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Abstract—We consider the problem of bargaining over block
fading interference channels, where interaction between lpyers
takes place over multiple channel realizations. Based on ¢
assumption that the transmitters have conflicting objecties,
we use axiomatic bargaining theory to derive optimal rate
allocations in each block. In the setup under consideration
the Nash bargaining solution (NBS) is non-causal, i.e., caot
be implemented in a real-world system. We argue that the
invariance axiom is superfluous when bargaining over a rate
region. Without the invariance axiom, an equivalent soluton
follows from the maximization of a sum of utilities under
minimum utility constraints. This alternative solution is also
non-causal. We propose causal approximations to the optinha
solutions. The sum utility solution allows for a more systeratic
approximation than the NBS. Thus, dropping the invariance
axiom makes it possible to choose a solution which can be bett
approximated. We provide numerical results to illustrate the
performance of the proposed solutions.

I. INTRODUCTION

of choosing a transmission strategy into a game theoretic
problem [4].

The case that interaction between transmitters (or players
takes place for the duration of a single channel realizaon
investigated in [3], from both a noncooperative and coopara
game theory point of view. It is shown that in the MISO
IFC, Nash Equilibria, which correspond to non-cooperative
behaviour, are highly inefficient, and both players can i§ign
icantly improve their outcome by cooperation. By allowing
for cooperation between the players, the problem of chgosin
a transmission strategy can be cast as a bargaining problem.
The authors in [3] propose using the Nash Bargaining Salutio
(NBS) [5] as outcome of the bargaining problem. The NBS
has been frequently used in the context of resource altmtati
in communication systems [6], [7], [8], [9].

In this work, we consider the case that the players interact
over multiple channel realizations. Similar to [3], we use
axiomatic bargaining theory [10] to discuss the choice of

A simple network consisting of two transmitter-receivetransmission strategies. The interaction over multiplanciel
pairs is considered. Transmittesends information to receiver realizations, however, leads to the problem of causality: |

k, k = 1,2. Information for receivern is not of interest for

a real-world system, the transmitters have to decide on a

receiver2, and vice versa. It is assumed, however, that botlansmission strategy for the current channel realizatigh-
transmitters operate in the same band. From the viewpomit knowing about the future channel. We show that when
of information theory, such a configuration represents dargaining over a block of channel realizations, the NB8idea

interference channel (IFC) [1], [2]. With respect to preati

to a non-causal solution, i.e., it is not implementable iea-+

wireless systems, the IFC is a model for interference b@&orld system. As a result, the NBS has to be approximated
tween two base stations operating in the same band [3].blf a causal solution.

is assumed that the transmitters are equipped with multiple
transmit antennas, while the receivers have a single aatenn
each. Multiple antennas enable the transmitters to perfo
spatial signal processing — and thereby manage interferen
The capacity region of such a multiple-input, single-otitp
(MISO) IFC is not known. By treating interference as nois
however, it is straightforward to find an achievable rateaeg

for a given channel realization [3].

The ability of each transmitter to choose from a set
transmission strategies immediately leads to the quesfian
optimal choice of transmission strategies. If both trartars

share a common objective, the answer is obvious: cho

The NBS is one possible solution to a bargaining problem.
H:hcontrast to previous work on bargaining over rate regions

we argue that when bargaining over rate regions, other solu-
Jlons are equivalent from an axiomatic viewpoint, based on
éhe fact that information rate represents a technical nreasu

and therefore does not require scale invariance. Based on
this observation, we propose sum utility maximization unde
rpinimum utility constraints (SU) as an equivalent solution

W the bargaining problem. As shown in this work, the SU

solution is again non-causal, and has to be approximated by a
causal solution. In contrast to the NBS, approximation of SU

WV a causal strategy is straightforward.

a pair of transmission strategies that optimizes the commoh

objective. In this work, however, it is assumed that there is Notation: Vectors and vector-valued functions are denoted
no common good- on the contrary, it is assumed that botly bold lowercase letters, matrices by bold uppercasersette
transmitters have conflicting objectives. A typical scémarThe transpose and the Hermitian transposé)oére denoted
where the transmitters do not share a common objectivebig QT and Q", respectively. The identity matrix is denoted
that of two base stations owned by different operators [3}y I, and the vector of all ones is denotedbyThe following
The assumption of conflicting objectives turns the probledefinitions of order relations between vectergy € RX, with



