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Abstract—In this paper we compare the decoding latency, i.e.,
the delay between the time a channel symbol is received and
the time it is decoded, of block and convolutional codes. In
particular, we compare low density parity check (LDPC) block
codes with iterative message-passing decoding to convolutional
codes with Viterbi decoding and stack sequential decoding. On
the basis of simulations, we show that, for a code rate of1/2,
a target bit error rate of 10

−4, and an allowed latency of up to
approximately 2000 information bits, convolutional codes with
stack sequential decoding require a smaller signal-to-noise ratio
(SNR) than LDPC codes with iterative message-passing decoding.
For larger allowed latencies, the advantage switches to LDPC
codes.

I. I NTRODUCTION

In 1948 Shannon founded information theory with his
article “A mathematical theory of communication” [1], in
which he proved that, for a given communication channel,
coded transmission with arbitrarily small probability of error
is possible at rates below capacity, given long enough codes.
Since then communication engineers have tried to develop
error-correcting codes that achieve a small probability of
error at rates as close to channel capacity as possible. In
the process, many important codes were discovered, such as
Hamming codes [2], Golay codes [3], BCH codes [4], [5],
Reed-Solomon codes [6], convolutional codes [7], and turbo
codes [8]. Then, in 1995, the capacity-approaching class of
low density parity check (LDPC) codes, originally introduced
by Gallager in [9], was rediscovered by MacKay and Neal [10]
and Wiberg et al. [11]. Currently LDPC codes are employed in
satellite-based digital video broadcasting and long-haul optical
communication standards and are likely to be adopted in the
IEEE WLAN standard and third-generation mobile telephony.

In practical communication systems, a low error probability
and a high transmission rate are not the only important factors.
The complexity and memory requirements of the encoder and
decoder influence the cost of a device, such as a mobile
phone. Another very important parameter is the latency, i.e.,
the time it takes to recover the transmitted message. This delay
is introduced by the encoder, the decoder, and the channel
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and has always been crucial for telephony, since high latency
can seriously handicap a voice conversation. Also more recent
applications like video conferencing and remote control have
demanding latency requirements.

Communication engineers largely agree that for applications
not requiring low latencies, long LDPC codes are the right
method to achieve capacity-approaching performance [12]. But
there is currently no consensus regarding the right coding
method to use for low required latencies. In this paper, we
compare the performance of convolutional codes to block
codes on the basis of an equal latency constraint, with par-
ticular emphasis on the low latency case.

The paper is organized as follows. In Section II we define
decoding latency, and in Section III we introduce decoding
speed, a parameter needed to compute latency. The results
of simulations are presented in Section IV and we directly
compare LDPC block codes to convolutional codes in Section
V. Section VI concludes the paper.

II. D ECODING LATENCY

We consider a simplified transmission system as depicted in
Fig. 1. The overall latency is defined as the difference between
the time the source emits an information bit and the time the
information bit is decoded.
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Fig. 1. The definition of latency.

The decoding latency is denoted byl and is defined as the
overall latency minus the encoding time and the channel delay.
We measure time in terms of information bits. One information
bit corresponds to the time the source needs to emit one bit,
and thus time can easily be converted from information bits
to seconds.

We now define decoding latency more precisely for the
three decoding methods we want to compare, namely LDPC
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block codes with iterative message-passing decoding [13] and
convolutional codes with Viterbi decoding [14] and stack
sequential decoding [15].

LDPC block codes with iterative message-passing decoding:
In general, the decoder must wait for the whole block (K
information bits for an(N,K) LDPC block code) to arrive
before it can start decoding. Blocks are then decoded by an
iterative message-passing decoder that employs a stopping rule
and a buffer (see, e.g., [16]). The decoding itself, along with
the possible buffering of some blocks, requires additional time,
referred to as the computational timetldpc

comp. The number of
decoding iterations per block and the time a block waits in
the buffer vary with the channel quality. Thustldpc

comp is a
random variable and we consider the average computational
time t

ldpc

comp.

