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Introduction

Three-body problems are defined to be systems of three particles with non-negligible interactions
between each pair. As first noticed by Poincaré [1], while studying the system Moon-Earth-Sun
(see also [2] for a comprehensive review), the classical dynamics of the three-body problem
with 1/r2 forces is non-integrable. This remains true when gravitational forces are substituted
by attractive and repulsive Coulomb forces, such as define the three-body Coulomb problem.
Indeed, the electron-electron interaction term in the Hamiltonian of an unperturbed two-electron
atom – which otherwise is just the sum of two hydrogenic Hamiltonians – renders the two-
electron dynamics in general irregular and chaotic with only small regions of regular motion in the
classical phase space [3]. The loss of integrability, due to the electron-electron interaction, caused
the failure of first quantization attempts on the basis of Niels Bohr’s quantum postulates [4].
Only with the development of modern semiclassical theory [5, 6] and the subsequent semiclassical
quantization of helium [7, 8] could the non-integrability of the quantum system be understood
as the direct counterpart of the corresponding classical mixed regular-chaotic dynamics [3]. The
failure of the Bohr-Sommerfeld quantization to reproduce the ground state energy of helium
(see, e.g., [9]) lead, among other reasons, to the formulation of quantum wave mechanics by
Heisenberg [10] and Schrödinger [11]. Starting with the first quantization attempts, it took
more than four decades until the ground-breaking work by Pekeris [12, 13] which provided a
satisfactory description of bound states. Up to date, various approaches have been proposed
for the treatment of bound states of two-electron atoms ranging from semiclassical (see [3]
and references therein) to quantum mechanical including relativistic corrections [14, 15]. As
was first realized through the seminal experiment by Madden and Codling [16], doubly excited
states of two-electron atoms are highly correlated states and therefore, they cannot be in general
described by a simple model based on independent-particle quantum numbers. This experiment
drew the interest of theoreticians and experimentalists to doubly excited states, and particularly
to the regime near the double ionization threshold, which since then represents a paradigm for
electronic correlations in atomic physics. This regime is in fact the semiclassical one in two-
electron atoms. Consequently, the underlying classical chaotic dynamics should influence the
quantum spectrum of highly doubly excited states and signatures of quantum chaos such as
Ericson fluctuations [17, 18] or semiclassical scaling laws for the fluctuations of excitation cross
sections [19], are expected to become observable [20].

Direct manifestations of electronic correlations are found for instance in certain highly asym-
metrically doubly excited states which are associated to highly correlated classical configurations,
such as the frozen planet configuration [21, 22]. Studies for one-dimensional [23, 24] and planar
helium [25, 26] suggest that these states form, under near resonant driving, non-dispersive two-
electron wave packets [27], i.e., very robust quantum objects, which propagate along the frozen
planet classical trajectory. However, the existence of these highly correlated wave packets still
awaits its confirmation in full three-dimensional calculations and its experimental verification.
Manifestations of electronic correlations have also been observed in double ionization of helium
from the ground state by strong laser fields [28, 29]. An enhancement by several orders of mag-
nitude for the production of doubly charged ions is observed compared to the yield expected on
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6 Introduction

basis of a single active electron approximation [30, 31], in which the electron-electron interac-
tion is neglected. This is interpreted as a fingerprint of correlated electronic ionization processes
(manifesting in non-sequential ionization, as opposed to sequential ionization in the independent
particle picture), where one electron is “knocked out” by the other one in a laser-induced recol-
lision process. The geometry of the fragmentation process observed in more refined experiments
[32, 33] also suggests a strong dependence of the ionization process on the electronic structure
[34] of helium-like atoms. Highly doubly excited states are expected to play an important role
in the ionization by low frequency intense laser pulses [35, 36]. However, an accurate theoretical
treatment of such a problem defines a formidable theoretical and numerical challenge due to
the field induced coupling of several total angular momenta and the dimensions of the matrices
associated to single total angular momenta. Note, however, that a three-dimensional ab initio
fully numerical treatment of the ionization of helium in the low frequency regime is available
[37] and has already been used to give a rather qualitative description of the correlations in
the ionization process of helium from the ground state by a 780 nm laser pulse of peak intensity
(0.275 − 14.4)×1014 W/cm2. However, due to the difficulty to extract physical information from
this grid approach and its high requirements concerning computational resources, an accurate
spectral approach to this problem becomes even more desirable. Further correlation effects have
been observed in two-photon double ionization by strong XUV pulses where almost no experi-
mental data is available and theoretical predictions [38–46] for the two-photon double ionization
cross section among themselves deviate by orders of magnitude.

The understanding of each of these issues requires an accurate description of (highly) dou-
bly excited states for various values of the total angular momentum L. Unlike in the case of
the hydrogen atom exact eigenfunctions cannot be found. The non-integrability of the three-
body problem forces us to recur to numerical and approximation methods, which include, e.g.,
variational approaches, grid methods and spectral methods. Probably the most successful ap-
proaches for the description of spectral properties of two-electron atoms are spectral methods,
of which two basis types can be considered: the so-called explicitly correlated [12, 13, 47–56]
bases, in which the basis functions depend explicitly on the interelectronic distance r12, and the
configuration interaction bases [57–64], in which the wave function is written as a linear com-
bination of (antisymmetrized) products of one-electron wave functions. Explicitely correlated
bases allow for a very accurate description of two-electron atoms, however, the computation of
the matrix elements either involves coupled three-dimensional radial integrals or is based on an
analytic computation and selection rules, the number of which grows rapidly with increasing to-
tal angular momentum L. Moreover, rather large bases are needed for the description of highly
asymmetrically excited states. Note, however, that due to the resulting analytic computation
of matrix elements combined with selection rules, the explicitly correlated expansion in terms
of Coulomb-Sturmian functions of the perimetric coordinates [12, 13] is probably the most suc-
cessfull method for the treatment of highly doubly excited states with L = 0, 1 [51–54, 65].
Configuration interaction bases have been widely used due to their simplicity and flexibility,
however, they are plagued with slow convergence for symmetrically excited states and most
severely for the ground state. This is due to the fact that the basis expansion does not satisfy
the Kato cusp condition associated with the coalescence of the two electrons [57, 66, 67]. More-
over, the standard configuration interaction approach requires large basis sizes for the description
of highly asymmetrically excited states. However, the computation of matrix elements in these
bases involves at most two-dimensional coupled radial integrals and the computation of states
with high total angular momentum L does not pose any additional difficulties; these bases are
frequently used for the description of few-photon ionization processes [39, 40, 45, 68–71] where
highly doubly excited states do not play a fundamental role. Up to now, methods of this type
have not been applied to the computation of highly doubly excited states.
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In the present thesis we are going to lay the foundations for the treatment of multiphoton
processes, in which highly double excited states play an important role, and we will explore
photoionization cross sections in the regime of highly doubly excited states of two-electron
atoms in order to look for signatures of quantum chaos.

To treat multiphoton processes, e.g., the formation of non-dispersive two-electron wave pack-
ets, a description of the regime of doubly excited states is needed for various values of total an-
gular momenta L. In order to describe these spectra, a non-standard configuration interaction
approach is applied to their computation. In particular, the frozen planet states, which seem
to be essential for the formation of two-electron non-dispersive wave packets, for non-zero total
angular momentum L are investigated. Moreover, they are compared to their planar counter-
parts in order to obtain a feeling for the value of computations for non-dispersive wave packets
in a planar approach [25, 26].

The treatment of photoionization cross sections of helium in a three-dimensional approach is
so far restricted to energies below the 17th single ionization threshold [65]. In order to explore
cross sections at energies closer to the total fragmentation threshold, a planar approach, which
is proven to contain the relevant degrees of freedom for the description of these cross sections,
is applied to their computation. Photoionization cross sections for the helium atom and the
positively charged lithium ion are computed within this approach.

Structure of the thesis

In chapter 1 the complex rotation method for the treatment of resonances and general aspects
of two-electron atoms are discussed. This includes a description of the Hamiltonian and the
properties of wave functions and spectra.

Chapter 2 motivates and describes our approach to planar helium. To regularize the Coulomb
singularities in the planar three-body Coulomb problem the Hamiltonian is transformed into
parabolic coordinates. This facilitates a representation in creation and annihilation operators,
which leads in an appropriate basis set to analytic expressions for the matrix elements of the
Hamiltonian. The numerical implementation of this approach and the computation of the quan-
tities needed in chapters 5 and 6 are described.

In chapter 3 our spectral method for the treatment of two-electron atoms in three dimensions
is presented. The matrix representation of the problem and its numerical implementation is
discussed. In particular, a newly developed, highly efficient method for the computation of
matrix elements of the electron-electron repulsion is described in detail.

Chapter 4 presents spectral data for states and resonances of helium for natural and unnat-
ural parity. For natural parity, the energy regime up to the tenth single ionization threshold
is explored for 1Se and 3Se resonances of helium. In case of unnatural parity, we treat non-
autoionizing states below the second threshold for L = 1 to L = 9. In addition, results for 3P e

resonance states for energies up to the eighth threshold are presented.

In chapter 5 a brief introduction to the classical frozen planet configuration is given and
results for quantum mechanical states with total angular momentum L = 1 and L = 2 localized
along this configuration are presented and compared for both planar and three-dimensional
treatment.

In chapter 6 we study the spectrum of two-electron atoms close to the double ionization
threshold with the help of our planar approach. Photoionization cross sections of singlet planar
helium are compared to experimental data. We investigate the semiclassical scaling law [19] for
the fluctuations in the photoionization cross sections and also the implications of the existence
of an approximate quantum number in the discussion about Ericson fluctuations.

The thesis is concluded with a short summary, and a brief outlook for future applications of
both the planar and the three-dimensional approach. In addition, three appendices are included
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in this work. In appendix A, the technichal details of the parabolic coordinate transformation
are outlined. Moreover, appendix A is used to illustrate the most relevant features of simple
integrable systems for the planar approach of chapter 2. Appendix B is a supplement to chapter
3. Coulomb-Sturmian functions are introduced in this appendix, together, with the matrix for-
mulation of the Schrödinger equation and a standard method for the computation of the matrix
elements. In appendix C additional spectral data for three-dimensional helium is presented in
order to complement chapters 4 and 5.

Unless stated otherwise, atomic units (a. u.) defined by e = me = ~ = 1 are used throughout
this document. For conversion of energy the relation 1 a. u. = 27.2113895 eV is used.



Chapter 1

Generalities

General aspects of two-electron atoms and a method which is widely used to extract information
about resonances are outlined in this chapter. Following a description of the two-electron atom
Hamiltonian (Sec. 1.1) the properties of the wave function of two-electron atom states are
discussed (Sec. 1.2). Section 1.3 is concerned with the spectral properties of two-electron atoms
and the classification of their states. Finally, section 1.4 is dedicated to the description of the
complex rotation method, which is used in the following to treat the resonances of two-electron
atoms.

1.1 Hamiltonian

Two-electron atoms consist of a nucleus with mass M containing Z protons and two electrons
of mass m interacting through Coulomb forces. Here, as depicted in figure 1.1, the positions of
the electrons with respect to the nucleus are given by ~r1 and ~r2, respectively, the conjugated
momenta are denoted by ~p1 and ~p2, and r12 = |~r1 − ~r2| is the interelectronic distance. Within
the framework of non-relativistic quantum mechanics the Hamiltonian of this system – in atomic
units – reads,

H =
~p 2
1

2µ
+
~p 2
2

2µ
+
~p1 · ~p2

M
− Z

r1
− Z

r2
+

1

r12
, (1.1)

where µ is the reduced mass of the electron-nucleus subsystem defined by

µ =
mM

m+M
. (1.2)

The first two terms of the Hamiltonian (1.1) are associated to the kinetic energy of the two
electrons. The third one is a mass polarization term. The potential energy is given by the rest
of the terms of (1.1), where

V = −Z

r1
− Z

r2
, (1.3)

describes the interaction between the nucleus and the electrons and

U =
1

r12
, (1.4)

the electron-electron repulsion.

As the mass of the nucleus is by orders of magnitude larger than that of the electrons,
one usually employs the approximation of an infinitely heavy nucleus. In this approximation
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10 1. Generalities

θ12

M

~r1

~r2
r12

m

m

Figure 1.1: Two-electron atom: a nucleus with mass M and charge Z, and two electrons of mass
m interacting through Coulomb forces. ~r1 and ~r2 are the positions of electron one and two with
respect to the nucleus, r12 the interelectronic distance and θ12 the mutual angle between the
position vectors of the electrons.

the mass polarization term vanishes, the reduced mass is substituted by the electron mass and
using the center of mass system the nucleus is fixed at the origin. Thus, the non-relativistic
Hamiltonian for two-electron atoms, assuming an infinitely heavy nucleus, is given by

H =
~p 2
1

2
+
~p 2
2

2
− Z

r1
− Z

r2
+

1

r12
. (1.5)

1.2 Wave function

The Hamiltonian (1.5) is independent of the spin of the electrons. Consequently, the wave
function Φ(q1, q2) of the system can be written as a product of the spatial wave function Ψ(~r1, ~r2)
and the spin wave function χ(1, 2):

Φ(q1, q2) = Ψ(~r1, ~r2)χ(1, 2) , (1.6)

which has to be anti-symmetric due to the Pauli principle. For two-electron atoms spatial and
spin parts of the wave function (1.6) posses a well defined symmetry. The spatially symmetric
wave functions – denoted by Ψ+(~r1, ~r2) – are defined by the relation,

Ψ(~r1, ~r2) = +Ψ(~r2, ~r1) , (1.7)

while the spatially antisymmetric wave functions Ψ−(~r1, ~r2) obey

Ψ(~r1, ~r2) = −Ψ(~r2, ~r1) . (1.8)

The possible spin states |S,MS〉, where S denotes the total spin and MS its projection on the
quantization axis, are given by the antisymmetric singlet state

|0,+0〉 =
1√
2

(

| ↑↓〉 − | ↓↑〉
)

, (1.9)

and the symmetric triplet states

|1,+1〉 = | ↑↑〉 ,

|1,+0〉 =
1√
2

(

| ↑↓〉 + | ↓↑〉
)

,

|1,−1〉 = | ↓↓〉 . (1.10)
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Thus, there are four physical combinations obeying the Pauli principle, which are commonly
labeled after their spin properties, denoting

Ψ1(~r1, ~r2) = Ψ+(~r1, ~r2)|0,+0〉 (1.11)

a singlet state, and

Ψ2(~r1, ~r2) = Ψ−(~r1, ~r2)|1,+1〉
Ψ3(~r1, ~r2) = Ψ−(~r1, ~r2)|1,+0〉
Ψ4(~r1, ~r2) = Ψ−(~r1, ~r2)|1,−1〉 (1.12)

triplet states.

1.3 Basic spectral properties

Altogether there are, including spin, eight degrees of freedom for two-electron atoms described
by (1.5). Thus, for a full classification of a given state eight quantum numbers are needed.
The classification of the quantum states of (1.5) can be achieved at least partly through exact
symmetries of the three-body Coulomb problem. The overall rotational symmetry, related to
conservation of the total orbital angular momentum ~L and its projection, and the fact that (1.5)
commutes with the spin ~S give rise to L, M , S and MS as good quantum numbers. The quantum
numbers of the total spin S and its z component are linked to electron exchange ~r1 ↔ ~r2 through
the antisymmetry of the total wave function as already discussed in section 1.2. This leads to
the distinction between singlet (S = 0) and triplet (S = 1) states. The four remaining degrees
of freedom are nonseparable and are usually described by approximate quantum numbers, e.g.,
independent particle quantum numbers (N,n, l1, l2).

Commonly, the spectral notation of 2S+1Lπ is used. This notation makes use of the fact that
the reflection symmetry infers that the wave function of the electron pair are eigenfunctions of
the parity operator Π : (~r1, ~r2) → (−~r1, −~r2) with eigenvalue π = +1 or π = −1 describing
even (e) and odd (o) states, respectively. Note, that π is, e.g., connected to the independent
particle quantum numbers by π = (−1)l1+l2. The quantum numbers M and MS are omitted
as the states associated to different values of these quantum numbers are degenerate in a non-
relativistic treatment.

1.3.1 Influence of the electron-electron interaction

Let us briefly consider the Hamiltonian (1.5) without the electron-electron repulsion term (1.4).
In this case the Hamiltonian

H0 =
~p 2
1

2
+
~p 2
2

2
− Z

r1
− Z

r2
, (1.13)

consists of two independent hydrogenic atom Hamiltonians. The spectrum ofH0 is given through
bound states with energies

EL,M
N,n,l1,l2

= − Z2

2N2
− Z2

2n2
, N 6 n , (1.14)

and continua above the single ionization thresholds (SIT), with N and n excitation, and l1 and
l2 angular momentum of the inner and outer electron, respectively. In figure 1.2 a part of the
spectrum of H0 for helium (Z = 2) is depicted. The energy levels are organized in an infinite
number of Rydberg series, labeld by the principal quantum number N , each of which converges
to single ionization thresholds, IN = −Z2/(2N2), of the remaining ion. The series of the single
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Figure 1.2: Spectrum of helium for L = 0 without electron-electron interaction (independent
particle model). The energy levels (horizontal bars) are organized in series labeled by the
principal quantum number N of the inner electron. The first two single ionization thresholds
are represented by dashed lines.
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Figure 1.3: Spectrum of helium for 1Se states (data taken from [51]). The energy levels (hor-
izontal bars) are organized in series labeled by the principal quantum number N of the inner
electron. The separation into subseries is done on the basis of the Herrick classification [72–74].
Single ionization thresholds are represented by dashed lines.

ionization thresholds IN converges to the double ionization or total fragmentation threshold
(DIT).

The model roughly describes the structure of the spectrum of two-electron atoms. However,
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there are two essential qualitative discrepancies to the spectrum of (1.5) which includes the 1/r12-
term. Firstly, the electron-electron interaction couples different channels of the noninteracting
two-electron dynamics and gives rise to autoionizing resonance states embedded in the continua
above the first single ionization threshold. Secondly, the electron–electron interaction introduces
a mixing of states with different values of N , n, l1 and l2. If ∆N = 0 and ∆n = 0, the mixing of
l1 and l2 is particularly strong, leaving no dominant independent-particle configuration (l1, l2)
to be assigned to an individual state as these configurations are degenerate in the independent
particle picture.

In figure 1.3 a part of the spectrum for 1Se states of helium is presented to illustrate the
influence of 1/r12. Note, that for states with π = (−1)l1+l2 = (−1)L+1, bound states lie below I2
and resonances above I2. Therefore, there are no bound states below the first single ionization
threshold and no continuum emerges from this threshold (see Sec. 4.2). Apart from H− (Z = 1),
which possesses only two bound states [75], one for 1Se and one for 3P e, all two-electron atoms
exhibit similar spectral structures.

The fact, that the independent-particle angular momentum quantum numbers l1, l2 are in-
appropriate to characterize a series of doubly excited states if the electrons can occupy a number
of quasidegenerate (individual electron) configurations was already revealed in the first exper-
imental observation of doubly excited states of helium [16] and its theoretical interpretation
[76]. The inherent strongly correlated nature of double excited states of two-electron atoms
requires therefore the introduction of new classification schemes based on approximate quan-
tum numbers, e.g., [72–74, 77–81]. In the following, the (probably) most widely used of these
classification schemes is briefly reviewed.

1.3.2 Herrick classification

In order to describe doubly excited states, Herrick et al. [72–74] utilized the properties of the
symmetry group SO(4). The group can be used to describe the Stark effect in hydrogen and is
represented by the angular momentum of the electron ~l and the vector ~b which is connected to
the Runge-Lenz vector,

~a =
1

2

(

~l × ~p− ~p×~l
)

+
~r

r
, (1.15)

by the relation ~b = n~a. The idea of Herrick was to take into account the Stark effect induced by
the outer electron onto the inner one. He constructed, based on SO(4)1 ⊗ SO(4)2, a new basis
of doubly excited states |NnKT ;LMSMS〉, which is connected by

|NnKT ;LMSMS〉 =
∑

l1,l2

|Nl1nl2;LMSMS〉DKTL
Nl1nl2 , (1.16)

to the independent particle basis, where DKTL
Nl1nl2

is an expression including a Wigner 9j symbol

[82]. The numbers K and T result from diagonalization of an operator ~B = ~b1 − ~b2. The 9j
symbol imposes conditions on T and K for which DKTL

Nl1nl2
is non-zero for given N and L:

T = 0, 1, . . . , min(L,N − 1) ,

K = −N + 1 + T, −N + 3 + T, . . . , N − 3 − T, N − 1 − T . (1.17)

Note, that for π = (−1)L+1, T = 0 is not allowed.

The two integer numbers K and T are convenient indices for labeling angular correlations.
In terms of asymptotic properties of the two electrons, K is proportional to the average value of
r1 cos θ12 and T describes the magnitude of the overlap ~l1 · r̂2, or roughly speaking, the relative
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orientation between the orbitals of the two electrons. If the two electron orbits are in the same
plane, then T = 0 [78]. Note, that in the limit n→ ∞, [54, 65, 74]

〈cos θ12〉 n→∞−→ −K
N
. (1.18)

1.4 Complex Rotation

The electron-electron interaction in helium couples different channels of the non-interacting two-
electron dynamics, and gives rise to resonance states embedded in the continua above the first
single ionization threshold. To extract the energies and decay rates of resonance states we use
complex rotation (or “dilation”) [83–87], which was shown to be applicable for the Coulomb
potential in [88].

The complex dilation of any operator by an angle θ is mediated by the non-unitary complex
rotation operator

R(θ) = exp

(

−θ~r · ~p+ ~p · ~r
2

)

, (1.19)

where ~r and ~p represent the 2N component vector made up of ~r1, ~r2 and ~p1, ~p2, respectively,
with N the dimension of the treated system. The transformation of the position and momentum
operators consists of a rotation by θ in the complex plane,

~r → R(θ)~r R(−θ) = ~r eiθ ,

~p → R(θ) ~pR(−θ) = ~p e−iθ . (1.20)

Thus, the Hamiltonian (1.5) transforms into,

H(θ) = R(θ)HR(−θ) =

(

~p 2
1 + ~p 2

2

2

)

e−2iθ −
(

Z

r1
+
Z

r2
− 1

r12

)

e−iθ. (1.21)

This operator is no longer Hermitean and, therefore, its eigenvalues are in general complex.
However, the spectrum of the rotated Hamiltonian is related to the spectrum of the unrotated
operator according to (see Fig. 1.4) [84, 86, 88]:

1. The bound spectrum of H is invariant under the complex rotation.

2. The continuum states are located on half lines, rotated by an angle −2θ around the ion-
ization thresholds of the unrotated Hamiltonian into the lower half of the complex plane.

3. There are isolated complex eigenvalues Ei,θ = Ei − iΓi/2 in the lower half plane, corre-
sponding to resonance states. These are stationary under changes of θ, provided the
dilation angle is large enough to uncover their positions on the Riemannian sheets of the
associated resolvent [89, 90]. The associated resonance eigenfunctions are square integrable
[87], in contrast to the resonance eigenfunctions of the unrotated Hamiltonian.

The eigenstates of H(θ),

H(θ)|Ψi,θ〉 = Ei,θ|Ψi,θ〉 , (1.22)

are normalized for the scalar product

〈Ψj,−θ|Ψi,θ〉 = δij , (1.23)

and satisfy the closure relation:
∑

i

|Ψi,θ〉〈Ψi,−θ| = 1 . (1.24)
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Figure 1.4: (a) Spectrum of the unrotated Hamiltonian. Bound states are denoted by black
filled circles. Continuum cuts (solid black lines) starting from the ionization thresholds on the
real axis and the resonances remain hidden (dotted circles). Triangles indicate the single (▽)
and double (H) ionization thresholds. (b) Spectrum of the complex rotated Hamiltonian H(θ).
The continua are rotated by an angle −2θ around the ionization thresholds in the lower half
plane, uncovering resonances (continuous circles) if θ is large enough.

Following [91], the Green function of the rotated Hamiltonian reads:

Gθ =
1

E −H(θ)
=
∑

i

|Ψi,θ〉〈Ψi,−θ|
E − Ei,θ

, (1.25)

while the relation between the Green function of the unrotated Hamiltonian and Eq. (1.25) has
been shown [92] to be:

G(E) =
1

E −H
= R(−θ)Gθ(E)R(θ) . (1.26)

The projection operator on a real energy eigenstate is related to the Green function through

|φE〉〈φE | =
1

2iπ

(

G−(E) −G+(E)
)

, (1.27)

with

G±(E) =
1

E ± iη −H
, η → 0+ . (1.28)

Using Eq. (1.25) and Eq. (1.26) gives for the projection operator on a real energy eigenstate,
in terms of the eigenstates of the rotated Hamiltonian,

|φE〉〈φE | =
1

2iπ

∑

i

[

R(−θ)|Ψi,θ〉〈Ψi,−θ|R(θ)

Ei,θ − E
− R(θ)|Ψi,−θ〉〈Ψi,θ|R(−θ)

Ei,−θ − E

]

. (1.29)



Chapter 2

Planar two-electron atom model

This chapter gives a brief review of our treatment of a planar two-electron atom [25, 26, 93–
95]. After a justification of the planar model using semiclassical arguments (Sec. 2.1), a set
of parabolic coordinates is introduced, which induces a representation in terms of creation and
annihilation operators of four harmonic oscillators (Sec. 2.2). The key features of this rep-
resentation are given, including the computation of photoionization cross sections, probability
densities and the expectation value of cos(θ12), which will be needed in chapters 5 and 6. Section
2.3 is concerned with a brief description of the spectral properties of the planar model. Finally,
a brief description of the numerical implementation is presented in section 2.4.

2.1 Why consider a planar two-electron atom model?

In the planar two-electron atom model we confine the dynamics to two dimensions of the con-
figuration space, with Cartesian positions (x1, y1) and (x2, y2) of the electrons. The planar
two-electron atom dynamics thus has four degrees of freedom which span an eight-dimensional
phase space. While such a confinement of the dynamics to a plane in configuration space cer-
tainly restricts the generality of our model, semiclassical scaling arguments – presented in the
following – suggest, that the three-body dynamics is essentially planar at high electronic exci-
tations and at small to moderate total angular momenta [25].

Both the classical and the quantum mechanical dynamics of a two-electron atom with a
fixed nucleus in non-relativistic treatment are governed by the Hamiltonian (1.5). The classical
dynamics is invariant under scaling transformations [96]:

H 7→ |E|−1H

~ri 7→ |E|~ri, (i = 1, 2) ,

~pi 7→ |E|−1/2~pi, (i = 1, 2) ,

t 7→ λ3/2t , (2.1)

where E is the energy of the two-electron system. The angular momentum thus scales as
Lsc = |E|1/2L. Therefore, for moderate values of L and highly doubly excited states (E ≃ 0),
the scaled angular momentum is close to zero, tantamount to an almost planar three-body
configuration. Precisely this is the semiclassical energy regime where one expects the classical
and quantum mechanical dynamics to be similar.

The planar model comes with essentially two advantages. Firstly, it has a reduced complex-
ity compared to the full three-dimensional treatment paired with an at least good qualitative
description [97]. Secondly, similar to the description of the three-dimensional system in perimet-
ric coordinates [12] with Coulomb-Sturmian functions [98, 99] the approach leads to selection
rules and allows an exact analytic computation of the matrix elements [53, 54]. However, the

16
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number of selection rules is independent of the total angular momentum in the planar model
and thus bears no additional difficulty for the description of states for larger values of the total
angular momentum.

2.2 Planar approach

The computation and discussion of the spectrum, localization properties and photoionization
cross sections of two-electron atoms demand – apart from the confinement of the dynamics to a
plane in configuration space – a description of the system with a minimum of approximations.
In particular the description of resonances plays a key role. To extract the resonance states and
their decay rates the complex rotation method (see Sec. 1.4) is used. All the relevant physical
information is contained in the spectrum of the rotated Hamiltonian, and can be obtained by
a subsequent diagonalization. However, one of the main difficulties to actually perform this
diagonalization are the Coulomb singularities in the Hamiltonian (1.5). Nevertheless, choos-
ing an appropriate representation in parabolic coordinates [93], the singularities are rigorously
regularized.

2.2.1 Transformation to parabolic coordinates

The appropriate set of parabolic coordinates is obtained after three subsequent coordinate trans-
formations (see also appendix A.1). Starting with the Cartesian coordinates of both electrons
(x1, y1) and (x2, y2), respectively, the first transformation leads to polynomial expressions in the
new coordinates µi, νi (i = 1, 2) only for r1 and r2,

xi = 1
2(µ2

i − ν2
i ), µi =

√
ri + xi,

yi = µiνi, νi =
√
ri − xi,

ri =
√

x2
i + y2

i = 1
2(µ2

i + ν2
i ), i = 1, 2, (2.2)

while r12 still involves square root functions of µi and νi.

The second transformation consists in a rotation by π/4 of each pair (µ1, µ2) and (ν1, ν2) of
the new coordinates

µp = (µ1 + µ2)/
√

2, µ1 = (µp + µm)/
√

2,

µm = (µ1 − µ2)/
√

2, µ2 = (µp − µm)/
√

2,

νp = (ν1 + ν2)/
√

2, ν1 = (νp + νm)/
√

2,

νm = (ν1 − ν2)/
√

2, ν2 = (νp − νm)/
√

2.

(2.3)

resulting for the interelectronic separation in r12 =
√

(µ2
p + ν2

p)(µ2
m + ν2

m).

After another parabolic transformation, r12 will also be a polynomial function of the coor-
dinates. The final coordinate set is defined as

µp = (x2
p − y2

p)/2, xp =
√
rp + µp,

νp = xpyp, yp =
√
rp − µp,

µm = (x2
m − y2

m)/2, xm =
√
rm + µm,

νm = xmym, ym =
√
rm − µm,

rp =
√

µ2
p + ν2

p = (x2
p + y2

p)/2,

rm =
√

µ2
m + ν2

m = (x2
m + y2

m)/2,

(2.4)
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leading to the following representation of r1, r2 and r12 in terms of xp, yp, xm and ym:

r1 =
1

16

[

(xp − ym)2 + (xm + yp)
2
] [

(xp + ym)2 + (xm − yp)
2
]

r2 =
1

16

[

(xp − xm)2 + (yp − ym)2
] [

(xp + xm)2 + (yp + ym)2
]

r12 =
1

4

(

x2
p + y2

p

) (

x2
m + y2

m

)

. (2.5)

The Jacobian of each parabolic transformation in (2.2) is µi + νi = 2ri. Thus, the Jacobian of
the first transformation is J1 = 4r1r2. The second transformation corresponds to two rotations,
hence J2 = 1. The third transformation is again composed of two parabolic transformations,
therefore J3 = (x2

p + y2
p)(x

2
m + y2

m) = 4r12. The Jacobian of the complete transformation reads

B = J1J2J3 = 16r1r2r12. (2.6)

2.2.2 Stationary Schrödinger equation

The stationary Schrödinger equationH|Ψ〉 = E|Ψ〉 of the planar two-electron atom is regularized
by multiplication with the Jacobian (2.6). The eigenvalue equation then takes the form of a
generalized eigenvalue problem:

(

−1

2
T̃ + Ṽ

)

|Ψ〉 = EB|Ψ〉 , (2.7)

where the kinetic and potential operators, T̃ and Ṽ , are given by

T̃ = 16r1r2r12(∇2
1 + ∇2

2) ,

Ṽ = −16Zr2r12 − 16Zr1r12 + 16r1r2 . (2.8)

The explicit expression for the potential term Ṽ in terms of parabolic coordinates follows upon
substitution of Eq. (2.5). The expression for the kinetic term T̃ is a bit more complicated,

T̃ = (r1 + r2)

{

(x2
p + y2

p)

(

∂2

∂x2
m

+
∂2

∂y2
m

)

+ (x2
m + y2

m)

(

∂2

∂x2
p

+
∂2

∂y2
p

)}

+2(r2 − r1)

{

(xmxp + ymyp)

(

∂2

∂xm∂xp
+

∂2

∂ym∂yp

)

+ (ymxp − xmyp)

(

∂2

∂xm∂yp
− ∂2

∂ym∂xp

)}

. (2.9)

T̃ and Ṽ are polynomial functions of eighth degree in the parabolic coordinates xp, yp, xm,
ym and their partial derivatives ∂xp , ∂yp , ∂xm , ∂ym . The Jacobian B has a polynomial expression
of degree twelve.

Angular momentum

The angular momentum Lz – an important quantity in our further treatment – has a particularly
simple polynomial expression in terms of the parabolic coordinates (2.5). Note, that it preserves
its original differential form except for a prefactor:

Lz = −i

(

x1
∂

∂y1
− y1

∂

∂x1
+ x2

∂

∂y2
− y2

∂

∂x2

)

= − i

4

(

xp
∂

∂yp
− yp

∂

∂xp
+ xm

∂

∂ym
− ym

∂

∂xm

)

. (2.10)
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2.2.3 Harmonic oscillator representation

The various terms of the general eigenvalue problem (2.7) are polynomials in the coordinates
and conjugate momenta, and can therefore be expressed using the corresponding creation and
annihilation operators:

axp = (xp + ipxp)/
√

2 ,

axm = (xm + ipxm)/
√

2 ,

ayp = (yp + ipyp)/
√

2 ,

aym = (ym + ipym)/
√

2 ,

a†xp = (xp − ipxp)/
√

2 ,

a†xm = (xm − ipxm)/
√

2 ,

a†yp = (yp − ipyp)/
√

2 ,

a†ym = (ym − ipym)/
√

2 .

(2.11)

From these expressions we deduce the right and left circular operators in the planes (xp, yp) and
(xm, ym) defined by

a1 = (axp − iayp)/
√

2 ,

a2 = (axp + iayp)/
√

2 ,

a3 = (axm − iaym)/
√

2 ,

a4 = (axm + iaym)/
√

2 . (2.12)

The full expressions for the operators T̃ , Ṽ and B in normal ordered circular operators (creation
operators on the left) have 335, 357 and 1463 terms, respectively. The expressions have been
obtained using a home-made MATHEMATICA code (for details see [25]). A much simpler
expression is available for the angular momentum Lz:

Lz =
1

4

(

a†1a1 − a†2a2 + a†3a3 − a†4a4

)

=
1

4
(N1 −N2 +N3 −N4) , (2.13)

where the Ni = a†iai, (i = 1, 2, 3, 4) are the corresponding number operators.

2.2.4 Selection rules

Since the circular operators satisfy the usual commutation relations,

[ai, aj ] = 0, [a†i , a
†
j ] = 0, [ai, a

†
j ] = δij , (2.14)

for i, j = 1, 2, 3, 4, we can associate a harmonic oscillator with each pair of circular operators
a†i and ai. This induces a natural basis set composed of tensor products of harmonic oscillator
Fock states:

|n1n2n3n4〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉 ⊗ |n4〉. (2.15)

Due to the strictly polynomial form of (2.7) in the circular operators, each basis state couples
to a limited number of states. Whether two states are coupled or not by some operator A
is determined by a selection rule defined in the following way: Two elements |n1n2n3n4〉 and
|n′1n′2n′3n′4〉 of the basis set (2.15) are coupled or satisfy the selection rule {∆n1,∆n2,∆n3,∆n4},
with ∆ni = ni−n′i, if 〈n1n2n3n4|A|n′1n′2n′3n′4〉 6= 0. It is found that the Jacobian B and the sum
of the kinetic and potential operators −1

2 T̃ + Ṽ have 155 and 91 selection rules, respectively [25].
For a given selection rule ∆n= {∆n1,∆n2,∆n3,∆n4}, the matrix elements 〈n+∆n|− 1

2T+V |n〉
and 〈n+∆n|B|n〉, with |n〉 = |n1n2n3n4〉 and |n+∆n〉 = |n1+∆n1 n2+∆n2 n3+∆n3 n4+∆n4 〉,
involve square roots of integer numbers and depend only on n1, n2, n3 and n4. For example,
the matrix element of the operator −1

2 T̃ + Ṽ for the selection rule ∆n= {−2,−2, 0, 0} reads

〈n + ∆n| − 1

2
T̃ + Ṽ |n〉 =

1

8

√

n1(n1 − 1)n2(n2 − 1)
(

8 + 3n2
1 − 7n2 + 3n2

2

+n1(8n2 − 7) − (n1 + n2 − 1)(n3 + n4 + 1)(12Z − 1)
)

. (2.16)
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This and all other matrix elements were calculated with the help of symbolic calculus [25].

In addition to the selection rules for the atomic quantum numbers ni, there are also se-
lection rules for the angular momentum. For an unperturbed planar two-electron atom, the
angular momentum is a conserved quantity, ∆l = 0. Therefore, with (2.13), each selection rule
{∆n1,∆n2,∆n3,∆n4} satisfies ∆n1 − ∆n2 + ∆n3 − ∆n4 = 0.

2.2.5 Remaining symmetries

The basis set (2.15) does not yet account for the symmetries of the system, and, therefore, must
be appropriately symmetrized. The Hamiltonian commutes with the angular momentum Lz,
and is invariant under rotations around a perpendicular axis z, under the exchange operation
P12 and under the parity operation Π (~r → −~r). In two dimensions, the latter coincides with a
rotation of 180◦ around z, so that Π and the angular momentum Lz are related by

Π = e−iπLz = (−1)Lz . (2.17)

In addition, the Hamiltonian commutes with the reflections Πx and Πy with respect to the
coordinate axes x and y, respectively, which are connected via

Π = ΠxΠy = ΠyΠx , (2.18)

to the total parity, with which both Πx and Πy commute. However, the symmetries Πx and Πy

do not commute with the angular momentum, since

ΠxLz = −LzΠx , (2.19)

but do commute with L2
z. The representation in parabolic coordinates introduces nonphysical

symmetries induced by the two-fold coordinate transformation [Eq. (2.2) and (2.3)] [25, 93].
The basis elements need to be properly symmetrized in order to get rid of these. Considering
the symmetries mentioned beforehand, there are two alternatives to label the eigenstates of
planar two-electron atoms. On the one hand, one can use the eigenvalues l = 0,±1,±2, . . .
of angular momentum Lz and the exchange symmetry P12 = ±1, in which case the spectra
corresponding to l and −l are identical, as a consequence of the time reversal invariance of the
problem [100]. On the other hand, the eigenstates can be labeled by the absolute value |l| of
the angular momentum Lz, the exchange symmetry, and the symmetry Πx = ±1.

The symmetrized basis adapted for P12 and Lz is defined by [25, 93]

|n1n2n3n4〉+ = |n1n2n3n4〉 + |n3n4n1n2〉 , (2.20)

with n1 − n2 + n3 − n4 = 4Lz and n1 − n2 ≡ n3 − n4 ≡ c12(mod 4) (c12 = 0 for singlet states,
and c12 = 2 for triplet states).

Since ΠxLz = −LzΠx the basis elements (2.20) are not eigenstates of Πx. However, the basis
elements

|n1n2n3n4〉+ǫx = |n1n2n3n4〉+ + ǫx|n2n1n4n3〉+ , (2.21)

where ǫx = ±1, are properly symmetrized with respect to L2
z, P12 and Πx [25, 26]. Note, that

this choice can also be used for the case when the atom is exposed to an electromagnetic field
polarized along the x direction, where the Hamiltonian is not invariant under the parity opera-
tion Π.

For the description of resonances this approach is combined with the complex rotation
method described in section 1.4.
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2.2.6 Cross section

Fermi’s Golden rule results for the photoionization cross section in (see e.g. [101]):

σ(ω) =
4π2ω

c
|〈φE |D|φin

E 〉|2 , (2.22)

where |φin
E 〉 denotes the initial state with energy Ein, |φE〉 a state with energy E = Ein +ω, and

D = ~e ·~r the dipole operator with the light polarization ~e. Combining Eq. (1.29) and Eq. (2.22)
leads to

σ(ω) =
2πω

ic

∑

i

[

〈φin
E |DR(−θ)|Ψi,θ〉〈Ψi,−θ|R(θ)D|φin

E 〉
Ei,θ − E

−〈φin
E |DR(θ)|Ψi,−θ〉〈Ψi,θ|R(−θ)D|φin

E 〉
Ei,−θ − E

]

. (2.23)

Substitution of θ by −θ is, for a real representation of the unrotated Hamiltonian, equivalent to
changing H(θ) into its complex conjugate, resulting in

Ei,−θ = Ei,θ ,

|Ψi,−θ〉 = |Ψi,θ〉 , (2.24)

where Ei,θ and |Ψi,θ〉 are the complex conjugate of Ei,θ and |Ψi,θ〉, respectively. As has been
stated in [91], Eq. (2.23) is somewhat formal, as R(−θ)|Ψi,θ〉 is not a well defined state, and

〈φin
E |DR(−θ)|Ψi,θ〉 has to be understood as 〈Ψi,θ|R(θ)D|φin

E 〉. The last expression coincides, for
an initial state with a real radial wavefunction, with 〈Ψi,θ|R(θ)D|φin

E 〉. The second term of Eq.
(2.23) has to be understood and translated in an analogous manner. Together with Eq. (2.24)
this leads to the final result:

σ(ω) =
4πω

c
Im

[

∑

i

〈Ψi,θ|R(θ)D|φin
E 〉2

Ei,θ − Ein − ω

]

. (2.25)

Transformation into the appropriate coordinates allows one to represent the matrix elements of
the dipole operator in the creation and annihilation operators, aj , a

†
j , j = 1, 2, 3, 4. In practice

light polarized along the x axis is used, leading to D = x1 + x2.

2.2.7 Expectation value of cos(θ12)

The expectation value of cos(θ12) for a given state φE of energy E is obtained, up to normalization
of |φE〉, by

〈φE | cos(θ12)|φE〉 =
1

2πi

∑

i

[〈Ψi,−θ| cos(θ12)|Ψi,θ〉
Ei,θ − E

− 〈Ψi,θ| cos(θ12)|Ψi,−θ〉
Ei,−θ − E

]

=
1

π
Im

[

∑

i

〈Ψi,θ| cos(θ12)|Ψi,θ〉
Ei,θ − E

]

, (2.26)

where we have used the projector (1.29). Similarly, the square of the norm of |φE〉 reads as

〈φE |φE〉 =
1

2πi

∑

i

[〈Ψi,−θ|Ψi,θ〉
Ei,θ − E

− 〈Ψi,θ|Ψi,−θ〉
Ei,−θ − E

]

=
1

π
Im

[

∑

i

1

Ei,θ − E

]

, (2.27)
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where the normalization (1.23) of |Ψi,θ〉 has been taken into account in the last step. The
expectation value is thus given by

〈cos(θ12)〉 =
〈φE| cos(θ12)|φE〉

〈φE |φE〉
=

Im

[

∑

i

〈Ψi,θ| cos(θ12)|Ψi,θ〉
Ei,θ − E

]

Im

[

∑

i

1

Ei,θ − E

] . (2.28)

A well isolated resonance |Ψj,θ〉 with Ej,θ ≃ E and |Re(Ej,θ) − Re(Ei,θ)| ≫ |Ej,θ − E|, ∀i 6= j,
gives the dominant contribution to the above sum, and justifies the single pole approximation
[91]

〈φE| cos(θ12)|φE〉 ≃ 1

π|Im(Ei,θ)|
Re〈Ψi,θ| cos(θ12)|Ψi,θ〉 , (2.29)

〈φE |φE〉 ≃ 1

π|Im(Ei,θ)|
, (2.30)

leading to

〈cos(θ12)〉 ≃ Re(〈Ψi,θ| cos(θ12)|Ψi,θ〉) . (2.31)

After transformation to appropriate parabolic coordinates the matrix elements of cos(θ12) can
be expressed as polynomials in the coordinates and thus be represented through the creation
and annihilation operators, aj , a

†
j , j = 1, 2, 3, 4 resulting in 2088 monomial terms associated

with 171 selection rules in the Fock basis.

