Klinisch-experimentelle Studie zum extravaskulären Lungenwasser (EVLW) in übergewichtigen Patienten: Korrelation des extravaskulären Lungenwasserindex (ELWI) mit Oxygenierungsmarkern in Abhängigkeit von der gewählten Indizierung des EVLW

Josef Höllthaler

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. D. Neumeier
Prüfer der Dissertation: 1. Priv.-Doz. Dr. W. L. E. Huber
2. Univ.-Prof. Dr. J. J. Hauner

Diese Dissertation wurde am 11.03.2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 21.07.2010 angenommen.
Inhaltsverzeichnis

Abkürzungsverzeichnis

1 Einleitung ... 8

1.1 Indikator dilutionsverfahren ... 9
 1.1.1 Bestimmung des Herzzeitvolumens durch Thermodilution 9
 1.1.2 Doppelindikatorverfahren und Mean transit time 11
 1.1.3 Down slope time ... 14
 1.1.4 Volumetrische Parameter: GEDV und ITBV 15

1.2 Extravaskuläres Lungenwasser und Lungenödem 17

1.3 Acute respiratory distress syndrome 19

1.4 Arterielle Pulskonturanalyse ... 21

1.5 Adipositas .. 23
 1.5.1 Epidemiologie .. 23
 1.5.2 Auswirkungen von Adipositas auf der Intensivstation 26
 1.5.3 Einteilung nach BMI ... 27

2 Fragestellung ... 29
3 Patienten, Material und Methoden ..32

3.1 Studienart ...32

3.2 Population ...32

3.3 Studienablauf ..34
 3.3.1 Versuchsaufbau ..34
 3.3.2 Messungsablauf ..35

3.4 Statistische Auswertung ...36

4 Ergebnisse ...37

4.1 Patientencharakteristika ...37

4.2 Statistische Verteilung des BMI ...41

4.3 Beatmungsparameter und ELWI ...42

4.4 Indizierung des Extravaskulären Lungenwassers45
 4.4.1 Verteilung des ELWI entsprechend der Indizierung45
 4.4.2 Verteilung der Patienten entsprechend der Indizierung46

4.5 Patienten mit BMI ≥ 30 kg/m² ...49
 4.5.1 Korrelation des ELWI ...49
 4.5.1.1 Korrelation mit PaO₂/FiO₂ ..49
 4.5.1.2 Korrelation mit dem Oxygenationsindex53
4.5.2 Vorhersagefähigkeit von EVLW bei Lungenerkrankungen 56
 4.5.2.1 Fehlerfreiheit/Sensitivität/Spezifität .. 56
 4.5.2.2 Analyse der ROC-Kurve .. 62

4.6 Patienten mit BMI ≥ 25 und < 30 kg/m² ... 66
 4.6.1 Korrelation des ELWI ... 66
 4.6.1.1 Korrelation mit PaO₂/FiO₂ ... 66
 4.6.1.2 Korrelation mit Oxygenationsindex 70
 4.6.2 Vorhersagefähigkeit von EVLW bei Lungenerkrankungen 73
 4.6.2.1 Fehlerfreiheit/Sensitivität/Spezifität 73
 4.6.2.2 Analyse der ROC-Kurve .. 76

4.7 Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe) 77
 4.7.1 Korrelationen des ELWI .. 77
 4.7.1.1 Korrelation mit PaO₂/FiO₂ ... 77
 4.7.1.2 Korrelation mit Oxygenationsindex 80
 4.7.2 Vorhersagefähigkeit von EVLW bei Lungenerkrankungen 83
 4.7.2.1 Fehlerfreiheit/Sensitivität/Spezifität 83
 4.7.2.2 Analyse der ROC-Kurve ... 85

4.8 ELWIPred als Prognoseparameter für die Mortalität 86

4.9 Indizierung des EVLW mit Hilfe des PBW 88

5 Diskussion ... 90

5.1 Klinische Bedeutung des EVLW ... 93
 5.1.1 Nachweis eines Lungenödems ... 93
 5.1.2 Diagnostik eines ARDS .. 94
5.2 Indizierung des EVLW ..96

5.3 Korrelationen mit funktionellen Beatmungsparametern......98

5.4 Indizierung mit PBW verbessert die Aussagekraft des ELWI bei ARDS/ALI..100

5.5 ELWI als Leitfaden in der Flüssigkeitstherapie104

5.6 Prognostischer Wert des ELWI...105

5.7 Limitationen der Studie ...106

6 Zusammenfassung ...108

7 Literaturverzeichnis ..110

8 Danksagung...123
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActBW</td>
<td>Actual body weight (tatsächliches Körpergewicht)</td>
</tr>
<tr>
<td>AdjBW</td>
<td>Adjusted body weight (angepasstes Körpergewicht)</td>
</tr>
<tr>
<td>ALI</td>
<td>Acute lung injury</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute respiratory distress syndrome</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight (Körpergewicht)</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>DSt</td>
<td>Down slope time</td>
</tr>
<tr>
<td>ELWI</td>
<td>Extravaskulärer Lungenwasser Index</td>
</tr>
<tr>
<td>ELWIₐₙₙₙₙt</td>
<td>Extravaskulärer Lungenwasser Index indiziert mit dem „actual body weight“</td>
</tr>
<tr>
<td>ELWIₜₐₜₜₜdₜₜg</td>
<td>Extravaskulärer Lungenwasser Index indiziert mit dem „adjusted body weight“</td>
</tr>
<tr>
<td>ELWIᵢ𝑑ᵢ𝑑ᵢdᵢd</td>
<td>Extravaskulärer Lungenwasser Index indiziert mit dem „ideal body weight“</td>
</tr>
<tr>
<td>ELWIpᵟᵟᵟₑᵟᵟₑ</td>
<td>Extravaskulärer Lungenwasser Index indiziert mit dem „predicted body weight“</td>
</tr>
<tr>
<td>EVLW</td>
<td>Extravaskuläres Lungenwasser</td>
</tr>
<tr>
<td>FiO₂</td>
<td>Sauerstoffkonzentration</td>
</tr>
<tr>
<td>GEDI</td>
<td>Globalenddiastolischer Volumen Index</td>
</tr>
<tr>
<td>GEDV</td>
<td>Globalenddiastolisches Volumen</td>
</tr>
<tr>
<td>HR</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>HZV</td>
<td>Herzzeitvolumen</td>
</tr>
<tr>
<td>IBW</td>
<td>Ideal body weight (ideales Körpergewicht)</td>
</tr>
<tr>
<td>ICG</td>
<td>Indozyaningrün</td>
</tr>
<tr>
<td>ITBI</td>
<td>Intrathorakaler Blutvolumen Index</td>
</tr>
<tr>
<td>ITBV</td>
<td>Intrathorakales Blutvolumen</td>
</tr>
<tr>
<td>ITTV</td>
<td>Intrathorakales Thermovolumen</td>
</tr>
<tr>
<td>LA</td>
<td>Linkes Atrium</td>
</tr>
<tr>
<td>LV</td>
<td>Linker Ventrikel</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial pressure</td>
</tr>
<tr>
<td>MTt</td>
<td>Mean transit time</td>
</tr>
<tr>
<td>OI</td>
<td>Oxygenationsindex</td>
</tr>
<tr>
<td>PAK</td>
<td>Pulmonalerterienkatheter</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>Arterieller Kohlenstoffdioxidpartialdruck</td>
</tr>
<tr>
<td>PaO₂</td>
<td>Arterieller Sauerstoffpartialdruck</td>
</tr>
<tr>
<td>Paw</td>
<td>Mean airway pressure (Mittlerer Atemwegsdruck)</td>
</tr>
<tr>
<td>PBV</td>
<td>Pulmonales Blutvolumen</td>
</tr>
<tr>
<td>PBW</td>
<td>Predicted body weight (erwartetes Körpergewicht)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>PCWP</td>
<td>Pulmonary Capillary Wedge Pressure</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positiv endexpiratorischer Druck</td>
</tr>
<tr>
<td>PPV</td>
<td>Pulse Pressure Variation</td>
</tr>
<tr>
<td>PTV</td>
<td>Pulmonales Thermovolumen</td>
</tr>
<tr>
<td>RA</td>
<td>Rechtes Atrium</td>
</tr>
<tr>
<td>RV</td>
<td>Rechter Ventrikel</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SV</td>
<td>Schlagvolumen</td>
</tr>
<tr>
<td>SVV</td>
<td>Stroke Volume Variation</td>
</tr>
<tr>
<td>ZVD</td>
<td>Zentraler Venendruck</td>
</tr>
</tbody>
</table>
1 Einleitung

Gerade in einer Gesellschaft, in der der Anteil an übergewichtigen Patienten rapide ansteigt, stellt sich nun die Frage, ob das aktuelle Körpergewicht für die Indizierung immer die verläßlichsten Werte liefert oder ob es nicht besser ist, als Grundlage für die Indizierung Korrekturformeln für das Körpergewicht zu verwenden (WIRTH 2008).
Einleitung - Indikatordilutionsverfahren

Bevor aber nun auf diese Thematik genauer eingegangen wird, werden die theoretischen Grundlagen, die als Voraussetzung für die Berechnung der hämodynamischen Parameter - speziell des EVLW - dienen, genauer dargestellt.

1.1 Indikatordilutionsverfahren

Indikatordilutionsverfahren stellen indirekte Verfahren zur Fluss- und Volumenmessung dar. Die Grundidee basiert darauf, dass eine Indikatormenge, die in den vaskulären Raum injiziert wird und sich dort schnell verdünnt, stromabwärts in gleicher Menge wieder erscheinen muss. Je nachdem wie schnell bzw. wie langsam diese Verdünnung stattfindet, kann man auf die Höhe des Blutflusses schließen und somit das Herzvolumen pro Zeit errechnen.

1.1.1 Bestimmung des Herzzeitvolumens durch Thermodilution

Einleitung - Indikatordilutionsverfahren

Verlauf einer Konzentrationszeitkurve. Aus der Form der Thermodilutionskurve kann das HZV errechnet werden. So ist die Fläche unter der Thermodilutionskurve indirekt proportional zum HZV, d.h. bei hohem HZV ist die Fläche klein und umgekehrt.

Im Vergleich zur Messung des HZV über den PAK erscheint die *transkardiopulmonale* Thermodilutionskurve zeitlich später, die Temperaturveränderungen sind weniger ausgeprägt und bestehen über einen längeren Zeitraum.

Zur Veranschaulichung dieses Prinzips dient folgende Abbildung.

Abbildung 1: Vergleich der pulmonalen und der transkardiopulmonalen Thermodilutionskurve

Die Grundlage für die Berechnung des HZV ist für beide Methoden gleich. So wird das HZV mittels des *Stewart-Hamilton Verfahrens* aus der Fläche unter der transkardiopulmonalen Thermodilutionskurve berechnet (STEWART 1951).
Einleitung - Indikatordilutionsverfahren

\[
HZV = \left(T_b - T_i \right) \times V_i \times K \\
\int_{0}^{\infty} \Delta T_b \, dt
\]

\(T_b \) = Bluttemperatur
\(T_i \) = Injektionstemperatur
\(V_i \) = Injektatvolumen
\(\int \Delta T_b \, dt \) = Fläche unter der Thermodilutionskurve
\(K \) = Korrekturfaktor aus spezifischem Gewicht und spezifischer Wasserkapazität von Blut und Injektat

1.1.2 Doppelindikatorverfahren und Mean transit time

Ein zusätzlicher und vollständig anderer Ansatz bei den transkardiopulmonalen Indikatordilutionsverfahren besteht darin, die sogenannte mittlere Durchgangszeit (mean transit time, MTt) des Indikators zu bestimmen. Dies ermöglicht weitere Informationen zur Vorlast und zum Flüssigkeitsstatus der Lunge zu erhalten.

In diesem Fall wird nicht nur der Blutfluss gemessen, sondern auch die Zeit, in welcher der Fluss stattfindet. Die MTt beschreibt den Zeitpunkt, an dem die Hälfte des Indikators den Messpunkt passiert hat und kann aus der Indikatordilutionskurve ermittelt werden.

Welchen zusätzlichen Nutzen man aus dem Gewinn der MTt ziehen kann, soll im Folgenden beschrieben werden.

Zwei Größen bestimmen die MTt, zum einen das Verteilungsvolumen des Indikators und zum anderen der Blutfluss (Herzzeitvolumen). Da nun MTt und HZV bekannt sind, lässt sich das Verteilungsvolumen des Indikators errechnen.

\[V_{\text{indikator}} = HZV \times MTt \]

Das heißt, je kleiner das Verteilungsvolumen und je größer der Fluss sind, um so schneller wird der Indikator am Messort zu erfassen sein und umgekehrt.
Einleitung - Indikator-Dilutionsverfahren

Dieses Prinzip macht man sich bei dem Doppelindikatorverfahren zu Nutze. Dieses Thermo-Farbstoffdilutionsverfahren beruht auf der simultanen Injektion eines diffusiblen (kalte Kochsalzlösung) und eines nichtdiffusiblen (ICG) Indikators. Zur Veranschaulichung der Thematik werden im Folgenden die Verteilungsräume, die der Indikator auf seinen Weg stromabwärts passiert, in verschiedene Kompartimente aufgeteilt. Dabei stellt das intrathorakale Thermovolumen (ITTV) die Summe dieser Kompartimente dar und entspricht dem Verteilungsraum für die kalte Kochsalzlösung.

\[
\text{ITTV} = \text{HZV} \times MT_{t_{\text{kalte Kochsalzlösung}}}
\]

Abbildung 2: Schematische Darstellung der einzelnen Kompartimente des ITTV
Einleitung - Indikatordilutionsverfahren

Dagegen bestimmt die Messung des Indikers ICG den Verteilungsraum für das intrathorakale Blutvolumen (ITBV) (vgl. Abbildung 3).

\[
\text{ITBV} = \text{HZV} \times \text{MT}_{t_{\text{Indozyangrün}}}
\]

Abbildung 3: Schematische Darstellung der einzelnen Kompartimente des ITBV

Aus den beiden Abbildungen wird ersichtlich, dass sich aus der Differenz von ITTV und ITBV ein weiterer wichtiger Parameter errechnen lässt, das EVLW.

Als Alternative das ITBV über die „mean transit time Methode“ zu messen, verwendet man heute in der klinischen Routine ausschließlich die alleinige Thromodilution, da sie im Vergleich zum klassischen Doppelindikatorverfahren weniger aufwendig, kostengünstiger und risikoärmer ist.

Dafür ist allerdings die Einführung eines neuen Begriffes nötig, der Down slope time (DSt).
Einleitung - Indikatordilutionsverfahren

1.1.3 Down slope time

Abbildung 4: Verlauf der Thermodilutionskurve (absolut/logarithmisch)

Da auch in diesem Fall der Fluss (Herzzeitvolumen) identisch ist, kann mit der Kenntnis der DSt das pulmonale Thermovolumen wie folgt berechnet werden:
1.1.4 Volumetrische Parameter: GEDV und ITBV

Um nun das ITBV mittels der alleinigen Thermodilutionsmessung berechnen zu können, ist die Einführung eines weiteren Volumenparameters, das globalenddiastolische Volumen, nötig. Das GEDV ist die Summe des Blutvolumens aller vier Herzkammern zum Zeitpunkt der Enddiastole und berechnet sich durch die Subtraktion des PTV vom ITTV:

\[\text{GEDV} = \text{ITTV} - \text{PTV} \]

Somit ist es nun möglich durch ein alleiniges „Kälte-Injektat“ genaue Aussagen über die Vorlast, das EVLW und das HZV zu treffen. Und für den Patienten bringt es den Vorteil, dass auf die Injektion eines Farbstoffes verzichtet werden kann, und dadurch eine potentielle allergische Reaktion verhindert wird.
1.2 Extravaskuläres Lungenwasser und Lungenödem

Ein weiterer Volumenparameter, der sich durch die alleinige Thermodilution errechnen lässt, ist das EVLW. Es entspricht der Differenz zwischen dem ITTV und dem ITBV:

Abbildung 7: Schematische Darstellung der Berechnung des EVLW

Einleitung - Extravaskuläres Lungenwasser und Lungenödem

Die klinische Bedeutung das EVLW zu bestimmen, liegt nun in der Quantifizierung eines Lungenödems, wobei die oben beschriebene Technik bewiesen hat, dass sie hoch sensitiv ist und bereits kleine Variationen des EVLW (10 - 20%) erfasst werden können (FERNANDEZ-MONDEJAR 2003).

