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Lehrstuhl für Steuerungs- und Regelungstechnik

Extraction of Probabilistic Route

Information Representations from

Human-Robot Dialogs

Andrea M. Bauer
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Abstract

This thesis addresses methods that enable robots to extract missing route knowledge by

asking humans for directions. In a first step an experiment was conducted in which a

robot had to navigate to a designated goal in an unknown urban environment without

any prior map knowledge or GPS, but solely by asking passers-by for directions. While

the experiment was successful, at the same time the results point up further challenges

for extracting route information through human-robot communication. Hence, research

questions are derived that are answered in the remainder of the thesis, namely proactive

extraction of route information from human-robot dialogs, probabilistic representation of

route information, and reasoning about extracted route descriptions. Linguistic principles

relevant to direction-inquiry dialogs are reviewed. Guidelines for human-robot dialogs are

derived from these and implemented in a dialog system. This renders the dialog natu-

ral to humans and facilitates proactive extraction of unambiguous route information. As

route information is usually simplified and distorted, probabilistic models of individual

route information are developed. Certainty values are computed from direction and error

probabilities to assess the reliability of direction information. Quantitative and qualita-

tive distance information is modeled by posterior probability distributions that assess the

accuracy of distance information. Finally, a system is developed that allows robots to

reason about different route descriptions. Route descriptions are represented as graphs

and evaluated for plausibility by pattern matching and route similarity assessment. Rea-

sonable route information is included in the route belief of the robot, while conflicting

information is inquired about if necessary. All methods are evaluated experimentally with

collected data or by human participants. The methods and systems introduced are de-

signed in adaptable ways and can be expanded for extracting and representing other types

of information from human-robot dialogs.

Zusammenfassung

Diese Arbeit beschäftigt sich mit Methoden, die es Robotern ermöglichen, sich fehlendes

Wegwissen anzueignen indem sie Menschen gezielt nach dem Weg fragen. Zunächst wurde

ein Experiment durchgeführt, in dem ein Roboter seinen Weg zu einem vorgegebenen Ziel in

in einer unbekannten Umgebung ohne vorheriges Kartenwissen oder GPS, sondern allein

durch Wegangaben von Passanten erreichen musste. Dieses Experiment war erfolgreich,

zeigt aber auch auf, welche Herausforderungen für die Aneignung von Wegwissen durch

Mensch-Roboter-Kommunikation noch bestehen. Daraus leiten sich die Forschungsschwer-

punkte dieser Arbeit ab, nämlich Extraktion von Weginformationen aus Mensch-Roboter-

Dialogen, probabilistische Repräsentation von Weginformationen und das Schlussfolgern

über gegebene Wegbeschreibungen. Aus linguistischen Erkenntnissen werden Richtlinien

für Mensch-Roboter-Dialoge über Wegwissen abgeleitet und in einem Dialogsystem im-

plementiert. Dies ermöglicht eine für den Menschen natürliche Kommunikation und die

zuverlässige Extraktion von inhaltlich eindeutigen Weginformationen. Da Weginformatio-

nen üblicherweise Schätzwerte und Vereinfachungen der tatsächlichen Werte wiedergeben,

werden in einem nächsten Schritt probabilistische Modelle für einzelne Weginformationen

erstellt. Aus Richtungs- und Fehlerwahrscheinlichkeiten werden Zuverlässigkeitswerte für
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Richtungsangaben berechnet. Quantitative und qualitative Distanzangaben werden durch

bedingte Wahrscheinlichkeitsdichteverteilungen modelliert, die Aufschluss über die Genau-

igkeit der einzelnen Angaben liefern. Zuletzt wird ein System vorgestellt, das es Robotern

ermöglicht, verschiedene Wegauskünfte zu vergleichen. Dabei werden die Wegauskünfte

graphentheoretisch repräsentiert und über Pattern-Matching und Wegvektorähnlichkeit auf

Plausibilität untersucht. Sinnvolle Weggraphen werden in die Wissensbasis aufgenommen,

während das System gegebenenfalls gezielt bei widersprüchlichen Informationen nachfragt.

Alle Methoden werden mit durch Umfragen erhobene Daten oder mit Probanden experi-

mentell evaluiert. Die Vorgestellten Systeme und Verfahren sind modular gehalten und

lassen sich auf Aneignung und Repräsentation allgemeiner Informationen durch Mensch-

Roboter-Dialoge erweitern.

viii



Notations

Abbreviations

ACE Autonomous City Explorer

ANOVA analysis of variance
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1 Introduction

Asking humans for information is a reasonable approach for

robots to come by missing knowledge about complex, dynamic

human-populated environments. This chapter provides an in-

troduction to the thesis, reviews the state of the art of related

research fields, and discusses the main scientific contributions.

1.1 Motivation and Challenges

It is a longstanding research goal to develop service robots that aid human users in their

everyday lives [1, 2, 6]. Tasks that humans are envisioned to be relieved of by robots are

daily chores such as preparing meals, loading dishwashers, and shop for groceries. However,

service robots assisting humans in such intelligent and versatile ways may still be decades

away. One of the reasons for this is that service robots need to be able to operate in human-

populated environments which are unstructured, complex, and highly dynamic and a huge

amount of up-to-date information is needed by robots operating in such settings.

Standard approaches for robots to come by knowledge, necessary to fulfil a task, are

pre-programming and machine learning. As not every bit of information can be contained

in program code, pre-programming is not feasible in real environments. Since complex

dynamic environments would require a vast number of training sets to be able to make

intelligent decisions, machine learning is not efficient in such scenarios. Therefore these

standard approaches are not suitable to provide robots with all information necessary to

operate in real-world environments. An alternative for robots to close gaps in their task

1



1 Introduction

knowledge is to ask humans for missing information, as this is a fast way to come by relevant

and up-to-date information. Task descriptions extracted from human-robot dialogs can

then be translated into machine understandable instructions, i.e. broken down into a

sequence of action instructions. This approach is relatively new in robotics, as opposed

to the more common unilateral scenario of robots solely aiding humans and providing

information to them. Therefore there are still many unsolved problems and challenges. In

particular these challenges include proactively extracting missing information from often

vague and ambiguous human-robot communication, representing the information given by

humans in a way that can be processed by technical systems, and reasoning about it in order

to identifying inaccurate or erroneous information. Robots that overcome these problems

are able to act more robustly in the face of new and unforeseen tasks and situations, and

thus reach higher levels of autonomy and dependability.

This thesis addresses the challenges posed by the general problem of extracting task

information from human-robot dialogs, based on the special case of extracting route in-

formation for navigation tasks. This is a prerequisite to reaching a goal location in an

unknown or changing environment, as it provides robots with a basis for autonomous na-

vigation and global path planning. Even with access to the internet or GPS systems,

robots are bound to have gaps in their map knowledge of complex and dynamic human-

populated environments. Applications that can benefit from this are for example running

errands and shopping. Such applications are of use to personal service robotics and elderly

care, where human staff can be relieved of such tasks and gain time that could be used for

medical and psychological treatment as well as to keep the persons in their care company.

This thesis focuses on extracting a probabilistic route information representation from

human-robot dialogs. In particular the presented research includes a dialog system for

robots asking for directions, probabilistic models for individual route information, and a

system for reasoning about route descriptions and simultaneously building a route belief as

an internal representation of the plausible route descriptions. The dialog system includes

findings from human-human communication, in order to render the dialogs more natural to

humans and to unambiguously extract route information. The probabilistic models provide

robots with means to assess individual directions and distances for reliability and accuracy.

Finally, a system for reasoning about route information compares different route descrip-

tions, assesses them for plausibility, inquires about conflicting information if necessary, and

builds a route belief as a representation of the assumed route within the environment.

In this chapter the research areas related to the thesis are reviewed. This chapter

does not provide a comprehensive overview of the state of the art, as the more specific

research developments relevant to each chapter are covered at the beginning of each re-

spective chapter. Overviews of the broad research fields of human-robot interaction and

spatial cognition and computation are provided in the following. A comprehensive view of

human-robot interaction (HRI), with design implications, ways of communication, and ap-

plications, is necessary for providing a robot with the ability to ask humans for directions,

as these factors can affect the outcome of human-robot dialogs. An overview of spatial

cognition and computation is needed to understand the ways that humans and technical

systems represent and process spatial information.

This chapter is structured as follows. An overview of the state of the art in human-

2



1.2 Overview of Human-Robot Interaction

robot interaction is provided in Section 1.2. The state of the art in spatial cognition and

computation is reviewed in Section 1.3. Finally, Section 1.4 presents the main contributions

and the outline of the thesis.

1.2 Overview of Human-Robot Interaction

Human-robot interaction is a wide research field and constitutes a framework of insights

useful to proactively extract information from human-robot dialogs. HRI includes inter-

disciplinary cooperation between classical robotics, cognitive sciences, and psychology and

is a field with many implications for design and communication and with various appli-

cations. As the research done in this field is vast, only the aspects most relevant to this

thesis are surveyed here. Extensive overviews of interactive robots and HRI are provided

for example by Fong et al. [45, 178] and Kiesler et al. [79].

The first impression a human gets about a robot is how it is designed, i.e. the appearance

of the robot, whether social distances are respected, and the subjective feeling of safety.

1.2.1 Design Implications

Design specifications for interactive robots are manifold and different from purely func-

tional industrial robots. Among the issues that have to be considered when designing

robots for HRI are the safety of humans, social distances, and robot appearance.

Safety is a crucial aspect of the design of interactive robots [97, 186]. A robot must

not endanger a human under any circumstances. Since the very beginning of robotics this

has been an evident fact and was formulated by Isaac Asimov in his famous Three Laws

of Robotics [7]. On the one hand, the hardware of the robot must not be dangerous for

humans, banning sharp edges, points and accessible electric current. On the other hand,

control theoretic methods and suitable software design have to be applied to guarantee

safety even in the face of disturbances or unforeseen events [96].

Robots interacting with human partners, do not only have to respect safety distances,

but also social distances. Such distances are studied in proxemics [63] for interaction be-

tween humans. Proxemics discern between different social distances [64], i.e. intimate,

personal, social, and public distance. Proxemic studies are performed with humans inter-

acting with robots [177, 178] in order to define and control interaction distances that feel

comfortable to humans and thus in theory improve the human’s subjective feeling and the

performance of the interaction.

Thought has to be given to the appearance of interactive robots, as it might effect the

expectation of the human in the robot, and therefore on the long run the outcome of the

human-robot interaction. Robot appearance design is studied for example from a tradi-

tional design theoretic view [176], for humanoid robots [179], and for robot heads [38].

Depending on the purpose and character of the interaction, robots are designed to look

more or less similar to humans. Mori [124] found a function, called the “uncanny valley”

that maps similarity to acceptance. He states that acceptance increases the more similar

a robot is to a human, until a point is reached where the similarity is not quite 100 %

and subtle deviations from human appearance and behaviour create an unnerving effect.
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Contrary to design policies that attempt to make robots more similar to humans a study

by Yamada et al. [204] suggest that robots with typical robot appearance and a primitive

expression of emotions are more easily understood by humans than more life-like appearing

robots with complex ways of expressing emotions, concluding that the appearance and ex-

pressions of robots should resemble their abilities. Another aspect that has to be taken into

account, when designing robots, is the culture a robot is supposed to work in, as there are

differences in the acceptance of robots by people with different cultural backgrounds [77].

Especially in Japan robots are accepted more positively than in Europe and America.

Another important aspect that has to be taken into account when designing robots for

HRI is communication, as it allows for exchanging information during interaction. Human-

robot communication is surveyed below.

1.2.2 Human-Robot Communication

Communication is a crucial aspect of interactive robots, since efficient interaction necessi-

tates the exchange of complex information. Communication can be distinguished by the

specificity, i.e. implicit or explicit information; the direction of the information exchange,

i.e. the roles of human and robots as emitter and receiver of information; and the mode of

communication, the main modes being haptic signals, physiological signals, gestures, and

natural language.

Haptic communication can be maintained when the partners are connected physically

either directly or through an object they both manipulate. Haptic communication usually

conveys explicit information. It occurs through applied forces and torques or joint angles

and orientations. It is studied from different perspectives, such as joint object manipula-

tion [87, 88], dancing [53, 86] or handshaking [99].

Implicit information such as intentions and emotions are also communicated involun-

tarily through physiological signals such as heart rate and brain or muscle activity. Physi-

ological signals can be analyzed by robots to deduce the level of approval and arousal [95]

or the stress level [146]. Based on this information, robots can select appropriate actions.

Gestures are used to convey information implicitly or explicitly. Explicit gestures hold

complex information, and are communicative gestures such as pointing gestures, primi-

tive signs, or sign language. Implicit gestures include manipulative gestures and facial

expressions. Robots can apply gesture recognition to extract information from gestures.

Pointing gestures can be interpreted for example from camera images by matching an arm

model [137] or interpreting kinematic information [113]. Some HRI approaches use a set

of predefined gestures which the robot is able to recognize [84]. Intentions of humans can

be inferred by robots from manipulative gestures [105], from head gestures such as eye

gaze direction [156], or from facial expressions [76]. Some robots are able to use facial

expressions [17, 169] for communication in return and thereby act socially. There are also

robots that can generate hand and arm gestures [65] to communicate with humans.

Natural language communication provides explicit information through words and sen-

tences, but can also provide information about emotions implicitly. Methods for processing

and generating natural language are reviewed in detail below.
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Natural Language Communication

For humans a very natural way to interact and exchange information is through speech,

as it is suitable to efficiently convey complicated information. Therefore to render human-

robot communication efficient and natural to humans, interactive robots need to be able

to communicate through natural language. Natural language communication can convey

information both explicitly and implicitly [208]. Implicit information in speech signals

can be extracted by robots through emotion recognition [207] and also encoded in synthe-

sized speech [161]. In the following, techniques and methods for explicit natural language

communication are presented, as most of the relevant information is conveyed over this

channel. A detailed overview of the history of explicit natural-language communication

with computers is given, e.g. in [140]. Speech and language processing is reviewed in [75].

The research field of computational linguistics studies language from a computational

perspective, thus connecting linguistics and computer engineering. Extensive overviews of

computational linguistics are given for example in [13, 33]. Natural language processing em-

braces many major subfields of computational linguistics, such as speech recognition, text

pre-processing, machine translation, information extraction, text generation, and speech

synthesis. Speech recognition is concerned with the conversion of an acoustic signal cap-

tured by a microphone to a set of words. An overview of the developments in speech

recognition technologies is presented in [73, 131]. Speech synthesis allows technical sys-

tems to produce speech; a broad overview of speech synthesis methods is presented in [103].

Text generation is a relatively new subfield of natural language processing, and deals with

generating texts from symbolic formal representations; an overview of the main methods

is provided in [9]. The field of text pre-processing includes techniques such as text parsing,

spell checking, and referencing. Machine translation is concerned with translating texts

from one language to another; an overview of techniques and tools is given in [69]. Speech

synthesis and speech recognition is surveyed in [131].

Speech understanding is regarded as the major problem of natural language process-

ing as it is the most general and complex task. Speech understanding requires a great

variety of knowledge about the environment, context, speaker, topic, lexical frequency,

semantically related topics, to name just a few aspects. Important approaches to speech

understanding are semantic networks [202] that represent semantics as nodes connected by

directed edges, and conceptual dependency [160] that is based on semantic networks, but

uses edges that represent different dependencies. Recent approaches use the availability

of high-performance computing systems with large spoken and written data collections,

e.g. [114, 145], and by using statistical machine learning techniques [138, 190].

A sub-field of speech understanding is information extraction. Information extraction

deals with the automatic extraction of structured information from unstructured machine

readable text [159]. It is a special case of information retrieval [166] which is the search

for content in large document databases. Information extraction techniques are surveyed

in [159]. It has recently expanded into the domain of human-robot interaction, e.g. [74].

Human-robot communication in general and information extraction in specific are key

requirements for robots that depend on task information from humans to achieve their

goals. These abilities are useful in a wide variety of applications of HRI. The main appli-

cations are reviewed below.

5



1 Introduction

1.2.3 Applications

Applications for HRI are manifold, with the main application areas in home service, health-

care, tour guiding, entertainment, construction, as well as search and rescue. These areas

have different requirements and the degree to which they are presently integrated varies.

Robots with any of these applications benefit from the ability to extract and represent

missing task information, as it provides robots with a greater autonomy and a robustness

against gaps in the task knowledge.

Home service will be a major application area for HRI in the future. First commercially

available robots have been developed that vacuum-clean [153] and mow the lawn [150].

The household robot Wakamaru [195] developed by Mitsubishi is commercially available

as well. It can connect itself to the home network to provide information for daily life, look

after the house while the inhabitants are absent, and communicate with humans. A robot

that acts as home security [206] is being developed. Truly collaborative home service robots

are still a matter of research, such as robots assisting humans in the kitchen [11, 135].

Diverse healthcare robots are being developed, such as robots that guide the blind [70,

98, 189], robotic walkers [152], wheelchairs [71], elderly care robots [121, 142, 193], and

robots for the therapy of autistic children [200]. These robots are all designated to aid

diseased or fragile humans and must be especially well designed and scrutinized. Ethical

issues have to be considered particularly in the field of healthcare and medicine.

Some robots are used as tour guides in Museums, i.e. RHINO [24] and its successor

MINERVA [181], and office environments [116, 134]. They can guide humans to certain

rooms or exhibitions and provide information. Toomas [59] is a robot guiding humans

through a home improvement store. Tour guide robots need to be able to autonomously

navigate through constrained human populated environments, and to communicate with

humans in natural and intuitive ways.

Various entertainment robots capable of HRI are already commercially available, such

as robotic pets [143, 170] and humanoid robots [100, 151].

A seminal field for HRI is construction, where robots can support human construction

workers in carrying heavy loads and ease repetitive construction tasks. First steps toward

joint construction have been taken by the mobile robot helper [88] that can share loads

and handle objects in collaboration with a human. The JAST system [48] is capable of

solving a small scale construction task collaboratively with a human.

Another field in which robots support humans and take on dangerous tasks is urban

search and rescue [128, 129]. Robots are designed to move into collapsed buildings, collect

data, and try and find human victims, who can then be rescued by human staff members.

Though most of these systems are still under development, it is only a matter of time

until truly assistive and interactive robots will be commercially available and part of our

everyday lives. Such robots need to be able to assisting humans in intelligent and versatile

ways [19]. For this purpose robots need the ability to extract missing information from

HRI. Asking humans for information about their spatial environments will enable robots

to operate in unknown environments and fulfill new and unforeseen tasks.
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1.2.4 Interactive Robots Extracting Spatial Information

Recently researchers have started developing robots that are able to extract information

about their spatial environments from HRI. A robot that creates a map of its environment

by exploration and asks humans to label areas of interest is presented in [68]. The robot

Biron [171] integrates spoken dialog and visual localization to learn and label new places.

Both robots use HRI as a means to attach human understandable labels to their sensor-

based spatial belief. Also there are robots that ask humans for directions in structured

indoor environments. A wheelchair robot [119] can be given coarse qualitative route de-

scriptions. The office robot Jijo-2 [8] learns the locations of offices and staff by moving

around and asking humans for information. A robot asking for the way at a robotics con-

ference is presented in [118], and was the winner of the AAAI-2002 robot challenge [94].

A global inference approach [197] aims at having a robot automatically find a path within

an office environment based upon human directions. Finally, a miniature robot that can

find its way in a model town by asking humans for directions is described in [101]. All of

these robots operate in highly structured and often static indoor environments, and only

a few use natural language as the mode of communication.

For truly assistive, autonomous robots it will be necessary to implement the skills to

adapt to new situations in complex dynamic outdoor environments and to communicate

in a natural way with non-expert human users. Therefore theories from spatial cognition

and computation need to be included in interactive robots.

1.3 Overview of Spatial Cognition and Computation

The subject of spatial cognition comprises cognitive functions that allow humans or animals

to deal with spatial relations and orientations of objects in space, tackle visual spatial

tasks, have an awareness of self-location, and solve navigational tasks. The equivalent of

spatial cognition for robots and technical systems is spatial computation which can be

implemented to model spatial cognition or provide technical systems with representations

of spatial environments. These areas are important to this thesis as they provide methods

and systems that inspire representation of and reasoning about spatial information.

1.3.1 Spatial Representations in Humans

One of the first researchers to study cognitive representations of large-scale spatial en-

vironments was Trowbridge. He used the term “imaginary map” [187] to describe an

individual’s spatial representation of relations in the real environment. Tolman introduced

the term “cognitive map” for the mental representation of the layout of one’s environment

in humans and other animals [185]. Contrary to common belief at the time, he stated that

complex behaviour, such as the learning of routes, cannot be explained by simple stimuli

and reactions, but only by a mental representation of the routes under certain expecta-

tions. Later, additionally the term “mental map” was introduced by Gould and White [57].

The ability to construct and use different forms of spatial knowledge and acquire cognitive

maps has been researched in children of different ages [139, 165] and in elderly people [42]
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as well. The cognitive map gives answers to where certain things are in one’s environment

and how to get to them from the current location. An operational definition of a cognitive

map is given as “a representation of spatial relationships that enables computation of novel

shortcuts between known locations” [132]. Characteristic attributes of cognitive maps are

individuality, simplification of relations in the real environment, as well as a dependence

on personal and social factors.

Cognitive maps are distorted representations of relations in the real world. Such dis-

tortions include the alignment and rotation of objects relative to each other [188] and

geometrical simplification of objects [25, 120, 172] or distances [107]. Errors in cognitive

maps can be caused by various sources, such as the general topography [27], barriers [85],

the familiarity with an environment [18], or the number of turns or intersections on a

route [155]. The representation of distances depends on proximity to subjective reference

points [66]. Tversky [188] has discovered that distortions can be caused by the way humans

encode spatial information into their memory which is based on cognitive hierarchical or-

ganization [117]. Individuals usually simplify the complex geometrical structure of their

environment by representing it as a matrix of straight lines and right angle junctions [5],

where the spatial extent of familiar and salient areas is exaggerated [58].

Cognitive mapping in spatial cognition was first described in [185] and is defined as

the process by which spatial information about an environment is acquired, coded, stored,

recalled, and decoded. The product of this process is a cognitive map. As humans have

only limited sensing, information processing, and storage capabilities, cognitive mapping

forms constricted and simplified representations of a complex, uncertain, and changing

environment [40]. Cognitive mapping takes place in connection with the formation of travel

plans which are adapted to facilitate travel [52]. It may even depend on an individual’s

personal value system [158].

Lynch [110] describes how humans perceive and organize spatial information in cities.

He states that spatial knowledge consists not only of topological maps and geometrical

models of the environment, but also of procedures for getting from one place to another.

Lynch speculates that humans form mental maps of their environment, consisting of five

elements, namely paths that can be navigated, edges representing perceived boundaries,

districts as large areas with common properties, nodes such as focal points or intersections,

and landmarks serving as reference points. By contrast, Golledge [56] supposes that an

urban cognitive map is simply composed of a set of nodes and connecting paths. He points

out that such a cognitive map develops over time as the individual gains experience.

Cognitive maps are the basis for wayfinding. The modern term wayfinding was coined

by Lynch [110], who defined it as “a consistent use and organization of definite sensory cues

from the external environment”. Passini [136] expanded the term to include graphic and

audible communication, tactile information, and logical spatial planning. Wayfinding can

occur actively through navigating in an unknown environment, or passively by studying a

map of an unknown environment before navigating.

The equivalent of spatial cognition in robots is spatial computation. A review of spatial

computation is presented below.

8



1.3 Overview of Spatial Cognition and Computation

1.3.2 Spatial Representations in Technical Systems

Spatial representations are the basis for navigation and path planning for technical sys-

tems. Autonomous robots require an internal representation of their spatial environment

to be able to operate in it. Therefore “mapping is one of the core competencies of truly

autonomous robots” [182]. Robot mapping is the action of acquiring a coherent repre-

sentation of the surrounding environment. Spatial representations and mapping in robots

are reviewed in [201]. A general problem of local robot mapping is that the robot needs

to simultaneously localize itself within the environment while building a map of it. The

general method that tackles this dual problem is Simultaneous Localization and Mapping

(SLAM) [39, 121] which solves problems such as loop closure, uncertainty management,

mapping and localization. The immediate environment can be mapped by robots based on

scanning the surroundings with sensors, e.g. laser-range finders, sonar sensors, or camera

systems. The raw sensor data is processed to extract relevant information and represent

it as the most likely map of the real environment. The commonly used occupancy grid

maps introduced by Moravec and Elfes [123] represent the environment by a grid of cells,

each including the probability that the respective location is occupied by an obstacle.