2.2.8 Electronic densities

The electronic density of a given state |φE〉 can be obtained from the projection operator (1.29)
on the given state [54, 91, 102]. The electronic probability density in configuration space reads
[91] up to normalization,1

˜|φE(~r )|2 = 〈~r |φE〉〈φE |~r 〉

=
1

π
Im
∑

j

〈~r |R(−θ)|Ψj,θ〉〈Ψj,θ|R(θ)|~r 〉
Ej,θ − E

=
1

π
Im
∑

j

〈~r |R(−θ)|Ψj,θ〉2
Ej,θ − E

. (2.32)

In the single pole approximation the density is given by,

|φE(~r )|2 ≃ Re(〈~r |R(−θ)|Ψj,θ〉2) , (2.33)

where the correct normalization (2.30) has already been included. In terms of the basis set
(2.21) 〈~r |R(−θ)|Ψj,θ〉 reads

〈~r |R(−θ)|Ψj,θ〉 =
∑

n

〈~r |n〉+ǫx +ǫx〈n|R(−θ)|Ψj,θ〉 , (2.34)

where n denotes the set of quantum numbers n1, n2, n3 and n4. Therefore, we need an expression
for the basis states |n1n2n3n4〉+ǫx in the coordinate representation, together with a matrix

1 ˜|φE(~r )|2 stands for the unnormalized density.
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representation of the operator R(−θ). In both cases, it is sufficient to derive this for the product
states |n1n2n3n4〉, by virtue of (2.20) and (2.21).

Since the circular operators given by (2.12) are independently defined for the pairs (xp, yp)
and (xm, ym) of parabolic coordinates, 〈~r |n1n2n3n4〉, if written in parabolic coordinates, can be
expressed as a product of two functions depending on (xp, yp) and (xm, ym), respectively, i.e.,
〈~r |n1n2n3n4〉 = 〈xp, yp|n1n2〉〈xm, ym|n3n4〉, where

〈xp, yp|n1n2〉 =

√

1

π

√

np!

(np + |mp|)!
eimpφpr

|mp|
p e−r2

p/2 L
(|mp|)
np (r2p) , (2.35)

with np = min{n1, n2}, mp = n1 − n2; L
(|mp|)
np (r) is the generalized Laguerre polynomial [103].

By analogy, the expression for 〈rm, φm|n3n4〉 has precisely the same form. The functions (2.35)
are often termed Darwin-Fock states [104, 105]. Note, that the coordinate representation of

|n1n2n3n4〉 contains a factor e−(r2
p+r2

m)/2 = e−(x2
p+y2

p+x2
m+y2

m)/2, and therefore, from (2.5), the
product state 〈~r|n1n2n3n4〉 decays roughly as e−

√
r1+r2.

For the calculation of the matrix elements of R(−θ), we note that this operator can be
expressed as a product of two rotation operators Rp(−θ) and Rm(−θ), acting on the spaces
(xp, yp) and (xm, ym), respectively, and thus, as before:

〈n1n2n3n4|R(−θ)|n′1n′2n′3n′4〉 = 〈n1n2|Rp(−θ)|n′1n′2〉〈n3n4|Rm(−θ)|n′3n′4〉 . (2.36)

The matrix elements of Rp(−θ) in the representation given by the product states |n1n2〉 read
[106]

〈n1n2|Rp(−θ)|n′1n′2〉 = (−1)n
′

p

√

(

np + |mp|
np

)(

n′p + |mp|
n′p

)

inp+n′

p (sin θ)np+n′

p

× (cos θ)−(np+n′

p+|mp|+1) F

(

−np,−n′p, |mp| + 1;− 1

sin2 θ

)

δmpm′

p
,

(2.37)

where np = min{n1, n2}, mp = n1 − n2, n
′
p = min{n′1, n′2}, m′

p = n′1 −n′2, and F (a, b, c;x) is the
hypergeometric function [103] (which reduces to a polynomial here). Analogously, we obtain the
expression for the matrix elements of Rm(−θ), with a formally identical result.

Combining (2.37) and (2.35) in (2.33), we obtain the electronic density in configuration
space.

2.3 Spectral structure

Before coming to the numerical treatment let us have a brief look at the spectral structure
of planar two-electron atoms. The general spectral structure of a planar two-electron atom is
similar to the one described in section 1.3 for the real atom, however, there are some important
differences.

The ionization thresholds are given by the energy levels of the one-electron system remaining
after ionization. These energy levels are given by (see appendix A.2.2) [25, 93]

I2D
N = − Z2

2(N − 1
2)2

, (2.38)

instead of

I3D
N = − Z2

2N2
, (2.39)
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for the three-dimensional system.
As already shown in section 2.2.5, planar two-electron atoms are restricted to the description

of states with parity π = (−1)|l|. However, for the classification of states the parity πx with
respect to reflection by the x-axis is used. For |l| = 0 the spectrum consists for Πx = 1
and Πx = −1 of bound states below first and second ionization threshold, respectively, with
resonances starting to appear above these threshold. For |l| > 0 the spectra for Πx = 1 and
Πx = −1 are degenerate. This is a consequence of the degeneracy of the energy levels for l
and −l (l > 0). Bound states and resonances occur below and above the first single ionization
threshold, respectively.

The Herrick classification can be applied to the planar model of two-electron atoms by
remembering, that if the two electron orbits are on the same plane, then T = 0 [78, 97]. A
consequence of this is, there are, for total angular momentum |l| > 0, fewer series converging to
individual single ionization thresholds than for the three-dimensional system with L = |l|.

2.4 Numerical treatment

2.4.1 Matrix representation

Representing the stationary Schrödinger equation for a planar two-electron atom in the basis
set (2.21) leads to the generalized eigenvalue problem

H̃α
θ Ψi,θ = Ei,θBΨi,θ , (2.40)

where Ψi,θ is the vector representation of |Ψi,θ〉, H̃α
θ and B are the matrices associated with

the complex rotated (Coulomb singularity regularized) Hamiltonian and the Jacobian. Together
with the rotation of configuration space by an angle θ into the complex plane, a dilation by a
positive real number α is used, such that the (Cartesian) coordinates and momenta transform
according to

~r → α~reiθ , ~p→ 1

α
~pe−iθ . (2.41)

As the dilation by a factor α is a unitary transformation [90, 100, 106] described by the unitary
operator

Dα = exp

[

i log(α)
~r · ~p+ ~p · ~r

2

]

, (2.42)

the spectra of a Hamiltonian H and of the dilated Hamiltonian Hα = DαHD
†
α are identical.

However, if the basis is truncated, the spectrum does depend on the parameter α in case that
the basis set is not large enough. Thus, α can be used as a variational parameter that has to be
optimized.

The selection rules for the Hamiltonian and Jacobian (Sec. 2.2.4) couple only a finite number
of basis elements, which can readily be computed by exact analytical expressions. Together
with the necessity of a truncation of the basis for the numerical implementation this leads to
a finite number of non-zero matrix elements. The complex rotation method leads to a matrix
representation of the Hamiltonian as a complex symmetric matrix. Altogether, H̃α

θ and B are
represented by sparse banded symmetric matrices with complex and real entries, respectively.

Construction of the basis

As described in section 2.2.5 the basis |n1n2n3n4〉+ǫx decomposes for a given value of |l| into the
subspace of singlet and triplet states, and of even or odd states with respect to the symmetry
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Πx, with the following identification:







ǫx = ±1 even or odd states with respect to Πx,
n1 − n2 ≡ n3 − n4 ≡ 0(mod 4) singlet states,
n1 − n2 ≡ n3 − n4 ≡ 2(mod 4) triplet states.

(2.43)

However, due to twofold symmetrization of the basis [Eq. (2.20) and Eq. (2.21)], each element
of the symmetrized basis can be represented by four quadruplets (n1, n2, n3, n4), (n2, n1, n4, n3),
(n3, n4, n1, n2) and (n4, n3, n2, n1). The basis must only contain one of these quadruplets and is
unambiguously defined for ǫx = 1, if each quadruplet (n1, n2, n3, n4) satisfies one of the following
conditions:































|l| > 0 and n1 ≥ n3,
|l| = 0 and n1 > n3 and n1 ≥ n4 > n2,

n1 > n3 and n1 > n2 > n4,
n1 > n3 and n1 = n2,
n1 = n3 and n2 > n4,
n1 = n3 = n2 = n4.

(2.44)

The basis spanning the subspace for odd symmetry with respect to the x axis (ǫx = −1) is
defined by the same conditions, however, with basis states n1 = n3 = n2 = n4 forbidden [see
Eq. (2.21)].

For the numerical implementation, the infinite symmetrized basis set also needs to be trun-
cated. For a given angular momentum |l| the basis is truncated according to

n1 + n2 + n3 + n4 ≤ nbase , (2.45)

with nbase a given positive integer.

Dimensions of matrices

The dimensions of the matrices which give well converged eigenvalues and eigenvectors are rather
large: the number of elements along the diagonal, denoted by ntot, scales as ntot ≃ n3

base/360 and
ntot ≃ n3

base/180 for angular momentum |l| = 0 and |l| > 0, respectively. E.g., for an accurate
description of the spectrum of triplet planar helium for total angular momentum |l| = 1 and
Πx = 1 below the 25th single ionization threshold a basis size of ntot = 586760 (nbase = 480) is
needed. The rather slow convergence of eigenstates and eigenvectors with respect to the basis
size can be understood considering the asymptotics of the basis and wavefunction. As explained
in section 2.2.8 the asymptotic behaviour of the coordinate representation of the basis functions
is given by e−

√
r1+r2 . However, since the Coulomb interaction vanishes at large distances, the

asymptotics of planar two-electron wave functions are expected to decay exponentially, i.e., as
e−(r1+r2) [25] (see appendix A.2.3). Therefore, a large number of basis functions is needed
in order to describe the asymptotic behaviour of eigenstates of the planar two-electron atom
correctly.

As stated earlier, the matrices representing the generalized eigenvalue problem (2.40) are
banded. Both the required memory as well as the number of floating point operations necessary
to diagonalize such matrices denpends heavily on the bandwidth. However, the bandwith of
the matrices depends on the ordering of the basis. Finding the optimal permutation of the
basis that yields the minimum value of nlarg, which denotes the bandwidth, in limited time is
a particular case of an open problem of graph partitioning, and several heuristic algorithms
have been developed for this purpose [107–109]. The code uses a recursive method developed
by Benôıt Grémaud which reduces the bandwidth of the matrices considerably, e.g., for the case
of triplet planar helium of total angular momentum |l| = 1 and Πx = 1 with nbase = 480 the
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bandwidth is reduced from nlarg = 36165 with hierarchical ordering to nlarg = 24102. For the
description of the algorithm the interested reader is referred to [25] where an outline of the
algorithm is given.

2.4.2 Lanczos algorithm

In this work the spectral structure as well as the localization properties of certain quantum states
of planar two-electron atoms will be of interest, requiring specific eigenvalues and eigenstates
of the generalized eigenvalue problem (2.7). The dimensions of the involved matrices become
typically rather large in the spectral range of highly excited states. However, it is not necessary
to extract all the eigenvalues and eigenstates, but only those in a given spectral region of interest,
which is defined by either specific target states, e.g., to analyse the localization properties, or
energy regimes to be probed, e.g., to obtain a scan of a suitably defined cross section.

The Lanczos algorithm is precisely suitable for this task, and finds a few eigenvalues and
eigenvectors of a huge eigenvalue problem in the vicinity of some predefined position of the
energy axis. More specifically, the algorithm was originally developed to find a few extremal
eigenvalues of a large symmetric matrix, along with the associated eigenvectors [110, 111]. Later
it was adapted for generalized symmetric eigenvalue problems Ax = ǫBx [112]. In this case, the
generalized eigenvalue problem is equivalent to an eigenvalue problem obtained by multiplication
from the left with A−1,

A−1Bx = µx , (2.46)

where µ = 1/ǫ. The Lanczos algorithm finds the largest values of µ (i.e., ǫ ≃ 0). By shifting the
matrix A by Es,

A → A− EsB , (2.47)

before diagonalization, eigenvalues and eigenstates in the vicinity of Es can be obtained.
In the Lanczos algorithm a set q1,q2, . . . ,qnLanczos

(nLanczos 6 ntot) of orthogonal column vec-
tors of dimension ntot is iteratively constructed in such a way, that the matrix
Q = q1,q1, . . . ,qnLanczos

is an orthogonal matrix with respect to B (i.e., QTBQ = 1, where
QT is the transpose matrix of Q), which transforms the matrix A−1B into the tridiagonal ma-
trix A−1BQ = QT , where

T =



















α1 β1 0 . . . 0 0
β1 α2 β2 . . . 0 0
0 β2 α3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . αnLanczos−1 βnLanczos−1

0 0 0 . . . βnLanczos−1 αnLanczos



















. (2.48)

The largest eigenvalues µi of (2.46) are then given by the eigenvalues of T .
The jth matrix elements αj and βj of T are obtained from the jth column of A−1BQ = T Q,

taking into account that the vectors qj are orthonormal with respect to B. Choosing an arbitrary
normalized initial vector q1, the iterative formulae read [111, 113]



























αj = qT
j BA−1Bqj ,

βj = ‖tT
j+1Btj+1‖, with tj+1 = A−1Bqj − αjqj − βj−1qj−1,

qj+1 = 1
βj

tj+1.

(2.49)
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Note, that in the relations A−1 is never used explicitly, but only products of type A−1Bx,
which makes it unnecessary to invert A. Instead, using the LLT factorization of A [114] the
vector x = A−1Bx can be found solving the linear system of equations Ax = Bx by backward
substitution [114].

The Lanczos algorithm is thus composed of three fundamental steps:

1. The LLT factorization of A.

2. nLanczos iterations of the recursive expressions (2.49) in order to find T .

3. Diagonalization of T , which can be achieved by standard diagonalization routines like
QR-decomposition [114].

2.4.3 Numerical implementation

The typical dimension of the matrices to diagonalize was discussed in section 2.4.1. Such matrices
cannot be stored in the main memory of a standard PC, and the corresponding eigenvalue
problem cannot be solved numerically using them. Moreover, the number of operations needed
for the diagonalization of these matrices is huge and leads on a single processor to extremely
long computation times. Instead, such eigenvalue problems can be solved on parallel computers,
where all processing elements work simultaneously on different parts of the problem. This
requires special techniques of parallel programming. In the following, some features of the
parallel implementation of our code are discussed.

Basic notions of parallel programming

In a parallel program different parts of the problem are distributed on several processing elements
of a given parallel computer. The program speeds up by some factor which is not bigger than
the number of processing elements.2 There are two basic concepts for memory management:
shared memory computers, where each processing element has access to the entire memory, and
distributed memory computers, where the memory is distributed over different processing ele-
ments. Besides these basic memory architectures some supercomputers use or enable a mixture
of both concepts, called hybrid architecture, where subgroups of processing elements form nodes
with either shared memory or a low latency high band width interconnect that emulates actual
shared memory. These nodes are then organized as distributed memory machines.

There are special libraries available for the programming of these parallel computers. The
two probably most widely used are the MPI (Message Passing Interface) [115, 116] and OpenMP
(Open Multi-Processing) [117] programming schemes. OpenMP is an application programming
interface that supports multi-platform shared memory multiprocessing programming using mul-
tithreading. It is usually employed for shared memory computers with a small to medium
number of processors (e.g., 32). MPI is a language-independent communications protocol which
provides means for the communication between different processing elements. In particular, it
provides communication routines to program distributed memory computers with any number
of processing elements.

MPI has been chosen for the implementation of our code. The matrices A and B are split into
smaller matrices, which are treated locally on the processing units. Therefore, an optimization
of the interaction between single processing elements is crucial, besides, of course, an efficient
sequential computation. In MPI, there are basically two forms of communication:

• Point-to-point communication: a single processing element sends or receives a message
from another processing element.

2Cache memory effects, which are not considered here, might in some cases lead to a speed-up larger than the
number of processing elements.
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• Collective communication: in this case several processing elements are involved, i.e., a
single processing element sends or receives a message from all other processing elements,
all processing elements are synchronized at some point, or global reduction operation
(maximum, minimum, sum, etc.) of data distributed over all processing elements are
performed.

Using these communication elements of MPI an existing scalar code can be transformed into
a parallel code. However, one needs to choose carefully where to place the communication
directives, and whether communication with a single or with all processing elements is preferable,
in order to achieve optimal efficiency of the code. Beyond these decisions many fine details,
which are deliberately ignored here, will influence the efficiency of the code in the actual MPI
implementation.

The speed-up S(p) of a code running on p processing elements is defined as [113]

S(p) =
T (1)

T (p)
, (2.50)

where T (p) is the execution time on p processing elements. Thus the efficiency E(p) is given by

E(p) =
S(p)

p
=

T (1)

pT (p)
. (2.51)

In an efficient parallel code the time required for communication is short compared with the time
spent for purely local operations, i.e., E(p) → 1. However, since there is always a fraction of
the calculation that has to be solved sequentially, it is impossible to achieve efficiency E(p) = 1
(a superscalar speed-up E(p) > 1 due to cache effects is not considered here).

Storage of matrices

As described in section 2.4.1, the matrices H̃α
θ and B, which coincide with A and B of section

2.4.2, respectively, are complex or real symmetric banded sparse matrices. Therefore, all infor-
mation is contained in the lower triangular band. In the course of the LLT decomposition of
A the sparse character of A is lost and L is given by a full banded matrix. In contrast, the
matrix B is, in the recursion relations (2.49), only needed to calculate products with vectors x

of type Bx and it would be sufficient to store only the non-zero matrix elements of which the
number per row is at most the number of selection rules [25]. The implementation does not
make use of this fact and uses band structure matrices for both A and B, which are distributed
over nprocs processing elements. The memory needed to store one complex (double precision)
array of ntot × nlarg is (16 × ntot × nlarg/2

30)GB and the number of processing elements needed
is approximately given by

nprocs =
16 × ntot × nlarg

M
, (2.52)

where M is the accessible memory per processing element given in bytes which can be used for
the storage of this array.3

For the distribution on different processors the matrix A (B) is partitioned into nsizg × nsizg

blocks as sketched in figure 2.1, such that

nlarg = nr × nprocs × nsizg , (2.53)

3Note, that for the determination of the available memory M one has to take into account both matrices A
and B and their data type.
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Figure 2.1: Partitioning of the matrices: nlarg and ntot are the bandwidth and the total di-
mension, respectively; nsizg is the dimension of the subblocks; nband is the number of subblocks
in a line, and nr is the number of such lines per processing element that are contained in the
bandwidth.

where nr is an integer number which represents the number of lines of nband = nr ×nprocs of the
nsizg × nsizg blocks that each processing element has to process until a nlarg × nlarg block of the
matrix is completed. To complete an operation through the whole matrix requires to process
ncycle lines, where

ncycle =
ntot

nlarg × nprocs
. (2.54)

Any vector is stored in the same way, since it can be seen as a banded matrix of bandwidth one.

Most of the local calculations on the nsizg × nsizg blocks are carried out using BLAS (Basic
Linear Algebra Subprograms). These subroutines are standardized and optimized on most
computers.

Implementation of the Lanczos algorithm

After filling the matrices A and B as described in the preceding section, the generalized eigen-
value problem is diagonalized using the Lanczos algorithm (2.49) described in section 2.4.2. To
perform these iterations, routines performing the following operations are needed: scalar prod-
ucts between two vectors, products between the matrix B and a vector, and products of the
form A−1Bx using LLT decomposition and backward substitution (here x is a vector). The
first and second operation can be easily implemented using BLAS, however the situation is more
complicated for the third operation. A detailed description of the implementation of the LLT

decomposition and of the backward substitution is given in [113].
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Performance of the code

The speed of a computer is characterized by the performance of the CPU (central processor
unit), which is measured by the number of floating point operations per second (Flops). The
performance of a parallel code can be measured in terms of Flops achieved per processing
element. In addition, a well performing parallel code should be scalable, i.e., the solution of a
large problem should achieve about the same performance per processing element as the solution
of a smaller problem. As mentioned above, we use BLAS to achieve a good single processing
element performance.

Calculations have been carried out on the SGI Altix 3700xB and the SGI Altix 4700 of
the Linux Cluster of the Leibniz-Rechenzentrum [118] and the SGI Altix 4700 of the Höchst-
leistungsrechner Bayern II [119]. The single processing element peak performance of these
systems is 6.4 GFlops. For jobs scaling from 16 to 128 processing elements the performance
typically achieved on both systems was 1.5 GFlops to 2.0 GFlops (the job performance is influ-
enced by the relative separation of the individual processing elements on the computing grid).
A top performance in the range of 2.3 GFlops to 2.4 GFlops, which is more than 35% of the
peak performance, could be achieved for 16 up to 128 processing elements.



Chapter 3

Three-dimensional treatment of a

two-electron atom

In this chapter our approach for the full three-dimensional treatment of a two-electron atom
is presented [45, 68, 120–122]. After describing the spectral method, in which the basis is ex-
panded in Coulomb-Sturmian functions with independent dilation parameters for both electrons
and bipolar spherical harmonics for radial and angular coordinates, respectively, the matrix rep-
resentation of the problem and its numerical implementation is discussed (see also appendix B).
In particular, a newly developed, highly efficient method for the computation of matrix elements
of the electron-electron repulsion is presented in detail.

3.1 Spectral method

The nonrelativistic Hamiltonian H for a two-electron atom with an infinitely heavy, pointlike
nucleus of charge Z is, as in Eq. (1.5), given by

H =
~p 2
1

2
+
~p 2
2

2
− Z

r1
− Z

r2
+

1

r12
, (3.1)

with the interelectronic distance

1

r12
=

1

|~r1 − ~r2|
, (3.2)

and ~r1, ~r2, ~p1 and ~p2 the position and momentum vectors of particle one and two, respectively.
The eigenstate wavefunction of a two-electron atom with total energy E satisfies the time inde-
pendent Schrödinger equation

(H − E)Ψ(~r1, ~r2) = 0 . (3.3)

Unlike in hydrogen, exact eigenfunctions of the Hamiltonian (3.1) cannot be found. Here, in
order to solve the time independent Schrödinger equation (3.3) a spectral method, which consists
of an expansion of the spatial wave function in terms of suitably chosen basis functions, is used.
As discussed in the Introduction to this work many different choices for these basis functions,
each with individual benefits and drawbacks, can be found in the literature. Basically all of
them can be assigned to the group of either explicitly correlated (EC) bases [12, 13, 47–56], in
which the basis functions explicitly depend on the interelectronic distance r12, or configuration
interaction (CI) bases [57–64], in which the basis functions are given by properly symmetrized
combinations of two single particle functions.

The choice of basis functions substantially depends on the actual problem to be investigated,
e.g, on the necessity of describing states with high angular momentum or of a highly accurate

31
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description of the ground state. Apart from the treatment of highly doubly excited states itself,
the aim here is to lay the foundation for the description of multiphoton processes in two-electron
atoms, e.g., investigation of a possible formation of non-dispersive two-electron wave packets in
helium [24, 26] or of multiphoton ionization processes [29, 38, 40–46, 71, 123], which requires an
accurate description of (asymmetrically) doubly excited states for various values of the total an-
gular momentum L. In addition, an accurate description of eigenstates in a given energy regime
should be achievable within a matrix representation of the problem of small size as several angu-
lar momenta have to be treated simultaneously in the treatment of multiphoton processes, and
the matrix elements should be easily accessible. EC bases allow for a very accurate description
of two-electron atoms, however, the computation of the matrix elements either involves coupled
three-dimensional radial integrals or is based on an analytic computation and selection rules, the
number of which grows rapidly with increasing total angular momentum L. Moreover, rather
large bases are needed for the description of highly asymmetrically excited states. Within CI
bases the description of states with a large value of the total angular momentum L does not
pose any additional difficulty and the computation of matrix elements involves at most two-
dimensional coupled radial integrals. However, the CI approach has always been plagued with
slow convergence in terms of the number of radial functions and of angular configurations used,
which is particularly severe for the ground state and is essentially due to the fact that the CI
expansion does not satisfy the Kato cusp condition associated with the coalescence of the two
electrons [57, 66, 67]. As in EC bases the description of highly asymmetrically excited states
requires a large basis within the standard CI approach. This is due to the fact that two distinct
regions of space are associated with the electron probability distributions: a region close to the
nucleus for the inner electron and a region far from the core for the highly excited outer electron.
An efficient description of such states requires the basis to adequately span these two regions.

As one of our main goals is the treatment of two-electron atoms with an arbitrary value of
the total angular momentum L, a basis expansion of CI type is considered for the spatial part
of the wave function. In our approach [45, 68, 120–122] the solutions to Eq. (3.3) are expanded
as follows:

Ψ(~r1, ~r2) =
∑

L,M

∑

ǫ12,π

∑

l1,l2

π∑

s

∑

n1,n2

ψl1,l2,L,M,ǫ12
k1s,k2s,n1,n2

βl1,l2
n1,n2

A
S

(k1s)
n1,l1

(r1)

r1

S
(k2s)
n2,l2

(r2)

r2
ΛL,M

l1,l2
(r̂1, r̂2) , (3.4)

where ψl1,l2,L,M,ǫ12
k1s,k2s,n1,n2

is the expansion coefficient and

βl1,l2
n1,n2

= 1 +

(

1√
2
− 1

)

δn1,n2δl1,l2 , (3.5)

controls the redundancy that occurs within the basis due to symmetrization for basis states
with equal quantum numbers for particle one and two. The symbol

∑π indicates that these
sums depend on the parity π. The symmetry or antisymmetry of the spatial wave function, as
required by the Pauli principle, is ensured by a projection onto either singlet or triplet states
via the operator

A =
1 + ǫ12P12√

2
, (3.6)

where the operator P12 exchanges the coordinates of both electrons and ǫ12 takes values of +1

or −1. The radial one-electron functions S
(k)
n,l (r) are Coulomb-Sturmian functions [98, 99] (see

appendix B.1) defined for a given angular momentum l and radial index n by

S
(k)
n,l (r) = N

(k)
n,l e−kr(2kr)l+1L

(2l+1)
n−l−1(2kr) , (3.7)
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where k is a dilation parameter, L
(2l+1)
n−l−1(2kr) is an associated Laguerre polynomial and N

(k)
n,l the

normalization constant given by

N
(k)
n,l =

√

k

n

(

(n − l − 1)!

(n+ l)!

)1/2

. (3.8)

The orthogonality relation for the Coulomb-Sturmian functions reads

∞
∫

0

dr S
(k)
n,l (r)

1

r
S

(k)
n′,l(r) =

k

n
δnn′ . (3.9)

The radial index n of the Sturmian functions is a positive integer satisfying n > l + 1. The
angular part of the expansion (3.4) is expressed in terms of bipolar spherical harmonics [82],

ΛL,M
l1,l2

(r̂1, r̂2) =
∑

m1,m2

〈l1,m1, l2,m2|L,M〉 Yl1,m1(r̂1)Yl2,m2(r̂2) , (3.10)

which couple the two individual angular momenta l1 and l2 in the L− S scheme. Yl,m denotes
the spherical harmonics and 〈l1,m1, l2,m2|L,M〉 is a Clebsch-Gordan coefficient. The relevant
angular configurations (l1, l2) for the description of states with total angular momentum L are
determined by the triangle relation for the addition of angular momenta

|l1 − l2| ≤ L ≤ l1 + l2 . (3.11)

In order to preserve parity π, which is a good quantum number, the L− S coupled individual
angular momenta of the electrons must satisfy π = (−1)l1+l2 . This is also reflected in

∑π, which
stands for the sum over individual angular momenta l1, l2 for a given parity π. Note, that states
with π = (−1)L are usually denoted as natural parity states, while those with π = (−1)L+1 are
labeled as unnatural parity states. The associated spin symmetry is determined by the exchange
symmetry, with ǫ12 = +1 and ǫ12 = −1 defining singlet and triplet symmetry for S = 0 and
S = 1, respectively. In total this allows us to target eigenstates classified by 2S+1Lπ and total
angular momentum projection M (see Sec. 1.3) by fixing L, M , π and ǫ12 in expansion (3.4).

Note, that the operator A can also be written as1

A =
1 + ǫP√

2
, (3.12)

where P is the operator which simultaneously exchanges k1,s, n1, l1, m1 for electron one and
k2,s, n2, l2, m2 for electron two, with

ǫ = (−1)l1+l2−Lǫ12 . (3.13)

The factor that relates the quantities ǫ12 and ǫ is due to the symmetry properties of the Clebsch-
Gordan coefficient in (3.10):

〈l2,m2, l1,m1|L,M〉 = (−1)l1+l2−L〈l1,m1, l2,m2|L,M〉 . (3.14)

Within a CI approach the interelectronic distance r12 is not an explicit coordinate and
therefore not accessible directly. To obtain an expression for 1/r12 in the Hamiltonian (3.1) one
has to exploit the multipole expansion of the electron-electron repulsion:

1

r12
=

∞
∑

q=0

q
∑

p=−q

4π

2q + 1

rq
<

rq+1
>

Y ∗
q,p(r̂1)Yq,p(r̂2) , (3.15)

1This form is more convenient for the computation of the matrix representation of the Schrödinger equation
(see appendix B.2).
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with r< = min(r1, r2) and r> = max(r1, r2).

In general the CI expansions involving Coulomb-Sturmian functions use the same dilation
parameter k for all Coulomb-Sturmian functions, which is equivalent to setting k1s = k2s ≡ k
and s = 1 in our expansion (3.4). Furthermore, for each pair of (l1, l2), the same number

N of Coulomb-Sturmian functions S
(k)
n1,l1

(r1) with l1 + 1 6 n1 6 l1 + N and S
(k)
n2,l2

(r2) with
l2 +1 6 n2 6 l2 +N is chosen for the representation. In contrast, our approach is constructed in
order to allow the dilation parameter and the number of Coulomb-Sturmian functions associated
to one electron to be different from those attributed to the other electron. This leads to the
introduction of a set of Coulomb-Sturmian functions {S(k1s)

n1,l1
(r1), S

(k2s)
n2,l2

(r2)} associated to elec-

tron one and two, which is characterized by the combination [k1s,N
min
1s ,Nmax

1s , k2s,N
min
2s ,Nmax

2s ]
with l1 +Nmin

1s 6 n1 6 l1 +Nmax
1s and l2 + Nmin

2s 6 n2 6 l2 + Nmax
2s . Moreover, more than one

and different sets – labeled by the subscript s – may be selected for any angular configuration
(l1, l2). To avoid redundancies in expansion (3.4), the orbital angular momenta are restricted to
l1 6 l2, and if l1 = l2 and k1s = k2s to n1 6 n2. Be aware of the fact, that due to the restriction
to l1 6 l2, each set of Coulomb-Sturmian functions [k1,s,N

min
1,s ,N

max
1,s , k2,s,N

min
2,s ,N

max
2,s ] should

be accompanied by [k2,s, N
min
2,s , N

max
2,s , k1,s,N

min
1,s ,N

max
1,s ] in the case of k1,s 6= k2,s and l1 6= l2.

The reason for this is that, e.g., sets with k1,s > k2,s would explicitly favour a smaller extent
of the l1-orbital than of the l2-orbital. This would limit the descriptive power of the basis after
truncation. To illustrate the importance of this kind of symmetrization let us consider states of
L = 1 below the second single ionization threshold. In the independent particle model (see Sec.
1.3.1) the spectrum consists of 2snp, 2pns and 2pnd states. Using only sets with k1,s > k2,s

would allow a good representation of 2snp and 2pnd states, however, the description of the 2pns
would be very poor in a truncated basis. As already realized by the first experiment on doubly
excited states [16] and its theoretical interpretation [76] the electron-electron interaction mixes
the different configurations of the independent particle model. Consequently, the exclusive use
of sets with k1,s > k2,s requires a huge basis to get converged results, which is not the case if the
mirrored set of Coulomb-Sturmian functions [k2,s,N

min
2,s ,N

max
2,s , k1,s,N

min
1,s ,N

max
1,s ] is included.

Combined with the complex rotation method presented in section 1.4 the approach allows the
description of resonance states. By choosing appropriate sets of Coulomb-Sturmian functions the
description of a given energy regime, i.e., below a certain ionization threshold, is possible with
a rather small number of basis functions. This is in particular true for highly asymmetrically
excited states.

3.1.1 Expectation value of cos(θ12)

As already shown in section 2.2.7 the expectation value of cos(θ12) (in single pole approximation)
is given by

〈cos(θ12)〉 ≃ Re(〈Ψi,θ| cos(θ12)|Ψi,θ〉) . (3.16)

Rewriting cos(θ12) in terms of spherical harmonics Yl,m(r̂),

cos(θ12) =
~r1 · ~r2
r1r2

=
4π

3

∑

q1

∑

q2

C1,0
1,q1,1,q2

Y1,q1(r̂1) Y1,q2(r̂2) , (3.17)

with Clebsch-Gordan coefficients C1,0
1,q1,1,q2

, leads to an easily accessible matrix representation of
cos(θ12) – the details of which are given in appendix B.2.1 – in terms of overlap integrals of
Coulomb-Sturmian functions and Wigner 3jm and 6j symbols [82].



3.2. Matrix representation 35

3.1.2 Electronic densities

As described in section 2.2.8 the density of a well isolated resonance (in single pole approxima-
tion) is given by

|φE(~r )|2 ≃ Re
(

〈~r |R(−θ)|Ψj,θ〉2
)

. (3.18)

To compute 〈~r |R(−θ)|Ψj,θ〉 in the basis given through (3.4) complex backscaling is used, in
which the complex rotation operator acts on the basis. The evaluation of the involved Coulomb-
Sturmian functions with complex arguments is achieved through a stable implementation of the
recursion formula

√

n(n+ l − 1)(n + l)S
(k)
n,l (r) − 2

√
n− 1(n− 1 − kr)S

(k)
n−1,l(r)

+
√

(n − 2)(n − l − 2)(n + l − 1)S
(k)
n−2,l(r) = 0 , (3.19)

which is based on a recurrence relation for Kummer’s functions [103, 120].2

3.2 Matrix representation

After substituting Ψ in Eq. (3.3) by its expansion (3.4) and using the complex rotation method
described in section 1.4, the following generalized eigenvalue problem is obtained (see appendix
B.2):

HθΨi,θ = Ei,θSΨi,θ , (3.20)

where Ψi,θ is the vector representation of the wavefunction |Ψi,θ〉, S is the matrix representing
the overlap and Hθ is the matrix associated with the rotated Hamiltonian. The calculation of
matrix elements of S and Hθ may be performed analytically, which becomes, however, cumber-
some as soon as various sets of Coulomb-Sturmian functions with different dilation parameters
are introduced. Alternatively, Gauss-Laguerre (GL) integration [103, 120], as described in ap-
pendix B.3, provides extremely accurate results for the matrix elements in (3.20) since the GL
quadrature formula is exact in our case where all integrals to calculate involve products of poly-
nomials and decreasing exponentials. In addition the matrix elements of the overlap matrix S,
of the kinetic energy, and of the Coulomb interaction of the electrons with the nucleus can be
computed efficiently with GL integration. The situation for the electron-electron repulsion is
different: The computation of matrix elements associated with the 1/r12 term (3.15) involves
the following radial double integral:

R =

∞
∫

0

dr1

∞
∫

0

dr2 S
(κ1)
ν1,λ1

(r1)S
(κ2)
ν2,λ2

(r2)

(

rq
<

rq+1
>

)

S
(k1)
n1,l1

(r1)S
(k2)
n2,l2

(r2) , (3.21)

which can be decomposed into

R =

∞
∫

0

dr1 S
(κ1)
ν1,λ1

(r1)S
(k1)
n1,l1

(r1)r
q
1

∫ ∞

r1

dr2 S
(κ2)
ν2,λ2

(r2)S
(k2)
n2,l2

(r2)
1

rq+1
2

+

∞
∫

0

dr2 S
(κ2)
ν2,l2

(r2)S
(k2)
n2,l2

(r2)r
q
2

∫ ∞

r2

dr1 S
(κ1)
ν1,λ1

(r1)S
(k1)
n1,l1

(r1)
1

rq+1
1

. (3.22)

The GL quadrature formula for these integrals involves double sums over a number of in-
tegration points which are determined by the degree of the polynomial part of the subintegral

2The relation between the Coulomb-Sturmian and the Kummer’s function is given in appendix B.1.
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functions (for details see appendix B.3.1). If the maximum degree of the polynomial part of
the subintegral functions involved in the whole basis is given by Nmax, then the length of the
double sums in the GL integration, which allows a computation of all matrix elements, scales
quadratically with Nmax. With this choice all double sums have the same length and one set
of weights and abscissae can be used for the computation of all matrix elements. Note, that
this allows a simultaneous computation of all matrix elements corresponding to a given pair of
dilation parameters and angular configurations. The description of highly excited states requires
rather large values for the radial indices of the Coulomb-Sturmian functions, resulting in a high
value of Nmax for which the choice of a uniform length for the double sums turns out to be
rather inefficient. Alternatively, one might adjust the number of integration points to each of
the integrals (3.22), which would imply calculating the integrations points (zeros of Laguerre
polynomials) several times. However, this is even less efficient.

To reduce the number of operations needed to compute the matrix representation of 1/r12
we adopt a method, recently developed by Zamastil et al. [124, 125], based on the generalized
Wigner-Eckart theorem and recurrence relations. In the following the method is reviewed and

adjusted to our definition of Coulomb-Sturmian functions S
(k)
n,l (r), which are connected to the

Sturmian functions Rn,l(kr) used in [125] by

Rn,l(kr) = C(k)
n

S
(k)
n,l (r)

r
, with C(k)

n =

√

n

k
. (3.23)

3.2.1 Linearization of the product of two Coulomb-Sturmian functions

The Wigner-Eckhart theorem for Coulomb-Sturmian functions (Eq. (49) of [125]) reads3

S
(ki)
ni,li

(r)S
(κi)
νi,λi

(r) =

νi+ni
∑

Ni=Li+1

(νi, λi, κi, ni, li, ki|Ni)S
(ξi)
Ni,Li

(r) , (3.24)

with ξi = κi + ki , and Li = λi + li . The orthogonality relation (3.9) for the Coulomb-Sturmian
functions leads to

(νi, λi, κi, ni, li, ki|Ni) =
Ni

ξi

∞
∫

0

dr S
(ki)
ni,li

(r)S
(κi)
νi,λi

(r)
1

r
S

(ξi)
Ni,Li

(r) . (3.25)

After substitution of the products of two Coulomb-Sturmian functions in the radial integrals
of the 1/r12 matrix elements (3.22) by the corresponding expansions (3.24) we obtain

R =

ν1+n1
∑

N1=L1+1

ν2+n2
∑

N2=L2+1

(

GL1,L2,q
N1,N2

(ξ1, ξ2) + GL2,L1,q
N2,N1

(ξ2, ξ1)
)

×(ν1, λ1, κ1, n1, l1, k1|N1)(ν2, λ2, κ2, n2, l2, k2|N2), (3.26)

where GLi,Lj ,q
Ni,Nj

are the integrals defined by

GLi,Lj ,q
Ni,Nj

(ξi, ξj) =

∞
∫

0

dri S
(ξi)
Ni,Li

(ri)r
q
i

∞
∫

ri

drj S
(ξj)
Nj ,Lj

(rj)
1

rq+1
j

. (3.27)

The advantage of the transcription of Eq. (3.22) in terms of coefficients (3.25) and integrals
(3.27) is given through the possibility of a recursive computation of the coefficients involved, as
well as of the integrals.

3The coefficients for our Sturmian functions are accordingly related to the coefficients (νi, λi, κi, ni, li, ki|Ni)p=1

of [125] through the relation (νi, λi, κi, ni, li, ki|Ni) =
q

κiki

ξi

q

Ni

νini
(νi, λi, κi, ni, li, ki|Ni)p=1 .
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3.2.2 Recurrence relation for the coefficients (νi, λi, κi, ni, li, ki|Ni)

In case of fixed values for λi, κi, li and ki within an equation, we employ the shorthand notation

(νi, ni|Ni) =

√

ξi
κiki

√

νini

Ni
(νi, λi, κi, ni, li, ki|Ni) . (3.28)

The coefficients satisfy the recurrence relation [125]

√

(νi − λi − 1)(νi + λi)(νi, ni|Ni)=2

(

νi − 1 − κiNi

ξi

)

(νi − 1, ni|Ni)

−
√

(νi + λi − 1)(νi − λi − 2)(νi − 2, ni|Ni)

+
κi

ξi

√

(Ni + Li)(Ni − Li − 1)(νi − 1, ni|Ni − 1)

+
κi

ξi

√

(Ni − Li)(Ni + Li + 1)(νi − 1, ni|Ni + 1) . (3.29)

This equation can be used to lower the quantum number νi to λi + 1. Taking into account that

(νi, λi, κi, ni, li, ki|Ni) = (ni, li, ki, νi, λi, κi|Ni) (3.30)

provides the means to lower the quantum number ni to li + 1. The initial conditions for the

recursion (3.29) are (ν
(0)
i , n

(0)
i |N (0)

i ) and (ν
(0)
i , n

(0)
i |N (0)

i + 1), with ν
(0)
i = λi + 1, n

(0)
i = li + 1

and N
(0)
i = λi + li + 1. These have simple analytical expressions given by [125]

(ν
(0)
i , n

(0)
i |N (0)

i ) = 2(λi + li + 1)
κλi+1

i kli+1
i

(κi + ki)λi+li+2

√

(2λi + 2li + 1)!

(2λi + 1)!(2li + 1)!
,

(ν
(0)
i , n

(0)
i |N (0)

i + 1) = −
√

2(λi + li + 1)
κλi+1

i kli+1
i

(κi + ki)λi+li+2

√

(2λi + 2li + 1)!