Unter dem Begriff Lungenödem versteht man eine Zunahme des extravaskulären Flüssigkeitsgehalts der Lunge mit einer Verteilung in die interstitiellen und/oder alveolären Kompartimente. Unter Normalbedingung beträgt das extravasale Lungenwasser 4 ± 1 ml/kgKG, wobei eine kontinuierliche Extravasation in das Lungeninterstitium und eine Drainage über die Lunge stattfindet (ABDULLA 2007). Der Grund hierfür ist, dass bei intaktem Kapillarwänden in geringem Umfang seröse Flüssigkeit in das interstitielle Gewebe austritt, da der nach außen gerichtete hydrostatische Druck in den Gefäßen (5–8 mmHg) gegenüber dem nach innen gerichteten kolloidosmotischen Druck (etwa 25 mmHg) gering ist.

Bei Patienten, die sich in einem kritischen Zustand befinden, ist dieses Gleichgewicht jedoch häufig gestört und es sammelt sich vermehrt Flüssigkeit im interstitiellen Raum der Lunge an, was wiederum zu einer respiratorischen Insuffizienz und einem daraus resultierenden kritischen hypoxischen Zustand führen kann.

1.3 Acute respiratory distress syndrome

<table>
<thead>
<tr>
<th>Ursachen eines ARDS</th>
</tr>
</thead>
</table>
| **Direkte Auslöser** | - diffus ausbreitende pulmonale Infektion (Bakterien, Viren, Pilze, Protozoen)
- Aspiration von Mageninhalt
- Lungenkontusion
- Inhalation toxischer Gase |
| **Indirekte Auslöser** | - Sepsis
- SIRS (systemic inflammatory response syndrome)
- Blutungschock mit Massentransfusion
- Disseminierte intravasale Gerinnung
- Polytraumen
- Pankreatitis
- Embolien (Fruchtwasser, Fett) |

Tabelle 1: Ätiologie des ARDS (KUHLEN 2008)
Einleitung - Acute respiratory distress syndrome

Definitionsgemäß werden entsprechend der Ausprägung der Oxygenierungsstörung zwei Schweregrade des akuten Lungenversagens unterschieden:

<table>
<thead>
<tr>
<th>Verlauf</th>
<th>ALI-Kriterien Acute lung injury</th>
<th>ARDS-Kriterien Acute respiratory distress syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygenation</td>
<td>(\text{PaO}_2/\text{FiO}_2 < 300 \text{ mmHg})</td>
<td>(\text{PaO}_2/\text{FiO}_2 < 200 \text{ mmHg})</td>
</tr>
<tr>
<td>Röntgenthorax</td>
<td>Bilaterale Infiltrate</td>
<td>Bilaterale Infiltrate</td>
</tr>
<tr>
<td>PCWP</td>
<td>Linksherzversagen entweder klinisch oder durch PCWP < 18 mmHg ausgeschlossen</td>
<td>Linksherzversagen entweder klinisch oder durch PCWP < 18 mmHg ausgeschlossen</td>
</tr>
</tbody>
</table>

Tabelle 2: Definition des ALI/ARDS (ARTIGAS 1998; BERNARD 1994)

Häufige Komplikationen im Verlauf eines ARDS sind die sekundäre Pneumonie sowie Barotraumata, die unter der Respiratortherapie entstehen können.

In Bezug auf das Flüssigkeitsmanagement steht man vor allem vor zwei Problemen. Zum einen besteht in der Lunge häufig ein ausgeprägtes Kapillarleck, was wiederum zu einer Oxygenierungsstörung führt. Diese kann zum Teil durch eine Negativbilanzierung mittels medikamentöser Dehydratation oder kontinuierlicher Hämodialfiltration verbessert werden (KUHLEN 2002). Auf der anderen Seite ist aber ein wichtiger Bestandteil des Therapiekonzeptes, einen intravasalen Volumenmangel zu verhindern, um Hypoperfusionsschäden anderer Organsysteme vorzubeugen. Mit einer solchen Strategie konnte eine Verkürzung des Intensivaufenthaltes belegt werden (WIEDEMANN 2006; GOEPFERT 2007).
Einleitung - Arterielle Pulskonturanalyse

Aufgrund der Schwere dieses Krankheitsbildes sowie der daraus resultierenden Komplikationen ist leicht ersichtlich, wie wichtig es ist in diesem Zusammenhang, durch gezielte und engmaschige hämodynamische Diagnostik mittels des PiCCO-Systems die Flüssigkeitszufuhr zu steuern.

1.4 Arterielle Pulskonturanalyse

Da die Messmethodik nach dem PiCCO-System eine entscheidende Rolle in der Datenerhebung für diese Studie darstellt, wird hier kurz das zweite Prinzip auf dem dieses System basiert – die arterielle Pulskonturanalyse – dargestellt.

Bei dem Thermodilutionsverfahren muss bei jeder Messung ein Indikator verabreicht werden. Sie dient somit nicht zur kontinuierlichen Erfassung des HZV. Dies ermöglicht erst die arterielle Pulskonturanalyse, basierend auf der Windkesseltheorie, die erstmals von dem deutschen Physiologen Otto Frank beschrieben wurde (FRANK 1899).

Dabei werden Aorta und die proximalen Arterien als eine Kammer (Windkessel) angesehen, die während der Systole des Herzens mit dem Schlagvolumen (SV) gefüllt und während Systole und Diastole wieder entleert wird.

Auf der Basis dieses Modells und in Anlehnung an das Ohm'sche Gesetz beschreibt die Pulskonturanalyse eine Beziehung zwischen dem arteriellen Druck und dem arteriellem Fluss, der vom Gesamtwiderstand bestimmt wird. Das SV kann demnach aus dem Druck als treibende Kraft für den Fluss während der Systole (A_{Sys}) und der charakteristischen Impedanz (Z_{Ao}) bestimmt werden.

$$SV = \frac{A_{Sys}}{Z_{Ao}}$$

Da sich aber diese einfache Beziehung für den menschlichen Körper als unzureichend erwies, wurde dieses erste Modell mehrfach modifiziert. Warner konnte 1935 zeigen, dass man gute Ergebnisse für das HZV$_{PC}$ mit der Pulskonturanalyse
Einleitung - Arterielle Pulskonturanalyse

erhält, wenn eine einmalige Kalibrierung mit einer Indikatorverdünnungsmethode, wie zum Beispiel der Thermodilution, erfolgt (WARNER 1953). Das aktuelle Verfahren ist eine Weiterentwicklung des von Wesseling und seinen Mitarbeitern in den 80iger und 90iger Jahren entwickelten Modells (WESSLING 1983; 1993). Es berücksichtigt die druckabhängigen Änderungen des Aortenquerschnitts, indem der arterielle Mitteldruck (MAP) in die Rechnung aufgenommen wird. Außerdem werden die Reflektionen der peripheren Gefäße durch Miteinbeziehung der Herzfrequenz (HR) ausgeglichen. Zusätzlich wird die Impedanz der Aorta altersentsprechend (a,b,c,d) korrigiert.

\[
HZV_{pc} = HR \times SV = HR \times \frac{A_{\text{Sys}}}{Z_{A_o}}
\]

wobei für \(Z_{A_o}\) gilt:

\[
Z_{A_o} = \frac{a}{b} - (c \times MAP) + (d \times HR)
\]

Durch Korrekturfaktoren ist es nun möglich, die in peripheren Arterien abgeleitete Druckkurve (z.B. aus der Arteria femoralis) zur Berechnung heranziehen zu können. Folglich ermittelt die Pulskonturanalyse das HZV über eine indirekte Methode, indem sie das HZV anhand eines Modells aus der Druckpulsation berechnet. Nach einmaliger Kalibrierung ermöglicht sie die kontinuierliche Anzeige des HZV. Als Referenzmethode wird hierbei meist auf die transkardiopulmonale Thermodilution zurückgegriffen.
1.5 Adipositas

1.5.1 Epidemiologie

Abbildung 8: Prozentualer Anteil adipöser Menschen – global (WHO 2005)
Einleitung - Adipositas

Einleitung - Adipositas

Abbildung 10: Anteil der Männer und Frauen mit Übergewicht ▬ bzw. Adipositas ▬ in der jeweiligen Altersgruppe in Deutschland (BENECKE 2003)

Obige Abbildung verdeutlicht, dass in der Altersgruppe von 60-69 der Anteil an übergewichtigen bzw. adipösen Menschen gegenüber anderer Altersgruppen am größten ist. Dies wiederum ist speziell für das Patientenkollektiv dieser Studie von Bedeutung, da hier der Mittelwert des Alters bei 64,1 Jahren lag (siehe unten).

Zu ähnlichen Ergebnissen zur Epidemiologie der Adipositas in Deutschland kommt eine weitere Studie von Bergmann und Mensink (BERGMANN 1999). Demnach besteht bei 54% der deutschen Frauen und 66% der Männer zwischen 18 und 79 Jahren ein Übergewicht (BMI 25-29,9 kg/m²). Ein BMI von über 30 kg/m² war bei 22% der Frauen und 19% der Männer feststellbar und ein Prozent der Bevölkerung leidet an einer morbiden Adipositas (BMI > 40 kg/m²).

Die gesundheitlichen Konsequenzen für den Einzelnen und die Folgen für das Gesundheitswesen sind vielfältig und bedürfen einer spezifischen Betrachtung. So darf die körpermaßassoziierten Morbiditäts- und Mortalitätsrisiken nicht linear betrachtet werden, da bei hochgradiger Adipositas die Risiken meist deutlich erhöht sind (LENZ 2009). Wohingegen die Tatsache, dass Übergewicht (BMI: 25 - 29,9 kg/m²) gegenüber dem sogenannten Normalgewicht (BMI: ≥ 18,5 - 24,9 kg/m²) mit einem erhöhten Morbiditäts- und Mortalitätsrisiko assoziiert sei, zur Zeit heftig diskutiert wird und spezifiziert werden muss (WHITLOCK 2009).
1.5.2 Auswirkungen von Adipositas auf der Intensivstation

Es gibt also widersprüchliche Aussagen, wie groß der direkte Einfluss eines erhöhten BMI auf den Krankheitsverlauf ist.

Einleitung - Adipositas

Neben dieser Zunahme für verschiedene Erkrankungen, müssen aber auch praktische Aspekte berücksichtigt werden, wie die häufigeren Komplikationen bei medizinischen Eingriffen, wie die Intubation und der Anlage von intravasalen Kathetern (BERCAULT 2004; VARON 2001).

Um nun die Behandlung „dicker“ Patienten zu verbessern, ist es wichtig durch ein geeignetes Maß dieses Patientengut zu spezifizieren. Dies führt uns zur Einteilung der Adipositas durch den Body Mass Index (BMI).

1.5.3 Einteilung nach BMI

Ein Übergewicht kann nun durch verschiedene Messmethoden bestimmt werden. Nachdem über längere Zeit der Broca Index üblich war (Normalgewicht in kg = Größe in cm minus 100), hat sich inzwischen der BMI international etabliert (WHO 2004), da er leicht und exakt zu bestimmen ist und bei sehr großen bzw. sehr kleinen Menschen genauer mit der Gesamtfettmenge übereinstimmt als der Broca Index. Der BMI ist definiert als das Körpergewicht in Kilogramm dividiert durch das Quadrat der Körpergröße in Meter.

\[
BMI = \frac{\text{Gewicht (kg)}}{\text{Größe (m)}^2}
\]

<table>
<thead>
<tr>
<th>Klassifikation des BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Untergewicht</td>
</tr>
<tr>
<td>Normalgewicht</td>
</tr>
<tr>
<td>Übergewicht</td>
</tr>
<tr>
<td>Adipositas Grad I</td>
</tr>
<tr>
<td>Adipositas Grad II</td>
</tr>
<tr>
<td>Adipositas Grad III</td>
</tr>
</tbody>
</table>

Der BMI korreliert mit der Körperfettkomponente zu 95% und gilt daher als das beste indirekte Maß zur Bestimmung der Körperfettkomponente (BENECKE 2003).
Einleitung - Adipositas

Auch in unserer Studie verwendeten wir zur Einteilung in normalgewichtige, übergewichtige und adipöse Patienten den BMI gemäß der Klassifikation wie in Tabelle 3 beschrieben.
2 Fragestellung

Eine herausragende Rolle beim hämodynamischen Monitoring spielen die volumetrischen Parameter. Zu ihnen zählen das GEDV, das ITBV und das EVLW. Um Aussagen über die kardiale Vorlast, die Funktion des Herzens und einer Flüssigkeitsansammlung in der Lunge zu treffen, sind diese intrathorakalen Volumina von entscheidender Bedeutung. Sie dienen nicht nur der Diagnostik, sondern bieten vor allem bei der richtigen Einstellung des Flüssigkeitshaushaltes beim schwerstkranke Intensivpatienten eine Entscheidungshilfe.

<table>
<thead>
<tr>
<th>Korrekturformel</th>
<th>Männer</th>
<th>Frauen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal BW</td>
<td>(Größe – 100) x 0,9</td>
<td></td>
</tr>
<tr>
<td>Predicted BW</td>
<td>50 + 0,91 x (Größe - 152,4)</td>
<td></td>
</tr>
<tr>
<td>Adjusted BW</td>
<td>(ideal\text{male BW} + (actual BW – ideal\text{male BW})) x 0,4</td>
<td></td>
</tr>
</tbody>
</table>

Das im Anschluss dargestellte Beispiel eines Patienten verdeutlicht die Problematik. Beutler und Kollegen von der Harvard Medical School in Boston berichteten 2004 von einem 220 kg schweren Patienten auf ihrer Intensivstation (BEUTLER 2004). Da der Kreislauf des Patienten aufgrund einer schweren Sepsis instabil war, wurde er
Fragstellung

hämodynamisch überwacht. In diesem Rahmen wurden der ELWI und der GEDI bestimmt.

Abbildung 11 (BEUTLER 2004): ELWI-Werte je nach Indizierung
Abbildung 12 (BEUTLER 2004): GEDI-Werte je nach Indizierung

Aus den oben angeführten Abbildungen wird deutlich, dass sich der ELWI bzw. der GEDI je nach Indizierung entsprechend der verwendeten Korrekturformel für das Körpergewicht stark voneinander unterscheiden. Legt man das ActBW für die Indizierung zu Grunde wäre das EVLW des Patienten im Normbereich (ELWI: 3,0-7,0 ml/kg), indiziert man jedoch mit dem IBW des Patienten, liegt ein ausgeprägtes Lungenödem vor und seine Lungenfunktion und somit die Oxygenierung des Blutes wären mit hoher Wahrscheinlichkeit stark eingeschränkt. Ähnliches gilt für den GEDV. Auch hier fällt der Patient aufgrund der unterschiedlichen Indizierung aus dem Normbereich (GEDI: 680-800 ml/m²) heraus. Somit würden sich für den Patienten zwei voneinander völlig verschiedenen Behandlungsschemata ergeben.

Aus diesem Grund war das Ziel dieser prospektiven Studie zum einen die Korrelation des ELWI mit den funktionalen Lungenparametern, die sich zum Teil aus der Blutgasanalyse ableisen lassen, zu untersuchen. Zum anderen sollte beobachtet werden, ob gegebenenfalls eine Indizierung mit Hilfe einer Gewichtskorrekturformel wertvollere Daten zum EVLW liefert, als eine Indizierung mit ActBW.

Da es unseres Wissens nach zur oben geschilderten Problematik bisher kaum aussagekräftige Studien gibt, lag der zweite Schwerpunkt dieser Dissertation darin,
Fragestellung

den prädiktive Wert von Volumenparameter genauer zu betrachten und zwar speziell in Bezug auf die unterschiedliche Indizierung bei übergewichtigen bzw. adipösen Patienten.
3 Patienten, Material und Methoden

3.1 Studienart

Die klinische Relevanz des hämodynamischen Monitoring bei schwerstkranken Patienten ist unumstritten. Speziell die Bedeutung und die Aussagekraft der Volumenparameter, insbesondere auch des EVLW, ist in zahlreichen Studien belegt worden.

