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Abstract

There are two basic approaches for semantic processing
in spoken language understanding: a rule based approach
and a statistic approach. In this paper we combine both
of them in a novel way by using statistical and syntactical
dynamic bayesian networks (DBNs) together with Graph-
ical Models (GMs) for spoken language understanding
(SLU). GMs merge in a complex, mathematical way prob-
ability with graph theory. This results in four different
setups which raise in their complexity. Comparing our
results to a baseline system we achieve a Fl-measure of
93.7% in word classes and 95.7% in concepts for our best
setup in the ATIS-Task. This outperforms the baseline
system relatively by 3.7% in word classes and by 8.2% in
concepts. The expermiments were performend with the
graphical model toolkit (GMTK).

Index Terms: natural language understanding, ma-
chine learning, graphical models

1. Introduction

Semantic processing is one of the key elements in spoken
dialog systems. It analyzes the users query and produces
a representation of its semantic content that allows the
dialog manager to take context-sensitive decisions about
the dialog follow-up [1, 2, 3, 4, 5]. In [6] we introduced
the hierarchical decoding in order to gain information
about the meaning of the spoken sentences. There each
sentence is decoded by identifying so-called concepts,
like “origin”, “destination” or “time”, and word classes
belonging to each concept, like “cities”, “fromloc” or
“toloc”. A concept depends on the words, however only
specific words may belong to a concept. As a result a city
name is not only identified as being “city” but also as the
concept in which the word occurs. The best word concept
hypothesis is found in a maximum likelihood (ML) man-
ner by the well known Viterbi-algorithm. However, in [6]
the grammatical rules have to be explicitly defined. In
this work we follow the approach of hierarchical decod-
ing, with the advantage that the grammatical bindings are
modeled by Graphical Models (GMs). Their parameters
are learned automatically providing a hierarchically anno-
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tated training set. This paper is organized as follows. In
Sec. 2 we introduce language understanding in general, in
Sec. 3 GMs are explained in full detail and how they can
be adopted for language understanding, in Sec. 4 differ-
ent language models are introduced. In Sec. 5 the models
we used for our various systems are explained, these are
evaluated in Sec. 6 on a state-of-the-art corpus. Finally,
we conclude in Sec. 7.

2. Language Understanding

Semantic processing is defined as an automatic mapping
between words W output by the automatic speech recog-
nition to a sequence of word classes (labels) L and con-
cepts C needed to perform understanding [7]. An exam-
ple for the air travel information system (ATIS) task can
be seen in Fig 1, therefore concepts are semantic and la-
bels are word classes. All abbreviations used in the ATIS
task are described in Sec. 6. In previous work [6] we

Sentence: Flight four sixteen departs Dallas at 9 : 10  AM. Correct  ?
Concepts: FN FN FN OR OR TOTD TD TD TD DU DU

Labeling ¢ IN NU NW2 FR CI AD NI0 IT N60 IT DU DU

Fig. 1. Classification into word classes and concepts.

use extended-context-free grammars (ECFG) to build a
weighted transition network. The ECFGs, which build
the structure of the language, are constructed from an ex-
pert manually. In this paper we aim to learn automatically
the semantic structure of the language from a corpus and
to use in addition grammar rules (similar to ECFGs) for
parts of the spoken language. Therefore a graphical repre-
sentation, which allows rapid modeling, EM-training and
decoding with the well known Viterbi-algorithm, is most
suitable.

3. Graphical Models and Spoken Language
Understanding
In this section we present Graphical Models, give a com-

mon notation, and explain, how they can be adopted to
language understanding.
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3.1. Dynamic Bayesian Network Model

Graphical Models (GMs) [8] are a combination of prob-
ability and graph theory, providing a visual graphical
language and efficient algorithms for probability calcula-
tions and decision making. A Bayesian network (BN)
is one type of GM where the graphs are directed and
acyclic. The joint probability distribution (called di-
rected factorization property [9]) over X is factorized
as p(z1,x2,...,2,) = [l p(xilparents(x;)). Dy-
namic Bayesian Networks (DBNs) are a generalization
of BNs, they are used to describe time series: One BN
represents one time slice. Additionally dashed edges de-
scribe the dependencies between subsequent time slices.
For a given observation O with length 7" the DBN is un-
rolled: the time slices are repeated (T-2) times and con-
nected through their inter-edges. They have been used
for language understanding in [10]. In contrast, we use
“Switching Parents” in order to integrate syntactical rules
to the statistical approach.

3.2. Switching Parents

Normally a variable has only one set of parents. In Fig-
ure 2 variable .S selects one concept out of {C1,...,Cn},
therefor the concept is the only parent of the labels L.

Fig. 2. Switching parents in Graphical Models.

In this paper we successfully use the switching parents to
integrate the grammar based rules approach described in
[6]. Furthermore, in state-of-the-art corpora not all com-
binations , e.g.in “time”, “weekday”, “date”, and “nu-
meric symbols” are available. We implement these con-
cepts successfully with switching parents.