K > 1, are used: C. Bargaining Over the Rate Region

x>y o VT >y, _ Whil_e R provi_des a set of achieva_ble rates, it is not
immediately obvious how both transmitters should choose
their beamforming vectorsv,. In this work, it is assumed
x>y & Vkizg >y that there imo common goaqd.e., the two transmitters do not

Order relations<, <, < are defined in the same mannershare a common objective, but instead both aim at maximizing

Finally, on subsets dk? we define the operatgj* as follows: their individual rate.
SP = {(x3,21) : (w1, 22) € S}. Accordingly, if a setS C R2 If both transmitters (players) do not cooperate, the only

) tric, h P_g reasonable .olutfzome is an operat.ing point which con.s_titlljtes
's symmetric, we have S a Nash equilibrium [3]. As shown in [3], the Nash Equilibria
are given by the following set of beamforming vectors:

T>Y <= waa3k1$k>yka

II. MISO INTERFERENCECHANNEL he
(0%
A. System Model WNE = {(wl,wQ) D wg b7k k

(el
We consider the following interference channel (IFC): Two . ? .
transmitters, TX and TX, send information to two receivers,-€t *ne denote the corresponding rate vector. given by

oy —P}. @

RX1 ar_1d RX. The tra_nsmitters are equipped wim > 1 . <\/]—3h>1k ) \/]_3h§2>
transmit antennas, while the receivers have a single receiv TNE=T = = (5)
antenna each. Such a multiple-input, single-output (MISO) 1haally ™ [1R22l;
IFC was previously considered in [3], [11]. The rate vectorye is in general not Pareto optimal, i.e., it does
The received signal at receivér k € {1,2}, is given by  not lie on the Pareto boundary &. Based on this result, both
2 players can jointly improve their outcome by cooperatioh [3
Y = Z h;kquq + M, (1) By allowing for cooperation between the players, the prob-
a=1 lem of choosing a point fronfR turns into a bargaining

problem. The authors in [3] propose using the Nash Bargginin

whereh, . < C™ is the channel from transmittqrto receiver gq)yion (NBS) [5] as outcome of the bargaining problem (cf.
k, wy € CV ands, are the beamforming vector (preCOder)Section IV for details on the NBS).

and transmitted symbol of transmitter respectively, anady

is circularly symmetric AWGN with zero mean and variance
o2, D. Weighted Sum Rate Maximization

We assume that each transmitter is subject to a peak poweAn important problem in the MISO IFC is the maximization

constraint with maximum poweP, which, under the assump-of a weighted sum of rates over the set of achievable rates:
tion of uncorrelated, unit power data symbols, translas i

a constraint on the precodeus;: max AT, (6)
|\wk||§ <Pk=1,2 (2) for a given weight vectorA > 0. As time-sharing is not

i , , L required to maximize a weighted sum of rates, the problem is
In the remainder of this section, it is assumed that trle‘aquivalent to maximizing oveR. Moreover, as the objective

chann_elshm, hi2, b2, andhs, are fixed and_do not changeg,nction s increasing in, the maximum is achieved on the

over time. In Section lll, the channel model is extended OBy reto boundary oR [12]. A parameterization of the Pareto

block fading model. boundary is provided in [11]. Based on the parameterization

from [11], we can write the weighted sum rate maximization

B. An Achievable Rate Region problem as a monotonic optimization problem [12]. As a
Treating the interference from other users as noise, f(argivresun’ using_methods from mono_to_nic .optimization, we can

precoders(w:, wz) and channelsh,,, an achievable rate solve the we_lghtgd sum rate maximization on the MISO IFC

vectorR = (Ry, R2) is given byR € Ri s Ry < rg(wr, ws) to global optimality.