Bei dieser Arbeit galt das Interesse jenen Patienten, die als übergewichtig oder adipös gelten. Die Zielsetzung war es herauszufinden, welche Indizierung bei diesen Patienten dem ELWI die höchste Korrelation mit PaO$_2$/FiO$_2$ bzw. dem OI verleiht.

3.2 Population

In dieser klinisch-prospektiven Studie wurden 50 Patienten eingeschlossen, die unabhängig von dieser Studie intensivmedizinischer Überwachung bedurften. Davon gehörten 20 Patienten der Kontrollgruppe an und wiesen einen BMI von 18,5 bis 24,9 kg/m2 auf. Sie zählten somit zu den normalgewichtigen Patienten. Die anderen 30 Patienten waren übergewichtig bzw. adipös und hatten einen BMI von 25 kg/m2 oder mehr.

Beim Patientenkollektiv handelte es sich meist um multimorbide Patienten, die einer intensivmedizinischen Überwachung bedurften.
Patienten, Material und Methoden - Population

Einschlusskriterien für die Studie:

- Betrachtet wurden ausschließlich schwerstkranke Patienten, die einen APACHE II Score von > 10 aufwiesen.
- Die Patienten mussten hämodynamisch überwacht werden und sowohl über einen zentralen Venenkatheter als auch über einen arteriellen Zugang verfügen.
- Die Indikation zum hämodynamischen Monitoring mittels PiCCO war unabhängig von der Studie gegeben.
- Die Patienten der Kontrollgruppe mussten einen BMI zwischen 18,5 und 24,9 kg/m² aufwiesen.
- Die übergewichtigen bzw. adipösen Patienten mussten einen BMI von 25 kg/m² und mehr aufweisen.
- Es wurden nur Patienten mit druckkontrollierter oder druckunterstützter Beatmung eingeschlossen.

Von der Studie ausgeschlossen wurden:

- Patienten, die einen BMI < 18,5 kg/m² aufwiesen.
- Patienten, die nicht druckunterstützt bzw. druckkontrolliert beatmet wurden.
- Patienten, bei denen eine Herzklappeninsuffizienz oder ein Links-Recht-Shunt bekannt war.
3.3 Studienablauf

3.3.1 Versuchsaufbau

Bei Aufnahme des Patienten auf die Intensivstation wurde in der Femoralarterie ein arterieller Thermodilutionskatheter (PULSIOCATH PV2015L20) platziert. Anschließend wurde der Thermofühler des ZVKs und des arteriellen Katheters an den bettseitigen Monitor für transpulmonale Thermodilution und arterielle Pulskonturanalyse (PiCCOplus Pulsion Medical Systems AG, München) angeschlossen. Das Lumen des arteriellen Katheters wurde über eine Druckleitung mit dem Druckaufnehmer (PiCCO Monitoring Kit PV8115) des PiCCO-Gerätes verbunden und mit 0,9%iger Kochsalzlösung durchspült. Der Druckaufnehmer befand sich an einer Haltevorrichtung am Kopfende des Patientenbettes auf Höhe des Herzens. Beim Durchspülen der Druckleitung und beim Anschließen an die 3-Wege-Hähne wurde genau darauf geachtet, dass sich keine Luftblasen im System befanden.

Über ein Verbindungskabel (AUX Adapterkabel PC81200) konnte die arterielle Druckkurve des PiCCOplus-Gerätes zusätzlich an den Bettmonitor weitergeleitet werden und somit kontinuierlich angezeigt werden. Von diesem Monitor konnte der Blutdruck, die Herzfrequenz, der ZVD, die Sauerstoffsättigung, die Körpertemperatur und das EKG abgelesen werden.

3.3.2 Messungsablauf

Vor jeder Messung wurde das Injektat für die Thermodilutionsmessung vorbereitet. Gemäß Herstellerempfehlung wurde dabei eine 15 ml eisgekühlte 0,9%-ige Kochsalzlösung verwendet. Die Durchschnittstemperatur des Injektats lag bei 4 - 6 Grad Celsius.

Bei jeder Injektion wurde darauf geachtet, dass der Bolus gleichmäßig und in weniger als fünf Sekunden verabreicht wurde.

Diese Thermodilutionsmessungen wurden dreimal wiederholt. Anschließend konnten die gemittelten Messwerte ausgedruckt werden. Dabei wurde darauf geachtet, dass
Patienten, Material und Methoden - Statistische Auswertung

die nächste Injektion erst dann durchgeführt wurde, wenn der PiCCOplus Monitor „stabil“ anzeigte. Der Injektionszeitpunkt wurde zufällig über den Atemzyklus gewählt.

Zusätzlich zur Thermodilutionsmessung wurde auch eine Blutgasanalyse zur Bestimmung von \(\text{PaO}_2 \) und \(\text{PaCO}_2 \) durchgeführt. Zeitgleich wurden am Beatmungsgerät folgenden Werte notiert: \(\text{FiO}_2 \), Paw und PEEP. Zudem wurde darauf geachtet welcher Beatmungsmodus vorlag. Das Zeitfenster zwischen der Thermodilutionsmessung und der Bestimmung der Beatmungsparameter wurde auf eine Stunde begrenzt.

3.4 Statistische Auswertung

Alle statistischen Analysen wurden in Zusammenarbeit mit dem Institut für medizinische Statistik und Epidemiologie (IMSE) des Klinikum rechts der Isar der Technischen Universität München durchgeführt. Grundlage für die Berechnungen bildete das Statistikprogramm SPSS für Windows (Version 17.0, SPSS Inc., Chicago, IL, USA) und die frei zugängliche Programmiersprache und Statistik-Software R. Alle Daten wurden zunächst deskriptiv analysiert und auf fehlerhafte Eingaben sowie Extremwerte und Ausreißer untersucht. Für kategoriale Daten wurden absolute und relative Häufigkeiten (\%) einzelner Merkmalsausprägungen tabelliert. Für quantitative Merkmale wurden Mittelwert, Median und Standardabweichung berechnet.
Um den Zusammenhang zwischen metrischen Meßgrößen zu quantifizieren wurden die Korrelationen mittels der Statistik-Software R errechnet. Für die Analyse von signifikanten Unterschieden zwischen den Ergebnissen, wurde die Randhomogenitäts-Analyse verwendet. Im Rahmen der Receiver-Operating-Characterestic-Kurve konnte eine Grenzwertoptimierung durchgeführt werden. Alle statistischen Auswertungen erfolgten im Sinne einer explorativen Datenanalyse zum zweiseitigen Signifikanzniveau von 5%.
4 Ergebnisse

So gingen in die erste Gruppe alle Patienten mit einem BMI ≥ 30 kg/m2 ein, was definitionsgemäß einer Adipositas entspricht. Dabei handelte es sich um 15 Patienten mit insgesamt 263 Messungen.

In der zweiten Gruppe befanden sich die Patienten mit einem BMI ≥ 25 und < 30 kg/m2. Diese Patienten sind als „übergewichtig“ einzustufen. Hier gingen 15 Patienten mit insgesamt 166 Messungen ein.

Die dritte und letzte Gruppe diente als Kontrollgruppe und bestand aus Patienten, die ein normales Körpergewicht aufwiesen. Der BMI lag zwischen $\geq 18,5$ und < 25 kg/m2. Die Kontrollgruppe zählte 20 Patienten mit insgesamt 267 Messungen.

4.1 Patientencharakteristika

Beim Patientenkollektiv handelte es sich um schwerkranke Patienten, die intensivmedizinischer Überwachung bedurften. Dabei ist zu berücksichtigen, dass die II. Medizinische Klinik und Poliklinik der Technischen Universität München über eine eigene Intensivstation (2/11) verfügt, die spezialisiert ist für internistische Notfälle und in besonderem Maße gastroenterologische Fälle betreut.

Ergebnisse - Patientencharakteristika

Am Ende der Tabellen 5 bis 8 sind die jeweiligen Beatmungsmodi angeführt. Um den Oxygenationsindex (OI) als objektives Maß der Beatmungssituation verwenden zu können, wurden in allen Gruppen nur Patienten mit druckunterstützter oder druckkontrollierter Beatmung eingeschlossen. Die übrigen Patientencharakteristika der jeweiligen Gruppen sind in Tabelle 5 bis 8 aufgeführt.

<table>
<thead>
<tr>
<th>Patientencharakteristika: Gesamtkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Alter</td>
</tr>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>Größe</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>APACHE II Score</td>
</tr>
<tr>
<td>Krankheitsursache</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Beatmungsmodus</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: Patientencharakteristika: Gesamtkollektiv
Ergebnisse - Patientencharakteristika

Patientencharakteristika: Patienten mit BMI ≥ 18,5 und < 25 (Kontrollgruppe)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>6 weiblich, 14 männlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>67,6 ± 14,3</td>
</tr>
<tr>
<td>Gewicht</td>
<td>63,9 ± 9,2</td>
</tr>
<tr>
<td>Größe</td>
<td>168,7 ± 9,0</td>
</tr>
<tr>
<td>BMI</td>
<td>22,0 ± 1,9</td>
</tr>
<tr>
<td>APACHE II Score</td>
<td>25,7 ± 8,6</td>
</tr>
<tr>
<td>Krankheitsursache</td>
<td>11 Sepsis</td>
</tr>
<tr>
<td></td>
<td>3 Pneumonie</td>
</tr>
<tr>
<td></td>
<td>3 Leberzirrhose</td>
</tr>
<tr>
<td></td>
<td>1 Pankreatitis</td>
</tr>
<tr>
<td></td>
<td>2 Andere Erkrankungen</td>
</tr>
<tr>
<td>Beatmungsmodus</td>
<td>Druckkontrollierte Beatmung 8</td>
</tr>
<tr>
<td></td>
<td>Druckunterstützte Beatmung 12</td>
</tr>
</tbody>
</table>

Tabelle 6: Patientencharakteristika: Kontrollgruppe

Patientencharakteristika: Patienten mit BMI ≥ 25 und < 30

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>7 weiblich, 8 männlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>62,5 ± 18,7</td>
</tr>
<tr>
<td>Gewicht</td>
<td>78,7 ± 12,2</td>
</tr>
<tr>
<td>Größe</td>
<td>172,0 ± 13,0</td>
</tr>
<tr>
<td>BMI</td>
<td>27,4 ± 1,3</td>
</tr>
<tr>
<td>APACHE II Score</td>
<td>23,2 ± 7,8</td>
</tr>
<tr>
<td>Krankheitsursache</td>
<td>3 Sepsis</td>
</tr>
<tr>
<td></td>
<td>3 Pneumonie</td>
</tr>
<tr>
<td></td>
<td>3 Leberzirrhose</td>
</tr>
<tr>
<td></td>
<td>2 Pankreatitis</td>
</tr>
<tr>
<td></td>
<td>4 Andere Erkrankungen</td>
</tr>
<tr>
<td>Beatmungsmodus</td>
<td>Druckkontrollierte Beatmung 7</td>
</tr>
<tr>
<td></td>
<td>Druckunterstützte Beatmung 8</td>
</tr>
</tbody>
</table>

Tabelle 7: Patientencharakteristika: übergewichtige Patienten
Ergebnisse - Patientencharakteristika

<table>
<thead>
<tr>
<th>Patientencharakteristika: Patienten mit BMI ≥ 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Alter</td>
</tr>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>Größe</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>APACHE II Score</td>
</tr>
<tr>
<td>Krankheitsursache</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Beatmungsmodus</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8: Patientencharakteristika: adipöse Patienten

Die Patientengruppen waren bezüglich der Basis-Charakteristika Alter, Geschlecht, APACHE II Score und Epidemiologie der Erkrankung vergleichbar.

Die häufigste Krankheitsursache war die Sepsis, gefolgt von der Pneumonie, der Leberzirrhose und der Pankreatitis. Seltenere Erkrankungen, wie das nicht kleinzelige Lungenkarzinom und das hepatozelluläre Karzinom wurden unter andere Erkrankungen zusammengefasst.

Ergebnisse - Statistische Verteilung des BMI

4.2 Statistische Verteilung des BMI

Abbildung 14: Statistische Verteilung des Patientenkollektivs gemäß dem individuellen BMI

Die obige Abbildung verdeutlicht die Gewichtsverteilung des Gesamtkollektivs und die Zuordnung in die drei verschiedenen Untersuchungsgruppen.

In der ersten Gruppe („Adipositas“) befanden sich die Patienten mit einem BMI ≥ 30 kg/m². Diese Gruppe setzte sich zusammen aus 15 Patienten mit einem BMI zwischen 30,7 und 52,9 kg/m².

Die zweite Gruppe („Übergewicht“ - BMI ≥ 25 und < 30 kg/m²) bestand ebenfalls aus 15 Patienten, wobei der Patient mit dem niedrigsten Wert einen BMI von 25,7 kg/m² aufwies und der mit dem höchsten Wert einen BMI von 29,8 kg/m².

Als Kontrollgruppe (BMI ≥ 18,5 und < 25 kg/m²) dienten 20 Patienten. Der Patient mit dem geringsten Körpergewicht wies einen BMI von 18,5 kg/m² auf. Der höchste Wert in dieser Gruppe betrug 24,9 kg/m².

Patienten mit Untergewicht wurden nicht in die Studie mit aufgenommen.
4.3 Beatmungsparameter und ELWI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gesamtkollektiv</th>
<th>Patienten: BMI ≥ 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Median</td>
</tr>
<tr>
<td>EVLW (absolut)</td>
<td>716 ± 362,6</td>
<td>637,0</td>
</tr>
<tr>
<td>ELWIact</td>
<td>8,9 ± 3,8</td>
<td>8,0</td>
</tr>
<tr>
<td>ELWIpred</td>
<td>11,3 ± 5,1</td>
<td>9,8</td>
</tr>
<tr>
<td>ELWideal</td>
<td>11,7 ± 5,3</td>
<td>10,2</td>
</tr>
<tr>
<td>ELWadj</td>
<td>10,2 ± 4,1</td>
<td>9,2</td>
</tr>
<tr>
<td>PaO$_2$ (mmHg)</td>
<td>93,1 ± 20,7</td>
<td>90,9</td>
</tr>
<tr>
<td>FiO$_2$</td>
<td>0,47 ± 0,16</td>
<td>0,45</td>
</tr>
<tr>
<td>Paw (cm H$_2$O)</td>
<td>13,5 ± 4,4</td>
<td>13,0</td>
</tr>
<tr>
<td>PEEP (cm H$_2$O)</td>
<td>8,6 ± 3,0</td>
<td>8,0</td>
</tr>
<tr>
<td>PaO$_2$/FiO$_2$ (mmHg)</td>
<td>221,0 ± 79,9</td>
<td>211,5</td>
</tr>
<tr>
<td>OI</td>
<td>7,6 ± 5,9</td>
<td>5,9</td>
</tr>
</tbody>
</table>

Tabelle 9: EVLW indiziert mit den Gewichtskorrekturformeln und Beatmungsparameter (Gesamtkollektiv/adipöse Patienten)
Ergebnisse - Beatmungsparameter und ELWI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patienten: BMI > 25 und ≤ 30</th>
<th>Patienten: BMI > 18,5 und ≤ 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLW (absolut)</td>
<td>618,4 ± 270,3</td>
<td>711,0 ± 265,9</td>
</tr>
<tr>
<td>ELWIact</td>
<td>7,7 ± 3,1</td>
<td>11,2 ± 3,7</td>
</tr>
<tr>
<td>ELWIpred</td>
<td>9,7 ± 4,4</td>
<td>11,3 ± 4,0</td>
</tr>
<tr>
<td>ELWideal</td>
<td>10,1 ± 4,5</td>
<td>11,7 ± 4,1</td>
</tr>
<tr>
<td>ELWadj</td>
<td>8,9 ± 3,8</td>
<td>11,5 ± 3,9</td>
</tr>
<tr>
<td>PaO₂ (mmHg)</td>
<td>86,8 ± 16,6</td>
<td>94,8 ± 20,7</td>
</tr>
<tr>
<td>FiO₂</td>
<td>0,51 ± 0,17</td>
<td>0,44 ± 0,14</td>
</tr>
<tr>
<td>Paw (cm H₂O)</td>
<td>13,5 ± 4,4</td>
<td>12,4 ± 3,4</td>
</tr>
<tr>
<td>PEEP (cm H₂O)</td>
<td>8,9 ± 3,3</td>
<td>7,9 ± 2,6</td>
</tr>
<tr>
<td>PaO₂/FiO₂ (mmHg)</td>
<td>187,9 ± 70,5</td>
<td>230,0 ± 70,0</td>
</tr>
<tr>
<td>OI</td>
<td>8,8 ± 5,8</td>
<td>6,2 ± 3,5</td>
</tr>
</tbody>
</table>

Tabelle 10: EVLW indiziert mit den Gewichtskorrekturformeln und Beatmungsparameter (Kontrollgruppe/übergewichtige Patienten)

Erläuterung der Tabellen 9 und 10

ELWI: Der Normalwert des ELWI liegt zwischen 3,0-7,0 ml/kg.