Grid based maps offer a relatively high resolution of the close environment and are the

basis for local navigation and path planning. However, they are not suitable as long-term

representations of dynamic large scale environments, where salient objects, relations and

orientations between them, and passages are of interest.

Recently there are attempts to represent large scale spatial relations in such a way that

not only geometrical information needed for navigation is stored, but also topological infor-

mation for higher level operations such as task planning and HRI: Some approaches model

route-based navigational knowledge of (indoor) environments such as route graphs [89, 199].

A robotic environmental model composed of different levels of abstractions, including a

metric line map, a navigation graph, and a topological map is provided by a multi-layered

conceptual map [210]. A similar approach introduces a multi-hierarchical semantic map

for mobile robots [51] where spatial and semantic hierarchical information is linked. A

spatial representation for a robot interacting with humans including metric, symbolic, and

cognitive layers for individual robot and robot-human team behavior is presented in [78].

Hierarchical probabilistic representations of space based on objects are applied to equip a

robot with spatial cognition [191]. Kuipers [91, 92] has developed a computational theory

of the cognitive map, the Spatial Semantic Hierarchy (SSH). This theory was motivated by

human spatial reasoning. It models the spatial belief of a technical system as a hierarchy

of representations consisting of a control level, a procedural level, a topological level, and a

geometrical level. The central element of the SSH is the topological layer which is logically

prior to the metric representation. Recently, calculi for qualitative reasoning have been

aplied to reasoning about spatial relations between objects and areas [32, 148]. Kuipers [93]

also applied qualitative spatial reasoning to robot navigation and path planning.

Human-robot interaction as well as spatial cognition and computation are emerging

research fields both in cognitive sciences and robotics. Combining knowledge from both of

these areas can come by the challenges posed by enabling robots to extract representations

of task information by asking humans for instructions.
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1.4 Main Contributions and Outline of the Thesis

This thesis addresses methods for presenting robotic systems with abilities necessary for

acquiring probabilistic representations of task information extracted from human-robot

dialogs, based on the application example of extracting and representing missing route

information. The thesis is organized into 6 chapters. The general outline of the main

chapters of the thesis and the connections between the presented methods are visualized

in Fig. 1.1. Chapter 2 presents an experiment with an interactive mobile robot. Research

questions for the remainder of the thesis are deduced from the experimental results. In

Chapter 3, guidelines for direction-inquiry dialogs between humans and robots are derived

from linguistic principles and implemented in a dialog system. The dialog system consti-

tutes the interface between human and robot and proactively extracts route information

through HRI. Probabilistic models of route information, such as directions and distances

are presented in Chapter 4. The probabilistic models serve as means to assess the reliability

and accuracy of direction and distance information of individual route segments. Comple-

mentary to Chapter 4, Chapter 5 introduces a system for reasoning about overall route

descriptions. If route information is assessed as plausible by this system, it is included

in the route belief of a robot, i.e. the internal representation of the route information,

otherwise the dialog system in Chapter 3 inquires about all conflicting information. The

route belief can be augmented by metric sensor data during navigation. In the following

the main scientific contributions of Chapters 2 to 5 are summarized.

H
U

M
A

N
E

N
V

IR
O

N
M

E
N

T

Dialog
System

Route
Belief

Probabilistic
Models

Plausibility
Assessment

Information
Representation ROBOT

Chap. 3

Chap. 4

Chap. 5

Fig. 1.1: Schematic outline of the thesis.

In order to define challenges and problems with which a robot asking humans for direc-

tions might be confronted, Chapter 2 describes an experiment that was conducted with the

Autonomous City Explorer robot. The robot was developed at the Institute of Automatic

Control Engineering of Technische Universität München for the task of autonomously nav-

igating to a designated goal location without any previous map knowledge or GPS, but

solely by asking passers-by for directions [224]. Previous experiments by other researchers

included either robots navigating autonomously through outdoor environments, or human-

robot interaction in well-defined indoor environments. This experiment was the first to

combine the challenges of autonomous outdoor navigation and HRI and enable a robot to

navigate based on human route information.
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Research questions are derived from the results of the ACE experiment, namely proac-

tive information extraction from human-robot dialogs, probabilistic representation of route

information, and reasoning about different route descriptions. Methods and systems that

answer these research questions are introduced in the following chapters.

Chapter 3 introduces a dialog system for robots inquiring for directions. In order to

render the human-robot dialogs natural to humans and proactively extract unambiguous

route information, the dialog system includes guidelines derived from human-human com-

munication. For this purpose, principles from linguistics relevant to spatial discourse are

reviewed and dialog guidelines are derived as policies for HRI. The dialog system is de-

signed in a modular way to be extendable to other communication modalities and further

discourse topics. An experimental evaluation shows that human participants subjectively

rate the dialogs as natural and assess the applied guidelines derived from human-human

communication favorably. At the same time the objective results of system performance

are comparable to results from other researchers. While other researchers focused on the

technical aspects of natural language communication when developing dialog systems, this

dialog system includes guidelines based on principles from human-human communication

that render the dialog natural to humans and allow for proactively extracting unambiguous

route information.

Information in route descriptions given by humans can be distorted, simplified, and

even erroneous. Therefore probabilistic models of direction and distance information for

individual route segments in route descriptions are derived in Chapter 4. These models

provide robots with means to assess the accuracy and reliability of such information. To

assess the reliability of directions a probabilistic model for direction information assigns

certainty values to individual route segments, based on the direction of the previous route

and overall error probabilities. Posterior probability distributions of quantitative and qua-

litative distances provide means to assess whether locations in the real environments are

referred to given corresponding descriptions. The effectiveness of the identified information

models is visualized by representing an example route probabilistically. Related work by

other researchers provides only models for cognitive directions and distances which are

different from the directions and distances given in route descriptions. This chapter does

not only introduce probabilistic models for route description information that are novel to

spatial cognition and computation, but has a meaningful application in robotics as well.

Chapter 5 presents a system for Simultaneous Reasoning and Mapping (SRAM ). The

system includes the dialog system presented in Chapter 3 and the probabilistic models from

Chapter 4 and presents a novel framework for representing, reasoning about, and storing

route information. Extracted route descriptions are represented as route graphs and as-

sessed for plausibility by comparing them with existing route belief using pattern matching

and route similarity assessment. In this way rotations, gaps, or excess segments in route

descriptions as well as distinct descriptions leading to the same goal can be identified. If

necessary, the system causes the dialog system to inquire about conflicting information.

A route graph that is assessed as plausible is combined with the existing route belief,

while implausible information is discarded. Furthermore the route belief is augmented

by sensor data during navigation. An experiment with human participants demonstrates

the capability of the presented approach. Reasoning about spatial concepts and relations
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has been studied by other researchers, however there is no state of the art work that tack-

les the problem of representing and comparing overall route descriptions. The presented

SRAM system constitutes a novel framework for representing and reasoning about route

descriptions coming from different sources, and building a route belief from them.

Finally, Chapter 6 provides conclusions of the methods and approaches presented in the

thesis and discusses possible directions for future research.
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2 Identification of Research Questions from

an Outdoor Experiment

An experiment where a robot was given the task to au-

tonomously navigate to a designated goal location without any

previous map knowledge or GPS, but solely by asking passers-

by for directions is described. Research directions for the

following chapters are deduced from the experimental results.

2.1 Problem Description and State of the Art

The goal of this thesis is to enable robots to construct route beliefs through human-robot

dialogs as a basis for global robot navigation and path planning. An experiment was

conducted in collaboration with several researchers1 at the Institute of Automatic Control

Engineering of Technische Universität München, in which a robot was given the task to

reach the city center of Munich, starting at the university campus, without any previous

map knowledge or GPS, but solely by asking passers-by for directions. On the basis of the

experimental results, research questions that are answered in Chapters 3 to 5 are derived.

Robotics researchers have conducted experiments usually focusing either on autonomous

outdoor navigation or on human-robot interaction. Among these are experiments on ro-

bust perception, navigation, and manipulation in everyday settings. Progress has been

made in the field of unmanned outdoor navigation in unstructured terrains [184] and more

recently in urban environments [21, 122]. However, all of these robots were provided global

waypoints in the form of GPS coordinates, as well as topological information about the

route in advance. These experiments did not involve any human-robot interaction. On

the other hand, experiments have been conducted in the field of human-robot interac-

tion in structured indoor environments. Prominent examples are robots as tour guides

for museums [24, 181] and shopping malls [59] that successfully relay useful pre-compiled

information to humans. These robots are typical service robots with classical roles, provid-

ing information to humans. However, they are not able to extract missing information and

thereby adapt to unforeseen situations. A few experiments studied the problem of robots

extracting information by asking humans for it. These include a space robot asking for

information in cooperative manipulation tasks [46], a robot asking the way at a robotics

conference [118], a miniature robot finding its way in a model town by asking for direc-

tions [101], and a robot that creates a map of its environment by exploring it and asking

a human to label areas of interest [68]. However, all of these robots operate in structured

indoor environments.

1The team in alphabetical order: Andrea Bauer, Martin Buss, Klaas Klasing, Kolja Kühnlenz, Georgios
Lidoris, Quirin Mühlbauer, Florian Rohrmüller, Stefan Sosnowski, Dirk Wollherr, Tingting Xu.
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2 Identification of Research Questions from an Outdoor Experiment

In the presented outdoor experiment, the Autonomous City Explorer (ACE ) robot is

given no prior map knowledge or GPS, and has to ask passers-by for directions on the way

in order to acquire the necessary direction information, build an internal representation

of that information, and use it for navigation. The experimental results are positive in

general, point out limitations of this system, and call attention to specific research questions

that are answered in the remainder of the thesis.

This chapter is structured as follows. In Section 2.2 the ACE robot is introduced

and a brief system description is given, while an extensive description can be found in

Appendix A. Section 2.3 describes the experiment and discusses the experimental results

and the limitations of the system. Open research questions are derived in Section 2.4.

Finally, Section 2.5 provides a discussion of the experiment and the open research questions.

2.2 The Autonomous City Explorer Robot

The ACE robot comprises hardware and software for stereo image processing, interacting

with non-expert human users, and autonomous outdoor navigation [214, 224]. ACE as

depicted in Figure 2.1 is equipped with an active-stereo camera head for human tracking

and gesture recognition, an animated mouth, a loudspeaker, and a touch screen for HRI,

as well as a differential wheel mobile platform and laser range finders for navigation. The

software of the robot is broken down into three main subsystems; the interaction system

is presented in this chapter; while the navigation system is described extensively in [106];

and the vision system is presented in detail in [126]. More details on the hardware and

software of ACE are provided in Appendix A.

stereo camera

animated mouth

touch screen

loudspeaker

mobile platform

Fig. 2.1: The ACE robot with principal hardware components.
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2.2 The Autonomous City Explorer Robot

The robot communicates with humans by synthesized speech, using MaryTTS [162],

which is augmented by a synchronously animated mouth displayed on a small monitor.

Additionally the robot presents spoken text on a touch screen for robustness and conve-

nience, along with informative images, e.g. camera views. As robustness to environmental

disturbances such as noise is an important requirement for the system, the touch screen, is

the main means of information input from the human. A graphical user interface (GUI),

displayed on the touch screen, comprises buttons for possible answers and buttons that

allow the user to change the language, go back to the previous step in the dialog, or quit

the interaction. Speech is not included as a mode of input because speech recognition does

not work robustly in outdoor environments, especially as traffic and human noises have

the same frequency band as the interesting speech signals from the human partner. The

robot recognizes and interprets pointing gestures, as described in [126]. These components

constitute the basis for human-robot interaction in the experiment.

Human-Robot Interaction System

The interaction system is an integral part of ACE , as it communicates with humans,

extracts route descriptions, and represents such information internally. As a starting point

for the interaction system, a finite state machine (FSM) was developed on the basis of an

interaction flowchart that includes all steps necessary for extracting route information. The

FSM as the core component of the interaction system is responsible for interfacing with

the hardware for communication and with the navigation and vision systems; it selects

appropriate interaction behavior depending on the situation and controls human-robot

communication. The FSM is depicted in Fig. 2.2, where the text the robot utters is noted

under each respective state, marked by a speaker icon. Transitions between the states can

be triggered by inputs from humans (marked by hand icons or boxed icons) or by signals

from the navigation or vision system of the robot (denoted in grey).

During human-robot communication the robot asks the human to give directions to a

designated goal location and extracts route information. Typical communications with

ACE proceed as follows. Firstly, the robot addresses a human, introduces itself, and asks

the human to give directions to the designated goal location. The robot asks the human to

point in the direction it has to go first. The human is subsequently asked to give further

directions through touch screen commands, where buttons for the four basic directions

are provided. All direction information is depicted on the touch screen immediately. This

allows the human to verify whether the robot has interpreted an input accurately and if

necessary correct it. When the human has finished giving directions the robot thanks the

human for the help and starts moving along the given route.

The information extracted from gestures and touch screen commands is represented

internally as a route graph, similarly to [90, 199]. The route graph G 〈N, E〉 consists

of nodes Ni representing intersections and edges Ek representing actions connecting the

intersections. Edges store the topological spatial relations distance and direction relative

to the last direction between intersections. The nodes in the route graph serve as global

waypoints for path planning. During navigation the directions and distances of edges are

updated by metrical data from on-board sensors.
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Hello, my name is ACE.
I need to get to the Marienplatz.

Have I reached
an intersection?

Please look into
my eyes and point ...

Please touch the
screen to help me.

Please indicate the
exact position in the image.

Please tell
me how I should
proceed then.

Is it correct
that I have to go

?<knowledge>

Thank you very
much for your help.

How far is it
to the Marienplatz?

Are you sure
the Marienplatz
is so far away?

Please help me across
the street. I will follow you.

Have we crossed
the street?

Do I have to
cross the street?

distancenew

≥ distanceold

Fig. 2.2: FSM of the interaction module of the ACE robot. Transitions can be triggered
by pressing buttons (boxed icons), by touching the screen (hand icons), or by
signals from the navigation or vision system of the robot (grey text).

2.3 The Autonomous City Explorer Experiment

An outdoor experiment was conducted in the city of Munich, where the ACE robot had

to reach Marienplatz, i.e. the central city square, starting from the campus of Technische

Universität München. The robot did not have any prior map knowledge or GPS sensors,

and therefore had to ask passers-by for directions in order to complete its task. The

distance ACE had to cover was approximately 1.5 km, partly on sidewalks in a traffic zone

and partly in a crowded pedestrian area.

The robot managed to travel the distance between the campus and Marienplatz in

five hours. ACE interacted with 38 passers-by which explains in part the relatively long

duration of the experiment. Many people stopped the robot on the way to interact with it

out of curiosity. As ACE was designed as an interactive robot, the number of interactions

was a positive sign, and not a limitation. In an application where the task of a robot is to

reach a goal location efficiently, a robot would need to interact only as often as necessary.

The interaction partners were chosen according to random choice by the robot, and their

willingness to interact with it. There were male and female interaction partners of all ages

from children to elderly persons. The average duration of an interaction was 1.5 minutes.

A snapshot of an interaction between ACE and a passer-by is shown in Figure 2.3. A

passer-by points in the direction the robot has to go while ACE follows the gesture with

its camera head to take an image and present it to the human.
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2.3 The Autonomous City Explorer Experiment

Fig. 2.3: ACE following the pointing gesture of a passer-by with its camera head.

The fact that the robot reached its goal solely with the help of instructions from passers-

by who were not previously instructed on how to interact, leads to the conclusion that the

human-robot communication was successful. Difficulties arose where the human partners

had too high expectations of the abilities of the robot. Many humans expected the robot

to be able to understand speech at first and tried to answer through natural language

until they realized that they had to use the touch screen to communicate. Also the robot

had limited gesture recognition abilities when occlusions or inconspicuous pointing ges-

tures occurred. This was compensated by the robot, by asking humans to specify their

pointing gestures in a camera image presented on the touch screen. Limitations that

can be identified here are the perception capabilities of ACE which arose from the re-

quirement of robustness. In scenarios where robots rely on information given by humans,

natural-language communication would be the interaction modality most natural to hu-

mans. Natural-language dialogs can also be designed to have a more flexible structure

than that caused by the FSM in Fig. 2.2.

The social acceptance and people’s willingness to support the ACE robot was investi-

gated in collaboration with the ICT&S Center, University of Salzburg. The results of the

survey conducted with bystanders and people who interacted with ACE [226] reveal that

ACE achieved a high acceptability rate and that passers-by were willing to support the

robot in its task. Furthermore, the interaction system was found to be intuitive above all to

children, and supports short-term interaction in public space. Generally the participants

stated that they did not have the feeling that they needed additional training to handle

the robot, which shows that the chosen approach is intuitive to non-expert human users.

The route graph G built by the robot is depicted in Fig. 2.4 along with a corresponding

occupancy grid in a satellite image of the real environment. The robot was currently

positioned at node N2, where it had extracted topological information of the route that

lay ahead, shown as white lines. The part of the route the robot had already covered has

been updated with metric data, shown as black lines. A limitation of this procedure is that

the latest direction information is presumed to be the most reliable and therefore is followed

by the robot during navigation. The system does not compare the route information to

information by other humans in order to assess it for plausibility.
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Fig. 2.4: Example of a route graph extracted by ACE from human instructions.

The robot was sent in the wrong direction by a passer-by once. This wrong information

was corrected by the next interaction partner when the robot stopped again. A clear

limitation of the interaction approach in the ACE robot is that direction information is

not assessed for plausibility in order to identify erroneous information.

The experimental results are positive in general with a few limitations. From these,

open research questions can be derived that are answered in the remainder of the thesis.

2.4 Open Research Questions

The results of the ACE experiment confirm the appropriateness of the approaches for

extracting route information for navigation from human-robot dialogs, while at the same

time they point out some limitations of the implemented approaches for HRI. Based on

these, research questions are identified that are answered in the following chapters.

Research questions are derived from the limitations in the results of human-robot com-

munication, information verification, and route belief building. The research questions

that need to be answered in order to enable a robot to extract route information from HRI

and represent it for navigation are:

• How can robots proactively extract route information from natural-language dialogs?

• How can robots identify and represent inaccuracy in route-description information?

• How can robots build a plausible route belief from extracted information?

These research questions are answered in the remainder of the thesis. Chapter 3 presents

a natural-language dialog system for robots extracting route information proactively from

human-robot dialogs. Probabilistic models for individual direction and distance informa-

tion are derived from route description data sets in Chapter 4. Finally, Chapter 5 presents

a system for simultaneously assessing route descriptions for plausibility by comparing them

to other descriptions and building a route belief from plausible information.
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2.5 Discussion

2.5 Discussion

In order to be truly assistive in intelligent and versatile ways robots need the abilities to

extract missing task information, such as route descriptions, from HRI and represent it

in an internal representation. In order to define relevant research questions about these

abilities, results from an experiment are analyzed where a robot is given the task to navigate

to a designated goal location in an unknown outdoor environment by asking passers-by

for directions. The Autonomous City Explorer robot is presented with a focus on the

implemented interaction system. A description of the experiment with a discussion of the

experimental results is given and open research questions are identified.

Experiments by other researchers included either robots navigating autonomously through

outdoor environments, or human-robot interaction in well-defined indoor environments.

The experiment described above presented a novel robotic system capable of reaching a spec-

ified goal location in an unknown, complex, and dynamic urban environment by extracting

route information from passers-by.

The success of this experiment suggests that the steps taken towards proactively ex-

tracting route information from HRI were appropriate in general, while there was some

room for improvement. Research questions are deduced from the experimental results and

the limitations of the system. They are answered in the following chapters.

Many humans expected the robot to be able to communicate through natural language

and tried to talk to the robot. This shows the need for a natural-language dialog sys-

tem that extracts route information proactively. As natural language is often vague and

ambiguous, such a dialog system needs to adapt mechanisms from human-human com-

munication to compensate these challenges. Chapter 3 reviews principles from linguistics

relevant to spatial discourse, derives guidelines for HRI, and presents a dialog system for

proactively extracting route information from natural-language dialogs.

The fact that the robot did not verify extracted route information and consequently was

sent in the wrong direction once, indicates a need for methods to reason about given infor-

mation and to assess route descriptions for plausibility. Both, individual sections of route

descriptions and whole route descriptions can be inaccurate or even erroneous. Therefore,

methods for representing route information probabilistically and reasoning about different

route descriptions need to be developed. Chapter 4 solves the problem of possible errors or

inaccuracies of individual route segments by presenting probabilistic models for direction

and distance information in route descriptions. These probabilistic models can be used by

robots to assess the reliability and accuracy of individual route information. Chapter 5

presents a system for reasoning about route descriptions. In this system extracted route

descriptions given by different humans are compared and assessed for plausibility while

simultaneously building a route belief as an internal representation of the plausible route

information. This system interfaces with the dialog system in Chapter 3 and applies the

probabilistic models in Chapter 4 to individual route information.
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3 Human-Robot Dialog for Route

Information Extraction

This chapter presents aspects of human-robot communication

necessary for extracting a route belief. Principles from linguis-

tics relevant to spatial discourse are discussed and guidelines

for human-robot direction-inquiry dialogs are derived. Based

on these guidelines, a dialog system is developed that allows for

natural language communication between humans and robots

as well as for proactive route information extraction.

3.1 Problem Description and State of the Art

The first step towards building an internal representation of information about an unknown

environment is to access this information. A legitimate approach for robots to come by

missing knowledge about complex and dynamic environments is to ask humans for infor-

mation. As natural-language is the most common and intuitive mode of communication

for humans, natural-language communication is a necessary requirement for this task and

has to be included in robot dialog systems. Considering that “vagueness is one of the most

salient, but also one of the most effective features of natural language” [82], dialog systems

for robots have to cope with possible ambiguities and interpret information extracted from

dialogs with humans correctly. Therefore it is essential to include findings from linguistics

relevant to the respective discourse topic in robot dialog systems.

As a specific example of acquiring missing task information through HRI, this chapter

concentrates on robots asking humans for directions. The ability to ask for directions

gives robots the competence to react quickly and flexibly to changes in task requirements

or the environment. Furthermore, spatial discourse in general and route descriptions in

particular provide a well-defined contextual field with all the challenges of natural language

processing, such as ambiguity, vagueness, and contextual dependency.

Dialog systems are being developed for various technical applications and contexts. Ex-

tensive surveys of spoken language dialog systems are presented in [72, 168]. As one of

the first dialog systems ELIZA was developed by Weizenbaum [198]. Similar techniques

are still used in chat-bots, as e.g. presented in [41, 141], that try to carry on a conver-

sation without understanding the given information. Currently deployed dialog systems

include information for travelers calling airlines, car rentals, and other travel providers;

automatic speech recognition and text-to-speech systems in cars; and interactive virtual

agents serving as tutors for children [34]. Exemplary dialog systems with spatial content

are a multimodal urban information system [60], and dialog systems for information about

public transport [147, 174].
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3 Human-Robot Dialog for Route Information Extraction

Robotics researchers have understood the need of robots to exchange spatial information

with humans. A robot that extracts spatial information from a grid map and translates

it into linguistic spatial descriptions is presented in [167]. Robots that create maps from

sensory information and asking humans to label places and areas of interest are presented

in [68, 171]. These robots only use HRI as a means to assign human understandable labels

to regions and features in their spatial belief. Deictic communication between humans

and robots has been investigated in [175], where a human pointed out certain objects in

a room to a robot by speech and gesture. An approach for conversational mobile robots

that can give spatial information to humans is presented in [209]. MACK, an embodied

conversational kiosk that can provide humans with information and give directions via

speech and gestures is described in [28].

Robots that ask humans for directions in order to extract information about their en-

vironments mostly still operate in very simple structured indoor environments. Coarse

qualitative route descriptions can be understood by some robots [8, 118, 119]. However,

these robots cannot cope with the complexity and vagueness of natural language. Wei et.

al. have introduced a global inference approach [197] that aims at having a robot automa-

tically find a path within an office environment based upon human directions. A miniature

robot that can find its way in a model town by asking for directions is described in [101].

