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ABSTRACT

Automatic labeling of chords in original audio recordings is

challenging due to heavy acoustic overlay by melody and per-

cussion sections, detuning and arpeggios that demand for a

measure-grid to assign notes to chords. Further chord labeling

benefits from contextual information. In this respect we sug-

gest applying an HMM framework incorporating a musiolog-

ical model trained on 16k songs and synchronization with the

measure grid by IIR comb-filter banks for tempo detection,

meter recognition, and on-beat tracking. Features base on

pitch-tuned chromatic information. Extensive evaluation on

11k chords of 7h of MP3 compressed popular music demon-

strates effectiveness over traditional correlation analysis and

single measure classification by Support Vector Machines.

Index Terms— Music, Hidden Markov models, Feature

extraction

1. INTRODUCTION

The automatic recognition and transcription of musical chord

progressions possesses a wide variety of applications: mu-

sicians can automatically transcribe their progression while

jamming, or they can be offered a plug-in to media players to

show them the current chord for play along. But chord knowl-

edge can also be used as meta-information in many other

Music Information Retrieval tasks, such as genre recognition

(e.g. Jazz having many II-V-I successions, while e.g. Blues

has many I-IV-V7s), musical mood recognition (e.g. ratio of

major/minor or 7/maj7 chords), key recognition or structure

analysis e.g. for chorus retrieval [1]. Also, DJs can be pro-

vided with automatic synthesis of additional fitting notes as

sub-basses or arpeggios, or tools that blend music at matched

key/chord. One final application is music similarity analy-

sis or finding of plagiarism (e.g. chord progression of Johann
Pachelbel’s “Canon in D” (“Canon per 3 Violini e Basso”),

which is found in multiple contemporary popular pieces, such

as “Go West”, “Streets of London”, “All Together Now”,

“Basket Case”, “Big City Life” or “Volverte a Ver”). To

save cost-intensive and partly not feasible manual labeling,

we introduce a beat-synchronous and data-driven approach

in the ongoing. Already early works on chord recognition

[2] use pitch class profiles. Using Hidden Markov Models

(HMM) was proven beneficial e.g. in [3, 4]. It is also well

known that context modeling improves recognition rates [5].

In this respect we show results on uniting these findings and

add by highly reliable beat-tracking and a musiological model

trained on a large corpus of 16k songs to show reachable re-

sults on a database of mixed original recordings with respect

to interpret and style.

The paper is structured as follows: first we introduce our

database or original audio recordings in sec. 2, then in sec.

3 we introduce our musiological model, in sec. 4 we shortly

explain our tempo and down-beat detection. In sec. 5 we dis-

cuss the acoustic features before explaining the actual chord

labeling process in sec. 6 and presentation of results and con-

clusion in sec. 7 and sec. 8.

2. CHORD DATABASE

In order to have sufficient data for machine learning and test-

ing, we annotated a total of 100 musical pieces that cover

a good selection of typically aired pop and rock music with

the tempo in bpm, the key, and each chord. As ground truth

reference original scores were used. The alignment was car-

ried out by three experienced musicians. 64 different artists

are comprised. On average, 1.6 pieces per artist are used,

however, only 18 artists are found more than once in the set:

the highest number of songs per artist resembles 5 for Delta
Goodrem, James Blunt, Robbie Williams, followed by Celine
Dion, Coldplay and Enya with 4 songs, each, Bon Jovi, Bryan
Adams, Cher with 3, each, and All Saints, Backstreet Boys,

Britney Spears, Keane, Phil Collins, Roxette, and The Corrs
with 2, each. These pieces all have constant tempo. The list

of songs can be found at [6]. The original recordings are com-

pressed to 128 kbit/s MP3 for the oncoming tests. The total

playtime resembles 6h 58min 12sec, and 10,702 bars are con-

tained. This set is referred to as Chord Recognition Database,

respectively ChoRD.

The chords have been annotated in the 7 main classes:

major (Maj), minor (Min), Suspended (Sus2, Sus4), Aug-
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mented (Aug), Diminished (Dim), and Power Chords (No3).

Likewise we cover all typical triads consisting of root, sec-

ond/third/fourth, and fifth. Note that not 7 x 12, but only

6 x 12 + 4 = 76 final chord classes are obtained, as only 4

different augmented chords exist. These classes have been

clustered and re-mapped for testing due to partial sparse oc-

currence of rather unusual chords into the following two sets:

36 MajMinADPS (Maj, Min, the other chords (augmented,

diminished, power, and suspended mapped onto one group

(ADPS)), and 24 MajMin (Maj, Min). Note that the total

of chords was kept constant by mapping chords that are not

considered onto considered ones by their root and musical

function (e.g. “C No3” is mapped onto “C Maj” if its func-

tion is accordingly).

In Table 1 the distribution of keys and chords within the

ChoRD database is shown in detail for the classes major, mi-

nor, and others by root note.

Table 1. Distribution keys and chords in the ChoRD corpus.