(2λi + 1)!(2li + 1)!
. (3.31)

In addition,

(ν
(0)
i , n

(0)
i |Ni) = 0, Ni > λi + li + 2 . (3.32)

3.2.3 Recurrence relations for the integrals GLi,Lj ,q
Ni,Nj

(ξi, ξj)

Equations (67) and (72) of [125] provide recurrence relations for the GLi,Lj ,q
Ni,Nj

(ξi, ξj) which keep

the indices Li, Lj and q, and the parameters ξ1 and ξ2 constant.4 After transforming these
according to (3.23) we obtain

〈N1, L1, ξ1|N2, L2, ξ2〉 = qGN1,N2 +
(N2 + L2)

2

√

(N2 − 1)(N2 − L2 − 1)

N2(N2 + L2)
GN1,N2−1

−(N2 − L2)

2

√

(N2 + 1)(N2 + L2 + 1)

N2(N2 − L2)
GN1,N2+1 , (3.33)

and

〈N1, L1, ξ1|N2, L2, ξ2〉 = (q + 1)GN1,N2 +
(N1 − L1)

2

√

(N1 + 1)(N1 + L1 + 1)

N1(N1 − L1)
GN1+1,N2

−(N1 + L1)

2

√

(N1 − 1)(N1 − L1 − 1)

N1(N1 + L1)
GN1−1,N2 , (3.34)

4The integrals GLi,Lj ,q

Ni,Nj
(ξi, ξj) are accordingly related to integrals PLi,Lj ,q

Ni,Nj
(ξi, ξj) of [125] through the relation

GLi,Lj ,q

Ni,Nj
(ξi, ξj) =

q

ξi

Ni

q

ξj

Nj

q

(Ni−Li−1)!
(Ni+Li)!

q

(Nj−Lj−1)!

(Nj+Lj)!
PLi,Lj ,q

Ni,Nj
(ξi, ξj).
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respectively. Here we have employed – under the condition of a fixed set of parameters L1, L2,
q, ξ1, ξ2 – the shorthand notation:

GN1,N2 = GL1,L2,q
N1,N2

(ξ1, ξ2) . (3.35)

The left hand side of equations (3.33) and (3.34) refer to the overlap integral

〈N1, L1, ξ1|N2, L2, ξ2〉 =

∞
∫

0

dr S
(ξ1)
N1,L1

(r)S
(ξ2)
N2,L2

(r) . (3.36)

These overlaps and the initial conditions for the recursions (3.33) and (3.34) are calculated with
GL integration. Notice that for ξ1 = ξ2 the overlaps have simple analytical expressions [126]
which are implemented in our computations.

3.3 Numerical treatment

3.3.1 Computation of the matrix representation of the generalized eigenvalue

problem

The matrix elements of the kinetic term and the electron-nucleus interaction of Hθ, and of the
overlap matrix S are calculated using GL integration which guarantees an accuracy of the order
of the machine precision (in double and quadruple precision). The matrix elements of 1/r12
can also be computed very accurately with GL integration, but Eq. (3.26) combined with the
recursive relations (3.29), (3.33) and (3.34) provides a much more efficient method. However, its
implementation is delicate. The recursions (3.29), (3.33) and (3.34)5 are not numerically stable
even for rather small values of Ni and Li (e.g. Ni − Li > 15, Li > 10). Typically one observes
a slow decay in precision at each recursion step up to a certain point, which is then followed by
a rather rapid total breakdown of precision. Consequently, a computation of matrix elements
of 1/r12 using purely the recursive method described in section 3.2 seems not to be feasible. To
overcome the instability issues we limit the length of the recursions and restart the recursion
process. The implementation is described in detail in the following.

To compute the coefficients (νi, ni|Ni) the three dimensional coefficient matrix is initialized
to zero and decomposed into two-dimensional slices with fixed νi. Using Eq. (3.31) the two
initial values for the slice with νi = λi + 1 are then evaluated. Looking at Eq. (3.29) it is easy
to spot that for νi = λi + 1 the non-zero coefficients are situated in the upper right triangle, the
diagonal and the first lower subdiagonal. These matrix elements are then computed columnwise,
starting with the element of the first lower subdiagonal (see Fig. 3.1 (left)). Analogously we
compute the auxiliary matrix for ni = li + 1. From Eq. (3.30) follows that the coefficients with
ni = li + 1 correspond to the initial conditions for the matrix slices with νi 6= λi + 1 (see Fig.
3.1 (center and right)). The slices with νi 6= λi + 1 are computed in a similar way. The major
difference in their computation is that after a number ‘reclength’ of columns computed via
the recursion formula we compute two columns by using GL integration techniques and then
restart the recursion for another ‘reclength’ columns (see Fig. 3.1 (right)). In doing so we
ensure that we are able to contain the loss of precision.

The matrix GNi,Nj
is divided into blocks of dimension ‘blocklength’ (see Fig. 3.2). Dis-

placed by two rows downwards with respect to the center of the block, a set of four initial values
is calculated by using GL integration methods. The displacement of the starting values is done

5Ref. [125] contains further recurrence relations for the integrals PLi,Lj ,q

Ni,Nj
(ξi, ξj) which connect integrals with

different values of Ni, Li and Nj , Lj , respectively. We have not investigated the stability properties of these
recursions.
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Figure 3.1: (left) Coefficients for νi = λi + 1: Initial values computed via Eq. (3.31) are marked
by the letter I. Representative for all coefficients, the recursion flow for the computation of one
matrix element is indicated with arrows. (center) Coefficients for ni = li + 1: Initial values
computed via Eq. (3.31) are marked by the letter I. The starting values for the coefficients with
νi = λi + 4 are marked by the letter S. (right) Coefficients for νi 6= λi + 1: As a representative
the coefficients with νi = λi + 4 are pictured. The starting values characterized by the letter S

correspond to the values marked by an S in the center picture of this figure. The values for the
restart of the recursion are highlighted by G. All coefficients (νi, ni|Ni) with Ni > νi + ni are
equal to zero.

as to be able to compute efficiently zero values for integrals with Ni > Nj in the case of equal
dilation parameters ξi = ξj. Starting from these the rest of the block is computed by employing
the recursion formulas Eq. (3.33) and Eq. (3.34). In doing so we are able to shorten the length
of the recursion and ensure a certain level of precision.

The computations of the coefficients (νi, ni|Ni) and the integrals GNi,Nj
are performed in

128-bit arithmetic, if necessary converted to other precision, and then used to compute ma-
trix elements of 1/r12 as given by Eq. (3.26) and Eq. (3.15). The parameters ‘reclength’,
‘blocklength’ are optimized to yield the desired precision by as few GL integrated elements as
possible, e.g. to ensure 26 digits of accuracy ‘reclength’=6, ‘blocklength’=10 are sufficient,
while ‘reclength’=18, ’blocklength’=26 provide at least 15 digits of accuracy for coefficients
and integrals (Li, Lj < 50, Ni − Li, Nj − Lj < 100, 0.02 ≤ ξi, ξj ≤ 4.00).6

The computation time for the matrix representation of 1/r12 suitable to treat doubly excited
states as in section 4.1.2 is, on a Dual Core AMD Opteron 8222SE/3GHz, of the order of one
day for pure Gauß-Laguerre integration. A computation of matrices for other values of the
total angular momentum, different energy regimes or simply higher precision results often need
significantly more computation time. The computation of the matrix associated to 1/r12 with
the method presented beforehand results in a tremendous performance gain compared to pure
Gauß-Laguerre integration. The speed-up of the calculation mainly depends on the number of
integration points needed for the Gauß-Laguerre integration and the size of the auxiliary matrices
for coefficients and integrals (the number of restarts of the recursions and how many elements
remain to be computed after the last restart play a role here). If the matrix elements of 1/r12
are to be computed in double precision typical performance gains of a factor between 10 to 130
are observed. The speed-up by a factor of 130 was observed using one set of Coulomb-Sturmian
functions ([2.0, 1, 70, 2.0, 1, 70]) and 26 angular configurations (l,l) for the computation of the
helium ground state. For matrices used for the description of highly doubly excited states of

6‘reclength’=20, ‘blocklength’=20 provide at least 15 digits of accuracy for coefficients and integrals with
Li, Lj < 50, Ni − Li, Nj − Lj < 140, ξi = ξj = 4.00.
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Gauß-Laguerre Int.

Recursion block

N2

N1

blocklength

Figure 3.2: GN1,N2 : A schematic depiction for the computation of matrix G. The matrix is
decomposed in subblocks of dimension ‘blocklength’. Within each of these subblocks a set of
four initial values is computed using GL integration from which the rest of the matrix elements
can be calculated employing Eq. (3.33) and Eq. (3.34).

helium the computation is faster by a factor of 10 to 30.

3.3.2 Solution of the eigenvalue problem

The inclusion of many sets of Coulomb-Sturmian functions with different dilation parameters in
our basis makes it numerically overcomplete, which means that some eigenvalues of the overlap
matrix (which must be positive definite) can be numerically zero. This results from a loss of
numerical independence due to finite precision arithmetic. In order to solve this problem we
proceed as follows. Let Hθ and S be (n×n) matrices, and let us consider the (n×n) orthogonal
matrix T that diagonalizes S. Therefore, TTST = s where s is the diagonal matrix containing
the eigenvalues of S of which the associated eigenvectors are stored in columns of T. We define
a small cutoff ǫ (of the order of 10−12) and reject all eigenvalues of S that are smaller than this
cutoff. We denote by p the number of overlap eigenvalues that are greater than or equal to the
cutoff. By rejecting the n−p overlap eigenvalues and their corresponding eigenvectors, the sizes
of T and s are reduced to (n× p) and (p× p), respectively. Using basic matrix algebra, one can
show that Eq. (3.20) can be transformed into the ordinary eigenvalue problem

H̃θΨ̃i,θ = Ei,θΨ̃i,θ , (3.37)

with

H̃θ = VTHV ,

Ψ̃i,θ = VTΨi,θ , (3.38)

where H̃θ is a (p× p) matrix, Ψ̃i,θ is a (p× 1) vector, and V is a (n× p) matrix given by

V = Ts−1/2 . (3.39)

If only one set of Coulomb-Sturmian functions is used per angular configuration no such proce-
dure is needed. The numerical diagonalization of the eigenvalue problem (3.37) or the general-
ized eigenvalue problem (3.20) is performed by an efficient scalar implementation of the Lanczos
algorithm presented in section 2.4.2.



Chapter 4

Spectral properties of helium

Since the failure of the Bohr-Sommerfeld quantization to reproduce the ground state energy
of helium, which among other reasons lead to the formulation of quantum wave mechanics by
Heisenberg [10] and Schrödinger [11], the ground state and singly excited states of helium have
attracted the interest of many theoreticians. Various approaches have been proposed for the
treatment of this system ranging from semiclassical (see [3] and references therein) to quantum
mechanical including relativistic corrections [14, 15]. Doubly excited states drew continuous
attention of theoreticians and experimentalists after the experiment by Madden and Codling
[16], through which the highly correlated nature of doubly excited states was shown. Most of
the attention was directed towards natural parity states (π = (−1)L), i.e., states and resonances
which are accessible through dipole transitions from the ground state. In particular, resonances
for total angular momentum L = 0 and L = 1 have been subject to extensive studies of spectral
nature, e.g., [51, 52], and through photoionization cross sections [53, 65, 127–129]. States of
unnatural parity (π = (−1)L+1) have drawn a lot less attention. These states are all doubly
excited, i.e., there are no bound states below the first ionization threshold and no continuum
starts from this threshold. In fact, the spectrum consists of non-autoionizing doubly excited
states below and resonances above the second ionization threshold. Indeed, the non-autoionizing
states have already been observed experimentally [130–132] and their identification confirmed
theoretically [133] in the late 1920’s and early 1930’s. The theoretical treatment of complex
physical processes like, e.g., electron impact ionization or multiphoton processes with circular
polarized light, requires an accurate description of states and resonances of both parities. Note
also, that accurate values of the energy and radiative lifetime of non-autoionizing doubly excited
states of helium are important in various fields like for instance, astrophysics [134, 135] and
plasma physics [136–140].

In the following, spectral data for states and resonances of helium are presented. After a
study on the convergence of the ground state, our approach is applied to the computation of 1Se

and 3Se resonances of helium for energies up to the tenth ionization threshold. Following this,
non-autoionizing doubly excited states of unnatural parity with angular momentum ranging
from L = 1 to L = 9 are treated within our approach. Finally, we present results for 3P e

resonance states.

4.1 Natural parity states

The approach presented in chapter 3 has already been shown to perform excellently for the
description of singly excited states of helium [45, 68, 120, 121], in particular, for non-zero total
angular momentum. Therefore, we will, concerning bound states, only discuss the convergence of
the helium ground state. Following that, we will demonstrate that our configuration interaction
approach, in combination with the complex rotation method, is able to accurately describe

41
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E0 [a. u.]
(lmax

1 , lmax
2 ) Nmax

i = 30 Nmax
i = 40 Nmax

i = 50

(5, 5) −2.90358924628349 −2.90359778723568 −2.90360124209599
(10, 10) −2.90366394376605 −2.90368261011208 −2.90369154406158
(15, 15) −2.90366571552177 −2.90368612752801 −2.90369679541358
(20, 20) −2.90366573200293 −2.90368620213144 −2.90369699088231
(25, 25) −2.90366573205997 −2.90368620279737 −2.90369699428155

value of [51]: E0 = −2.903724377034119589

Table 4.1: Energy values for the ground state (without analysis of converged dig-
its); the basis is given through the used set of Coulomb-Sturmain functions defined by
[k1, N

min
1 , Nmax

1 , k2, N
min
2 , Nmax

2 ] = [2.0, 1, Nmax
i , 2.0, 1, Nmax

i ] and the angular configurations
(l1, l2) included (see Sec. 3.1).

resonance states within bases of rather small size. For this purpose we focus on singlet and
triplet states of helium with L = 0. Results for other values for the total angular momentum L
can be found in appendix C.1.

4.1.1 Ground state

Within our configuration interaction approach [45, 68, 120–122] the convergence of the ground
state to its exact value is rather slow. As already mentioned in section 3.1 the reason for this
is that the Kato cusp [66, 67], which is a discontinuity in the derivative of the wavefunction
at r12 = 0, is not satisfied within the CI approach and not resolvable with a finite number of
basis functions. Effectively, the basis expansion within our approach is truncated in two very
different ways. On the one hand, the basis is truncated through a maximum value for the
radial excitation of the Coulomb-Sturmian functions for each electron, and on the other hand,
the multipole expansion for the computation of 1/r12 includes only a finite number of angular
configurations (l1, l2).

In this context, it is not clear how large the quantitative influence of the Kato cusp on the
ground state energy is and whether one has to include more Coulomb-Sturmian functions for
each electron, more angular configurations or both in order to improve the resolution of the cusp
and therefore to obtain a ground state energy as close as possible to its true value.

In table 4.1 we present the energy of the ground state computed for various basis expansions,
differing in the number of Coulomb-Strumian functions and angular configurations included.
Obviously, the deviation of the eigenvalue from the true value of the ground state energy de-
creases with an increasing number of Coulomb-Sturmian functions included for each electron.
The data of table 4.1, however, shows that there is, depending on Nmax

i , a minimal number of
angular configurations for which the energy value obtained exhibits only small variations under
the inclusion of additional angular configurations. Thus, the data reveals that the number of
Coulomb-Sturmian functions plays the key-role for the energy value, while the number of angular
configurations – as long as a certain minimal number of them is included – plays only a minor
role. Considering this, a calculation including 26 angular configurations (lmax

1 = 25, lmax
2 = 25)

and 70 Coulomb-Sturmian functions per electron ([2.0, 1, 70, 2.0, 1, 70]) has been performed,
resulting in the eigenvalue

E0 = −2.90370777337547 a. u. . (4.1)

Note, that the matrices associated to the generalized eigenvalue problem are of dimension
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Figure 4.1: Density distribution of the ground state projected onto the subspace with
θ12 = 0. The basis expansions consist of 26 angular configurations with 30 and 70 Coulomb-
Sturmian functions per electron for left and right plot, respectively. Note, that in the figures
|r1r2Ψ0(~r1, ~r2)|2θ12=0 is displayed. Areas of low and high density are represented by black and
white color, respectively.

Figure 4.2: Probability density after integration over the angular coordinates
(
∫

dΩ1dΩ2r
2
1r

2
2|Ψi(~r1, ~r2)|2) of the 1Se helium ground state. Areas of low and high den-

sity are represented by black and white color, respectively.
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n = 64610.1 Though this eigenvalue represents a significant improvement compared to those
of table 4.1 it still only agrees to five digits with the reference value by Bürgers et al. [51].

The effect of the inclusion of more Coulomb-Sturmian functions on the resemblance of the
cusp can also be traced in the density distribution of the ground state. In figure 4.1 projections
of the densities of computed eigenstates on the subspace with θ12 = 0 are displayed. Under this
condition, r12 = 0 is equivalent to r1 = r2, and the density should be zero along this line due
to the Coulomb repulsion. For both plots this is not the case, however, the inclusion of more
Coulomb-Sturmian functions in the basis leads to a density along this line which is significantly
reduced compared to the one containing fewer Coulomb-Sturmian functions. Figure 4.2 present
the density of the ground state after integration of the angular coordinates. Note, that the effect
of the Kato cusp cannot be spotted in this plot.

4.1.2 Resonances

The spectral method described in chapter 3 and the computation of matrix elements of 1/r12
via the restarted recursion method have been used to compute highly doubly excited states of
helium for singlet and triplet symmetry. We have chosen to compute resonances for L = 0 as
these states contain the highest degree of symmetry, which makes them converge slower in this
CI approach. The method is applicable to any value of the total angular momentum and should
give better convergence for higher values of L, which has already been illustrated for singly
excited states [45, 68].

In order to compute the spectra up to the 10th SIT we have used one choice of parameter
sets for each regime between two SITs and for each symmetry. Each basis expansion consists of
an expansion into 16 angular configurations and five sets [k1s,N

min
1s ,Nmax

1s , k2s,N
min
2s ,Nmax

2s ] for
each angular configuration. Up to the 5th ionization threshold the dilation parameters are, by
a rule of thumb, chosen to be k1s ≈ 2/N and k2s ≈ 2/ns, where N and ns are the excitations of
the inner and the outer electron of the resonance, respectively. The ns are taken as such that
they account for different excitation of the outer electron in order to allow a description of a
whole energy regime. The values of Nmin

is , Nmax
is (i = 1, 2) are then chosen to provide an interval

around N and ns, respectively, i.e. Nmin
1s < N < Nmax

1s and Nmin
2s < ns < Nmax

2s . In general
the number of Coulomb-Sturmian functions used for the inner electron is larger for symmetric
excitation of both electrons than in the case of a very asymmetric configuration. For the higher
lying thresholds the choice of the dilation parameters has to be amended as they have to account
for different series and screening effects.

To take care of the numerical overcompleteness of the basis the (n × n) matrices Hθ and
S are transformed into the basis where the overlap is diagonal. The transformation matrix
consists of the eigenvectors of the overlap matrix associated to eigenvalues larger than the cutoff
ǫ = 10−12, resulting in an effective reduction of the Hamiltonian matrix into an (p × p) matrix
(see Sec. 3.3.2) which then has to be diagonalized.

The computation of matrix elements of 1/r12 with GL integration techniques is rather
cumbersome and renders the optimization of the basis for an energy regime extremely time-
consuming and therefore limits the described approach. The implementation of the computa-
tion of 1/r12 via the restarted recursion method reduces computation time tremendously and
allows an application of this spectral method to the computation of highly doubly excited states
of helium. Several performance tests have been done. For instance, we have computed the
matrix representation of 1/r12 for a matrix designed to describe the resonance spectrum below

1For this choice of the basis the computation of 1/r12 with the restarted recursion method (Sec. 3.3.1) lasts
90 hours on a single core of a Dual Core AMD Opteron 8222SE/3GHz. The computation via the Gauß-Laguerre
integration exceeds all computation time limits, however, by the fraction of the matrix computed after 20 days a
total computation time of 490 days could be estimated. This corresponds to a speed-up of 130 for the restarted
recursion method.
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−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
this work Bürgers et al. [51] this work (continued)

0.77787 0.00227 0.777867636 0.002270653 0.5046973 0.0000072
0.6219 0.0001 0.621927254 0.000107818 0.5039403 0.0000021
0.589895 0.000681 0.589894682 0.000681239 0.5039040 0.0000054
0.54808 0.00004 0.548085535 0.000037392 0.5033238 0.0000016
0.544882 0.000246 0.544881618 0.000246030 0.5032958 0.0000042
0.527715 0.000023 0.527716640 0.000023101 0.5028415 0.0000013
0.526687 0.000109 0.526686857 0.000109335 0.5028196 0.0000033
0.518103 0.000015 0.518104252 0.000014894 0.5024570 0.0000011
0.517641 0.000057 0.517641112 0.000056795 0.5024395 0.0000026
0.512763 0.000010 0.512763242 0.000009970 0.5021456 0.0000009
0.5125135 0.0000330 0.512513488 0.000032992 0.5021314 0.0000021
0.5094833 0.0000069 0.509483569 0.000006918 0.5018898 0.0000007
0.5093327 0.0000208 0.509332686 0.000020795 0.5018782 0.0000018
0.507324 0.000005 0.507324340 0.000004959 0.5016675 0.0000015
0.5072258 0.0000139 0.507225835 0.000013936
0.505827 0.000004 0.505827143 0.000003657
0.5057591 0.0000098 0.505759104 0.000009790
0.5047463 0.0000028 0.504746388 0.000002766

Table 4.2: 1Se resonances below I2: our results compared with the results of [51]. The dimension
of the matrices used to obtain the data was n = 11472 and p = 8304, respectively. The data
presented was subject to a stability analysis with respect to varying values of the complex
rotation angle θ. By increasing the excitation of the outer electron the convergence improves.

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
this work Bürgers et al. [51] this work (continued)

0.60257751 0.00000332 0.602577505 0.000003325 0.504817014 0.000000061
0.55974655 0.00000010 0.559746626 0.000000130 0.50399459 0.00000005
0.54884086 0.00000155 0.548840858 0.000001547 0.503366094 0.000000035
0.53250532 0.00000006 0.532505349 0.000000072 0.502875028 0.000000027
0.528413972 0.000000772 0.528413972 0.000000771 0.502484067 0.000000022
0.52054918 0.00000004 0.520549199 0.000000041 0.502167743 0.000000018
0.518546375 0.000000429 0.518546375 0.000000428 0.501902040 0.000000015
0.51418035 0.00000002 0.514180356 0.000000025
0.513046496 0.000000260 0.513046496 0.000000260
0.510378167 0.000000017 0.510378174 0.000000016
0.509672798 0.000000169 0.509672798 0.000000169
0.50792515 0.00000001 0.507925149 0.000000011
0.507456056 0.000000116 0.507456056 0.000000116
0.506250076 0.000000007 0.506250079 0.000000008
0.505922151 0.000000083 0.505922151 0.000000082
0.505055338 0.000000005 0.505055341 0.000000006

Table 4.3: 3Se resonances below I2: our results compared with the results of [51]. The dimension
of the matrices used to obtain the data was n = 11472 and p = 7936, respectively. The data
presented was subject to a stability analysis with respect to varying values of the complex
rotation angle θ. The last few resonances are exclusively members of the K = 1 series, which
typically have the largest widths.
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−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
this work Bürgers et al. [51] this work (continued)

0.353538 0.001505 0.353538536 0.001504906 0.225971 0.000037
0.31745 0.00333 0.317457836 0.003329920 0.225848 0.000012
0.281073 0.000751 0.281072703 0.000750733 0.2258390 0.0000026
0.263388 0.001209 0.263388312 0.001209354 0.225397 0.000029
0.25737 0.00001 0.257371610 0.000010564 0.2253023 0.0000092
0.25597 0.00035 0.255972114 0.000350036 0.2252943 0.0000020
0.246635 0.000566 0.246634603 0.000565481 0.224945 0.000023
0.244324 0.000021 0.244324739 0.000021400 0.2248710 0.0000073
0.243824 0.000180 0.238524104 0.000318437 0.2248640 0.0000016
0.23853 0.00032 0.243824049 0.000179910 0.224584 0.000018
0.237310 0.000016 0.237311202 0.000017021 0.2245242 0.0000059
0.23715 0.00010 0.237147099 0.000102160 0.2245181 0.0000013
0.233900 0.000196 0.233898812 0.000196262 0.2242898 0.0000152
0.233172 0.000012 0.233173689 0.000012347 0.2242413 0.0000049
0.233122 0.000062 0.233121363 0.000062881 0.22423593 0.00000110
0.231002 0.000129 0.231001524 0.000129185 0.2240475 0.0000126
0.230531 0.000009 0.230531347 0.000008810 0.2240074 0.0000040
0.230520 0.000041 0.230519146 0.000041369 0.22400277 0.00000092
0.229065 0.000090 0.229064586 0.000089418 0.223845 0.000010
0.228744 0.000028 0.228744234 0.000028755 0.223811 0.000003
0.228741 0.000006 0.228741812 0.000006247 0.2238080 0.0000008
0.227706 0.000065 0.227705232 0.000064398
0.227482 0.000021 0.227481269 0.000020794
0.227474 0.000004 0.227473958 0.000004545
0.226715 0.000048 0.22671442 0.00004789
0.226552 0.000015 0.226551500 0.000015492
0.2265427 0.0000033 0.22654299 0.00000342

Table 4.4: 1Se resonances below I3: our results compared with the results of [51]. The dimension
of the matrices used to obtain the data was n = 11744 and p = 6951, respectively. The data
presented was subject to a stability analysis with respect to varying values of the complex
rotation angle θ.

the 6th SIT with both methods on an Itanium2 processor at the Linux Cluster of the Leibniz-
Rechenzentrum of the Bayerische Akademie der Wissenschaften. The computation time reduces
from 22.5 hours for pure GL integration to 1.75 hours for the method described in section 3.3.1.
Moreover, the speedup of this method compared to GL integration increases with increasing
maximum radial and angular indices of the Coulomb-Sturmian functions included.

Tables 4.2 to 4.7 display the real and imaginary part of resonances up to below I4. Only
converged digits are shown. In Tables 4.2, 4.4 and 4.6 our results for the singlet symmetry
spectra below I2 to below I4 are compared to reference data from [51], while in Tables 4.3, 4.5
and 4.7 our results for triplet symmetry are again presented together with data from [51]. The
data has been tested for convergence with respect to variation of the complex rotation angle
θ, the dilation parameters, and the number of angular configurations. For a given choice of
the parameters [k1s, N

min
1s , Nmax

1s , k2s, N
min
2s ,Nmax

2s ] several values of θ in the interval [0.085, 0.2]
have been chosen. Note, that the data presented in Tab. 4.2 to 4.7 have each been obtained
with one optimized basis choice with an effective dimension of the resulting matrix of p < 8500
for singlet and p < 8000 for triplet symmetry. In contrast, the results in [51] where obtained
using perimetric coordinates and the typical basis dimensions were three times larger for the
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Figure 4.3: Resonance spectrum for singlet symmetry L = 0 states. (a) shows the data presented
in Tables 4.2, 4.4 and 4.6. In (b) the converged resonances from above I4 to below I10 are
displayed. The criterion of convergence used was maximum relative deviation of the real part
of 10−4 and maximum relative deviation of the imaginary part of 10−2 for at least three values
of θ. The spectra have been obtained with matrices smaller than or equal to n = 12240 and
p = 8778, respectively.
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Figure 4.4: Resonance spectrum for triplet symmetry L = 0 states. (a) shows the data presented
in Tables 4.3, 4.5 and 4.7. In (b) the converged resonances from above I4 to below I10 are
displayed. The criterion of convergence used was maximum relative deviation of the real part
of 10−4 and maximum relative deviation of the imaginary part of 10−2 for at least three values
of θ. The spectra have been obtained with matrices smaller than or equal to n = 12240 and
p = 8278, respectively. For the energy regime above I5 the convergence of narrow resonances
(K = −N + 1) is limited, due to the smallness of the imaginary part of the eigenvalues in
comparison with the real part.
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−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
this work Bürgers et al. [51] this work (continued)

0.28727713833 0.00001491439 0.287277138 0.000014914 0.22662254 0.00000061
0.270283613 0.000023307 0.270283614 0.000023308 0.22615767 0.00000034
0.258133977 0.000009749 0.258133976 0.000009748 0.22607865 0.00000064
0.24996463 0.00000678 0.249964616 0.000006789 0.225901438 0.000000473
0.249000427 0.000006842 0.249000418 0.000006848 0.225542108 0.000000264
0.24480749 0.00000581 0.244807489 0.000005801 0.225480290 0.000000496
0.24031449 0.00000348 0.240314494 0.000003490 0.225343862 0.000000371
0.23969689 0.00000460 0.239696887 0.000004600 0.225060490 0.000000209
0.23767221 0.00000358 0.237672213 0.000003578 0.225011251 0.000000400
0.23496955 0.00000203 0.234969582 0.000002042 0.224903928 0.000000297
0.23456903 0.00000306 0.234569038 0.000003061 0.224676582 0.000000169
0.23343332 0.00000233 0.233433327 0.000002322 0.224636744 0.000000323
0.231692091 0.000001298 0.231692116 0.000001300 0.224550762 0.000000241
0.23142164 0.00000211 0.231421646 0.000002100 0.224365627 0.000000137
0.23071908 0.00000158 0.230719088 0.000001578 0.224332952 0.000000265
0.229535681 0.000000880 0.229535701 0.000000880 0.224262980 0.000000198
0.229345777 0.000001492 0.229345782 0.000001491 0.224110242 0.000000113
0.228880000 0.000001117 0.228880000 0.000001117 0.224083116 0.000000221
0.228040858 0.000000620 0.228040873 0.000000623 0.22387516 0.00000017
0.227902911 0.000001092 0.227902914 0.000001091
0.22757745 0.00000082 0.2275778 0.0000008
0.226961937 0.000000455 0.226962 0.000001
0.226858802 0.000000823 0.226859 0.000001

Table 4.5: 3Se resonances below I3: our results compared with the results of [51]. The dimension
of the matrices used to obtain the data was n = 11744 and p = 6760, respectively. The data
presented was subject to a stability analysis with respect to varying values of the complex
rotation angle θ.

results presented up to the 4th SIT and about a factor 5 larger for convergence around the 9th
ionization threshold [54].

In the case of singlet symmetry the data in Tables 4.2, 4.4 and 4.6 show a precision of five to
eight significant digits for the real part and around two significant digits for the imaginary part of
the resonance energies. For triplet symmetry (see Tables 4.3, 4.5 and 4.7) the accuracy is around
nine significant digits for the real and two significant digits for the imaginary part, respectively.
The discrepancy between the precision for singlet and triplet symmetry is due to the influence of
the Kato cusp [66, 67], which is a discontinuity of the derivative of the wavefunction at r12 = 0
which is not resolvable within our approach. In the case of triplet symmetry the influence of the
Kato cusp is softened by the Pauli principle. With increasing excitation of the outer electron the
number of converged digits rises in general in contrast to the EC approach in [51]. This is due to
the fact that the Kato cusp is more important for symmetrically excited configurations. Along
the tables 4.2 to 4.7 some resonances converge better than others, which is a signature that the
chosen basis parameters are better suited for the description of such resonances. Indeed, the
convergence of a single state depends significantly on the basis used, a clear example for this is
the triplet I3 ground state, which converges better than anticipated from the above argument,
and which is most probably a consequence of an almost ideal basis for the description of this
state. The precision for a particular resonance can be vastly improved by optimizing the basis
for this state instead of optimizing the basis for an energy regime.
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this work Bürgers et al. [51] this work (continued) Bürgers et al. [51] (cont.)

0.200990 0.000970 0.200989572 0.000969178 0.1299935 0.0000027 0.129993447 0.000002704
0.18783 0.00246 0.187834626 0.002458380 0.1297182 0.0000028 0.129717890 0.000002986
0.168261 0.001085 0.168261328 0.001086186 0.129251 0.000046 0.129251251 0.000046022
0.165734 0.000605 0.165734021 0.000605047 0.129323 0.000033 0.129322969 0.000033799
0.15691 0.00138 0.156904051 0.001377256 0.129225 0.000058 0.129224756 0.000057660
0.15083 0.00032 0.150824382 0.000320293 0.1289253 0.0000025 0.128925097 0.000002597
0.147267 0.000412 0.147266965 0.000416449 0.128777 0.000053 0.128776594 0.000054043
0.145400 0.000809 0.145397764 0.000808943 0.1285627 0.0000361 0.128562811 0.000036493
0.142603 0.000169 0.142602474 0.000169806 0.128552 0.000041 0.128551852 0.000041001
0.141066 0.000010 0.141064156 0.000011739 0.12831547 0.00000213 0.128315304 0.000002218
0.1398403 0.0002400 0.139840342 0.000239815 0.1282625 0.0000396 0.128262189 0.000039756
0.139190 0.000475 0.139189490 0.000475268 0.1280296 0.0000312 0.128029833 0.000031311
0.137686 0.000091 0.137685346 0.000092512 0.1280257 0.0000274 0.128025335 0.000027559
0.137088 0.000002 0.137088229 0.000002490 0.1278368 0.0000018 0.127836684 0.000001881
0.135728 0.000160 0.135728512 0.000160253 0.1278159 0.0000270 0.12781573 0.00002743
0.135439 0.000290 0.135437398 0.000289889 0.1276101 0.0000257 0.127610012 0.000025737
0.134551 0.000049 0.134551108 0.000049711 0.1276056 0.0000198 0.127605478 0.000019886
0.134229 0.000003 0.134228598 0.000002711 0.12745445 0.00000154 0.127454353 0.000001595
0.133141 0.000110 0.133141846 0.000111361 0.1274462 0.0000196 0.1274461 0.0000200
0.132997 0.000184 0.132996200 0.000183914 0.1272715 0.0000206 0.127271404 0.000020669
0.1324519 0.0000233 0.132451935 0.000023393 0.1272676 0.0000153 0.127267459 0.000015312
0.1322133 0.0000030 0.132212660 0.000003293 0.1271443 0.0000013 0.127144218 0.000001356
0.131396 0.000080 0.131396547 0.000080331 0.1271418 0.0000148 0.1271415 0.0000152
0.131320 0.000121 0.131319807 0.000120624 0.1269945 0.0000164 0.1269944 0.0000166
0.1309991 0.0000058 0.130999124 0.000005799 0.1269913 0.0000123 0.1269912 0.0000123
0.1307731 0.0000031 0.130772717 0.000003289 0.1268895 0.0000116
0.130160 0.000059 0.130160039 0.000059877 0.12688930 0.00000112 0.12688926 0.00000118
0.130121 0.000080 0.130120051 0.000080068 0.1267651 0.0000131

Table 4.6: 1Se resonances below I4: our results compared with the results of [51]. The dimension of the matrices used to obtain the data was
n = 11744 and p = 6576, respectively. The data presented was subject to a stability analysis with respect to varying values of the complex
rotation angle θ. Some more converged resonances have been obtained which are not displayed here.
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this work Bürgers et al. [51] this work (continued) Bürgers et al. [51] (cont.)

0.169306634 0.000021005 0.169306635 0.000021006 0.129327408 0.000000718 0.129327395 0.000000724
0.161480663 0.000051983 0.161480663 0.000051980 0.129281535 0.000004229 0.129281436 0.000004228
0.15212204 0.00001680 0.152122029 0.000016799 0.129028519 0.000001558 0.129028519 0.000001559
0.15117642 0.00002241 0.151176420 0.000022408 0.128742045 0.000001860 0.128742039 0.000001867
0.14716881 0.00003711 0.147168813 0.000037116 0.128621741 0.000000588 0.128621731 0.000000593
0.14317600 0.00001140 0.143175987 0.000011381 0.128585657 0.000003277 0.128585657 0.000003276
0.14169136 0.00001470 0.141691356 0.000014696 0.128395405 0.000001218 0.128395405 0.000001219
0.14008854 0.00000439 0.140088484 0.000004409 0.128168621 0.000001452 0.128168616 0.000001457
0.13999805 0.00002018 0.139998046 0.000020176 0.128075628 0.000000487 0.128075620 0.000000489
0.13796132 0.00000764 0.137961324 0.000007642 0.128046837 0.000002588 0.128046838 0.000002588
0.13678714 0.00000959 0.136787119 0.000009622 0.127900092 0.000000969 0.127900092 0.000000970
0.13597556 0.00000173 0.135975513 0.000001752 0.127717811 0.000001154 0.127717807 0.000001158
0.13585741 0.00001502 0.135857413 0.000015013 0.127644357 0.000000404 0.127644351 0.000000407
0.13467953 0.00000525 0.134679533 0.000005256 0.127621072 0.000002079 0.127621073 0.000002078
0.13381173 0.00000647 0.133811711 0.000006493 0.127505445 0.000000783 0.12750544 0.00000079
0.133329281 0.000001326 0.133329246 0.000001340 0.127356921 0.000000932 0.127356918 0.000000935
0.13323044 0.00001051 0.133230435 0.000010505 0.127297848 0.000000338 0.127297839 0.000000341
0.13249065 0.00000372 0.132490651 0.000003725 0.127278774 0.000001694 0.127278774 0.000001694
0.13184923 0.00000452 0.131849211 0.000004540 0.127186005 0.000000641 0.1271860 0.0000006
0.131533756 0.000001077 0.131533731 0.000001087 0.127063496 0.000000763 0.12706350 0.00000077
0.13145699 0.00000755 0.131456986 0.000007547 0.127015248 0.000000285 0.12701524 0.00000029
0.130962374 0.000002716 0.130962374 0.000002717 0.126999448 0.000001398 0.1269993 0.0000014
0.13048099 0.00000327 0.130480976 0.000003283 0.126923855 0.000000532
0.130261387 0.000000879 0.130261370 0.000000886 0.126821690 0.000000634
0.130202294 0.000005580 0.130202295 0.000005577 0.126781760 0.000000243
0.129855236 0.000002034 0.129855236 0.000002035 0.12676853 0.00000117
0.129487234 0.000002436 0.129487225 0.000002444 0.1267061 0.0000004

Table 4.7: 3Se resonances below I4: our results compared with the results of [51]. The dimension of the matrices used to obtain the data was
n = 11744 and p = 6386, respectively. The data presented was subject to a stability analysis with respect to varying values of the complex
rotation angle θ.
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−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.07803 0.00040 0.061377 0.000047 0.058214 0.000019
0.077179 0.000755 0.0609470 0.0000141 0.05815259 0.00000639
0.075259 0.000724 0.06084037 0.00000096 0.0579425 0.0000813
0.07197 0.00083 0.060732 0.000123 0.0579212 0.0000024
0.071751 0.000233 0.060650 0.000181 0.0579127 0.0000421
0.069767 0.000456 0.0604259 0.0000869 0.0578718 0.0000108
0.069113 0.000680 0.060350 0.000026 0.05782639 0.00000857
0.067934 0.000042 0.0599835 0.0000140 0.0576439 0.0000640
0.067803 0.000059 0.05993838 0.00000137 0.05763370 0.00000235
0.067454 0.000601 0.0598501 0.0000758 0.05755575 0.00000868
0.066339 0.000146 0.059850 0.000248 0.0574577 0.0000197
0.066252 0.000119 0.0596356 0.0000284 0.0573948 0.0000022
0.065135 0.000427 0.0595730 0.0000115 0.0573938 0.0000378
0.0646766 0.0002976 0.0592650 0.0000218 0.0573937 0.0000580
0.0646037 0.0001459 0.0592493 0.0002250 0.05732928 0.00000769
0.0644329 0.0000361 0.05924720 0.00000099 0.0572486 0.0000144
0.0643087 0.0000122 0.0591693 0.0000474 0.05719414 0.00000207
0.063202 0.000310 0.05903087 0.00000400 0.0571939 0.0000285
0.062962 0.000300 0.058739 0.000158 0.0571928 0.0000580
0.0628546 0.0000515 0.0587098 0.0000314 0.05713818 0.00000645
0.0627563 0.0000814 0.05870388 0.00000155 0.0570707 0.0000108
0.06229723 0.00001692 0.0586368 0.0000295 0.0570269 0.0000552
0.06205363 0.00000056 0.0585482 0.0000027 0.05702415 0.00000195
0.061872 0.000216 0.0583035 0.0001101 0.0570228 0.0000220
0.0616514 0.0000441 0.0582713 0.0000023 0.05697575 0.00000537
0.061491 0.000177 0.0582679 0.0000382

Table 4.8: 1Se resonances below I6 and actual precision; the dimension of the matrices used to
obtain the data was n = 11808 and p = 6193, respectively. The used criterion of convergence
was maximum relative deviation of the real part of 10−4 and maximum relative deviation of the
imaginary part of 10−2 for at least three values of θ.

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.0239821 0.0000061 0.0233936 0.0000775
0.023951 0.000190 0.023265 0.000062
0.023929 0.000163 0.0231951 0.0000558
0.0238002 0.0000345 0.0230812 0.0000105
0.0236262 0.0000606 0.0229936 0.0000248
0.023619 0.000025 0.022926 0.000062
0.0235660 0.0000303 0.0228979 0.0000073
0.0235573 0.0000713 0.0228237 0.0000075
0.023441 0.000116 0.022682 0.000051
0.0233989 0.0000122 0.022672 0.000042

Table 4.9: Real and imaginary part of a few selected 1Se resonances below I10. The dimension
of the matrices used to obtain the data was n = 12240 and p = 8548, respectively. The used
criterion of convergence was maximum relative deviation of the real part of 10−4 and maximum
relative deviation of the imaginary part of 10−2 for at least three values of θ.
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In Fig. 4.3 and 4.4 the spectra up to I10 are displayed for singlet and triplet symmetry,
respectively. For resonances above the 4th SIT the criterion of convergence is given through a
coincidence of eigenenergies for at least three different values of the complex rotation angle θ
with a maximum relative deviation of 10−4 of the real and 10−2 of the imaginary part. The
criterion is designed to exclude the discretized continuum states, numerical artefacts and non-
converged resonances in an efficient manner and does not reflect the actual accuracy of the
computed resonances, which is in most cases significantly higher. To show the actual precision
of our results we give apart from the graphical data in Fig. 4.3 and 4.4 the energy and half
width for converged resonances below the 6th and 10th threshold in Tables 4.8 and 4.9 (only
converged digits are displayed), respectively. In Table 4.9 we present the resonances in a narrow
energy window; these are by far are not all converged resonances found.2 Triplet state resonances
with extremely narrow width, which are usually members of the K = −N + 1 series, do often
not fulfill the above mentioned criterion as for these resonances we usually obtain only one to
two significant digits for the imaginary part. This is clearly visible in Fig. 4.4, where for the
energy regime above the 5th SIT only few members of these series are visible. Note, that the
largest matrices to diagonalize in order to obtain these spectra were of dimension p = 8778 for
singlet and p = 8278 for triplet symmetry; these are thus significantly smaller than the typical
dimensions in alternative state-of-the-art methods [51, 54].

4.2 Unnatural parity states

In the following, spectral data for unnatural parity states and resonances is presented. The data
is compared to available reference data. In case of 3P e resonances a significant disagreement
is found with recently published results by Saha et al. [141], calculated using the stabilization
method based on the Ritz variational method. Spectral data for 1P e resonances can be found
in appendix C.2.1.