[3], with

[1l. BLOCK-FADING IFC

hT w|?
ri (w1, we) = log, (1 + o 0| ) . Section Il summarized the case of two players bargaining

2 T 2 . . . N
o7+ Zq;ék |hq,kw‘J| over a single channel realization of a MISO IFC. In a wireless
The set of achievable rate vectors is defined as the closurés@ffmunication system, players will usually not meet for the

all such vectors for given transmit power constraints, duration of only a single channel realization, but theiermat-
. tion will last for the duration of several channel realipais.
R = {’P(wl,’l.Ug) w2 < Pk =1, 2} : (3) We adopt a block-fading channel model, where the quadrupel

of channel vectorgh, 1, hi 2, ho 1, ho 2) at block? is the re-
Let R denote the convex hull 6R. By time-sharing between alization of a random variabl&*. Random variable&™ and
vectors inR, any vector inR is also achievable. The s& H", with m # n, are assumed to be statistically independent
is convex and compact [3]. and identically distributed. The probability density ftino



of H® is denoted bypy. The problem of bargaining over aLet # = (#!,...,#%) denote a maximizer of (11). Then

sequence of. blocks is considered. L
Let R* denote the achievable rate region at tita block. FNBS(y, d) = 1 Zfe' (12)
Depending on the transmit strategies of both players, playe ’ L

=1
gets a ratet in block I. The players’ utility is defined as the

average rate over the blocks: Equation (11) shows that the NBS is a non-causal solution:

In order to determine the optimal rate allocation in the first

1 & ’ block, knowledge of the rate region and Nash Equilibrium of
Uk =T Zrk' (") the blocks, ..., L is required. This is due to the fact that
=1 the optimization problem in (11) does not decouple, thus the
Accordingly, the achievable utility region is given by optimal ratest!, ..., #¥ have to be computed jointly.
1 L
U= {“ €R? : i3 ZTEa e RZ} . (8) B. The Invariance Axiom is Superfluous
=1

) . L The NBS is the only bargaining solution that fulfills
The achievable utility region is a convex set: hetu € U.

Define fu.d)>d (13)
u(a) = au+ (1 —a)a and the following four axioms:
1 L , L1 L , 1) Weak Pareto Optimality (WPO). Lat, v’ € U, with
:EZar +(1—-a)r ZEZT (@), u}, > uk, Vk. Thenw # f(U, d).
=1 =1 2) Symmetry (SYM). Ifi/ = U* and d, = ds, then
with ¢, #¢ € R’. Due to the convexity oR’, r‘(a) € RY, hlU,d) = (U d).

3) Independence of Irrelevant Alternatives (l1A). Lét, d)
and (U’',d) be bargaining problems, with’ C U« and
fU,d) e’ ThenfU,d) = f(UU', d).

4) Scale Invariance (INV). Define an affine transforma-

_ ) _ o tion g(u) = Tu + b, whereT = diag(t1,t2) is
In this work, we consider the case of cooperative bargaining 5 positive definite diagonal matrix, and et =

thusu(a) € U for a € [0, 1]. Moreoverl{ is compact, due to
the compactness g®¢.

IV. BARGAINING OVER THE UTILITY REGION

i.e., both players cooperate in order to achieve an outaome (v =gu),uecldl,d = g(d). Then U, d) =
U that is better than an outcome which would result from non- g(f U, d)).

cooperative behaviour. The non-cooperative outcome isngi
by the utility point that results from both users choosingitth
transmission strategy to optimize their rate without cdesng
the interference caused to the other player:

VJudging whether NBS is a good solution strategy for the
problem at hand has to be based on a discussion of the
four axioms — if all four axioms are desired, there is no
other option. For a detailed discussion of the axioms WPO,
1 & .1 L . SYM, and llIA, see, e.qg., [5], [10]. For the bargaining prahle
d=7 Z d =7 ZTNEv (9)  considered in this paper, they all imply desirable properti
=1 =1 The desirability of the axiom INV is less obvious. Assume
wherer{ is defined in (5). In the following, we will use thethat INV holds. Then
theory of axiomatic bargaining to discuss possible methods NBS/; ;7 g\ _ 4 ¢NBS
to choose an outcome € U. In the language of axiomatic 0L d) =t U d) + by
bargaining, a paifi/, d), with &/ compact and convex, andi.e., the utility of userl is independent of the scale transfor-
d € int U, represents a bargaining problem [10]. I®etlenote mationst, andb, of user2. In other words, use? can choose
the set of all bargaining problems. Then a functfon3 — R?  any valueg, > 0 andb, without affecting uset. Why would
that assign to each proble(l, d) a unique element d¥ is such a property be desirable? The answer lies in the utility