PaO₂: Hierbei handelt es sich um den arteriellen Sauerstoffpartialdruck. Sein Referenzbereich liegt zwischen 71 und 104 mmHg. Die Sauerstoffdissoziationskurve beschreibt den Zusammenhang zwischen Sauerstoffpartialdruck und Sauerstoffsättigung. Dabei muss allerdings beachtet werden, dass die Körpertemperatur, der Kohlenstoffdioxidpartialdruck, die Konzentration des 2,3-Diphosphoglycerat sowie der pH-Wert mit berücksichtigt werden, da die Änderung dieser Parameter für eine Verschiebung der Dissoziationskurve verantwortlich sind.

FiO₂: Diese Abkürzung beschreibt die Sauerstoffkonzentration. Sie kann am Beatmungsgerät eingestellt werden und beträgt zwischen 21%, was der Sauerstoffkonzentration der Atmosphäre entspricht, und 100%. Hier gilt es aber die toxische Sauerstoffwirkung zu beachten, die bei einer Langzeitbeatmung mit FiO₂ > 0,6 auftritt.

Paw: Hierbei handelt es sich um den gemittelten Atemwegsdruck, welcher bei druckkontrollierter Beatmung höher liegt als bei druckunterstützter Beatmung. Somit führt ein hoher Atemwegsdruck zu einer Verschlechterung des OI.

\(\text{PaO}_2/\text{FiO}_2 \): Der Quotient aus dem arteriellen Sauerstoffpartialdruck und der zugeführten Sauerstoffkonzentration beschreibt die Lungenfunktion und ist beispielsweise beim akuten Atemnotsyndrom stark vermindert.

\(\text{OI} \): Im Gegensatz zum Quotienten aus \(\text{PaO}_2 \) und \(\text{FiO}_2 \), bezieht der \(\text{OI} \) den mittleren Beatmungsdruck mit ein und bildet somit einen weiteren Parameter zur Beschreibung der Lungenfunktion, der den zur Oxygenierung erforderlichen Beatmungsaufwand besser beschreibt als der \(\text{PaO}_2 \) oder \(\text{FiO}_2 \) allein.

Bei unterschiedlicher Indizierung des EVLW fällt auf, dass bei der adipösen Patientengruppe, der Mittelwert des ELWlact von 7,4 auf 12,3 (ELWipred)/ 12,7 (ELWideal)/ 9,8 (ELWadj) ansteigt. Dies entspricht bei einer Indizierung mit dem IBW einer Erhöhung des ELWlact von 71%.

Bei der Kontrollgruppe variieren die Mittelwerte für die Indizierung des EVLW zwischen 11,2 (ELWlact), 11,3 (ELWipred), 11,5 (ELWadj) und 11,7 (ELWideal).

Hier führt eine Indizierung mit dem IBW gegenüber einer Indizierung mit dem ActBW zu einer Veränderung des ELW von 4,4%.

Die Beatmungsparameter differieren zwischen den einzelnen Untersuchungsgruppen nur gering. Für das Gesamtkollektiv betragen die Mittelwerte und Standardabweichungen von \(\text{PaO}_2 \): 93,1 ± 20,7; \(\text{FiO}_2 \): 0,47 ± 0,16; \(\text{PaO}_2/\text{FiO}_2 \): 221,0 ± 79,9; Paw: 13,5 ± 4,4; PEEP: 8,6 ± 3,0 und \(\text{OI} \): 7,6 ± 5,9.

Gruppe “Adipositas”: \(\text{PaO}_2 \): 95,4 ± 22,1; \(\text{FiO}_2 \): 0,46 ± 0,16; \(\text{PaO}_2/\text{FiO}_2 \): 232,3 ± 88,8; Paw: 14,7 ± 5,0; PEEP: 9,1 ± 3,0; \(\text{OI} \): 8,3 ± 7,5

Gruppe “Übergewicht”: \(\text{PaO}_2 \): 86,8 ± 16,6; \(\text{FiO}_2 \): 0,51 ± 0,17; \(\text{PaO}_2/\text{FiO}_2 \): 187,9 ± 70,5; Paw: 13,5 ± 4,4; PEEP: 8,9 ± 3,3; \(\text{OI} \): 8,8 ± 5,8

Kontrollgruppe: \(\text{PaO}_2 \): 94,8 ± 20,7; \(\text{FiO}_2 \): 0,44 ± 0,14; \(\text{PaO}_2/\text{FiO}_2 \): 230,0 ± 70,0; Paw: 12,4 ± 3,4; PEEP: 7,9 ± 2,6; \(\text{OI} \): 6,2 ± 3,5
4.4 Indizierung des Extravaskulären Lungenwassers

4.4.1 Verteilung des ELWI entsprechend der Indizierung

Abbildung 15: Veränderung des ELWI je nach Indizierung bei Änderung des BMI

Ergebnisse - Indizierung des Extravaskulären Lungenwassers

4.4.2 Verteilung der Patienten entsprechend der Indizierung

Bei der zweiten Kategorie ist der ELWI leicht erhöht und befindet sich zwischen 7 und einschließlich 9,9 ml/kg. Die Lungenfunktion ist bei diesen Patienten aber meist noch nicht so eingeschränkt, dass es zu einer verminderten Oxygenierung des Blutes kommt.

<table>
<thead>
<tr>
<th>Gesamtkollektiv</th>
<th>ActBW</th>
<th>PBW</th>
<th>IBW</th>
<th>AdjBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWI < 7 ml/kg</td>
<td>46%</td>
<td>16%</td>
<td>13%</td>
<td>24%</td>
</tr>
<tr>
<td>ELWI 7-9,9 ml/kg</td>
<td>18%</td>
<td>37%</td>
<td>34%</td>
<td>35%</td>
</tr>
<tr>
<td>ELWI ≥ 10 ml/kg</td>
<td>36%</td>
<td>47%</td>
<td>53%</td>
<td>41%</td>
</tr>
</tbody>
</table>

Tabelle 11: Prozentuale Verteilung des ELWI je nach Indizierung (Gesamtkollektiv)
Ergebnisse - Indizierung des Extravaskulären Lungenwassers

Patienten: BMI ≥ 30 kg/m²

<table>
<thead>
<tr>
<th></th>
<th>ActBW</th>
<th>PBW</th>
<th>IBW</th>
<th>AdjBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWI < 7 ml/kg</td>
<td>51%</td>
<td>16%</td>
<td>14%</td>
<td>30%</td>
</tr>
<tr>
<td>ELWI 7-9,9 ml/kg</td>
<td>33%</td>
<td>31%</td>
<td>24%</td>
<td>32%</td>
</tr>
<tr>
<td>ELWI ≥ 10 ml/kg</td>
<td>16%</td>
<td>53%</td>
<td>62%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Tabelle 12: Prozentuale Verteilung des ELWI je nach Indizierung (adipöse Patientengruppe)

Patienten: BMI ≥ 25 und < 30 kg/m²

<table>
<thead>
<tr>
<th></th>
<th>ActBW</th>
<th>PBW</th>
<th>IBW</th>
<th>AdjBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWI < 7 ml/kg</td>
<td>44%</td>
<td>17%</td>
<td>34%</td>
<td>17%</td>
</tr>
<tr>
<td>ELWI 7-9,9 ml/kg</td>
<td>44%</td>
<td>57%</td>
<td>46%</td>
<td>56%</td>
</tr>
<tr>
<td>ELWI ≥ 10 ml/kg</td>
<td>12%</td>
<td>26%</td>
<td>20%</td>
<td>27%</td>
</tr>
</tbody>
</table>

Tabelle 13: Prozentuale Verteilung des ELWI je nach Indizierung (übergewichtige Patientengruppe)

Patienten: BMI ≥ 18,5 und < 25 kg/m²

<table>
<thead>
<tr>
<th></th>
<th>ActBW</th>
<th>PBW</th>
<th>IBW</th>
<th>AdjBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWI < 7 ml/kg</td>
<td>5%</td>
<td>14%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>ELWI 7-9,9 ml/kg</td>
<td>41%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>ELWI ≥ 10 ml/kg</td>
<td>54%</td>
<td>56%</td>
<td>60%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Tabelle 14: Prozentuale Verteilung des ELWI je nach Indizierung (Kontrollgruppe)

Aus diesen Tabellen wird deutlich, wie unterschiedlich die Verteilung des ELWI ausfallen kann, je nachdem welches Körpergewicht für die Indizierung verwendet...
Ergebnisse - Indizierung des Extravaskulären Lungenwassers

wird. Dies gilt vor allem für Patienten, die einen BMI ≥ 30 kg/m2 aufweisen. Hier steigt der Anteil von Patienten, die sich in einem kritischen Zustand in Bezug auf den ELWI befinden, von 16% (indiziert mit dem ActBW) auf 62% (indiziert mit dem IBW). Somit weisen durch eine veränderte Indizierung beinahe mehr als viermal so viele Patienten kritische ELWI-Werte auf.

Bei der zweiten Patientengruppe (BMI ≥ 25 und < 30 kg/m2) fällt diese Differenz wesentlich geringer aus. Hier sind es noch 15% der Patienten, wenn man die Indizierung gemäß dem ActBW und mit dem AdjBW vergleicht.

Betrachtet man die Kontrollgruppe so fällt die gewählte Indizierung kaum mehr ins Gewicht. Der Unterschied zwischen den Patienten mit kritischen ELWI-Werten beträgt 6% bei einer Indizierung mit dem ActBW im Vergleich zur Indizierung mit dem IBW bzw. AdjBW.
4.5 Patienten mit BMI ≥ 30 kg/m2

Gemäß der Haupt-Fragestellung der Studie sollen zunächst Patienten mit einem BMI ≥ 30 kg/m2 analysiert werden.

4.5.1 Korrelation des ELWI

4.5.1.1 Korrelation mit PaO$_2$/FiO$_2$

Abbildung 16: *Korrelation des ELWI act mit PaO$_2$/FiO$_2$*
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Abbildung 17: Korrelation des ELWİ pred mit PaO₂/FiO₂

Abbildung 18: Korrelation des ELWI ideal mit PaO₂/FiO₂
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Abbildung 19: Korrelation des ELWadj mit PaO₂/FiO₂

$r = -0,655; p < 0,001$
Ergebnisse - Patienten mit BMI ≥ 30 kg/m2

<table>
<thead>
<tr>
<th></th>
<th>$R_{partial}$ (ELWI vs PaO$_2$/FiO$_2$)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWlact</td>
<td>-0,610</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWlpred</td>
<td>-0,675</td>
<td>0,018</td>
</tr>
<tr>
<td>ELWlideal</td>
<td>-0,668</td>
<td>0,019</td>
</tr>
<tr>
<td>ELWladj</td>
<td>-0,655</td>
<td>< 0,001</td>
</tr>
<tr>
<td>EVLW in ml</td>
<td>-0,625</td>
<td>0,050</td>
</tr>
</tbody>
</table>

Tabelle 15: Korrelation von ELWI entsprechend der Indizierung und PaO$_2$/FiO$_2$

Die Tabelle 15 zeigt einen negativen Zusammenhang zwischen dem ELWI und dem Quotienten aus PaO$_2$ und FiO$_2$. Diese Korrelation ist signifikant für alle ELWI unabhängig deren Indizierung. Auch der absolute Wert des EVLW in ml korreliert signifikant mit PaO$_2$/FiO$_2$.

Die höchste Korrelation ergibt sich für ELWI indiziert mit dem PBW; die geringste Korrelation erhält man gemäß der Indizierung mit dem ActBW.
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

4.5.1.2 Korrelation mit dem Oxygenationsindex

Abbildung 20: Korrelation des ELWI\textsubscript{act} mit dem OI

\begin{align*}
r &= 0.632; \ p < 0.034
\end{align*}

Abbildung 21: Korrelation des ELWI\textsubscript{pred} mit dem OI

\begin{align*}
r &= 0.763; \ p < 0.013
\end{align*}
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Abbildung 22: Korrelation des ELWideal mit dem OI

Abbildung 23: Korrelation des ELWadj mit dem OI
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

<table>
<thead>
<tr>
<th>R_{\text{partial}} (ELWI vs OI)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWI_{\text{act}}</td>
<td>0,632</td>
</tr>
<tr>
<td>ELWI_{\text{pred}}</td>
<td>0,763</td>
</tr>
<tr>
<td>ELWI_{\text{ideal}}</td>
<td>0,763</td>
</tr>
<tr>
<td>ELWI_{\text{adj}}</td>
<td>0,730</td>
</tr>
<tr>
<td>EVLW in ml</td>
<td>0,758</td>
</tr>
</tbody>
</table>

Tabelle 16: Korrelation von ELWI entsprechend der Indizierung und OI

Bei der Korrelation des ELWI mit dem OI zeigt sich ein signifikant positiver Zusammenhang. Dieser tritt auch beim absoluten Wert des EVLW in ml auf. Die höchste Korrelation ergibt sich für die Indizierung mit dem PBW; die geringste Korrelation zeigt sich bei der Indizierung mit dem ActBW.

Zusammenfassung

Die höchste Korrelation für den Quotienten aus PaO$_2$ und FiO$_2$ und dem OI werden beide Male für die Indizierung des EVLW mit dem PBW beobachtet.

Die geringste Korrelation findet sich für beide Parameter bei der Indizierung des EVLW mit dem ActBW.

Die Differenz zwischen der höchsten und der niedrigsten Korrelation beträgt für PaO$_2$/FiO$_2$: 0,065 (R_{ELWI_{\text{pred}}} – R_{ELWI_{\text{act}}}) und für OI: 0,131 (R_{ELWI_{\text{pred}}} – R_{ELWI_{\text{act}}}).

Somit zeigt die Analyse der Patientendaten mit BMI ≥ 30 kg/m², dass OI tendenziell besser mit dem ELWI korreliert als PaO$_2$/FiO$_2$. Zudem zeigt sich, dass die Verwendung der Korrekturformel zur Berechnung des PBW tendenziell wertvollere Daten, insbesondere für den OI, liefert als die Indizierung mit dem ActBW.
4.5.2 Vorhersagefähigkeit von EVLW bei Lungenerkrankungen

4.5.2.1 Fehlerfreiheit/Sensitivität/Specifität

Im klinischen Alltag steht unter den statistischen Kenngrößen häufig die Sensitivität im Vordergrund. Daneben sind folgende statistische Kenngrößen relevant:

Definition:

Fehlerfreiheit: \(\frac{Richtig-Positive + Richtig-Negative}{Richtig-Positive + Falsch-Negative} \)

Sensitivität: \(\frac{Richtig-Positive}{Richtig-Positive + Falsch-Negative} \)

Spezifität: \(\frac{Richtig-Negative}{Richtig-Negative + Falsch-Positive} \)

Positiv-prädiktiver Wert: \(\frac{Richtig-Positive}{Richtig-Positive + Falsch-Positive} \)

Negativ-prädiktiver Wert: \(\frac{Richtig-Negative}{Richtig-Negative + Falsch-Negative} \)

Da die Volumentherapie eine wesentliche therapeutische Maßnahme der Intensivtherapie darstellt, ist es von großer klinischer Bedeutung, frühe Zeichen einer Überwässerung im Sinne eines Lungenödems festzustellen. Dieses wird um so wahrscheinlicher, je höher das EVLW ist. Wie bereits in der Einleitung beschrieben nimmt mit zunehmenden ELWI die Compliance der Lunge ab, was zu einer Verschlechterung der Lungenfunktion führt und bei Überschreiten bestimmter Grenzen mit einem geringeren Überleben verbunden ist (MARTIN 2005). So wurde von Sakka et al. festgestellt, dass das EVLW ein signifikanter Prognosefaktor für die Mortalität ist (SAKKA 2002).
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

ELWI-Werte bis 7 ml/kg sind sicher normal. Allerdings ist die Lungenfunktion häufig bis zu Werten von 10 ml/kg nicht beeinträchtigt. Daher ist allgemein akzeptiert, dass bei einem ELWI ≥ 10 ml/kg der Patient den Normalwert sicher überschritten hat und die oben genannten Komplikationen immer wahrscheinlicher werden. Aus diesem Grund wurde bei der folgenden Analyse der Daten ein Cut-off-Wert von ELWI ≥ 10 ml/kg gewählt.