4.2.1 Non-autoionizing states

For total angular momentum L, individual angular momenta of the electrons satisfy the relation
(−1)L+1 = (−1)l1+l2 for unnatural parity states. As a consequence of this and of the triangular
condition for the addition of angular momenta, the single particle angular momenta cannot be
zero (li 6= 0, i = 1, 2), the total angular momentum is at least 1, and the lower electron excitation
must be at least ni = 2. Therefore, the series of non-autoionizing states of unnatural parity states
converge to the second ionization threshold. Energies of singlet and triplet non-autoionizing
helium doubly excited states of unnatural parity for L = 1, . . . , 9 are presented in Tables 4.10
and 4.11. These have been obtained after diagonalization of the matrix representation of (3.3)
in the basis described in chapter 3. We have used up to 26 angular configurations (l1, l2)
which lead to matrix dimensions up to p = 16000 (most of the results presented here converge
with a ten-times smaller basis). The data presented has been tested for convergence with
respect to variation of the complex rotation angle θ, the dilation parameters, and the number of
angular configurations. In particular, these energies are invariant with respect to θ in an exact
representation. The variations of the eigenvalues with respect to θ induced by the truncation of
the basis are used to find the converged digits. In our calculations we have used the values of
the rotation angle θ ∈ {0.0, 0.005, 0.01, 0.025, 0.05}. Only converged digits are shown in Tables
4.10 and 4.11.

Low-lying P , D and F unnatural parity states have been calculated by other groups within
different approaches [142–146]. In Table 4.10 we reproduce the energies of these states and
present more benchmark results for further excited states. Table 4.11 displays energies of states

2Roughly 110 well converged resonances could be identified.
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n present work Ref. data present work Ref. data n present work Ref. data present work Ref. data

2 0.7104998 0.7105001556783a 3 0.563800418 0.563800420462a 0.55932824 0.559328263096a

0.7105001556567833b 0.56380042d 0.55932826d

0.71050015565678c 4 0.5345763848 0.534576385556a 0.53267859 0.532678601895a

3 0.5802464715 0.580246472594a 0.56781281 0.567812898724a 0.53457638d 0.53267860d

0.58024647259438b 0.567812898725152b 5 0.5216590151 0.521659015466a 0.520703455 0.520703462028a

4 0.5400415905 0.54004159009a 0.53586715 0.5358671887a 0.52165901d 0.52070345d

0.54004159093851b 0.53586718876821b 6 0.5148335930 0.51483359321a 0.514288303 0.51428830662a

5 0.5241789816 0.5241790a 0.52225456 0.52225457a 0.51483359d 0.514288303d

0.52417898181141b 0.52225457570723b 7 0.5107926190 0.5107926191a 0.510452854 0.5104528567a

6 0.5162086103 0.51620861046818b 0.515160194 0.51516020385435b 0.51078723d 0.51045267d

7 0.51162653629 0.51162653637782b 0.510991685 0.51099169120713b 8 0.50820376391 0.50820375a 0.5079779831 0.5079780a

8 0.50874801146 0.50874801151596b 0.508334233 0.50833423750462b 0.50801548d 0.50794530d

9 0.50682104438 0.50682104441578b 0.506536276 0.50653627909544b 9 0.50644607146 0.506445a 0.5062884965 0.506287a

10 0.50546767514 0.50546767516722b 0.505263296 0.50526329773772b 10 0.50519830878 0.5050840140

11 0.50448074392 0.50448074393511b 0.5043290797 11 0.50428070170 0.5041951822
12 0.50373889704 0.5036232454 12 0.50358625606 0.5035206081
13 0.50316718527 0.5030769762 13 0.50304805849 0.5029965724
14 0.50271727806 0.5026455559 14 0.50262251928 0.5025813973
15 0.50235686959 0.5022989044 15 0.50228025461 0.5022468913
16 0.50206369874 0.50201618273 16 0.502000872000 0.50197343200
17 0.501822020527 0.50178258397 17 0.501769859819 0.50174701984
18 0.501620444 0.501587352 18 0.501576663 0.501557450
19 0.5014506 0.5014224 19 0.501413 0.5013971

1F e 3F e 1F e(continued) 3F e(continued)

n present work Ref. data present work Ref. data n present work present work

4 0.53199543671 0.5319954369509a 0.5319913251 0.5319913263465a 12 0.503500444342 0.50350020079
5 0.52038567086 0.5203856710486a 0.5203828583 0.5203828592839a 13 0.502980780358 0.50298058847
6 0.51411321805 0.5141132181781a 0.5141114284 0.5141114291180a 14 0.502568796718 0.50256864290
7 0.51034573795 0.510345738040a 0.51034456422 0.510344564686a 15 0.5022366755580 0.50223655040
8 0.50790754830 0.5079075482a 0.50790674595 0.5079067461a 16 0.5019650343034 0.50196493112
9 0.50623965811 0.506239653a 0.50623908834 0.506239088a 17 0.501740032588 0.50173994653
10 0.50504873915 0.50504832108 18 0.5015515739 0.5015515014
11 0.504168863147 0.50416854777 19 0.501392 0.5013921

a Reference [142]; b Reference [143]; c Reference [144]; d Reference [145];

Table 4.10: Absolute values of the energies (−E [a. u.]) of non-autoionizing doubly excited 1P e, 3P e, 1Do, 3Do, 1F e, and 3F e states of helium
in comparison with reference data.
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n 1Go 3Go 1He 3He 1Io 3Io

5 0.520159333525 0.52015932019
6 0.513982240486 0.51398222681 0.513936277123 0.513936277088
7 0.510263292891 0.51026328169 0.5102342063486 0.5102342063021 0.5102215045173 0.51022150452
8 0.507852347306 0.50785233860 0.5078328026556 0.5078328026105 0.5078242511171 0.507824251117
9 0.506200910578 0.506200903864 0.5061871566018 0.5061871565623 0.5061811305642 0.50618113056407
10 0.505020507250 0.505020502034 0.5050104670730 0.5050104670397 0.5050060638226 0.5050060638225
11 0.5041476624683 0.504147658368 0.50414011195527 0.5041401119275 0.50413679810896 0.5041367981088
12 0.5034841216571 0.5034841183916 0.50347830182959 0.50347830180655 0.5034757460826 0.5034757460825
13 0.5029679472607 0.502967944626 0.50296336747273 0.50296336745355 0.5029613553543 0.5029613553542
14 0.5025585255313 0.5025585233796 0.50255485728707 0.50255485727102 0.5025532450494 0.5025532450493
15 0.5022283274272 0.5022283256500 0.50222534413265 0.50222534411914 0.5022240325335 0.5022240325335
16 0.5019581576888 0.5019581562056 0.5019556989716 0.5019556989601 0.50195461772224 0.5019546177222
17 0.5017343010499 0.501734299800 0.5017322508379 0.5017322508281 0.5017313490360 0.5017313490360
18 0.5015467467 0.5015467457 0.50154501935 0.50154501934 0.501544259403 0.501544259403
19 0.50138805 0.5013880 0.50138658 0.50138658 0.501385934 0.501385934
20 0.50125 0.501252 0.501251 0.501251 0.501251 0.501251

n 1Ke 3Ke 1Lo 3Lo 1Me 3Me

8 0.50781992488219 0.5078199248822
9 0.50617807968861 0.50617807968861 0.50617636756478 0.50617636756478
10 0.50500383331558 0.50500383331558 0.505002581178723 0.505002581178723 0.505001822851975 0.505001822851975
11 0.50413511875810 0.50413511875810 0.50413417579851 0.50413417579851 0.504133604634452 0.504133604634452
12 0.50347445049881 0.50347445049881 0.50347372289118 0.50347372289118 0.50347328211932 0.50347328211932
13 0.50296033509375 0.50296033509375 0.50295976202569 0.50295976202569 0.5029594148402 0.5029594148402
14 0.50255242738438 0.50255242738438 0.50255196805760 0.50255196805760 0.5025516897607 0.5025516897607
15 0.502223367228905 0.50222336722891 0.50222299345507 0.50222299345507 0.5022227669796 0.5022227669796
16 0.50195406918493 0.50195406918493 0.5019537609871 0.50195376098707 0.50195357423604 0.50195357423603
17 0.50173089148147 0.50173089148147 0.5017306343852 0.5017306343852 0.5017304785924 0.5017304785924
18 0.5015438737845 0.5015438737845 0.5015436570959 0.501543657096 0.5015435257843 0.5015435257843
19 0.5013856063 0.5013856063 0.50138542198 0.50138542198 0.5013853102875 0.5013853102874
20 0.5012505 0.5012505 0.50125033 0.50125033 0.5012502305023 0.5012502305023
21 0.501133986035 0.501133986035

Table 4.11: Absolute values of the energies (−E [a. u.]) of non-autoionizing doubly excited helium states of unnatural parity and total angular
momentum L = 4, . . . , 9.
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Figure 4.5: Probability density after integration over the angular coordinates
(
∫

dΩ1dΩ2r
2
1r

2
2|Ψi(~r1, ~r2)|2) of the lowest lying 1P e-state (left) and of the lowest 3P e-

state (right). In contrast to the states of natural parity (see Fig. 4.2), the singlet state exhibits
a vanishing radial density along r1 = r2, while the density of the triplet state has a maximum
along this line. This apparent contradiction is an artifact of the angular integration. Areas of
low and high density are represented by black and white color, respectively.

with total angular momentum L = 4, . . . , 9 3. As in the case of natural parity states [147],
exchange effects can be neglected for sufficiently large values of L. For instance, the singlet-
triplet splitting for n = 10 goes exponentially fast to zero as exp(−4.9L).

As in the case of natural parity states our approach suffers from the influence of the Kato
cusp [66, 67] for symmetric excitation of both electrons. The effect can easily be spotted in our
tables as the precision of our results increases with increasing excitation of the outer electron.

Figure 4.5 shows the radial density integrated over the angles of the lowest lying 1P e and 3P e

state, respectively. The density plot for the triplet state shows the same behaviour as helium
ground state, i.e., the density plot exhibits a maximum along the axis r1 = r2. However, this be-
haviour would be expected for singlet states. This apparent contradiction is a consequence of the
integration over the angular coordinates which introduces a sign change for the exchange term.
This can be understood from the properties of the projector A of Eq. (3.4) and of the Clebsch-
Gordan coefficients (3.14). From the relation 〈l2m2 l1m1|LM〉 = (−1)l1+l2−L〈l1m1 l2m2|LM〉
it follows that the wave function (3.4) is symmetric (antisymmetric) for ǫ12 = ǫ(−1)l1+l2−L = 1
(ǫ12 = ǫ(−1)l1+l2−L = −1). On the one hand, as can been seen from (3.13), single (triplet) un-
natural parity states are characterized by ǫ = −1 (ǫ = +1), i.e., exactly the opposite situation
as for natural parity states. On the other hand, integration over the angle coordinates of Ψ
eliminates the sign (−1)l1+l2−L. Thus, the structure of the density plots depends exclusively on
ǫ, which finally explains the apparent contradiction in figure 4.5.

4.2.2 Resonances

In the following we present energies and widths for 3P e resonances below the 3rd to 8th SIT. Data
for 1P e resonances is presented in appendix C.2.1. The data for the 3rd up to the 7th threshold
of 3P e resonances is compared to existing data [141, 148]. The results have been computed

3Some results for these states, obtained within a similar approach, have already been presented in [146]. The
results are, however, given without analysing the convergence of the energies obtained. The results agree with
our data for five to nine digits.
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N = 3
This work Saha et al. [141] Ho et al. [148] This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.33609 0.00225 0.33607 0.00227 0.3360879 0.00224435 0.22511389 0.00001330
0.2911579 0.0000369 0.29116 0.0000350 0.291158225 0.0000370 0.224750367 0.0000004740
0.271557 0.000894 0.27156 0.000885 0.27155715 0.00089435 0.22471977 0.00001065
0.25357458 0.00001174 0.25357 0.0000100 0.25357465 0.0000117615 0.224425756 0.000000389
0.250932 0.000428 0.25093 0.000425 0.2509315 0.0004275 0.22440104 0.00000866
0.24195825 0.00000721 0.24196 0.0000050 0.2419583 0.0000072 0.2241598887 0.0000003224
0.2409603 0.0002276 0.24096 0.000225 0.24096 0.000225 0.22413963 0.00000714
0.23589422 0.00000469 0.23589 0.00000467 0.2358935 0.0000040 0.2239292977 0.0000002704
0.2353963 0.0001336 0.23539 0.000135 0.22392258 0.00000596
0.23227095 0.00000318 0.23227 0.00000316 0.223754513 0.000000229
0.2319828 0.0000846 0.23198 0.000085 0.22374040 0.00000502
0.22992382 0.00000225 0.22992 0.000002245 0.2235979593 0.0000001955
0.2297407 0.0000568 0.22974 0.0000550 0.22358599 0.00000427
0.22831428 0.00000164 0.22831 0.000001625 0.22346430 0.00000017
0.2281902 0.0000400 0.22819 0.0000400 0.22345399 0.00000366
0.22716196 0.00000123 0.22716 0.000001205 0.2233491 0.0000002
0.2270737 0.0000292 0.22707 0.0000350 0.223340 0.000003
0.226308471 0.000000940 0.22631 0.000000825
0.22624335 0.00002192 0.22624 0.0000250
0.225658634 0.000000736 0.22565 0.00000393
0.22560915 0.00001690 0.22561 0.0000200
0.225152407 0.000000586 0.22514 0.00001

Table 4.12: 3P e resonances of helium below the third (N=3) SIT: our results are compared with
data from [141] and [148]. Only converged digits are displayed for our results. The results of
[148] have been converted from Ry to a. u.. The data of [141] is presented without comment on
the actual precision.

using up to 21 angular configurations and up to 7 sets of Coulomb-Sturmian functions for each
angular configuration. In choosing these sets properly we are able to describe a rather large
energy regime [122]. Our results have been tested for convergence with respect to variation of
the basis size – including the number of angular configurations and Coulomb-Sturmian functions
used –, variation of the real dilation parameters and variation of the complex rotation angle θ,
with θ ∈ {0.1, 0.12, 0.14, 0.16, 0.18, 0.2}. Tables 4.12, 4.13 and 4.14 contain the data for 3P e

resonances. The tables are limited to at most 50 entries even if more converged resonances have
been identified.

Once more the Kato cusp [66, 67] leads to a lower precision for states with symmetric
excitation of both electrons and is easily traceable in our tables, as the precision of our results
increases with increasing excitation of the outer electron.

The agreement with the results for 3P e (Tabs. 4.12, 4.13) of [148], where an explicitly
correlated approach together with complex rotation has been used to extract energy and width
of resonances, is in general excellent. Nevertheless, we obtain a significantly larger amount of
additional converged resonances and are able to provide a high accuracy for asymmetrically
excited states.

In contrast, the comparison with the recently published results for 3P e resonances ob-
tained within the stabilization technique [141] yields significant disagreements. Already the
data for resonances below the third SIT (Tab. 4.12) shows significant differences for Im(Ei,θ)
of higher excited resonances. Below the fourth SIT (Tab. 4.13) the approach by [141] seems
not to be able to resolve the two close lying resonances Ei,θ = −0.1423413 − i0.0001641 and
Ei,θ = −0.1423411 − i0.0004192. Moreover, the part of the spectrum lying closer to the fourth
SIT is not completely resolved. Table 4.13, which presents the data for the fourth and fifth
SIT, shows for the data below the fifth SIT pronounced deviations already for the first two
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N = 4
This work Saha et al. [141] Ho et al. [148] This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.194442 0.001653 0.19738 0.001685 0.194442 0.0016525 0.128821702 0.000004491

0.178257 0.002402 0.17878 0.002295 0.178257 0.0024035 0.12880368 0.00001041(∗)

0.1612297 0.0009514 0.16136 0.000945 0.161223 0.0009515 0.128274538 0.000047145
0.1551767 0.0001291 0.15520 0.000135 0.1551768 0.00012925 0.128234933 0.000004126
0.151550 0.000883 0.15154 0.00077 0.1515495 0.000883 0.128229787 0.000004085
0.1480323 0.0005245 0.14808 0.00058 0.1480315 0.000525 0.12780435 0.00003655
0.1423413 0.0001641 0.14235 0.000255 0.1423415 0.00016425 0.127783669 0.000002192
0.1423411 0.0004192 0.14207 0.000370 0.142341 0.00041895 0.127768101 0.000002356

0.1408404 0.0002882 0.14090 0.000400 0.14084 0.000235 0.127428137 0.000028487(∗)

0.1372933 0.0003112 0.13742 0.000290 0.137295 0.000306 0.1274227601 0.0000012725
0.13715311 0.00005671 0.13716 0.000055 0.13715 0.000055 0.127398134 0.000001730
0.1365225 0.0001640 0.13655 0.000240 0.1271290799 0.0000012063
0.13418294 0.00021526 0.127122185 0.000022666
0.13406130 0.00002841 0.13405 0.0000200 0.127097627 0.000001314
0.1337445 0.0000962 0.13375 0.000090 0.1268886070 0.0000013974
0.1321266 0.0001517 0.13202 0.0001345 0.126870516 0.000018768
0.132028688 0.000016275 0.1268502500 0.0000010212
0.13185858 0.00005724 0.13182 0.000089 0.126682106 0.000002031
0.13069296 0.00010968 0.13077 0.0001205 0.1266612876 0.0000158575
0.130614425 0.000010054 0.13062 0.000135 0.1266441818 0.0000008083
0.13052259 0.00003386 0.13047 0.0000515 0.126509105 0.000001939
0.129652551 0.000081231 0.1264853783 0.0000135071
0.129589107 0.000006557 0.1264707128 0.0000006502
0.12954291 0.00001942 0.12952 0.00002405 0.126361036 0.000003841
0.128873334 0.000061402 0.1263360130 0.0000115748

N = 5
This work Saha et al. [141] Ho et al. [148] This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)

0.11930 0.00177 0.11937 0.000985 0.11930 0.00177 0.0849144 0.0000887(∗)

0.109463 0.001561 0.10996 0.000925 0.109463 0.001561 0.08467477 0.00001360
0.107265 0.000765 0.10765 0.00050 0.107265 0.000765 0.0844635 0.0001449
0.102096 0.001134 0.10299 0.00102 0.102096 0.0011345 0.08424956 0.00000624
0.0986031 0.0004517 0.09828 0.000414 0.098602 0.000453 0.0840879 0.0000603
0.096641 0.000687 0.09656 0.000453 0.0966405 0.000687 0.08396429 0.00005412
0.0952542 0.0000442 0.09526 0.000201 0.09525385 0.00004425 0.08374283 0.00011013
0.095136 0.000744 0.095143 0.00074 0.08356441 0.00000423
0.0934409 0.0002212 0.09365 0.0002265 0.093435 0.000205 0.0834489 0.0000430
0.0915093 0.0004702 0.09166 0.000327 0.09151 0.00047 0.0833809 0.0000792
0.091108 0.000435 0.09112 0.0003685 0.091105 0.000425 0.0831841 0.0000827
0.09072496 0.00002125 0.09072 0.00001725 0.0907245 0.000021 0.08303258 0.00000281
0.0902365 0.0000532 0.09026 0.000127 0.0829466 0.0000322
0.088632 0.000340 0.08908 0.0002995 0.0829094 0.0000856
0.0885032 0.0002189 0.08850 0.00000995 0.0827411 0.0000615
0.0885015 0.0000583 0.08261147 0.00000183
0.08812097 0.00001786 0.08810 0.000067 0.0825452 0.0000248
0.087296 0.000209 0.08744 0.0000110 0.0825278 0.0000819
0.0867708 0.0000967 0.08696 0.0001015 0.0823837 0.0000455
0.0867355 0.0002446 0.08602 0.0001795 0.08227232 0.00000119
0.08638263 0.00001308 0.08221996 0.00001955
0.0859899 0.0001392 0.08593 0.0000775 0.0822152 0.0000737
0.0855889 0.0000130 0.08209119 0.00003370
0.0854195 0.0001889 0.08543 0.000112 0.08199515 0.00000077
0.08515358 0.00000908 0.0819559 0.0000641

Table 4.13: 3P e resonances of helium below the fourth (N=4) and fifth (N=5) SIT: our results
are compared with data from [141] and [148]. Only converged digits are displayed for our results.
The results of [148] have been converted from Ry to a. u.. The data of [141] is presented without
comment on the actual precision. The states marked with (∗) can also be identified with states
given in [141].
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N = 6
This work Saha et al. [141] This work (continued) This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.076443 0.000596 0.07721 0.000369 0.0621389 0.0001555 0.0588219 0.0001051
0.073661 0.000871 0.07079 0.000483 0.0618691 0.0002110 0.05879852 0.00001422
0.0733870 0.0007392 0.06825 0.000735 0.06130050 0.00000546 0.05863624 0.00008777
0.0707545 0.0003581 0.06704 0.000275 0.061275 0.000329 0.0584702 0.0000579
0.070218 0.000841 0.06665 0.000149 0.0610510 0.0000826 0.058390002 0.000007444
0.0686312 0.0005865 0.06545 0.0002745 0.06097248 0.00001812 0.0583546 0.0001234
0.0670725 0.0001050 0.06522 0.0000705 0.0606669 0.0001813 0.05835248 0.00000517
0.0665272 0.0003683 0.06449 0.0000051 0.0603619 0.0002213 0.05822598 0.00005642
0.066190 0.000655 0.06383 0.000152 0.06025692 0.00000681 0.05807616 0.00003978
0.0655169 0.000234 0.06358 0.000003425 0.06011466 0.00002553 0.05801162 0.00000471
0.0652949 0.0000941 0.06272 0.0000003365 0.0600951 0.0000488 0.0579979178 0.0000005803
0.06449512 0.00000892 0.06187 0.0001735 0.0597971 0.0001538 0.0579794 0.0001421
0.063937 0.000256 0.06115 0.00001255 0.0595825 0.0001349
0.0638142 0.0003889 0.06075 0.000092 0.059470995 0.000012354
0.0636138 0.0002572 0.06028 0.000163 0.0594026 0.0000739
0.063594605 0.000004761 0.05973 0.0002345 0.0593652 0.0000279
0.06272169 0.00000340 0.05913 0.000267 0.0591449 0.0001225
0.0623372 0.0002073 0.05774 0.0001685 0.0589620 0.0000865
0.062326 0.000145 0.05632 0.000127 0.05886415 0.00001062

N = 7
This work Saha et al. [141] This work (continued) This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.05347 0.00070 0.05363 0.000125 0.0468818 0.0000893 0.0445696 0.0000784
0.0534029 0.0002803 0.05190 0.000280 0.0467502 0.0001037 0.04452085 0.00003366
0.0522288 0.0003677 0.05085 0.0000450 0.04657657 0.00001232 0.04438100 0.00000408
0.052015 0.000430 0.04965 0.0000200 0.0462402 0.0001862 0.044188 0.000116
0.051024 0.0000482 0.04860 0.000105 0.0461108 0.0002040 0.0441801 0.0001084
0.05084780 0.00001202 0.04752 0.000295 0.0459701 0.0000966 0.0441677 0.0000956
0.050394 0.000530 0.04655 0.0000150 0.0458268 0.0000314 0.04405193 0.00000679
0.049773 0.000241 0.04573 0.000075 0.04581448 0.00000527 0.04397197 0.00006718
0.0497026 0.0000623 0.04519 0.0000250 0.0455806 0.0000931 0.04385962 0.00000615
0.048578 0.000458 0.04484 0.000110 0.0453482 0.0003857 0.0437622 0.0000627
0.0484611 0.0001567 0.04409 0.000275 0.0453137 0.0000873 0.0437050 0.0000958
0.0484048 0.0001576 0.04337 0.000165 0.04516912 0.00000814 0.0436928 0.0000567
0.048397 0.000174 0.04507011 0.00000094 0.04362921 0.00000448
0.048275 0.000193 0.04503307 0.00000180 0.0435225 0.0000908
0.047323 0.000366 0.0447859 0.0002184 0.04344286 0.00000769
0.04715483 0.00001855 0.0447759 0.0000974 0.0433770 0.0000368
0.0470707 0.0002854 0.0446000 0.0000344

N = 8
This work This work (continued) This work (continued) This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.04086 0.00032 0.0371688 0.0001793 0.035428934 0.000010562 0.034435779 0.000012427
0.04000562 0.00000504 0.0370676 0.0003178 0.035407698 0.000000352 0.03440853 0.00003555
0.039768 0.000413 0.03673341 0.00006163 0.0353413 0.0000808 0.03440112 0.00002060
0.039188412 0.000003812 0.03670367 0.00003908 0.03497965 0.00005916 0.034267095 0.000022262
0.0391736 0.0002594 0.0363853 0.0004327 0.0349791 0.0000845 0.03419595 0.00012631
0.0389917 0.0003175 0.03627663 0.00002418 0.0349681 0.0000435 0.03407729 0.00007149
0.03855256 0.00016179 0.03620860 0.00008645 0.03486608 0.00003274 0.03403227 0.00001104
0.0384843 0.0005025 0.0360819 0.0002314 0.034847195 0.000001719 0.03401928 0.00000455
0.03823994 0.00003134 0.03593187 0.00001334 0.034820 0.000497 0.034015479 0.000006518
0.0382008 0.0003181 0.03569253 0.00004820 0.03476450 0.00001178 0.03394773 0.00006212
0.0378439 0.0001367 0.0356900 0.0001755 0.0345951 0.0001651 0.03385377 0.00003512
0.0372215 0.0001213 0.0354842 0.0001532 0.0344563 0.0000368
0.0372087 0.0002426 0.0354361 0.0001282 0.0344384 0.0002023

Table 4.14: 3P e resonances of helium below the sixth (N = 6), seventh (N = 7) and eighth
(N = 8) SIT: our results on the left are compared with data from [141]. Only converged digits
are displayed for our results. The data of [141] is presented without comment on the actual
precision.
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Figure 4.6: Energies and half-widths of 3P e-states of helium below the sixth (top) and sev-
enth (bottom) SIT. As expected, the complex energies calculated with the help of the spectral
approach described in chapter 3 (•) are organized in Rydberg-like series converging to the re-
spective SITs. In contrast, the data obtained with the stabilization method (◦) [141] exhibit a
scattered pattern and no agreement with our results can be seen.
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states of the table and again the spectrum for higher excited states misses some resonances.
The disagreement for the two close lying resonances Ei,θ = −0.0952542 − i0.0000442 and
Ei,θ = −0.095136 − i0.000744 has already been addressed by Saha et al. in [141]. However,
we do not agree with their interpretation that the sudden decrease in the gap between reso-
nances favours their results over [148]. Instead, we speculate that the stabilization method does
have problems resolving resonances lying close to each other (see Tab. 4.12 and 4.13). Moreover,
the statement of Saha et al. that the stabilization method allows them to obtain more results
than the complex rotation method is not true: the large number of states that they missed
below the fourth and fifth SIT clearly contradicts this claim. Table 4.14 presents a comparison
of the data by Saha et al. [141] with our results obtained below the sixth and seventh SIT. We
are unable to associate any result of [141] with our results as there is no agreement at all.

For moderate excitation of the inner electron – which is the case here – resonances are
organized in Rydberg-like series converging to the SIT. Figure 4.6 displays the energies and
half-widths of 3P e states of unnatural parity below the sixth (top) and seventh (bottom) SIT.
Our data is compared with the results by Saha et al.. Note, that these plots contain all our
converged results for the sixth and seventh SIT (around 100 for each threshold, even though
only 50 entries are given in Table 4.14). Besides the small number of states given by Saha et al.
[141], their results are organized in an unexpectedly irregular pattern which does not coincide
at all with our calculations and the expected structure.

Table 4.14 also presents our results for 3P e resonances below the eighth SIT, which have
been calculated by us for the first time. Considering the huge difficulties of Saha et al. [141]
to resolve close lying resonances in general and the non-existent series structure for their data
below the sixth and seventh SIT for 3P e resonances our results should be viewed as benchmark
results below the sixth, seventh and eighth SIT.

4.3 Summary

The configuration interaction approach described in chapter 3 has been used to compute bound
states and resonances of helium. In section 4.1.1 the slow convergence of the ground state in
our configuration interaction approach, which is due to the Kato cusp, has been studied. The
convergence of the computed energies depends dominately on the number of Coulomb-Sturmian
functions, and to a lesser extent on the number of angular configurations included. Moreover,
the issues with the resolution of the Kato cusp have been illustrated by projections of the ground
state electronic density on the subspace with θ12 = 0. Note, that the Kato cusp essentially limits
our approach only for the ground state. Our approach has successfully been applied to the
computation of 1,3Se resonances up to the tenth threshold and compared to available reference
data in section 4.1.2. The computation of these doubly excited states has been achieved within
a basis size not exceeding 9000 which is three to five times smaller than the basis size needed
in other state-of-the-art approaches. In section 4.2.1 results for non-autoionizing doubly excited
states of helium with L = 1, .., 9 have been presented. In addition, an apparent contradiction in
the structure of density plots for unnatural parity states has been explained. Finally, results for
3P e resonances up to below the eighth single ionization threshold have been presented in section
4.2.2 (data for 1P e is presented in appendix C.2.1). The data shows perfect agreement with the
few available results by Ho et al. [148], however, disagrees strongly with recent results by Saha
et al. [141], which have been obtained using a stabilization method.



Chapter 5

Frozen planet states of helium for

non-zero angular momentum

The frozen planet configuration and its quantum mechanical counterpart were first described
by Richter and Wintgen [21, 22] at the beginning of the 1990’s. So far the studies have mostly
been concerned with helium frozen planet states (FPS) for zero angular momentum, where
frozen planet states have been identified in calculations for one-dimensional [24, 149], planar
(2D) [25, 26, 97] and three-dimensional (3D) helium [22]. Our motivation to investigate helium
frozen planet states for non-zero total angular momentum is, apart from the interest in their
spectral and dynamical properties, the potentially high relevance of these states in the context
of coherent control [150–152] in the electronic dynamics of Rydberg systems in the presence
of electron-electron interactions [153]: During the last decade, it has been realized that near-
resonant electromagnetic driving of atomic electrons in one-electron Rydberg systems allows the
creation of non-dispersive electronic wave packets [102, 154, 155] (in a quantum system with
a non-harmonic spectrum!) which propagate along Kepler trajectories of essentially arbitrary
eccentricity and orientation for very long times [27, 102, 156]. This field has by now been inves-
tigated theoretically in much detail and is well understood, and first experimental realizations
of such long living quantum objects have been reported very recently [157–159]. An immediate
question is of course whether such a localization and stabilization effect is also to be expected
in Rydberg systems with additional electron-electron interaction, e.g., in helium. Since the un-
perturbed frozen planet configuration has a well defined associated eigenfrequency, the external
field can be tuned such as to drive that frequency near resonantly, and, as a matter of fact,
it was already shown that non-dispersive two-electron wave packets which propagate along the
frozen planet trajectory do exist in a one-dimensional model of helium [23, 24], and there is
strong evidence for their existence in the planar helium model [25, 26]. Note, however, that
in one-dimensional models the lifetime of frozen planet states is, compared to the full three-
dimensional treatment, dramatically overestimated [97]. Moreover, it is not entirely clear how
well the planar model performs in the description of non-zero angular momentum frozen planet
states, in particular, with moderate excitation of the inner electron. The full three-dimensional
treatment of frozen planet states of helium under near resonant driving requires a description of
the relevant energy regime, defined by the energy of the initial state, the driving frequency and
the number of transitions considered, for multiple values of the total angular momentum. Apart
from the description of the initial frozen planet state the description of frozen planet states with
non-zero total angular momenta in the same energy regime is expected to be important. Note,
that spectra for 1,3P o and 1,3De states, including frozen planet states, can be found in appendix
C.1.

In this chapter, we will give a brief introduction to the relevant properties of the classical
frozen planet configuration and the identification of its quantum mechanical counterpart, fol-
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lowed by results for helium frozen planet states with L = 1 and L = 2. In particular, the
performance of the planar approach and differences to the L = 0 frozen planet states are dis-
cussed.

5.1 The classical frozen planet configuration

In the classical frozen planet configuration both electrons are located on the same side of the
nucleus, with asymmetric excitation (see Fig. 5.1). Classical studies show that these configu-
rations are stable [8, 21, 23, 160]. The outer electron is dynamically stabilized due to the fast
oscillation of the inner electron along highly eccentric elliptic trajectories around the nucleus.
This generates a rapidly oscillating potential for the outer electron as a result of the competition
between electron-electron repulsion and the Coulomb attraction exerted on the outer electron by
the screened Coulomb potential of the nucleus. Upon averaging [161] over the characteristic time
scale of the inner electron’s motion, the outer electron experiences an effective, time-independent,
attractive potential [162]. This effective potential is attractive Coulombic for large distances,
and strongly repulsive for positions close to the nucleus, with a minimum which precisely defines
the equilibrium position of the frozen planet configuration (see Fig. 5.2). The outer electron is
(almost) “frozen” in this equilibrium position. This together with the Kepler-like motion of the
inner electron lead to the term frozen planet state. Due to the invariance of the Hamiltonian
(1.5), which governs classical and quantum dynamics of a two-electron atom, under the scaling
transformations (2.1), the position xmin of the minimum of the effective potential and the min-
imum energy Emin depend only [24] on the action integral S = (1/2π)

∮

p2dx2 over one cycle of
the Kepler oscillation of the inner electron,

xmin = 2.6S2 ,

Emin = −2.22S−2 . (5.1)

Due to the large phase space volume occupied by the stability region of the frozen planet
configuration, it is possible to identify eigenstates in the spectrum which are localized along the
frozen planet orbit. Indeed, the existence of such states (with N > 3) for zero total angular
momentum has been demonstrated by several approaches [22, 24–26, 97]. For each N , the FPS
form a Rydberg series characterized by the long life time of its constituents and large expectation
values of the cosine of the angle θ12 between the electron radii ~r1 and ~r2 (〈cos(θ12〉 ≈ 1). Thus, the
frozen planet configurations are well-defined configurations of the classical three body Coulomb
problem, with unambiguous quantum correspondence.

In a quantum description, the action S is replaced by the effective quantum number of the
inner electron, which is in the one- and three-dimensional case given by N , while it is N − 1/2

Figure 5.1: Collinear frozen planet configuration [21] of a two-electron atom: the three particles
of the atom are aligned in one line with both electrons located on the same side of the nucleus.
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Figure 5.2: Effective adiabatic potential for the outer electron of the collinear frozen planet
configuration [23].

in the planar case [25]. Thus, the scaled quantities (5.1) take the form

x3D
min = 2.6N2a. u. , x2D

min = 2.6 (N − 0.5)2a. u. , (5.2)

E3D
N = −2.22N−2a. u. , E2D

N = −2.22 (N − 0.5)−2a. u. . (5.3)

Apart from the frozen planet ground state for a given N a whole series of frozen planet states
exists. Members of the frozen planet series for a given value of N are labeled by an integer
number nF , accounting for the excitation of outer electron in the frozen planet states, starting
with nF = 1 for the ground state.

In contrast to available theoretical results, FPS have so far not been unambiguously identified
in experiments, though sequential multiphoton excitation schemes [163–165] have successfully
been used for the creation of planetary states [166], i.e., two-electron atoms1 where both electrons
are highly excited and are moving in different regions of space (〈r2〉 ≪ 〈r1〉).

5.1.1 Identification criteria of frozen planet states

Frozen planet states are characterized by the localization of both electrons on the same side of
the nucleus along the collinear Zee configuration and by their long lifetime compared to other
resonances in the same energy regime. The expectation value of cos(θ12) is, for these states,
close to unity. The decay rates and the expectation value of cos(θ12) can be used as indicators
for frozen planet states which are for instance sufficient for the identification of frozen planet
states in helium with L = 0. However, frozen planet states can be identified unambiguously by
their localization properties in configuration space, i.e., by analysing propability density distri-
butions.2 Because of the dimension of the configuration space (four-dimensional for planar and
six-dimensional for full three-dimensional treatment of two-electron atoms) a complete visualiza-
tion of the wave function within one plot is not possible. Therefore, two alternative projections
of the electronic densities in configuration space are used in the following: conditional probabil-
ity distributions for θ12 = 0 and one-electron probability densities where the position of one of
the electrons is fixed.

1This includes also helium-like atoms with two valence electrons.
2A further additional tool is the analysis of the phase space of frozen planet states, e.g., through Husimi

distributions.
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The conditional probability distributions relies on the fact, that two-electron atoms are
invariant under rotations and that therefore the probability distributions depend only on the
relative position of the electrons, i.e., for a given angle θ12, the wave function depends only on
radii r1 and r2. For θ12 = 0 the conditional density distribution represents the projection of the
density onto the subspace of the collinear frozen planet configuration.

The frozen planet configuration and states are characterized by an asymmetric excitation of
both electrons an therefore a disjoint area of high density for electron one and two. To analyse
these properties one-electron probability densities are used, in which the position of one of the
two electrons of the system is fixed in the respective maximum of the conditional probability
distribution.3

Note, that in the density plots r1r2r12|Ψi(~r1, ~r2)|2C and r21r
2
2|Ψi(~r1, ~r2)|2C are displayed for

planar and three-dimensional treatment of two-electron atoms, respectively, with C a condition
stating at which value the mutual angle between the electrons or at which position one of the
electrons is fixed.

5.2 Frozen planet states with total angular momentum L = 1

An identification of the helium frozen planet states for L = 1 withN > 3 on basis of the electronic
probability densities yields, that, as for L = 0 [97], frozen planet states can be identified by
a simple criterion, namely by possessing simultaneously a small width and the largest value of
〈cos(θ12)〉 in the respective energy regime. Members of the frozen planet series can, as for L = 0,
be associated to a state with approximate quantum number K = −N + 1. Note, that starting
with N = 6 the lowest members of the frozen planet series for L = 1 are not the states with the
smallest width in the respective energy regime anymore (see [52]), however, they still possess
the largest expectation values of cos(θ12) and are members of the K = −N +1 series, which has
its series ground state at the highest energy of all K series. The energies of the ground states
of the frozen planet series are close to the semiclassical prediction (5.3). With increasing N the

N E2D
N [a. u.] E2D(1P o) [a. u.] E2D(3P o) [a. u.]

3 -0.35520 -0.34895078343 -0.34938910
4 -0.18122 -0.17924859425 -0.17942414
5 -0.10963 -0.1087734 -0.108874
6 -0.07339 -0.07304413 -0.0734043

N E3D
N [a. u.] E3D(1P o) [a. u.] E3D(3P o) [a. u.]

3 -0.24666 -0.24551751 -0.24605967
4 -0.13875 -0.13861396 -0.1388839
5 -0.08880 -0.088845297 -0.088990798
6 -0.06167 -0.0617345 -0.061680

Table 5.1: Energies of helium frozen planet ground states; E2D and E3D are the numerical
values of L = 1 frozen planet ground states for N = 3, . . . , 6. E2D

N and E3D
N are the semiclassical

predictions of Eq. (5.3). Energies of planar and three-dimensional treatment do not coincide
due to the different effective quantum numbers of the inner electron associated to the planar
and three-dimensional configurations. Note, that for three-dimensional calculations the spectra
for 1P o and 3P o are presented in appendix C.1.1 and C.1.2, respectively.

3In addition either the θ or φ coordinate of the electron with varying position needs to be fixed in the three-
dimensional case, however, due to the rotational invariance of two-electron atoms this poses no additional restric-
tion.
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N Γ/2 [a. u.] 〈cos(θ12)〉
2D 3D 2D 3D

Singlet

3 0.0000000873 0.00000006 0.61560397 0.495763
4 0.00000153429 0.00000038 0.692580373 0.5997586
5 0.0000055 0.000002916 0.6904 0.67231
6 0.00000257 0.0000076 0.818376 0.735

Triplet

3 0.00000010 0.00000015 0.6900023 0.5278342
4 0.00000871 0.0000415 0.7748194 0.592
5 0.000006 0.000001976 0.7760 0.560563
6 0.0000014 0.000001 0.776426 0.606

Table 5.2: Half-widths and 〈cos θ12〉 of the 1P o (upper table) and 3P o (lower table) helium frozen
planet ground states in planar and three-dimensional treatment.

nF −E [a. u.] Γ/2 [a. u.] 〈cos(θ12)〉
2D 3D 2D 3D 2D 3D

Singlet

1 0.17924859425 0.13861396 0.00000153429 0.00000038 0.692580373 0.5997586
2 0.17480789 0.13510236 0.00000101 0.00000012 0.691312 0.616777
3 0.171980611 0.13277430 0.000000668 0.00000005 0.6897096 0.624551
4 0.170073966 0.13115996 0.000000462 0.00000003 0.687684858 0.627725

Triplet

1 0.17942414 0.1388839 0.00000871 0.0000415 0.7748194 0.592
2 0.1749656 0.13533969 0.0000010 0.00000316 0.80120 0.63989
3 0.17210547 0.13295781 0.00000031 0.00000091 0.818417 0.67929
4 0.17017049 0.13130270 0.00000014 0.00000043 0.828598 0.699072

Table 5.3: Energies, half-widths and expectation values of cos(θ12) for the four lowest L = 1
helium frozen planet states below I4 in planar and three-dimensional treatment.

quantum results converge more and more to the semiclassical predictions (see Table 5.1), which
is expected as the semiclassical regime of helium lies close to the double ionization threshold. In
addition, the semiclassical prediction (5.3) does not consider particle exchange effects leading to
the singlet-triplet energy splitting, which, however, decreases exponentially with increasing N .

Half-widths and expectation values of cos(θ12) for L = 1 frozen planet ground states with
N = 3, . . . , 6 are displayed in Table 5.2, while Table 5.3 gives energy, half-width and 〈cos(θ12)〉
for the first four states of the singlet and triplet frozen planet series below the fourth single
ionization threshold. As for the L = 0 case, the respective half-widths of frozen planet states
coincide within one order of magnitude for planar and three-dimensional treatment. In general
〈cos(θ12)〉 increases with increasing N and nF , though the first four 3P o frozen planet states
with N = 4 show a small decrease. The systematically larger values of the expectation value of
cos(θ12) for the planar case emphasize the restriction to the plane, where transverse deviations
in only two directions from the collinear configuration are possible.

In figure 5.3 the conditional (θ12 = 0) density distributions for 1P o frozen planet states of
helium below the fourth single ionization threshold for the planar model and three-dimensional
calculations are presented. The coordinates are scaled according to (5.2) to allow for a direct
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Figure 5.3: Electronic densities of the first three 1P o helium frozen planet states in planar (left)
and three-dimensional (right) treatment projected onto the subspace with θ12 = 0. From top to
bottom the densities of nF = 1, nF = 2 and nF = 3 states are presented. r1r2r12|Ψi(~r1, ~r2)|2θ12=0

and r21r
2
2|Ψi(~r1, ~r2)|2θ12=0 are displayed for the planar and three-dimensional case, respectively,

with areas of low density represented by black color while those of high density are colored in
white. The coordinates are scaled according to (5.2).

comparison of the planar model and three-dimensional calculations. The density plots corre-
spond to planar and three-dimensional helium frozen planet states with an excitation of the
outer electron nF = 1, . . . , 3. The highly asymmetric character of the frozen planet states are
evident in figure 5.3: the inner electron oscillates close to the nucleus while the outer electron
remains, far from the nucleus, near the equilibrium position of the frozen planet configuration.
Furthermore, the maximum of the probability density of the frozen planet ground state is local-
ized close to the equilibrium position (5.2) for the outer electron of the classical configuration.
A close look at these density plots shows that there are N − 1 = 3 maxima along the inner
electron axis r2, indicating the series of doubly excited states they belong to, while along the r1
axis, the number of density maxima is given by nF . In figures 5.4 and 5.5 one-electron densities
of the nF = 3 state for fixed position of inner and outer electron are displayed, respectively. The
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Figure 5.4: One-electron densites for fixed inner electron: r1r2r12|Ψi(~r1, ~r2)|2x2=xmax
2

(left) and

r21r
2
2|Ψi(~r1, ~r2)|2x2=xmax

2
(right) are displayed for the planar and three-dimensional case, respec-

tively, for the 1P o, N = 4, nF = 3 helium frozen planet state, with areas of low density
represented by black color while those of high density are colored in white. The coordinates are
scaled according to (5.2).