An action inference approach [112] was found to improve task success of a virtual agent fol-

lowing human route descriptions, compared to following purely explicit instructions which

indicates that a deeper understanding of implicit information in route directions is indis-

pensable. A situation with reversed roles is presented in [133], where a robot gives route

descriptions via speech and gestures in a shopping center. All of these studies concentrate

on robots exchanging route descriptions or spatial information through HRI in structured

and mostly static indoor environments.

As the ability to ask for directions is expedient for robotic systems, while route descrip-

tions may be vague and ambiguous, the need arises for linguistic guidelines for direction-

inquiry dialog systems. These will facilitate human-robot dialogs and enable robots to

reason with humans about the extracted spatial information and interpret the route infor-

mation correctly. For that purpose linguistic principles relevant to human-human spatial

discourse are reviewed, and guidelines for human-robot dialogs are deduced. A dialog

system implementing these guidelines is described here. This dialog system constitutes a

basis for extracting probabilistic representations of route information from human-robot

dialogs. Probabilistic models of extracted individual route information in route descrip-

tions are presented in Chapter 4. A system for comparing and reasoning about different

route descriptions is introduced in Chapter 5.

The remainder of this chapter is structured as follows. In Section 3.2 linguistic principles

relevant to direction-inquiry dialogs are reviewed. Based on these guidelines for human-

robot dialogs are derived in Section 3.3. A dialog system implementing these guidelines is

presented in Section 3.4 and evaluated experimentally in Section 3.5. Finally, Section 3.6

provides a discussion of the experimental results and the contribution of this chapter.
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3.2 Linguistic Principles Relevant to Direction

Inquiry

Linguistic theories in general deal with the structure of complex verbal actions within

human-human communication and can therefore serve as models for HRI. Two of the most

prominent and relevant works in linguistics are those of Chomsky [30] who introduced

formal description tools for various languages and Fillmore [43] who introduced semantic

cases as a form of semantic grammar opposed to syntactic grammar. These works rep-

resent the groundwork for computational linguistics as well. Other fundamental concepts

in human-human communication include turn-taking [154] which consists of a turn con-

structional and a turn allocational component, and grounding [31] which is the collective

process by which the communication partners try to reach a mutual belief.

This section reviews linguistic principles pertinent to spatial discourse. Principles for

reasoning about space can be found in linguistics including the analysis of direction-inquiry

dialogs and of the different semantic meanings of verbal expressions or gestures. Theories

relevant to the problem of asking for directions are the analysis of dialog structures and

the complex deixis theory founded by Bühler [23].

3.2.1 Dialog Structure

Wunderlich [203] analyzed direction-inquiry dialogs and identified a common structure of

four consecutive phases:

I Introduction: The questioner addresses a respondent and defines the task, i.e. giving

directions to a specified goal location, possibly defining the mode of transportation

or other individual requirements.

II Giving directions : The respondent provides the necessary information by means of

natural language and gestures, sometimes additionally with the help of a sketch.

III Confirmation: Either of the two partners confirms the information. Further inquiries

and corrections can be made.

IV Conclusion: The questioner thanks the respondent and they part.

This schematic structure is very flexible, i.e. some phases may be interchanged or recur.

Nevertheless it is a well-proven guideline for human-human dialogs reflecting the intrinsic

cognitive processes involved. One of these cognitive processes for the respondent is planning

the description by building a cognitive map [110, 165, 185, 187] which is based on individual

experiences. This cognitive map includes “objects which are salient landmarks for nearly

everybody” [81]. The respondent has to complete the task of separating these salient

landmarks from individual experiences and present them to the questioner. If this is

achieved by using appropriate means of communication, the questioner is able to build a

corresponding cognitive map that represents the route to the goal, structured by landmarks.

Spatial information in general and route descriptions in specific are communicated using

deictics, or deictic words, which are analyzed by deixis theory.
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3.2.2 Deixis Theory

Deixis theory [23] is based on the assumption that communication acts can be assigned

to two different fields of language, namely the symbolic field, comprising nouns which are

symbols independent of the context; and the deictic field, including relating expressions,

i.e. deictics, which vary depending on the context. In natural language communication

referring is generally managed by deictics which point to subspaces within the deictic

field and are the verbal equivalents to pointing gestures. They can be accompanied by

gestures and/or movement verbs. In order to point to those subspaces both speaker and

listener have to share a common “deictic space”. At the beginning of a face-to-face route

description this deictic space is given through the range of the visual perception. In the

course of the conversation the route description usually leaves the shared visual perception

range and a new deictic space is built by the geographical knowledge of both partners.

Another deictic space can be introduced by involving a map or a sketch that represents

the real geographic space.

Referring to subspaces in a certain deictic space by using deictics depends on particular

contextual factors such as the position of the speaker and the direction of gaze [81]. These

factors form a personal reference system.

3.2.3 The Origo

Bühler introduces the term “origo” [23] which is conceptually conceived as the point of

origin of a “coordinate system of subjective orientation”. It is derived from the need

of a “basic reference point” [81] in a given deictic space which includes three deictic di-

mensions [3]: the personal dimension including personal pronouns; the spatial dimension

including spatial demonstratives, adverbs, prepositions, and movement verbs; and the tem-

poral dimension encompassing temporal expressions. Thus the origo, as the point of origin

of the personal reference system, is defined by the personal mark ‘I’, the spatial mark

‘here’ and the temporal mark ‘now’. Accordingly the origo is the initial reference point for

personal, spatial and temporal deixis which relates to other elements within these three

deictic dimensions. Thus deictics can only be interpreted relative to the origo. Deictics

have certain roles within a direction-inquiry dialog depending on their deictic dimension:

• Personal deictics define the actors within communication.

• Spatial deictics indicate the directions from one decision point to the next.

• Temporal deictics refer to the time domains of actions which have to be carried out

to reach one decision point from another.

The roles of deictics can be refined further on the basis of contextual factors and relations,

as described by Fillmore [44] and Lyons [111].

In some cases deictics can only be located by using an additional “relatum”, an object

which is related to the origo [50]. For instance if a subspace is referred to relative to a

landmark, the landmark functions as a relatum which is given relative to the perspective

of the origo. However, if it is referred to a subspace relative to the speaker’s body, then the
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origo, or the speaker, functions as a relatum. If not given explicitly in a route description

the last decision point is the relatum.

Problems and difficulties in interpreting deictics can occur, as deictics can be interpreted

differently according to the deictic dimension, the context or whether or not they are used

in combination with a relatum.

3.2.4 Problems in Interpreting Deictics

Several problems and difficulties have been identified by Klein [81], and may occur while

interpreting deictics and identifying the subspaces to which they refer.

• Coordination problem: In a dialog situation each participant has her own origo. Since

the origo is usually defined by the position and orientation of the current speaker,

the listener must project that origo into her own system of orientation. As soon as

the roles of speaker and listener are exchanged, the origo of the new speaker becomes

essential and the other person has to adapt to it. Sometimes it is not clear whether

the origo in a route description is the one of the speaker or the one of the listener.

In the case of a direction-inquiry dialog the origines of the speaker and the listener

are the same in terms of the position, as ‘here’ encloses both speaker and listener.

However, the orientations of the two communication partners differ. This leads to

ambiguous deictic meaning.

• Problem of the shifted origo: In the course of the direction-inquiry dialog both speaker

and listener shift their origines into the perspective of an “imaginary walker” [81]

representing the addressee on her way projected into the future. A place that would

be normally referred to as ‘there’ may be called ‘here’ within the route description,

e.g. ‘go straight until you see the park, here you need to turn left’. Thus the deictic

‘here’ does not necessarily refer to the actual location but to the position of the

shifted origo depending on the context.

• Problem with the use of an analogon: When humans use a sketch or a map to

illustrate the described route, they introduce a new deictic space. Consequently there

are two deictic spaces involved, the map and the real geographic space represented

by the map. The map functions as an analogon, where pointing to an element within

it represents pointing to an element in the real space. Problems arise when the

assignment of the two deictic spaces is not clear.

• Delimitation problem: The subspace of the deictic space that a deictic points to can-

not be fully identified simply by coordinating the origines of the dialog partners. The

extent of a subspace is often vague and depends on context and environment, where

the borders of the subspace must be established by gestures, verbal explanations or

factual knowledge. For example, ‘here’ can only be characterized as a subspace of

the deictic space including the origo.

Even for humans it is sometimes hard to interpret deictics accurately, as any of these

problems may occur in dialogs. For robots it is even harder, as they have to infer the

intended meaning from a series of keywords extracted by their speech recognition systems.
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In the following guidelines are proposed in the form of guidelines that can be implemented

in robotic systems to circumvent or solve the above problems in HRI.

3.3 Guidelines for Human-Robot Communication

From the linguistic principles reviewed above, guidelines for HRI are deduced that can be

seen as policies for dialog systems for robots asking for directions. These guidelines are

summarized below and should in hypothesis make a dialog more successful in terms of ren-

dering it more natural and intuitive for the human partner, enabling the robot to interpret

the possibly vague deictics unambiguously, and extract unambiguous route information.

The identified dialog guidelines (DG) are adopted from mechanisms in human-human com-

munication reviewed above and specify requirements for technical systems.

DG 1 Transfer of dialog structure from human-human communication

This guideline should in hypothesis render the interaction natural and intuitive for humans,

as the dialog structure is familiar to them from human-human communication. Therefore

the dialog is structured according to the four phases Introduction, Giving Directions, Con-

firmation, and Conclusion, as shown in Fig. 3.1.

Introduction Giving Directions Confirmation Conclusion

Fig. 3.1: Typical structure of direction-inquiry dialogs.

DG 2 Initial alignment of the personal reference systems

When directions are given it is not immediately clear whether they are given relative to

the personal reference system of the human or the robot. As outlined in Fig. 3.2, a point of

interest is described as being located in opposite directions relative to the reference system

of the human OH and the robot OR, rendering the information ambiguous. The human

can be asked for example to point in the first direction of the route to solve this problem,

as a gesture is unambiguous. In mathematical terms, the pointing introduces a common

reference system OHR which is oriented towards the indicated direction, and specifies the

necessary transformations, RTHR and HTHR of the reference systems OH and OR. This

guideline solves the coordination problem and is crucial for the success of the whole dialog.

DG 3 Internal representation of the route as route graph

The robot needs an internal representation of the route information to be able to reason

about it and to navigate by it. Therefore the perceived route description is broken down

into route segments and stored as a topological route graph.
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Fig. 3.2: A point of interest is referred to differently from different personal reference sys-
tems OH and OR. After coordinate transformations, RTHR and HTHR respectively,
both dialog partners use a common reference system OHR and refer to a point of
interest in the same way.

DG 4 Interpretation of basic directions

The deictics ‘left’, ‘right’, ‘straight’, and ‘back’ are the most important and basic infor-

mation in a direction-inquiry dialog; interpreting these is the minimal requirement for a

dialog system. These deictics represent actions and constitute the edges in a route graph.

DG 5 Identification of explicitly given landmarks

Landmarks, or decision points, structure the route description by providing start and end

points of route segments. They correspond to nodes in the route graph, and must be

identified when they occur in the route description.

DG 6 Interpretation of implicitly given landmarks

To solve the problem of the shifted origo, it has to be considered that the deictics ‘here’

and ‘there’ are usually linked with explicitly given landmarks, i.e. they either stand in the

place of landmarks or accompany them. Thus they are implicit landmarks, and structure

the route description just as other landmarks do. They are represented internally as nodes

in the route graph.

DG 7 Identification of distance information

Distance information in a route description provides further information on actions that

connect nodes in the route graph. This information must be added to the route belief

and ideally be evaluated for accuracy by a probabilistic model (see Chapter 4), as distance

information is only an estimation by the human and not an accurate measurement.
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DG 8 Differentiation between different types of movement verbs

Movement verbs can be differentiated as translational or rotational verbs. Translational

movement verbs define actions that connect the landmarks and must be identified by the

robot. On the other hand verbs describing rotational movements denote a change in the

orientation of the origo and are necessary for the interpretation of subsequent information.

DG 9 Storage of deictics with relevant semantic attributes

In order to simplify and disambiguate the interpretation of deictics, their relevant semantic

attributes must be stored in the dictionary of the dialog system. This guideline helps

solving the problem of the shifted origo, as deictics can only be interpreted unambiguously

in relation to the context. Semantic attributes of deictics are part of the context. They

can be the deictic dimension, the distance range, the delimitation, and whether or not

a relatum is needed. Table 3.1 gives an overview of the most common deictics with the

relevant semantic attributes; it does not provide an exhaustive list of deictics, but gives

the reader an idea of how to classify deictics.

Tab. 3.1: Common deictics with relevant semantic attributes.

deictic dimension distance to origo delimitation relatum
spat. temp. pers. inclusive close far yes no yes no

‘here’ × × × ×
‘there’ × × × × ×
‘close’ × × × ×

‘far from’ × × × ×
‘left’ × × ×
‘right’ × × ×

‘in front of ’ × × ×
‘behind’ × × ×
‘this’ × × × ×
‘that’ × × × ×
‘now’ × × × ×
‘then’ × × × × ×
‘soon’ × × × ×
‘later’ × × × ×

‘I’ × × × ×
‘you’ × × × × × ×

DG 10 Mapping of temporal to spatial domain

In a route description the passing of time corresponds to traveling along the route. Thus

time and space have a similar structure and can be mapped to one another. In this way

the number of expressions to be analyzed is reduced and the interpretation of the route

description is simplified.
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DG 11 Modeling of distance ranges of spatial deictics

Spatial deictics such as ‘here’ , ‘close’ , and ‘far’ define different distance ranges. It is

only clear that the deictic ‘here’ denotes the position of the actual or shifted origo and

that ‘close’ and ‘far’ do not include the origo. However, the actual extents of the regions

referred to depend on several contextual factors. In order to solve the delimitation problem

the corresponding distance ranges must be estimated using models found through user

studies, as presented in Chapter 4.

DG 12 Clear assignment of sketch and real environment

A sketch depicted by the robot while a route description is given can be assigned un-

ambiguously to the real environment by depicting the route with directions and relations

between landmarks. The problem with the use of an analogon is solved in this way. An

assignment to the real environment is given through the shared perspective of the common

reference system both dialog partners use.

These dialog guidelines solve the problems that can occur in interpreting deictics and

present policies for robot dialog systems for asking humans for directions. These guidelines

are implemented in a dialog system as presented below.

3.4 Dialog System for Proactive Route Information

Extraction

A dialog system is developed that proactively extracts route information from direction-

inquiry dialogs. It is based upon the proposed guidelines derived from linguistics theories

and designed in a modular way to be able to cope with multiple communication modalities

and be extendable to various discourse topics. The dialog system guides the human through

a direction-inquiry dialog and extracts all necessary route information. The implemented

guidelines ensure that the dialog is natural to the human partners and that unambiguous

information is extracted. In the following the structure of the dialog system and the

integration of the proposed guidelines are presented.

3.4.1 System Overview

The architecture of the dialog system depicted in Fig. 3.3 consists of four main compo-

nents: the User Interface, the Dialog Manager, the DataBase, and the Route

Representation. The User Interface provides the communication port between the

human user and the system. The Dialog Manager is the core component of the dialog

system. It processes the input provided by the User Interface, extracts the relevant in-

formation, and generates feedback and answers. The proposed guidelines are implemented

in the Dialog Manager and as dialog policies in the Database. The data necessary

for processing the information is stored in the Database. It includes lists of associated

keywords, general keywords, and dialog policies. The route information extracted from the

dialog is stored as a route graph in the Route Representation of the robot.
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Fig. 3.3: The architecture of the dialog system.

Connection to Humans: The User Interface

The User Interface represents the connection between the human and the dialog sys-

tem. It receives and pre-processes information from the human partner. Possible modes of

communication are text, images, speech, and gestures. Perceived information is translated

into text or symbols and a tag for the modality is attached. The input text is forwarded

to the Dialog Manager. For example, a pointing gesture is translated into a direction,

while a simultaneously given deictic is translated into text. Both information units are

processed jointly in the dialog manager.

The feedback generated in the Dialog Manager is translated into corresponding

modalities and subsequently presented to the user by the User Interface.

Core of the System: The Dialog Manager

The Dialog Manager is the core component of the dialog system. Based on DG 1 a

finite state machine structures the dialog into dialog phases as depicted in Fig. 3.4. The

FSM includes the four dialog states Intro, GivDir, Conf, and Concl representing the

dialog phases Introduction, Giving Directions, Confirmation, and Conclusion, respectively.

The additional system state Idle is active when no dialog is in process.

The system is initiated in the Idle state. If the system has no or only an incomplete

route belief BR, the FSM switches into state Intro and begins a dialog with a human

by introducing itself and the task. If the human has a belief BH about the route and is

willing to share it, the transition to state GivDir is made. Otherwise (BH) the system

switches to state Concl and ends the dialog. When the human is done giving directions,
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Fig. 3.4: The FSM of the Dialog Manager with five states controlling the dialog phases.

the robot saves the route information as belief BR and the transition to state Conf is

made where the extracted route information is confirmed. Should the belief of system and

human differ, the system switches back to the GivDir state for grounding. During the

Conf state the system recapitulates the extracted route information segment wise and

asks the human to confirm each segment. If the belief BR and BH correspond (BR ≡ BH),

the system switches to state Concl. In the case that the human disagrees with a route

information (BR 6= BH), the FSM switches back to the GivDir state to allow the human

to correct the respective route segment by providing new route information. Similarly, if

the direction in a route segment is not included in belief BR, a transition to GivDir is

made and the human is asked for the missing direction. After each correction the system

changes to Conf again, and finally to state Concl. After the dialog is concluded in state

Concl the transition to state Idle is made.

The input from the human is processed by the Dialog Manager as follows. First the

input string of words is compared to a list of keywords, i.e. associated keywords, in the

Database. The associated keywords identified in this way are replaced by corresponding

high-level keywords, i.e. general keywords. Thus a list of general keywords is assembled

from the input information. In the next step the general keywords trigger the appropriate

dialog policies for each state, stored in the Database. On the one hand dialog poli-

cies effect that the route information extracted in the GivDir state is forwarded to the

Route Representation to be stored. On the other hand they permit the generation of

appropriate feedback which is sent to the User Interface to be presented to the human.

Dialog Content: The Database

The Database contains associated keywords, general keywords, and the dialog policies as

Extensible Markup Language (XML) files which can be extended easily. The associated
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keywords include all expressions that can be recognized by the system. There can be

several associated keywords with the same meaning. General keywords abstract associated

keywords with the same semantic content on a higher level, i.e. all synonymous associated

keywords map to one general keyword. The Database contains dialog policies which

define actions triggered by general keywords or by other policies. These actions include

storage of extracted information in the route belief and feedback to the human partner.

Most of the presented guidelines are implemented as dialog policies, as described below.

Representation of Information: The Route Belief

As postulated by DG 3 the extracted route information is represented internally as a

topological route graph in the Route Representation of the system. Information in

the topological route graph consists in directions, landmarks, and distances extracted from

the dialog, as proposed by DG 4, DG 5, DG 6, and DG 7.

The topological route graph G 〈N, E〉 includes nodes Ni(li) representing landmarks

along the route of type li, and edges Ek(Ni, Nj, δk, dk) representing actions connecting the

landmarks. Edges hold information about the direction δk from node Ni to Nj, i.e. the

input direction information is represented as an angle relative to the previous direction,

and the distance dk between the nodes Ni and Nj. The landmark types li and the distances

between the landmarks dk are optional information, i.e. they are not necessarily provided

by the human, and if missing are represented by default values. A more extensive de-

scription the construction of topological route graphs and an approach for reasoning about

them is given in Chapter 5.

3.4.2 Implementation of the Dialog Guidelines

The guidelines for HRI derived from linguistic principles relevant to direction inquiry have

been implemented in the dialog system.

An FSM structures the dialog according to DG 1, as depicted in Fig. 3.4. The FSM in-

cludes the four states Intro, GivDir, Conf, and Concl. Before asking for further route

information the human is asked to point in the first direction according to DG 2. This has

been implemented in the ACE robot as described in Chapter 2, where the robot found the

way to a designated goal location without previous map knowledge or GPS, but by asking

humans for directions. The direction extracted through the gesture recognition system of

the robot is forwarded via the Dialog Manager to the Route Representation to be

stored as the first direction information.

A topological route graph is constructed according to DG 3 in the Route Represen-

tation component of the system. According to DG 4 the robot recognizes directions in

the input text, and includes them in the topological route graph as direction δk of edge Ek.

Landmarks are recognized and forwarded to the Route Representation component as

suggested by DG 5 and integrated in the topological route graph as node Ni(li). When a

landmark type is not given explicitly, a default type, i.e. intersection, is inserted for li ac-

cording to DG 6, when associated keywords representing landmarks are found, e.g. ‘there’,

‘then’. A representation of the extracted route can be depicted by the system including

spatial relations between landmarks, such as directions and distances, according to DG 12.
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Movement verbs are identified according to DG 8. Most movement verbs can be mapped

to the general expression ‘move’ which defines the action along an edge in the route graph.

If no verb is given explicitly, ‘move’ is inserted. The verb ‘turn’ is not mapped in this

way, as it does not define an action along an edge, but a change of the orientation, i.e. the

origo, at a certain node, therefore defining a direction.

As suggested by DG 9, relevant semantic attributes of deictics are stored in the database

within the dialog policies. This for example includes analyzing the meanings of deictics

that need a relatum together with the reference object, or interpreting spatial relations

according to the distance to the origo and the delimitation of deictics.

According to DG 10, temporal deictics are mapped to spatial expressions. Deictics ac-

companying or representing landmarks, e.g. ‘then’, are treated as their spatial equivalents,

e.g. ‘there’. Accordingly, these temporal deictics are substituted by the same general

keywords as the respective spatial deictics. Information about remaining walking time is

converted to the equivalent walking distance, assuming a constant mean walking velocity.

The spatial extents of the non-delimited spatial deictics ‘here’ , ‘close’ , and ‘far’ are

derived probabilistically from a model presented in Chapter 4 according to DG 11, to

facilitate the interpretation of those deictic words and obtain an assessment of distance dk.

DG 7, stating that distance information should be recognized by the system, was imple-

mented in such a way that distance information is allocated to the respective edge Ek and

represented as distance dk. If no distance is provided explicitly, a default value is inserted.

The next section presents an experimental evaluation of the dialog system including the

dialog guidelines derived from linguistics.

3.5 Evaluation

An experimental evaluation of the dialog system has been conducted in order to assess the

objective measure of system performance and the subjective measure of user satisfaction.

The dialog guidelines are evaluated subjectively by the human subjects as well.

3.5.1 Experimental Setting

The dialog system has been evaluated by 20 undergraduate university students, 7 female

and 13 male, aged between 20 years and 49 years, with a mean age of 27 years. The

subjects interacted with the dialog system running on a PC in a laboratory to ensure equal

experimental conditions. The input modality was restricted to text to ensure comparability

between subjects and to interaction in outdoor environments, as speech recognition is to

date still highly dependent on the speaker and on environmental noise. The graphical

user interface used in the experiment was text-based where the subjects could type in

their utterances. To simulate imperfect recognition, as it occurs in all speech recognition

systems and even in human speech perception, the text was not pre-processed in terms of a

spell check, but processed raw including typos or colloquial expressions that were unknown

to the system. Additionally the GUI showed a simulated urban environment to give the

subjects an overview of the simulated situation. The GUI is depicted in Fig. 3.5. The

robot position and orientation within a map was predefined and had to be employed as
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the initial reference system when describing the route. The GUI included an interactive

part, with text input, text output, and a display area for a schematic map of the elicited

route believe BR which could be hidden.

200m

Roboter: Hallo, mein Name ist ACE.

Roboter: Können Sie mir den Weg zum  Marktplatz beschreiben?

Roboter: Bin ich dann angekommen?

Roboter: Vielen Dank fuer die Wegbeschreibung. Darf ich Ihre Beschreibung
nochmal kurz zusammenfassen?

Roboter: Super. Ich gehe also von Start rechts 50 Meter, richtig?

USER: Hallo.

USER: Sie drehen sich jetzt nach rechts und gehen die Straße etwa 50 Meter
entlang bis sie zu einer Ampel kommen. dann biegen sie links ab und folgen dem
Weg etwa 200 m bis sie zu einem Park kommen. Bei dem Park biegen sie dann
links ab um dann bei der nächsten Gelegenheit wieder rechts abbiegen.

USER: dieser Straße folgen sie einfach etwa 200 m bis sie zum Marktplatz
kommen.