Acute respiratory distress syndrome

Eine wesentliche Definitionsgröße des ARDS ist der Quotient aus PaO₂ und FiO₂. Liegt ein ARDS vor, so ist PaO₂/FiO₂ < 200 mmHg.

Für einen Cut off Wert des ELWI von ≥ 10 ml/kg ergeben sich in der Vorhersage eines PaO₂/FiO₂ < 200 mmHg für Fehlerfreiheit, Sensitivität, Spezifität, positiven-prädiktiven Wert und negativen-prädiktiven Wert nachfolgende Werte:

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,643</td>
<td>0,726</td>
<td>0,658</td>
<td>0,703</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,277</td>
<td>0,793</td>
<td>0,829</td>
<td>0,604</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,962</td>
<td>0,671</td>
<td>0,539</td>
<td>0,796</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>0,878</td>
<td>0,638</td>
<td>0,568</td>
<td>0,684</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,577</td>
<td>0,816</td>
<td>0,812</td>
<td>0,733</td>
</tr>
</tbody>
</table>

Tabelle 17: Klinische Bedeutung des ELWI (≥ 10 ml/kg) in Bezug auf das ARDS

Die Sensitivität für den ELWI, indiziert mit den verschiedenen Korrekturformeln für das Körpergewicht, variiert zwischen 60,4% (ELWladj) und 82,9% (ELWlideal). Dagegen beträgt die Sensitivität, indiziert mit dem ActBW, lediglich 27,7%. Somit fällt die Vorhersagefähigkeit des EVLW in Bezug auf die Sensitivität von ARDS mit der Indizierung mit dem IBW um ca. 50% höher aus.

Für die Spezifität des ELWI ergeben sich, indiziert mit den Korrekturformeln, Werte zwischen 67,1% (ELWlpred) und 79,6% (ELWladj). Für die Indizierung mit dem ActBW berechnet sich die Spezifität auf 96,2%. Trotz dieser hohen Spezifität ergibt
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

sich aus der Summe aus Sensitivität und Spezifität für die Indizierung mit dem ActBW lediglich ein Wert von 1,239.

Bei den Summen aus Sensitivität und Spezifität für die Indizierung mit den Korrekturformeln ergeben sich: 1,464 (ELWi-pred), 1,368 (ELWi-ideal) und 1,400 (ELWi-adj).

Da der Anspruch an einen möglichst validen klinischen Parameter ist, sowohl eine hohe Sensitivität als auch eine hohe Spezifität aufzuweisen, liefert die Indizierung mit dem PBW die aussagekräftigsten Daten in Bezug auf ein ARDS.

Neben Sensitivität und Spezifität ist aber auch die Fehlerfreiheit von Bedeutung. Sie gibt an, in wie viel Prozent der Fälle die Indizierung des EVLW bei einem Cut Off Wert von 10 ml/kg die richtige Aussage darüber trifft, ob ein ARDS vorliegt oder nicht. Den höchsten Prozentsatz erhält man für die Indizierung mit dem PBW (72,6%), den niedrigsten bei der Indizierung mit dem ActBW (64,3%). Dieser Unterschied wurde mit der Rand-Homogenitätsanalyse statistisch untersucht. Dabei ergibt sich ein p-Wert von 0,039. Die Differenz ist somit signifikant. Verwendet man die beiden anderen Korrekturformeln und vergleicht sie mit dem ActBW so beträgt der p-Wert 0,733 (ELWi-ideal) und 0,059 (ELWi-adj). Dies bedeutet, dass hier der Unterschied nicht signifikant nachgewiesen werden konnte.
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Acute lung injury
Auch bei der Diagnose der Acute lung injury geht der Quotient aus PaO₂ und FiO₂ als Definitionsgröße mit ein. Hier beträgt der Grenzwert für PaO₂/FiO₂ < 300 mmHg. Bei demselben Cut off Wert für ELWI ≥ 10 ml/kg ergeben sich je nach Indizierung folgende Werte für Fehlerfreiheit, Sensitivität, Spezifität, positiven-prädiktiven Wert und negativen-prädiktiven Wert:

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,392</td>
<td>0,635</td>
<td>0,586</td>
<td>0,517</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,205</td>
<td>0,605</td>
<td>0,635</td>
<td>0,435</td>
</tr>
<tr>
<td>Spezifität</td>
<td>1,000</td>
<td>0,730</td>
<td>0,444</td>
<td>0,825</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>1,000</td>
<td>0,877</td>
<td>0,784</td>
<td>0,888</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,284</td>
<td>0,368</td>
<td>0,277</td>
<td>0,315</td>
</tr>
</tbody>
</table>

Tabelle 18: *Klinische Bedeutung des ELWI (≥ 10 ml/kg) in Bezug auf das ALI*

Die Sensitivität für ELWI indiziert mit den Korrekturformeln variiert zwischen 43,5% (ELWladj) und 63,5% (ELWlideal). Dagegen beträgt die Sensitivität indiziert mit dem ActBW lediglich 20,5%.

Für die Spezifität des ELWI ergeben sich, indiziert mit den Korrekturformeln, Werte zwischen 44,4% (ELWlpred) und 82,5% (ELWladj). Für die Indizierung mit dem ActBW berechnet sich die Spezifität auf 100%.

Auch hier liefert die Indizierung mit dem PBW einen Wert von 1,335 und somit die größte Summe aus Sensitivität und Spezifität. Allerdings ist festzuhalten, dass dieser Wert für das ALI im Vergleich zum ARDS niedriger ausfällt.

Ein ähnliches Ergebnis erhält man bei genauerer Analyse der Fehlerfreiheit. Sie fällt für das PBW mit 63,5% am größten aus, am geringsten ist der Wert für das ActBW mit 39,2%. Auch bezüglich der ALI-Definition wurde mit Hilfe der Rand-Homogenitätsanalyse untersucht, ob bei Indizierung gemäß einer Korrekturformel das ALI besser vorherzusagen ist als bei Verwendung des ActBW. Hierbei fanden sich gegenüber dem ActBW für alle Korrekturformeln signifikant bessere Vorhersagewerte:
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

ELWIpred: p-Wert < 0,001
ELWlideal: p-Wert < 0,001
ELWIadj: p-Wert < 0,001

Die Fehlerfreiheit ist somit für alle Indizierungen mit den Korrekturformeln signifikant unterschiedlich zur Indizierung mit dem ActBW.

Oxygenationsindex

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWIpred</th>
<th>ELWlideal</th>
<th>ELWIadj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,556</td>
<td>0,761</td>
<td>0,677</td>
<td>0,639</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,413</td>
<td>0,841</td>
<td>0,841</td>
<td>0,619</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,825</td>
<td>0,573</td>
<td>0,455</td>
<td>0,705</td>
</tr>
<tr>
<td>Positiv-prädictiver Wert</td>
<td>0,634</td>
<td>0,384</td>
<td>0,327</td>
<td>0,398</td>
</tr>
<tr>
<td>Negativ-prädictiver Wert</td>
<td>0,833</td>
<td>0,919</td>
<td>0,901</td>
<td>0,855</td>
</tr>
</tbody>
</table>

Tabelle 19: Klinische Bedeutung des ELWI (≥ 10 ml/kg) in Bezug auf einen OI-Grenzwert > 10

Die Sensitivität für ELWI, indiziert mit den Korrekturformeln, variiert zwischen 61,9% (ELWIadj) und 84,1% (ELWIpred/ELWlideal). Dagegen beträgt die Sensitivität indiziert mit dem ActBW nur 41,3%.

Für die Spezifität des ELWI ergeben sich, indiziert mit den Korrekturformeln, Werte zwischen 45,5% (ELWlideal) und 70,5% (ELWIadj). Für die Indizierung mit dem ActBW berechnet sich die Spezifität auf 82,5%.

Die Werte für die Summe aus Sensitivität und Spezifität betragen: 1,338 (ELWlact), 1,414 (ELWIpred), 1,296 (ELWlideal) und 1,324 (ELWIadj). Somit wird der höchste Wert auch hier für die Indizierung mit dem PBW erreicht.
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Bei einem Grenzwert für OI > 10 liegen die Werte für die Fehlerfreiheit zwischen 76,1% (ELWIpred) und 55,6% (ELWIact). Auch hier wurde mit Hilfe der Rand-Homogenitätsanalyse berechnet, ob der Unterschied zur Indizierung mit dem ActBW signifikant ist. Folgende p-Werte wurden ermittelt:

- ELWIpred: p-Wert < 0,001
- ELWideal: p-Wert < 0,001
- ELWadj: p-Wert < 0,004

Die Fehlerfreiheit ist somit für alle Indizierungen mit den Korrekturformeln signifikant unterschiedlich zur Indizierung mit dem ActBW.
4.5.2.2 Analyse der ROC-Kurve

Eine zusätzliche Methode Sensitivität und Spezifität zu analysieren ist die Auswertung der Receiver Operating Characteristic (ROC) – Kurve. Sie dient der Grenzwertoptimierung, d.h. man ermittelt für jeden möglichen Grenzwert die resultierenden relativen Häufigkeitsverteilungen und errechnet die jeweils zugehörige Sensitivität und Spezifität. Angewendet auf diese Studie bedeutet dies, dass wir keinen Cut off Wert für das EVLW festlegen, sondern für jede Indizierung den Grenzwert aus der Kurve ablesen können, der die höchste Summe aus Sensitivität und Spezifität liefert.

Acute respiratory distress syndrome

In Abbildung 24 wird die ROC-Kurve für das ARDS dargestellt. Sie demonstriert, dass für die Indizierung mit dem PBW die Fläche unter der Kurve am größten wird (0,788 ± 0,028). Somit liefert diese Indizierung des EVLW die validesten Werte, die Sensitivität bzw. Spezifität für das ARDS vorherzusagen.

Dagegen fällt die Fläche für die Indizierung mit dem ActBW am geringsten aus (0,710 ± 0,032).

In Tabelle 20 sind die Flächenwerte für die restlichen Indizierungen aufgelistet (EVLW in ml 0,763 ± 0,030; ELWideal 0,782 ± 0,029; ELWadj 0,782 ± 0,029). Unabhängig von der Indizierung sind alle Ergebnisse gegenüber der Winkelhalbierenden signifikant.
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Abbildung 24: ROC-Kurven zur Vorhersage eines „ARDS PaO₂/FiO₂ < 200 mmHg“ durch den ELWI gemäß verschiedener Indizierungen.

<table>
<thead>
<tr>
<th>Variable(n) für Testergebnis</th>
<th>Fläche</th>
<th>Standardfehler</th>
<th>Asymptotische Signifikanz</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLW in ml</td>
<td>.763</td>
<td>.030</td>
<td>.000</td>
<td>Obergrenze: .704, Untergrenze: .822</td>
</tr>
<tr>
<td>ELWI act</td>
<td>.710</td>
<td>.032</td>
<td>.000</td>
<td>Obergrenze: .647, Untergrenze: .773</td>
</tr>
<tr>
<td>ELWI pred</td>
<td>.788</td>
<td>.028</td>
<td>.000</td>
<td>Obergrenze: .732, Untergrenze: .843</td>
</tr>
<tr>
<td>ELWI ideal</td>
<td>.782</td>
<td>.029</td>
<td>.000</td>
<td>Obergrenze: .726, Untergrenze: .839</td>
</tr>
<tr>
<td>ELWI adj</td>
<td>.782</td>
<td>.029</td>
<td>.000</td>
<td>Obergrenze: .726, Untergrenze: .838</td>
</tr>
</tbody>
</table>

Tabelle 20: Flächen der ROC-Kurven zur Vorhersage eines „ARDS PaO₂/FiO₂ < 200 mmHg“ durch den ELWI entsprechend der angegebenen Indizierung
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

Oxygenationsindex

Abbildung 25: ROC-Kurven zur Vorhersage eines OI-Grenzwertes > 10 durch den ELWI gemäß verschiedener Indizierungen.

Tabelle 21: Flächen der ROC-Kurven zur Vorhersage eines OI-Grenzwertes > 10 durch den ELWI entsprechend der angegebenen Indizierung
Ergebnisse - Patienten mit BMI ≥ 30 kg/m²

In Abbildung 25 und Tabelle 21 werden analog zum ARDS die ROC-Kurven zur Vorschau eines OI > 10 dargestellt. Wie bei der Analyse des ARDS zeigt sich, dass die Indizierung mit dem PBW die größte Fläche unter der ROC-Kurve liefert (0,763 ± 0,032). Der kleinste Wert wird für die Indizierung mit dem ActBW beobachtet (0,669 ± 0,039).

Die restlichen Werte für die Fläche der ROC-Kurven können aus Tabelle 21 entnommen werden.
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

4.6 Patienten mit BMI ≥ 25 und < 30 kg/m²

Im Folgenden soll untersucht werden, ob die bei den „fettsüchtigen“ Patienten mit BMI ≥ 30 kg/m² gefundenen Gesetzmäßigkeiten auch für Patienten mit einer mäßigen Adipositas, d.h. mit BMI ≥ 25 und < 30 kg/m² gelten.

4.6.1 Korrelation des ELWI

4.6.1.1 Korrelation mit PaO₂/FiO₂

Abbildung 26: Korrelation von ELWIact mit PaO₂/FiO₂

\[r = -0.672; p < 0.001 \]
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

Abbildung 27: Korrelation von ELWIpred mit PaO₂/FiO₂

Abbildung 28: Korrelation von ELWideal mit PaO₂/FiO₂
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

Abbildung 29: Korrelation des ELWIadj mit PaO₂/FiO₂

\[r = -0.696; \ p < 0.001 \]
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

<table>
<thead>
<tr>
<th></th>
<th>(R_{\text{partial}}) (ELWI vs (\text{PaO}_2/\text{FiO}_2))</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWleact</td>
<td>-0,672</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWlpred</td>
<td>-0,679</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWlideal</td>
<td>-0,658</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWladj</td>
<td>-0,696</td>
<td>< 0,001</td>
</tr>
<tr>
<td>EVLW in ml</td>
<td>-0,650</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

Tabelle 22: Korrelation von ELWI entsprechend der Indizierung und \(\text{PaO}_2/\text{FiO}_2 \)

Auch bei der zweiten Patientengruppe mit einem BMI zwischen 25 und 30 kg/m² zeigt sich ein negativer, signifikanter Zusammenhang zwischen dem ELWI und dem \(\text{PaO}_2/\text{FiO}_2 \). Dieser Zusammenhang gilt sowohl für die Indizierung mit dem ActBW bzw. dessen Korrekturformeln, als auch für den absoluten Wert des EVLW.

Die höchste Korrelation findet sich für ELWI indiziert mit dem AdjBW; die geringste Korrelation erhält man bei Verwendung des absoluten Wertes des EVLW.
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

4.6.1.2 Korrelation mit Oxygenationsindex

Abbildung 30: Korrelation des ELW_{act} mit dem OI

\[r = 0,741; p < 0,001 \]

Abbildung 31: Korrelation des ELW_{pred} mit dem OI

\[r = 0,784; p < 0,001 \]
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

Abbildung 32: Korrelation des ELW{\text{ideal}} mit dem OI

\[r = 0,784; p < 0,001 \]

Abbildung 33: Korrelation des ELW{\text{adj}} mit dem OI

\[r = 0,768; p < 0,001 \]
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

<table>
<thead>
<tr>
<th></th>
<th>R_{partial} (ELWI vs OI)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWI_{act}</td>
<td>0,741</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWI_{pred}</td>
<td>0,784</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWI_{ideal}</td>
<td>0,784</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELWI_{adj}</td>
<td>0,768</td>
<td>< 0,001</td>
</tr>
<tr>
<td>EVLW in ml</td>
<td>0,758</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

Tabelle 23: Korrelation von ELWI entsprechend der Indizierung und OI

Bei der Korrelation des ELWI mit dem OI zeigt sich auch für die Patientengruppe mit BMI ≥ 25 und < 30 kg/m² ein signifikant positiver Zusammenhang. Dieser wird auch bei Verwendung des absoluten Wert des EVLW in ml gefunden. Die höchsten Korrelationskoeffizienten ergeben sich für die Indizierung des ELWI mit dem PBW und dem IBW (jeweils $r = 0,784$). Die geringste Korrelation zeigt sich bei der Indizierung mit dem ActBW.