The average decoding latencyl
lpdc

of LDPC block codes
equals the arrival timetblock of one incoming block plus the
average computational timet

ldpc

comp needed for decoding and
possible buffering of the block, i.e.,

l
ldpc

= tblock + t
ldpc

comp.

If t
ldpc

comp is less thantblock, one decoder is sufficient. Ift
lpdc

comp

is greater thantblock, several decoders must be applied in
parallel, as shown in Fig. 2; otherwise, the buffer for incoming
blocks will fill up. The numberD of required decoders can be

computed asD =
⌈

t
lpdc

comp

tblock

⌉

, where⌈·⌉ is the ceiling function.
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Fig. 2. Decoding latency of LDPC block codes fort
ldpc
comp = 1.5 · tblock.

Convolutional codes with Viterbi decoding: In contrast to
iterative message-passing decoding of LDPC block codes, a
convolutional decoder can begin its computations aftertsect,
the arrival time of one incoming trellis (or tree) section (k
information bits for an(n, k,m) convolutional code). After
having received a trellis section, a Viterbi decoder computes
the new state metrics in the trellis. The number of com-
putations per trellis section is fixed(2km), and thus the
computational timetvit

comp required to compute the new state
metrics is constant.

Parallel decoders analogous to iterative message-passing
decoding of LDPC block codes cannot be employed because
the metrics of one trellis section must be known in order to

section 1

section 1

section 2 section 3

@ decoder 1

tsect tvit
comp

Fig. 3. Viterbi decoding fortvit
comp = 0.9 · tsect.

compute the metrics of the next section1. The decoder must
finish before the code bits of the next trellis section arrive,
i.e., tvit

comp cannot exceedtsect (as shown in Fig. 3); otherwise,
incoming code bits will be lost.

Viterbi decoders cannot store paths of infinite length. Thus
a finite path memoryτ is employed, i.e., afterkτ information
bits a decision is forced. The decoding latency is then the
time required to receiveτ trellis sections (kτinformation bits
.
= τ · tsect) plus the computational timetvit

comp for one trellis
section, as depicted in Fig. 4, i.e.,

lvit = τ · tsect + tvit
comp.

Finally, we note that there is a tradeoff betweenτ , which
directly influences the latency, and the decoded bit error rate
(BER) (see, e.g., [17]).

decoder input

decoder output

latencylvit

tsect

τ · tsect tvit
comp

Fig. 4. Decoding latency for a Viterbi decoder.

Convolutional codes with stack sequential decoding: After
having received a tree section, a stack sequential decoder
extends the most promising path, i.e., the top path in the stack.
When the top path includes the most recently received tree
section, it waits until the next tree section has been received
before proceeding. In general, the number of path extensions
per incoming tree section varies with the channel quality, and
thus the computational timetstackcomp per tree section is a random
variable, and buffering is required (see, e.g., [15]). Hence we
consider the average computational timet

stack

comp.
If the decoder operates close to the computational cutoff

rate, the average number of path extensions per tree section,
and thust

stack

comp, can become greater thantsect, causing the

1Parallel decoders can be employed, however, to reducetvit
comp. But the

decoders still only work on one trellis section at a time, and hence we consider
this as a single fast decoder.



buffer to overflow and incoming code bits to be lost. This
can be prevented by discarding corrupted tree sections after a
certain number of computations (see, e.g., [18]).

After kτ information bits a decision is forced, because
the buffer cannot store paths of infinite length. For stack
sequential decoding,τ is called the backsearch limit. The
average decoding latency of stack sequential decoding is then

l
stack

= τ · tsect + t
stack

comp.

As with Viterbi decoding, the BER decreases but the latency
increases with increasingτ .

III. D ECODING SPEED

In order to be able to determine the computational time for
the three decoding techniques, we define the decoding speed
s as the average number of information bits the decoder can
decode per incoming information bit

s =
number of decoded inf. bits

incoming inf. bit
.