USER: ja

USER: ja

50m

200m

Fig. 3.5: Screenshot of the GUI used during the evaluation experiment.

Each subject interacted with the system twice. Once with the map depicted in Fig. 3.5,

and once with the same map rotated by 90◦ with a different location of robot and human,

the succession of the maps was interchanged. Additionally the route belief BR of the robot,

as shown in the bottom left of Fig. 3.5, was only displayed in one of the two runs. A sample

dialog of the system with participant H7 is presented in Table 3.2. After every run the

subjects were asked to fill in a questionnaire about system success and user satisfaction.

The questionnaire included 14 statements about the system. The statements could be

rated with the level of agreement, on a scale between one and five. The statements on the

questionnaire are displayed in Table 3.4.

The experimental results are presented and discussed below.

3.5.2 Results

As every subject interacted with the dialog system twice, there are 40 resulting individual

interactions, each containing a route description. The average interaction duration was

7 min 17 sec. The average number of outputs from the system was 27 and the average

number of inputs from the human subjects was 19.

The experiment is evaluated regarding the guidelines implemented in the dialog system,

objective measures of task success, and subjective measures of user satisfaction.
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Tab. 3.2: Example dialog between dialog system and human participant H7.

Robot: Hello, my name is ACE.
Human: Hello.
Robot: Can you tell me, how to get to the market place?
Human: You have to turn left and follow the street for about 50 meters, until you

reach the traffic lights. Then go left and follow the road for approximately
200 meters until you reach a park. Turn left at the park and as soon as
possible right again.

Robot: Am I at my goal then?
Human: follow the street for about 200 meters to the market place.
Robot: Thanks for the route description. May I sum up the route briefly?
Human: yes
Robot: Great. I have to go right for 50 meters, right?
Human: yes
Robot: There I turn left then?
Human: yes
Robot: Ok. I have to go straight for 200 meters, right?
Human: yes
Robot: Then I have to turn left?
Human: yes
Robot: Ok. And then I will turn right?
Human: yes
Robot: I have to go straight for 200 meters to the goal, right?
Human: yes
Robot: Thank you for your help. Good bye.
Human: Good bye.

Evaluation of the guidelines

Motivated by DG 1 the dialog phases are implemented as an FSM. This guarantees the

possibility to jump back and forth between states GivDir and Conf to correct certain

information if necessary. To assess the effectiveness of this structure, the dialogs are

analyzed focussing on the active states over the time. Fig. 3.6 shows a box-whisker plot of

the durations of the dialog system in the four states Intro, GivDir, Conf, and Concl.

The durations for states GivDir and Conf are the cumulative durations, as there may be

several switchings between those states. State Intro has a mean duration of 1 min 32 sec

with a standard deviation of 1 min 13 sec. GivDir is the central dialog state and has

the longest duration as expected, i.e. a mean duration of 6 min 07 sec and a standard

deviation of 2 min 37 sec. The mean value of the duration of state Conf is 43 sec while the

standard deviation is 25 sec. Finally, Concl has a mean duration of 12 sec with a standard

deviation of 5 sec. State GivDir represents the phase in which the crucial information is

communicated. The fact that state Intro has the second longest duration with a large

standard deviation can be explained easily. During the Introduction phase the human is

asked to give directions to a certain goal. The system switches to the next state when the
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Fig. 3.6: Box-whisker plot of the durations of the dialog states.

human starts giving directions. As argued in [80] some humans first review the whole route

and plan the complete route description before beginning to give directions in one big block

which leads to long durations of state Intro; this occurred in 30 % of the dialogs. Others

plan the route description piecewise and provide the description sequentially which results

in a short duration of Intro, but prolongs the duration of state GivDir; as observed in

70 % of the dialogs in the experiment.

The states and the transitions between them are depicted in Fig. 3.7 for four example

dialogs from the experiment. The dialog with participant H7 is presented in Table 3.2.
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Fig. 3.7: Transitions between system states over the time in four example dialogs from the
experiment (participants H1, H7, H8, H19).

As can be seen some dialogs included more than one transition between state GivDir

and state Conf, where erroneous information was corrected. The mean number of tran-

sitions from state Conf back to state GivDir is 1.45 with a standard deviation of 1.15.

This gives evidence of the necessity of a flexible dialog structure which allows to change

36



3.5 Evaluation

back and forth between states and correct faulty information.

DG 2 suggests that the robot asks the human to define the first direction with a point-

ing gesture and thus solve the coordination problem. Gestures were not included in the

simulation presented above, however they were considered in the outdoor experiment with

the ACE robot [224], as described in Chapter 2. Only in one case the robot was given a

faulty direction by gesture. All other gestures were expedient and served to align the per-

sonal reference systems of human and robot, so that subsequent route information could

be given unambiguously.

As proposed by DG 3 the system extracted route information from the dialogs in the

experiment and represented the routes as topological route graphs. The route graphs

included directions (DG 4, DG 8), distances (DG 7), and landmarks (DG 5, DG 6). Fig. 3.8

depicts four example route graphs constructed during the experiment. For reference: dialog

with participant H7 is presented in Table 3.2, while the transitions between the states over

the time for this participant are depicted in Fig. 3.7. The route graphs vary in detail,

especially in the number of nodes, as some subjects gave a more detailed description,

naming more landmarks along the way or providing metrical estimates of distances.

Landmark types:

Intersection
Lights
Park
Goal

H1 H7 H11 H14

50 m 10
0

m

20
0

m

20
0

m

Fig. 3.8: Four routes extracted in the experiment (participants H1, H7, H11, H14).

The route belief of the system was depicted in the GUI as proposed by DG 12. This

depiction did not result in significant differences of the objective performance, however was

rated well subjectively by the humans, as discussed further in the following. The objective

results of extracting route information and representing it are discussed below.

Objective Measures

In order to evaluate the performance of the dialog system objectively, it is important to

compare it to human performance. To assess the correctness of the route descriptions

provided by the subjects during the experiment, all route descriptions were given to other

subjects to reconstruct the routes. The subjects were 20 PhD students, 6 female and

14 male, aged between 25 years and 32 years. These subjects were provided with a city

map that included the detail map from the GUI and additionally depicted surrounding

environment to give more options for interpretation of the route description. A mask to

37



3 Human-Robot Dialog for Route Information Extraction

block out parts of the city map and thus restrict the view was used to imitate a movement

along the path without further knowledge of the surrounding map. Each subject was asked

to reconstruct two route descriptions by drawing a line along a path on the map following

the instructions in each route description. The descriptions were rated as correct when the

path ended at the goal point which occurred in 24 cases (60 %). Paths that ended along the

way to the goal were associated with partially correct route descriptions which happened

in one case (2.5 %). In the other cases the route descriptions were rated as incorrect.

The route information extracted by the dialog system was classified in the same way and

compared to the results from the route reconstructions by humans. In 11 cases (27.5 %) the

extracted routes were correct. The routes were partially correct in 9 cases (22.5 %), i.e. the

route was correct, but did not reach all the way to the goal. The number of partially correct

routes can be explained by the fact that the system represents each direction information as

a route segment delimited by intersections by default if no specific landmarks are extracted

which renders some routes too short.

Random guessing results in reaching the goal point in 1.92 %, as there are 52 locations

within the same radius as the goal around the robot position. Of those positions 12 are

accepted as being located along a route to the goal.

The results of the accuracy of the routes interpreted by humans, extracted by the dialog

system, and achieved by random guessing is shown in Table 3.3. The column entitled

correct destination lists the accuracy of understanding the route description completely,

i.e. reaching the goal. The column entitled partially correct route lists the accuracy of

understanding the route description including cases in which the goal point is not reached

but the path is correct as far as it reaches. For the cumulated completely and partially

correct routes the system performance is 20
25

= 80 % of the human performance which is

quite good taking into account that the text recognition does not work perfectly in order

to simulate imperfect speech recognition.

Tab. 3.3: Performance given by the accuracy of understanding route descriptions.

correct destination partially correct route

human performance 24/40 (60 %) 25/40 (62.5 %)

dialog system 11/40 (27.5 %) 20/40 (50 %)

random guessing 0.77/40 (1.92 %) 9.22/40 (23 %)

The results are in line with the results of other researchers. A direction instruction inter-

pretation algorithm based on probabilistic inference presented by Wei et. al. [197] achieved

an accuracy of 85 % of the human performance. However, this system was given keywords

extracted by hand from written text as input, and did not process raw text. MacMahon

et. al. found that the interpretation of implicit information in route instructions by action

inference [112] raises task performance of a virtual agent navigating by human route in-

structions to 88 % of the human performance, while following purely explicit instructions

led to only 41 % of the human performance. Again the system input was “the hand-verified

‘gold-standard’ parse treebank”, not the raw text. Bugmann et. al. presented an instruc-

tion based learning system processing speech signals [22] that achieved a recognition rate
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of 75.9 % compared to human performance. Compared to these studies, the objective

results of this work are very good, as the presented system simulates imperfect speech

recognition by interpreting raw text input which led to most of the encountered extraction

problems. Spell check, or even hand verified keyword input would further improve the

system performance.

The recognition accuracy showed no significant differences for the variable of displaying

the route belief of the robot in the GUI. Objectively it is not important for information

extraction whether the route belief of the robot is displayed or not.

Subjective Measures

The results presented so far are the objective measures of system performance. However

in HRI subjective measures such as user satisfaction are important factors for success as

well. Therefore a questionnaire has been composed, inspired by established questions for

subjectively evaluating dialog systems presented by [196] and [67]. Table 3.4 displays the

questionnaire used to evaluate the subjective measures of user satisfaction and subjective

assessment of features of the dialog systems. The level of agreement was rated between

one (strongly agree) and five (disagree) by the subjects. The mean values and standard

deviations of the answers are displayed in Table 3.4 next to the respective questions.

Tab. 3.4: Questions about user satisfaction with subjective assessment.

No. Statement µ σ

1. The system was easy to use. 2.05 0.93

2. The system understood the information I entered. 3.25 1.28

3. I knew at all times what I could enter. 2.78 1.25

4. The system reacted as I expected it to. 3.20 1.07

5. The length of the interaction was adequate. 2.40 1.13

6. The system understood my route description correctly straight
away.

3.73 1.38

7. If not: The system understood my route description correctly after
the correction.

2.97 1.48

8. The structure of the dialog was sensible. 2.13 1.09

9. I knew from whose point of view I had to describe the route. 1.28 0.64

10. It is important that the point of view is clear. 1.48 0.85

11. The system understood landmarks during the route description. 2.38 1.17

12. It is important that the system understands landmarks. 1.45 0.81

13. The system understood distance information well. 2.23 1.14

14. It is important that the system understands distance information. 1.88 0.94

The results of the survey show that the ease of use was rated as good according to

statement 1. However, the answers to statements 2, 4, and 6 show that the subjects were
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not entirely content with what the system understood and how it reacted. In the cases

where the users stated that the system did not understand their instructions straight away,

a significant improvement (dependent t-test of mean answers: t(19) = 4.32, p < .001) was

established through the correction of information in the Conf phase, as resulting from

statements 6 and 7 respectively.

Statements 8 to 14 assess the subjects’ views on the usefulness and realization of the

implemented guidelines. The results show that the users assessed these rules as reasonable

and useful. The implementation of these guidelines was rated well by the subjects, i.e.

mean values lie between 1.45 and 2.23.

The answers to statements 6 and 11 about how well the robot understood infor-

mation depends considerably on the objective results. The mean value of statement

6 for correct routes was 3.00, while for incorrect routes it was 4.16 (independent t-

test: t(18) = −1.47, p = 0.16). Similarly, the mean values of statement 7 were not

significant with 2.17 for correct routes and 3.60 for incorrect routes, (independent t-

test: t(18) = −1.92, p = 0.075). For statement 11 the mean values of 2.00 for cor-

rect and 3.22 for incorrect routes showed a significant difference (independent t-test:

t(18) = −2.38, p = 0.029). Other differences between ratings of statements for the dif-

ferent objective results were not significant.

All subjects were asked whether the displaying of the robot’s route knowledge, as pro-

posed in DG 12, helped during the interaction. This question was answered yes by 14

subjects (70 %). Some gave the explanation that they were not used to interacting with

a machine so freely and thus were not always sure whether the system did understand

them without the graphical information. Consequently humans interacting with a natural

language dialog system seem to prefer some additional feedback modality to be able to

evaluate the cognitive capabilities of the system.

Overall, the dialog system was perceived as natural by the human subjects and the

implemented dialog guidelines were assessed as useful.

3.6 Discussion

A legitimate approach for robots to close gaps in their route knowledge is to ask humans

for directions. Therefore a robot needs a dialog system that can proactively extract route

descriptions from human-robot dialogs. There are two main requirements for such a dialog

system: the extracted information must be unambiguous, in order to be usable during

navigation; the dialog must be natural to humans, in order to facilitate the communication

between non-expert human users and a robot.

This chapter presented a dialog system for robots asking humans for directions and

proactively extracting the necessary information. As natural language communication is

an important skill for robotic systems interacting with non-expert users, principles from

linguistics research have been surveyed to identify implications for HRI from human-human

communication. Guidelines for robots asking humans for directions have been subsequently

derived as policies for human-robot dialogs. A dialog system has been developed with

a modular architecture in order to allow for several communication modalities and for

extension of discourse topics. The guidelines derived from findings from human-human
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communication are implemented in the dialog system. These guidelines render the dialog

natural for the human partner and enable the system to extract missing route information

unambiguously. The dialog system comprises four major components with the dialog

manager at its core and an FSM controlling the progress of the dialog.

The dialog system was evaluated in an experiment in which the system interacted with

human subjects and extracted route information. Questionnaires about user satisfaction

and subjective assessment were evaluated. The results showed that the system is generally

natural and easy to use to humans, and that the implemented guidelines were assessed

as reasonable by the users. At the same time the system performance of understanding

human route directions of 80 % relative to human performance is more than comparable

to results from other researchers.

The main contribution of this chapter lies within the successful application of guidelines

for human-robot communication derived from human-human communication in a dialog

system for robots. The dialog system extracts unambiguous route information and facil-

itates natural-language dialogs between non-expert human users and robots. The dialog

system is designed in a modular way to allow expandability. It can be used with various

combinations of input modalities. Other discourse topics can be implemented by adding

adequate guidelines for human-robot dialogs.

The dialog system proactively asks humans for missing information and extracts given

route descriptions. It does not evaluate extracted information or assess it for plausibility.

As route descriptions are abstractions of humans’ cognitive representations of spatial rela-

tions in the real environments, they can be overly simplified, distorted or even erroneous.

Therefore methods are presented for evaluating the reliability of individual route informa-

tion in Chapter 4 and assessing the plausibility of whole route descriptions in Chapter 5.
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Probabilistic models for information in route descriptions ex-

tracted during human-robot dialogs are presented in this chap-

ter. The presented models for direction and distance informa-

tion allow robots to assess the reliability and accuracy of the

often simplified and distorted information in route descriptions.

4.1 Problem Description and State of the Art

This chapter presents probabilistic models for individual direction and distance information

provided by humans in route descriptions. These models can be used by robots to represent

information probabilistically and assess the accuracy and reliability of it.

Representational accounts of cognition propose that humans store and represent spatial

relations in the real world in so-called cognitive maps, as introduced in [185]. A cognitive

map is constructed in a sequence of psychological transformations [40], including change

in scale, rotation, and perspective. Route descriptions are verbal abstractions of routes

represented in cognitive maps, where a series of processes is involved, such as selection of

important elements, temporal structuring, and selection of reference frames [49]. There-

fore a route description involves two transformations of spatial relations, i.e. from the

real world into a cognitive map [40] and from the cognitive map into a verbal descrip-

tion [49]. These transformations are not mathematical mappings, but cognitive processes,

and therefore prone to simplifications, inaccuracy, and even errors. Thus, information in

route descriptions is not exact, but noisy.

Robots, constructing a route belief from human route descriptions, need information

models that account for the uncertainty of route information. Route information that can

be modeled probabilistically are directions, quantitative distances, i.e. metric distance

values, and qualitative distances, such as distance ranges described by spatial deictics.

Based on a probabilistic representation of information, robots can establish the reliability

and accuracy of the acquired information. This can be used as one of several measures when

merging route information from different sources. A process of comparing different route

descriptions and building a probabilistic representation by merging the route information

is presented in Chapter 5.

Researchers are trying to model the cognitive processes involved in mentally representing

spatial relations [57, 132, 187]. These cognitive models have even been applied to technical

systems [91]. Probabilistic models of cognition reflect the degrees of belief [29, 62]. There

is a large body of literature presenting models of cognitive representations of spatial rela-

tions, while there is very little research done on modeling the verbal abstractions of these

cognitive representations in the form of route descriptions. However, for the application

of robots extracting spatial information from HRI, probabilistic models of information in
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route descriptions are needed. These probabilistic models enable robots to construct a

route belief for navigation based on a probabilistic interpretation of the information.

The most essential information embedded in route descriptions are directions between

decision points, i.e. landmarks. Direction information may be erroneous because of an

incomplete [120] or oversimplified [25, 107] cognitive spatial representation, or because of

difficulties in conveying the spatial representation as for example in the case of left-right

confusion [15]. Distortions of cognitive directions have been described by [180, 194] which

analyze continuous angular directions, rather than discrete distinct directions used in route

descriptions. Route direction structure diagrams [149] have been introduced as tools for the

structural analysis of direction information; they depict aspects of route descriptions such

as directions over decision points. Subjective concepts of directions in route descriptions

have been researched in [83] as well. However, to date there are no works on modeling the

reliability or soundness of direction information in route descriptions.

Other essential information given in route descriptions are distances between decision

points. Researchers have modeled cognitive distances, i.e. the distance represented in an

individual’s cognitive map. There are different approaches to how the distances were given

in such studies, e.g. route distances vs. flight distances, and to which functions should

model the relationship between cognitive and real distance. Linear functions have been

used to model cognitive distances within cities [36] and between cities [26]. However, the

results of those works and of other researchers, e.g. [107], show that there is a tendency to

overestimate small and great distances, while underestimating distances in medium range

which points out that the linear function is not the most appropriate model. Furthermore,

the linear function has been found to be inappropriate, because the constant term does not

approximate to zero as would be expected [18]. Cognitive distances were also modeled by

power functions [16, 18], as the power function is generally accepted as the psychophysical

law [173]. The cognitive distance depends on factors such as emotional involvement [16],

familiarity with a route [35], the location relative to the city center [18, 55, 102], and even

vegetation along a route [157]. The perceptual relationship between visual distance per-

ception and real distance has been modeled as well [54], based on a mathematically defined

metric for visual space [108]. The perceived distance has been found to depend on the real

distance and a finite limit of perceived distance as a rational function, where both the

numerator and the denominator are first order polynomials [54]. Several external and in-

dividual influencing factors to visual perception of distances have been identified [47, 144].

A probabilistic model for visual space depending on the topological properties of the en-

vironment based on Bayesian inference is discussed in [205].

Researchers have found that the remembered distance is generally smaller than the per-

ceived distance [14, 125, 127]. In all experiments cognitive distances or perceived distances

were compared to the real distances. The cognitive distance, however, is not the same as

the distance humans give in route descriptions which is a much coarser estimate of the

real distance, often provided as salient travelling distance or time values. Again, there

are no research results on the conceptual relationship between real distances and distances

estimated during while giving route descriptions.

This chapter presents probabilistic models of information in route descriptions, in par-

ticular of directions and quantitative as well as qualitative distances. These models can be
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applied to route information extracted by the dialog system presented in Chapter 3. They

allow robots to reason about individual segments within route descriptions, while a sys-

tem for reasoning about whole route descriptions is introduced in Chapter 5. Inspiration

for such probabilistic models for route information is found in probabilistic robot map-

ping [182], in Markov chains [115], and Bayesian inference [12]. These probabilistic models

are meant for technical systems to serve as tools for assessing the accuracy and depend-

ability of individual information in route descriptions extracted from dialogs with humans.

The probabilistic modeling of direction and distance information in route descriptions in

itself goes beyond current spatial cognition research that focuses on models of cognitive

directions and distances. Furthermore, the presented models find specific applications in

robotics, as means to assess the accuracy of given route information.

This chapter is structured as follows. Section 4.2 presents probabilistic models for

direction and distance information from a theoretic point of view. In Section 4.3 survey

data is analyzed and numerical models for direction, quantitative, and qualitative distance

information are extracted. An evaluation is presented in Section 4.4, where an exemplary

route is represented probabilistically. Section 4.5 discusses the presented models.

4.2 Models for Direction and Distance Information

Route information, such as directions and distances, are imprecise representations of rela-

tions in the real environment and can even be erroneous. Therefore a robot that has to

build a route belief from route directions given by humans requires a model of the accu-

racy and reliability of such information. A common way to consider such uncertainty is by

modeling it probabilistically. In this chapter theoretical approaches to probabilistic models

for directions and distances are investigated. Fig. 4.1 schematically shows the process of

probabilistically modelling route information extracted from human-robot dialogs.

Route Information
Extraction

Direction and Error
Probability

Quantitative/Quantitative
Distance Probabilities

Probabilistic Information
Representation

direction

distance posterior

certainty

Chap. 3 Chap. 5

Fig. 4.1: Overview over the process of modeling route information probabilistically.

4.2.1 Certainty Value of Direction Information

The aim of this subsection is to enable a technical system to assign certainty values to

each direction information in a route description, as an assessment of their reliability. Such

certainty values have to comprise all factors that can possibly influence the reliability of

direction information. The reliability of direction information in a route description clearly

depends on the route segment k it is given in. The probability for a certain direction of
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route segment k depends on the current direction, the direction of the previous route

segment and the direction of the previous route up to route segment k − 1. Additionally

the probability that route segment k is erroneous is regarded in calculating the reliability

of a direction information.

On the way to obtain certainty values for direction information a suitable representation

of directions has to be chosen. At first, all direction information is transformed into global

directions relative to the orientation in the point of origin. The succession of directions in

a route description can be regarded as a descriptive process which has a distinct direction

state at each route segment k. The discrete set of direction states

S = {s1, s2, s3, s4} = {sleft, sstraight, sright, sback} , (4.1)

includes the four orthogonal directions that are represented as unit vectors, e.g.

s1 =
(

1 0 0 0
)T

. The observations are the directions at each route segment k in a route

description which are composed of fractions of distinct direction states. A discrete global

direction xk in the route description is represented as direction state vector

xk =
(

x1 x2 x3 x4

)T
=

(

xleft xstraight xright xback

)T
, (4.2)

with fractions 0 ≤ xi ≤ 1 of discrete directions and
4

∑

i=1

xi = 1. The description of a direction

observation as a state vector allows for the application of a Markov chain inspired approach

for the calculation of the direction probabilities. Furthermore, the general direction model

takes into account not only the four orthogonal directions, but non-orthogonal directions

such as ‘sharp left’, ‘veer right’, or numerical angles, as well.

Direction Probability

A direction probability model is derived from transition probabilities between the distinct

directions xk. The state transition probabilities are given by

pij = P (xk = sj|xk−1 = si) (4.3)

and have the properties pij ≥ 0 and
4

∑

j=1

pij = 1. Furthermore the probabilistic description

is time independent, as it is truncated to the current and the predecessor state:

pij = P (xk = sj|xk−1 = si, xk−2 = sh, . . .) = P (xk = sj|xk−1 = si) (4.4)

A transition matrix P comprises all state transition probabilities pij, such that

P =







p11 . . . p14
...

. . .
...

p41 . . . p44






. (4.5)
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The transition matrix P applies to route segments k > 1. Initial state probabilities πi for

route segment k = 1, are combined in an initial state probability vector

π = P (xi) =
(

π1 π2 π3 π4

)T
, (4.6)

with the properties πi ≥ 0 and
4

∑

i=1

πi = 1.