a bargaining solution. model that Nash assumed in his work: Nash assumed that the
users’ utility functions areon Neumann-Morgenstern utilities
A. Nash Bargaining Solution and such utility functions are unique only up to a positive

affine transformation [4], [10]. Obviously, if the utilityfaser

1 shows such an ambiguity, it is desirable to not have this
ambiguity impact the outcome for us2r and vice-versa.
FNBS(U, d) = argmax (uy — dy)(uz — da). (10) We argue that the utility defined in (7) is unique, i.e., it is

One popular solution to a family of bargaining probleths
is the Nash Bargaining SolutiofNBS),

uel,d<u not invariant to positive affine transformations: The tilis,
The NBS can be found by computing the optimal rate allocas defined in (7) is the average of information rates, ancether
tion in each block: is a clear understanding that= 0 means no information (thus

I I we cannot chooséy, arbitrarily), andr’ = 100r means100-
max 1 H( (rf —db)) st 1 Zré > d,r! ¢ R¢. fold more information (thus we cannot choasearbitrarily).
L el =1 L= Consequently, the axiom INV is not necessary for bargaining
(11) over rate regions.



C. Maximum Sum Ultility solution [13]. While the egalitarian solution has an ingtireg
From an axiomatic viewpoint, if the axiom INV is notfobustness property [13], it does not provide a decouping i

needed, any solutiofi that fulfills (13) and the axioms WPO, the objective.

SYM, and IlA is as good as the NBS. Consider a solutfot

defined as follows: D. A Special Case: Infinite Horizon and Symmetric Physical
Layer
su _
7, d) = s(MU,d),d) (14) In general, the solutiongNBS and £S5V will yield different
where outcomes to a given bargaining problem. There is an im-

portant special case, however, in which both solutionsdyiel

_ T
MU, d) = argmax1 u st wel,u>d, (15 a4 identical outcome: The interaction between both players

ands is a function satisfying lasts for infinitely many blocks and the interference chaime
statistically symmetric. We say that the channel is siatifly
s(M,d) e M, (16) symmetric if the probability density functiopy fulfills

M= MP dy = dy = 51(M,d) = s9(M,d). (17)

The solutionfSY fulfills (13) and the axioms WPO, SYM, and

[IA [10]. The function s is needed to select one maximizer;
if the set of maximizers has multiple elements. Property) (1 ~ ~
ensures that the solution fulfills the SYM axiom. U= lim U, d= lim d.

L—oo L—oo
Consider the problem . . .
! P From the symmetry of the physical layer immediately follows

that in the case of a statistically symmetric channel,
Z/_{ = Z/_{P, d} - d}.

pH(hl,la hl,?a h2,17 h2,2) = pH(hQ,Qa h2,17 h1,27 hl,l)-

Define the ergodic utility regioty and disagreement point
as follows:

L L
1 T, ¢ 1 ¢ ¢ ¢
max —Zl r° St Z;T >d,r"eR". (18)

Let# = (7#!,...,#) denote a maximizer of (18). Define  In other words, the bargaining proble(#, d) is symmetric if
. the channel is statistically symmetric. As bgffES and fSY
T Zf,fz fulfill the SYM axiom, we have
L ’ o -
=1 U, d) = £, d).

SU P SU i
Clearly, v € M(U,d). The solution f>* requires that ag 5 result, if the channel is statistically symmetric and th

SU H i i i
f>°(U,d) is chosen fromM by apfunctlon satisfying (17). interaction between the two players is long enough, it does
Under the assumption thale 7 M™ or d, # dz, e can set ot matter whether the players cooperate based on a Nash or
YU, d) = uSv. (19) sum utility strategy, as both yield the same result.