In Section II, we have seen that the decoding speedsvit

of Viterbi decoders and the average decoding speedsstack

of stack sequential decoders must be at least one, i.e.,
svit, sstack ∈ [1,∞), if we do not want to lose incoming
code bits. (Note that, for stack sequential decoding, we must
consider the average decoding speed, sincesstack is a random
variable.) In our analysis, we assume the slowest possible de-
coding speed for the decoding of convolutional codes (svit = 1
andsstack = 1), since it is not likely that faster hardware than
needed is used in a decoder.

We have also seen in Section II that the average decoding
speedsldpc of an iterative message-passing decoder for LDPC
block codes can be less than one, provided that we have
enough decoders. For a completely fair comparison, we would
have to determine the average block decoding speedsldpc

assuming the same hardware resources employed for convo-
lutional codes. But computingsldpc under these conditions is
not feasible, since many factors, such as code rate, channel
quality, and implementation architecture, would have to be
considered. For this reason we treatsldpc as a variable.

IV. RESULTS

All simulations were performed using rate1/2 codes
on an additive white Gaussian noise (AWGN) channel and
we assumed binary phase-shift-keyed (BPSK) modulation.
(Choosing other code rates does not fundamentally change the
reported comparisons.)

LDPC block codes with iterative message-passing decoding:
We implemented an LDPC iterative message-passing decoding
algorithm that has a maximum number of iterations equal to
50. The parity check matrices are taken from the rate1/2
LDPC codes listed in Appendix A of MacKay’s Encyclopedia

of Sparse Graph Codes [19]. (There are many more up-to-
date sources of good LDPC codes. However, for the short
block lenghts considered, the choice of code has only a minor
effect on the results.) We measured the BER for various block
lengths and normalized signal-to-noise ratios (SNRs)Eb/N0,
which gave us a set of BER vs. SNR curves for different block
lengths. Subsequently, we interpolated these curves at a target
BER = 10−4 and drew the required SNREb/N0 as a function
of the block lengthK, as shown in Fig. 5. (Different target
BERs can also be considered, but they do not substantially
alter the conclusions.)
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Fig. 5. Iterative message-passing decoding: Required SNREb/N0 as a
function of block lengthK for a target BER= 10

−4.

Convolutional codes with Viterbi decoding: For Viterbi
decoding, we generated BER vs. SNR curves for several
path memoriesτ and code memoriesm. Optimal rate1/2
codes were taken from [17]. We accounted for the influence
of a finite path memoryτ by deciding whether a certain
information bit is a ’0’ or a ’1’ afterτ further information bits
were received. We again interpolated these curves at a target
BER = 10−4 and plotted the required SNR as a function ofτ
in Fig. 6. Note that, in practice, codes with memorym greater
than 12 are not feasible, since the number of state metrics (2m)
that must be computed at every time step grows exponentially
with m.

Convolutional codes with stack sequential decoding: We
performed the same simulations for the stack algorithm as for
Viterbi decoding and the results are shown in Fig. 7. Note that
the curves do not improve any further for code memoriesm
greater than or equal to 16. It is explained in [15] that, if a stack
sequential decoder operates at rates below the computational
cutoff rate, the average number of path extensions per arriving
information bit can be upper bounded, whereas if it operates
above the cutoff rate this number can become prohibitively
large. Thus, since we limited the maximum number of path
extensions per incoming information bit to 250, the required
SNR cannot be made arbitrarily small by increasingm.
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Fig. 6. Viterbi decoding: Required SNREb/N0 as a function of path memory
τ for a target BER= 10

−4.
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Fig. 7. Stack sequential decoding: Required SNREb/N0 as a function of
backsearch limitτ for a target BER= 10

−4.

V. COMPARISON

Now we compare the results for block decoding (iterative
message-passing decoding) directly to convolutional decoding
(Viterbi or stack sequential decoding), i.e., we combine the
curves from Section IV into one graph. Thus we transform
both the SNR vs.K and the SNR vs.τ curves into SNR
vs. l curves, withl being the decoding latency. Considering
the definitions of Sections II and III, the average decoding
latency isl

ldpc
= K(1+1/sldpc) for iterative message-passing

decoding andl = k(τ + 1) for Viterbi decoding and stack
sequential decoding.