Figure 5.5: One-electron densites for fixed outer electron: r1r2r12|Ψi(~r1, ~r2)|2x1=xmax
1

(left) and

r21r
2
2|Ψi(~r1, ~r2)|2x1=xmax

1
(right) are displayed for the planar and three-dimensional case, respec-

tively, for the 1P o, N = 4, nF = 3 helium frozen planet state, with areas of low density
represented by black color while those of high density are colored in white. The coordinates are
scaled according to (5.2).

position xmax
i of the fixed electron is given by the coordinate of maximum of the conditional

density distribution of figure 5.3 for the respective electron. These density plots illustrate even
more clearly the main features of frozen planet states: the inner electron rapidly oscillates close
to the nucleus (Fig. 5.5) while the outer electron moves slowly along the collinear configuration
around its equilibrium position exhibiting only small transverse deviations (Fig. 5.4).

The energies and half-widths in tables 5.1, 5.2 and 5.3 already indicate that the planar
model provides an adequate description of frozen planet state even for low values of N , though
the expectation values of cos(θ12) are systematically larger than those of the three-dimensional
atom. This is corroborated by the comparison of the density distributions in figures 5.3, 5.4
and 5.5 where an excellent qualitative agreement of the localization properties of planar and
three-dimensional helium is found. Note, however, the density maximum in the planar case is
found at somewhat higher values for the coordinate of the outer electron (see Figs. 5.3, 5.4).
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5.3 Frozen planet states with total angular momentum L = 2

The identification of frozen planet states for L = 2 for full three-dimensional treatment is a lot
more difficult than for L = 0, 1, where frozen planet states can be easily identified by a criterion
based on decay rates and the expectation value of cos(θ12) (see Sec. 5.2). The issues concerning
the identification are given in section 5.3.1, followed by a comparison of data for planar and
three-dimensional calculations in section 5.3.2.

5.3.1 Identification of L = 2 frozen planet states for three-dimensional helium

States below the fourth ionization threshold will be used to illustrate the difficulties in the
identification of frozen planet states for L = 2. In fact, for L = 2 the states with the longest
lifetime do not necessarily coincide with those which exhibit the largest value of 〈cos(θ12)〉 in
the respective energy regime. Indeed, there are two series of resonances which potentially could
represent the frozen planet series. This is illustrated in figure 5.6, where 1De and 3De resonance
states converging to the fourth ionization threshold are displayed. The two potential frozen
planet series A and B are highlighted in figure 5.6 by using squares and diamonds as plot
symbols, respectively. Energy, half-width, and expectation value of cos(θ12) for the first few
members of these series are given in table 5.4. The series A and B both consist of resonances
with small decay rates and rather large values of 〈cos(θ12)〉. Series A starts at lower energies and
its states exhibit larger widths than those of series B. The series ground state exhibits a larger
value of 〈cos(θ12)〉 for series B, however, for increasing excitation 〈cos(θ12)〉 stays almost constant
or decreases for series B but increases significantly for series A. This behaviour is particularly
pronounced for triplet states. Considering this, an identification of the frozen planet series on
basis of the simple criterion used for L = 0, 1 is not possible. Neither, does the semiclassical
prediction (5.3) provide a decisive argument. Consequently, electronic densities have to be used
for the identification of frozen planet states.

In figure 5.7 conditional probability densities for the third member of series A (left) and B
(right) for 1De helium below the fourth ionization threshold are displayed. The mutual angle
is set to θ12 = 0 and coordinates have been scaled according to (5.2). It is difficult to denote
one of these states as member of the frozen planet series as both density plots resemble a state
localized along the collinear frozen planet configuration. In order to obtain more information
about the localization properties of these states and to be finally able to discriminate the states
more clearly the one-electron densities are used. In figure 5.8 the one-electron density with the
position of the inner electron determined by the density maximum in figure 5.7 are presented for
same states as before. The density for the state of series A shows the typical structure expected

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è
è

è

è

è

è

è

è

à à à à à àà

ì ì ì ììì

-0.150 -0.145 -0.140 -0.135 -0.130
-2.0

-1.5

-1.0

-0.5

0.0

ReHEL @a. u.D

Im
HE
L
@1

0-
5
a.

u.
D

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

èè

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è

è
è

è

è

è
è
è

è
è
è
è

è

è

èèè

è
è
è

è

à

à

à

à
à
ààì

ì
ì

-0.150 -0.145 -0.140 -0.135 -0.130
-2.0

-1.5

-1.0

-0.5

0.0

ReHEL @a. u.D

Im
HE
L
@1

0-
5
a.

u.
D

Figure 5.6: Spectra for 1De (left) and 3De (right) states of helium below I4 (three-dimensional
treatment); the two series A and B, represented by squares (�) and diamonds (�), respectively,
are characterized by small decay rates and rather large values of 〈cos(θ12)〉 (see Tab. 5.4).
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nS
−E [a. u.] Γ/2 [a. u.] 〈cos(θ12)〉 −E [a. u.] Γ/2 [a. u.] 〈cos(θ12)〉

Singlet Triplet

A1 0.140755520 0.000001401 0.36413 0.13951882 0.00000526 0.19106
A2 0.136481737 0.000001676 0.528905 0.1368997 0.0000075 0.38351
B1 0.136162775 0.000000095 0.394402 0.13620744 0.00000128 0.43960
A3 0.133696493 0.000001607 0.578572 0.13395946 0.00000399 0.47424
B2 0.133454834 0.000000114 0.378325 0.13349784 0.00000251 0.4075
A4 0.131803657 0.000001457 0.58224 0.13198639 0.00000274 0.51297
B3 0.131625024 0.000000110 0.372770 0.13165783 0.00000335 0.3603

Table 5.4: Energy, half-widths and 〈cos(θ12)〉 for the first few representatives of series A and B
below I4. Data for 1De and 3De calculated within the full three-dimensional approach is given.
nS = Xi indicates the respective series X = A,B and excitation i = 1, 2, . . . of the state within
the series, where i = 1 denotes the groundstate of the series.

Figure 5.7: Electronic densities of the second excited state of series A (left) and B (right) of 1De

states below I4 projected onto the subspace with θ12 = 0. r1r2r12|Ψi(~r1, ~r2)|2θ12=0 are displayed,
with areas of low density represented by black color while those of high density are colored in
white. The coordinates are scaled according to (5.2). Both plots show a density distribution
similar to that of a frozen planet state.

for an excited state localized along the frozen planet configuration, namely, density maxima, of
which the number is determined by the excitation, along the collinear configuration with small
transverse extension. In contrast, the state of series B exhibits a density structure spread out
over all of the displayed plane. Thus, for this state the outer electron is not necessarily collinear
with the inner electron. Densities for 3De states exhibit equivalent behaviours. Consequently,
the frozen planet states are given through the members of series A.

The frozen planet states in helium are thus not anymore the most stable states in the
respective energy regime for L = 2. Moreover, the states of series A, i.e. the frozen planet
states, are systematically located in the spectrum at lower energies than those of series B,
rendering the frozen planet series to be not the last series to start below a given threshold. In
addition, the fundamental state of series B does, besides the smaller width, even have a larger
value of 〈cos(θ12)〉 than the frozen planet ground state for singlet as well as for triplet states.

Preliminary data for L = 3, 4 indicates that these issues in the identification of frozen planet
states persist for larger values of the total angular momentum.
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Figure 5.8: One-electron densites for fixed inner electron: r21r
2
2|Ψi(~r1, ~r2)|2x2=xmax

2
is displayed for

second excited state of series A (left) and B (right) of 1De states below I4, respectively, with
areas of low density represented by black color while those of high density are colored in white.
The coordinates are scaled according to (5.2). While the state of series A exhibits a density
structure expected for a state localized along the frozen planet configuration, the state of series
B shows regions of high density spread out over the displayed plane. Note, that the plot range
of the ordinate is large for the right plot.

5.3.2 Comparison of L = 2 frozen planet states for planar and three-dimensional

helium

In table 5.5 energy, half-width and 〈cos(θ12)〉 is presented for the first four members of the frozen
planet series below I4 for 1De and 3De. Data computed with the planar model as well as with
the full three-dimensional approach is given. The half-widths for planar and three-dimensional
treatment differ roughly by one order of magnitude. As for the L = 0, 1 case states of the
planar model exhibit larger values of 〈cos(θ12)〉 than the respective ones in three-dimensional
calculations, which is a consequence of the restriction to a plane. In contrast to the three-
dimensional case (see Sec. 5.3.1) the frozen planet series in the planar model is the series
starting closest to the respective ionization threshold. Note, that the planar model is restricted
to T = 0 while the classification of states in a three-dimensional setting requires T = 0, 1, 2.
This and the near degeneracy for small N of the frozen planet configuration with the Langmuir
configuration [167–170] might be the reason for the frozen planet states being not the most

nF −E [a. u.] Γ/2 [a. u.] 〈cos(θ12)〉
2D 3D 2D 3D 2D 3D

Singlet

1 0.1766447 0.140755520 0.0000001 0.000001401 0.6618273 0.36413
2 0.1731883 0.136481737 0.0000002 0.000001676 0.71076235 0.528905
3 0.17090597 0.133696493 0.00000020 0.000001607 0.73844 0.578572
4 0.1693252 0.131803657 0.0000002 0.000001457 0.755629 0.58224

Triplet

1 0.176654703 0.13951882 0.000000220 0.00000526 0.675776 0.19106
2 0.17319843 0.1368997 0.00000026 0.0000075 0.7316057 0.38351
3 0.17091436 0.13395946 0.00000025 0.00000399 0.7631063 0.47424
4 0.1693265922 0.13198639 0.0000004942 0.00000274 0.77991228 0.51297

Table 5.5: Energies, half-widths and expectation values of cos(θ12) for the four lowest L = 2
helium frozen planet states below I4 in planar and three-dimensional treatment.
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Figure 5.9: Electronic densities of the first three 1De helium frozen planet states in planar (left)
and three-dimensional (right) treatment projected onto the subspace with θ12 = 0. From top to
bottom the densities of nF = 1, nF = 2 and nF = 3 are presented. r1r2r12|Ψi(~r1, ~r2)|2θ12=0 and
r21r

2
2|Ψi(~r1, ~r2)|2θ12=0 are displayed for the planar and three-dimensional case, respectively, with

areas of low density represented by black color while those of high density are colored in white.
The coordinates are scaled according to (5.2).

stable ones anymore.
In figure 5.9 conditional probability densities with θ12 = 0 of planar and three-dimensional

1De helium are compared. The three lowest members of the frozen planet series below the
fourth ionization threshold are displayed. As in L = 0 [25] and L = 1, the main properties
of the classical frozen planet configuration are evident. For both planar and three-dimensional
helium the position of the density maximum for inner electron remains invariant as nF increases.
Again, a closer look at these density plots reveals that there are N − 1 = 3 maxima along the
inner electron axis r2 and nF maxima along the axis of the outer electron r1, as expected for
frozen planet states. For three-dimensional treatment of helium the maximum of the density is
localized close to equilibrium position position (5.2) for the outer electron of the frozen planet
configuration, however, one of the density submaxima (in r2 direction) is rather pronounced
and shifted to slightly lower values of r2 than anticipated for frozen planet states. Note, that
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Figure 5.10: One-electron densites for fixed inner electron: r1r2r12|Ψi(~r1, ~r2)|2x2=xmax
2

(left) and

r21r
2
2|Ψi(~r1, ~r2)|2x2=xmax

2
(right) are displayed for the planar and three-dimensional case, respec-

tively, for the 1De, N = 4, nF = 3 helium frozen planet state, with areas of low density
represented by black color while those of high density are colored in white. The coordinates are
scaled according to (5.2).
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Figure 5.11: One-electron densites for fixed outer electron: r1r2r12|Ψi(~r1, ~r2)|2x1=xmax
1

(left) and

r21r
2
2|Ψi(~r1, ~r2)|2x1=xmax

1
(right) are displayed for the planar and three-dimensional case, respec-

tively, for the 1De, N = 4, nF = 3 helium frozen planet state, with areas of low density
represented by black color while those of high density are colored in white. The coordinates are
scaled according to (5.2).

the respective density plot for the 3De frozen planet ground state below I4 shows the same
features. The densities for planar frozen planet states show a qualitative agreement with the
three-dimensional predictions, however, the positions of the density maxima are displaced to
larger values of the outer electron coordinate r1.

Figures 5.10 and 5.11 show one-electron densities with fixed inner and outer electron, respec-
tively. Densities for the first excited frozen planet state for 1De planar and three-dimensional
helium are displayed, where the position of the fixed electron is determined by the density max-
ima in the respective plot in figure 5.9 (see Sec. 5.2). In the planar model the density for fixed
inner electron is localized farther from the core than in three-dimensional calculations, however,
apart from deviations in the shape of the density the density for fixed outer electron agrees well
within both methods.

The graphical analysis performed so far for singlet states can be extended to the triplet
symmetry. Apart from some rather small quantitative differences, triplet states have the same
qualitative properties as singlet states.
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5.4 Summary

Frozen planet states for total angular momenta L = 1, 2 have been calculated for planar and
three-dimensional helium. For total angular momentum L = 1, the frozen planet states possess
the largest expectation values of cos(θ12) and the smallest widths in the respective energy regime.
In particular, the frozen planet series is given by the K = −N + 1 series. Energies, widths
and expectation values of cos(θ12) for frozen planet ground states with N = 3, . . . , 6 and for
the first four states of the frozen planet series with N = 4 have been given. The energies of
the series ground states agree well with semiclassical predictions. The widths of the frozen
planet states is reproduced by the planar model within one order of magnitude, however, the
planar helium model exhibits systematically larger expectation values of cos(θ12) than those
in three-dimensional calculations. Conditional and one-electron densities for planar and three-
dimensional helium have been presented and reveal a good qualitative agreement. The densities
for the frozen planet ground states are localized around the equilibrium position of the classical
frozen planet configuration. However, the densities of planar helium are located systematically
farther from the core than those for three-dimensional calculations. For total angular momentum
L = 2, an identification of frozen planet states in three-dimensional helium on basis of the
before mentioned criterion is not possible. Indeed, in three-dimensional calculations the frozen
planet states for L = 2 are not the most stable states in the respective energy regime anymore.
Conditional and one-electron densities allow for an unambiguous identification of the frozen
planet states. As an example the identification has been performed for the state below the
fourth ionization threshold. The energies and densities of frozen planet ground state reproduce
well the semiclassical predictions. Again the densities of the planar model resemble those of
three-dimensional calculations but are located farther from the nucleus.



Chapter 6

Fluctuations in photoionization cross

sections of planar two-electron atoms

The electron-electron interaction term in the Hamiltonian of the unperturbed helium atom –
which otherwise is just the sum of two hydrogen Hamiltonians with amended nuclear charge
– renders the two-electron dynamics in general irregular and chaotic with only small regions
of regular motion in the classical space [3, 171]. Due to the scaling properties of the helium
Hamiltonian the regime of highly doubly excited states can be described semiclassically. As
a consequence, the quantum spectrum of highly doubly excited states should be influenced
by the underlying classical chaotic dynamics and typical signatures of quantum chaos, such
as a Wigner distribution of the energy spacings between nearest-neighbor resonances [172],
semiclassical scaling laws for the fluctuations in cross sections close to the double ionization
threshold [19] or Ericson fluctuations [17, 18], are expected to become observable [20].

In the 1950’s Wannier was able to derive a threshold law for double ionization [173] which was
confirmed in [174] for the double-photoionization cross section of helium. Recently, a semiclas-
sical scaling law [19] for fluctuations in the cross section below the double ionization threshold
has been derived via closed orbit theory. The scaling law predicts an algebraic decay of the
fluctuations in the single photoionization cross section σfl,

σfl ∝ |E|µ for E → 0− ,

µ = µeZe + 2µWR =
1

4

[

√

100Z − 9

4Z − 1
+ 2

√

4Z − 9

4Z − 1

]

. (6.1)

The exponent µ consists of two components: µeZe is related to the linearized dynamics in the
eZe space and µWR picks up contributions from two equivalent expanding degrees of freedom
orthogonal to the eZe space in the so-called Wannier ridge, which is the invariant subspace of
symmetric electron dynamics with |r1| = |r2| at all times [171]. Note, that the Wannier ridge
contributes to the decay of the fluctuations for Z > 9/4 where µWR is real [19]. The scaling
law has been corroborated for one-dimensional helium restricted to the eZe configuration [19],
where the electrons are located on different sides of the nucleus, and experimental evidence has
been found below the 17th ionization threshold [129] for partial photoionization cross sections
of helium.

Ericson fluctuations are a universal statistical feature of strongly coupled, fragmenting quan-
tum systems, first predicted [17, 18] and observed [175] in compound nuclear reactions. They
manifest themselves in the excitation cross sections into the regime of highly excited resonance
states with typical decay widths larger than the average level spacing, such that single maxima in
the cross section cannot be identified with single resonances anymore, but are rather due to the
interference of several of them. In particular, this implies that the typical scale of fluctuations

75
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induced by interfering decay channels is smaller than the typical width of individual resonances.
Later, Ericson fluctuations were studied in quantum billiards [176–178] and could be understood
as a hallmark of chaotic scattering [179]. So far the only observation of Ericson fluctuations in
an open deterministic quantum system was achieved for alkali atoms in crossed electromagnetic
fields [180–182]. However, the rapidly increasing density of states near the double ionization
threshold lead to speculations about the existence of Ericson fluctuations in helium and their
onset [20, 53, 65, 183, 184]. Note, that in some disordered systems and many-body problems
[185–188] with spectra which exhibit erratic fluctuations it is unclear whether these fluctuations
are Ericson fluctuations.

In the helium atom members of higher lying series interfere with lower series starting from
the fourth single ionization threshold. Above the 8th ionization series the widths of the reso-
nances can be larger than their separation [53, 128]. Whether the overlap of these series and
the overlap of the resonances will break down the approximative quantum numbers of Herrick’s
algebraic classification [72–74] and will lead to Ericson fluctuations is not clear yet. The un-
derstanding of these issues indeed poses a challenge for both experiment and theory. In recent
years an improvement of measurement techniques has allowed a detailed examination of the
doubly excited states converging up to the N = 16 threshold of helium [65, 128, 189]. Close
to the double ionization threshold the number of open channels increases dramatically. There-
fore, currently available full three-dimensional approaches require rather large basis sets for the
respresentation of the associated eigenvalue problem. Simplified one-dimensional models or the
s2-model [190–193] of the three-dimensional atom reduce the calculation difficulties significantly.
However, the former models may underestimate the decay rates of the resonances by orders of
magnitude [97] and the latter does not resolve all resonances that are important for Ericson
fluctuations as observed below. Studies on quantum chaos of the one-dimensional helium atom
have predicted Ericson fluctuations in the total photoionization cross sections (TPCS) to be
observable above I34 [127, 183] and studies within the s2-model find Ericson fluctuations in the
partial inelastic cross sections between electrons and He+ already around I16 [184]. Currently
available full three-dimensional approaches are able to describe the spectrum up to the N = 17
threshold [65]. The analysis of the theoretical and experimental results up to I17 in [65] reveals
a clear dominance of principal Rydberg series in the total photoionization cross section. The
hierarchy in the intensities of the resonances reveals that F = N−K is an approximate quantum
number for a large fraction of the states. Consequently Ericson fluctuations are absent in this
regime and no transition to full chaos is observed, in clear contradiction with the predictions of
simplified models [184].

In the following, we use our planar approach described in chapter 2 for the study of the
fluctuations of photoionization cross sections. After a brief explanation of how to calculate the
fluctuations in the photoionization cross sections, the cross section for singlet planar helium
up to I20 is presented. The results are compared to experimental data and the contributions
to the cross section are analysed. Photoionization cross sections for the lithium ion Li+ up to
the 20th threshold are presented and a test for the validity of the semiclassical scaling law is
performed with the results of the cross sections for helium and the lithium ion. Finally, the
cross sections for triplet planar helium for energies up to the 25th single ionization threshold
are given, for which series structure, contributions to the cross sections and the existence of the
Ericson fluctuations are investigated.

6.1 Computation of the fluctuations in photoionization cross

sections

The resolution of the photoionization cross section at high energies close to the double ionization
threshold requires the accurate calculation of the spectrum associated to these states. A typical
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Figure 6.1: (left) Spectrum of complex rotated triplet planar helium below the threshold I6
with parameters α = 0.45, θ = 0.25 and nbase = 395. The eigenvalues obtained after numerical
diagonalization of Eq. (2.7) (crosses) contain the converged resonances (circles), the discretized
continuum spectrum rotated by an angle 2θ, and some numerical artefacts and non-converged
resonances around the ionization threshold due to the truncation of the basis. (right) Spectrum
of resonances of triplet planar helium from below I4 up to below I23. The data was obtained
by several runs of the Lanczos algorithm, choosing the shift parameter [25, 113] to provide
a continuous spectrum. Numerical artefacts, discretized continuum states and non-converged
resonances have been removed.

spectrum is shown in figure 6.1 (left), which has been obtained after the diagonalization of
the eigenvalue problem (2.7) with α = 0.45 and θ = 0.25. Besides the discretized continuum
states rotated by 2θ in the complex plane and the resonances there are eigenvalues with positive
imaginary part close to I6 due to the truncation of the basis. In order to exclude these numerical
artefacts and non-converged resonances, all data points have to be checked for convergence with
data for other parameter sets. The convergence test is based on comparison of Re(Ei,θ), Im(Ei,θ),
〈cos(θ12)〉 and 〈Ψi,θ|R(θ)D|φin

E 〉2 for different parameter sets (α, θ, nbase). In figure 6.1 (left)
the converged resonances are highlighted by circles. Figure 6.1 (right) displays all converged
resonances with |Im(Ei,θ)| < 10−4 a. u. converging to IN , with N = 4, . . . , 23 for triplet planar
helium. The discretized continuum states depend on the value of θ and to some extent even
on the value of α. These are not displayed in figure 6.1 (right). The displayed spectra show
the converged resonance eigenenergies extraced from computations with the four parameter sets
(θ = 0.20, α = 0.45 and nbase = 395), (0.20, 0.50, 395), (0.25, 0.45, 395) and (0.25, 0.50, 395).1

As criterion of convergence a coincidence, of eigenvalues computed for at least three different
parameter sets, with a maximal relative deviation of 10−5 for Re(Ei,θ), 10−2 for Im(Ei,θ), 10−2

for 〈cos(θ12)〉 and 5×10−2 for 〈Ψi,θ|R(θ)D|φin
E 〉2, has been used. Note, that due to the truncation

of the basis, the exact thresholds cannot be reached, but only effective thresholds Ieff
N [113, 194].

The exact threshold energy of I6 is given by I6 ≈ 0.0661157024793 a. u., which is clearly not the
energy where the continuum starts in figure 6.1 (left).

The TPCS can be written as

σ(ω) = σbg(ω) + σfl(ω) . (6.2)

The continuum states are responsible for the smooth background σbg(ω) of the cross sections
and do not affect their fluctuations. Thus, only the resonances contribute to the fluctuating part
of the spectrum σfl(ω). The numerical calculation of σfl(ω) has been accomplished with the help
of Eq. (2.25), where only converged resonances have been taken into account.

1The size of the band structure matrices representing the eigenvalue problem for nbase = 395 is given by
325801 × 16293.
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6.2 Photoionization cross section for singlet helium

In this section we investigate the photoionization cross section for dipole transitions from the
singlet planar helium ground state, with angular momentum l = 0 and Πx = +1. The energy of
this state is given by

Ein = −11.8998223429530 a.u. . (6.3)

The dipole operator couples this state with |l| = 1 singlet states of symmetry Πx = +1. The
resolution of the TPCS at high energies close to the double ionization threshold requires the
accurate calculation of the spectrum associated to these states. The numerically obtained spec-
trum contains discretized continuum states rotated by 2θ in the complex plane, converged res-
onances (stable under moderate variations of α and θ), and numerical artifacts and noncon-
verged resonances (θ- and α-dependent) due to the truncation of the basis [94]. In order to
extract the converged resonances, all data points have been checked for convergence with data
for other parameter sets (α, θ). Depending on the energy regime, these parameter have to be
adjusted. Finally, a given energy regime is calculated with six to twelve parameter sets (α, θ)
among {(0.35, 0.15), (0.35, 0.20), (0.35, 0.25), (0.35, 0.30), (0.40, 0.15), (0.40, 0.20), (0.40, 0.25),
(0.40, 0.30), (0.45, 0.10), (0.45, 0.15), (0.50, 0.10), (0.50, 0.15), (0.50, 0.20), (0.50, 0.25),
(0.50, 0.30), (0.55, 0.10), (0.55, 0.15)} with nbase = 420.2 As criterion of convergence for the
resonances we used a coincidence for resonances of at least four different parameter sets (α, θ),
within a maximal deviation of a factor 10−5 for Re(Ei,θ), 10−2 for Im(Ei,θ), 10−2 for 〈cos(θ12)〉
and 5 × 10−2 for 〈ψi,θ|R(θ)T |φin

E 〉2.
As the energy approaches the total break-up threshold the density of states increases dra-

matically. Single resonances will overlap with other resonances in the sense that the widths of
individual resonances are larger than the separation from their nearest-neighbour resonances.
Individual Fano profiles are thus hard or impossible to distinguish and the cross sections exhibit
a strongly oscillating or fluctuating pattern around a smooth background. The fluctuating part
σfl(ω) of the TPCS is given by Eq. (2.25), where only converged resonances are taken into
account (see Sec. 6.1).

The TPCS for singlet planar helium from the ground state has been measured up to energies
around the 15th single ionization threshold [65]. A direct comparison with the TPCS for planar
helium is not possible, due to the different energy scales of the eigenstates of planar and three-
dimensional helium. In particular, the positions of the ionization thresholds for planar helium
(2.38) do not coincide with those for the three-dimensional system (2.39). This problem can be
solved by rescaling the energies for planar helium according to

Escaled
2D = − 2

(√

− 2
E2D

+ 1
2

)2 . (6.4)

In figure 6.2 energy-rescaled calculated fluctuations σfl for singlet planar helium are presented
together with the experimental photoionization-yield spectra of doubly excited singlet helium
from [65]. The energies are converted to eV (zero value fixed at the ground state energy) and the
calculated cross section has been convoluted by a Gaussian function with 1.7 meV [full width at
half maximum (FWHM)], which is consistent with the experimental resolution. Our theoretical
predictions have been slightly shifted by -0.009 eV in order to match the experiment.

Planar helium is known to provide a good qualitative description [97] (see also Chapt. 5).
Figure 6.2 shows moreover the quantitative power of the planar approach. Characteristic fea-
tures of the cross section are well resolved within the data by the planar model. Furthermore,

2This results in band structure matrices of dimension 394161 × 18498 for the treatment of the eigenvalue
problem.
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Figure 6.2: Fluctuations of photoionization cross section of doubly excited singlet helium be-
tween I8 and I15: Experimental data (bottom) and theoretical results for planar helium (top).
The theoretical data was scaled according to Eq. (6.4), afterwards convoluted by a Gaussian
function with 1.7meV width (FWHM). The theoretical data has been displaced by −9 meV in
horizontal direction to match the experimental data more accurately, and one unit in vertical
direction. The amplitude of the cross sections in the right panel has been enlarged by a factor
of 2.5 with respect to the left panel.
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Figure 6.3: Calculated 〈cos(θ12)〉 values as a function of resonance energy E below the 20th
threshold for singlet planar helium. Each point represents a particular singlet state resonance
with Πx = +1 and |l| = 1. For values of 〈cos(θ12)〉 close to -1 the resonances are organized in
series along straight lines converging to -1 at the double ionization threshold. These series are
labeled by the approximate quantum number F . The dominant and first subdominant series
are highlighted in color: • (F = 2), • (F = 4).

experimental and theoretical data show excellent agreement concerning peak positions and peak
shapes. Discrepancies seem to occur near the effective ionization thresholds. These observations
support once again the expectation that the planar model describes helium for the energy regime
close to the double ionization threshold rather well.

The investigations by Jiang et al. [65, 195] show that the total cross section is dominated by
the low-dimensional collinear eZe dynamics: Only very few resonances contribute significantly
to the photoionization cross section in the region from I9 to I16 and the series of contributing
resonances are associated with (small) constant values of F = N − K, where N and K are
approximate quantum numbers from Herrick’s algebraic classification [72–74].
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Figure 6.4: Comparison of the fluctuations of the photoionization cross sections for singlet planar
helium from below I8 up to I20 including all resonances (solid line) and resonances with F = 2
only (dashed line).

Figure 6.3 presents a plot of the calculated expectation values 〈cos(θ12)〉 as a function of
√

|Re(Eθ)| for all converged resonances below I4 up to I20. θ12 is the angle between the two
electron position vectors ~r1 and ~r2. A clear decomposition into series of resonances can be
identified for 〈cos(θ12)〉 . −0.5. From the relation

〈cos(θ12)〉 n→∞−→ −K
N
, (6.5)

the eZe configuration can be identified with the maximum value of K = N − 1, i.e.,
F = N − K = 1. Furthermore, the values of 〈cos(θ12)〉 in the low-lying series in figure 6.3
decrease smoothly with decreasing values of

√

|Re(Eθ)|. This can be understood as a conse-
quence of the presence of perturbers with different K values that belong to Rydberg series below
the next higher thresholds, i.e., of a strong mixing of resonances with different N and K, but the
same N −K. The approximate quantum number F = N −K thus allows the classification of
these series of resonances, of which all members lie on straight lines. As the energy approaches
the total fragmentation threshold new series associated to higher values of F appear and no
mixing between series with different values of F is found. In addition, the extrapolations of
the straight lines for series classified by a constant value of F cross each other at a value of
〈cos(θ12)〉 = −1 at the double ionization threshold. In this limit these resonances correspond to
the eZe configuration, which is stable under angular perturbations, but unstable under radial
perturbations. Therefore, the existence of the approximate quantum number F can be under-
stood by the regularity in the angular direction in helium, though the radial motion remains
chaotic. In contrast to these resonances, series of resonances in the region where 〈cos(θ12)〉 is
close to unity exhibit a systematic increase of 〈cos(θ12)〉, though no mixing between N and K
takes place. This is a consequence of the underlying regular classical dynamics of the frozen
planet (Zee) configuration.

The approximate classification of helium resonances unveiled in figure 6.3 allows us to study
separately the contributions of different series to the photoionization cross sections. Indeed,
only a small fraction of states contribute significantly to the cross section. For singlet helium
the resonances which yield major contributions are characterized by even values of F ,

F = 2m , m ∈ N , (6.6)

which is a consequence of the propensity rules for dipole transitions [52]. Series with odd F and
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Figure 6.5: Contributions of subsets of resonances to the fluctuations of the photoionization cross
setion for singlet planar helium from below I8 to below I20. The fluctuations due to the series
F = 2 and F = 4 are shown in (a) and (b), respectively. The contributions from all remaining
resonances are depicted in (c). The rapid decrease of the amplitudes in (a) in comparison to
(b) suggests a competition between the F = 2 and F = 4 series and an eventual loss of the
dominant role of the F = 2 series.

all resonances that can not be characterized by F – e.g. those resonances close to the double
ionization threshold for which −0.5 . 〈cos(θ12)〉 –, result in almost no contribution.

In figure 6.4, we present a comparison of the fluctuations of the photoionization cross section
with the contributions of the resonances associated to F = 2. The subset of resonances with
F = 2 resembles the cross section quite well and, therefore, it yields the dominant contributions.
However, as the energy approaches the total fragmentation threshold the influence of series
with higher values of F grows. This is illustrated in figure 6.5 where we present the separate
contributions of the series with F = 2 and F = 4, and the contributions of the remaining
resonances. A direct comparison of the plots in figure 6.5 provides a rough estimate of the
amplitudes of the fluctuations. The typical magnitude of the fluctuations for the resonances
series F = 2 around I9 is about six times larger than the one for the F = 4, which however
reduces to a factor of roughly 2.5 around I18. The slower decay of the fluctuations for larger
values of F might be due to the fact, that these states are still farther from being collinear
than the ones with F = 2 at low energies, though at the total fragmentation threshold all
those series apparently converge to the collinear configuration. This might eventually lead to a
breakdown of the dominant series picture which then would have to be substituted by a picture
where an increasing number of series with even F will have to be taken into account with
decreasing distance to the double ionization threshold. Moreover, figure 6.5 yields that basically
all contributions up to the 20th threshold are due to members of the F = 2 and F = 4 series.
Indeed, it is possible to associate a single resonance of the F = 2 or F = 4 series to almost
every peak in the cross section. This shows that the fluctuations in the TPCS are not due to
the overlap between resonances and, thus, the Ericson regime is not reached yet.3

3A more detailed analysis concering the occurrence of Ericson fluctuations is given in section 6.4 for triplet
helium.



82 6. Fluctuations in photoionization cross sections of planar two-electron atoms

-0.040 -0.035 -0.030 -0.025 -0.020 -0.015 -0.010

-100

-50

0

50

100

ReHEL @a.u.D

Σ
flsc

al
ed
@a

rb
.u

ni
ts
D

Figure 6.6: Scaled fluctuations σscaled
fl (6.7) of the cross section of singlet planar helium from

below I8 up to I20. The amplitude of the fluctuations remains approximately constant as a
function of the energy with a slight increase close to the threshold.

An accurate analysis of the fluctuations’ scaling law in planar helium requires going beyond
the energy regime we can reach at present. Nevertheless, the trend of the behaviour predicted
by Eq. 6.1 can already be recognized in our calculations up to I20: the amplitude of the scaled
fluctuations,

σscaled
fl (E) = |E|−µσfl , (6.7)

exhibits rather small fluctuations along the energy regime from I8 to I20 (see Fig. 6.6). However,
a slight increase of the amplitude of the fluctuations is observed close to the total fragmentation
threshold. A reason for this might be, that the scaling law (6.1) correctly reproduces the change
in amplitude with decreasing distance to the total fragmentation threshold for the collinear
configuration, however, the collinearity is an idealization as the expectation values of cos(θ12)
for the involved resonances deviates from −1. Indeed, it seems that the magnitude of the
contributions to the TPCS increases with decreasing value of 〈cos(θ12)〉. Moreover, we have
seen that more than one F -series of resonances contributes significantly to the cross section and
that their relative weight changes with decreasing distance to the double ionization threshold,
which seems also to be connected with the deviation from collinearity.

6.3 Photoionization cross section for singlet ionic lithium

The Wannier ridge influences the scaling law (6.1) if the charge of the nucleus Z > 9/4. A com-
plete test of the scaling law requires the computation of photoionization cross sections for two-
electron atoms other than helium. Therefore, we investigate the photoionization cross section
for dipole transitions from the singlet planar lithium ion ground state, with angular momentum
l = 0 and Πx = +1, and energy

Ein = −29.5502793111317 a.u. , (6.8)

coupled by the dipole operator to |l| = 1 singlet states of symmetry Πx = +1. For a given en-
ergy regime calculations with six to twelve parameter sets (α, θ) among {(0.35, 0.10), (0.35, 0.15),
(0.35, 0.20), (0.40, 0.10), (0.40, 0.15), (0.40, 0.20), (0.40, 0.25), (0.45, 0.05), (0.45, 0.10),
(0.45, 0.15), (0.45, 0.20), (0.45, 0.25), (0.50, 0.05), (0.50, 0.10), (0.50, 0.15), (0.50, 0.20),
(0.50, 0.25), (0.55, 0.05), (0.55, 0.10), (0.55, 0.15)} with nbase = 420 have been performed and
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Figure 6.7: Scaled fluctuations σscaled
fl of the cross section for singlet planar ionic lithium from

below I10 up to I20. (a) presents the fluctuations scaled with the exponent µ = µeZe + 2µWR,
while the fluctuations in (b) have been scaled using µ = µeZe as exponent. The amplitude of
the fluctuations remains, for both cases, approximately constant as a function of energy, with a
slight increase for µ = µeZe + 2µWR close to the double ionization threshold.

converged resonances have been extracted with the same criterion as for singlet planar helium.
The fluctuations in the photoionization cross sections have been computed on the basis of these
resonances as described in section 6.1.

In figure 6.7 the fluctuations of the photoionization cross section scaled according to (6.7)
are presented. However, to test the influence of the Wannier ridge, fluctuations scaled with two
different exponents µ are given, one as given in (6.1) with µ = µeZe + 2µWR (Fig. 6.7(a)) and
a second µ = µeZe without the contribution of the Wannier ridge (Fig. 6.7(b)). The amplitude
of the fluctuations exhibit rather small variations along the energy regime from I10 to I20 for
both exponents. The amplitude of the fluctuations of figure 6.7(a) shows a small increase close
to double ionization threshold. On basis of these plots alone, it can not be verified that the
contribution of the Wannier ridge to the exponent µ is needed. However, considering that the
amplitude of the fluctuations for singlet planar helium increases close to the double ionization
threshold, too, indicates that the exponent of (6.1) reflects the general behaviour of decay of the
amplitude of the fluctuations, apart from the observed differences connected with the deviations
from collinearity.

Figure 6.8 presents a plot of the calculated expectation values 〈cos(θ12)〉 as a function of
√

|Re(Eθ)| for all converged resonances below I8 up to I20, which shows for 〈cos(θ12)〉 < −0.5
an organization into series similar to the one for singlet planar helium. Major contributions to
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Figure 6.8: Calculated values of 〈cos(θ12)〉 as a function of resonance energy E below the 20th
threshold for singlet planar ionic lithium. Each point represents a particular singlet state reso-
nance with Πx = +1 and |l| = 1. For values of 〈cos(θ12)〉 close to -1 the resonances are organized
in series along straight lines converging to -1 at the double ionization threshold. These series are
labeled by the approximate quantum number F . The resonances are displayed in color according
to their allocation to these series: • (F = 1), •(F = 2), • (F = 3), •(F = 4), • (F = 5) and •
for resonances not identified with any one of these series.
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Figure 6.9: Comparison of the fluctuations of the photoionization cross sections for singlet planar
ionic lithium from below I7 up to I20 including all resonances (solid line) and resonances with
F = 2 only (dashed line).

the cross sections are again given by members of series characterized by even values of F , where
F = 2 gives the dominant contribution which already describes the cross section rather well (see
Fig. 6.9). However, with decreasing distance to the total fragmentation threshold the relative
weight of the contributions of subdominant series increases. In figure 6.10 the contributions of
the dominant (F = 2), first subdominant (F = 4) and all other resonances are given. Note, that
the change in the relative weight of the series is roughly the same as for singlet planar helium,
however, the weight of the contribution for the resonances not identified with F = 2 and F = 4
is larger than in the helium case.
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Figure 6.10: Contributions of subsets of resonances to the fluctuations of the photoionization
cross setion for singlet planar ionic lithium from below I7 to below I20. The fluctuations due
to the series F = 2 and F = 4 are shown in (a) and (b), respectively. The contributions from
all remaining resonances are depicted in (c). The rapid decrease of the amplitudes in (a) in
comparison to (b) suggests a competition between the F = 2 and F = 4 series and an eventual
loss of the dominant role of the F = 2 series.

6.4 Photoionization cross section for triplet helium

After analysing the fluctuations of the photoionization cross sections below I20 for singlet planar
helium and ionic lithium, we are going to investigate the cross sections for triplet planar helium
for energies up to the 25th single ionization threshold. The fluctuations of the photoionization
cross section are computed for dipole transitions from the lowest lying triplet bound state, with
angular momentum l = 0 and Πx = +1, of planar helium. The energy of this state is given by

Ein = −8.29596372809043 a.u. . (6.9)

The dipole operator couples this state with |l| = 1 triplet states of symmetry Πx = +1. For a
given energy regime calculations with six to twelve parameter sets (α, θ) among {(0.40, 0.05),
(0.40, 0.10), (0.40, 0.15), (0.40, 0.20), (0.40, 0.25), (0.45, 0.05), (0.45, 0.10), (0.45, 0.15),
(0.45, 0.20), (0.45, 0.25), (0.50, 0.05), (0.50, 0.10), (0.50, 0.15), (0.50, 0.20), (0.50, 0.25),
(0.55, 0.05), (0.55, 0.10), (0.55, 0.15), (0.55, 0.20), (0.60, 0.05), (0.60, 0.10), (0.60, 0.15)} with
nbase = 4804 have been performed and converged resonances have been extracted with the same
criterion as for singlet planar helium, on basis of which the fluctuations of the photoionization
cross section was calculated as described in 6.1.

Figure 6.11 displays the fluctuations scaled according to (6.1). Similar to the case of singlet
symmetry the amplitude of the scaled fluctuations stays nearly constant as a function of energy,
however, it exhibits a slight increase close to the double ionization threshold. The analysis of
the contributions to the cross sections suggests again, that this is due to deviations from the
collinear configuration.

In figure 6.12 the calculated expectation values 〈cos(θ12)〉, as a function of
√

|Re(Eθ)|, for
all converged resonances below I8 up to I25 are presented. In the region |〈cos(θ12)〉| < 0.3 some
resonances are missing in this plot as they possess widths which are to large to be uncovered

4This results in band structure matrices of dimension 586760 × 24102 for the treatment of the eigenvalue
problem.
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Figure 6.11: Scaled fluctuations σscaled
fl of the cross sections for triplet planar helium between I8

and I25. The amplitude of the fluctuations remains approximately constant as function of the
energy. A slight increase in amplitude is found close to the double ionization threshold.
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Figure 6.12: Calculated values of 〈cos(θ12)〉 as a function of resonance energy E below the
25th single ionization threshold for triplet planar helium. In the regions |〈cos(θ12)〉| < 0.3 and
〈cos θ12〉 > 0.5 some resonances are missing, details are given in the text. Each point represents
a particular triplet state resonance with Πx = +1 and |l| = 1. The resonances are displayed in
color according to their allocation to Rydberg series: • (1st), • (2nd), • (3rd), • (4th), • (5th),
and • for resonances not identified with anyone of these series.

with some of the values used for the complex rotation angle θ. The same is true for the region
〈cos(θ12)〉 > 0.3, however, in this case the widths are very small. In both cases the resonances do
not meet the convergence criterion for Im(E). A convergence analysis with a less rigid criterion
for the width shows, that these resonances are resolved and that they do, as expected, not yield
a significant contribution to the cross section. A clear decomposition into series of resonances
can be identified for 〈cos(θ12)〉 . −0.5.

