungen	zwischen den Spannunge at bis at	nach Ruhetage	erfolgt bei wechse Belastung	unter Versuch Nr.	bei dem Querschnitt cm × cm	und der Länge für die Messung <i>cut</i>	Elasticităts-Modul t	Elast. Grenze at	Max. Belastung ut	Bleibende Dehmung dabei, ¹ noor <i>on</i>	Zugfestigkeit af	Querschn, Contr. $^{\circ}$	für die Länge Depu	Betrag in E Proc. E	Bruchaussehen etc.
12	38 38	3·031833 4'856400	0—2800 0—2800	2	Bruch	Lam, a b c d 4192	$6,07 \times 1,18$ $6,08 \times 1,18$ $6,07 \times 1,18$ $6,06 \times 1,18$ $1,18 \times 0,74$ -	15,00 15,00 15,00 15,00 10,00	2*210000 2*230000 2*220000 2*255000 2*220000	2580 2580 2790 2800 2750 	2800		4100 4160 4020 4000 	$62 \\ 61 \\ 69 \\ 67 \\ \\ 21$	250 250 250 250 	25,9 29,1 30,3 29,2 	An einer Ecke der Bruchläche, wo anscheinend eine Felderstelle im Material, ein schwarzer Fleck, um diesen die matte, hellfarbige, feinkörnige, für die Brüche mit wechselnder Belastung charakte- ristische Stelle, den grössten Theil des Querschnitts einnehmend; der übrige Theil feinsehmig.
3	39	405009 -	03200		Bruch	_							—	32			Aehnlich wie bei Nr. 38; die matte feinkörnige Stelle durch einen Ellipsenbogen scharfbegrenzt und kleiner als vorhin.
4	40	491301	0-3200	-	Bruch				-					28			Bruch ähnlich wie bei den beiden vorigen Stäbchen, aber die schwarze Stelle nicht in einer Ecke, sondern nur nahe einer solchen, in einer Seite der Bruch- fläche liegend.
Đ	41	884787	03200		Bruch									27			Bruch ähnlich den vorigen: Fehler- stelle und schwarzgefärbte Stelle wieder in einer Ecke der Bruch- fläche.
6 7	42	4'166617 6'344 3 69	0-2500	2	Bruch	4296	1,18 × 0,83 —	10,00	2:200000	2310	2960	0,14					Bruch erfolgt durch eine Stelle, wo sich an der Kante eine kleine Walzdalle betindet. Um diese Ecke der Bruchfläche ein ganz regelmässiger schwarz gefärhter Viertelskreis. Darüber hinaus feinkörnige, hellfarbige, matte Struktur. Der Bruch in der Wöhler schen Maschine erfolgt nur auf eine Za des Querschnitts. Der andere Theil zeigt bekere Schich- tung und streckt sich, besonders in der äussersten, 2mm dicken Schichte stark. Bruchaussehen in diesem Theil durchweg körnig.
8	3 4 3	407840	0 2850		Bruch			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						-	-	Bruch an einer Stelle mit unver- bundenen Schichten, wo von einer der inneren Schichtungsflächen ein Schiefer in das Material hereinragt. Zwei der Schichten zeigen die hellfarbige, matte und körnige Struktur, in der dritten ist die Bruchtläche feinsehnig und stark eingeschnürt.

Tabelle XXV. Schluss.