As a result, the latency requirements of block and con-
volutional decoding can be depicted in one figure, and, by
consideringsldpc as a variable, we can generate a set of
curves for block decoding of LDPC codes, as demonstrated
in Figs. 8 and 9. For a certain average decoding speed
sldpc, the curves for iterative message-passing decoding and
a convolutional decoding method (Viterbi decoding in Fig. 8
and stack sequential decoding in Fig. 9) will intersect at a
certain latencylint.
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Fig. 8. SNR required to achieve a target BER= 10
−4 as a function of

the latency for Viterbi decoding of convolutional codes and iterative message-
passing decoding of LDPC block codes with average decoding speedssldpc

=

1 andsldpc
= 2.

In Fig. 10, we depict thelint vs. sldpc curves for the
two convolutional decoding methods. These curves can be
interpreted as follows. If we know which average decoding
speedsldpc

0 of LDPC block codes corresponds tosvit = 1
(or sstack) for our hardware resources and we decide which
latencyl0 our application requires, LDPC block codes require
less SNR (to achieve the target BER) if the point(sldpc

0 , l0)
lies above the curve and convolutional codes require less SNR
if the point lies below the curve. Among the convolutional
decoding methods, we see that stack sequential decoding is
capable of outperforming Viterbi decoding, since higher code
memories are possible.

As mentioned in Section III, it is difficult to determine the
exact average block decoding speedsldpc that corresponds to
svit = sstack = 1. Nevertheless, it is reasonable to assume
that sldpc may be less thansstack, since a stack decoder has,
if the rate is not greater than the cutoff rate, a relatively low
computational effort compared to an iterative message-passing
decoder. We consider two cases as examples: (1) Ifsldpc = 0.5
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and sstack = 1 and we have an application that requires a
decoding latency less than about 2500 information bits, we
should use convolutional codes with sequential decoding in
order to minimize the required SNR necessary to achieve the
target BER= 10−4; and (2) if sldpc = 1.5 and sstack =
1, stack sequential decoding outperforms iterative message-
passing decoding only up to a required latency of about 1500
information bits.

As can be seen from Fig. 10, thelint vs. sldpc curves level
off for average block decoding speedssldpc ≥ 2. So, even if
we assume thatsldpc is much faster thansvit or sstack, there
remains a range of required latencies where convolutional
decoding requires less SNR than block decoding.

VI. CONCLUSIONS

We have shown that, on an AWGN channel with BPSK
modulation, and for a code rate of 1/2 and a low fixed allow-
able latency, stack sequential decoding and Viterbi decoding
require a lower SNR to achieve a target BER of10−4 than
iterative message-passing decoding of LDPC codes, and that
sequential decoding can outperform Viterbi decoding because
higher code memories can be employed.

In particular, if we assumesstack = 1 and sldpc = 0.5,
stack sequential decoding of convolutional codes requires a
lower SNR than iterative message-passing decoding of LDPC
block codes up to a required decoding latency of about 2500
information bits, and, forsstack = 1 and sldpc = 1.5, up to
about 1500 information bits. We expect that for rates higher
than 1/2 the comparison between iterative message-passing
decoding of LDPC codes and Viterbi or sequential decoding
of convolutional codes will remain roughly the same.
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(a) Viterbi decoding
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Fig. 10. Latencylint at which convolutional decoding and message-passing
decoding require equal SNRs (to achieve a target BER= 10

−4) as a function
of the average block decoding speedsldpc.

Note that if we chose a required BER of less than10−4,
the lint vs. sblock curves would move even higher, since the
BER vs. SNR curves of large memory convolutional codes are
generally steeper than those of moderate length LDPC codes.

We also found that the new look-ahead sequential decoding
algorithm, introduced in [20], can outperform stack sequential
decoding, but results have been obtained only for a binary
symmetric channel (BSC). For details, see [21].
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