The approximate classification of helium resonances unveiled in Fig. 6.12 allows us to study
separately the contributions of different series to the photoionization cross sections. Indeed,
only a small fraction of states contribute significantly to the cross section. For triplet states the
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Figure 6.13: Comparison of the fluctuations of the photoionization cross sections for triplet
planar helium from I8 up to I25 including all resonances (solid line) and resonances with F = 1
only (dashed line).
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Figure 6.14: Resonance widths of triplet planar helium resonances in units of the mean level
spacing s for resonances from I5 to below I20. (a) shows the widths of all resonance states found
in this energy regime, with the inset giving a close-up of the regime around I7 to I9, while (b)
includes exclusively resonances characterized by F = 1. Details for the computation of s are to
be found in [94, 95].

resonances which yield major contributions are characterized by odd values of F ,

F = 2m+ 1 , m ∈ N0 , (6.10)

while series with even F and all resonances that can not be characterized by F – e.g. those
resonances close to the total fragmentation threshold for which −0.5 . 〈cos(θ12)〉 –, result in
almost no contribution. This is a consequence of the nodal structure of the initial and final wave
functions which leads to the propensity rules for dipole transitions [22, 52, 196].

The data available at present demonstrates that the size of the contributions decreases with
increasing value of m in Eq. (6.10), resulting in a dominant series with F = 1. In figure 6.13,
a comparison of the fluctuations of the photoionization cross section of the dominant resonance
series and the one including all resonances is presented. The comparison illustrates, that the
subset of resonances with F = 1 reproduces the cross section quite well and therefore that this
group of resonances truly yields the dominant contributions. The fact, that the F = 1 series
yields the dominant contribution renders triplet helium ideal for further investigations, as these
states are very close to the collinear configuration (see Fig. 6.12).
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Figure 6.15: Fluctuations of the photoionization cross section for triplet planar helium around
I22. The vertical lines indicate the position of resonances associated with F = 1 (I), F = 3 (I)
and F = 5 (I).
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Figure 6.16: Contributions of subsets of resonances to the fluctuations of the photoionization
cross setion for triplet planar helium from below I8 to below I25. The fluctuations due to the
series F = 1, F = 3 and F = 5 are shown in (a), (b) and (c), respectively. The contributions
from all remaining resonances are depicted in (d). In (e) the series F = 1, F = 3 and F = 5 are
shown in one plot with the same color coding as in (a)-(c). The rapid decrease of the amplitudes
for F = 1 in comparison to F = 3 suggests a competition between the F = 1 and F = 3 series
and an eventual loss of the dominant role of the F = 1 series.

The existence of a dominant subset of resonances has important consequences for the dis-
cussion of Ericson fluctuations in the cross sections. We will demonstrate this in a rather crude
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way by computing a kind of local mean level spacing s for converged resonances (see [94, 95] for
details) and comparing this to the resonance widths. In figure 6.14 the resonance widths are dis-
played in units of the computed local mean level spacing. Figure 6.14(a) clearly illustrates, that
if one considers all resonances, the condition Γ ≫ s is already met around I9 and therefore the
Ericson regime seems to be reached. At energies as high as I20 more than 90% of the resonances
overlap. From this one might expect that single peaks in the cross sections observed in figure 6.13
have random character and are not the result of individual resonances. However, figure 6.14(b)
indicates that the resonances of the dominant series have not reached the Ericson regime yet,
since the condition Γi ≥ s is only fulfilled by a small fraction of resonances and therefore Γ ≫ s
is not satisfied. In figure 6.15, the fluctuations of the photoionization cross section around I22
and the position of resonances with F = 1, F = 3 and F = 5 are presented. Note, that even in
this energy regime most peaks in the cross section can be associated to a single resonance. The
value of cos(θ12) expected for the resonances belonging to the F = 1 series is close to −1 even
at low energies and approaches −1 rather fast as the energy increases. Therefore, practically all
of these resonances can be associated to the collinear eZe configuration. Provided the picture
of a dominant series remains valid for high enough energies, Ericson fluctuations in helium are
expected around I34 [65, 127, 183].

Note, however, that on the one hand, neither currently available studies of the full three-
dimensional problem nor experimental observations [65] supply any evidence for the mixture of
series with different approximative quantum numbers F or for the loss or existence of the dom-
inant role of a single series above I17. On the other hand, the decay behaviour of fluctuations
from different series is not known at low energies, where the states of these series cannot be
associated to collinear configurations (e.g. around I10), though it is expected to decay accord-
ing to (6.7) at the break-up threshold. Therefore, it is not entirely clear whether the picture
described above holds for the whole energy region up to the double ionization threshold. In
particular the influence of other series characterized by F has to be understood. In order to
investigate this issue we have studied the contributions to the photoionization cross section of
the first five series of resonances separately. In figure 6.16(a)-(d) the contributions of the series
with F = 1, F = 3 and F = 5, and the contribution of the remaining resonances are presented.
In figure 6.16(e) the contributions of the series with F = 1, F = 3 and F = 5 are depicted
simultaneously in one plot. It indicates the change in the relative weight of the contributions
with increasing energy. Note, however, that figure 6.16(e) distorts the situation slightly due to
the linethickness. A direct comparison of the plots in figure 6.16 provides a rough estimate of
the amplitudes of the fluctuations. The typical magnitude of the fluctuations for the resonance
series F = 1 around I9 is about three times larger than the one for the F = 3 series and about
ten times larger than the one for the F = 5 series. Nevertheless, we observe that the decay of
the magnitude of the fluctuations is more rapid for series with smaller F , e.g. around I18 the
rate for the the typical magnitude of the fluctuations for the series F = 1 to the one for the
series F = 3 decreased from three to slightly less than two and the one between F = 1 and
F = 5 from ten to around five. This might eventually lead to a breakdown of the dominant
series picture. Instead one might have to consider more and more resonance series with odd F
the closer one gets to the double ionization threshold, where the fluctuations of each of these
series are comparable in magnitude and which lead to an earlier onset of Ericson fluctuations
than expected for the one-dimensional helium picture. The slower decay of the fluctuations for
larger vales of F might be due to the fact that these states are still farther from being collinear
than the ones with F = 1 at low energies, though at the total fragmentation threshold all those
series apparently converge to the collinear configuration.
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6.5 Summary

The fluctuations in photoionization cross sections of two-electron atoms have been investigated
for singlet planar helium and ionic lithium up to I20 and for triplet planar helium for ener-
gies below the 25th single ionization threshold. For singlet planar helium the cross section has
been compared to experimental data, which is resembled by the planar counterpart on an almost
quantitative level. Tests for a semiclassical scaling law have been performed for all three systems,
which indicate that the scaling law correctly reflects the general behaviour, however, does not
consider deviations from the collinear configuration. The dominance of a series of resonances
associated to the eZe configuration and identified with a constant value of the approximate
quantum number F has been established for all three systems. Moreover, subdominant contri-
butions have been analysed, which indicate a breakdown of the picture of one dominant series
and suggest the competition of an increasing number of series with decreasing distance to the
total fragmentation threshold. In addition, we have investigated the consequences of a dominant
series for the onset of the Ericson regime for the example of triplet planar helium. It turns out,
that the regime of strongly overlapping resonances is not yet reached for the dominant series
and that therefore Ericson fluctuations are absent.
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Summary and Conclusions

In the present thesis, we have studied bound states and resonances of helium, and photoionization
cross sections of two-electron atoms. A non-standard configuration interaction approach for
the treatment of two-electron atoms in three-dimensions and a planar model have been used
for this purpose. Our planar approach, which is of explicitly correlated type and based on a
representation of the eigenvalue problem in parabolic coordinates, has been presented together
with key features of its numerical implementation in chapter 2. The spectral method used
for the treatment of two-electron atoms in three dimensions and its numerical implemantation
have been given in chapter 3. This chapter includes the description of a newly developed, highly
efficient method for the computation of matrix elements of the electron-electron interaction. The
efficiency of this method provides the means to apply our configuration interaction approach to
the description of highly doubly excited states, which requires the computation of large matrices.

Starting with a discussion on the slow convergence of the ground state in our approach,
results for helium bound states and resonances, computed within our configuration interaction
approach, have been presented in chapter 4. Our approach has then successfully been applied
to the computation of 1,3Se resonances up to the tenth threshold, and they have been compared
to available reference data. The computation of these doubly excited states has been achieved
within a basis size not exceeding 9000, which is three to five times smaller than the basis size
needed in other state-of-the-art approaches. Apart from the common natural parity states and
resonances, we have applied our approach to the description of doubly excited states of unnatural
parity. Results for non-autoionizing doubly excited states of helium with L = 1, .., 9 and 3P e

resonances up to the eighth single ionization threshold have been given. Our data is in perfect
agreement with the few available results by Ho et al. [148], however, it disagrees strongly with
recent results by Saha et al. [141], which have been obtained using a stabilization method. Note,
that further spectral data has been given in appendix C.

Frozen planet states for total angular momenta L = 1, 2 have been calculated for planar and
three-dimensional helium and presented in chapter 5. For total angular momentum L = 1, the
frozen planet states possess the largest expectation values of cos(θ12) and the smallest widths
in the respective energy regime. For total angular momentum L = 2, an identification of
frozen planet states in three-dimensional helium on basis of the above mentioned criterion is not
possible. Indeed, in three-dimensional calculations the frozen planet states for L = 2 are not
the most stable states in the respective energy regime anymore. Conditional and one-electron
densities allow an unambiguous identification of the frozen planet states. A comparison of
frozen planet states for planar and three-dimensional treatment reveals that the planar approach
provides a good description of these states, however, the outer electron is in general localized
farther away from the nucleus and the states are closer to the collinear configuration than their
three-dimensional counterparts.

The computation of highly doubly excited states with our three-dimensional approach, lays
the foundation for a future treatment of multiphoton processes, as the description of resonances
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with L ≥ 2 poses no additional difficulties in a configuration interaction approach. Further-
more, the relatively small dimensions of the matrices compared to those of other state-of-the-art
methods – the largest matrix to diagonalize for the description of doubly excited states has been
smaller than 16000 × 16000 – should allow for the simultaneous treatment of several values of
the total angular momentum, as needed in the description of multiphoton processes, within the
presently available computational resources.

In chapter 6, the planar model has been applied to the computation of photoionization cross
sections. The planar model allowed us to reach an energy regime far beyond the one accessible
in three-dimensional approaches. For singlet planar helium the fluctuations in photoionization
cross sections have been computed up to the 20th single ionization threshold and compared to
experimental data. The planar results resemble the experimental cross section on an almost
quantitative level, reproducing practically every feature of the cross section with some devia-
tions occurring close to single ionization thresholds. This emphasizes the descriptive power of
the planar approach. The data for singlet helium is used together with results for the photoion-
ization cross section for singlet planar ionic lithium to test the semiclassical scaling law [19].
Our data indicates, that the scaling law correctly reflects the general behaviour of the decay of
the fluctuations in photoionization cross sections, however, it shows deviations close to the total
fragmentation threshold. These seem to be a consequence of deviations of the quantum states
from the collinear configuration and of a competition of dominant and subdominant contribu-
tions with a different degree of collinearity. In addition, the fluctuations in the photoionization
cross section of triplet planar helium have been studied up to the 25th single ionization thresh-
old. The dominance of a series of resonances associated to the eZe configuration and identified
with a constant value of the approximate quantum number F has been established for all three
systems. Moreover, subdominant contributions have been analysed, which indicate a breakdown
of the picture of one dominant series and suggest the competition of an increasing number of
series with decreasing distance to the total fragmentation threshold. We have also investigated
the consequences of a dominant series for the onset of the Ericson regime for the example of
triplet planar helium. It turns out, that the regime of strongly overlapping resonances is, for the
dominant series, not yet reached even at the 25th single ionization threshold and that therefore
Ericson fluctuations are absent.

Outlook

One of the main results of this thesis is the application of a non-standard configuration in-
teraction approach to the description of highly doubly excited states. On the one hand, a
parallelization of our code will allow us to access an energy regime even closer to the double
ionization threshold. To access a higher energy regime a larger number of Coulomb-Sturmian
functions and more angular configurations need to be included into the respective bases. Due
to the highly efficient method for the computation of matrix elements of 1/r12 the inclusion
of additional Coulomb-Sturmian functions does not pose a problem. However, the inclusion
of additional angular configurations increases the computation time tremendously, as the inner
summation of Eq. (3.15) includes an increasing number of terms for increasing values of the in-
dividual angular momenta (see Eq. (B.29)) and makes a parallelization necessary. On the other
hand, the computation of highly doubly excited states in our approach opens up the possibility
for a treatment of multiphoton processes in a spectral method, by either implementing Floquet
theory or an advanced time propagation method [197] in our code. In particular, our approach
should be suitable for the investigation of a possible formation of non-dispersive two-electron
wave packets through near reasonant driving of frozen planet states. Frozen planet states are
inaccessible through a dipole transition from the ground state and have so far not been observed
in experiments. The development of a transition scheme with intermediate states on basis of
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our approach might provide some clues how to access these states, which also poses the initial
step for the experimental verification of the existence of non-dispersive wave packets. Note, that
in the case of circularly polarized light, which might be necessary in this case, the treatment
of states and resonances of unnatural parity might play an important role. Moreover, with the
inclusion of relativistic corrections, i.e., radiative decay, our three-dimensional code could be
used for further investigations of the unnatural parity bound state of H− in order to assist in
the experimental observation.

Our planar approach has already shown to be adapted to investigate the formation of non-
dispersive two-electron wave packets, however, it is also perfectly suited for the treatment of
double ionization processes induced by laser fields. Furthermore, our approach is equally appro-
priate for the treatment of planar quantum dots [198] or H+

2 (with and without fields).



Appendix A

Planar two-electron atom

supplement

A.1 Parabolic transformation

In the transformation from Cartesian (x1, y1, x2, y2) to parabolic coordinates (xp, yp, xm, ym), as
defined by Eqs. (2.2), (2.3) and (2.4), two fundamental planar transformations are involved,
which are used several times: a parabolic transformation and a rotation by π/4.

A single generic parabolic transformation between the coordinates (x, y) and (µ, ν) is given
by

x = 1
2(µ2 − ν2), µ =

√
r + x ,

y = µν, ν =
√
r − x ,

(A.1)

with r =
√

x2 + y2 = 1
2(µ2 + ν2). The partial derivatives then read

∂

∂x
=

1

2r

(

µ
∂

∂µ
− ν

∂

∂ν

)

,

∂

∂y
=

1

2r

(

ν
∂

∂µ
+ µ

∂

∂ν

)

, (A.2)

and the two dimensional Laplacian is given by

∂2

∂x2
+

∂2

∂y2
=

1

µ2 + ν2

(

∂2

∂µ2
+

∂2

∂ν2

)

=
1

2r

(

∂2

∂µ2
+

∂2

∂ν2

)

. (A.3)

The coordinate transformation (2.3) involves two rotations of type

x =
(u+ v)√

2
, u =

(x+ y)√
2

,

y =
(u− v)√

2
, v =

(x− y)√
2

, (A.4)

the derivatives are given by

∂

∂x
=

1√
2

(

∂

∂u
+

∂

∂v

)

,

∂

∂y
=

1√
2

(

∂

∂u
− ∂

∂v

)

. (A.5)
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For the full transformation between (x1, y1, x2, y2) and (xp, yp, xm, ym), the Cartesian coordinates
are given in terms of the parabolic ones by

x1 =
1

4

[

−(xmym + xpyp)
2 +

1

4
(x2

m + x2
p − y2

m − y2
p)

2

]

,

y1 =
1

4
(xmym + xpyp)(x

2
m + x2

p − y2
m − y2

p) ,

x2 =
1

4

[

−(xmym − xpyp)
2 +

1

4
(x2

m − x2
p − y2

m + y2
p)

2

]

,

y2 =
1

4
(xmym − xpyp)(x

2
m − x2

p − y2
m + y2

p) . (A.6)

The expressions for r1 =
√

x2
1 + y2

1 , r2 =
√

x2
2 + y2

2 and r12 =
√

(x1 − x2)2 + (y1 − y2)2 are in
parabolic coordinates given by

r1 =
1

16

(

(xp − ym)2 + (xm + yp)
2)((xp + ym)2 + (xm − yp)

2
)

,

r2 =
1

16

(

(xp − xm)2 + (yp − ym)2)((xp + xm)2 + (yp + ym)2
)

,

r12 =
1

4

(

x2
p + y2

p

) (

x2
m + y2

m

)

. (A.7)

A.2 Some integrable two-dimensional systems

A.2.1 Eigenfunctions of the two-dimensional harmonic oscillator

The coordinate representation of the wave functions of the two-dimensional harmonic oscillator
are presented her. They are used in section A.2.2, to find the representation of the tensorial
product |n1n2〉 of Fock states, and through this, to calculate the wave functions of planar two-
electron atoms.

The Hamiltonian of the two-dimensional harmonic oscillator is H = −1
2∇2 + 1

2ω
2r2, where

∇2 is the two-dimensional Laplacian. Scaling the Cartesian coordinates by r → √
ωr, the scaled

Hamiltonian H → H/ω reads

H = −1

2
∇2 +

1

2
r2 . (A.8)

For the purpose of solving the eigenvalue problem for this Hamiltonian polar coordinates (ρ, φ)
are chosen resulting in the Schrödinger equation to take the form

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
− ρ2

)

ψ(ρ, φ) = −2Eψ(ρ, φ) . (A.9)

This equation is separable [199] and the angular part of the solutions is given by eigenfunctions
eimφ (m ∈ Z) of the angular momentum Lz = −i∂/∂φ. Therefore, writing the radial part of ψ
as g(ρ)/

√
ρ, the function g satisfies the following differential equation:

g′′(ρ) +

(

1
4 −m2

ρ2
− ρ2 + 2E

)

g(ρ) = 0 . (A.10)

The solutions of this equation in terms of the Laguerre polynomials L
(|m|)
n (ρ2) are [103]







g(ρ) = eρ2/2 ρ|m|+1/2 L
(|m|)
n (ρ2) ,

E = 2n+ |m| + 1, with n = 0, 1, 2, . . . .
(A.11)
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Consequently, the normalized eigenfunctions of the two-dimensional harmonic oscillator of
frequency ω are given by







ψ(ρ, φ) =
√

ω
π

√

n!
(n+|m|)! eimφ (

√
ωρ)|m| e−ωρ2/2 L

(|m|)
n (ωρ2) ,

E = 2n + |m| + 1, with m ∈ Z and n = 0, 1, 2, . . . .
(A.12)

A.2.2 Planar hydrogenic atoms

In this part of the appendix, the most important features of two-dimensional hydrogenic atoms
represented in parabolic coordinates and in particular its symmetries are discussed. The essential
ideas which are outlined here are crucial for our treatment of a planar two-electron atom in
chapter 2.

The Hamiltonian of a planar hydrogenic atom in atomic units reads

H =
1

2
(p2

x + p2
y) −

Z

r
. (A.13)

In parabolic coordinates, defined in (A.1), the Laplacian and the radius take the form
∇2 = ∂2

x + ∂2
y = (∂2

µ + ∂2
ν)/(µ2 + ν2) and r = (µ2 + ν2)/2, respectively, and the Schrödinger

equation H|ψ〉 = E|ψ〉 can be regularized by multiplication with the Jacobian 2r:

(

−1

2

(

∂2

∂µ2
+

∂2

∂ν2

)

− 2Z

)

ψ(µ, ν) = E(µ2 + ν2)ψ(µ, ν) . (A.14)

This can be rewritten as

(

Hµ(ωE) +Hν(ωE)
)

ψ(µ, ν) = 2Zψ(µ, ν) , (A.15)

where Hµ(ωE) = 1
2p

2
µ + ω2

Eµ
2/2 and Hν(ωE) = 1

2p
2
ν + ω2

Eν
2/2 are two harmonic oscillators with

frequency

ωE =
√
−2E . (A.16)

An eigenfunction of (A.13) can thus be written as a product of harmonic oscillator eigenfunctions

ψ(µ, ν) = φnµ(µ)φnν (ν) , (A.17)

where nµ, nν = 0, 1, 2, . . . , and the harmonic oscillator frequency ωE is determined by the
eigenenergy E.

Substituting (A.17) in (A.15), and evaluating the harmonic oscillator eigenvalue equation
yields ωE(nµ + nν + 1) = 2Z, and this implies for the eigenvalues of (A.14), with (A.16):

Enµ,nν = − 2Z2

(nµ + nν + 1)2
. (A.18)

However, not all of these are actually eigenvalues of (A.13) since the double representation
in parabolic coordinates introduces unphysical symmetries. Each physical solution must be
uniquely defined in the Cartesian plane and, therefore, must satisfy ψ(µ, ν) = ψ(−µ,−ν). The
parity of a harmonic oscillator wave function φn(x) is (−1)n (i.e., φn(−x) = (−1)nφn(x)) [200]
leading to ψ(−µ,−ν) = (−1)nµ+nνψ(µ, ν). It follows that for the physical solutions of (A.13)
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nµ + nν is an even integer. Consequently, we can label the eigenstates of a planar hydrogenic
atom by the integer number

N =
1

2
(nµ + nν) . (A.19)

Finally, from (A.18), the eigenvalues of the planar hydrogenic atom become

EN = − Z2

2(N + 1
2)2

, with N = 0, 1, 2, . . . . (A.20)

Representation in creation and annihilation operators

The creation and annihilation operators of a harmonic oscillator with frequency ω > 0 are

a†u(ω) =
1√
2

(√
ωu− i

pu√
ω

)

au(ω) =
1√
2

(√
ωu+ i

pu√
ω

)

. (A.21)

The number operator Nu(ω) = a†u(ω)au(ω) is related to the corresponding Hamiltonian
Hu(ω) = p2

u/2 + ω2u2/2 by the relation

Hu(ω) = ω

(

Nu(ω) +
1

2

)

. (A.22)

On basis of the creation and annihilation operators a†µ, aµ, a
†
ν and aν for Hµ(ω) and Hν(ω) (ω

is not necessarily equal to ωE here) of Eq. (A.15) the circular operators

a1 = (aµ − iaν)/
√

2,

a2 = (aµ + iaν)/
√

2, (A.23)

are defined, which satisfy the usual commutation relations for creation and annihilation operators
[200]:

[ai, aj ] = 0 , [a†i , a
†
j ] = 0 , [ai, a

†
j ] = δij , for i = 1, 2 . (A.24)

The number operators N1 = a†1a1 and N2 = a†2a2 in terms of the creation and annihilation

operators a†µ, aµ, a†ν and aν are given by

N1 =
1

2
(a†µaµ + a†νaν) +

i

2
(a†νaµ − a†µaν) ,

N2 =
1

2
(a†µaµ + a†νaν) −

i

2
(a†νaµ − a†µaν) , (A.25)

leading to

N1 +N2 = Nµ +Nν ,

N1 −N2 = i(a†νaµ − a†µaν) , (A.26)

and hence, in the coordinates (µ, ν),

N1 +N2 =
1

ω

(

Hµ(ω) +Hν(ω)
)

− 1 , (A.27)

N1 −N2 = µpν − νpµ . (A.28)
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In particular, N1 −N2 is independent of the frequency ω, and

Lz =
1

2
(N1 −N2) , (A.29)

where Lz = xpy − ypx is the angular momentum of the planar hydrogenic atom.
The eigenvalue problem (A.15) can also be written in terms of the circular operators:

(

−ω
2

(−1 + a1a2 + a†1a
†
2 − a†1a1 − a†2a2) − 2Z

)

|ψ〉 =

E

ω
(1 + a1a2 + a†1a

†
2 + a†1a1 + a†2a2)|ψ〉 , (A.30)

which reduces for the particular choice ω = ωE, as expected from (A.27), to

ωE(N1 +N2 + 1)|ψ〉 = 2Z|ψ〉 . (A.31)

The eigenvectors are given by |ψ〉 = |n1n2〉(ωE) = |n1〉(ωE) ⊗ |n2〉(ωE), where |ni〉(ωE) are the
eigenstates of Ni, i = 1, 2. The energy E of the planar hydrogenic atom is again given by (A.20),
however, in this case N = (n1 + n2)/2. Thus, the eigenfunctions of the planar hydrogenic atom
are |n1n2〉(ωE), with n1 +n2 = 2N . Since there are 2N + 1 ordered pairs of non-negative integer
numbers (n1, n2) such that n1 + n2 = 2N , the degeneracy of the eigenvalues (A.20) is 2N + 1.

Alternatively, we can use the quantum numbers N and L to label the quantum eigenstates
of the planar hydrogenic atom: H|ψNL〉 = EN |ψNL〉 and Lz|ψNL〉 = L|ψNL〉. From (A.19),
(A.26) and (A.29) it follows that −N ≤ L ≤ N (again this leads to the degeneracy 2N + 1 of
the energy levels).

If ω is a positive real number, |ψNL〉 takes the form

|ψNL〉 =
∑

n1,n2∈BNL

c(n1, n2)|n1n2〉(ω), (A.32)

where BNL = {n1, n2|n1 + n2 = 2N and n1 − n2 = 2L}.

Coordinate representation of tensorial products of Fock states

The coordinate representation of a product state |n1n2〉(ω) is found by noticing that these are
eigenstates of N1 +N2 and Lz = 1

2(N1 −N2), with eigenvalues n1 + n2 and (n1 − n2)/2. Since
Hµ(ω)+Hν(ω) is an isotropic two dimensional harmonic oscillator (in the space (µ, ν)) in (A.27),
the eigenstates and the eigenvalues of ω(N1+N2+1) have the form given in (A.12) (here, instead
of (ρ, φ) we use (R,Φ), to distinguish polar coordinates and parabolic coordinates (µ, ν), i.e.,
R =

√

µ2 + ν2, and Φ = arctan(ν/µ)). The quantum numberm is the eigenvalue of the operator

−i∂Φ = −i(µ∂ν − ν∂µ) = N1 −N2 , (A.33)

and a direct comparison with (A.12) leads to
{

n1 + n2 = 2n + |m| + 1 ,
n1 − n2 = m .

(A.34)

Hence, the coordinate representation of |n1n2〉(ω), i.e.,

ψn1n2(R,Φ) = 〈RΦ|n1n2〉(ω),

is given by


















ψn1n2(R,Φ) =
√

ω
π

√

n!
(n+|m|)! eimΦ (

√
ωR)|m| e−ωR2/2 L

(|m|)
n (ωR2) ,

n = min{n1, n2} ,
m = n1 − n2 .

(A.35)
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Eigenfunctions of the planar hydrogenic atom

The eigenfunctions of the planar hydrogenic atom are given by (A.12), when ω = ωE =
√

−2En1n2 , with (see Eq. (A.18))

En1n2 = − 2Z2

(n1 + n2 + 1)2
. (A.36)

Notice also that these wave functions are normalized as eigenfunctions of the two-dimensional
harmonic oscillator of fixed frequency ω. However, here the frequency changes, and therefore
the normalization constant is not the same for distinct energies. In addition, if (ρ, φ) are the
polar coordinates of the Cartesian coordinates (x, y), then Φ = φ/2 and R =

√

µ2 + ν2 =
√

2ρ.
Finally, since the angular momentum L = (n1−n2)/2, then L = m/2. Taking this into account,
the expression for the normalized eigenfunctions of the planar hydrogenic atom reads

ψNL(r, φ) =
Z

N + 1
2

√

(N − |L|)!
π(N + |L|)!(N + 1

2 )
eiLφ u|L| e−u/2 L

(2|L|)
N−|L|(u) ,

where u =
2Z

N + 1
2

ρ . (A.37)

In particular, the ground state of the planar hydrogenic atom is given by

ψ0(ρ, φ) = ψ00(ρ, φ) = 2Z

√

2

π
e−2Zρ . (A.38)

A.2.3 Planar two-electron atom without electron-electron interaction

Removing the electron-electron interaction term 1/r12 from the Hamiltonian of a planar two-
electron atom, the resulting problem corresponds to two independent hydrogenic atoms. Thus,
from (A.20), the spectrum of a planar two-electron atom without electron-electron interaction
is given by

EN1,N2,L1,L2 = − Z2

2(N1 − 1/2)2
− Z2

2(N2 − 1/2)2
, (A.39)

as illustrated for Z = 2 in figure A.1. Here, N1 and N2 are the principal quantum numbers of
the two electrons, and L1 and L2 their angular momenta. The total angular momentum is given
by L = L1 + L2, and the total degeneracy is 2(2N1 − 1)(2N2 − 1), if N1 6= N2, or (2N1 − 1)2, if
N1 = N2. The factor 2 in the N1 6= N2 case arises from the particle exchange symmetry.

The single ionization thresholds (defined by the ionization of one electron) are given by the
energies of the hydrogenic quantum states of the resulting ion:

IN = − Z2

2(N − 1/2)2
. (A.40)

Consequently, the energy levels of a planar two-electron atom without electron-electron interac-
tion are organized in series SN of energies EN,n = EN,n,L1,L2, for a fixed value of the principal
quantum number N of the inner electron, and variable n = N,N+1, . . . . The threshold energies
IN of the series SN converge to the double ionization threshold I∞. Starting from the second
series, i.e. doubly excited states, the discrete energy levels are immerged in the continuum of
lower lying series.

The ground state of a planar two-electron atom with neglected electron-electron interaction
is simply the tensorial product of the ground states of the two independent planar hydrogenic
atoms (A.38):

ψ0(r1, r2) =
8

π
Z2e−2Z(r1+r2) . (A.41)



100 A. Planar two-electron atom supplement

7 8 9 10 11 12

2 4 6 8 10 12
N

-15

-10

-5

0

E
ne

rg
y 

[a
. u

.]

I

I1

2

Figure A.1: Spectrum of planar helium without electron-electron interaction. The energy levels
(horizontal bars) are organized in series labeled by the principal quantum number N of the inner
electron. The dashed lines are the single ionization thresholds of the respective series.



Appendix B

Three dimensional treatment of a

two-electron atom supplement

B.1 Coulomb-Sturmian functions

The Coulomb-Sturmian functions [98, 99] are the solutions of the Sturm-Liouville eigenvalue
problem

(

−1

2

d2

dr2
+
l(l + 1)

2r2
− Z

r
+
k2

2

)

S
(k)
n,l (r) = 0 , (B.1)

with associated boundary conditions:

S
(k)
n,l (0) = 0 , and S

(k)
n,l (∞) = 0 . (B.2)

n and l are positive integer numbers satisfying n ≥ l + 1, k a real positive (dilation) parameter
and Z an eigenvalue which equals kn. Note, that Eq. (B.1) describes the radial motion of an
electron with energy

E = −k
2

2
= − Z2

2n2
, (B.3)

in the Coulomb field of a nucleus with charge Z, and can be rewritten as

(

−1

2

d2

dr2
− 1

r

d

dr
+
l(l + 1)

2r2
− kn

r
+
k2

2

)

S
(k)
n,l (r)

r
= 0 . (B.4)

Choosing the dilation parameter k as k = Z/n the functions coincide with the eigenstates of a
hydrogenic atom with core charge Z. The Coulomb-Sturmian functions are square integrable
and form a complete basis for the Hilbert space L2([0,∞[,dr).

Sturmian functions are widely used in physics, e.g., to study atoms in strong magnetic
fields [201, 202], ionization processes [45, 203–207] and highly asymmetrically excited states of
two-electron atoms [120]. There are various definitions for the Coulomb-Sturmian functions,
however, all of them differ in their behaviour at the origin (rl or rl+1) and the normalization.

Solving the differential equation (B.1) with the boundary conditions (B.2) yields

S
(k)
n,l (r) = N

(k)
n,l e−kr(2kr)l+1L

(2l+1)
n−l−1(2kr) , (B.5)

where L
(2l+1)
n−l−1(2kr) is a Laguerre polynomial [103]. The normalization constant N

(k)
n,l given by

N
(k)
n,l =

√

k

n

(

(n− l − 1)!

(n+ l)!

)1/2

, (B.6)
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is chosen in order to satisfy the overlap condition

∞
∫

0

dr S
(k)
n,l (r)S

(k)
n,l (r) = 1 . (B.7)

With this, the orthogonality relation for the Coulomb-Sturmian functions reads

∞
∫

0

dr S
(k)
n,l (r)

1

r
S

(k)
n′,l(r) =

k

n
δnn′ . (B.8)

Note, that the above definition for the Coulomb-Sturmian functions coincides with

S
(k)
n,l (r) = Ñ

(k)
n,l e−kr(2kr)l+1

1F1(−(n− l − 1); 2l + 2; 2kr) , (B.9)

with the normalization constant

Ñ
(k)
n,l =

1

(2l + 1)!

√

k

n

(

(n+ l)!

(n− l − 1)!

)1/2

, (B.10)

where 1F1 is the confluent hypergeometric or Kummer’s function [103, 208].

B.2 Matrix Formulation of the Schrödinger equation

Using the definition

F l1,l2,L,M
k1,s,k2,s,n1,n2

=
S

(k1s)
n1,l1

(r1)

r1

S
(k2s)
n2,l2

(r2)

r2
ΛL,M

l1,l2
(r̂1, r̂2) , (B.11)

the expansion (3.4) of the wavefunction can be rewritten as

Ψ(~r1, ~r2) =
∑

L,M

∑

ǫ,π

∑

l1,l2

π∑

s

∑

n1,n2

ψl1,l2,L,M,ǫ
k1s,k2s,n1,n2

βl1,l2
n1,n2

A F l1,l2,L,M
k1,s,k2,s,n1,n2

(~r1, ~r2) . (B.12)

In order to obtain a matrix equation, the expansion (B.12) is substituted into the Schrödinger
equation

(T + V + U − E) Ψ = 0 , (B.13)

where the Hamiltonian has been split into the kinetic term T , nucleus-electrons interaction term
V , and the electron-electron repulsion term U given through

T =
~p 2
1

2
+
~p 2
2

2
, V = −Z

r1
− Z

r1
, U =

1

r12
, (B.14)

followed by a multiplication from the left by βλ1,λ2
ν1,ν2 A

′F λ1,λ2,L′,M ′

κ1,σ ,κ2,σ ,ν1,ν2(~r1, ~r2) and an integration
over the whole space for spatial and angular coordinates.1 This yields

∑

L,M

∑

ǫ,π

∑

l1,l2

π∑

s

∑

n1,n2

βl1,l2
n1,n2

βλ1,λ2
ν1,ν2

ψl1,l2,L,M,ǫ
k1s,k2s,n1,n2

(

T l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2

+V l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ ,κ2,σ,ν1,ν2
+ U l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ ,κ2,σ,ν1,ν2
− ESl1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ ,κ2,σ,ν1,ν2

)

=0 ,

(B.15)

1The symmetrization operator A
′ is defined by A

′ = (1 + ǫ′P ′)/
√

2 where P ′ exchanges simultaneously λ1,
κ1, ν1, µ1 with λ2, κ2, ν2, µ2.
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with the integrals

Sl1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

∫

d~r1

∫

d~r2 A
′F λ1,λ2,L′,M ′

κ1,σ ,κ2,σ,ν1,ν2

∗
(~r1, ~r2)A F l1,l2,L,M

k1,s,k2,s,n1,n2
(~r1, ~r2) ,

(B.16)

T l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

∫

d~r1

∫

d~r2 A
′F λ1,λ2,L′,M ′

κ1,σ ,κ2,σ,ν1,ν2

∗
(~r1, ~r2)TA F l1,l2,L,M

k1,s,k2,s,n1,n2
(~r1, ~r2) ,

(B.17)

V l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

∫

d~r1

∫

d~r2 A
′F λ1,λ2,L′,M ′

κ1,σ ,κ2,σ,ν1,ν2

∗
(~r1, ~r2)VA F l1,l2,L,M

k1,s,k2,s,n1,n2
(~r1, ~r2) ,

(B.18)

U l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

∫

d~r1

∫

d~r2 A
′F λ1,λ2,L′,M ′

κ1,σ ,κ2,σ,ν1,ν2

∗
(~r1, ~r2)UA F l1,l2,L,M

k1,s,k2,s,n1,n2
(~r1, ~r2) ,

(B.19)

giving, apart from the factors due to redundancies of the basis, the matrix elements of the
matrices S, T, V and U associated to the overlap, the kinetic term, the electron-nucleus inter-
action term and the electron-electron repulsion, respectively. Solving the Schrödinger equation
is equivalent to solving the generalized eigenvalue problem

HΨ = ESΨ , H = T + V + U , (B.20)

where Ψ is the vector representation of the wavefunction Ψ and H the matrix associated to the
Hamiltonian.

The evaluation of the integrals is straightforward and yields2

Sl1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

1

2

{

[

〈

S
(κ1,σ)
ν1,λ1

∣

∣

∣
S

(k1,s)
n1,l1

〉〈

S
(κ2,σ)
ν2,λ2

∣

∣

∣
S

(k2,s)
n2,l2

〉

δl1,λ1δl2,λ2

+ǫ [(l1, n1, k1,s) ⇋ (l2, n2, k2,s)]

]

+ǫ [(λ1, ν1, κ1,σ) ⇋ (λ2, ν2, κ2,σ)]

}

δL,L′δM,M ′δπ,π′δǫ,ǫ′ , (B.21)

T l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

1

2

{

[(

k2,sn2

〈

S
(κ1,σ)
ν1,λ1

∣

∣

∣
S

(k1,s)
n1,l1

〉

〈

S
(κ2,σ)
ν2,λ2

∣

∣

∣

∣

1

r

∣

∣

∣

∣

S
(k2,s)
n2,l2

〉

+k1,sn1

〈

S
(κ1,σ)
ν1,λ1

∣

∣

∣

∣

1

r

∣

∣

∣

∣

S
(k1,s)
n1,l1

〉

〈

S
(κ2,σ)
ν2,λ2

∣

∣

∣
S

(k2,s)
n2,l2

〉

−
k2
1,s + k2

2,s

2

〈

S
(κ1,σ)
ν1,λ1

∣

∣

∣
S

(k1,s)
n1,l1

〉〈

S
(κ2,σ)
ν2,λ2

∣

∣

∣
S

(k2,s)
n2,l2

〉

)

δl1,λ1δl2,λ2

+ǫ [(l1, n1, k1,s) ⇋ (l2, n2, k2,s)]

]

+ǫ [(λ1, ν1, κ1,σ) ⇋ (λ2, ν2, κ2,σ)]

}

δL,L′δM,M ′δπ,π′δǫ,ǫ′ , (B.22)

2The δπ,π′ is already implicitly contained in the δl1,λ1
δl2,λ2

(or the respective term under exchange of individual
angular momenta), and is put only for clarity.
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V l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,s,κ2,s,ν1,ν2
=

1

2

{

− Z

[(

〈

S
(κ1,σ)
ν1,λ1

∣

∣

∣S
(k1,s)
n1,l1

〉

〈

S
(κ2,σ)
ν2,λ2

∣

∣

∣

∣

1

r

∣

∣

∣

∣

S
(k2,s)
n2,l2

〉

+

〈

S
(κ1,σ)
ν1,λ1

∣

∣

∣

∣

1

r

∣

∣

∣

∣

S
(k1,s)
n1,l1

〉

〈

S
(κ2,σ)
ν2,λ2

∣

∣

∣
S

(k2,s)
n2,l2

〉

)

δl1,λ1δl2,λ2

+ǫ [(l1, n1, k1,s) ⇋ (l2, n2, k2,s)]

]

+ǫ [(λ1, ν1, κ1,σ) ⇋ (λ2, ν2, κ2,σ)]

}

δL,L′δM,M ′δπ,π′δǫ,ǫ′ , (B.23)

with

〈

S
(κ)
ν,λ

∣

∣

∣S
(k)
n,l

〉

=

∞
∫

0

drS
(κ)
ν,λ(r)S

(k)
n,l (r) ,

〈

S
(κ)
ν,λ

∣

∣

∣

∣

1

r

∣

∣

∣

∣

S
(k)
n,l

〉

=

∞
∫

0

drS
(κ)
ν,λ(r)

1

r
S

(k)
n,l (r) . (B.24)

These radial integrals can be evaluated analytically [120], however, the Gauß-Laguerre integra-
tion method [103, 120] described in appendix B.3 is used here for their evaluation. The symbol
[(l, n, k) ⇋ (λ, ν, κ)] stands for the repetition of the original term with exchange of the quanti-
ties (l, n, k) and (λ, ν, κ). Substitution of the multipole expansion (3.15) of 1/r12 in the integral
(B.19) allows for a separation of radial and angular parts:

U l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ ,ν1,ν2
=

1

2

∞
∑

q=0

[(

Rl1,l2,λ1,λ2,q
k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2

AL,M,L′,M ′,q
l1,l2,λ1,λ2

+ǫ [(l1, n1, k1,s) ⇋ (l2, n2, k2,s)]

)

+ ǫ [(λ1, ν1, κ1,σ) ⇋ (λ2, ν2, κ2,σ)]

]

δǫ,ǫ′ , (B.25)

with the radial part

Rl1,l2,λ1,λ2,q
k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2

=

∞
∫

0

dr1

∞
∫

0

dr2 S
(κ1,σ)
ν1,λ1

(r1)S
(κ2,σ)
ν2,λ2

(r2)
rq
<

rq+1
>

S
(k1,s)
n1,l1

(r1)S
(k2,s)
n2,l2

(r2) ,

(B.26)

and the angular part given by

AL,M,L′,M ′,q
l1,l2,λ1,λ2

=
4π

2q + 1

q
∑

p=−q

∫

dr̂1

∫

dr̂2Λ
L′,M ′

λ1,λ2

∗
(r̂1, r̂2)Y

∗
q,p(r̂1)Yq,p(r̂2)Λ

L,M
l1,l2

(r̂1, r̂2) . (B.27)

Using standard angular momentum algebra results for the angular part in3

AL,M,L′,M ′,q
l1,l2,λ1,λ2

=(−1)l1+λ1+L [(2l1 + 1)(2l2 + 1)(2λ1 + 1)(2λ2 + 1)]1/2

×
(

λ1 q l1
0 0 0

)(

λ2 q l2
0 0 0

){

l1 l2 L
λ2 λ1 q

}

δL,L′δM,M ′δπ,π′ . (B.28)

Note, that the Wigner 3jm symbols [82] in the last equation limit the summation index q in
(B.25) for the respective term to

max(|λ1 − l1|, |λ2 − l2|) 6 q 6 min(|λ1 + l1|, |λ2 + l2|) (B.29)

3The δπ,π′ is already implicitly contained in the Wigner 3jm symbols, and is put only for clarity.
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with λ1 + l1 + q and λ2 + l2 + q even.
As for the radial integrals (B.24) an analytic computation of Rl1,l2,λ1,λ2,q

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ ,ν1,ν2
is

possible [120], however, apart from numerical issues the use of many Coulomb-Sturmian sets
makes an implementation and computation on basis of this analytic expression cumbersome.
Replacing r< and r> in (B.26) appropriately, Rl1,l2,λ1,λ2,q

k1,s,k2,s,n1,n2,κ1,σ ,κ2,σ,ν1,ν2
can be brought to the

following form:

Rl1,l2,λ1,λ2,q
k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2

=

∞
∫

0

dr1S
(κ1,σ)
ν1,λ1

(r1)S
(k1,s)
n1,l1

(r1)r
q
1

∞
∫

r1

dr2S
(κ2,σ)
ν2,λ2

(r2)S
(k2,s)
n2,l2

(r2)
1

rq+1
2

+

∞
∫

0

dr2S
(κ2,σ)
ν2,λ2

(r2)S
(k2,s)
n2,l2

(r2)r
q
2

∞
∫

r2

dr1S
(κ1,σ)
ν1,λ1

(r1)S
(k1,s)
n1,l1

(r1)
1

rq+1
1

. (B.30)

The previous expression can be computed with the Gauß-Laguerre integration method [103, 120]
as described in appendix B.3.1.