In addition, from the SYM axiom and (13) it follows that
On the other hand, iM = MF andd; = d», we have to find

the point inM with u; = uy. This corresponds to computing U, d) = d,

the intersection between the lifel,z € R} and M. As all  with > 1. Accordingly,

points in M are Pareto optimal, this corresponds to finding SU 3 T
the maximumz such thate1l € U. The optimization problem U, d) € argmax1-u.

to find the intersection point is thus formulated as _’feu _ .
In other words, the sum utility solution can be obtained

L . . . : -
1 without considering the constraimt > d. Now let
max z St 2zl < 7 ng,rf e R". (20) g -

z,rl, el = 7 € argmax 177, (22)

£ 14
Let & denote the optimum solution of (20). While it is simple_ meR
to test whetherd; = d», it is not obvious whethetM = Define
MP . still, if #1 € M, thenz1 achieves the same sum utility R 1 & v
asuSY. Accordingly, one possible algorithm for computing a 4= lim i3 ZT :
solution fSV(i4, d) is specified by =1
- T su It follows that
su #1,2171 = 1TuSY, A -
U,d) = . 21 1 u.
fru.d) {uSU, otherwise @) ue s

Similar to the NBS solution, problem (18) is non-causaloreover, if the algorithm to comput& is not biased towards
due to the sum over all blocks in the constraint. The objectione user, symmetry implies thaf = . As a result,
function is decomposable: it is a sum of terms that are inde- Y0 d) = @
pendent for each block. This property allows for a systegnati ’ ’
causal approximation and represents the main motivation #ccordingly, in the symmetric case, botfiN8S(Z/,d) and
considering the SU solution. Another solution that satsfiefSY(i/, d) can be obtained in a causal manner by solving (22)
the axioms WPO, SYM, and IlA is the so-called egalitariam each block.



V. CAUSAL SOLUTIONS with d’ set to the previously obtained values. Comparing

A causal solution denotes a solution which provides a ruf80) with the non-causal NBS problem (11) shows that to
to choose the rate’ at time instant/ based on knowledge Obtain the modified causal NBS as an approximation of the
from the current and past time instants. Any such solutian haoncausal NBS, the constraint o is tlgjgtened, while in
to ensure that cooperation does not make any player wofse!Bf objective functiond” is replaced byd" and the order

than noncooperation, i.e., the solution has to guarantte th of multiplication and summation is reversed. Due to the
significant modifications of the cost function, an assess$moin

L
1 . . . . B
- Zre > d, (23) Fhe qu_allty of this approximation other than numerical seem
L — infeasible.
otherwise it would clearly be irrational of the players to
cooperate. B. Causal Sum Utility
A. Causal NBS A causal approximation of the sum utility solution is found

. Lo . in two steps: First, the constraint (23) in (18) is replacgd b
A straightforward causal solution is simply to ignore that’l::e tighterpconstraint (26) yielding(the)z prcgble)m' place
the bargaining takes place over multiple blocks and compute ' '

the NBS for each block separately. The corresponding rates 1 & ~
are maximizers of max — Z 1Trt st ot > dg,rz IS 'RE,K =1,...,L.
ri. el L =1
Trglea%[(rf —d))(rs —db) st ot >d (24) (31)
Let #¢ denote a maximizer of (24). Clearly, (23) is satisfiedsecond, by neglecting the dependencydbon r!, ... r¢1,
as problem (31) decouples intb independent problems, with the

problem at thd-th time instant given by

1 L 1 =
CNBS N ¢
u = — E r > — E d" =d.
L =1 L =1 max 1Trf st ¢! > d-. (32)

£ e
Still, by considering each block separately, this solutimes meR
not take into account the rate allocation at the previousksio Let »* denote a maximizer of (32) in théth block. The

Consider the following set of inequalities: resulting utility pointu®SY € U/ is given by
4 4
L
quzqué:l,...,L. (25) uCSU:lZfé. (33)
a=1 g=1 L=

Clearly, (25) implies (23). Re-arranging (25) yields Let the setC contain the indices of the blocks in which the

rt>d(=1,...,L (26) inequality constraints in (32) are inactive at the optinster
with 7. In contrast to the causal approximations of the NBS, the
’ ‘-1 causal sum utility solution (32) uses the same cost funa®n
d’ = qu — qu. (27) the non-causal one (18). As a result, if for al=1,..., L
ot e the inequality constraints in (32) are inactive in the ojptim

Note that with (26) and (27), prob_ler_ns (18) and (32) are equivalent m_th_e sense thaf.the
~ _ maximizers of (32) also represent a maximizer of (18). As an
d'=d —(r'""'—d" ") <d". (28) immediate result, it = {1,..., L}, the pointu®SY is Pareto