The initial state probabilities π and the state transition probabilities P are used to

calculate the direction probability PD,k of each route segment k which depends on the

global direction xk−1 of the previous route segment and the global direction vk−1 of the

overall previous route up to the previous route segment. An overal direction vector vk

is of unit length
4

∑

i=1

vi = 1 and includes entries that are fractions of discrete directions

0 ≤ vi ≤ 1. The direction of the previous route segment is considered by multiplying

the global direction vector xk−1 and the probability matrix. The prediction vector x̃k of

the direction of xk which is independent of the route before segment k − 1, is given by a

Markov chain of length one, as

x̃k = xk−1 P . (4.7)

Additionally, the prediction ṽk of direction xk depending on the overall previous route

ṽk = vk−1 P , (4.8)

is considered, because it can be expected that a global overall direction is followed in

the long-run. The predictions x̃k in (4.7) and ṽk in (4.8) are combined in a direction

prediction x̂k by an entry-wise multiplication in a Hadamard product (denoted by x̃k ◦ ṽk)

and a normalization by division by the dot product. Prediction x̂k considers both the

direction of the previous segment and the direction of the overall previous route:

x̂k =
x̃k ◦ ṽk

x̃T
k ṽk

(4.9)

The probability PD,k of the direction xk at route segment k is gained by multiplying

the predictions by the actual direction, such that

PD,k =

{

πT xk, if k = 1

x̂T
k xk, otherwise

. (4.10)

The direction probability PD,k takes into account the current direction at k, the previous

direction at k − 1, and the overall direction of the previous route up to k − 1. It does not

yet consider the possibility that route segment k might be erroneous at route segment k.

Error Probability

To assess the reliability of an individual direction information, not only the direction prob-

ability PD,k is important, but also the probability PE,k that a route segment is erroneous.

Erroneous direction information in a route description at route segment k, affects the sub-
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sequent direction information in such a way that the following segments are erroneous as

well. Therefore the error probability PE,k of an individual direction information in a route

description is modeled by a cumulative distribution, as

PE,k =

∫ k

−∞

pE(x)dx , (4.11)

where pE(k) is the probability density function (pdf) of the first occurence of an erroneous

route segments. A cumulative distribution function conforms to the boundary conditions

that PE,k increases with the route segment k. The error probability is used as a heuristic

to weight the direction probability and result in a certainty value for each route segment k.

PE,k reflects the fact that information at the beginning of a route description is in general

more reliable than information that is farther away in the description.

Certainty Value

The direction probability PD and the error probability PE are mixed by a weighted average,

in analogy to sensor models in probabilistic robot mapping [182]. The resulting certainty

value is defined by the weight vector

w =
[

wD wE

]T
, (4.12)

with weight wD for the direction probability and weight wE for the error probability, where

wD + wE = 1. The certainty value results to

ck = wT

[

PD,k

1 − PE,k

]

. (4.13)

The certainty value ck is assigned to the direction information of each segment in the route

belief of a robot and provides an assessment of the reliability of the information. In the

case that the direction plausibility PD,k or PD,k−1 equals zero, the weight wD is set to one

and subsequently the certainty value ck is assigned the value zero, as the whole route is

assumed to be faulty after an erroneous route segment. In this way each segment in a

route description is assigned an individual certainty value which reflects the reliability of

that particular direction information.

4.2.2 Posterior Probability of Distance Information

Distance information provided in route descriptions is usually a rounded value of the cog-

nitive representation of the real distance. Therefore a probabilistic model for such distance

estimates is needed for robots that are using route descriptions from humans as a basis for

global navigation. Probabilistic distance models allow robots to assess during navigation

whether a location in the real environment corresponds to the respective description.
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Posterior Probability

Bayesian inference [10] is used to determine the probability that a location in the environ-

ment at the real distance dreal corresponds to an estimate dest in a route description. This

probability is given by the posterior probability which calculates as

P (dreal|dest) =
P (dest|dreal) P (dreal)

P (dest)
, (4.14)

with the prior probability P (dreal), the marginal probability P (dest), and the conditional

probability P (dest|dreal).

A robot can assess whether a distance in the real environment is likely to correspond

to a given distance estimate, by evaluating the relative posterior. If the relative posterior

Prel(dreal|dest) is above a certain threshold the real distance may well correspond to the

distance described. The condition is given by

Prel(dreal|dest) =
P (dreal|dest)

max (P (dreal|dest))
≥ τPrel

. (4.15)

Additionally, the posterior of a real distance can be compared to other candidate real

distances, in this way determining the most probable real distance given a distance estimate

in a route description.

Prior Probability

The real distance is distributed uniformly, as every real distance value is as likely as another,

therefore the prior probability depends only on the distance range rreal, such that

P (dreal) =
1

rreal

. (4.16)

The distance range rreal results from the boundaries of the considered environment.

Marginal Probability

Distance and time estimations in route descriptions do not reflect the real distance or

the cognitive distance, but are usually roughly rounded estimates of these. They are

not uniformly distributed, but rather the frequency increases for some round and salient

values or personal preferences. The marginal probability P (dest) takes into account that the

probabilities for estimations are not distributed uniformly, and balances higher frequencies

of certain salient estimates in the posterior probabilities.

Conditional Probability

The conditional probability P (dest|dreal) constitutes the likelihood that an estimation value

dest given during a route description refers to a certain real distance dreal. The conditional

probability is the crucial component for calculating the posterior probability.
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The models for direction and distance information presented above provide robots with

the means of assessing route information for plausibility and reliability. In order to obtain

metric values for the certainty values and posterior probabilities, numerical values are

required in the models. These specific numerical values are obtained by collecting and

analyzing route information data.

4.3 Data Analysis

Theoretical approaches to equip robots with probabilistic models of route information

have been discussed above. Numerical values for the theoretical models are derived from

survey data. In this way technical systems are provided with specific models for direction,

quantitative and qualitative distance information. This work focuses on robots operating

in urban environments on sidewalks and in pedestrian areas. Therefore the models derived

in the following are intended and valid for walking distances in such environments, while for

other scales of environments the models may differ and must be extracted from appropriate

data.

4.3.1 Direction Information

A specific model for the reliability of relative directions in route descriptions is needed by

robotic systems in order to assess the plausibility of this information in route descriptions.

Such a model is provided by the certainty value ck in (4.13) which depends on the direction

probability PD,k, and the error probability PE,k. These probabilities are calculated from

the analysis of data from real route descriptions.

Route Description Data

Route description data was collected in the city of Munich in 2009 [222]. In total 48 passers-

by were randomly selected and asked to give directions to well known goals within walking

distance. All dialogs were recorded with a voice recorder and transcribed to text. In 5 cases

the persons asked did not know the destination and could not give a route description,

resulting in 43 analyzable dialogs. In order to analyze the route descriptions with regard

to direction accuracy, the route directions were verified on a city map, and erroneous route

segments were marked. For a more representative amount of data, route descriptions

collected in Trier [61] were evaluated additionally. There are 101 route descriptions in

the dataset from Trier, in which erroneous route segments were marked as well. There is

no significant difference between the lengths of the route descriptions, i.e. the numbers

of route segments (t-test, p = 0.4339) and therefore the route description data sets are

assumed to belong to the same distribution. Thus the route descriptions from Trier and

Munich are evaluated collectively. The combined data set contains 144 route descriptions.

The 92 correct route descriptions and 24 erroneous descriptions result in an overall error

ratio of 24
116

≈ 21%. The number of segments in the route descriptions ranges from one to

seven with a mean value of 2.811 and a standard deviation of 1.075.
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Direction Probability

The direction probability PD,k in (4.10) is calculated from the current and previous global

direction state vectors and the state transition matrix P , or the initial probability vector π.

The numerical variables that need to be derived to model the direction probability are the

state transition probabilities pij and the initial state probabilities πi. Therefore the data is

analyzed by transforming the extracted distance information in all route descriptions into

global directions and analyzing the transition frequencies between the individual states, or

by analyzing the frequencies of the initial directions in the route descriptions.

Analysis of the directions of segment k = 1 of the route descriptions provides numerical

values for the initial state probability vector π in (4.6), as

π =
[

0.09 0.77 0.10 0.04
]

. (4.17)

The transition probabilities might look surprising at first glance, as opposed to an expec-

tation of having equal probabilities for all states, the transition probabilities are varying.

It makes sense however, as the data have been collected in real experiments where not all

orthogonal direction options were available which explains the relatively high probability

π2 for the direction ‘straight’. The initial probabilities π1 for ‘left’ and π3 for ‘right’ are

found to be approximately the same, as expected from unbiased data.

The transition matrix (4.5) results from the frequencies of the transitions in the data to

P =









0.56 0.18 0 0.26

0.25 0.50 0.25 0

0 0.12 0.58 0.30

0.28 0 0.26 0.46









. (4.18)

As expected the main diagonal, i.e. the probabilities for transitions between the same

global directions have the highest values of pii ≈ 0.5, while transitions to states representing

orthogonal directions are pi(i±1) ≈ 0.25, and the transition probabilities to states of reverse

directions are pi(i±2) = 0.

The initial state probabilities πi in (4.17) and the state transition probabilities pij in

(4.18) are depicted in Fig. 4.2 as a digraph of transition probabilities between direction

states in a route description.

It is noted that the transition probabilities are not symmetrical. Although, a large num-

ber of route descriptions with a number different combinations of start and end points has

been evaluated to identify these transition probabilities, a bias towards certain directions

cannot be excluded. However, the numerical initial and transition probabilities provide a

sound model to compute the direction probability PD,k in (4.10).

Error Probability

In order to find a specific model PE,k for the error probability, the erroneous route descrip-

tions are analyzed further. An important question is in which route segment k the first

error occurs. For this analysis only route descriptions with k ≤ 5 are used, as there are

too few longer route descriptions to draw significant conclusions from. The relative error
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Fig. 4.2: Digraph of transition probabilities between direction states.

frequency fE,k, i.e. the ratio of errors at route segment k, is depicted in Fig. 4.3 marked

by squares, over the number of route segments k. The relative frequency fE,k represents

the first occurrence of an error in the route descriptions in the data set.

Erroneous direction information in a route description affects the subsequent direction

information in such a way that the directions in the following segments are erroneous

as well. Therefore the cumulative relative error frequency FE,k =
k

∑

i=1

fE,k represents the

overall ratio of errors in each route segment. The cumulative frequency Fk is marked by

circles in Fig. 4.3 over the number of route segments k.
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Fig. 4.3: Relative frequency fE,k, relative cumulative frequency FE,k, and fitted cumulative
probability distribution PE,k of an error at route segment k.

The cumulative error frequency FE,k increases with the number of route segments k. As

there is not enough route description data with more than five route segments the shape

of the function for k > 5 is unknown, but is expected to converge to one, as it is assumed
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that the longer a route description is the likelier it becomes that there is an error in it.

Therefore the error probability distribution is modeled as a normal cumulative probability

distribution, such that

PE,k =
1

σE

√
2π

k
∫

−∞

e
−(x−µE)2

2σ2
E dx . (4.19)

The method of least squares minimizes the vertical quadratic error between the cumulative

relative frequency and the fitted normal function, with

min
µE ,σE

5
∑

k=1

(FE,k − PE(k|µE, σE))2
, s.t. (4.19) . (4.20)

In this way the values µE = 5.7 and σE = 3.3 are identified. The error model PE,k is

depicted in Fig. 4.3 as a line.

Certainty Value

The certainty value ck in (4.13) is fully described by the probabilities PD and PE and

the weight vector w. The weights wD and wE are assigned heuristically for the proba-

bilistic direction information model ck. The weight wE influences the offset and weight

wD influences the variance of the certainty value ck. The certainty values for all direction

information in the route description data set is calculated to demonstrate the procedure

and outcome. Fig. 4.4 shows the resulting probabilities PD,k as dotted lines, 1 − PE,k as a

dashed line, and the resulting certainty values ck as solid lines.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

PD,k

1 − PE,k

ck

k

Fig. 4.4: Overview of direction and error probabilities and resulting certainty values for all
direction information in the data set of route descriptions. Direction probability
PD,k in dotted lines, error probability 1 − PE,k in dashed line, and the resulting
certainty values ck in solid lines, with w =

[

0.5 0.5
]

.

The probabilities PD,k and 1 − PE,k and the certainty value ck decrease with a growing

number of route segments k, as the probabilities that either the route description is at its
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end or an error occurs increases with every route segment. The certainty values ck provide

a robot with an assessment of the reliability of the respective direction information.

4.3.2 Quantitative Distance Information

Robots navigating based on global route information extracted from HRI, need specific

models of the accuracy of distance information given in route descriptions. Such models

of quantitative distance estimates allow them to assess whether a location in the real

environment can be allocated to a location mentioned in a route description by a distance

estimate. Quantitative distance information in route descriptions is typically provided as a

numerical travelling distance dest or time test estimate. The functions and numerical values

of the posterior probabilities P (dreal|dest) and P (dreal|test), the prior probability P (dreal),

the conditional probabilities P (dest|dreal) and P (test|dreal), and the marginal probabilities

P (dest) and P (test) are identified by analyzing collected survey data.

Quantitative Distance Estimation Data

As distance estimates are not included in every route direction, distance estimation data

was collected in a separate survey by means of asking 110 randomly selected passers-by for

the way and the remaining distance to three different well-known landmarks in the center

of Munich. The participants were all asked at different locations to estimate how far it was

to one of the three landmarks which was not visible but within walking distance. In order

to record the distance estimation in a route description and not the more precise cognitive

distance, the subjects were not told that the data was for a scientific survey until after

they gave their estimations, as not to influence their estimation efforts. Interestingly after

they were told that the data was intended for a scientific study, some participants wanted

to modify their distance estimate. This supports the assumption that a distance estimate

given in a route description differs from the respective cognitive distance. Each participant

gave either an estimation of the remaining distance, usually in [m], or the remaining time,

usually in [min], or in some cases both. In total the data consists of 71 distance estimates

and 65 time estimates. The real distances dreal are rounded to an accuracy of 10 m, and

range from 100 m to 1000 m.

Fig. 4.5 on the left depicts the real distances dreal over the estimated distances dest of the

data collected in the survey. A dashed line marks the correspondence of real and estimated

distance dest = dreal. The real distances dreal over the estimated times test are shown in

Fig. 4.5 on the right. A dashed line marks the correspondence of the real distance with

the estimated time multiplied by an average walking velocity as test vwalk = dreal, with the

walking velocity vwalk = 4.5 km
h

.

Generally it is noted that for short real distances dreal the estimates tend to be lower,

whereas for longer distances the estimates tend to be higher than the real values.

Effects of Personal Factors on the Distance Estimation Accuracy: The data of

60 of the subjects includes each subject’s gender, age, self-assessment of the estimation,

and an explanation of the given self-assessment. The effects of the personal factors gender,

age, and self-assessment on the estimation accuracy are evaluated. For that purpose,
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Fig. 4.5: Estimation data of traveling distances on the left and traveling times on the right.
The dashed lines indicate the match of estimated and real data.

relative constant and absolute errors of the distance and time estimation data are compared

statistically with t-tests and analyses of variances (ANOVAs), respectively. The full results

are given in Appendix B.1, while condensed results are presented here.

Both relative constant and absolute errors for the time data are significantly lower

than for the distance data which suggests that time estimates are generally more reliable

than distance estimates. The personal variable gender does not show significant differences

between data from female and male participants for the relative errors of distance and time

estimates respectively, however female participants showed a preference for giving time

estimates, while males preferred to give distance estimates. The differences between three

different age groups of the relative errors of the data were also not significant. Similarly, the

variable self-assessment did not provide significant relative error differences between three

different groups of self-assessment, except for the relative constant distance estimation error

which arose from the fact that participants who assessed their estimate as ‘bad’ tended to

underestimate distances more often than other participants.

The fact that differences of the relative errors are not significant for the variables gender,

age, and self-assessment, with only one exception, shows that those personal variables have

no important influence on the accuracy of quantitative walking distance or time estimation

within route descriptions. Therefore these factors do not have to be taken into account by

a robot when searching for and selecting a person whom to ask for directions. Further-

more these personal factors are of no importance when modeling the relation between real

distance and estimated distance or time.

Prior Probability

The real distance data dreal was limited to a range of 100 m to 1000 m in an urban envi-

ronment, resulting in a distance range rreal = 900 m for which this model is valid. Thus,

the prior probability in (4.16) is

P (dreal) =
1

900
. (4.21)
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4 Probabilistic Models of Route Information

Marginal Probabilities

The marginal probabilities P (dest) and P (test) consider a non-uniform distribution of the

frequency of the estimates, i.e. a preference of humans to provide salient and rounded

values as distance estimates. Histograms of the frequencies fdest and ftest of the data are

presented in Fig. 4.6, for distance estimates on the left, and time estimates on the right.

The histograms display higher frequencies for salient distances, e.g. 500 m and 1000 m,

and salient times, e.g. 5 min and 10 min, slightly raised frequencies between those salient

values, and an overall decrease in the frequency with an increasing real distance.

500 1000 1500 2000 2500
0

5

10

15

f
d
e
st

dest [m]

2 4 6 8 10 12 14
0

10

20

f
t e

st

test [min]

Fig. 4.6: Histograms of quantitative distance and time estimates.

The marginal probabilities can be determined by a lookup table of the relative frequen-

cies or alternatively by a fitted function. In both cases it has to be considered that the

experimental data has gaps at some estimation values which have to be interpolated.

Conditional Probabilities

Conditional probabilities reflect the likelihood that a distance dest or time test estimate is

provided in a route description given a certain real distance dreal in the environment. It is

assumed that these probabilities are modeled by normal functions, where the mean values

and standard deviations are functions of the real distance. The conditional probability for

distance estimates is given by

P (dest|dreal) = P (dest|µd, σd) =
1

σd

√
2π

e
−(dest−µd)2

2σ2
d , (4.22)

where µd and σd are functions of dreal. Analogously the conditional probability for time

estimates is modeled by

P (test|dreal) = P (test|µt, σt) =
1

σt

√
2π

e
−(dest−µt)

2

2σ2
t , (4.23)

where µt and σt are functions of dreal. The functions for the mean values µd and µt represent

the conceptual relations between the real distance dreal and the estimated distance dest and

estimated time test respectively. An appropriate function for describing these variables is

chosen in the following.

The data distribution, as shown in Fig. 4.5, is consistent with the data distributions for

perceived distances within visual space [54] and with data distributions for cognitive dis-

tances [16]. In the literature different types of functions are found modeling perceived and
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remembered distance over real distances. Therefore the two most common functions, a ra-

tional function and a power function are compared and subsequently the more appropriate

function is used to describe µd, µt, σd, and σt.

Approaches applying rational functions and power functions found in the literature are

both applied to the collected data and compared by their residuals. A rational function

with first order polynomials as numerator and denominator similar to the model for visually

perceived distances [54] is given by

grat(dreal) =
dreal

α1 dreal + α2

. (4.24)

A power function in line with results for cognitive distances [16, 107] is written as

gpow(dreal) = β1dreal
β2 . (4.25)

The two alternative functions are fitted to the data sets for distance and time estimations

by the method of least squares.

The functions grat(dreal) in (4.24) and gpow(dreal) in (4.25) are compared by the sum

of squared residuals of the data points
(

dreal,i dest,i

)

and
(

dreal,i test,i
)

and the modeled

values. The sum of squared residuals are

rrat
yest

=
n

∑

i=1

(yest,i − grat(dreal,i, α1, α2))
2

,

rpow
yest

=
n

∑

i=1

(yest,i − gpow(dreal,i, β1, β2))
2

, (4.26)

with the data type yest = dest for distance or yest = test for time estimates. They are

compared for data with stepwise increased maximum real distances. Fig. 4.7 compares

rrat
yest

to rpow
yest

over the maximum real distance max(dreal), as solid lines for grat(dreal) and as

dashed lines for gpow(dreal), for distance estimates on the left and time estimates on the

right.
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Fig. 4.7: Sums of squared residuals rrat
yest

and rpow
yest

over the maximum real distance compare
the goodness of fit of functions grat(dreal) and gpow(dreal) for distance estimates on
the left and time estimates on the right.

The sum of squared residuals is smaller for grat(dreal) for a small real distance maximum

under 500 m and again for a big maximum distance at 1000 m both for the distance and

time estimation data, while the sum of squared residuals is smaller for gpow(dreal) for
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4 Probabilistic Models of Route Information

a real distance maximum in the medium range. This gives evidence that the rational

function grat(dreal) provides a better model for the estimated distance and time information.

Therefore the rational function grat(dreal) in (4.24) is chosen to model the characteristics

µd, σd, µt, and σt of the conditional probabilities. The numerical values of the coefficients

α1 and α2 obtained by the method of least squares are presented in Table 4.1.

Tab. 4.1: Identified coefficients of function grat(dreal) for distance and time estimations ap-
plied to describe µd, σd, µt, and σt of the respective conditional probabilities.

distances times
α1 α2 α1 α2

µ 0.0009 0.5157 0.0008 0.0057
σ 0.0069 1.3622 0.0079 0.0258

The left of Fig. 4.8 depicts the fitted functions for µd as a solid line and µd ± σd as

dotted lines for distance estimates. On the right of Fig. 4.8 the fitted function µt is shown

as a solid line and µt ± σt are depicted as dotted lines for the time estimates.
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Fig. 4.8: The fitted function grat(dreal) of the mean values µ of the conditionals as a solid
line, and of the intervals of one standard deviation µ±σ in dashed lines for distance
estimates on the left and for time estimates on the right. The alternative results
for µ using the power function gpow(dreal) are depicted in light dotted lines.

Additionally the mean values fitted by the power function gpow(dreal) are depicted in

Fig. 4.8 as dashed lines. It is confirmed graphically that the rational function fits the data

better than the power function especially for short and big distances.

In summary, the variables µd, µt, σd and σt of the conditional probabilities P (dest|dreal)

in (4.22) and P (test|dreal) in (4.23) are described by rational functions grat(dreal) in (4.24)

with the coefficients given in Table 4.1. The presented models are valid for real distances

between 100 m and 1000 m.

58



4.3 Data Analysis

Posterior Probabilities

The posterior probabilities P (dreal|dest) and P (dreal|test) in (4.14) are computed using the

prior (4.21), marginal , and conditional (4.22), (4.23) probabilities. The resulting density

distribution for P (dreal|dest) is depicted in Fig. 4.9 on the left for the valid range of 100 m

to 1000 m for dreal and 100 m to 2500 m for dest. The density distribution P (dreal|test) is

depicted on the right of Fig. 4.9 for the valid range of 100 m to 1000 m for dreal and 1 min

to 15 min for test. The overall curved shapes of the posterior distributions are evoked by

200

300

400

500

600

700

800

900

1000

500 1000 1500 2000 2500

x 10
-4

4

3.5

3

2.5

2

1

0.5

1.5d
re

a
l
[m

]

dest [m]
5 10 15

200

300

400

500

600

700

800

900

1000

2

4

6

8

x 10
-4

d
re

a
l
[m

]

test [min]

Fig. 4.9: The distributions of posterior probabilities P (dreal|dest) for distance estimates on
the left and P (dreal|test) for time estimates on the right.

the rational function in the conditional probabilities which model the tendencies to over-

and underestimate certain distance ranges. The bands with different widths are caused

by the marginal probability distributions accounting for the tendency of humans to give

salient values as estimations.

When a robotic agent follows route descriptions from humans, the posterior probability

P (dreal|dest) or P (dreal|test) gives a probability value for a reached real distance dreal to be

the sought-after distance, given a travelling distance estimate dest or time estimate test,

respectively. If the relative posterior probability in (4.15) is above a certain predefined

threshold, e.g. Prel(dreal|dest) ≥ 0.1, or is high compared to the relative posteriors of other

candidate real distances, the real distance can be assumed to be the distance described by

the estimate in the route description.

4.3.3 Qualitative Distance Information

Distance information in route descriptions can be specified not only explicitly as metrical

distance or time estimates, but also implicitly by using spatial deictics. Frequently used

deictics referring to distances are ‘here’ , ‘close’ , and ‘far’ . These deictics describe distance

ranges as opposed to specific distance values. These distance ranges are stochastic and

are modeled probabilistically as posterior probabilities P (dreal|‘here’ ), P (dreal|‘close’ ), and

P (dreal|‘far’ ) in (4.14) to give robots models of the locations in the real environments given

one of these deictics in the route descriptions. The posterior probabilities depend on the
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4 Probabilistic Models of Route Information

prior probability P (dreal), the conditional probabilities P (‘here’ |dreal), P (‘here’ |dreal), and

P (‘far’ |dreal), and the marginal probabilities P (‘here’ ), P (‘close’ ), and P (‘far’ ).

Qualitative Distance Estimation Data

An experiment was conducted with 36 PhD students of engineering as participants. There

were 4 female and 32 male participants aged between 24 years and 37 years, with an average

age of 27 years. The participants were given a questionnaire showing a map of the city

center of Munich. A start point was marked in the center of the map and 44 locations

marked by boxes were randomly assigned around it , as shown in Fig. C.5 in Appendix C.2.