Finally, under complex rotation the generalized eigenvalue problem (B.20) and involved
matrices transform to

HθΨθ = EθSΨθ , Hθ = Te−2iθ + Ve−iθ + Ue−iθ . (B.31)

B.2.1 Matrix elements of cos(θ12)

Analogously to the matrix elements of S, T, V and U the matrix elements associated to
C = cos(θ12) are given by4

C l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ,ν1,ν2
=

∫

d~r1

∫

d~r2 A
′F λ1,λ2,L′,M ′

κ1,σ ,κ2,σ,ν1,ν2

∗
(~r1, ~r2)CA F l1,l2,L,M

k1,s,k2,s,n1,n2
(~r1, ~r2) .

(B.32)

A straight forward evaluation of this integral using (3.17) leads to

C l1,l2,L,M,λ1,λ2,L′,M ′

k1,s,k2,s,n1,n2,κ1,σ,κ2,σ ,ν1,ν2
= (−1)L+l2+λ2

√

(2l1 + 1)(2λ1 + 1)(2l2 + 1)(2λ2 + 1)

×
(

[

〈

S
(κ1σ)
ν1,λ1

∣

∣

∣S
(k1s)
n1,l1

〉〈

S
(κ2σ)
ν2,λ2

∣

∣

∣S
(k2s)
n2,l2

〉

(

l1 1 λ1

0 0 0

)(

l2 1 λ2

0 0 0

){

λ1 l1 1
l2 λ2 L

}

+ǫ[(l1, n1, k1,s) ⇋ (l2, n2, k2,s)]

]

+ ǫ[(λ1, ν1, κ1,σ) ⇋ (λ2, ν2, κ2,σ)]

)

δL,L′δM,M ′δǫ,ǫ′δπ,π′ ,

(B.33)

The radial integrals can be easily evaluated using Gauß-Laguerre integration.

B.3 Gauß-Laguerre integration

The numerical Gauß-Laguerre integration is based on the formula [103, 209]

∞
∫

0

dx e−xf(x) =

n
∑

i=1

ωif(xi) +Rn , (B.34)

4The factors βl1,l2
n1,n2

and βλ1,λ2

ν1,ν2
, which account for possible redundancies in the basis, are not included and

have to be treated separately in the computation of 〈cos(θ12)〉.
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with xi being the ith zero of the Laguerre polynomial Ln(x) ≡ L0
n(x). The weights ωi and the

remainder Rn are given by

ωi =
(n!)2xi

(n+ 1)2[Ln+1(xi)]2
, Rn =

(n!)2

(2n)!
f (2n)(ξ) , 0 < ξ <∞ . (B.35)

If f(x) is a polynomial the remainder Rn equals zero provided, that the number of integration
points is larger than half of the degree of f(x).

Using the Gauß-Laguerre formula (B.34) and defining the polynomial in r,

T
(k)
n,l (r) = ekrS

(k)
n,l (r) , (B.36)

results, for an arbitrary integer p, in

〈

S
(κ)
ν,λ(r)

∣

∣

∣ rp
∣

∣

∣S
(k)
n,l (r)

〉

=

∞
∫

0

dr e−(κ+k)rT
(κ)
ν,λ (r)rpT

(k)
n,l (r)

=
1

κ+ k

N
∑

i=1

ωir̃
p
i T

(κ)
ν,λ (r̃i)T

(k)
n,l (r̃i) , (B.37)

with r̃i = ri/(κ + k). The number of integration points N should be larger than (ν + n + p)/2
to obtain an “exact” result.

B.3.1 Matrix elements of the electron-electron interaction

The computation of the matrix elements of the electron-electron repulsion involves the evaluation
(B.25) of integrals of structure

R=

∞
∫

0

dx S
(κ′)
ν′,λ′(x)S

(k′)
n′,l′(x)x

q

∞
∫

x

dy S
(κ)
ν,λ(y)S

(k)
n,l (y)

1

yq+1
. (B.38)

Remembering the definition of the Coulomb-Sturmian functions (see appendix B.1) and that
the range of q is given by Eq. (B.29) it is clear that apart from the exponentials the integrands
of the subintegrals have polynomial structure and therefore an “exact” numerical integration is
possible with the Gauß-Laguerre integration method. In the following coordinates with subscript
i or j indicate discrete values of the respective coordinate, i.e, zeros of Laguerre polynomials.

To apply Gauss-Laguerre integration to (B.38) the coordinate of the inner integral has to be
substituted by u = y − x in order to have an integration region [0,∞[:

R=

∞
∫

0

dx e−(κ′+k′)xxqT
(κ′)
ν′,λ′(x)T

(k′)
n′,l′(x)

×
∞
∫

0

du e−(κ′+k′)(u+x)(u+ x)−(q+1)T
(κ)
ν,λ (u+ x)T

(k)
n,l (u+ x) . (B.39)

In a second transformation v = (κ+ k)u the exponential in the inner integral is brought in the
form required by (B.34)

R=

∞
∫

0

dx e−αxxqT
(κ′)
ν′,λ′(x)T

(k′)
n′,l′(x)

×
∞
∫

0

dv

κ+ k
e−v

(

v

κ+ k
+ x

)−(q+1)

T
(κ)
ν,λ

(

v

κ+ k
+ x

)

T
(k)
n,l

(

v

κ+ k
+ x

)

, (B.40)
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with α = κ′ + k′ +κ+ k. Employing Eq. (B.34) and using ỹ = v/(κ+ k) the last equation reads

R=

∞
∫

0

dx e−αxxqT
(κ′)
ν′,λ′(x)T

(k′)
n′,l′(x)

Nj
∑

j=1

ωj

κ+ k
(ỹj + x)−(q+1)T

(κ)
ν,λ (ỹj + x)T

(k)
n,l (ỹj + x) . (B.41)

Through transformation of the remaining integral into a sum the expression

R=

Ni
∑

i=1

ωi

α

(zi
α

)q
T

(κ′)
ν′,λ′

(zi
α

)

T
(k′)
n′,l′

(zi
α

)

×
Nj
∑

j=1

ωj

κ+ k

(

ỹj +
zi
α

)−(q+1)
T

(κ)
ν,λ

(

ỹj +
zi
α

)

T
(k)
n,l

(

ỹj +
zi
α

)

, (B.42)

is obtained, with z = αx. After a final coordinate transformation x̃ = z/(κ′ + k) this becomes

R=

Ni
∑

i=1

ωi

α

(

x̃i(κ
′ + k)

α

)q

T
(κ′)
ν′,λ′

(

x̃i(κ
′ + k)

α

)

T
(k′)
n′,l′

(

x̃i(κ
′ + k)

α

)

(B.43)

×
Nj
∑

j=1

ωj

κ+ k

(

ỹj +
x̃i(κ

′ + k)

α

)−(q+1)

T
(κ)
ν,λ

(

ỹj +
x̃i(κ

′ + k)

α

)

T
(k)
n,l

(

ỹj +
x̃i(κ

′ + k)

α

)

,

which can be further simplified to

R=
1

(κ′ + k′)(κ+ k)

Ni
∑

i=1

ωiT
(κ′)
ν′,λ′

(

x̃i

γ

)

T
(k′)
n′,l′

(

x̃i

γ

)

×
Nj
∑

j=1

ωj
x̃q

i

(x̃i + γỹj)q+1
T

(κ)
ν,λ

(

ỹj +
x̃i

γ

)

T
(k)
n,l

(

ỹj +
x̃i

γ

)

, (B.44)

with γ = α/(κ′ +k′). To obtain numerically “exact” results the number of integration points for
the outer and inner sum have to fullfillNi > 1+(ν ′+n′+ν+n−1)/2 andNj > 1 + (ν + n− q − 1)/2,
respectively.



Appendix C

Spectral properties of helium

supplement

This appendix complements chapter 4. Further data for natural and unnatural parity states is
presented.

C.1 Natural parity

In this section, spectral data for 1P o, 3P o, 1De and 3De resonances of helium, computed with
the method given in chapter 3, is presented together with available reference data. The results
have been tested for convergence with respect to variation of basis size (including variation of
the number of Sturmians as well as the number of angular configurations), dilation parameters
and the complex rotation angle. Only converged digits are given in the tabulars. Note, that the
effective matrix dimension for these calculations did not exceed p = 16000.

C.1.1 1P o resonance data

N = 2
This work Rost et al. [52] This work (continued)

Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) Re(−E) Im(−E) 〈cos(θ12)〉
0.69313 0.00069 -0.03312 0.693134920 0.000686625 0.504732103 0.000000035 -0.29033
0.597073801 0.000001922 -0.4168372 0.597073804 0.000001923 0.50426276 0.00000303 -0.028056
0.5640830 0.0001501 -0.015690 0.564085188 0.000150594 0.503950312 < 0.6 × 10−8 -0.26241
0.54709214 < 0.1 × 10−7 -0.13595 0.547092709 0.000000005 0.503930243 0.000000026 -0.29196
0.54649297 0.00000096 -0.21408 0.546493257 0.000001014 0.5035724 0.0000023 -0.02812
0.5343622 0.0000639 -0.022382 0.534363144 0.000064173 0.503331778 < 0.4 × 10−8 -0.26395
0.52761598 < 0.7 × 10−7 -0.19787 0.527616338 0.7 × 10−10 0.50331618 0.00000002 -0.29322
0.52729761 0.00000046 -0.24832 0.527297770 0.000000491 0.5030371 0.0000018 -0.028165
0.5215042 0.0000327 -0.025232 0.521504666 0.000032898 0.502847900 < 0.3 × 10−8 -0.26514
0.51811805 < 0.5 × 10−7 -0.22516 0.518118268 0.17 × 10−10 0.50283554 0.00000002 -0.29422
0.51793724 0.00000025 -0.26527 0.517937328 0.000000267 0.50261375 0.00000146 -0.02820
0.5147337 0.0000189 -0.026546 0.514733994 0.000018998 0.502462252 < 0.3 × 10−8 -0.26609
0.51279090 < 0.3 × 10−7 -0.23965 0.512791034 0.47 × 10−10 0.502452292 0.000000013 -0.29502
0.51267993 0.00000015 -0.2750 0.512679987 0.000000160 0.50227312 0.00000118 -0.02822
0.51072663 0.00001188 -0.027220 0.510726795 0.000011926 0.502149942 < 0.2 × 10−8 -0.26686
0.50950837 < 0.2 × 10−7 -0.24828 0.509508462 0.4 × 10−10

0.50943582 0.00000010 -0.28113 0.509435853 0.000000107
0.50815844 0.00000793 -0.027596 0.50815854 0.00000796
0.50734418 < 0.2 × 10−7 -0.25386 0.507344240 0.5 × 10−10

0.507294291 0.000000066 -0.28526 0.507294315 0.000000068
0.50641378 0.00000556 -0.027821 0.50641384 0.00000559
0.50584264 < 0.1 × 10−7 -0.25767 0.50584269
0.505806932 0.000000047 -0.28819 0.50580696 0.00000010
0.50517456 0.00000404 -0.02796 0.505175 0.000004
0.50475851 < 0.1 × 10−7 -0.26039 0.5047590

Table C.1: 1P o resonances of helium below the N = 2 threshold compared with data from [52].
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C.1. Natural parity 109

N = 3
This work Rost et al. [52] This work (continued)

Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) Re(−E) Im(−E) 〈cos(θ12)〉
0.335626 0.003514 -0.256 0.335625935 0.003511869 0.226805300 0.000000448 -0.078617
0.285950742 0.000017047 -0.6042595 0.285950743 0.000017046 0.22667230 0.00000004 -0.5159464
0.282826 0.000731 -0.20914 0.282828970 0.000731040 0.2265819489 0.0000007056 -0.637170
0.271193 0.001449 -0.29668 0.271193403 0.001448131 0.2262389 0.0000428 -0.20828
0.26764400 0.00001134 -0.005868 0.267644001 0.00001134 0.226197614 0.000007270 -0.2413
0.25743229 0.00001101 -0.618230 0.257432288 0.000011017 0.226038193 0.000000342 -0.082158
0.2515776 0.0002601 -0.3387 0.251578561 0.000260089 0.22593878 0.00000003 -0.5144795
0.250773 0.000650 -0.3550 0.250773561 0.000650018 0.225970165 0.000000544 -0.637817
0.24822439 0.00000535 -0.016591 0.248224394 0.000005362 0.22560564 0.00003309 -0.21017
0.24551751 0.00000006 -0.495763 0.245517652 0.000000068 0.225572803 0.000005641 -0.2440
0.244412373 0.000006559 -0.625120 0.244412373 0.000006559 0.225448946 0.000000267 -0.08496
0.240949 0.000381 -0.237 0.240948845 0.000381019 0.22537262 0.00000002 -0.513186
0.2408476 0.0001115 -0.244 0.240848064 0.000111798 0.225319277 0.000000428 -0.638335
0.239292309 0.000002994 -0.0356933 0.239292313 0.000002997 0.22511109 0.00002609 -0.2116
0.2380616 0.0000001 -0.514718 0.238061744 0.000000106 0.225084606 0.000004467 -0.2461
0.23743302 0.00000406 -0.629238 0.237433023 0.000004058 0.224986473 0.000000212 -0.087227
0.235381 0.000246 -0.1892 0.235381267 0.000245901 0.22492654 0.00000002 -0.5120633
0.23524268 0.00004793 -0.2073 0.235242888 0.000048022 0.224884260 0.000000343 -0.638757
0.234331070 0.000001841 -0.049910 0.234331075 0.000001844 0.22471751 0.00002093 -0.2128
0.2336632 0.0000001 -0.519872 0.233663277 0.000000102 0.224695883 0.000003598 -0.2477
0.233279233 0.000002642 -0.631966 0.233279233 0.000002642 0.224616816 0.000000171 -0.08907
0.2319699 0.0001604 -0.1928 0.231969855 0.000160266 0.224568873 0.000000016 -0.511095
0.23185540 0.00002812 -0.2171 0.231855536 0.000028170 0.22453479 0.00000027 -0.639105
0.231269828 0.000001211 -0.060391 0.231269832 0.000001213 0.22439919 0.00001705 -0.21377
0.2308645 0.0000001 -0.520295 0.230864587 0.000000086 0.224381319 0.000002940 -0.24899
0.2306146277 0.0000018016 -0.633885 0.230614628 0.000001801 0.22431668 0.00000014 -0.09059
0.2297308 0.0001092 -0.1982 0.229730760 0.000109106 0.224277713 0.000000013 -0.510259
0.22964226 0.00001858 -0.2262 0.229642356 0.000018608 0.224249833 0.000000229 -0.639394
0.229242989 0.000000837 -0.068191 0.229242993 0.000000839 0.22413809 0.00001407 -0.21455
0.22897741 0.00000005 -0.5191381 0.228977474 0.000000069 0.224123176 0.000002434 -0.25004
0.228806184 0.000001278 -0.63529 0.228806184 0.000001278 0.224069664 0.000000116 -0.09185
0.2281826 0.0000774 -0.2025 0.22818257 0.00007734 0.224037546 0.000000011 -0.509538
0.22811467 0.00001308 -0.2329 0.228114738 0.000013098 0.224014450 0.000000191 -0.639639
0.227830074 0.000000603 -0.074086 0.227830076 0.000000604 0.22392129 0.00001774 -0.21520
0.22764607 0.00000004 -0.5175479 0.227646123 0.000000055 0.223908718 0.000002037 -0.25090
0.2275237757 0.0000009364 -0.636351 0.2275358 0.0000008 0.223863917 0.000000097 -0.09292
0.2270679 0.0000568 -0.2058 0.227068 0.000056 0.223837128 0.000000009 -0.50891
0.22701533 0.00000960 -0.2377 0.2270153 0.0000095

Table C.2: 1P o resonances of helium below the N = 3 threshold compared with data from [52].
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N = 4
This work Rost et al. [52] This work (continued) Rost et al. [52] (continued)

Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E)
0.194513 0.001787 -0.4126 0.194512131 0.001787174 0.1317505 0.0000296 -0.41473 0.131750537 0.000029682
0.17880 0.00239 -0.0107 0.178798722 0.002386550 0.131648243 0.000001770 -0.252544 0.131648243 0.000001780
0.1688609 0.0000230 -0.69745 0.168846093 0.000023060 0.131383964 0.000007480 -0.232036 0.131383962 0.000007481
0.161252 0.001084 -0.446179 0.161251205 0.0010839 0.13115996 0.00000003 -0.627725 0.131139886 0.000000032
0.16068953 0.00005272 -0.21735 0.160689529 0.000052718 0.130919534 0.000002970 -0.724423 0.130919534 0.000002970
0.152734 0.001132 -0.0954 0.152734009 0.001131881 0.1307456 0.0001448 -0.0794 0.130745628 0.000144973
0.15183285 0.00001833 -0.7086555 0.151832846 0.000018339 0.1305225 0.0000408 -0.48297 0.130522475 0.000040842
0.150557 0.000391 -0.17020 0.150557131 0.000390874 0.1304127 0.0000214 -0.42384 0.130412715 0.000021493
0.14976399 0.00000756 -0.15983 0.149763990 0.000007594 0.130335158 0.000001361 -0.26286 0.130335158 0.000001368
0.148050 0.000603 -0.462478 0.148049432 0.000603197 0.130149303 0.000005518 -0.23176 0.130149302 0.000005519
0.14673378 0.00003534 -0.226807 0.146733780 0.000004243 0.12999768 0.00000003 -0.628658 0.129997623 0.000000025
0.14299236 0.00001242 -0.71498 0.142992362 0.000012411 0.129823092 0.000002225 -0.7253167 0.12982309 0.00000223
0.142629 0.000702 -0.0665 0.142629121 0.000703336 0.1296910 0.0001056 -0.08042 0.129691063 0.000105707
0.1412526 0.0001175 -0.3616 0.141252456 0.000117707 0.12954255 0.00002389 -0.48639 0.12954254 0.00002388
0.14096913 0.00000423 -0.19160 0.140969138 0.000004243 0.12943804 0.00001604 -0.42969 0.129438038 0.000016058
0.140850 0.000322 -0.47441 0.140850169 0.000332216 0.129378050 0.000001062 -0.270668 0.129378050 0.000001068
0.13975447 0.00002279 -0.23005 0.139754471 0.000022789 0.129241901 0.000004179 -0.23133 0.129241900 0.000004178
0.13861396 0.00000038 -0.5997586 0.138613869 0.000000412 0.12913433 0.00000003 -0.628516 0.129134285 0.000000023
0.13784040 0.00000833 -0.718849 0.137840402 0.000008336 0.12900384 0.00000170 -0.725933 0.1290039 0.0000021
0.1374516 0.0004502 -0.07150 0.137451388 0.000450529 0.1289020 0.0000789 -0.0814 0.12890207 0.00007904
0.1365398 0.0000669 -0.38888 0.136539778 0.000066974 0.12880339 0.00001322 -0.48948 0.1288034 0.0000131
0.1365291 0.0001911 -0.4717 0.136528961 0.000191047 0.12870543 0.00001229 -0.4339 0.12870543 0.00001231
0.136349931 0.000003116 -0.219126 0.136349933 0.000003129 0.12865819 0.00000084 -0.27672 0.12865820 0.00000085
0.135701427 0.000015138 -0.23150 0.135701425 0.000015139 0.12855525 0.00000323 -0.23082
0.13510236 0.00000012 -0.616777 0.135102260 0.000000154 0.12847605 0.00000001 -0.62788 0.12847602 0.00000001
0.134596793 0.000005737 -0.721400 0.134596793 0.000005757 0.12837608 0.00000133 -0.726315
0.1342890 0.0002982 -0.07551 0.134288843 0.000298427 0.1282963 0.0000603 -0.08268
0.1337467 0.0001137 -0.46675 0.133746663 0.000113664 0.12823243 0.00000663 -0.4928
0.13366116 0.00004262 -0.39658 0.133661140 0.000042682 0.12814064 0.00000963 -0.43719
0.133523368 0.000002337 -0.238580 0.133523369 0.000002348 0.12810283 0.00000067 -0.28149
0.133126051 0.000010453 -0.232025 0.133126050 0.000010455 0.12802302 0.00000256 -0.2303
0.13277430 0.00000005 -0.624551 0.132774213 0.000000059 0.12796292 0.00000001 -0.62705
0.132432020 0.000004069 -0.7231672 0.132432020 0.000004069 0.12788470 0.00000106 -0.72647
0.1322004 0.0002045 -0.07794 0.132200330 0.000204658 0.1278213 0.0000469 -0.0851
0.1318592 0.0000682 -0.47798 0.131859129 0.000068171

Table C.3: 1P o resonances of helium below the N = 4 threshold compared with data from [52].



C
.1

.
N

a
t
u
r
a
l
p
a
r
ity

1
1
1

N = 5
This work Rost et al. [52] This work (continued) Rost et al. [52] (continued)

Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E)
0.11923 0.00163 -0.150 0.119233456 0.001628873 0.086107303 0.000009325 -0.05887 0.086107301 0.000009328
0.1117436282 0.0000247544 -0.7542302 0.111743628 0.000024754 0.0859956 0.0001447 -0.5763 0.085995647 0.000144735
0.1090974 0.0009203 -0.100 0.109097499 0.000920979 0.08578806 0.00001276 -0.37745 0.085788056 0.000012761
0.10747672 0.00005453 -0.348724 0.107476720 0.000054525 0.08557836 0.00000132 -0.69933 0.085578293 0.000001323
0.107288 0.000780 -0.5404 0.107287651 0.000780776 0.08555043 0.00001181 -0.20500 0.085550431 0.000011814
0.1021502 0.0010520 -0.17796 0.102150534 0.001052069 0.0854279 0.0001073 -0.25112 0.085427964 0.000107406
0.10193843 0.00006420 -0.022778 0.101938432 0.000064196 0.085325948 0.000004808 -0.7784013 0.085325948 0.000004808
0.10090954 0.00002258 -0.763013 0.100909544 0.000022579 0.08505907 0.00000737 -0.35779 0.085059034 0.000007385
0.098616 0.000462 -0.55640 0.098616265 0.000462287 0.08496123 0.00003087 -0.4621 0.084961197 0.000030868
0.09788768 0.00004570 -0.362504 0.097887683 0.000045698 0.084938509 0.000006755 -0.05390 0.084938504 0.000006758
0.0965474 0.0004068 -0.1370 0.096547358 0.000407284 0.0849190 0.0000920 -0.5820 0.084918985 0.000092098
0.0951890 0.0007001 -0.17703 0.095189318 0.000700204 0.08471871 0.00000974 -0.37034 0.084718712 0.000009738
0.09500886 0.00001402 -0.257187 0.095008763 0.000014040 0.08466951 0.00001532 -0.1889 0.084669506 0.000015324
0.09473690 0.00001682 -0.7686375 0.094736906 0.000016822 0.084576579 0.000000465 -0.69596 0.084576520 0.000000470
0.09430037 0.00003938 -0.002098 0.094300364 0.000039374 0.0844637 0.0000796 -0.2354 0.084463776 0.000079689
0.09368586 0.00013118 -0.30495 0.093685604 0.000131190 0.08438984 0.00000367 -0.779431 0.084389840 0.000003674
0.0934465 0.0002279 -0.56917 0.093446374 0.000227996 0.084169175 0.000005764 -0.3688 0.084169144 0.000005772
0.09262944 0.00003307 -0.369115 0.092629436 0.000033073 0.08410291 0.00002477 -0.4872 0.084102891 0.000024771
0.0915235 0.0002678 -0.20294 0.091523508 0.000268169 0.0840917 0.0000629 -0.5907 0.084091661 0.000062894
0.0911373 0.0004131 -0.17421 0.091137537 0.000413142 0.08407862 0.00000583 -0.04880 0.084078611 0.000005837
0.09089135 0.00001208 -0.772190 0.090891352 0.000012084 0.0839668 0.0000568 -0.1633 0.083966869 0.000056842
0.09061107 0.00001549 -0.029916 0.090610992 0.000015508 0.08391948 0.00000760 -0.38615 0.083919479 0.000007597
0.09025264 0.00002615 -0.2234 0.090252625 0.000026141 0.083819810 0.000000317 -0.70021 0.083819758 0.000000321
0.09023515 0.00005549 -0.57747 0.090235128 0.000055505 0.0837370 0.0000596 -0.2254 0.083737043 0.000059688
0.09012742 0.00007250 -0.41142 0.090127327 0.000072517 0.0836783 0.0000029 -0.78025 0.08367830 0.00000287
0.08939903 0.00002358 -0.372689 0.089399031 0.000023582 0.08349657 0.00000459 -0.3768 0.083496539 0.000004592
0.088845297 0.000002916 -0.67231 0.088845250 0.000002921 0.0834519 0.0000457 -0.592 0.083452 0.000046
0.0886327 0.0001910 -0.2220 0.088632704 0.000191307 0.08344915 0.00002020 -0.514 0.083449134 0.000020201
0.0885376 0.0002051 -0.14796 0.088537716 0.000205050 0.08342625 0.00000492 -0.0484 0.08342624 0.00000492
0.0884920 0.0000646 -0.6075 0.088491985 0.000064588 0.083390 0.000082 -0.1739 0.08338954 0.00008250
0.088348876 0.000008797 -0.776266 0.088348875 0.000008796 0.0833080 0.0000059 -0.38564 0.0833079 0.0000060
0.08800223 0.00001253 -0.32419 0.088002165 0.000012546 0.083234920 0.000000220 -0.70206 0.083234874 0.000000221
0.08776435 0.00001905 -0.0470 0.087764354 0.000019031 0.0831749 0.0000450 -0.2194 0.08317501 0.00004498
0.0877516 0.0000482 -0.5225 0.087751551 0.000048256 0.083125 0.000002 -0.7809
0.0873003 0.0002184 -0.57180 0.087300171 0.000218446 0.082975 0.000004 -0.383
0.08726810 0.00001756 -0.37499 0.087268098 0.000017562 0.082948 0.000035 -0.5845
0.086939118 0.000001705 -0.68604 0.086939055 0.000001712 0.0829404 0.0000157 -0.518
0.08677016 0.00007996 -0.2093 0.086770197 0.000079981 0.082922 0.000089 -0.172
0.0867486 0.0001487 -0.2610 0.086748626 0.000148913 0.0829197 0.0000039 -0.045
0.08658970 0.00000642 -0.777115 0.086589702 0.000006417 0.082829 0.000005 -0.386
0.086273970 0.000009607 -0.34322 0.086273922 0.000009620 0.08277397 0.00000016 -0.7029
0.08612347 0.00003985 -0.4397 0.086123429 0.000039851 0.082731 0.000034 -0.216

Table C.4: 1P o resonances of helium below the N = 5 threshold compared with data from [52].



112 C. Spectral properties of helium supplement

N = 6
This work Rost et al. [52]

Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E)
0.07951576 0.00002469 -0.79276 0.079515759 0.000024694
0.07702045 0.00004964 -0.440972 0.077020444 0.000049639
0.0766486 0.0005931 -0.6060 0.076648564 0.000593082
0.0738922 0.0000742 -0.15114 0.073892177 0.000074210
0.073645 0.000829 -0.291 0.073645119 0.000829397
0.072693 0.000601 -0.1695 0.072692534 0.000602213
0.072223314 0.000024771 -0.7996064 0.072223314 0.000024771
0.0707579 0.0003578 -0.62274 0.070757965 0.000357664
0.070308608 0.000047446 -0.45429 0.070308609 0.000047446
0.070200 0.000827 -0.034 0.070199995 0.000826531
0.06997533 0.00005176 -0.089062 0.069975284 0.000051741
0.0686225 0.0005570 -0.30945 0.068622411 0.000556881
0.06806514 0.00006457 -0.15853 0.068065139 0.000064580
0.067779451 0.000019827 -0.804506 0.067779451 0.000019827
0.0670723 0.0001054 -0.63593 0.067072296 0.000105357
0.06635158 0.00003735 -0.46207389 0.066351579 0.000037352
0.0662321 0.0001617 -0.18043 0.066231347 0.000161997
0.066203 0.000744 -0.0213 0.066203931 0.000743663
0.0656576 0.0000416 -0.17430 0.065657455 0.000041590
0.0655127 0.0002169 -0.31515 0.065512641 0.000216889
0.0652919 0.0000962 -0.63963 0.065291914 0.000096177
0.06517972 0.00000295 -0.275631 0.065179472 0.000002907
0.06486117 0.00001500 -0.80831 0.064861167 0.000015003
0.0647505 0.0000490 -0.15967 0.064750545 0.000049026
0.0639415 0.0002572 -0.6342 0.063941556 0.000257144
0.06389763 0.00003639 -0.35492 0.063897456 0.000036370
0.0637939 0.0000283 -0.46635 0.063793922 0.000028314
0.063773 0.000466 -0.0320 0.063773028 0.000466195
0.0635871 0.0000058 -0.3310 0.063587132 0.000005808
0.0634749 0.0001095 -0.3147 0.063474312 0.000109833
0.0631534 0.0000308 -0.2280 0.063153276 0.000030859
0.0628518 0.0000112 -0.8106 0.062851836 0.000011216
0.0628342 0.0000041 -0.2994 0.062833968 0.000004059
0.062633 0.000035 -0.157 0.062631764 0.000036535
0.06234 0.00017 -0.3 0.062334868 0.000174421
0.062332 0.000050 -0.474 0.062332355 0.000050767
0.06233 0.00017 -0.6 0.062332268 0.000163381
0.06212 0.00018 -0.04 0.062199713 0.000185324
0.06205 0.00002 -0.47 0.062044175 0.000021189
0.06178 0.00011 -0.36 0.061773868 0.000103957
0.0617345 0.0000076 -0.735 0.061734162 0.000007671
0.06152 0.00002 -0.26 0.061521397 0.000023124
0.061416 0.000009 -0.812 0.061416692 0.000008381
0.06130 < 0.1 × 10−4 -0.3 0.061301429 0.000004726

Table C.5: 1P o resonances of helium below the N = 6 threshold compared with data from [52].



C.1. Natural parity 113

C.1.2 3P o resonance data

N = 2
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.7604922 0.0001492 -0.364874 0.504845316 < 0.1 × 10−8 -0.4573377
0.5846722 0.0000411 -0.4143051 0.504622085 0.000000572 -0.4305061
0.57903096 0.00000094 -0.0208351 0.5044617392 0.0000000186 -0.0297116
0.54884429 < 0.1 × 10−7 -0.3584342 0.5040162143 < 0.6 × 10−9 -0.4585935
0.54283722 0.00001576 -0.4215271 0.503847045 0.000000435 -0.4308022
0.539558770 0.000000395 -0.023095 0.5037243968 0.0000000142 -0.0299718
0.52863838 < 0.1 × 10−7 -0.4101493 0.5033829632 < 0.5 × 10−9 -0.4595263
0.52571189 0.00000744 -0.424719 0.503251735 0.000000338 -0.4310369
0.523946635 0.000000204 -0.0250746 0.50315587161 0.00000001116 -0.0301797
0.518710071 < 0.6 × 10−8 -0.4320504 0.5028884309 < 0.4 × 10−9 -0.46023747
0.51710730 0.00000406 -0.4267008 0.502784604 0.000000267 -0.431226
0.516079739 0.000000118 -0.0265517 0.50270828176 0.00000000890 -0.0303482
0.513156015 < 0.4 × 10−8 -0.4430261 0.5024948854 < 0.3 × 10−9 -0.46079185
0.512191320 0.000002448 -0.42802822 0.502411338 0.000000216 -0.4313806
0.5115478001 0.0000000749 -0.02761331 0.50234959869 0.00000000721 -0.0304866
0.509747324 < 0.1 × 10−8 -0.4492363 0.5021765989 < 0.2 × 10−9 -0.46123215
0.509123886 0.000001587 -0.42895608 0.502108378 0.000000176 -0.4315084
0.5086964426 0.0000000492 -0.02838248 0.50205773884 0.00000000592 -0.0306016
0.507508411 < 0.2 × 10−8 -0.4530691 0.5019155415 < 0.2 × 10−9 -0.46158757
0.507082993 0.000001086 -0.4296268 0.5018591186 0.0000001461 -0.431615
0.5067854543 0.0000000343 -0.0289510 0.50181707450 0.00000000492 -0.030698
0.505960107 < 0.1 × 10−8 -0.45559221 0.5016987747 < 0.2 × 10−9 -0.4618786
0.505657168 0.000000775 -0.4301258 0.50165158 0.00000012 -0.4317
0.5054420898 0.0000000249 -0.0293804 0.50161629 < 0.1 × 10−7 -0.0307

Table C.6: 3P o resonances of helium below the N = 2 threshold.
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N = 3
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.3503776 0.0014933 -0.56382 0.22660203 0.00000682 -0.019298
0.3093797 0.0005587 -0.006019 0.22650567 0.00001459 -0.62254
0.27947758 0.00068721 -0.598199 0.226471625 0.000000243 -0.289548
0.27881704 0.00003128 -0.308891 0.226342232 0.000001099 -0.334872
0.2602338 0.0001549 -0.00222 0.226014549 0.000000011 -0.6392148
0.25852486 0.00000267 -0.247147 0.225884160 0.000005219 -0.01928
0.2551621 0.0003232 -0.61152 0.225812304 0.000011150 -0.622881
0.25355291 0.00001673 -0.317379 0.225783377 0.000000188 -0.29051
0.24605967 0.00000015 -0.5278342 0.225684742 0.000000853 -0.335612
0.24523493 0.00007765 -0.01020 0.225432506 0.000000009 -0.6414684
0.24403669 0.00000178 -0.2655788 0.225329398 0.000004083 -0.019228
0.2433744 0.0001671 -0.61677 0.22527434 0.00000871 -0.623150
0.242190147 0.000009820 -0.322772 0.225249950 0.000000149 -0.29124
0.23851299 0.00000010 -0.5755645 0.225172994 0.000000674 -0.336212
0.23775720 0.00004426 -0.01524 0.224974640 0.000000007 -0.6431773
0.237013541 0.000001258 -0.2756880 0.224891808 0.000003254 -0.01916
0.2368766 0.0000956 -0.61955 0.22484865 0.00000694 -0.62337
0.236070361 0.000006093 -0.326527 0.224828101 0.000000120 -0.291818
0.23399144 0.00000006 -0.6013444 0.224766879 0.000000542 -0.33670
0.23343211 0.00002749 -0.01755 0.224608047 0.000000006 -0.644502
0.232947683 0.000000979 -0.284331 0.22454056 0.00000263 -0.01909
0.23294750 0.00005916 -0.62381 0.22450609 0.00000561 -0.62354
0.232392355 0.000003996 -0.329239 0.224488716 0.000000098 -0.29228
0.231100332 0.000000045 -0.616369 0.224439197 0.000000442 -0.33711
0.23069633 0.00001820 -0.01860 0.224310021 0.000000005 -0.645548
0.23040124 0.00003912 -0.621478 0.22425435 0.00000216 -0.01902
0.230365457 0.000000636 -0.284693 0.22422636 0.00000461 -0.62369
0.230008407 0.000002747 -0.331249 0.224211604 0.000000081 -0.29264
0.229149422 0.000000030 -0.625734 0.2241709736 0.0000003655 -0.337457
0.22885408 0.00001265 -0.01906 0.2240644906 0.0000000039 -0.6463881
0.22866084 0.00002715 -0.62160 0.224018053 0.000001797 -0.01896
0.228618954 0.000000439 -0.28656 0.22399501 0.00000383 -0.62381
0.228374868 0.000001963 -0.3327711 0.223982399 0.000000067 -0.292947
0.227774243 0.000000022 -0.631906 0.223948645 0.000000305 -0.337748
0.22755393 0.00000914 -0.019249 0.223859825 0.000000003 -0.64707
0.22742031 0.00001959 -0.622105 0.22382070 0.00000151 -0.0189
0.227381223 0.000000321 -0.288269 0.2238015 0.0000032 -0.6239
0.227206612 0.000001449 -0.333947 0.22379066 0.00000006 -0.2932
0.226769865 0.000000015 -0.6361645 0.2237623 0.0000003 -0.3380

Table C.7: 3P o resonances of helium below the N = 3 threshold.
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N = 4
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.200074 0.001053 -0.66904 0.13130270 0.00000043 -0.699072
0.185808 0.002536 -0.182 0.1312088 0.0001216 -0.14303
0.16547992 0.00003763 -0.4536933 0.13113207 0.00002566 -0.1658
0.165140 0.000641 -0.69469 0.130991256 0.000005420 -0.32816
0.1637087 0.0006819 -0.14085 0.13094042 0.00000851 -0.727136
0.15623631 0.00004875 -0.02421 0.130867727 0.000004061 -0.099266
0.155802 0.001212 -0.2205 0.13057116 0.00000451 -0.4854685
0.1504764 0.0003413 -0.705066 0.13010942 0.00000025 -0.711219
0.14963682 0.00002794 -0.468364 0.1300375 0.0000833 -0.1469
0.1456517 0.0002015 -0.2001 0.12996907 0.00001894 -0.1720
0.14482654 0.00002002 -0.31333 0.129920094 0.000000615 -0.730545
0.144774 0.000688 -0.23939 0.12986240 0.00000406 -0.336935
0.14408438 0.00002166 -0.03979 0.1297701012 0.0000030973 -0.09519
0.142391 0.000182 -0.7127 0.12956004 0.00000341 -0.4860617
0.14156513 0.00001861 -0.475113 0.12922266 0.00000016 -0.719743
0.1389621 0.0000723 -0.218 0.12921417 0.00001658 -0.6773
0.1388839 0.0000415 -0.592 0.1291618 0.0000587 -0.2012
0.1388340 0.0004182 -0.2243 0.12910813 0.00001458 -0.1719
0.13843238 0.00001324 -0.301567 0.129025959 0.000003109 -0.34381
0.13809982 0.00001045 -0.12171 0.128955334 0.000002407 -0.09210
0.13754955 0.00009944 -0.71752 0.128800852 0.000002679 -0.485743
0.136885292 0.000012474 -0.479364 0.1286768 0.0000445 -0.71372
0.13533969 0.00000316 -0.63989 0.12854667 0.00000011 -0.72502
0.13521083 0.00027206 -0.1592 0.1285024 0.0000452 -0.1755
0.1351531 0.0000571 -0.1832 0.12845375 0.00001156 -0.1843
0.134870976 0.000010224 -0.302571 0.128388673 0.000002429 -0.34907
0.134631945 0.000007432 -0.112095 0.12833350 0.00000190 -0.08971
0.13445890 0.00005400 -0.721044 0.12821632 0.00000230 -0.4858
0.13393536 0.00000861 -0.482227 0.1282028 0.0000439 -0.7213
0.13295781 0.00000091 -0.67929 0.12802005 0.00000009 -0.729193
0.1328409 0.0001799 -0.1430 0.1279865 0.0000338 -0.1750
0.13276163 0.00003667 -0.1638 0.12794417 0.00000933 -0.1921
0.132568314 0.000007397 -0.3164629 0.127891829 0.000001932 -0.35319
0.132398583 0.000005433 -0.104631 0.127847944 0.000001529 -0.087832
0.13238424 0.00002651 -0.7239308 0.1277797 0.0000322 -0.7187
0.13195887 0.00000614 -0.48419 0.12775670 0.00000178 -0.4918

Table C.8: 3P o resonances of helium below the N = 4 threshold.
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N = 5
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.114347 0.001893 -0.009 0.0860681 0.0002142 -0.02834
0.10991437 0.00003711 -0.5487163 0.085745706 0.000005394 -0.552862
0.1093937 0.0005220 -0.75032 0.0856563 0.0000420 -0.28394
0.10513161 0.00006776 -0.18436 0.08563002 0.00000728 -0.47628
0.1045332 0.0010647 -0.34793 0.085442437 0.000003572 -0.3980
0.1004820 0.0007824 -0.1973 0.085401674 0.000013136 -0.14006
0.1000581 0.0002952 -0.761127 0.0852602 0.0001747 -0.36538
0.099578431 0.000032864 -0.561246 0.08523739 0.00004854 -0.79214
0.098966684 0.000035512 -0.13474 0.08504548 0.00000700 -0.582253
0.098843 0.000880 -0.0266 0.0849593 0.0001220 -0.02837
0.0967715 0.0006694 -0.36349 0.084695336 0.000003001 -0.640875
0.096324167 0.000054469 -0.192245 0.08461491 0.00003310 -0.3167
0.0944352 0.0001396 -0.76901 0.08460527 0.00000567 -0.4088
0.093791812 0.000024190 -0.5685010 0.084458394 0.000003029 -0.3841
0.0932137 0.0007772 -0.04065 0.0844413 0.0001723 -0.3750
0.09275719 0.00002680 -0.19443 0.08442611 0.00000991 -0.1384
0.0925968 0.0001738 -0.2347 0.0843301 0.0000337 -0.7851
0.0922099 0.0003538 -0.37549 0.08417250 0.00000535 -0.58339
0.09186876 0.00000126 -0.409470 0.0841285 0.0000621 -0.02127
0.09157690 0.00003836 -0.191066 0.083909992 0.000001818 -0.68944
0.091043816 0.000010939 -0.7753067 0.08384044 0.00002764 -0.3446
0.09021419 0.00001735 -0.572512 0.08383403 0.00000416 -0.3737
0.0897984 0.0005477 -0.04186 0.0837606 0.0001306 -0.3767
0.0896707 0.0001323 -0.76961 0.08371975 0.00000252 -0.374
0.08935433 0.00001621 -0.29294 0.08369412 0.00000757 -0.136
0.08931317 0.00014899 -0.36064 0.0836365 0.0000242 -0.7840
0.08922198 0.00009377 -0.24407 0.0835070 0.0000042 -0.5844
0.088990798 0.000001976 -0.560563 0.0834928 0.0000266 -0.0108
0.088725745 0.000003952 -0.473744 0.0833060 0.0000012 -0.717
0.088666730 0.000024899 -0.158722 0.0832472 0.00002376 -0.3644
0.0880458 0.0001257 -0.773088 0.0832408 0.0000034 -0.3585
0.08785465 0.00001262 -0.576722 0.083206 0.000096 -0.37670
0.0876004 0.0003527 -0.04514 0.0831510 0.0000021 -0.367
0.087452676 0.000011922 -0.38722 0.0831305 0.0000059 -0.134
0.08720727 0.00000966 -0.42006 0.083095 0.000018 -0.784
0.087106 0.000060 -0.2774 0.082996 0.000008 -0.001
0.087026825 0.000005476 -0.54106 0.0829882 0.0000033 -0.585
0.086794744 0.000004014 -0.42179 0.0828312 0.0000009 -0.7352
0.086743689 0.000017695 -0.14620 0.082782 0.000021 -0.379
0.0864399 0.0000697 -0.7785 0.0827750 0.0000029 -0.351
0.08624638 0.00006659 -0.36828 0.08275 0.00007 -0.377
0.08622062 0.00000991 -0.58355

Table C.9: 3P o resonances of helium below the N = 5 threshold.
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N = 6
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.07841777 0.00003500 -0.61464 0.0645515 0.0001567 -0.80794
0.0779064 0.0000426 -0.7886 0.06442655 0.00002262 -0.25763
0.07663 0.00085 -0.08 0.06437313 0.00002168 -0.62457
0.0756571 0.0000628 -0.29414 0.06434955 0.00002887 -0.48719
0.075103 0.000782 -0.4364 0.06396010 0.00004310 -0.0130
0.0722062 0.0000753 -0.0300 0.0639209 0.0001353 -0.3233
0.071862 0.000896 -0.147 0.06340250 0.00000017 -0.49922
0.0716673 0.0002457 -0.798593 0.0632613 0.0000341 -0.3144
0.07136541 0.00003456 -0.625088 0.063109 0.000328 -0.466
0.0696575 0.0004968 -0.45359 0.0627852 0.0003114 -0.1673
0.06930412 0.00005804 -0.3060 0.062780 0.000060 -0.1746
0.068486 0.000528 -0.1312 0.0627228 0.0000865 -0.8124
0.0679586 0.0000526 -0.18066 0.062479 0.000015 -0.6418
0.06774595 0.00006287 -0.8066239 0.0623589 0.0000176 -0.30898
0.067374 0.000637 -0.1569 0.06208 0.00003 -0.023
0.0671311608 0.0000274852 -0.6320185 0.0620507 0.0000883 -0.355
0.06711413 0.00036332 -0.22511 0.06183 0.00025 -0.47
0.0669161 0.0000574 -0.016435 0.061680 0.000001 -0.606
0.0662603 0.0001647 -0.4410 0.06158 0.00004 -0.2
0.06617487 0.00011827 -0.8310 0.06139 0.00020 -0.16
0.06562381 0.00004524 -0.311970 0.061352 0.000050 -0.813
0.0648583 0.0004040 -0.1527 0.06112 0.00002 -0.64
0.0646205 0.0003173 -0.15621 0.06097 0.00002 -0.35

Table C.10: 3P o resonances of helium below the N = 6 threshold.