Zusammenfassung

Allerdings ist im Vergleich zur Gruppe mit BMI ≥ 30 kg/m² die Spannbreite der Differenzen zwischen der höchsten und der niedrigsten Korrelation für beide funktionellen Parameter ($\text{PaO}_2/\text{FiO}_2$ und OI) wesentlich kleiner:

- $\text{PaO}_2/\text{FiO}_2$: 0,046 ($R_{\text{ELWadj}} - R_{\text{EVLWabsolut}}$)
- OI: 0,043 ($R_{\text{ELWipred}} - R_{\text{ELWIact}}$)

Dies weist darauf hin, dass die Verwendung einer Korrekturformel zur Berechnung des Körpergewichts bei einem BMI ≥ 30 kg/m² noch sinnvoller ist.
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

4.6.2 Vorhersagefähigkeit von EVLW bei Lungenerkrankungen

Die Analyse der Daten der übergewichtigen Patienten findet nach dem gleichen Prinzip statt wie bei der adipösen Patientengruppe.

4.6.2.1 Fehlerfreiheit/Sensitivität/Spezifität

Zuerst werden in einer Tabelle Fehlerfreiheit, Sensitivität, Spezifität, positiver-prädiktiver Wert und negativer-prädiktiver Wert dargestellt. Unter der Voraussetzung eines Cut off Wertes von ELWI ≥ 10 ml/kg zeigt sich auch hier, dass abhängig von der Indizierung verschiedene Werte für die Fehlerfreiheit bzw. für die Summe aus Sensitivität und Spezifität resultieren.

Acute respiratory distress syndrome
Vorhersage eines “PaO₂/FiO₂ < 200 mmHg” durch einen ELWI ≥ 10 ml/kg

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,488</td>
<td>0,556</td>
<td>0,593</td>
<td>0,519</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,191</td>
<td>0,364</td>
<td>0,383</td>
<td>0,287</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,982</td>
<td>0,965</td>
<td>0,942</td>
<td>0,981</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>0,955</td>
<td>0,952</td>
<td>0,936</td>
<td>0,971</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,386</td>
<td>0,440</td>
<td>0,408</td>
<td>0,383</td>
</tr>
</tbody>
</table>

Tabelle 24: Vorhersage eines “PaO₂/FiO₂ < 200 mmHg” durch einen ELWI ≥ 10 ml/kg in Abhängigkeit von der Indizierung

Auch hier ergeben sich erhebliche Unterschiede für Sensitivität und Spezifität je nach verwendeter Indizierung. Allerdings fallen die Differenzen bei dieser Patientengruppe wesentlich geringer aus. So beträgt die höchste Sensitivität (indiziert mit dem IBW) 38% und die geringste Sensitivität (indiziert mit dem ActBW) 19%. Dies entspricht einer relativ geringen Differenz von 19%. Bei der Spezifität fällt der Unterschied
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

zwischen den jeweiligen Indizierungen mit 3% (höchste Spezifität - 98% - für die Indizierung mit dem ActBW bzw. AdjBW und 94% Spezifität für die Indizierung mit dem IBW) noch wesentlich geringer aus. Die Summe aus Sensitivität und Spezifität variiert zwischen folgenden Grenzen: 1,173 (ELWlact), 1,329 (ELWlpred), 1,325 (ELWlideal) und 1,268 (ELWladj).

Die größte Wahrscheinlichkeit für eine korrekte Vorhersage, ob ein ARDS vorliegt, erhält man für die Indizierung mit dem IBW (59,3%). Die Unterschiede zwischen der Indizierung mit dem ActBW und den Korrekturformeln wurden ebenfalls mit Hilfe der Rand-Homogenitätsanalyse untersucht. Sie sind mit den p-Werten 0,002 (ELWlpred), p < 0,001 (ELWlideal) und p = 0,039 (ELWladj), wie bei der adipösen Patientengruppe, alle signifikant.

Acute lung injury

Vorhersage eines “PaO₂/FiO₂ < 300 mmHg” durch einen ELWI ≥ 10 ml/kg

<table>
<thead>
<tr>
<th>Fehlerfreiheit</th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivität</td>
<td>0,150</td>
<td>0,286</td>
<td>0,309</td>
<td>0,224</td>
</tr>
<tr>
<td>Spezifität</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,138</td>
<td>0,160</td>
<td>0,125</td>
<td>0,113</td>
</tr>
</tbody>
</table>

Tabelle 25: Vorhersage eines “PaO₂/FiO₂ < 300 mmHg” durch einen ELWI ≥ 10 ml/kg (ALI)

Beim ALI ist die Sensitivität mit 15% (indiziert mit dem ActBW) besonders niedrig. Die Indizierung mit dem IBW liefert mit 31% einen geringfügig besseren Wert. Für alle Indizierungen resultiert dagegen eine Spezifität von 100%. Die Summe aus Sensitivität und Spezifität beträgt folgende Werte: 1,150 (ELWlact), 1,286 (ELWlpred), 1,309 (ELWlideal) und 1,224 (ELWladj).
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

Die Fehlerfreiheit variiert zwischen 40,1% (ELWlideal) und 27,1% (ELWlact). Die Treffgenauigkeit fällt somit für das ALI schlechter aus, als für das ARDS. Trotzdem ist auch hier die Indizierung des EVLW mit Hilfe einer Korrekturformel von Vorteil. Die Differenz zur Indizierung mit dem ActBW ist mit p < 0,001 (ELWlpred), p < 0,001 (ELWlideal) und p = 0,025 (ELWladj) signifikant.

Oxygenationsindex

Vorhersage eines “OI > 10” durch einen ELWI ≥ 10 ml/kg

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,722</td>
<td>0,704</td>
<td>0,679</td>
<td>0,722</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,130</td>
<td>0,449</td>
<td>0,469</td>
<td>0,408</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,864</td>
<td>0,831</td>
<td>0,797</td>
<td>0,881</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>0,727</td>
<td>0,524</td>
<td>0,489</td>
<td>0,588</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,262</td>
<td>0,784</td>
<td>0,783</td>
<td>0,782</td>
</tr>
</tbody>
</table>

Tabelle 26: Vorhersage eines “PaO₂/FiO₂ < 200 mmHg” durch einen ELWI ≥ 10 ml/kg abhängig von der Indizierung

Die Sensitivität für die Vorhersage eines ALI durch einen ELWI ≥ 10 ml/kg ist bei der Indizierung gemäß dem ActBW mit 13% am niedrigsten. Die Daten für die Indizierungen mit den Korrekturformeln für das Körpergewicht variieren zwischen 41% (ELWladj) und 47% (ELWlideal).

Die geringste Spezifität wird für die Indizierung mit dem IBW (79%) gefunden, die höchste für die Indizierung mit dem AdjBW (88%).

Die Summen aus Sensitivität und Spezifität ergeben folgende Werte: 0,994 (ELWlact), 1,280 (ELWlpred), 1,266 (ELWlideal) und 1,289 (ELWladj).

Die Fehlerfreiheit weist für einen Grenzwert für OI > 10 für alle Indizierungen die höchsten Werte in dieser Patientengruppe auf. Allerdings sind die Unterschiede zwischen der Indizierung mittels der Korrekturformeln und dem ActBW für alle Werte nicht signifikant: p = 0,405 (ELWlpred), p = 0,127 (ELWlideal) und p = 0,655 (ELWladj).
Ergebnisse - Patienten mit BMI ≥ 25 und < 30 kg/m²

4.6.2.2 Analyse der ROC-Kurve

<table>
<thead>
<tr>
<th></th>
<th>ARDS (PaO₂/FiO₂ < 200 mmHg)</th>
<th>OI > 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLW in ml</td>
<td>0,854</td>
<td>0,734</td>
</tr>
<tr>
<td>ELWI act</td>
<td>0,736</td>
<td>0,672</td>
</tr>
<tr>
<td>ELWI pred</td>
<td>0,695</td>
<td>0,625</td>
</tr>
<tr>
<td>ELWI ideal</td>
<td>0,701</td>
<td>0,627</td>
</tr>
<tr>
<td>ELWI adj</td>
<td>0,722</td>
<td>0,643</td>
</tr>
</tbody>
</table>

Tabelle 27: Flächen der ROC-Kurven des ELWI entsprechend der Indizierung in der Vorhersage „ARDS PaO₂/FiO₂ < 200 mmHg“ bzw. „OI-Grenzwert > 10“

Bei genauerer Betrachtung der Flächen für die ROC-Kurven wird deutlich, dass für die Patientengruppe mit einem BMI zwischen 25 und 30 kg/m² ohne Indizierung des EVLW die Fläche unter der ROC-Kurve mit 0,854 am größten ist. Dies bedeutet, dass keine Indizierung des EVLW zu einer Verbesserung von Sensitivität und Spezifität bezüglich eines ARDS führt. Die geringste Aussagekraft findet sich bei der Indizierung mit dem PBW (Fläche: 0,695).

Ähnlich wie beim ARDS bzw. „PaO₂/FiO₂ < 200 mmHg“ ist auch für bezüglich „OI > 10“ die Fläche unter der ROC-Kurve ohne Indizierung – absoluter Wert des EVLW in ml – am höchsten (0,734). Die kleinste Fläche ergibt sich auch hier für die Indizierung mit dem PBW.
Ergebnisse - Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe; n=20)

4.7 Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe; n=20)

Im folgenden werden zu Vergleichszwecken die Ergebnisse für 20 normalgewichtige Patienten dargestellt.

4.7.1 Korrelationen des ELWI

4.7.1.1 Korrelation mit \(\text{PaO}_2/\text{FiO}_2 \)

![Graph](image.png)

\[r = -0,682; p < 0,001 \]

Abbildung 34: Korrelation des ELWlact mit \(\text{PaO}_2/\text{FiO}_2 \)
Ergebnisse - Patienten mit BMI ≥ 18,5 und < 25 kg/m2 (Kontrollgruppe; n=20)

Abbildung 35: Korrelation des ELWI\textsubscript{pred} mit PaO\textsubscript{2}/FiO\textsubscript{2}

\[r = -0,646; p < 0,001 \]

Abbildung 36: Korrelation des ELWI\textsubscript{ideal} mit PaO\textsubscript{2}/FiO\textsubscript{2}

\[r = -0,645; p < 0,001 \]
Ergebnisse - Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe; n=20)

Abbildung 37: Korrelation des ELWadj mit PaO₂/FiO₂

\[r = -0,674; p < 0,001 \]
Ergebnisse - Patienten mit BMI $\geq 18,5$ und < 25 kg/m² (Kontrollgruppe; n=20)

4.7.1.2 Korrelation mit Oxygenationsindex

Abbildung 38: Korrelation des ELW act mit dem OI

Abbildung 39: Korrelation des ELW pred mit dem OI
Ergebnisse - Patienten mit BMI \(\geq 18,5 \) und < 25 kg/m² (Kontrollgruppe; n=20)

Abbildung 40: Korrelation des ELWideal mit dem OI

\[r = 0,773; p < 0,001 \]

Abbildung 41: Korrelation des ELWadj mit dem OI

\[r = 0,760; p < 0,001 \]
Ergebnisse - Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe; n=20)

<table>
<thead>
<tr>
<th></th>
<th>PaO₂/FiO₂</th>
<th>OI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{\text{partial}}</td>
<td>p-Wert</td>
</tr>
<tr>
<td>ELW_{\text{lact}}</td>
<td>-0,682</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELW_{\text{pred}}</td>
<td>-0,646</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELW_{\text{ideal}}</td>
<td>-0,645</td>
<td>< 0,001</td>
</tr>
<tr>
<td>ELW_{\text{adj}}</td>
<td>-0,674</td>
<td>< 0,001</td>
</tr>
<tr>
<td>EVLW in ml</td>
<td>-0,615</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

Tabelle 28: Korrelationen des ELWI entsprechend der Indizierung mit PaO₂/FiO₂ bzw. mit dem OI

Betrachtet man die Korrelationen aus PaO₂/FiO₂ und OI mit dem ELWI bzw. dem EVLW so fällt auch in der Kontrollgruppe auf, dass OI tendenziell besser mit dem ELWI bzw. EVLW korreliert als PaO₂/FiO₂.

Dabei ergibt sich der höchste Wert für PaO₂/FiO₂ für die Indizierung mit dem ActBW (-0,682), der niedrigste Wert für den absoluten Wert des EVLW (-0,615).

Anders verhält es sich beim OI. Hier liefern die Indizierungen mit dem PBW bzw. IBW (0,773) den höchsten Wert. Den niedrigsten Wert erhält man bei der Indizierung mit dem ActBW.

Auch in der Kontrollgruppe gilt sowohl für die Korrelation des EVLW - unabhängig davon ob bzw. mit welcher Korrekturformel indiziert wird - mit dem PaO₂/FiO₂ als auch für die Korrelation mit OI, dass sie signifikant sind (p < 0,001).
Ergebnisse - Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe; n=20)

4.7.2 Vorhersagefähigkeit von EVLW bei Lungenerkrankungen

4.7.2.1 Fehlerfreiheit/Sensitivität/Spezifität

Acute respiratory distress syndrome
Vorhersage eines PaO₂/FiO₂ < 200 mmHg durch einen ELWI > 10 ml/kg

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,652</td>
<td>0,684</td>
<td>0,658</td>
<td>0,665</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,874</td>
<td>0,872</td>
<td>0,894</td>
<td>0,894</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,649</td>
<td>0,609</td>
<td>0,568</td>
<td>0,568</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>0,585</td>
<td>0,554</td>
<td>0,535</td>
<td>0,535</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,901</td>
<td>0,896</td>
<td>0,906</td>
<td>0,906</td>
</tr>
</tbody>
</table>

Tabelle 29: Klinische Bedeutung des ELWI (≥ 10 ml/kg) in Bezug auf ein ARDS

Acute lung injury
Vorhersage eines PaO₂/FiO₂ < 300 mmHg durch einen ELWI > 10 ml/kg

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,677</td>
<td>0,647</td>
<td>0,680</td>
<td>0,673</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,630</td>
<td>0,634</td>
<td>0,671</td>
<td>0,671</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,872</td>
<td>0,766</td>
<td>0,745</td>
<td>0,745</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>0,958</td>
<td>0,926</td>
<td>0,924</td>
<td>0,924</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,339</td>
<td>0,313</td>
<td>0,330</td>
<td>0,330</td>
</tr>
</tbody>
</table>

Tabelle 30: Klinische Bedeutung des ELWI (≥ 10 ml/kg) in Bezug auf ein ALI
Ergebnisse - Patienten mit BMI ≥ 18,5 und < 25 kg/m² (Kontrollgruppe; n=20)

Oxygenationsindex
Vorhersage eines „OI > 10“ durch einen ELWI > 10 ml/kg

<table>
<thead>
<tr>
<th></th>
<th>ELWlact</th>
<th>ELWlpred</th>
<th>ELWlideal</th>
<th>ELWladj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerfreiheit</td>
<td>0,488</td>
<td>0,535</td>
<td>0,494</td>
<td>0,506</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>0,886</td>
<td>0,970</td>
<td>0,969</td>
<td>0,969</td>
</tr>
<tr>
<td>Spezifität</td>
<td>0,519</td>
<td>0,496</td>
<td>0,455</td>
<td>0,455</td>
</tr>
<tr>
<td>Positiv-prädiktiver Wert</td>
<td>0,218</td>
<td>0,216</td>
<td>0,197</td>
<td>0,197</td>
</tr>
<tr>
<td>Negativ-prädiktiver Wert</td>
<td>0,968</td>
<td>0,991</td>
<td>0,991</td>
<td>0,991</td>
</tr>
</tbody>
</table>

Tabelle 31: *Klinische Bedeutung des ELWI (≥ 10 ml/kg) in Bezug auf einen OI-Grenzwert > 10*

Zusammenfassung
Zusammenfassend ist für die Gruppe der normalgewichtigen Patienten in Bezug auf Fehlerfreiheit, Sensitivität, Spezifität, positiven-prädiktiven Wert und negativen prädiktiven Wert festzuhalten, dass die Unterschiede zwischen den errechneten Werten je nach Indizierung wesentlich geringer variieren als in den adipösen bzw. übergewichtigen Patientengruppen.