Root #Key #Major #Minor #Other
A 7 511 459 57

A# 8 567 171 86

B 7 480 213 61

C 16 854 278 105

C# 5 312 315 61

D 3 557 349 94

D# 8 533 141 61

E 12 643 362 21

F 13 728 272 52

F# 4 407 209 44

G 12 719 287 103

G# 5 353 196 41

Sum 100 6 664 3 252 786

3. MUSIOLOGICAL MODEL

In order to model the context of a chord rather than recog-

nize isolated chords, we employ a musiological model (MM),

which resembles a typical language model (LM) as used in

automatic speech recognizers. For training of the model we

used the chord lead sheets of [7] after removal of doubles.

These chord sheets are usually uploaded by users, which

means that they are partly simplified, erroneous, or trans-

posed into easily playable keys on guitar (e.g. G Major).

However, for a statistical musiological model this is not too

problematic, as we are only interested in typical chord suc-

cessions. As the sheets often contain shortened progressions

in a way that the chord succession is laid out only once, we

use the following up-sampling rule: assuming 60 to 100 bars

for a typical rock and pop piece, we strictly repeat when-

ever a song has below 30 bars until 60-100 bars are reached.

Chords were translated into the used target set by rule-based

parsing (e.g. elimination of bass-notes, clustering of different

spelling variants). Overall, 19,025 songs, resulting in a total

of 1,573,803 chords are used for the MM. Table 2 shows the

top-ranked uni- and bi-grams by frequency.

Table 2. Top-ranked chord uni- and bigrams by frequency.

Rank 1-gram # 2-gram #
1 G 244 820 D-G 57 500

2 D 227 549 G-G 55 106

3 A 198 958 C-G 54 702

4 C 188 194 G-C 54 040

5 E 130 896 A-D 46 162

6 F 87 741 D-A 43 534

7 B 72 360 G-G 41 090

8 Am 58 929 A-A 40 161

9 Em 57 537 D-D 39 710

10 A# 32 583 E-A 36 659

4. RHYTHM INFORMATION

u[t]
1− α

α

T

y[t]

y[t] = (1−α)·u[t]+α·y[t−T ]

H(z) =
1− α

1− α · z−T

Fig. 1. Block diagram (left), difference equation (top) and

transfer function (bottom) of an IIR comb filter
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Fig. 2. Magnitude response for an IIR comb filter with gain

α = 0.8 and base tempo 50bpm

We use our highly robust beat tracker introduced in [8,

9]to extract rhythmic structure. After a preprocessing step

which involves down-sampling to 11,025 kHz and transform-

ing into the frequency domain, the signal is filtered with the

A-weighting function according to the human perception of

sound. In order to reduce the number of bands without loosing

rhythmic information the audio signal is split into frequency
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bands using a bank of 24 overlapping triangular filters which

are equidistant on the Mel-Frequency scale.

Next, the envelope of each band is extracted using a half

wave raised cosine filter and processed by incorporating the

moving average over the previous 10 and the following 20

samples due to the fact that humans perceive note onsets

louder if they occur after a longer time of lower sound level.

Hence, we determine the lowest metrical level referred to as

tatum grid using a bank of 57 phase comb filters with gain

α = 0.8 and delays ranging from τ = 18 to τ = 74 envelope

samples. A comb filter is able to extract a frequency and its

multiples by adding to the signal a delayed version of itself

specified by the gain α and the delay τ . An example for such

a comb filter is depicted in figure 1, its magnitude response

for α = 0.8 and τ = 50 bpm is illustrated in figure 2. Based

on the tatum grid our beat tracker is able to determine meter

and tempo features by setting up narrow comb filters centered

on multiple tempos of the tatum grid.

5. HARMONIC INFORMATION

In order to incorporate the temporal harmonic structure of a

song we use the chroma energy distribution normalized statis-

tics introduced by Müller et al. [10]. These features are based

on chroma features which are computed using a fast Fourier

transform with a window length of 372 ms and an overlap of

0.5 by taking into account a psychoacoustic model using A-

weighting filtering as within the beat tracking according to

DIN EN 61672-1:2003-10 and by decomposing the audio sig-

nal into frequency bands representing the semitones which are

defined for equal temperament as

fi = f0 · 2i/12 f0 = f(A0) = 27.5 Hz (1)

with 15 ≤ i ≤ 110 (corrisponding to the notes C2–B9) and

therefore covering 96 semitones (8 octaves). In order to over-

come deficient recordings due to mis-arranged recording set-

tings or intentional manipulations of the sound impression,

pitch correction is applied. A long term frequency analysis

computes the prominent frequency fp and determines a factor

c

c =
fp

fr
(2)

with

fr = argmin
fi

∥∥∥∥fp

fi
− 1

∥∥∥∥ (3)

Next, all semitones fi are multiplied with the factor c to cor-

rect their pitch. In order to allocate the frequencies to the

semitones a nearest neighbor approach is applied which im-

plies the use of Gaussian bells gi(x) centered at fi given by

gi(x) =
1

σ
√

2π
· e−

(
x−fi

fi−fi−1

)2

2σ2 σ = 0.125 (4)