4. Language Understanding Models

The GM used in this work to model the semantic inter-
pretation of spoken language consists of three nodes in
each time slice. Thus the problem is modeled with three
variables for each word of a sentence. We introduce four
different setups to model different relations among these
variables. Thus while the nodes of the models remain
the same in all three GMs, the arcs between them are
different. Therefore each GM describes a different fac-
torization of the problem. These setups will be compared
to a baseline system, in which the maximum likelihood
of the concepts and labels of a word is decoded. In or-
der to incorporate the concepts and labels we begin with
the simplest model, setup 1 (Fig. 3). Note, that this
setup and the following GMs represent factorial Hidden
Markov Models (HMMs). In setup 1 we modeled the
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dependence on the concepts. Having observed that con-
cepts do not only depend on the previous concepts but
also on the previous labels (e. g. from—fromloc—origin,
Dallas—city—origin ) we extended this model to setup 2.
Setup 3 has been further improved to include the de-
pendence on the previously observed word. Finally, in
setup 4 grammar rules were included by the GM concept
“switching parents”.

S. Experiments
In this section we describe the joint probabilities of the
four setups. We assume a corpus with Ny different
words W, words with the same meaning are grouped into
Ny, word classes (labels) L. One can combine more than
one word class into (N¢ different) concepts C. In the fol-
lowing the nodes of the models and the underlying proba-
bilities are explained, whereby Z, ¥/, Z describe the observ-
ables

Nc Ne
P(C=%)=) c¢;-6(F—p;) with Y ¢ =1,

=1 i=1

Np, N
P(L=§)=Y 1;-6(F-7) with Y l; =1,

j=1 j=1

Nw
with » w; =1.
j=1

5.1. Setup 1

A schematic drawing of the GM is shown in Fig. 3. Each
column represents one time slice. The top node C; mod-
els the underlying concept of the current word. This con-
cept is not observed and therefore modeled as hidden.
In the first time slice ¢ = 1 the concept does not de-
pend on any other variable and is given by the probability
p(c1) = 1, which is the initial concept distribution. In
all following time slices the concept is only dependent on
the concept from previous time slices: p(c¢|ci—1). Thus,
in this GM the sequence of concepts is represented by a
first order markov chain. The node for each searched la-
bel L, is in all time slices only conditioned by the concept
C, of the current word WW; and is not observed and there-
fore hidden. As there is no interaction between the la-
bels among subsequent time slices, this model represents
a label which is drawn independently of the previous la-
bel but dependent on the current concept C; given by the
probability p(L¢|C;). Finally, the words of the sequence
are known and modeled as observed nodes W;. Any cur-
rent word depends on both the label and the concept of the
current time slice. Again subsequent words have no direct
interaction but are connected through the concept markov
chain. That is, with known concept C; subsequent words
Wy and W,_; are independent. In this model the proba-
bility of a word is thus expressed as p(W¢| Ly, Ct), which
is similar to a factorized HMM. Altogether the GM in
setup 1 factorizes the joint probability of the sequence of
words, labels, and concepts as



Setup 1 Setup 2

Lt-1 t Lt—1 t
\
WM Wr WM Wt
Time ¢ Time t

Setup 3 and 4

C,, C, >
¢ ¢ [ ] hidden node
L L [0 observed node
4
Wt—7 Wt
Time ¢

Fig. 3. Used Graphical Model setup in GMTK

p(V1) = p(Ch1) - p(L1]Ch) - p(W1|C1, L)
T
: HP(Ct|Ot—1) “p(Li|Ct) - p(Wi|Cr, Ly).

t=2

5.2. Setup 2

In addition to setup 1, setup 2 contains also the depen-
dencies on the previous label L;_;. For example, both
labels “toloc” and “city” belong to the concept “desti-
nation”. With the knowledge of the previous label, e. g.
“toloc”, the determination of the next label in the “desti-
nation” concept, e. g. “city” is much more robust. In this
specific case the label “city” is determined to belong to
the concept “destination”. The top node C; models the
underlying concept of the current word. In contrast to
setup 1, after the first time slice the concept distribution
is conditioned by the label and concept of the previous
time slice: p(C¢|C¢—1,Li—1). In this GM the concept
C; benefits from the knowledge of the previous labels
Ci_1 and L;_1. The further nodes, conditions, and the
corresponding probabilities are the same as described in
setup 1. Overall the GM in setup 2 factorizes the joint
probability of the sequence of words, labels, and concepts
as

p(Va) = p(Cy) - p(L1|Cr) - p(W1|Cy, L)
T
: HP(Ct|Ct71,Lt71) “p(L¢|Cy) - p(W|Cy, Ly).