The box farthest away from the start point corresponded to a real distance of 1130 m in the

corresponding real environment. The participants were all familiar with the area around

the start point. They were asked to label the boxes as either ‘here’ , ‘close’ , or ‘far’ , if

they could clearly associate them with one of these deictics.

Contextual Dependence: Before modeling qualitative distances, a question that needs

to be answered is whether the deictics ‘here’ , ‘close’ , and ‘far’ are contextually indepen-

dent, i.e. whether they are used to refer to relative distances from a starting point indepen-

dently of the considered environment. An experiment was conducted to discover whether

or not the deictics ‘here’ , ‘close’ , and ‘far’ describe different distance ranges in different

environments. In the experiment the borders between pairs of adjacent deictics, are ana-

lyzed depending on the given environment. The experiment is based on a questionnaire, as

presented in Appendix C.2, where the participants had to mark the borders between ‘here’

and ‘close’ , and between ‘close’ and ‘far’ in three different maps of different environments,

i.e. an abstract environment, an urban environment, and a large scale environment.

The results of the evaluation of contextual dependence are presented in detail in Ap-

pendix B.2; here the results are summarized. A mixed linear model is fitted to the data and

analyzed statistically. The variable map is statistically significant with a strong effect both

on the borders between ‘here’ and ‘close’ and between ‘close’ and ‘far’ . The variable age

is significant for the border between ‘here’ and ‘close’ , but has only a weak effect. Thus

it is argued that the environment has to be taken into account when modeling qualitative

distance information, while effects of personal variables can be neglected. Therefore the

models for the spatial deictics ‘here’ , ‘close’ , and ‘far’ , presented in the following hold

only for the considered urban environment.

Prior Probability

The distance data dreal was limited to a range of 0 m to 1130 m in an urban environment,

resulting in a distance range of rreal = 1130 m for which this model is valid. Thus, the

prior probability in (4.16) is

P (dreal) =
1

1130
. (4.27)
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Marginal Probabilities

The marginal probabilities P (‘here’ ), P (‘close’ ), and P (‘far’ ) denote the likeliness that the

respective deictic is used to describe a distance in a route description. These probabilities

are inferred from the frequency of the use of the deictics ‘here’ , ‘close’ , and ‘far’ in real

route descriptions, i.e. from the data set described in Section 4.3.1. In the data set the

deictic ‘here’ is given 29 times, while ‘close’ and ‘far’ are used twice each. The marginal

probabilities correspond to the frequencies of the data, resulting in

P (‘here’ ) =
29

33
,

P (‘close’ ) =
2

33
, (4.28)

P (‘far’ ) =
2

33
.

Conditional Probabilities

The results are evaluated separately for the deictics ‘here’ , ‘close’ , and ‘far’ , and truncated

functions are used to model the probability distributions in the following.

The frequencies fh of the physical distances between the start point and all locations

that were marked as ‘here’ are shown in the histogram on the top of Fig. 4.10. The start

point is always referred to as ‘here’ . The farther the distance is from the start point, the

less likely it is referred to as ‘here’ . To model the probability density function for the

deictic ‘here’ a truncated exponential function is fitted to the data by the method of least

squares. The resulting distribution is

P (‘here’ |dreal) =















1
µh

e
dreal
µh

1 − e
1130
µh

, if 0 ≤ dreal ≤ 1130

0, otherwise

, (4.29)

with µh = 148.67 identified by the method of least squares. The conditional probability

P (‘here’ |dreal) is shown on the bottom of Fig. 4.10.
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Fig. 4.10: Histogram of the data for ‘here’ on top. The resulting conditional probability
distribution modeled by a truncated exponential function on the bottom.

The frequency fc of the data of deictic ‘close’ is depicted in Fig. 4.11 as a histogram.

It resembles a lognormal distribution, therefore a truncated lognormal function is fitted to

the data by the method of least squares, such that

P (‘close’ |dreal) =























1
dreal

e
−(ln(dreal)−µc)2

2σ2
c

1130
∫

0

1
x
e

−(ln(dreal)−µc)2

2σ2
c dx − 1

, if 0 ≤ dreal ≤ 1130

0, otherwise

, (4.30)

where µc = 5.81 and σc = 0.51 are identified. The probability density function is shown

on the bottom of Fig. 4.11.
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Fig. 4.11: Histogram of the data for ‘close’ on the top, and the resulting conditional pro-
bability distribution modeled as a truncated lognormal function on the bottom.
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The frequency ff for the data of the deictic ‘far’ over the relative distance dreal is shown

on the top of Fig. 4.12. A right truncated Weibull function approximates the data, as

P (‘far’ |dreal) =











αf βf dreal
βf−1 e−αf dreal

βf

1 − e−αf 1130βf
, if 0 ≤ dreal ≤ 1130

0, otherwise

. (4.31)

The variables αf = 1510.07 and βf = 3.82 are identified by the method of least squares.

The pdf P (‘far’ |dreal) is depicted in Fig. 4.12 on the bottom.
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Fig. 4.12: The histogram of the data for ‘far’ on the top. The resulting conditional proba-
bility distribution modeled as a right truncated Weibull function on the bottom.

The identified conditional probability distributions P (‘here’ |dreal), P (‘close’ |dreal), and

P (‘far’ |dreal) are crucial for calculating the posterior probabilities of real distances given

route information in the form of deictics ‘here’ , ‘close’ , or ‘far’ .

Posterior Probabilities

The posterior probabilities P (dreal|‘here’ ), P (dreal|‘close’ ), and P (dreal|‘far’ ) in (4.14) are

computed using the modeled prior probabilities in (4.27), marginal probabilities in (4.28),

and conditional probabilities in (4.29), (4.30), and (4.31). The three resulting posterior

pdf’s for the deictics ‘here’ , ‘close’ , and ‘far’ are depicted in Fig. 4.13.

The resulting posterior probability density functions P (dreal|‘here’ ), P (dreal|‘close’ ), and

P (dreal|‘far’ ) model the distance reaches of the spatial deictics ‘here’ , ‘close’ , and ‘far’ , in

the real environment. They can be used to assess whether a feature in the real environment

corresponds to the information given in a route description by assigning a threshold for

the relative posteriors in (4.15).

Analogously, to quantitative distance estimates, qualitative distances can be given in

the time domain, e.g. ‘now’ or ‘soon’. However, this occurs too rarely to model posteriors.

In the case it does occur, the expressions can be simply mapped to their spatial equivalents

and posterior probabilities are computed as described above.
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Fig. 4.13: Posterior distance probabilities for the qualitative distance expressions ‘here’ ,
‘close’ , and ‘far’ over the real distance in an urban environment.

4.4 Evaluation

The soundness of the assignment of certainty values to direction information, and of poste-

rior distributions to distance information is demonstrated by applying the models presented

above to a sample route description.

An example route between two locations within the city center of Munich is depicted

in Fig. 4.14 on the right. An according route description can be given as ‘Go straight for

500 meters and turn right. Veer left after 3 minutes. Then the market is close by.’ The

direction and distance information given in this route description is visualized by arrows

of proportional directions and lengths in the center of Fig. 4.14.

The direction and distance information given in the route description is represented

probabilistically using the models identified above. The direction probability density dis-

tribution PD,k in (4.10) is calculated and certainty values ck are assigned to the direction

information according to (4.13), with w =
[

0.5 0.5
]

. The posterior distributions for dis-

tance information in (4.14) for the quantitative distance estimate, the quantitative time

estimate, and the qualitative distance estimate in the route description are computed. The

accuracy of the information in the route description is visualized on the right of Fig. 4.14 in

the reference system of a robot. The route segments are depicted as proportional arrows of

different lightness according to the corresponding certainty value (a darker color signifies a

higher certainty value). The direction probability distribution and the posterior distance

distributions are multiplied and depicted as point clouds of likely locations of the next

decision point relative to the last.

An overview of the values of relevant data in the evaluation is presented in Table 4.2.

The data presented for each route segment k are the corresponding real distances dreal,

certainty values ck, probabilities of the distance information PD,k, relative distance proba-

bilities PD,rel =
PD,rel,k

max(PD,rel,k)
, posteriors of the direction P (dreal|dest), and relative direction

posteriors Prel(dreal|dest) in (4.15).
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Fig. 4.14: Modeled accuracy of information in an exemplary route description. Left: route
in the real environment, alternative branch-offs from the first route segment are
marked as dashed lines; center: direction and distance information from a corre-
sponding route description; right: modeled accuracy of route information, where
the lightness of an arrow reflects the certainty value of the direction information
it represents, the direction probabilities multiplied with the distance posterior
distributions are illustrated by overlaid point clouds for each node.

Tab. 4.2: Numerical values of relevant data of route information in the example.

k dreal ck PD,k PD,rel P (dreal|dest) Prel(dreal|dest)
1 414 m 0.8392 0.7600 1.0000 3.1112 · 10−5 0.5436
2 134 m 0.4554 0.0485 0.0576 2.8848 · 10−8 0.0003
3 110 m 0.6167 0.4489 0.7309 1.3697 · 10−4 0.2467

The table presents numerical values for the modeled accuracy depicted in Fig. 4.14.

Interestingly, the relative distance posterior probability at route segment k = 2 is very

low, i.e. Prel(dreal|dest) < 0.1, which gives evidence to the fact that the corresponding time

information was a poor estimate of the real walking time.

The relative posteriors Prel(dreal|dest) of the alternative branch-offs from the first route

segment, as depicted in Fig. 4.14 on the left as arrows with dashed lines, are compared

in Table 4.3. As can be seen there are real distances in the physical environment that

achieve lower and some that achieve higher relative posterior probabilities than the correct

distance dreal = 414 m, given the estimated distance of 500 m.

The results show that the presented models provide reasonable assessments of the ac-

curacy of individual information given in route descriptions and are thus suitable as in-

formation models. They are not sufficient as the only means to assess the accuracy and

reliability of route information for robot navigation and global path planning. Therefore

the next chapter presents a system for reasoning about whole route descriptions, assessing

them for plausibility, and combining plausible information in the route belief.
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Tab. 4.3: Relative posteriors of alternative real distances of k = 1, given dest = 500 m.

dreal [m] Prel(dreal|dest)
130 0.0006
174 0.0030
281 0.0585
325 0.1465
414 0.5436
470 0.8522
612 0.7264

4.5 Discussion

Direction or distance information in route descriptions is usually a simplified, distorted, or

even erroneous representation of relations in the real environment. Therefore robots need

to take these uncertainties into account when building a route belief for navigation and

global path planning based on such information.

This chapter presented probabilistic models for individual direction and distance in-

formation occurring in route descriptions. These models facilitate the assessment of the

accuracy and reliability of uncertain route information. Probabilistic models are provided

for route information extracted for example by the dialog system presented in Chapter 3.

The modeled information includes directions, quantitative distances, i.e. distance and time

estimates, and qualitative distances in the form of deictic distance descriptions. Direction

information is modeled in this chapter as a descriptive process. The model simultaneously

takes into account the conditional probability of the direction information given the direc-

tion of the previous route and the likelihood of an error occurring during the length of the

route description. The direction and error probabilities are combined as a weighted average

analogously to sensor models, resulting in a certainty value for distance information. Dis-

tance information in route descriptions is modeled by posterior probabilities which allow

to assess whether a real distance is the sought-after distance given an estimate. The pos-

terior probability distribution takes into account people’s tendency to overestimate some

distance ranges while underestimating others, as well as a preference for naming salient

values when estimating distances in route descriptions. The presented specific models with

their numerical values are valid for walking distances within urban environments. A gen-

eralization of the models would be possible by collecting an even larger set of data and

including the effects of contextual factors.

The probabilistic models for directions and quantitative and qualitative distances have

been evaluated by applying them to an example route description and calculating cer-

tainty values and distance posteriors for all information. The evaluation showed that the

developed models serve well for assessing reliability and accuracy of information in route

descriptions, but are not sufficient as the only means to assess route information. There-

fore, the next chapter presents a system that compares route descriptions, and builds a

route belief from plausible information.
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4.5 Discussion

The main contributions of this chapter are the derived probabilistic models for individual

information in route descriptions. As related research focussed only on modeling cognitive

representations of directions and distances which are different from information given in

route descriptions, the presented probabilistic models are novel to spatial cognition and

spatial computation. Additionally, these models are well suited to robotics, as they provide

means to assess the reliability and accuracy of route information.

Route information represented probabilistically by the presented route information mo-

dels reflects the reliability and accuracy of certain given data and can be used as a measure

of certainty when merging route descriptions from different sources. These models can

only be applied to evaluate individual direction and distance information within route

descriptions, but not whole route descriptions. A system for comparing different whole

route descriptions and building a probabilistic representation by merging the plausible

descriptions is presented in Chapter 5.
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5 Simultaneous Reasoning and Mapping

This chapter proposes a system for Simultaneous Reasoning

and Mapping (SRAM ). It assesses whole route descriptions ex-

tracted from human-robot dialogs for plausibility, represents

them internally as route graphs, and adds plausible informa-

tion to a route belief. The proposed system allows for detecting

and correcting gaps, excess, rotations, or errors in route graphs.

5.1 Problem Description and State of the Art

While the approach of extracting missing route knowledge by asking humans for directions

is fast and adaptable, information extracted in this way can be simplified, distorted, or

erroneous. While Chapter 4 presents probabilistic models to assess direction and distance

information of individual route segments for accuracy and reliability, this chapter aims at

providing a robot with a procedure to represent and reason about whole route descriptions

extracted from human-robot dialogs. This is necessary as different route descriptions have

different degrees of refinement or can even be erroneous.

Researchers are working on methodologies for representing and reasoning about spatial

information. On the basis of the cognitive map [185] as the cognitive representation of

spatial relations in environments, Kuipers [91, 92] has developed a computational theory,

the SSH. A probabilistic approach of combining metric and topological map knowledge is

presented by Thrun et al. [183], who joined the ideas of the SSH with classical robot map-

ping. Werner et al. [199] propose modeling navigational knowledge as route graphs. In an

extended approach [164] route descriptions in HRI are represented as Voronoi-based route

graphs including metric information. Brosset et al. [20] model human route descriptions

based on locations and actions. Recently, qualitative spatial reasoning [32, 148] has been

applied to robot navigation and path planning. Researchers have started developing robots

that can extract and store spatial information about their environments or even route de-

scriptions from human-robot interaction, among others [101, 119, 171, 197]. However, none

of these robots reason about the spatial information provided by humans.

The main contribution of this chapter is a general method for Simultaneous Reason-

ing and Mapping (SRAM ) that processes route descriptions extracted from human-robot

dialogs. The framework includes a dialog system, as presented in Chapter 3, which inter-

faces with human partners and extracts route information from human-robot dialogs. Each

extracted direction and distance information is represented probabilistically, as described

in Chapter 4. In this way certainty values for directions and posteriors for distances are

calculated. The SRAM system represents extracted route descriptions as topological route

graphs including certainty values, reasons about these routes based on existing route be-

lief, inquires about conflicting information, and integrates plausible route information into
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5 Simultaneous Reasoning and Mapping

the route belief of the robot. As this extracted route information is not necessarily cor-

rect or complete, the system performs pattern matching and vector similarity assessment

to evaluate whether or not the information is plausible. If necessary the system inquires

about conflicting route information, such as missing or excess route segments, or rotations.

Finally, plausible information is included in the route belief of the robot. In this way, a

reasonable representation of the route in the environment is obtained and forms the basis

for global navigation and path planning.

This chapter is structured as follows. The main types of possible differences between

route descriptions are reviewed in Section 5.2. As a general procedure for representing

extracted route information and reasoning about it, the SRAM system is introduced in

Section 5.3. An evaluation of the system is presented in Section 5.4. Finally, the chapter

is concluded in Section 5.5.

5.2 Types of Differences between Route Descriptions

There are several possible types of errors or differences between route descriptions that

can occur. The most common differences between routes are depicted in Fig. 5.1.
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Fig. 5.1: Examples of different route descriptions that may represent the same route with
some differences or errors.

The most common types of differences between route descriptions are:

• Two routes can be different from one another but still lead to the same goal, as for

example routes R1 and R2.

• A routes can have missing route segments which may hint to a different degree of

refinement compared to another route description, as in the case of example route

R1 compared to R3.

• Reversely a route can have excess route segments, as in the case of example route R3

compared to R1.

• Routes may have some different segments, resulting in rotations, as shown by example

routes R1 and R4.

• Finally, two routes can be completely different from one another, such as route R5

compared to R1; concluding that at least one of them is not plausible.

70



5.3 Simultaneous Reasoning and Mapping

The different types of errors or differences between routes have to be assessed for plausibility

by different methods. Different routes that lead to the same goal can be identified by

assessing the similarity of the vectors spanned between the start and the end node of the

routes. Excess or missing route segments, as well as rotation, caused by differing route

segments, can be found by pattern matching. Both route similarity assessment and pattern

matching are adequate to classify completely different routes as implausible. A system is

needed that binds the methods for plausibility assessment together and builds a plausible

route belief. This system is introduced in the following section.

5.3 Simultaneous Reasoning and Mapping

An approach to solve the problem of reasoning about route information extracted from HRI

and simultaneously building a route belief as an internal representation of the plausible

route information is introduced here. The approach is further referred to as Simultaneous

Reasoning and Mapping, or SRAM . The general schematic of SRAM is shown in Fig. 5.2.
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Plausibility Assessment

Chap. 3

Chap. 4

Fig. 5.2: General schematic of the SRAM system.

The system receives route information extracted from human-robot dialogs by a dialog

system, see Chapter 3, as input. The route description is represented internally as a

topological route graph applying probabilistic models for route information presented in

Chapter 4. The route graph is then compared to existing route belief by pattern matching

and similarity assessment in order to cover all kinds of possible errors listed above. If

necessary the dialog system is caused to inquire about information that conflicts with

existing information. Finally, plausible route information is included in the route belief,

while implausible information is discarded. The individual modules of the SRAM system

are described in detail below.
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5 Simultaneous Reasoning and Mapping

5.3.1 Information Representation by Topological Route Graphs

The dialog system, as in Chapter 3, asks humans for directions and extracts route descrip-

tions from human-robot dialogs. Information extracted by the dialog system includes a

sequence of route segments that are delimited by decision points and defined by directions

and distances. Within route descriptions the directions represent the actions that are ne-

cessary to complete a route towards a goal. The distances between decision points refine

the actions in terms of their duration. Individual actions are delimited by landmarks, i.e.

decision points such as intersections, traffic lights, or buildings.

Information on individual route segments can be distorted, simplified, and erroneous.

Therefore it is represented probabilistically. Probabilistic models for direction and distance

information are introduced in Chapter 4. The probabilistic models allow robots to assess

the accuracy and reliability of direction information by certainty values and of distance

information by posterior probabilities. The certainty values are included in the topological

route graphs when representing route descriptions and the posteriors can be used during

navigation to assess whether a location corresponds to a description.

Extracted route information R and the route belief B of the robot are represented as

directed topological route graphs. A topological route graph G 〈N, E〉 includes nodes

Ni(li) representing landmarks of type li along the route and edges Ek(Ni, Nj, δk, dk, ck)

representing actions connecting the landmarks. Edges hold information about the direction

δk from node Ni to Nj, i.e. the given direction information is represented as an angle

relative to the previous direction, and the distance dk between the respective nodes Ni

and Nj. The landmark types li, lj and the distance dk between the landmarks, i.e. the

nodes, are optional information, as they are not necessarily provided explicitly by the

human. They are represented by default values, if missing. An edge Ek additionally

holds a certainty value ck reflecting the fact that the information is extracted from human

route descriptions, where miscommunications or misunderstandings [109] can occur, or

the provided route description may be inaccurate or even erroneous. The certainty value

ck is calculated as described in Chapter 4 in (4.13), as a weighted average of a direction

probability and an error probability. It takes into account the direction of the previous

route segment, the direction of the overall previous route, and the probability that an error

occurs depending on the number of route segments k. The certainty value ck is usually

higher for small k, and decreases with the number of route segments. The certainty value

is assigned initially when information is extracted. It is updated when new information is

combined with the route belief, as discussed below.

Both new route descriptions and existing route belief are represented as topological

route graphs. Therefore they share a common structure and can be compared in the

plausibility assessment module. After it has been extracted and translated into a route

graph, a route description is assessed for plausibility by comparing it to the existing route

belief. Plausibility assessment consists of pattern matching and route similarity analysis,

in order to cover all types of differences listed in Section 5.2. Both methods use a vector

similarity function to compare two vectors.
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5.3.2 Vector Similarity

As the main component of route descriptions are directions and distances, individual route

segments and whole route graphs can be represented as vectors including both characteris-

tics. Therefore a possibility for comparing route graphs is a suitable similarity measure for

vectors. Both of the two properties magnitude and direction have to be taken into account

when assessing the similarity between vectors. A magnitude similarity and a direction

similarity are introduced, and then superposed to obtain a vector similarity function.

When introducing a similarity metric or function, basic properties must be satisfied. A

similarity metric S(n,m) : R
2 × R

2 → R satisfies the properties shown in Table 5.1: non-

negativity and reflexivity which guarantee positive definiteness, symmetry which ensures

an unbiased comparison of two characteristics, and finally the triangle inequality. If the

triangle inequality is not satisfied, but all other properties hold, the weaker measure is not

called a similarity metric, but a similarity function.

Tab. 5.1: Properties of similarity metrics.

Non-negativity 0 ≤ S(n,m) ≤ 1
Symmetry S(n,m) = S(m,n)

Triangle inequality S(n,m) + S(m,k) ≤ 1 + S(n,k)
Reflexivity S(n,m) = 1 iff n = m

In the following a vector similarity function is introduced based on a direction similarity

metric and a magnitude similarity function. Direction similarity of vectors n, m ∈ R
2 with

angles δn and δm respectively is defined as

SD(n, m) :=

∣

∣

∣

∣

1 − |δn − δm|
π

∣

∣

∣

∣

, (5.1)

with δn, δm ∈ [0, 2π[. It can be shown that all four properties for similarity metrics in

Table 5.1 hold. Therefore the presented direction similarity SD is a similarity metric. It

reflects the similarity of the directions of two vectors.

Magnitude similarity of vectors n and m with magnitudes ‖n‖ =
√

n2
x + n2

y and

‖m‖ =
√

m2
x + m2

y is defined as

SM(n, m) := 1 −
∣

∣

∣

∣

‖n‖ − ‖m‖
‖n‖ + ‖m‖

∣

∣

∣

∣

. (5.2)

The magnitude similarity SM satisfies the properties of non-negativity, symmetry, and

reflexivity, but not the triangle inequality, therefore it is a similarity function. It describes

the similarity between directions of two vectors.

A vector similarity function that accounts for both the similarity in magnitudes and

the similarity in directions of two vectors is obtained by the superposition of the direction
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similarity in (5.1) and the magnitude similarity in (5.2) as

SV (n, m) := SD(n, m) SM(n, m)

= 1 −
∣

∣

∣

∣

δn − δm

π

∣

∣

∣

∣

−
∣

∣

∣

∣

‖n‖ − ‖m‖
‖n‖ + ‖m‖

∣

∣

∣

∣

+

∣

∣

∣

∣

δn − δm

π

∣

∣

∣

∣

∣

∣

∣

∣

‖n‖ − ‖m‖
‖n‖ + ‖m‖

∣

∣

∣

∣

. (5.3)

The vector similarity SV is a similarity function, as it satisfies the properties of non-

negativity, symmetry, and reflexivity, but does not satisfy the triangle inequality.

The vector similarity function can be applied to assess the similarities of both individual

route segments, represented as vectors along edges, in pattern matching and whole routes,

represented by a vector connecting the start and end nodes, in route similarity assessment.

5.3.3 Pattern Matching

To identify identical route graphs or gaps, excess, or rotations of individual route segments,

new route graphs are compared to the existing route belief. Since the compared route

graphs are simple connected graphs they cannot be matched by comparing the connectivity

of the nodes as in classical graph-matching approaches, but have to be compared in terms

of the properties of the edges Ek by pattern matching. Pattern matching is applied to

compare the sequence of edges in the new route graph R to the sequences of edges of all

paths Ai in route belief B.

Pattern or string matching is employed to find a certain pattern sequence of length m in

a sequence of length n, with n ≥ m. Typical pattern matching applications are analyzing

genetic sequences [163] in computational biology and text search [192] in signal processing.