Now we normalize the resulting sub-bands si by dividing

each one belonging to the same octave O by the sum of these

sub-bands according to

ŝi =
si,O∑
si,O

si,O = si ∈ O (5)

In a final step we add up all sub-bands corresponding to the

same relative pitch class, for example for the chroma C we

compute s1 = ŝ15 + ŝ27 + . . . + ŝ99, and normalize the re-

sulting values

vi =
si∑
si

1 ≤ i ≤ 12 (6)

Due to the fact that the local chroma features are too sensitive

concerning articulation effects and local tempo deviations we

extend the chroma features by applying to each component

of v = (v1, . . . , v12) a quantization function Q as defined by

Müller et al. [10]. In the next step, we convolve 11 consecu-

tive quantized chroma vectors Q(v(i)) component-wisely us-

ing a Hann window resulting in a weighted 12-dimensional

features vector including temporal harmonic information. As

the information changes due to the windowing being quite

slow, down-sampling with a factor of 4 is applied. The result-

ing feature vectors are referred to as chroma energy distribu-

tion normalized statistics (CENS) which we will denote from

now on as v = (v1, . . . , v12).

6. AUTOMATIC CHORD LABELING

First, a musical piece is converted from MP3 to a mono-

phonic, 44.1 kHz, 16 Bit wave. Next, the tempo, meter,

and down-beat position are determined by IIR-comb filter-

ing as described in sec. 4. According to the tempo, the

song is partitioned into consecutive bars. Per bar a 12-

dimensional CHROMA-based C.E.N.S. vector is computed

(cf. sec. 5). In this process audio data passes a spectral trans-

formation, dB(A)-correction, compensation of detuning and

mapping to pitch classes. The result of this cascade is a 12-

dimensional vector containing the intensities for each semi-

tone, taking temporal development into account. Note that

dB(A)-correction for adaption to human perception according

to norm IEC/DIN 651 and pitch tuning are not standard oper-

ations in C.E.N.S. feature computation. For pitch tuning, we

acquire the prominent frequency during a long-term analysis

of the piece in the range between 130 Hz and 1 kHz. Next,

the nearest reference frequency to the measured prominent

frequency is detected and the semi-tone filter-bank is shifted,

accordingly.

For classification we consider a data-free cross-correlation

(CC) with a hard template (“1” for each note that is contained

in the chord, “0” for any other note in the scale) as reference.

For the proposed data-driven processing we compare Sup-

port Vector Machines (SVM) with HMM with and without

the language, respectively musiological model (MM). SVM
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performed best with linear Kernel, pairwise multi-class dis-

crimination and SMO learning. In the case of HMM one

continuous model with one emitting state per beat is trained

by 20 Baum-Welch iterations [11]. 1 mixture was found to

be optimal. We use a context free grammar (word-loop) and

Viterbi decoding to model the sequence of chords. If the MM

is used (HMM+MM), Laplace smoothed class-based back-

off-bigrams (Katz Back-Off, with cutoff 1) further proved

optimal.

7. EXPERIMENTS

For evaluation we use song-independent cyclic “leave-one-

song-out” (LOSO) training and testing. In Table 3 mean ac-

curacies are summarized.

Table 3. Accuracies (and standard deviation) ChoRD corpus,

LOSO evaluation. ADPS abbreviates the clustered group of

augmented, diminished, power, and sustained chords.

Accuracy CC SVM HMM HMM
[%] +MM
MajMinADPS 28.37 36.71 45.39 48.84

±14.80 ±17.44 ±14.73 ±15.33
MajMin 39.41 40.24 58.57 60.13

±16.99 ±17.52 ±19.54 ±19.10

As can be seen, the data-driven approaches are superior,

whereby HMM prevail. By language modeling a further gain

is obtained, and the reduction to major and minor chords

seems reasonable if appropriate.

8. CONCLUSION

A system was shown to fully automatically label chords by

uniting the advantages from beat-synchronization, musiolog-

ical modeling, de-tuning compensation, and data-driven pro-

cessing. The combination of these was shown to be superior

to merely knowledge-driven cross-correlation and single mea-

sure analysis. Moreover, impressive 60% accuracy could be

reached on original MP3 compressed audio tracks that rep-

resent a broad mix of artists and styles rather than limitation

e.g. to one artist. The integration of a musiological model

trained on large data amounts was proven significantly ben-

eficial. However, some variance was found throughout gen-

res with respect to the difficulty of the task: some songs, as

e.g. “Enya - Silver Inches” were recognized without mistake,

while “Prince - Purple Rain” proved to be the toughest call:

only every fourth chord was determined correclty. A par-

ticular advantage of the beat-synchrony is the ready-to-use

lead-sheet character of the output. In future efforts we aim at

investigation of benefits arising from chord enhancement by

Non-Negative-Matrix-Factorization and use of stereophonic

information. From an architectural point of view we will

alternatively consider Bidirectional Long-Short-Term Recur-

rent Neural Networks that allow to model knowledge of the

whole song for every chord decision.
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