, i,	a	zwischen den Spannungen af bis af	und Ruhetagen	erfølgt bei wechselnder Belastung	unter Versuch Nr.	ergi	rgiebt die Prüfung mit ruhender Belastung Belastung							Bruche elnder inder ng			
Bezelehanng ?	Nach Anstrengunge					their discrete free sectors and the sector sector sectors and the sector sector sectors and the sector sector sectors and the sector sect	cm × cm	und der Länge für die Messung <i>cm</i>	Elasticitäts-Modul at	Elast. Grenze at	Max. Belastung at	Bleibende Dehnung dabei, ¹ /1000 <i>cm</i>	Zugfestigkeit at	Querschn. Contr. Proc.	für die Länge mm	Betrag in Betrag	Bruchaussehen etc.
44	2,028995	0 - 2500	$1_{\mathbf{S}}$		4373	1,11	imes 0,88	10,00	2'170000	2650	2860	2,12	_	_		_	Oberfläche des Stäbchens allerseits blank poliert.
14	4'875595	0-2500	1/6		4511	1,11	imes 0,88	10,00	2'040000	2450	2860	0,33	_			_	
++	5°802747 6°540189	0—25-0 0—2500	3/4 / 4		-4604 -4614	1,11	\times 0,88 \times 0,88	10,00 10,00	2'170000 2'220000	2450 2750	2860 2960	0,78 7,08		_	_	-	Noch im Betrieb.
5	407846	0-2850	1/10 1-1	—	4372	1,12	× 0,7 7	10,00	2'200000	2090	2560	0,49			-	-	Oberfläche des Stäbchens allerseits blank poliert.
5 4	194535 1869133	0-2850	11/ ₁₂	_	4615	1,12	\times 0,77 \times 0,77	10,00	2'090000 2'300000	$\frac{2560}{2440}$	$\frac{2800}{2800}$	0,43 0,22	-	-	-	_	Noch im Betrieb.
	·····																
	1. 2. 2. 2. 4. 4. 4. 4. 1. Bezeichnung Nr.	uprimitative uprim	$\begin{array}{c cccccccccccc} & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Herein and the second seco	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ergiebt die Prüfung mit ru ergiebt die Prüfung mit ru 1100000000000000000000000000000000000	ergiebt die Prüfung mit ruhender ergiebt die Prüfung mit ruhender $\frac{1}{12}$ ub $\frac{1}{12}$ u	ergiebt die Prüfung mit rubender Bela ergiebt die Prüfung mit rubender Bela $\frac{1}{12}$ und $\frac{1}{12}$ und	ergiebt die Prüfung mit ruhender Belastung ubundenbezeigen Wergiebt die Prüfung mit ruhender Belastung ubundenbezeigen Wergiebt die Prüfung mit ruhender Belastung ist unstelle beiter Prüfung mit ruhender Belastung ist unstelle beiter Prüfung mit ruhender Belastung ist unstelle beiter Prüfung mit ruhender Belastung ist unstelle beiter Belastung ist unstelle beiter Prüfung mit ruhender Belastung ist unstelle beiter Prüfung mit ruhender Belastung ist unstelle beiter Belastung ist unstelle beiter Prüfung mit ruhender Belastung ist unstelle beiter Belastung ist unstelle be	ergicht die Prüfung mit ruhender Belastung und gelagen von der State die Prüfung mit ruhender Belastung und gelagen von d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MITTHEILUNGEN AUS DEM MECHANISCH-TECHNISCHEN LABORATORIUM der technischen Hochschule München.

BLATT

HEFTXII

MITTHEILUNGEN AUS DEM MECHANISCH-TECHNISCHEN LABORATORIUM der technischen Hochschule München.

Fig. 2. Maafs 1:10. 2 3 5 Ъ α 49 Fig.1. Maafs 1:5. \$2 43 44 33 30 45 C .32 31 38 39 40 4 Fig.8. Maafs 1:10. d Fig.6. Maafs 1:5. Fig. 7. Maafs 1:5. 34 35 10 11 12 С 13 14 15 16 17 36 37 18 19 46 D 47 48 Fig.3. Maafs1:10. Fig. 4. Maafs 1:10 Lab. Nº 2335 20 22 24 a Ъ 21 23 25 Fig.5.Maafs 1:10. Lab. Nº 2336 Ъ a

BLATT

HEFT XIII.

MITTHEILUNGEN AUS DEM MECHANISCH TECHNISCHEN LABORATORIUM der technischen Hochschule München

BLATTIN.