Betreff Fehlerfreiheit ein ARDS durch „ELWI >10 ml/kg“ zu diagnostizieren finden sich für keine andere Indizierung signifikante Unterschiede gegenüber der Indizierung nach dem ActBW: $p = 0,052$ (ELWlpred), $p = 0,243$ (ELWlideal), $p = 0,113$ (ELWladj).

Auch bezüglich Vorhersage eines ALI bzw. des „OI > 10“ zeigt sich, dass sich die Fehlerfreiheiten bei unterschiedlicher Indizierung nicht signifikant voneinander unterscheiden.

Zu einem ähnlichen Ergebnis kommt man bezüglich Sensitivität und Spezifität. Sie unterscheiden sich kaum in Abhängigkeit von der jeweiligen Indizierung.

Somit kann festgehalten werden, dass der Einfluss der verwendeten Indizierung bei der Normalgewichtigen - wie zu erwarten - klinisch kaum relevant ist.
Ergebnisse - Patienten mit BMI $\geq 18,5$ und $< 25 \text{ kg/m}^2$ (Kontrollgruppe; n=20)

4.7.2.2 Analyse der ROC-Kurve

<table>
<thead>
<tr>
<th></th>
<th>ARDS ($\text{PaO}_2/\text{FiO}_2 < 200 \text{ mmHg}$)</th>
<th>OI > 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLW in ml</td>
<td>0,828</td>
<td>0,858</td>
</tr>
<tr>
<td>ELWI act</td>
<td>0,834</td>
<td>0,863</td>
</tr>
<tr>
<td>ELWI pred</td>
<td>0,796</td>
<td>0,865</td>
</tr>
<tr>
<td>ELWI ideal</td>
<td>0,803</td>
<td>0,869</td>
</tr>
<tr>
<td>ELWI adj</td>
<td>0,820</td>
<td>0,870</td>
</tr>
</tbody>
</table>

Tabelle 32: Flächen der ROC-Kurven des ELWI entsprechend der Indizierung in der Vorhersage „ARDS $\text{PaO}_2/\text{FiO}_2 < 200 \text{ mmHg}$“ bzw. „OI-Grenzwert > 10“

Für das ARDS reichen die Werte für die Flächen unter den ROC-Kurven von 0,796 (ELWIpred) bis 0,834 (ELWlact). Auffallend dabei ist, dass sich in diesem Fall die größte Fläche für die Indizierung mit dem ActBW errechnet.

Beim OI kommt man zu einem anderen Ergebnis. Hier variieren die Flächen zwischen 0,858 (EVLW in ml) und 0,870 (ELWladj). Hier liefert die Indizierung mit dem AdjBW die größte Fläche unter der Kurve.

Bei normalgewichtigen Patienten ergibt sich bei ROC-Flächen von ungefähr 0,8 unabhängig von der Indizierung eine sehr hohe Vorhersagekraft des ELWI bezüglich ARDS, ALI und OI > 10.

Dabei fallen die Differenzen zwischen den Indizierungen sehr gering aus, weshalb die Verwendung einer Korrekturformel keinen wesentlichen Vorteil bringt.

Somit zeigt sich in der Kontrollgruppe in Bezug auf die Analyse der ROC-Kurve, dass der Einfluss unterschiedlicher Indizierungen wesentlich geringer ist, als in den Gruppen mit übergewichtigen bzw. adipösen Patienten.
Ergebnisse - ELWIpred als Prognoseparameter für die Mortalität

4.8 ELWIpred als Prognoseparameter für die Mortalität

In der klinischen Praxis sind Aussagen zur Vorhersage der Mortalität von herausragender Bedeutung. Deshalb wurde untersucht, ob verschiedene Indizierungen des EVLW einen Einfluss auf die prognostische Genauigkeit bezüglich der Mortalität haben. Dieser Analyse lagen ausschließlich die Daten der adipösen Patientengruppe (BMI > 30 kg/m²) zu Grunde.

Abbildung 42: ROC-Kurven für die Vorhersage der Mortalität bei adipöser Patientengruppe
Ergebnisse - ELWIpred als Prognoseparameter für die Mortalität

Fläche unter der Kurve

<table>
<thead>
<tr>
<th>Variable(n) für Testergebnis</th>
<th>Fläche</th>
<th>Standardfehler(a)</th>
<th>Asymptotische Signifikanz(b)</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELWlact</td>
<td>,704</td>
<td>,139</td>
<td>,195</td>
<td>,430 - ,977</td>
</tr>
<tr>
<td>ELWIpred</td>
<td>,815</td>
<td>,114</td>
<td>,045</td>
<td>,592 - 1,038</td>
</tr>
<tr>
<td>ELWlideal</td>
<td>,796</td>
<td>,120</td>
<td>,059</td>
<td>,561 - 1,031</td>
</tr>
<tr>
<td>ELWladj</td>
<td>,759</td>
<td>,127</td>
<td>,099</td>
<td>,511 - 1,008</td>
</tr>
</tbody>
</table>

Tabelle 33: Flächen der ROC-Kurven zur Vorhersage der Mortalität bei adipöser Patientengruppe

In der obigen Abbildung/Tabelle wurde mit Hilfe der ROC-Analyse gezeigt, dass die Indizierung mit dem PBW die Vorhersagekraft des EVLW in Bezug auf die Mortalität gegenüber der Indizierung mit dem ActBW erheblich steigert (ELWlact: 0,704 ± 0,139; ELWIpred 0,815 ± 0,114). Auch die Indizierung mit dem IBW bzw. AdjBW waren der Indizierung nach dem ActBW überlegen (ELWlideal 0,796 ± 0,120; ELWladj 0,759 ± 0,127).

Ausschließlich für die Indizierung mit dem PBW war die ROC-Kurve signifikant prädiktiv (p = 0,045) bezüglich der Mortalität. Diese Tatsache trifft weder für die Indizierung gemäß dem ActBW (p = 0,195) noch für die Verwendung der Korrekturformeln für IBW (p = 0,059) und AdjBW (p = 0,099) zu. Aus diesem Grund scheint die Verwendung des PBW gegenüber den anderen Korrekturformeln am sinnvollsten.
4.9 Indizierung des EVLW mit Hilfe des PBW

Abbildung 43: Kumulative Werte (ROC „Mortalität“, ROC „ARDS“, Fehlerfreiheit „ARDS“, Korrelation OI, Korrelation PaO\textsubscript{2}/FiO\textsubscript{2}) für die Indizierung des EVLW
Ergebnisse - Indizierung des EVLW mit Hilfe des PBW

Diskussion

5 Diskussion

Die dritte Gruppe stellen die sog. dynamischen Parameter dar. Zu ihnen zählen die SVV und die PPV. Sie sind im engeren Sinne keine Vorlastparameter, sondern Parameter der Volumenreagibilität des Herzens. Sie geben also Auskunft darüber, ob das Herz mit hoher Wahrscheinlichkeit auf Volumenzufuhr mit einer Erhöhung des kardialen Auswurfs reagieren wird oder nicht, d.h. ob zur Erhöhung des HZV eine Volumengabe sinnvoll ist. So weist die SVV zur Abschätzung der Volumenreagibilität
Diskussion

eine wesentlich höhere Sensitivität und Spezifität auf als der ZVD (BERKENSTADT 2001). In einigen Studien war die SVV auch dem GEDI zur Einschätzung der Volumenreagibilität überlegen (REUTER 2002).

Allerdings besteht bei der Anwendung von SVV und PPV eine ganz wesentliche Einschränkung. SVV und PPV können nur dann als Parameter der Volumenreagibilität herangezogen werden, wenn Änderungen des SV ausschließlich durch Änderungen des venösen Rückstroms durch regelmäßige kontrollierte Beatmungszyklen ausgelöst werden und keine sonstigen Schwankungen im SV auftreten. Daher sind SVV und PPV nur bei Patienten verwertbar, die keine kardialen Arrhythmien aufweisen und druckkontrolliert beatmet werden, also keine Spontanatmung mehr haben.

Diskussion

In der vorliegenden klinisch-prospektiven Studie konnte gezeigt werden, dass die adäquate Indizierung des EVLW einen entscheidenden Einfluss auf die Korrelation von funktionellen Parametern sowie auf die Vorhersagefähigkeit von Fehlerfreiheit und Sensitivität/ Spezifität von ARDS bzw. ALI hat.
5.1 Klinische Bedeutung des EVLW

Die Bestimmung des EVLW durch die Thermodilutionsmessung kann für eine Reihe von klinischen Fragestellungen Antworten liefern. Bevor darauf aber detaillierter eingegangen wird, müssen die Genauigkeit der Messung des EVLW und somit die Quantifizierung eines Lungenödems diskutiert werden.

5.1.1 Nachweis eines Lungenödems

Bei der radiologischen Quantifizierung eines Lungenödems kommt hinzu, dass die Beurteilungen der Röntgenthoraxbilder häufig subjektiven Schwankungen unterliegen und zum Teil stark von der jeweiligen Erfahrung des behandelnden Arztes abhängig sind („Inter-Observer-Variabilität“; RUBENFELD 1999). Trotz der Einführung verschiedener Befundungsschemata zur Reduktion der Subjektivität der Interpretationen bleibt die radiologische Treffsicherheit weiter unbefriedigend. Obwohl fortschrittliche bildgebende Verfahren wie die Computertomographie eine größere Sensitivität besitzen (SCILLIA 1999), ergibt sich hierbei das Problem, dass allein aus praktischen Gesichtspunkten deren Durchführung bei einem intensivüberwachten Patienten bisweilen äußerst aufwendig ist. Somit bietet die
Diskussion - Klinische Bedeutung des EVLW

Messung des EVLW, mit Hilfe der transkardiopulmonalen Thermodilution, eine praktikable und genaue Methode zur Erfassung eines Lungenödems.

Dagegen ist die Messung des EVLW mit Hilfe der PiCCO-Technologie in der Lage, zwischen einem kardiogen bedingtem Lungenödem und einem Lungenödem auf dem Boden einer entzündlichen Permeabilitätsstörung zu unterscheiden. Grundlage dafür ist ein nicht linearer Zusammenhang von EVLW und ITBV.

Das Verhältnis von EVLW und GEDI ist signifikant höher im Falle eines Lungenödems basierend auf einer Permeabilitätsstörung (KATZENELSON 2004). Somit ist es möglich, die Ursache eines Lungenödems frühzeitig zu diagnostizieren.

5.1.2 Diagnostik eines ARDS

Diskussion - Klinische Bedeutung des EVLW

Allerdings bleibt das ARDS ein heterogenes klinisches Syndrom und die oben beschriebenen Definitionen werden wegen ihrer unzureichende Sensitivität und Spezifität fortlauend diskutiert (RUBENFELD 2005; DOYLE 1995; ZILBERBERG 1998).

Eine vor kurzem durchgeführte Studie unterstreicht diese Problematik. So wurde an Patienten post mortem festgestellt, dass die Spezifität der AECC Kriterien bei 84% liegt und die Sensitivität nur bei 75% (ESTEBAN 2004).

Da die pathologischen Veränderungen beim ARDS/ALI zu einer Erhöhung des EVLW führen, kann nun die Quantifizierung des EVLW mit einem ARDS/ALI in Bezug gesetzt werden.

5.2 Indizierung des EVLW

Dies legt nahe, dass die Indizierung des EVLW gemäß dem ActBW das Lungenwasser in adipösen Patienten unterschätzt. Die Daten der vorliegenden Studie zeigen, dass sich der ELWI bei einem BMI von beispielsweise 40 kg/m² bei einer Indizierung gemäß PBW gegenüber einer Indizierung gemäß ActBW annähernd verdoppelt.
In der Patientengruppe mit BMI ≥ 30 kg/m² stieg der Mittelwert ± Standardabweichung des ELWI (indiziert mit ActBW) von 7,4 ± 3,0 ml/kg auf 12,3 ± 6,3 ml/kg (indiziert mit PBW). Auch zeigen unsere Daten, dass in dieser Patientengruppe der Anteil mit kritischem ELWI-Wert (≥ 10 ml/kg) von 16% (ELWI ActBW) auf 53% (ELWI PBW) signifikant anstieg.
Die beiden anderen Korrekturformeln für das Gewicht (IBW und AdjBW) zeigen ähnliche Ergebnisse, wobei die Änderungen mit der Indizierung mit dem IBW noch stärker ausfallen als bei der Indizierung mit dem PBW. Bei der Indizierung mit dem AdjBW sind die Differenzen zur Indizierung mit dem ActBW am geringsten. Aber auch hier haben sich Mittelwert ± Standardabweichung des ELWI (indiziert mit AdjBW) auf 9,8 ± 4,3 ml/kg erhöht und der Anteil an Patienten, der einen kritischen ELWI-Wert (≥ 10 ml/kg) aufwies, lag mit 38% gegenüber 16% (ELWI ActBW) mehr als doppelt so hoch.
Auch bei der zweiten Untersuchungsgruppe, bestehend aus den übergewichtigen Patienten (BMI von ≥ 25 und < 30 kg/m²), war der Einfluss der jeweiligen Indizierung erkennbar. Zwar waren die Unterschiede zu den adipösen Patienten geringer, doch mit einem Anstieg der kritischen ELWI-Werte (≥ 10 ml/kg) von 12% (ActBW) auf 26% (PBW), bestand bei mehr als doppelt soviel Patienten der Verdacht auf ein ausgeprägtes Lungenödem.
Die theoretisch basierte Abbildung 15 macht bereits deutlich, dass die Auswirkung der Indizierung in der Patientengruppe mit BMI von 25 - 30 kg/m² geringer sein muss als bei den Patienten mit BMI > 30 kg/m².
Diskussion - Indizierung des EVLW

Somit konnten wir in unserer Studie zeigen, dass sich in der Patientengruppe mit BMI von 25 – 30 kg/m² der Anteil an Patienten mit einem ELWI ≥ 10 ml/kg in Abhängigkeit von der jeweiligen Indizierung kaum unterschied (54% (ActBW), 56% (PBW), 60% (IBW) und 60% (AdjBW)). Um den Einfluss der Indizierung funktionell zu quantifizieren, haben wir die jeweiligen ELWI-Werte mit Parametern der Lungenfunktion wie mit PaO₂/FiO₂ und OI korreliert.
5.3 Korrelationen mit funktionellen Beatmungsparametern

Allerdings variiert diese Korrelation je nach Studie zwischen den Werten von -0.4 und -0.6, was auf den ersten Blick bedeutet, dass der Grad der Korrelation im mittleren Bereich liegt. Hält man sich jedoch die pathophysiologische Komplexität des ARDS und die multiplen Faktoren, die den PaO$_2$/FiO$_2$ beeinflussen vor Augen, ist dieser Korrelationskoeffizient hoch.

Um die respiratorische Situation noch besser als allein mit dem PaO$_2$/FiO$_2$ zu charakterisieren, wird bisweilen der OI herangezogen (GRAF 2005). Zusätzlich zum PaO$_2$/FiO$_2$-Quotienten, bindet dieser den Paw mit ein und wird durch folgende Formel berechnet:

\[
OI = \frac{Paw \times FiO_2 \times 100}{PaO_2}
\]

In einer Studie wurde gezeigt, dass der ELWI mit dem OI noch stärker korreliert als mit dem Quotienten aus PaO$_2$ und FiO$_2$ (GRAF 2005). Dieser verdeutlicht, wie wichtig es ist, den mean airway pressure (Paw) in die Beurteilung des Oxygenationszustandes des Patienten mit einfließen zu lassen.