The problem of identifying similar sequences or patterns, potentially with slight differences,

gaps, or excess, is tackled by approximate pattern matching [4, 130]. Approximate pattern

matching identifies similar patterns by calculating a matching metric and comparing it

to a given threshold. A typical matching metric is the Levenshtein distance [104]. This

metric measures the amount of difference between two sequences as the minimum number

of substitutions, insertions, and deletions necessary to transform one string into the other.

In the SRAM system a matching metric similar to the Levenshtein distance is used to

solve the pattern matching problem. The matching metric DM(R,Ai) used to compare the

different route graphs R and Ai is based on the Levenshtein metric. However, DM(R,Ai)

comprises not only the number of necessary substitutions, insertions, and deletions, but

also the number of matching sub-sequences. The matching metric is defined as

DM(R,Ai) =
m

∑

j=1

e(Mi,j) , (5.4)

with the number of edges e(Mi,j) in sub-match Mi,j. In a first step, the minimum number

of sub-matches between route R and a path Ai in the belief is identified. Then a solution

to the pattern matching problem

DM(R,Ai) > τM (5.5)
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with a matching threshold τM is searched for. The pattern matching threshold is chosen

heuristically, as a percentage of the number of edges in R. In the following this process is

described in detail.

All edges in R are compared sequentially to all successive edges within all paths Ai of

B. The paths Ai are all paths between the current node and the goal node. They can

easily be found by a breadth first search in B. Each pair of edges is compared as vectors

rk and ai,j by the vector similarity function in (5.3).The length of the compared vectors

is δrk
and δai,j

respectively, if both values are provided or unit length otherwise. A vector

similarity matrix SV is computed for each path such that

SV (R,Ai) =







SV (r1,ai,1) · · · SV (rn,ai,1)
...

. . .
...

SV (r1,ai,m) · · · SV (rn,ai,m)






. (5.6)

Diagonals of SV reveal whether R is identical to Ai; whether it is contained in Ai com-

pletely; or with gaps or excess; or some edges in R conflict with Ai; or R does not match

Ai at all. Sub-matches Mi,j are identified in the matrix as sequences of high values in the

same diagonal. The minimum number of edges e(Mi,j) in sub-match Mi,j is defined by a

threshold τe, such that

e(Mi,j) > τe . (5.7)

High vector similarity values are defined as being above a certain threshold, with

SV (rk,ai,j) > τSv . (5.8)

The threshold τSv ensures that not only edges with exactly the same directions are mapped,

but also that more specific directions such as ‘veer left’ or numeric angles can be mapped

to similar corresponding directions.

The algorithm that matches the patterns starts by searching for the longest pattern

match Mi,j between graphs R and Ai, i.e. the longest sequence of similarity values satisfying

(5.7) and (5.8) in any diagonal. The certainty values of the individual route segments are

respected by starting the search at diagonals with higher certainty values, usually the main

diagonal. After that it restricts the search space to avoid redundant pattern matches. The

search space in the matrix SV is restricted to the block matrices up left of the first value

in a match Mi,j and below right of the last value of Mi,j. The next pattern has to lie at

least partially within the resulting search space. The search spaces of several matches are

overlaid to create an overall search space.

The relative positions of the sub-matches, i.e. the numbers of the diagonals γ (Mi,j),

hold information about missing, surplus, or conflicting route segments, as listed below.

The sub-match following sub-match Mi,j is denoted Mi,j+1.

• γ (Mi,j) = γ (Mi,j+1): Differing route segments are identified, by two subsequent sub-

matches that are located on the same diagonal. The number of entries in the diagonal

between the two sub-matches denotes the number of differing route segments.

• γ (Mi,j) < γ (Mi,j+1): Excess route segments in R are identified, if the number of the

diagonal of a successive sub-match is higher than that of the previous sub match.
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• γ (Mi,j) > γ (Mi,j+1): Route segments missing in R are identified, when the number

of the diagonal of the latter sub-match is lower than that of the previous one.

The composition and interpretation of vector similarity matrices is depicted in Fig. 5.3,

with three different pairs of compared routes Ai and R. The differences between the routes

are highlighted and the respective similarity matrices SV are depicted below the routes.

Pattern matches Mi,j are encircled in the matrices. The search spaces are marked in white

while the restricted spaces marked in darker shades demonstrate the overlap of different

search spaces.
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Fig. 5.3: Example graphs on the top (differences highlighted in lighter color) and respective
vector similarity matrices SV on the bottom. Sub-matches Mi,j are encircled in
SV and search spaces and restricted spaces are marked in different shades.

A complete match Mi,1 of route R with the path Ai of belief B is shown on the left of

Fig. 5.3. The center of Fig. 5.3 shows two sub-matches, Mi,1 and Mi,2. As γ (Mi,2) is higher

by one than γ (Mi,1), route R holds one edge more at that position than Ai. Additionally,

there is one entry missing between the matches which indicates that at that position one

edge of R is different from the corresponding edge in Ai. As can be seen, there are no more

matches within the search space. On the right of Fig. 5.3 three pattern matches Mi,1, Mi,2,
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and Mi,3 are shown. As γ (Mi,2) is higher than γ (Mi,1), again R holds one more edge than

Ai. Route R has two edges less than Ai between the last two sub-matches, as γ (Mi,3)

is lower than γ (Mi,2) by two. A sufficient pattern match is identified if problem (5.5) is

solved, i.e. if the number of edges in all sub-matches is above a certain threshold.

The pattern match over all paths Ai in B is analyzed further. If a complete pattern

match is found, the route graph R is forwarded to be included in the route belief B. Oth-

erwise if partial pattern matches are found with gaps, excesses, or rotations, the conflicting

information is sent to the dialog system and inquired about. If the conflicting information

is corrected, the route graph is revised and propagated to be included in the route belief B,

as well. Route information that has not been found plausible by pattern matching in this

way, is assessed for vector similarity as described below. This permits the identification of

other possibly plausible route information, i.e. a different route leading to the same goal.

5.3.4 Route Similarity Assessment

A vector similarity assessment between route graph R and all paths Ai in belief B is

performed if no, or only an insufficient, pattern match is found, i.e. problem (5.5) is

not solved. The vector R spanned by start node and end node of graph R is computed,

assuming unit lengths of all edges. It is compared to the vectors Ai between the current

node to all reachable end nodes, i.e. nodes with the landmark type given as ‘goal’, in

B by the vector similarity function (5.3). If the highest similarity value of the compared

vectors exceeds a threshold τS, the route graph R is assumed to be plausible. Otherwise

it is assumed to be implausible and is discarded. The condition for plausibility by route

similarity assessment is given as

max
k

(SV (R,Ai)) > τS . (5.9)

If the new route information R is assessed to be plausible by route similarity assessment,

it is assumed to be a different, previously unknown route to the same goal, and is included

in the route belief B.

5.3.5 Inquiry about Conflicting Information

If a conflict between the new route graph R and the current route belief B is identified

during pattern matching; the human partner is asked about this conflict by the dialog

system. Conflicts CR that are inquired about are missing, surplus, or differing route

segments at the beginning or end of the route, or between consecutive sub-matches.

The conflicting information CR, i.e. the gap in front of, between, or after sub-matches, is

presented to the human along with the identified alternative information CB from the route

belief of the robot. The human partner is asked to confirm or to correct the conflicting

information CR. According to the human’s answer the conflicting information is either

retained or replaced by the respective information CB from the route belief. In the case

that more than one conflict is found, the next conflicting information is inquired about in

the same way. After confirming or replacing all conflicts, the new route graph R is included

in the belief B, possibly adding new nodes and edges.

77



5 Simultaneous Reasoning and Mapping

This procedure gives the human the possibility of correcting errors in the extracted

route description, but also the possibility of confirming a differing route description that

either gives an alternative to or provides a specification of an existing route section.

5.3.6 Building and Updating Route Belief

The route belief of a robot represents the route information internally and serves as a basis

for navigation and global path planning. It is constructed in the SRAM system from plau-

sible route information and augmented by metric sensor data from the real environment.

New route information in the form of a route graph R is assessed for plausibility by

pattern matching and route similarity assessment and eventually discarded or included in

the route belief B of the robot. This process is depicted as a flowchart in Fig. 5.4.
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Fig. 5.4: Flowchart of the processes of plausibility assessment and route belief building.

Route information that has been found plausible by the plausibility assessment module

is included in the route belief of the robot. The route to be included and the information

about which edges of route R match which edges of belief B are forwarded to the route

belief building and updating module.

The edges of R are included in B successively. If an edge Ek of R does not match an

edge El in B, it is added to the belief B including the direction δk, the certainty value ck,

distance dk, and the respective landmark types li and lj.

If an edge Ek of R corresponds to an edge El in B, the properties of edge El are updated.

Existing landmark types li and lj are added to the list of landmark types of the nodes Ni

and Nj corresponding to edge El. If one of the matching edges holds distance information

this information is assigned to edge El. If both of the edges from R and B hold a distance
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information, the values are combined as a weighted average where the weights are provided

by the relative posterior probabilities calculated as in (4.15) presented in Chapter 4. The

certainty value cl of edge El in belief B increases with

cl = 1 − (1 − ck) (1 − cl) , (5.10)

where ck is the certainty value of edge Ek in R. In this way the route belief is refined and

supplemented with each new plausible route graph.

Initialization of Route Belief

When the system starts without any route belief, i.e. B = ∅, new route information cannot

be validated and assessed for plausibility at first. Therefore initially a preliminary route

belief Bprel is generated. As long as the belief is empty, new route information is translated

into a topological route graph as described above and stored as the preliminary route be-

lief Bprel,i. When a new route description is extracted from a dialog with another human

partner, the corresponding topological route graph is saved in the preliminary belief as

Bprel,i and compared to the existing preliminary route graphs Bprel,1 to Bprel,i−1. If two of

these route graphs are found to be plausible by pattern matching or similarity assessment,

they are combined as described above to form the route belief B. The remaining prelim-

inary beliefs Bprel,j are classified as implausible and therefore discarded. If all the graphs

Bprel,1 to Bprel,i are in conflict with each other, more information is extracted through

communication with other humans and plausibility assessment is applied.

Augmenting the Route Belief with Metric Data

The route belief acquired by the SRAM system in the way introduced above can be used

by the robot to navigate along a route towards the designated goal location. The best path

Ai in the belief B to navigate is the one with the highest certainty values of the individual

edges, and simultaneously the shortest path. The optimization problem is

max
i







∑

k

c
(i)
k

∑

k

d
(i)
k






, (5.11)

where the lengths dk equal one if not all edges in B hold a distance information. This opti-

mization guarantees a high probability to reach the goal with low travelling costs. The most

certain shortest path in (5.11) can be found for example by the Dijkstra Algorithm [37].

During navigation the robot collects sensor observations which are used to augment the

route belief. Sensor observations present the system with metric information about the

environment. Values in the route graph that can be augmented by sensor information are

the direction and the distance, as well as recognizable landmark types. The respective edge

Ek is added metric information EM
k on top of the topological information ET

k . The metric

edges EM
k (Ni(l

M
i ), Nj(l

M
j ), δM

k , dM
k , cM

k ) include the gained sensor information direction δM
k ,

distance dM
k , and landmark types lMk . The metric layer additionally holds a certainty value

cM
k , as the measured information is extracted probabilistically by imperfect sensors. The

79



5 Simultaneous Reasoning and Mapping

certainty value is set to the confidence value csensor
k of the processed sensor data

cM
k = csensor

k . (5.12)

In this way the robot validates the information extracted from human route information

and adds metric data which corresponds to the layers in the SSH [91].

5.4 Evaluation

The SRAM system presented above was evaluated by six participants who communicated

with the dialog system and gave route directions. The participants were asked to memorize

the route between the robot and the goal marked on a city map, as depicted on the left

side of Fig. 5.5. On the next day they each interacted with the system and gave directions

which were extracted by the dialog system. The participants were all given the same start

point and orientation in the map to keep the experimental conditions constant. The system

works in the same way if the start point is changed while the robot navigates.

0        50     100     150    200m

Human
Robot
Street
Building
Water
Park
Lights
Statue
Church
Goal
Intersection

Legend

Fig. 5.5: City map used for the experimental evaluation of the SRAM system.

The initial route graphs R1 to R6 extracted from the route descriptions, the information

given by the participants, and the internal processes of the SRAM system are presented

in Table 5.2 for each new participant. Initially, both route graphs built from the route

descriptions R1 and R2 are not found to be plausible and are therefore stored in a prelim-

inary belief. Route description R1 is correctly identified as implausible and is discarded

when the third participant gives a route description and route information R2 and R3 are

combined to form the belief B. Route R4 is different from the other routes, but is classified

as plausible by the route similarity assessment module, as the maximum vector similarity

SV (r, b) = 0.91 between the vectors from the start nodes to the end nodes of the new route

R and the belief B is higher than the chosen threshold. On the other hand route descrip-

tion R5 is identified as plausible but missing the first route segment. It is corrected after
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inquiring about the missing route segment and the human confirms that route segment

of direction ‘right’ needs to be inserted at the beginning of the route. Finally, route R6

presents a refined description compared to the other route descriptions already included in

the route belief. After inquiring about the differing route segments, they were confirmed

by the human participant and included in the route belief B by the system. (The values

of the thresholds in plausibility assessment were assigned as τM = 0.6, τSV
= 0.75, and

τS = 0.8 in the experiment.)

Tab. 5.2: Process of building a route belief B during the experiment.

Route Human information SRAM system action

R1

R1

R3

R4

R5

R6

straight, left, straight (goal) store R1 as preliminary belief Bprel,1

right, left, straight (park), left,
right, straight (goal)

compare R2 to Bprel,1 → no match
(e(Mj) = 2, max(SV ) = 0.46)

store R2 as preliminary belief Bprel,2

right, left, straight, left, right,
straight (goal)

compare R3 to Bprel,1 → no match
(e(Mj) = 2, route sim. = 0.46)
compare R3 to Bprel,2 → match
(e(Mj) = 6)
store R3 with Bprel,2 as belief B

discard implausible Bprel,1

right (lights), straight (park),
left, straight (water), straight
(lights), straight (intersection),
left (goal)

compare R4 to B → plausible
(max(SV ) = 0.91)

combine R4 with B

left, straight, left, right,
straight (goal)

compare R5 to B → plausible
(e(Mj) = 5)
‘Should direction ’right’ be inserted

at the beginning?’

‘yes’ correct route graph R5

combine R5 with B

right (lights), left, straight,
straight (park), left, right,
straight (lights), straight (goal)

compare R6 to B → plausible
(e(Mj) = 6)

‘Third route segment superfluous?’

‘no’ ‘Last route segment superfluous?’

‘no’ combine R6 with B

The route belief B formed during the experiment is depicted in Fig. 5.6 in robot coor-

dinates, with the different paths A1 to A3 marked in different line styles and colors. The
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extracted landmark types li are depicted by icons. A default value was inserted where no

explicit landmark type was extracted.
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Fig. 5.6: The resulting route belief B in robot coordinates.

The certainty values of the individual edges in the route belief B over the time are

depicted in Fig. 5.7. The dashed lines represent values of edges in the preliminary belief

Bprel,1 (denoted by points in light color) and Bprel,2 (denoted by circles in dark color)

respectively. Solid lines represent certainty values of edges in the route belief B. The

certainty values of the edges in the preliminary belief Bprel,1 drop to zero when Bprel,1 is

assessed as not plausible and rejected. The certainty values ck of the edges of the belief

given by four of the participants increase towards value one. While less frequently stated

routes have lower certainty values. The certainty values c13 and c14 of the route segments

that have been added from route description R6 are relatively low compared to certainty

values c4 and c5 of the alternative route segments. As route description R6 has a higher

granularity than the alternative descriptions and the human has confirmed the given route,

the corresponding route segments could be assigned higher certainty values by the route

building and maintenance module. Furthermore, in a scenario where a robot navigates

along the route towards the goal and asks for directions along the way, the certainty values

that are initially assigned to the individual edges of the route descriptions are higher for

route segments close to the current position. In such a scenario the certainty values c13

and c14 of the latest route description would be higher.

The outcome of the route belief of the robot would be basically the same if the sequence

of given route descriptions were interchanged. In the worst case the route descriptions R1

and R4 would be the first to form the preliminary belief and the faulty route R1 would be

found to be plausible as it is a complete sub-match of R5. In this case, as a route segment is

missing at the beginning of R1, the SRAM system would feedback to the dialog system to

clarify the conflict with the human, i.e. inquire whether a first segment of direction ‘right’

has to be inserted. Either the route graph would be corrected, if the human confirmed
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Fig. 5.7: Certainty values of all edges in belief B over the time. Dashed lines denote
certainty values of edges in the preliminary belief Bprel.

that a segment has to be inserted, or if the human insisted on the erroneous information,

the graph would be retained in the given form and added to the route belief. In that last

case, the belief would contain an implausible route. However, as this route is not confirmed

by other persons the certainty values would not change, while the certainty values in the

other routes would increase which would therefore be selected for navigation due to the

optimization of (5.11). This shows that the order in which the route descriptions are given

does not make a difference to the outcome of the process in the SRAM system.

5.5 Discussion

Robots, navigating based on route descriptions extracted from human-robot dialogs, need

to reason about these route descriptions, as they are not necessarily correct and can have

different degrees of refinement. Route descriptions can include minor differences that

emerge from different granularities of information, small errors that can be corrected by

inquiring about them, or they can be erroneous as a whole. Therefore robots must assess

the plausibility of route descriptions in comparison with other information.

This chapter presented a system for Simultaneous Reasoning and Mapping (SRAM ).

It provides a general procedure for reasoning about whole route descriptions extracted

from human-robot dialogs, representing route information, reasoning about the informa-

tion, clarifying conflicting information, and building a route belief. The system uses the

dialog system presented in Chapter 3 to extract missing route information, and giving

feedback to humans. The route description is represented internally using the probabilistic

models presented in Chapter 4. The SRAM system interfaces with the systems and meth-

ods presented in the previous chapters and enables a robot to represent route information

extracted from HRI as route graphs and to compare the information to the current route

belief by pattern matching and vector similarity assessment, in this way identifying plau-

sible or conflicting information. If a conflict of the extracted information with the route
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belief is found, the dialog system inquires about this conflicting information. A route belief

is formed from all plausible and verified route information. Additionally the system adds

metric information to the route belief from sensor observations during navigation.

The SRAM system has been tested by non-expert users in an experiment. In summary,

all correct route descriptions were identified as plausible and were subsequently included

in the route belief. The system correctly identified an incorrect route description as im-

plausible and discarded it. An incomplete route was identified as such and after feedback

to the human participant the route was corrected and included in the belief of the robot.

A route describing a different way to the same goal was classified as plausible as well by

means of vector similarity assessment and was subsequently included in the route belief.

The certainty values of route segments that were given in route descriptions by several

participants increase, reflecting a higher confidence in that certain information. The eval-

uation showed the procedure and effectiveness of the presented SRAM approach. The

system is robust to a permuted sequence.

Other researchers have studied reasoning about spatial concepts before, however they have

not tackled the problem of representing and comparing overall route descriptions and as-

sessing them for plausibility. The presented SRAM system provides a novel framework for

extracting route information, representing route information probabilistically, and reason-

ing about it. The major contribution of this chapter is the plausibility assessment method

which consists of a pattern matching metric applied to compare different route graphs to

identify similar routes possibly with slight differences and a complementary route similarity

assessment method for identifying different routes with the same goal. SRAM is a novel

framework that can be applied not only to extracting and reasoning about route informa-

tion but other information that can be represented as graphs, e.g. relations between persons,

objects, or concepts.
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This thesis investigated methods that allow robots to fill gaps

in their route knowledge by asking humans for directions, rea-

son about the extracted route information, and represent it in a

route belief. In this chapter, the presented approaches are sum-

marized and possible directions for future work are proposed.

6.1 Concluding Remarks

An essential ability for robots assisting humans in intelligent and versatile ways is to extract

missing task knowledge to be able to operate in new and unforeseen situations as well as

unstructured, complex, and dynamic environments. A legitimate approach for robots to

come by missing knowledge in general is to ask humans for information. In the special

case where a robot is given the task to navigate to a given goal within an unknown or

changing environment, it can extract missing route knowledge by asking humans the way.

Challenges of this strategy are proactive extraction of unambiguous information from HRI,

assessing information for reliability and plausibility, as well as representing it internally in

the route belief of a robot.

In this thesis methods for extracting probabilistic representations of route information

from human-robot dialogs were presented. In the following the individual chapters of the

thesis are summarized and the main contributions are presented.

To derive specific research questions, an experiment conducted with the interactive out-

door robot ACE was analyzed in Chapter 2. In the experiment, ACE was given the task of

navigating to a designated goal location in an unknown environment, without any previous

map knowledge or GPS, but solely by asking passers-by for directions. The experiment

was successful in general. A few limitations are pointed out by the experimental results.

These suggest further research questions, namely how to proactively extract route infor-

mation from natural-language dialogs, how to model route information probabilistically to

evaluate the accuracy and reliability of it, and how to assess extracted route descriptions

for plausibility by comparing them to descriptions from other persons. These questions are

tackled in Chapters 3 to 5. Experiments by other researchers either dealt with autonomous

robot navigation in outdoor environments or with HRI in structured indoor environments.

The ACE robot was the first to interact with non-expert human users in an urban outdoor

environment and extract missing route information for navigation from HRI.

Chapter 3 focuses on natural-language direction-inquiry dialogs between humans and

robots. It introduces a dialog system enabling robots to close gaps in their route knowledge

by asking humans for missing information. Mechanisms from human-human communica-

tion from linguistic principles are adapted to derive guidelines for human-robot dialogs.

The guidelines are implemented in the dialog system to render the human-robot com-
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munication natural and intuitive to non-expert human users and to extract unambiguous

route information. The dialog system is evaluated experimentally under laboratory con-

ditions. Subjective results from the evaluation show that the application of mechanisms

from human-human communication in the form of guidelines for HRI were favorably eval-

uated by human users. The users perceived the dialogs as natural. At the same time

objective results show that the system performance is comparable to the work of other

researchers. State-of-the-art dialog systems usually tackled communication only from a

technical point of view and focused on objective measures in their evaluations where they

used hand pre-selected keyword input to their systems. This system analyzes raw text input

and specifically applies guidelines for HRI derived from linguistics to render dialogs more

natural to humans, and close knowledge gaps by asking for missing information.

Probabilistic models for individual direction and distance information in route descrip-

tions are presented in Chapter 4. Information given in route descriptions such as directions

and distances between decision points are approximations and simplifications of relations

in the real world. In order to provide robots with mechanisms to assess the accuracy

and reliability of it, such information is modeled probabilistically. Models for direction

information consider the direction of the previous route and the possibility of errors in the

route description, resulting in certainty values that reflect the reliability of the direction

information in each segment of a route description. Distance information in route descrip-

tions is modeled as posterior probabilities of real distances, given the estimated distance,

in order to provide robots with the means of assessing the accuracy of such information.

The validity of the models is demonstrated by representing an example route description

probabilistically including certainty values and probability distributions of directions and

distances of all route segments. The evaluation confirms that the presented models pro-

vide reasonable assessment of individual route information. The presented probabilistic

models of route information provide a means to assess the accuracy and reliability of given

information. While models of cognitive directions and distances have been found by other

researchers, models for information given during route descriptions which differ from the

former have not been derived before. The presented probabilistic route information models

are not only novel in the field of spatial cognition, but find a meaningful application in

robotics as well.

Chapter 5 presents an approach to assess entire route descriptions for plausibility. Just

like direction or distance information of individual route segments, whole route descriptions

are prone to simplifications, distortions, and errors. Thus, different routes from descrip-

tions by different persons are compared in order to identify plausible and implausible routes

and possibly correct conflicting information. A method for Simultaneous Reasoning and

Mapping (SRAM ) is presented. The developed SRAM method assesses routes for plausi-

bility by pattern matching and route similarity assessment, gives feedback to the human

to inquire about conflicting information if necessary, and builds a graph-based route belief

from plausible routes. The SRAM system links the dialog system in Chapter 3 and the

probabilistic models in Chapter 4 in a framework for reasoning about route information

and representing it. The effectiveness of the SRAM approach is shown in an experimen-

tal evaluation where the system identified all correct and erroneous route descriptions

correctly and built a plausible route belief. Additionally, the system exhibits robustness
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to interchanging the sequence of route description input. The SRAM system provides a

sound method for reasoning about information from different sources before including it

into a route belief. No comparable approach has been presented by other researchers before.