C.1.3 1De resonance data

N = 2
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.70193 0.00118 -0.23441 0.5043784 0.0000051 -0.40037
0.569216 0.000277 -0.33449 0.504141722 0.000000332 -0.13605
0.5564290 0.0000097 -0.0526063 0.504038246 < 0.2 × 10−8 -0.263273
0.5367246 0.0001157 -0.363283 0.5036612 0.0000039 -0.40141
0.5315119 0.0000054 -0.091932 0.50347949 0.00000026 -0.13711
0.52929296 < 0.1 × 10−7 -0.2485407 0.503399784 < 0.2 × 10−8 -0.263494
0.5227417 0.0000580 -0.377664 0.50310683 0.00000303 -0.4022
0.52011736 0.00000310 -0.110313 0.502964278 0.000000203 -0.13793
0.51900127 < 0.1 × 10−7 -0.25577263 0.502901572 < 0.2 × 10−8 -0.263659
0.5154540 0.0000329 -0.385990 0.5026694 0.0000024 -0.4029
0.51395263 0.00000189 -0.12027 0.50255557 0.00000016 -0.13859
0.51331135 < 0.1 × 10−7 -0.2590787 0.502505352 < 0.1 × 10−8 -0.26378
0.5111802 0.0000204 -0.391239 0.50231830 0.00000195 -0.4034
0.51024285 0.00000122 -0.12625 0.502225911 0.000000133 -0.1391
0.509840312 < 0.7 × 10−8 -0.260838 0.5021850734 < 0.7 × 10−9 -0.263882
0.5084616 0.0000135 -0.394756 0.50203214 0.00000160 -0.40384
0.50783793 0.00000084 -0.130120 0.501956158 0.000000110 -0.1395
0.507568669 < 0.5 × 10−8 -0.261873 0.5019225013 < 0.7 × 10−9 -0.263960
0.50662613 0.00000939 -0.397225 0.50179588 0.00000133 -0.4042
0.5061904 0.0000006 -0.132766 0.501732629 0.000000092 -0.13990
0.506001475 < 0.5 × 10−8 -0.262528 0.5017045619 < 0.5 × 10−9 -0.264023
0.5053289 0.0000068 -0.39902 0.50159854 0.00000112 -0.4045
0.50501272 0.00000044 -0.13465 0.50154533 0.00000008 -0.1402
0.504874989 < 0.3 × 10−8 -0.262967 0.50152168 < 0.1 × 10−7 -0.2641

Table C.11: 1De resonances of helium below the N = 2 threshold.
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N = 3
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.343173 0.002581 -0.4939 0.2264039 0.0000254 -0.587617
0.315532 0.002147 -0.0492 0.2263718 0.0000085 -0.04967
0.290091 0.000628 -0.06174 0.226239914 0.000001050 -0.26288
0.275865 0.001132 -0.5473 0.22616746 0.00000053 -0.48897
0.27471041 0.00001328 -0.2357 0.226096237 0.000000014 -0.30910
0.2623501 0.0007371 -0.04123 0.22594909 0.00002477 -0.006512
0.254625 0.000166 -0.054376 0.2257338 0.0000195 -0.58835
0.253338 0.000539 -0.56491 0.2257077 0.0000065 -0.04915
0.251656539 0.000010017 -0.25085 0.225605629 0.000000824 -0.263123
0.2496374 0.0000034 -0.24937 0.225550254 0.000000425 -0.49327
0.2462602 0.0003760 -0.025962 0.225494994 0.000000012 -0.30798
0.242556 0.000086 -0.05591 0.22538010 0.00001934 -0.006123
0.2423690 0.0002825 -0.57446 0.2252126 0.0000153 -0.58895
0.241175647 0.000007165 -0.25635 0.22519113 0.00000514 -0.04874
0.2402470 0.0000030 -0.36134 0.225110575 0.000000657 -0.2633
0.23956077 0.00000002 -0.34225 0.225067278 0.000000341 -0.49655
0.2383285 0.0002140 -0.017738 0.225023546 0.000000011 -0.30712
0.236274 0.000163 -0.58264 0.224932149 0.000015391 -0.00583
0.236257 0.000051 -0.05836 0.22479921 0.00001217 -0.58944
0.23546832 0.00000494 -0.25906 0.2247815 0.0000041 -0.04840
0.2349659 0.0000023 -0.41529 0.224716772 0.000000533 -0.26345
0.23455766 0.00000003 -0.32799 0.224682263 0.000000277 -0.49910
0.2337822 0.0001324 -0.013208 0.224647064 0.000000009 -0.306444
0.2325610 0.0001015 -0.58368 0.22457318 0.00001244 -0.005610
0.2325054 0.0000325 -0.05509 0.22446589 0.00000986 -0.58986
0.23200708 0.00000345 -0.26058 0.2244511 0.0000034 -0.04812
0.23170416 0.00000165 -0.44510 0.22439837 0.00000044 -0.26357
0.23144134 0.00000003 -0.32029 0.224370410 0.000000229 -0.50112
0.23092612 0.00008732 -0.010545 0.224341662 0.000000007 -0.30590
0.2301396 0.0000674 -0.58452 0.224281108 0.000010204 -0.005436
0.2300837 0.0000218 -0.05263 0.22419325 0.00000810 -0.5902
0.229747419 0.000002466 -0.26152 0.22418084 0.00000276 -0.04788
0.22955034 0.00000121 -0.46323 0.224137270 0.000000363 -0.26367
0.22937122 0.00000002 -0.3157 0.224114296 0.000000191 -0.50275
0.22901293 0.00006050 -0.008883 0.224090514 0.000000006 -0.30545
0.2284760 0.0000470 -0.58567 0.224040268 0.000008470 -0.005298
0.2284280 0.0000154 -0.05126 0.22396741 0.00000674 -0.59050
0.22819008 0.00000181 -0.26214 0.22395690 0.00000231 -0.04768
0.22805445 0.00000091 -0.47504 0.22392050 0.00000030 -0.263753
0.22792693 0.00000002 -0.31267 0.223901389 0.000000160 -0.5041
0.22766827 0.00004360 -0.007791 0.223881492 0.000000005 -0.30508
0.2272851 0.0000340 -0.586729 0.22383934 0.00000711 -0.00518
0.2272456 0.0000113 -0.050342 0.2237783 0.0000056 -0.5908
0.227071076 0.000001364 -0.26257 0.2237693 0.0000020 -0.048
0.22697361 0.00000069 -0.48315 0.2237385 0.0000003 -0.264
0.226879652 0.000000017 -0.31060 0.2237225 0.0000001 -0.505
0.22668705 0.00003244 -0.007042

Table C.12: 1De resonances of helium below the N = 3 threshold.
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N = 4
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.198231 0.001395 -0.62616 0.1325974 0.0002032 -0.18585
0.187333 0.002245 -0.20426 0.1322506 0.0000204 -0.2940
0.182784 0.002725 -0.1415 0.1322465 0.0000398 -0.6995
0.167612 0.001791 -0.07529 0.13217276 0.00001358 -0.00778
0.164203375 0.000044749 -0.41084 0.131819823 0.000006923 -0.41707
0.163944 0.000850 -0.66391 0.131803657 0.000001457 -0.58224
0.156706 0.001203 -0.22666 0.131625024 0.000000110 -0.372770
0.1557091 0.0003587 -0.15813 0.1313623 0.0001397 -0.198
0.154193 0.001308 -0.18950 0.13129160 0.00008820 -0.2196
0.15382088 0.00001715 -0.03265 0.1310359 0.0001382 -0.18696
0.1497709 0.0004598 -0.67349 0.13082721 0.00001733 -0.70032
0.14889002 0.00003138 -0.435427 0.1307707 0.0000149 -0.2955
0.146956 0.000620 -0.1568 0.13070926 0.00000947 -0.00549
0.145287 0.000678 -0.24892 0.130470234 0.000004861 -0.3606
0.143902 0.000795 -0.18132 0.130463699 0.000001438 -0.5434
0.1431727 0.0000948 -0.27257 0.130330340 0.000000101 -0.370386
0.1430536 0.0000378 -0.0356 0.1301404 0.0001033 -0.1738
0.141960 0.000247 -0.682447 0.13009377 0.00005924 -0.190
0.14110958 0.00002091 -0.445305 0.1299097 0.0000967 -0.18723
0.140755520 0.000001401 -0.36413 0.12980324 0.00000378 -0.704630
0.139685 0.000390 -0.2049 0.1297032 0.0000112 -0.2983
0.1391260 0.0003901 -0.2645 0.12965450 0.00000688 -0.00320
0.1382812 0.0004887 -0.18266 0.12948479 0.00000311 -0.239
0.1376726 0.0000434 -0.2743 0.1294820664 0.0000017309 -0.4340
0.1375548 0.0000326 -0.0142 0.129380810 0.000000088 -0.369227
0.1372724 0.0001362 -0.688605 0.1292400 0.0000774 -0.1626
0.136592115 0.000014107 -0.448594 0.1292077 0.0000418 -0.1754
0.136481737 0.000001676 -0.528905 0.1290706 0.0000683 -0.17858
0.136162775 0.000000095 -0.394402 0.12905231 0.00000215 -0.71756
0.135633 0.000267 -0.2373 0.12890741 0.00000867 -0.29999
0.13539671 0.00022973 -0.2781 0.12886835 0.00000516 -0.00105
0.1348515 0.0003094 -0.18439 0.128743885 0.000001608 -0.525
0.1343915 0.0000287 -0.2843 0.12874170 0.00000220 -0.321
0.1342933 0.0000205 -0.0099 0.128663897 0.000000076 -0.368617
0.1342702 0.0000756 -0.69332 0.1285569 0.0000588 -0.1599
0.133737436 0.000009780 -0.44254 0.12853403 0.00003076 -0.1701
0.133696493 0.000001607 -0.578572 0.1284928 0.0000154 -0.6798
0.133454834 0.000000114 -0.378325 0.1284265 0.0000510 -0.2201
0.1330835 0.0001911 -0.23186 0.12829800 0.00000683 -0.3011
0.1329646 0.0001390 -0.26103

Table C.13: 1De resonances of helium below the N = 4 threshold.



120 C. Spectral properties of helium supplement

N = 5
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.1149119 0.0014100 -0.02250 0.0868242 0.0000091 -0.238
0.112375 0.001508 -0.0158 0.086639 0.000033 -0.3297
0.10939910 0.00004188 -0.520825 0.0865991 0.0000200 -0.1726
0.1088995 0.0006245 -0.72931 0.0863531 0.0000919 -0.7544
0.1048460 0.0009461 -0.35228 0.0863382 0.0000824 -0.3848
0.10427751 0.00007048 -0.153887 0.086242 0.000003 -0.6682
0.10311 0.00115 -0.139 0.086168 0.000139 -0.054
0.099738 0.000358 -0.73951 0.08614012 0.00001090 -0.54929
0.0994207 0.0007914 -0.0266 0.086069 0.000001 -0.4535
0.099233943 0.000036576 -0.539055 0.0860579 0.0000302 -0.3699
0.099233943 0.000036576 -0.539055 0.085920 0.000123 -0.272
0.098168 0.000832 -0.0071 0.0858540 0.0001849 -0.002
0.098168 0.000832 -0.0071 0.08545058 0.00000750 -0.257
0.0975072 0.0000097 -0.12322 0.0853609 0.0001800 -0.3874
0.096976 0.000588 -0.37046 0.085330 0.000023 -0.3305
0.096363 0.000683 -0.34077 0.08529724 0.00001574 -0.1680
0.096343 0.000198 -0.249 0.0851756 0.0000595 -0.759773
0.09581349 0.00005360 -0.16713 0.0851061 0.0001351 -0.3538
0.0942259 0.0001704 -0.748328 0.085070 0.000003 -0.69267
0.0942259 0.0001704 -0.748328 0.085025 0.000078 -0.038
0.093793 0.000502 -0.172 0.084983069 0.000008117 -0.56977
0.093560995 0.000026753 -0.548027 0.0849286 0.0000001 -0.45446
0.093256 0.000422 -0.071 0.084821 0.000094 -0.31
0.0925918 0.0006047 -0.0093 0.084800 0.000121 -0.001
0.0923370 0.0003064 -0.38030 0.0845130 0.0001542 -0.390208
0.0919446 0.0003728 -0.34826 0.08445866 0.00000615 -0.2707
0.0919248 0.0000120 -0.1823 0.084377 0.000017 -0.332
0.091364 0.000081 -0.31182 0.08434841 0.00001199 -0.1688
0.0912561 0.0000380 -0.1735 0.0843216 0.0001655 -0.3493
0.09087340 0.00001889 -0.755368 0.0842836 0.0000428 -0.77032
0.090091 0.000368 -0.1056 0.0841949 0.0000022 -0.70810
0.090055471 0.000019209 -0.55203 0.084178 0.000038 -0.015
0.090049 0.000006 -0.4514 0.08412477 0.00000610 -0.56985
0.089705 0.000246 -0.1887 0.0840814 0.0000001 -0.4562
0.0894046 0.0001360 -0.7462 0.084006 0.000086 -0.21
0.0893941 0.0001191 -0.3890 0.084005 0.000064 -0.14
0.089391 0.000423 -0.0110 0.0838058 0.0001106 -0.39233
0.0891182 0.0001651 -0.3649 0.08371714 0.00000506 -0.2817
0.0888178 0.0000107 -0.2147 0.0836794 0.0001397 -0.3541
0.088511 0.000050 -0.326 0.083660 0.000012 -0.333
0.0884566 0.0000272 -0.1764 0.0836347 0.0000092 -0.16974
0.0879054 0.0001619 -0.75392 0.0836004 0.0000308 -0.7677
0.087852 0.000004 -0.6258 0.0835338 0.0000141 -0.002
0.087768 0.000235 -0.0872 0.0835260 0.0000020 -0.7199
0.087741750 0.000014214 -0.557577 0.08346964 0.00000476 -0.5707
0.0876566 0.0000001 -0.4578 0.0834350 0.0000002 -0.458
0.08752437 0.00000722 -0.399556 0.0833910 0.0000390 -0.05
0.087454 0.000168 -0.239 0.083382 0.000067 -0.32
0.087308 0.000282 -0.017 0.0832366 0.0000799 -0.3932
0.08727169 0.00002587 -0.36936 0.083150 0.000106 -0.357

Table C.14: 1De resonances of helium below the N = 5 threshold.
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C.1.4 3De resonance data

N = 2
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.583784235 < 0.6 × 10−8 -0.29371700 0.504878014 < 0.1 × 10−8 -0.3210616
0.56068624 0.00000371 -0.01970972 0.5045542797 < 0.2 × 10−9 -0.3664303
0.541678994 < 0.4 × 10−8 -0.3296968 0.504236710 0.000000100 -0.0429082
0.53346309 0.00000189 -0.03657626 0.5040405715 < 0.7 × 10−9 -0.3225828
0.529312233 < 0.6 × 10−8 -0.27281196 0.5037951085 < 0.1 × 10−9 -0.3673325
0.525018616 < 0.3 × 10−8 -0.3450135 0.503552583 0.000000077 -0.0428792
0.521131108 0.000001022 -0.0408525 0.5034016067 < 0.5 × 10−9 -0.3237324
0.519016815 < 0.5 × 10−8 -0.2937825 0.5032111026 < 0.1 × 10−9 -0.3680360
0.516688517 < 0.2 × 10−8 -0.3532344 0.503021708 0.000000061 -0.0428487
0.514540919 0.000000604 -0.0422198 0.5029030252 < 0.4 × 10−9 -0.3246220
0.513322284 < 0.4 × 10−8 -0.305055 0.50275223380 < 0.9 × 10−10 -0.3685951
0.5119245284 < 0.8 × 10−9 -0.3581963 0.502601511 0.000000048 -0.0428192
0.510613226 0.000000384 -0.0427071 0.5025065283 < 0.3 × 10−9 -0.3253245
0.509847973 < 0.3 × 10−8 -0.3117649 0.50238514134 < 0.8 × 10−10 -0.3690468
0.5089450531 < 0.5 × 10−9 -0.3614279 0.502263235 0.000000039 -0.0427919
0.508085781 0.000000259 -0.0428806 0.5021860385 < 0.3 × 10−9 -0.3258887
0.507574151 < 0.2 × 10−8 -0.3160692 0.50208688517 < 0.8 × 10−10 -0.3694169
0.5069578476 < 0.4 × 10−9 -0.3636513 0.501986891 0.000000032 -0.0427670
0.506364305 0.000000182 -0.0429305 0.5019233024 < 0.2 × 10−9 -0.3263488
0.506005498 < 0.2 × 10−8 -0.3189903 0.50184127013 < 0.5 × 10−10 -0.3697239
0.5055664091 < 0.3 × 10−9 -0.3652467 0.5017582346 0.0000000270 -0.042745
0.505139297 0.000000133 -0.0429297 0.5017052339 < 0.2 × 10−9 -0.326729

Table C.15: 3De resonances of helium below the N = 2 threshold.
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N = 3
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.3253309 0.0003620 -0.168459 0.226605766 0.000000044 -0.0363283
0.2830465 0.0000244 -0.5395038 0.2264960502 0.0000009619 -0.600851
0.26976025 0.00001867 -0.0622195 0.22626003 0.00000055 -0.378844
0.2673176 0.0001228 -0.211858 0.22612669 0.00000404 -0.275838
0.2616026 0.0000008 -0.048003 0.226108952 0.000000011 -0.459192
0.255929717 0.000015247 -0.5656638 0.226081036 0.000000228 -0.006720
0.2508406 0.0000047 -0.248321 0.225886171 0.000000034 -0.0358771
0.24913455 0.00003321 -0.14514 0.225803941 0.000000743 -0.602033
0.2488169 0.0000387 -0.12713 0.22562210 0.00000043 -0.380399
0.24560284 0.00000042 -0.0445346 0.225518657 0.000003130 -0.276057
0.24357401 0.00000897 -0.5784778 0.225505097 0.000000009 -0.462638
0.2410448 0.0000038 -0.319531 0.2254822223 0.0000001829 -0.0078204
0.23987874 0.00003665 -0.26303 0.225330456 0.000000027 -0.0355171
0.23970847 0.00000309 -0.04161 0.225267177 0.000000585 -0.602980
0.23958965 0.00000030 -0.346111 0.225124132 0.000000340 -0.38155
0.23789051 0.00000025 -0.0418743 0.22504230 0.00000247 -0.27625
0.236927333 0.000005525 -0.5861615 0.225031690 0.000000007 -0.465242
0.23547335 0.00000267 -0.347471 0.2250128294 0.0000001483 -0.008607
0.23473577 0.00002324 -0.273406 0.224892326 0.000000021 -0.0352253
0.234614364 0.000000268 -0.31442 0.224842551 0.000000469 -0.60375
0.23456279 0.00000076 -0.10268 0.224728011 0.000000275 -0.382437
0.23348866 0.00000016 -0.0399958 0.224662182 0.000001988 -0.276418
0.232953822 0.000003592 -0.5912416 0.224653715 0.000000006 -0.467266
0.23203924 0.00000184 -0.361154 0.2246380458 0.0000001217 -0.009197
0.23155407 0.00001505 -0.274610 0.224540770 0.000000017 -0.034986
0.231479329 0.000000050 -0.41189 0.224500890 0.000000381 -0.60438
0.231425177 0.000000630 -0.01882 0.224407760 0.000000225 -0.383126
0.23072284 0.00000011 -0.0386450 0.224354026 0.000001622 -0.2765643
0.230394035 0.000002449 -0.594800 0.224347158 0.000000005 -0.468874
0.22978121 0.00000131 -0.368838 0.2243340347 0.0000001010 -0.0096541
0.22944767 0.00001024 -0.275014 0.224254379 0.000000015 -0.034787
0.229399214 0.000000026 -0.43607 0.224221917 0.000000314 -0.604911
0.229349936 0.000000492 -0.003230 0.22414518 0.00000019 -0.38367
0.22886737 0.00000008 -0.0376515 0.22410075 0.00000134 -0.276692
0.2286502291 0.0000017383 -0.597396 0.224095104 0.000000004 -0.47018
0.22821963 0.00000095 -0.373570 0.2240840255 0.0000000846 -0.01002
0.22798132 0.00000727 -0.2753174 0.224017976 0.000000012 -0.0346193
0.227948073 0.000000019 -0.447483 0.223991191 0.000000262 -0.60535
0.227906513 0.000000371 -0.002307 0.223927214 0.000000156 -0.38411
0.22756089 0.00000006 -0.0369036 0.223890068 0.000001119 -0.27680
0.227409667 0.000001275 -0.599347 0.2238853634 0.0000000035 -0.471244
0.22709562 0.00000071 -0.376686 0.223875940 0.000000072 -0.01032
0.22691976 0.00000534 -0.275591 0.22382057 0.00000001 -0.0345
0.226895907 0.000000014 -0.454442 0.22379820 0.00000022 -0.6057
0.226861748 0.000000289 -0.005068 0.22374430 0.00000014 -0.3845

Table C.16: 3De resonances of helium below the N = 3 threshold.
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N = 4
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.1916071 0.0019040 -0.3646 0.132874092 0.000008125 -0.16487
0.171527 0.000665 -0.05028 0.132311226 0.000004924 -0.6978766
0.16787558 0.00002821 -0.658463 0.13198639 0.00000274 -0.51297
0.16129752 0.00004489 -0.239823 0.13178424 0.00002068 -0.11115
0.1595683 0.0009917 -0.40672 0.13170975 0.00001220 -0.2480
0.15897907 0.00005955 -0.181968 0.13168782 0.00007697 -0.36917
0.15122995 0.00002217 -0.676280 0.13165783 0.00000335 -0.3603
0.1509878 0.0000255 -0.12472 0.131449082 0.000007167 -0.253479
0.1491307 0.0002025 -0.04649 0.13128304 0.00000308 -0.16613
0.14708577 0.00003249 -0.245385 0.131204959 0.000005604 -0.15961
0.147079 0.000561 -0.42129 0.130831298 0.000003601 -0.699673
0.1466933 0.0000042 -0.194360 0.130596612 0.000002033 -0.532814
0.14579356 0.00003551 -0.1953176 0.130439255 0.000016586 -0.0828
0.142611814 0.000014965 -0.685781 0.13039618 0.00004975 -0.3654
0.1416865 0.0000181 -0.218096 0.13039210 0.00000621 -0.31320
0.1409989 0.0000632 -0.1307 0.13035346 0.00000357 -0.32479
0.1408729 0.0000540 -0.2430 0.130196821 0.000005290 -0.254531
0.1402696 0.0003206 -0.42932 0.13007401 0.00000240 -0.16318
0.139967367 0.000021535 -0.248487 0.130017813 0.000004040 -0.15639
0.13951882 0.00000526 -0.19106 0.129756885 0.000002702 -0.700926
0.139184920 0.000020556 -0.18606 0.129581894 0.000001561 -0.544451
0.137590623 0.000010056 -0.6915335 0.129459138 0.000012509 -0.0262
0.1368997 0.0000075 -0.38351 0.12944590 0.00003268 -0.3708
0.13656470 0.00002925 -0.19597 0.12942783 0.00000373 -0.401905
0.1363861 0.0000481 -0.16735 0.12939666 0.00000326 -0.30300
0.13620744 0.00000128 -0.43960 0.129277588 0.000004007 -0.255379
0.1361613 0.0001916 -0.42682 0.12918451 0.00000188 -0.16141
0.135838135 0.000014440 -0.250504 0.129142594 0.000003014 -0.15431
0.13551250 0.00000485 -0.17936 0.128953002 0.000002075 -0.701775
0.135332083 0.000012480 -0.17352 0.128819086 0.000001223 -0.551901
0.134426182 0.000006931 -0.6953003 0.12872483 0.00002256 -0.2577
0.13395946 0.00000399 -0.47424 0.12872431 0.00000863 -0.128
0.13370209 0.00002509 -0.144098 0.12870043 0.00000243 -0.46125
0.13358288 0.00002519 -0.20266 0.12867479 0.00000271 -0.28883
0.1335028 0.0001197 -0.4042 0.128582713 0.000003103 -0.256069
0.13349784 0.00000251 -0.4075 0.12851062 0.00000149 -0.16033
0.133218438 0.000010005 -0.25216 0.128478480 0.000002311 -0.1529
0.13298814 0.00000394 -0.17111 0.12833625 0.000000162 -0.70231

Table C.17: 3De resonances of helium below the N = 4 threshold.
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N = 5
Re(−E) Im(−E) 〈cos(θ12)〉 Re(−E) Im(−E) 〈cos(θ12)〉
0.11781 0.00209 -0.121 0.08651649 0.00000729 -0.760871
0.11133207 0.00002817 -0.7282413 0.086483 0.000011 -0.4223
0.10771238 0.00005019 -0.361777 0.086279 0.000012 -0.457
0.10682968 0.00006004 -0.322851 0.0862169 0.0000672 -0.152
0.1066188 0.0008790 -0.52031 0.086187 0.000007 -0.2079
0.1047144 0.0008116 -0.15723 0.0861004 0.0000027 -0.479
0.1023324 0.0000566 -0.0395 0.0860066 0.0000148 -0.09710
0.1011565 0.0012677 -0.1617 0.0858575 0.0001719 -0.55661
0.1008623 0.0000590 -0.0025 0.08582465 0.00001164 -0.404
0.10062339 0.00002557 -0.74112715 0.085824 0.000003 -0.242
0.0981944 0.0005270 -0.53657 0.085695398 0.000014015 -0.36190
0.09804390 0.00004259 -0.3735134 0.0853884 0.0000399 -0.1770
0.09747798 0.00004906 -0.342663 0.085270825 0.000005466 -0.762333
0.095741 0.000024 -0.2263 0.085223 0.000007 -0.4838
0.0946127 0.0009644 -0.12599 0.085090 0.000012 -0.464
0.094573 0.000212 -0.1306 0.0850259 0.0000567 -0.193
0.0945612 0.0000342 -0.0030 0.085002 0.000006 -0.198
0.094539896 0.000019031 -0.748717 0.0849534 0.0000030 -0.444
0.0938286 0.0000417 -0.0405 0.08486616 0.00001114 -0.1102
0.093187 0.000006 -0.2545 0.0848290 0.0001121 -0.55852
0.0931803 0.0002611 -0.54897 0.084745785 0.000008892 -0.3890
0.09273307 0.00003096 -0.380230 0.0847347 0.0000026 -0.2223
0.09236295 0.00003524 -0.35125 0.08464933 0.00001040 -0.35731
0.091019 0.000021 -0.2978 0.08451448 0.00000072 -0.19145
0.0907624 0.0006273 -0.11352 0.08434745 0.00000418 -0.76363
0.090753250 0.000013674 -0.7532561 0.084302 0.000005 -0.5306
0.0904340 0.0000220 -0.0285 0.084204 0.000011 -0.4487
0.0904114 0.0001107 -0.12982 0.0841488 0.0000465 -0.212
0.090909 0.000033 -0.3110 0.084131 0.000005 -0.249
0.09004682 0.00007123 -0.55842 0.0840993 0.0000035 -0.380
0.089997 0.000029 -0.069 0.0840261 0.0000770 -0.56164
0.089595 0.000004 -0.245 0.0840250 0.0000088 -0.1209
0.08946976 0.00002212 -0.38390 0.08394106 0.00000694 -0.39007
0.08921878 0.00002511 -0.35497 0.0839272 0.0000024 -0.2230
0.0882813 0.0003444 -0.13145 0.08386847 0.00000876 -0.32506
0.088280 0.000015 -0.3516 0.0838322 0.0000141 -0.2308
0.08825826 0.00002327 -0.5271 0.0836451 0.0000032 -0.76469
0.08824544 0.00001567 -0.78478 0.0836047 0.0000039 -0.5635
0.087930 0.000012 -0.253 0.083529 0.000010 -0.4322
0.0878993 0.0000824 -0.1191 0.0834840 0.0000370 -0.223
0.087845 0.000009 -0.39 0.083471 0.000004 -0.32
0.087691 0.000002 -0.492 0.0834467 0.0000036 -0.310
0.0876127 0.0000201 -0.0843 0.0834014 0.0000553 -0.5670
0.087350 0.000003 -0.2326 0.0833859 0.0000073 -0.1296
0.087318165 0.000016028 -0.3853 0.08332479 0.00000568 -0.3931
0.08714169 0.00001969 -0.35459 0.0833106 0.0000027 -0.225
0.0870580 0.0002137 -0.56216 0.0832784 0.0000351 -0.161
0.08658917 0.00015559 -0.1561 0.0832653 0.0000077 -0.399

Table C.18: 3De resonances of helium below the N = 5 threshold.



C.2. Unnatural parity 125

C.2 Unnatural parity

C.2.1 1P e resonance data

The data for the 3rd up to the 5th threshold of 1P e resonances (Tab. C.19, C.20 and C.21) is
compared to existing data [148]. Table C.21 presents our results for 1P e resonances below the
sixth, seventh and eighth single ionization threshold, which have been calculated by us for the
first time. The tables are limited to at most 50 entries even if more converged resonances have
been identified.

N = 3
This work Ho et al. [148] This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.2789925 0.0000221 0.2789925 0.00002215 0.225688553 0.000000658
0.259352043 0.000000628 0.259352 0.0000006295 0.2252751151 0.0000000350
0.25363872 0.00001320 0.2536387 0.0000131915 0.225176001 0.000000520
0.244513616 0.000000435 0.2445136 0.0000004375 0.2248481993 0.0000000282
0.24223748 0.00000769 0.242237 0.000008 0.224769293 0.000000418
0.237282423 0.000000290 0.2245050215 0.0000000230
0.23609888 0.00000475 0.2244411635 0.0000003413
0.2331144072 0.0000001971 0.2242250134 0.0000000191
0.232410753 0.000003104 0.2241725969 0.0000002819
0.2304760586 0.0000001383 0.22399356071 0.00000001593
0.230020923 0.000002129 0.2239500007 0.0000002356
0.2286960596 0.0000001001 0.22380004645 0.00000001345
0.228383750 0.000001520 0.2237634503 0.0000001988
0.2274371191 0.0000000745 0.22363660629 0.00000001145
0.227213135 0.000001121 0.2236055623 0.0000001693
0.2265134362 0.0000000568 0.2234973139 0.0000000098
0.226347159 0.000000849 0.223470751 0.000000145
0.2258154670 0.0000000442

Table C.19: 1P e resonances of helium below the N = 3 SIT: our results are compared with data
from [148]. Only converged digits are displayed for our results. The results of [148] have been
converted from Ry to a. u..



126 C. Spectral properties of helium supplement

N = 4
This work Ho et al. [148] This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.16551928 0.00003481 0.1655193 0.0000363 0.1283507197 0.0000021733
0.15640849 0.00004201 0.1564085 0.0000420 0.128217530 0.000001931
0.14966102 0.00002641 0.149660985 0.0000264 0.1279219917 0.0000005669
0.145222196 0.000005624 0.14522225 0.0000056 0.1278615011 0.0000017338
0.14423254 0.00002289 0.1442325 0.000022885 0.1277578228 0.0000015431
0.14157953 0.00001758 0.141578 0.0000175 0.1275211156 0.0000004561
0.138778490 0.000004604 0.1274723209 0.0000014046
0.13823181 0.00001404 0.127389968 0.000001252
0.136894328 0.000011765 0.1271975118 0.0000003722
0.1350694494 0.0000032298 0.12715759075 0.00000115318
0.134717582 0.000009398 0.1270910482 0.0000010293
0.133941318 0.000008109 0.12693249839 0.00000030768
0.1326980414 0.0000022709 0.1268994292 0.0000009581
0.1324563572 0.0000066066 0.1268448661 0.0000008562
0.131962967 0.000005774 0.12671272436 0.00000025719
0.1310817499 0.0000016378 0.12668502849 0.00000080439
0.1309084038 0.0000048136 0.1266397143 0.0000007197
0.130574062 0.000004235 0.126528440305 0.000000217152
0.1299283144 0.0000012139 0.12650501667 0.00000068175
0.1297997937 0.0000036095 0.1264669606 0.0000006106
0.129562145 0.000003190 0.12637239094 0.00000018499
0.1290755425 0.0000009224 0.12635240606 0.00000058274
0.1289776666 0.0000027724 0.1263201282 0.0000005224
0.128802370 0.000002457 0.126239086 0.000000159
0.1284269401 0.0000007163 0.126221900 0.000000502

N = 5
This work Ho et al. [148] This work (continued)

−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.10992709 0.00003633 0.10992705 0.00003633 0.084173628 0.000005213
0.10517908 0.00006412 0.10517915 0.0000641 0.083877652 0.000004761
0.09958738 0.00003220 0.099588 0.000032 0.083775500 0.000002276
0.09913181 0.00004030 0.0991315 0.0000405 0.083699897 0.000008022
0.09635344 0.00005097 0.096355 0.00010 0.083507802 0.000004074
0.09379757 0.00002374 0.083272693 0.000003656
0.09284200 0.00002789 0.083193307 0.000001933
0.092085843 0.000001652 0.083135007 0.000006331
0.09159661 0.00003609 0.082988895 0.000003237
0.09021782 0.00001700 0.0827995497 0.0000028689
0.08939833 0.00001844 0.082736551 0.000001637
0.088983560 0.000002856 0.08269061 0.00000508
0.08868311 0.00002552 0.082576812 0.000002611
0.097857284 0.000012278 0.082422356 0.000002293
0.087220161 0.000012482 0.082371490 0.000001388
0.086954588 0.000003169 0.082334626 0.000004136
0.08675613 0.00001843 0.082244211 0.000002134
0.08622304 0.00000904 0.0821167302 0.0000018627
0.085734152 0.000008757 0.082075055 0.000001182
0.0855495554 0.0000029960 0.082045009 0.000003409
0.085411125 0.000013654 0.0819719449 0.0000017655
0.085047016 0.000006795 0.0818655993 0.0000015339
0.084669095 0.000006360 0.0818310193 0.0000010112
0.084534149 0.000002639 0.081806201 0.000002842
0.084433498 0.000010356 0.0817462876 0.0000014761

Table C.20: 1P e resonances of helium below the N = 4 and N = 5 SIT: our results are compared
with data from [148]. Only converged digits are displayed for our results. The results of [148]
have been converted from Ry to a. u..



C.2. Unnatural parity 127

N = 6 N = 7 N = 8
−Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ) −Re(Ei,θ) −Im(Ei,θ)
0.07842283 0.00003470 0.05498563 0.00007429 0.0411149 0.0000530
0.07567410 0.00006156 0.05379687 0.00003440 0.04002452 0.00006960
0.07224947 0.00007379 0.05244029 0.00006347 0.03965467 0.00004567
0.07136929 0.00003424 0.05242598 0.00005634 0.03964537 0.00002974
0.06931597 0.00005675 0.05085099 0.00007015 0.038878998 0.000046634
0.06804670 0.00002951 0.05062700 0.00002905 0.03879548 0.00007029
0.06713378 0.00002726 0.04956944 0.00004669 0.03802800 0.00006044
0.06694910 0.00005892 0.04943868 0.00002863 0.037941778 0.000023810
0.06563172 0.00004420 0.04904712 0.00004163 0.037565069 0.000039814
0.06448432 0.00002421 0.048472274 0.000022801 0.037331038 0.000037500
0.06437363 0.00002059 0.048398038 0.000057117 0.0372827848 0.0000119970
0.06398306 0.00004317 0.04765760 0.00003662 0.037098091 0.000056651
0.063509277 0.000000322 0.04733800 0.00002919 0.0367510629 0.0000088988
0.06326638 0.00003322 0.047106953 0.000028058 0.03666614 0.00004901
0.06248020 0.00001541 0.04694618 0.00001716 0.0365475035 0.0000109742
0.06239599 0.00001880 0.04677744 0.00004475 0.036235803 0.000033929
0.06209055 0.00003172 0.0463982183 0.0000001004 0.036226863 0.000025302
0.061854177 0.000000995 0.04631248 0.00002800 0.0360251077 0.0000163801
0.06165078 0.00002498 0.046001749 0.000024303 0.035950619 0.000040618
0.061129523 0.000011573 0.04588046 0.00000563 0.0357978779 0.0000028588
0.06099789 0.00001439 0.04583700 0.00002176 0.0357415165 0.0000164475
0.060789409 0.000023612 0.045681944 0.000008656 0.03569077 0.00003726
0.060650304 0.000001608 0.045639315 0.000034766 0.03537667402 0.00000004761
0.06049658 0.00001899 0.0454287476 0.0000003049 0.03533276 0.00002654
0.060135459 0.000008693 0.04533424 0.00002042 0.03532486 0.00002804
0.060000138 0.000011071 0.04505874 0.00001950 0.035172746 0.000019904
0.059849171 0.000017862 0.044961036 0.000011745 0.035127772 0.000026941
0.059757586 0.000001966 0.044936141 0.000017547 0.035028755 0.000012623
0.05964286 0.00001462 0.04480626 0.00002681 0.035018480 0.000013207
0.059387022 0.000006243 0.044681170 0.000002718 0.03479384 0.00001410
0.05925830 0.00000862 0.0446750807 0.0000005270 0.0347548968 0.0000001409
0.059144754 0.000013756 0.044857747 0.000014471 0.034703614 0.000020698
0.059079707 0.000002080 0.044359353 0.000015631 0.034656412 0.000023140
0.05899369 0.00001135 0.044315742 0.000009102 0.03454630 0.00002049
0.0588677275 0.0000005169 0.04426580 0.00001433 0.034510834 0.000017374
0.05872764 0.00000572 0.044175595 0.000020766 0.034470248 0.000009508
0.058689952 0.000006813 0.0440854658 0.0000006741 0.034354198 0.000027905
0.058602152 0.000010788 0.043987367 0.000015535 0.03425506932 0.00000024764
0.058553488 0.000002031 0.043823270 0.000012646 0.034203523 0.000016100
0.058487751 0.000009006 0.043806797 0.000007182 0.034146526 0.000019309
0.058323987 0.000005157 0.043750863 0.000011800 0.034076654 0.000018621
0.058244147 0.000005463 0.043692093 0.000014920 0.034038254 0.000007958
0.058174779 0.000008607 0.0436185919 0.0000007461 0.034035005 0.000005440
0.058137002 0.000001892 0.03543029 0.00001224 0.033923963 0.000022555
0.058086914 0.000007123 0.043402328 0.000010416 0.03384991526 0.00000032044
0.057959583 0.000004030 0.043399909 0.000005738 0.033829442 0.000002015
0.057887672 0.000004441 0.043354373 0.000006963 0.033803874 0.000012300
0.057831903 0.000006976 0.043333045 0.000006771 0.0337975841 0.0000013586
0.057801762 0.000001715 0.04324394218 0.00000072520 0.033742379 0.000014370
0.057763951 0.000005597 0.043183398 0.000009805 0.0336681989 0.0000059655

Table C.21: 1P e resonances of helium below the sixth (N = 6), seventh (N = 7) and eighth
(N = 8) SIT, only converged digits are displayed.
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[183] R. Blümel and W. P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press,
Cambridge, 1997).

[184] J. Xu, A.-T. Le, T. Morishita, and C. D. Lin, Phys. Rev. A 78, 012701 (2008).

[185] J.-L. Pichard, N. Zanon, Y. Imry, and A. Douglas Stone, J. Phys. France 51, 587 (1990).

[186] F. Borgonovi and I. Guarneri, J. Phys. A 25, 3239 (1992).

[187] T. Dittrich et al., Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998).

[188] A. R. Kolovsky and A. Buchleitner, Phys. Rev. E 68, 056213 (2003).

[189] M. Domke et al., Phys. Rev. A 53, 1424 (1996).

[190] G. Handke, M. Draeger, and H. Friedrich, Physica A 197, 113 (1993).

[191] G. Handke, M. Draeger, W. Ihra, and H. Friedrich, Phys. Rev. A 48, 3699 (1993).

[192] M. Draeger, G. Handke, W. Ihra, and H. Friedrich, Phys. Rev. A 50, 3793 (1994).

[193] W. Ihra, M. Draeger, G. Handke, and H. Friedrich, Phys. Rev. A 52, 3752 (1995).

[194] A. Buchleitner, D. Delande, and J.-C. Gay, J. Opt. Soc. Am. B 12, 505 (1995).

[195] Y. Jiang, Dissertation, Freie Universität Berlin, 2006.

[196] J. M. Rost and J. S. Briggs, J. Phys. B 23, L339 (1990).
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quantum-mechanical and WKB phase shifts for two-dimensional scattering, Physical Re-
view A 80, 024701 (2009).

• M. Fink, A. Naranjo, F. Arnecke, J. Eiglsperger, H. Friedrich, J. Madroñero, P. Raab and
A. Wirzba, s-wave scattering of a polarizable atom by an absorbing nanowire, accepted for
publication in Physical Review A.



Acknowledgements

First and foremost I would like to thank Prof. Dr. Harald Fiedrich for the opportunity to do
this work, as well as for all the discussions and advice. The pleasant atmosphere in his group
and his unrestrictive manner made it easy to work even in hard times.
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