Auch unsere Studie konnte dieses Ergebnis bekräftigen. So variierten die Korrelationswerte je nach Indizierung in der Patientengruppe mit einem BMI ≥ 30 kg/m2 zwischen $r = 0.63$ und $r = 0.76$, bei der Patientengruppe mit einem BMI zwischen 25 und 30 kg/m2 zwischen $r = 0.74$ und $r = 0.78$ und bei der Kontrollgruppe (BMI zwischen 18,5 und 25 kg/m2) zwischen $r = 0.73$ und $r = 0.77$. Somit waren in jeder Patientengruppe die Korrelationen von ELWI mit dem OI tendenziell stärker ausgeprägt als die Korrelationen von ELWI mit dem Quotienten aus PaO$_2$ und FiO$_2$.
Diskussion - Korrelationen mit funktionellen Beatmungsparametern

In die Untersuchung gingen auch die Unterschiede zwischen den Korrelationen der jeweiligen Indizierung ein und derselben Patientengruppe mit ein. So konnte in der Patientengruppe (BMI \(\geq 30\ \text{kg/m}^2\)) die höchste Korrelation für die Indizierung des ELWI mit dem PBW festgestellt werden. Dies gilt sowohl für den Quotienten aus \(\text{PaO}_2\) und \(\text{FiO}_2\) als auch für den OI. Am schlechtesten korrelierte jeweils der ELWI indiziert mit dem ActBW. Diese Differenz war in unserer Studie allerdings nicht signifikant. Trotzdem kann aus diesen Ergebnissen eine Tendenz abgelesen werden, die dafür spricht, dass die Indizierung mit dem PBW dem tatsächlich vorhandenen EVLW am nächsten kommt.

Wie zu erwarten, konnten wir feststellen, dass diese Differenzen zwischen den Korrelationen, basierend auf den jeweiligen Indizierungen, umso geringer ausfiel, je niedriger der BMI war. So waren die Unterschiede in der Untersuchungsgruppe, bestehend aus übergewichtigen Patienten, im Vergleich zu den adipösen Patienten geringer ausgeprägt. Allerdings konnte in dieser Patientengruppe keine eindeutige Aussage bezüglich der besten Korrekturformel getroffen werden. So zeigte sich bei der Korrelation des ELWI mit dem \(\text{PaO}_2/\text{FiO}_2\), dass der höchste Wert (\(r = 0,696\)) für die Indizierung mit dem AdjBW gefunden wurde. Außerdem lieferte auch die Indizierung mit dem PBW eine höhere Korrelation als das ActBW. Daher kann davon ausgegangen werden, dass auch bei übergewichtigen Patienten die Verwendung einer Korrekturformel für die Indizierung sinnvoll ist.

Dagegen konnten wir bei der Kontrollgruppe beobachten, dass die Indizierung mit dem ActBW am besten mit dem \(\text{PaO}_2/\text{FiO}_2\) korrelierte. Diese Differenz war aber nicht signifikant. Dieses Ergebnis legt verständlicherweise nahe, dass bei normalgewichtigen Patienten Korrekturformeln entbehrlich wären.

Zukünftige Studien sollen zeigen, in wie weit bei untergewichtigen Patienten (BMI < 18,5 kg/m\(^2\)) die Korrelation des ELWI mit \(\text{PaO}_2/\text{FiO}_2\) und OI verbessert werden kann.
Diskussion - Indizierung mit PBW verbessert die Aussagekraft des ELWI bei ARDS/ALI

5.4 Indizierung mit PBW verbessert die Aussagekraft des ELWI bei ARDS/ALI

Wie oben beschrieben ist das ARDS/ALI ein sehr heterogenes klinisches Syndrom, welches auf den vier Kriterien basiert:

1) akuter Beginn
2) \(\frac{\text{PaO}_2}{\text{FiO}_2} \)-Quotient < 200 mmHg
3) Auftreten von bilateralen Infiltraten in der Röntgen-Thorax-Aufnahme
4) Ausschluss eines Linksherzversagens entweder klinisch oder durch einen PCWP unter 18 mmHg

Darum ist es wichtig, dass die Indizierung des EVLW mit Hilfe einer Korrekturformel möglichst akkurate Daten bezüglich der Lungenfunktion beim ARDS liefert.

So konnten wir bei den adipösen Patienten zeigen, dass durch die Indizierung mit dem PBW die Fehlerfreiheit für ein ARDS-Hauptkriterium (\(\frac{\text{PaO}_2}{\text{FiO}_2} \) < 200 mmHg), von 64% (ELWIact) auf 73% (ELWIpred) gesteigert werden konnte. Diese Differenz wurde mit Hilfe der Rand-Homogenitätsanalyse als statistisch signifikant nachgewiesen. Verbesserungen wurden auch durch die Indizierung mit dem IBW (66%) und dem AdjBW (70%) erzielt.

Ähnliches konnten wir auch für Sensitivität und Spezifität zeigen. So stieg die Sensitivität deutlich von 28% (ELWIact) auf 79% (ELWIpred) an. Auch die Summe aus Sensitivität und Spezifität war für die Indizierung mit dem PBW am höchsten. Nimmt man nun die ROC-Kurve genauer in Betracht, so war die Fläche unter der Kurve für die Indizierung mit dem PBW am größten (0,788) und am kleinsten für die Indizierung mit dem ActBW (0,710).
Diskussion - Indizierung mit PBW verbessert die Aussagekraft des ELWI bei ARDS/ALI

In der Summe deutet dies alles darauf hin, dass bei ARDS-Patienten mit Adipositas die beste Aussage des ELWI bei Indizierung gemäß PBW erzielt werden kann.

In diesem Zusammenhang stehen auch die Ergebnisse von Berkowitz et al. Diese Studie, die das EVLW in 30 Patienten mit einem ARDS und 14 Patienten ohne ARDS untersuchte, zeigte, dass die Indizierung des EVLW mit unterschiedlichen Gewichtskorrekturformeln Einfluss auf die Klassifizierung von Patienten bezüglich ARDS hat (BERKOWITZ 2008). Allerdings war auch in dieser Studie die Patientenzahl gering, zumal Patienten mit ARDS im Durchschnitt 13,5 kg schwerer und damit fast 20% mehr wogen als Patienten, die kein ARDS aufwiesen.

Eine weitere Studie, die in diesem Kontext steht, wurde kürzlich (Januar 2010) von Craig et al. in Critical Care Medicine publiziert. Ebenso wie Phillips konnte auch in dieser Studie gezeigt werden, dass bei Vorliegen eines ARDS/ALI EVLW, indiziert mit dem PBW, das Outcome der Patienten besser prognostiziert als EVLW indiziert mit dem ActBW (CRAIG 2010). Zusätzlich zu den oben genannten Ansätzen konnten wir die Bedeutung der korrekten Indizierung auch in Bezug auf die Korrelation mit funktionellen Parametern wie beispielsweise dem OI zeigen. Im Gegensatz zu unserer Studie, wo das durchschnittliche Körpergewicht bei 105,1 kg lag, betrug...
Diskussion - Indizierung mit PBW verbessert die Aussagekraft des ELWI bei ARDS/ALI

dieses beim Patientenkollektiv der Craig Studie 72,4 kg und nur acht Patienten waren mit einem BMI ≥ 30 kg/m² als adipös einzustufen. So konnten wir in unserer Studie demonstrieren, dass die Korrelationen des ELWIpred zu dem Quotienten aus PaO₂ und FiO₂ (ELWact: r = − 0,61; ELWIpred: r = − 0,68) bzw. zu OI ELWact: r = − 0,63; ELWIpred: r = − 0,76) eindeutig besser ausfielen, als die Korrelationen des ELWiact.

Bei der Untersuchungsgruppe bestehend aus übergewichtigen Patienten (BMI ≥ 25 – 29,9 kg/m²), zeigte sich ebenfalls, dass durch die Verwendung einer Korrekturformel die Fehlerfreiheit, ein ARDS richtig zu diagnostizieren, verbessert wird. Allerdings ließ sich hier die Indizierung mit dem IBW mit 59% einen noch höheren Wert. Der niedrigste Wert wurde wieder für die Indizierung mit dem ActBW gefunden (49%). Auch hier war die Differenz statistisch signifikant.

In Bezug auf Sensitivität und Spezifität für das ARDS ergab sich ein ähnliches Bild. Die Verwendung des PBW lieferte auch hier die größte Summe aus Sensitivität und Spezifität.

Mit derselben Methodik wurden auch die Vorhersage eines ALI (entsprechend dem Grenzwert für den Quotienten aus PaO₂ und FiO₂ < 300 mmHg) und das Überschreiten eines kritischen OI-Grenzwertes („OI > 10“) analysiert. Die Untersuchung in Bezug auf Fehlerfreiheit, Sensitivität und Spezifität zeigten ähnliche Ergebnisse. So lieferte auch hier das PBW die höchsten Werte und zeigte damit eine Verbesserung des ELWI als Prognosefaktor.

Entsprechend der gegenüber dem ARDS geänderten Zielkriterien beim ALI waren Fehlerfreiheit und Sensitivität generell niedriger. Auch hier wurde eine Verbesserung der Fehlerfreiheit von 39% (ActBW) auf 64% (PBW) und der Sensitivität von 21% (ActBW) auf 61% (PBW) erzielt. Diese Verbesserung ist zwar beachtlich, doch damit liefert das EVLW für den Kliniker immer noch keine ausreichende Sensitivität bezüglich eines ALI. Dies könnte sich allerdings auf den gewählten Cut-off Wert für das ELWI von ≥ 10 ml/kg zurückführen lassen.

Diskussion - Indizierung mit PBW verbessert die Aussagekraft des ELWI bei ARDS/ALI

Während es für den $\text{PaO}_2/\text{FiO}_2$ definierte Grenzwerte für ARDS und ALI gibt, liegt für den OI keine Konsensus-Definition eines kritischen Wertes vor. Der in unserer Studie angenommene Grenzwert „$\text{OI} > 10$“ führte für das ARDS in Bezug auf Fehlerfreiheit, Sensitivität und Spezifität zu ähnlichen Ergebnissen wie „$\text{PaO}_2/\text{FiO}_2 < 200 \text{ mmHg}$“. So zeigte sich für die fehlerfreie Vorhersage eines ARDS gemäß den Kriterien der AECC ein Wert von 76% (PBW) und für die Sensitivität ein Wert von 84% (PBW).

Betrachtet man nun die Untersuchungsgruppe aus normalgewichtigen Patienten, so zeigten sich erwartungsgemäß andere Ergebnisse. Hier war der Einfluss der verwendeten Indizierung in Bezug auf Sensitivität und Spezifität relativ gering. So schwankte die Sensitivität für ein ARDS zwischen 87,4% (ActBW) und 89,4% (IBW/AdjBW). Für das PBW betrug die Sensitivität 87,2%. Ähnliches zeichnete sich auch für die Fehlerfreiheit ab.

Dies zeigt aber zugleich, dass bei normalgewichtigen Patienten die Verwendung einer Korrekturformel, zum Beispiel des PBW, für die Indizierung vergleichbar gute Werte liefert als das ActBW. Somit könnte auch bei normalgewichtigen Patienten ein und dieselbe Gewichtsformel (PBW) für die Indizierung benutzt werden.

Dennoch geht aus unseren Untersuchungen hervor, dass der Gebrauch der Korrekturformeln für die Indizierung des ELWI vor allem dann sinnvoll ist, wenn es sich um adipöse bzw. übergewichtige Patienten handelt. Hier wird eine Verbesserung der Quantifizierung des EVLW erzielt, was für eine optimierte Flüssigkeitstherapie bei dieser Population essentiell ist.
5.5 ELWI als Leitfaden in der Flüssigkeitstherapie

Im Rahmen des Flüssigkeitsmanagement spielt die möglichst exakte Quantifizierung des EVLW eine entscheidende Rolle. Dieser Punkt gewinnt dadurch weiter an Bedeutung, wenn man sich vor Augen führt, dass auf einer Intensivstation nahezu jeder Patient über Ernährung, Medikamente und Flüssigkeitsgabe eine zum Teil hochvolumige Flüssigkeitszufuhr erhält.

In unserer Studie konnte demonstriert werden, dass bei adipösen Patienten die gewählte Indizierung einen entscheidenden Einfluss auf die Höhe des gemessenen EVLW hat.

Diskussion - Prognostischer Wert des ELWI

5.6 Prognostischer Wert des ELWI

5.7 Limitationen der Studie

An dieser Stelle soll auf Limitationen unserer Studie eingegangen werden. Die Vor- und Nachteile der Messung des EVLW mittels der transkardiopulmonalen Thermodilution durch alleinige Injektion eines Kältebolus wurde in vorangegangenen Studien eingehend diskutiert.

Diskussion - Limitationen der Studie

Bei der Gewichtsbestimmung erwies sich auch die Tatsache problematisch, dass sich das Gewicht des Patienten während des Aufenthaltes auf der Intensivstation verändern konnte. Gründe hierfür sind Wassereinlagerungen in den Beinen oder Aszites. Allerdings muss man sich vor Augen führen, dass vor allem in der Untersuchungsgruppe mit den adipösen Patienten das durchschnittliche Körpergewicht 105,1 kg betrug. Somit würden Ödeme-bzw. Asziteseinträge von beispielsweise 5 Liter weniger als 5% des Gesamtgewichts betragen, was nur einen sehr geringen Einfluss auf die Indizierung hätte.

In Bezug auf den BMI muss festgehalten werden, dass dieses Maß keine Aussage über den Körperfettgehalt trifft. Somit wird nicht zwischen muskulär dystrophen und krafttrainierten Personen unterschieden, was wiederum Einfluss auf die Größe der Lunge und somit auf das vom Körper tolerierbare EVLW nehmen könnte. Es ist auch zu erwähnen, dass keine andere Messmethode, wie die Taille-Hüft Relation, welche als Maß für den viszeralen Fettanteil dient, in unserer Studie berücksichtigt wurde. Jedoch korreliert der BMI zu 95% mit der Körperfettmasse und gilt daher als das beste Maß zur Bestimmung der Körperfettmasse (BENECKE 2003). Außerdem ist diese Klassifikation international etabliert und wird in großen Umfang verwendet. In der Summe entspricht unser Vorgehen also der klinischen Praktikabilität.
Zusammenfassung

6 Zusammenfassung

Unsere Hypothese wurde durch verschiedene Untersuchungen untermauert. So konnten wir zeigen, dass das EVLW, indiziert mit dem PBW, tendenziell besser mit funktionellen Parametern, wie dem Quotienten aus PaO₂ und FiO₂ und OI, korreliert als der ELWIact. Auffallend in Bezug auf die durchgeführten Korrelationen war auch die Tatsache, dass der OI besser mit dem EVLW korreliert als der Quotient aus PaO₂ und FiO₂.

Unabhängig von der Indizierung des EVLW mag dies ein Hinweis sein, dass der OI die Lungenfunktion besser widerspiegelt als der PaO₂/FiO₂.

Weiter konnte gezeigt werden, dass sich durch die Indizierung mit dem PBW die Fähigkeit des ELWI ein ARDS vorherzusagen deutlich verbessert.

Die in Anbetracht der Komplexizität des ARDS hohen Korrelationskoeffizienten des ELWI mit PaO₂/FiO₂ < 200 mmHg und OI > 10 zeigen, dass das ELWI unter allen hämodynamischen Parametern diesbezüglich die größte Aussagekraft hat.
Zusammenfassung

7 Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Stewart, G. 1951. The pulmonary circulation firme, the quantity of blood in the lungs, and the output of the heart. Am J Physiol. 1951, 58, S. 20-44.

Literaturverzeichnis

Danksagung

8 Danksagung

Mein besonderer Dank gilt Herrn PD Dr. med. Wolfgang Huber, der mich immer mit großem Engagement unterstützt und mir viele fachliche Anregungen gegeben hat. Besonders betonen möchte ich, dass er mir jederzeit mit Rat und Tat zur Seite stand und mit seiner ganzen Begeisterung die Arbeit betreute.

Mein weiterer Dank gilt besonders dem Ärzte- und Pflegeteam der Station 2/11 der II. Medizinischen Klinik des Klinikum rechts der Isar unter Prof. Schmid, die die Arbeit tatkräftig unterstützten und sie durch ihre aktive Mithilfe erst ermöglichten.

Besonders danke ich Kathrin, die mich mit viel Geduld fortwährend motivierte und mir bei der Lösung auftretender Probleme immer tatkräftig zur Seite stand.

Und schließlich bedanke ich mich bei meinen Eltern, die mir das Medizinstudium ermöglicht haben und mich während meiner ganzen Zeit immer unterstützten. Ihnen ist diese Dissertation gewidmet.