This system is necessary for robots to have the means of comparing different information,

inquiring about conflicting information, and including sound information into the belief.

In a nutshell, this thesis provides robotic systems with methodologies for explicitly ask-

ing humans for missing route information and building a route belief as a probabilistic

internal representation of the extracted information. The presented approaches go be-

yond the state of the art: they allow robots not only to proactively extract information from

human-robot dialogs by explicitly asking for missing knowledge, but also to reason about the

extracted information; means of probabilistically representing individual route information

in route descriptions are provided; finally, SRAM presents a novel system for simultane-

ously reasoning about different route descriptions and building a route belief as an internal

representation. The presented methods are expandable and generalizable to extracting and

reasoning about other types of missing information.

6.2 Outlook

The research presented in this thesis is a first step towards general information extraction

and belief construction through human-robot communication. In light of the broad field of

involved research topics and applications there are still a number of open research questions

and interesting future directions.

This thesis focuses on the specific problem of extracting a probabilistic representation

of route information from descriptions given by humans. In general, robots operating in

unstructured, complex, and dynamic human-populated environments need a wide range

of information to be able to complete their tasks. Therefore it would be useful to enable

them to extract and represent any kind of missing task information. For this purpose the

presented methods have to be extended and adapted to the respective applications.

Additionally, the presented methods have applications in the currently growing research

areas of service robotics and multi-robot systems. In these fields interaction with non-

expert human users and between humans and multi-robot systems are upcoming challenges

which will bring along new research questions.

• The developed dialog system is expandable to ask for any kind of missing task know-

ledge. Many of the derived guidelines for human-robot dialogs are applicable for

general discourse topics, while more guidelines have to be deduced from linguistics

for different dialog contents. These guidelines have to be integrated in robot dialog

systems in order to overcome the vagueness of natural language and render the dialogs

natural to humans.

In order to render dialogs with robots even more natural and intuitive to humans,

other means can be applied. Robots would profit from the ability to identify, mend,

and ideally avoid possible miscommunications in human-robot dialogs inspired by

human-human communication. Other strategies that may further improve the com-
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munication between humans and robots include rhetoric, robot body language, prox-

emics, and emotional behavior.

In multi-robot scenarios, thought has to be given to how information is extracted and

to which agents to allocate which tasks. Several robots could extract information

from different humans simultaneously. Or different agents might be allocated tasks

of asking different humans for different information. Such an approach would be time

efficient and would provide the multi-robot system with a lot of information which

can be stored and processed centrally.

• The presented probabilistic models are valid for route information in urban envi-

ronments with an appropriate distance range. These models could be extended to

include the effects of contextual and personal factors, and thereby become applica-

ble to a wide range of contexts and adaptable to a variety of environmental scopes

interaction partners.

To give credit to the simplified and distorted character of any kind of information

extracted from human-robot dialogs, probabilistic models need to be found not only

for route information, but for other types of information as well.

• The presented SRAM architecture is generalizable and can be applied to other in-

formation, as long as it can be represented in graph structures. It can be used to

compare and assess any kind of complex information coming from different sources.

The SRAM system is designed to compare information from different humans. In this

way it could be used in multi-robot systems to compare all information extracted by

different robots. In such a scenario, SRAM can be applied to build a belief consisting

of plausible information that would be usable by the whole multi-robot system.

These possible extensions and applications provide many directions in different research

fields. Each of these directions requires an even closer collaboration between engineers,

computer scientists, psychologists, linguists and other researchers.
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A The Autonomous City Explorer

The hardware and the software of the ACE robot are presented

here. In particular, the components and modules for the vision,

interaction, and navigation systems are described.

A.1 Hardware

The Autonomous City Explorer robot was developed at the Institute of Automatic Control

Engineering as a cooperative project of several researchers1, as presented in [214, 224].

The ACE robot comprises a differential drive mobile platform with wheel encoders, de-

veloped by BlueBotics SA, two laser range finders for navigation and traversability assess-

ment, respectively, a speaker, a touch screen, an animated mouth, as well as a sophisticated

stereo vision system based on a multi-focal active camera head for image processing. The

complete system measures 78 cm in length, 56 cm in width, and 178 cm in height, including

the camera head, and weighs approximately 160 kg. Fig. A.1 shows the development of the

robot hardware over the time, with the final design used in the experiment on the right.

Fig. A.1: Development of ACE over the time, from basic platform to complete system.

The mobile platform has a maximum payload of 150 kg and is moved by two wheelchair

drive wheels (30 cm diameter) with differential drive and treads. It has two castor wheels

(12 cm diameter) in the rear and two castor wheels on springs in the front (10.5 cm di-

ameter). The maximum velocity is 1.4 m
s
, the maximum acceleration is 1.35 m

s2 . It has an

autonomy of up to 10 km depending on the paving. The climbing ability of the platform

has been thoroughly tested, since this is an essential factor for outdoor navigation. The

robot is capable of climbing a slope of 6◦ and steps of 35 mm. For urban environments

1The team in alphabetical order: Andrea Bauer, Martin Buss, Klaas Klasing, Kolja Kühnlenz, Georgios
Lidoris, Quirin Mühlbauer, Florian Rohrmüller, Stefan Sosnowski, Dirk Wollherr, Tingting Xu.
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this means that the robot can safely navigate on sidewalks and smooth surfaces but must

avoid larger steps, such as the curbside.

The vision system consists of a wide-angle stereo camera mounted on a central pan/tilt-

platform. The main camera used for human tracking is a 3-sensor, multi-baseline Bumble-

bee XB3 by Point Grey Research, with a focal length of 3.8 mm and enhanced flexibility

and accuracy due the switchable baseline. A second Bumblebee stereo camera, with a focal

length of 6 mm, for traffic sign detection and posture recognition is mounted underneath.

The central platform is driven by DC drives with harmonic drive gears. An embedded

RISC processor (MPC555, Motorola) controls the camera motions on joint levels. The

camera system is encapsulated and accepts camera pose commands from a higher-level

decision and planning unit via a CAN-based interface.

A.2 Software

The software is run on two onboard Linux PCs (one for navigation and interaction and one

for vision processing) with four 2.2 GHz cores each, powered by an array of rechargeable

lithium polymer batteries that provide power for up to 8 hours. A third PowerPC controls

the differential wheel platform and receives asynchronous driving commands from the

navigation PC. Processes run at fixed update rates in a pull architecture fashion, meaning

data is queried from sensors and processes are refined at fixed intervals.

The system architecture is broken down into a sensor layer, a perception layer, a control

layer, and an actuator layer. The three main subsystems of the ACE robot, for navigation,

vision, and interaction, are interconnected through the different layers and each of them

consists of several modules. Fig. A.2 shows the individual modules, subsystems, and layers

of the ACE architecture.
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Fig. A.2: The software architecture of ACE , with modules, subsystems, and layers.
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B Contextual Dependence of Distance

Information

Distance information in route descriptions given by humans

may depend on personal variables, such as gender or age, and

on contextual factors, such as the scale of the environment. The

contextual dependence is analyzed for quantitative and quali-

tative distance information.

B.1 Quantitative Distance Information

The effects of the variables gender, age, and self-assessment on the estimation of quanti-

tative distances are assessed by statistically comparing the relative constant and absolute

errors of all data points. The relative constant error of the distance estimation eC
d computes

as the relative difference between real distance and estimated distance, as

eC
d =

dreal − dest

dreal

, (B.1)

while the relative absolute distance error eA
d computes as

eA
d =

|dreal − dest|
dreal

. (B.2)

The relative constant error for the time estimates eC
t is accordingly the relative difference

between real distance and estimated time multiplied by a mean walking velocity, such that

eC
t =

dreal − test vwalk

dreal

, (B.3)

with the assumed walking velocity vwalk = 4.5km
h

. Accordingly the relative absolute error

for the time estimates eA
t is

eA
t =

|dreal − test vwalk|
dreal

. (B.4)

The relative estimation errors for distances and times are depicted in Fig. B.1 as box-

whisker plots with constant errors on the left and absolute errors on the right.

The relative constant time error eC
t is significantly lower than the relative constant

distance error eC
d (t-test, p = 0.0018), as is the relative absolute time error eA

t compared to

the relative absolute distance error eA
d (t-test, p = 0.0017). Thus walking time information

is generally more accurate than metric distance information in a route description.
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Fig. B.1: Box-Whisker plots comparing the relative constant errors on the left, and the
relative absolute errors on the right, of distance and time estimates.

Effects of Gender

The survey data reveals that there are differences between genders in the preference of

giving distance and time estimates. While 73.0 % of the male subjects gave a distance

estimation, 60.1 % of the female subjects gave a time estimation.

A box-whisker plot for the estimation errors for male and female subjects is presented

in Fig. B.2, with the errors for distance estimation on the left, and the errors for time

estimation on the right.
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Fig. B.2: Box-Whisker plots comparing the variable gender as the relative constant errors
on the top and relative absolute errors on the bottom, for distance estimates on
the left and time estimates on the right.

T-tests show that the differences in the estimation errors between males and females

are not significant (eC
d : p = 0.2078, eC

t : p = 0.6911, eA
d : p = 0.9122, eA

t : p = 0.8501).

Effects of Age

The subjects are divided into three age groups. To obtain adequate sample sizes, the

subjects are classified into three groups, namely below 30, 30 to 49, and 50 and over. A

box-whisker plot for the relative errors of distance and time estimates for the different age

groups is depicted in Fig. B.3. The upper row shows the relative constant errors, while
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below the relative absolute errors are depicted for distance estimates on the left and time

estimates on the right, respectively.
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Fig. B.3: Box-Whisker plots depicting estimation errors for the variable age as the relative
constant errors on the top and relative absolute errors on the bottom, for distance
estimates on the left and time estimates on the right.

The estimation errors for the three age groups have been compared by ANOVAs. The

differences between the groups were not significant, neither for distance estimates (eC
d :

p = 0.0941, eC
d : p = 0.1777), nor for time estimates (eA

d : p = 0.8234, eA
d : p = 0.6766).

Effects of Self-Assessment

The subjects were asked to give an assessment of the accuracy of their given distance or

time estimate. The answers were categorized in three self-assessment groups, namely ‘bad’,

‘average’, and ‘good’. Box-whisker plots for the estimation errors of distance and time for

the variable self-assessment is depicted in Fig. B.4.

An ANOVA shows a significant difference for the relative constant distance estimation

errors between the self-assessment groups (eC
d : p = 0.0176). This comes about because

subjects who assessed their own estimation abilities as ‘bad’ tended to underestimate

distances, while others tended to overestimate them. However, there are no significant

differences between the relative constant time errors (eC
t : p = 0.1043) or the relative

absolute errors of distances and times (eA
d : p = 0.1742, eA

t : p = 0.4129).

The fact that differences of the relative errors are not significant for the variables gen-

der, age, and self-assessment, except for eC
d , shows that those personal variables have no

important influence on the accuracy of walking distance or time estimation within route

descriptions. Therefore these factors do not have to be taken into account when search-

ing for and selecting a person whom to ask for directions, in order to get good distance

estimations. Furthermore these personal factors are of no importance when modeling the

relation between real distance and estimated distance or time.
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Fig. B.4: Box-Whisker plots showing estimation errors for the variable self-assessment as
the relative constant errors on the top and relative absolute errors on the bottom
for distance estimates on the left and time estimates on the right.

B.2 Qualitative Direction Information

An experiment was conducted to discover whether or not the deictics ‘here’ , ‘close’ , and

‘far’ describe different distance ranges in different environments. The borders between

pairs of adjacent deictics, i.e. between ‘here’ and ‘close’ , and between ‘close’ and ‘far’ ,

are analyzed depending on the given environment, i.e. abstract, urban, or large scale

environment. The participants of the experiment were 36 PhD students of engineering as

participants. There were 4 female and 32 male participants aged between 24 years and 37

years, with an average age of 27 years. Each participant had to fill in questionnaires, as

shown Appendix C.2, for an abstract environment, as in Fig. C.2, for an urban environment,

as in Fig. C.3, and for a large scale environment, as in Fig. C.4.

The distance between start and goal point marked in the city map corresponds to an

actual distance of 15 m, while the distance in the road map corresponds to a distance of

303 km in the real environment.

The test was designed with repeated measures, i.e. the sequence in which the maps

were presented was alternated for every person. There were six different sequences for the

three maps and every sequence of tasks was given to six participants. The participants

were asked to imagine themselves traveling the depicted distance by according modes of

transportation, i.e. walk in the city, drive by car between cities, and navigate the abstract

distance. Subsequently they were asked to mark the borders bh
c between ‘here’ and ‘close’

and bc
f between ‘close’ and ‘far’ in each map on the line connecting start and goal.

Results

During the survey the two borders bh
c and bc

f were evaluated for each map and all partici-

pants. Participants reported that it influenced their decisions about placing the borders,

when they knew the particular route, or if places were located within walking distance.

They were also influenced by the fact that the depicted line did not correspond to the
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route they would normally take.

To compare the results from the different maps the data was scaled to a relative dis-

tance. A relative distance of zero marks the start point and 100 marks the goal point.

The variances of the data differ strongly between the maps. To adjust the variances for

comparability the logarithm of the data is used for further analysis. The box-whisker plots

of the logarithmic data are shown in Fig. B.5.
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Fig. B.5: Box-whisker plots for the logarithmic borders bh
c and bc

f depending on the map.

A mixed linear model is fitted to the logarithmic data y to model the effects of the

different maps, such that

y = Xβ + Zu + ǫ , (B.5)

with the design matrices X and Z. The effects β of map and age, the random effects u

for the subjects, and the random errors ǫ, are estimated from the data y. The borders bh
c

and bc
f are independent of each other and therefore two mixed linear models are fitted for

the data of the respective borders. The random effects and the random errors are normally

distributed.

The resulting fixed effects of map and age with a total of 70 degrees of freedom, es-

timated for the mixed linear models, are presented in Table B.1. The intercept value

represents the city map.

Tab. B.1: Parameter estimates of the fixed effects in the fitted mixed linear models.

effect estimate std error p-value

log(bh
c )

intercept 5.00 1.05 0.0000
age -0.11 0.04 0.0061
road map -0.43 0.11 0.0003
abstract map 0.08 0.11 0.4928

log(bc
f )

intercept 4.55 0.61 0.0000
age -0.03 0.02 0.1357
road map -0.50 0.09 0.0000
abstract map 0.01 0.09 0.9347

The variable road map was statistically significant with a strong effect in both models.

The variable age was significant in the model for bh
c , but has only a weak effect.

The results of the survey show that the environment in which the deictics ‘here’ , ‘close’ ,

and ‘far’ are used to describe a qualitative distance cannot be neglected, but must be
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considered when interpreting them. Also other contextual or personal factors such as

the age of the person may have an effect on the meaning of these deictics. Thus for

each environment different probabilistic models describe the relations between the spatial

deictics ‘here’ , ‘close’ , and ‘far’ used in a route description and the real distance.

The presented statistical analyses of conceptual dependence of distance information

show that personal variables have no strong effect and do not have to be taken into account

when modeling posteriors. At the same time the effect of the scale of the environment

with suitable modes of transport has a strong effect on distance information in route

descriptions. Thus this effect must be taken into account in distance information models.
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C Questionnaires

Questionnaires were used for the subjective evaluation of the

dialog system as well as for collecting data for modeling quali-

tative distance information in route descriptions.

C.1 Questionnaire for Dialog-System Assessment

The questionnaire in Fig. C.1 was used to gain a subjective evaluation of the dialog system

presented in Section 3.5. Here the original German version of the questionnaire is presented

which was used for subjective system assessment.
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Im Folgenden sehen Sie einige Fragen zum Dialogsystem.

Bitte Kreuzen Sie die entsprechende Antwort an.

Stimme

voll zu

Stimme

nicht zu

Das System war einfach zu benutzen. (1) (2) (3) (4) (5)

Das System hat verstanden, was ich eingegeben habe. (1) (2) (3) (4) (5)

Die Dauer der Interaktion war angemessen. (1) (2) (3) (4) (5)

Ich wusste immer, was ich dem System eingeben konnte. (1) (2) (3) (4) (5)

Das System hat reagiert, wie ich es erwartet habe. (1) (2) (3) (4) (5)

Das System hat meine Wegbeschreibung auf Anhieb

richtig verstanden.

(1) (2) (3) (4) (5)

Wenn nicht: Das System hat meine Wegbeschreibung

nach der Korrektur richtig verstanden.

(1) (2) (3) (4) (5)

Die Struktur des Dialogs war sinnvoll. (1) (2) (3) (4) (5)

Es war mir klar, aus wessen Perspektive ich den Weg

beschreiben sollte.

(1) (2) (3) (4) (5)

Es ist mir wichtig, dass die Perspektive der

Wegbeschreibung geklärt ist.

(1) (2) (3) (4) (5)

Das System hat Landmarken in der Wegbeschreibung gut

verstanden.

(1) (2) (3) (4) (5)

Es ist sehr wichtig, dass das System Landmarken versteht. (1) (2) (3) (4) (5)

Das System hat Entfernungsangaben gut verstanden. (1) (2) (3) (4) (5)

Es ist sehr wichtig, dass das System Entfernungsangaben

versteht.

(1) (2) (3) (4) (5)

Hat die Skizze in dem betreffenden Durchgang wesentlich

zu einem besseren Verständnis beigetragen?

Ja O Nein O

Verbesserungsvorschläge:

allgemeine Anmerkungen:

Fig. C.1: Questionnaire for the subjective assessment of the dialog system.

98



C.2 Questionnaire for Qualitative Distance Assessment

C.2 Questionnaire for Qualitative Distance

Assessment

The questionnaires depicted in Fig. C.2, C.4, and C.3 were applied to identify a contextual

dependence for the spatial deictics ‘here’ , ‘close’ , and ‘far’ , as described in Appendix B.2.

The questionnaire in Fig. C.5 was applied to gain data about the distance reaches of

the qualitative distance descriptions ‘here’ , ‘close’ , and ‘far’ . The resulting models, based

upon the collected data were presented in Section 4.3.3.

Start Goal

Imagine you want to travel an abstract distance as indicated below.
Please think about where you would locate the terms 'here', 'near', and 'far'.

1) Please mark the place on the line, where you would locate the
border between 'here' and 'near'.

2) Please mark the place on the line, where you would locate the
border between 'near' and 'far'.

Question A1

Fig. C.2: Questionnaire used to determine the relative borders between spatial deictics for
an abstract environment.
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Question A2

Goal:
Marienplatz

Start:
TUM, N5

Imagine you want to walk from building N5 to Marienplatz. Have a look at the map below
and think about where you would locate the terms 'here', 'near', and 'far'

1) Please mark the place on the line between N5 and Marienplatz, where you would locate
the border between 'here' and 'near'.

2) Please mark the place on the line between N5 and Marienplatz, where you would locate
the border between 'near' and 'far'.

Fig. C.3: Questionnaire used to determine the relative borders between spatial deictics for
an urban environment.
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Question A3

Goal:
Frankfurt

Start:
München

Imagine you want to drive from Munich to Frankfurt. Have a look at the map below
and think about where you would locate the terms 'here', 'near', and 'far'.

1) Please mark the place on the line between Munich and Frankfurt, where you would locate
the border between 'here' and 'near'.

2) Please mark the place on the line between Munich and Frankfurt, where you would locate
the border between 'near' and 'far'.

Fig. C.4: Questionnaire used to determine the relative borders between spatial deictics for
a large scale environment.
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Question B

Imagine you are asked for directions by a passer-by in Munich.Think about the terms
�here�, �close�, and �far � and how you might use those terms when giving directions.

Now have a look at the map below. The point at which you stand is labeled start,
and there are locations (boxes) randomly distributed around the map.
Would you agree that the start point can be labeled as �here�?

Please label the boxes that in your opinion are characteristic examples for locations
that you would denote as �here�, �close�, and �far �, respectively.
(Label a box with H for �here�, with C for �close�, and with F for �far �.)
If you are unsure on how to label a box, just leave it unlabeled.

Start

Fig. C.5: Questionnaire used to determine the spatial extends of the spatial deictics ‘here’ ,
‘close’ , and ‘far’ , in an urban environment.
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[68] H. Hüttenrauch, K. S. Eklundh, and E. A. T. A. Green. Investigating spatial rela-

tionships in human-robot interaction. In Proceedings of the International Conference

on Intelligent Robots and Systems, pages 5052–5059, 2006.

[69] J. Hutchins. A new spectrum of translation studies, chapter Machine translation and

computer-based translation tools., pages 13–48. University of Valladolid, 2004.

[70] K. Iwatsuka, K. Yamamoto, and K. Kato. Development of a guide dog system for the

blind with character recognition ability. In Proceedings of the Canadian Conference

on Computer and Robot Vision, pages 401–405, Washington, DC, USA, 2004. IEEE

Computer Society.

[71] P. Jia and H. Hu. Head gesture based control of an intelligent wheelchair. In Pro-

ceedings of the Conference of the Chinese Automation and Computing Society in the

UK, pages 85–90, Sheffield, UK, 2005.

[72] K. Jokinen and M. McTear. Spoken Dialogue Systems. Morgan & Claypool Publish-

ers, 2008.

[73] B. H. Juang and L. R. Rabiner. Encyclopedia of Language and Linguistics, chapter

Automatic Speech Recognition - A Brief History of the Technology. Elsevier, second

edition, 2005.

[74] H. Jung, C.-N. Seon, J. H. Kim, J. C. Sohn, W.-K. Sung, and D.-I. Park. Information

extraction for user’s utterance processing on ubiquitous robot companion. Natural

Language Processing and Information Systems, 3513:337–340, 2005.

[75] D. Jurafsky and J. Martin. Speech and Language Processing. Prentice Hall, 2008.

107



Bibliography

[76] T. Kanade, J. Cohn, and Y.-L. Tian. Comprehensive database for facial expression

analysis. In Proceedings of the International Conference on Automatic Face and

Gesture Recognition, pages 46–53, 2000.

[77] F. Kaplan. Who is afraid of the humanoid? investigating cultural differences in the

acceptance of robots. Int. Journal of Humanoid Robotics, 1(3):465–480, 2004.

[78] W. Kennedy, M. Bugajska, M. Marge, W. Adams, B. Fransen, D. Perzanowski,

A. Schultz, and G. Trafton. Spatial representation and reasoning for human-robot

collaboration. In Proceedings of the Conference on Artificial Intelligence, pages 1554–

1559, 2007.

[79] S. Kiesler and P. Hinds. Introduction to this special issue on human-robot interaction.

Human-Computer Interaction, 19(1):1–8, 2004.

[80] W. Klein. Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik, 33:9–

57, 1979.

[81] W. Klein. Speech, Place, and Action: Studies in Deixis and Related Topics, chapter

Local Deixis in Route Directions, pages 161–182. New York: Wiley, 1982.

[82] W. Klein. Spatial Orientation: Theory, Research, and Application, chapter Deixis

and spatial orientation in route directions, pages 283–311. New York: Plenum, 1983.

[83] A. Klippel, C. Dewey, M. Knauff, K.-F. Richter, D. R. Montello, C. Freksa, and

E.-A. Loeliger. Direction concepts in wayfinding assistance systems. In Proceedings

of the Workshop on Artificial Intelligence in Mobile Systems, pages 1–8, 2004.

[84] D. Kortenkamp, E. Huber, and R. P. Bonasso. Recognizing and interpreting ges-

tures on a mobile robot. In Proceedings of the National Conference on Artificial

Intelligence, volume 2, pages 915–921, Portland, USA, 1996.

[85] S. Kosslyn, H. Pick, and G. Fariello. Cognitive maps in children and men. Child

Development, 45(3):707–716, 1974.

[86] K. Kosuge, T. Hayashi, Y. Hirata, and R. Tobiyama. Dance partner robot - ms

dancer. In Proceedings of the International Conference on Intelligent Robots and

Systems, volume 4, pages 3459–3464, Las Vegas, USA, 2003.

[87] K. Kosuge and N. Kazamura. Control of a robot handling an object in cooperation

with a human. In Proceedings of the International Workshop on Robot and Human

Communication, pages 142–147, Sendai, Japan, 1997.

[88] K. Kosuge, M. Sato, and N. Kazamura. Mobile robot helper. In Proceedings of the

International Conference of Robotics and Automation, pages 583–588, 2000.
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