t=2

5.3. Setup 3

As an extension to setup 2, in this setup not only the pre-
vious label but also previous word contribute to the de-
termination of the concept. For example, the words in
a flight number “four”, “sixty_five” and “hundred” are
categorized into certain labels (“number word 1”,“num-
ber word 2”,“number 10”,“number 60”, “number rest”).
With the knowledge of the previous words and labels the
determination of the next label in the concept e. g. “flight
number” is improved compared to setup 2. In this GM
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the concept C; benefits from the knowledge of the previ-
ous labels C;_1, L;_1 and W;_q, which is expressed by
the transition probability p(C;|Cy_1, Li—1, Wi—1). Alto-
gether the GM in setup 3 factorizes the joint probability
of the sequence of words, labels, and concepts as

p(Va) = p(C1) - p(L1|Ch) - p(Wi|Ch, Ly )-
T

: Hp(ct‘ct—th—la Wt—l) 'p(Lt‘Ct) ‘P(Wt|Ct, Lt)-

t=2
5.4. Setup 4

This setup is graphical not distinguishable from setup 3,
therefore the same factorization of the composite prob-
ability is used. However, the problem of non existing
words in the corpus, e.g. certain dates, times, and num-
bers was solved by using grammar rules (switching par-
ents) in this setup. For example, the city in concept
“origin” is frequently derived from the word class “from-
loc”. Hence the following equation was implemented
with switching parents.

p(Cy = “origin”|L;—; = “fromloc”) = 1.

5.5. Parameters and Classifications

Each semantic meaning (M) in natural spoken language
utterances can now be described by the GM setups x =
{1, 2, 3,4} with the parameters

Ma: = {nyan Cx} .

The model parameters M, are learned for each of the
N¢ concepts classes and Nz, word classes with the EM-
algorithm during the training phase. During the classifi-
cation of an unknown utterance with given words W the
model parameters M, can be estimated for each model
P(L;,C,|W) with the highest likelihood

P, = argmax P(Cy, L,|Wr)

x,“x

with P(Wr) =[] p(w:).

t=1

P(Vz)
= argmax
L.C (Wr)




Applying the Viterbi-algorithm to each natural spoken ut-
terance in the different setups, leads to a different seman-
tic segmentation of them.

6. Results

In order to show the performance of our systems we
use the ATIS-0 corpus for evaluation [11]. In this
database there are 840 naturally spoken user utterances,
e.g. “Please, find the cheapest flight from Atlanta to
Dallas on Thursday.” To reduce the complexity we con-
nected abbreviations, and complex city names with an un-
derscore character. We also replaced punctuation marks
by labels. The database contains a class of 9185 words
W. The cognition of semantic meanings demands for ev-
ery word a categorization into a word class and a con-
cept class. Thereof 4284 were classified as not relevant
and became the concept “dummy”. The remaining 4901
words became one of the eleven non-dummy concepts,
eg. “origin”, “destination”, “price”, “flight number”, and
“airline”. Every word is assigned to one word class. In
this paper, we distinguish between 26 word classes. 25
word classes contain thereby relevant information and
in addition the word class “dummy” contains all seman-
tic irrelevant words. Every word in the ATIS corpus
is hierarchically labeled by a word class and a concept.
Each setup was evaluated by a 10-fold cross-validation
with 90% training and 10% test sentences. Altogether
there are 10 test-cases, whereby each sentence was se-
lected randomly. The two-by-two contingency classify
non-dummy and dummy words to relevant concepts/word
classes, where the counts are for the well-known F1 mea-
surement method.

F-1 measure recognition rate

C L (0] Cc L 0]
Setup 1 [%] 90.8 93.5 922 90.7 932 920
Setup2 [%] 932 940 936 930 938 934
Setup3[%] 93.7 943 940 935 941 938
Setup 4 [%] 94.0 95.1 946 937 948 943

Table 1. 10-fold cross-validation of all setups

The four setups in the GM were compared to a base-
line system, which extracts the maximum likelihoods of
word classes or concepts by given words Wy c. This
results in a baseline recognition rate of 91.7% for word
classes and 86.6% for concepts. Tab. 2 shows that the
simplest setup 1 as well as setup 4 outperfom the base-
line system.

Max. Setup1 Setup 4
Concept [%] 86.6 90.8 93.7
Label [%] 91.7 93.5 95.1

Table 2. F1-measure setup 1, 4 compared to a baseline.
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7. Conclusions

In this paper four different setups of GMs for natural lan-
guage understanding were presented. In all setups the
probabilities were estimated by the language model in
the ATIS corpus. The concepts and the word classes
of the GMs were compared to the annotated labels and
concepts in the ATIS corpus with maximum likelihood.
The GMs show a significantly higher recognition perfor-
mance than the baseline approach. Compared to maxi-
mum likelihoods the best setup has a relative error reduc-
tion of 3.7% in word classes and 8.2% in concepts. With
the setup 4 we reach our bests results and outperform the
dbn-based multi-level stochastic spoken language under-
standing system[10]. In the future we plan to enter recog-
nition rates from our one-stage decoder [12] and thus su-
periorly utilize the potential of graphical models.
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