. NZ .
Equation (28) shows that the constraint in problem (24) pptimal. Note thatd” is smaller the larger the surplus from

unnecessarily tight. Accordingly, we can modify problend)2 previous blocks. Thus, if channel rgalizations are such.aha_
by replacingd’ by dt: surplus can be accumulated over time, a good approximation

- - . can be expected.
rgla%[(r{ —d))(rs —db) st ot >d (29)
rte

While the original version does not consider the rate aloca VI. COMPUTING THE OPTIMAL RATE ALLOCATIONS
tions at the previous blocks, the modified version subtracts
any surplusr=! — d‘~! from the previous block from the
disagreement poird‘ of the current block.

Assume that (29) was solved fdr= 1,..., L, thus the
correspondingd’ are known. Then solving problem (29) for
¢=1,...,L is equivalent to solving the problem

In this section, we briefly discuss how to compute the opti-
mum rate allocations for the bargaining solutions pregkirte
Sections IV and V by solving the corresponding optimization
problems.

A. Nash Bargaining Solution

L
1 ¢ GeNe L e
oL T2 IZ(H —dy)(ry — dy) (30) Let u* = fNBS(U, d). From the definition offNBS and the
=1

""" L , assumption that there exists € U/ with u > d, it follows
st r*>d i r*eR 4=1,...,L thatu* > d.



We compute the optimum rate allocatiof’s ¢ = 1,. .., L, 4.5
of (11) by solving the following optimization problem: .
1 L
14 14 4
srm7a),(r Zlnsk s.t. SSEIZT —d,r" eR’, 35 1 gu
=1 a
(34) N 3 A x nes
3 CNBS
with an extended definition dfn: In(z) = —oo,2 < 0 and 25 ¢ cCNBsM
slack variabless € R2. Problem (34) is solved by Lagrange ; ggu
duality. Define the Lagrangian as 2 o
2 1 & 15
L(s,rl,...,rL,)\):;l Sk —|—)\TLZ7'Z— —3) .
- 1 2 3 4 5
(35) U1

. 9 .
with A € R+' The dual function follows as Figure 1. Bargaining solutiond, = 500, identical channel distributions

2 1 L

A) = -ATd +su In(sg) = ATs+ =)  max ATrt.

"™ Spkz:; o L ;"EGRE C. Causal NBS
(36) The optimum rate allocation in théth block under the

Accordingly, evaluating the dual function at>> 0 basically causal NBS strategy is obtained analogous to the non-causal
corresponds to solvind, weighted sum rate maximizationNBS solution, withry, ..., 7% replaced byr* andd replaced
problems on the underlying MISO IFCs. This actually is thby d*, resulting in the Lagrangian
motivation for introducing the variablesin (34): All problems 9
that directly involve R¢ are weighted sum rate problems, L(s,7* ) = Zln(Sk) + ATt —df —s).  (39)
and globally optimal solution methods for this problem are —1
available, cf. Section II.

The dual solution is obtained by minimizing the duab. Causal Sum Utility
function with respect ta\ > 0. We use an outer approximation
method to obtain the dual optimizex* [14]. A primal opti-
mum rate allocatior* = (#!,... %) is obtained by primal
recovery, using the method described in [14]. Note thatay
only be achievable by time-sharing. Strong duality holdsst

The optimum rate allocation in théth block under the
causal maximum sum utility strategy is obtained analogous t
the non-causal solution, with,, ..., " replaced byr’ and
d replaced byd!, resulting in the Lagrangian

the primal recovery yields the primal optimal solution — and L(r® X)) = 179" + ATpt — ATdE (40)
implicitly performs a time-sharing in the case of time-shgr
optimality. VII. NUMERICAL RESULTS

y o In order to investigate the performance of the causal so-
B. Sum Utility Maximization lutions proposed in Section V, we compute the bargaining

To find an optimum rate allocation of (18), we proceegolutions for different number of blocks and different dtst-
similar to the NBS solution. Again, the solution is found vidions of the channeld, ;. In all simulations,P/o* = 10 and
Lagrange duality. Define the Lagrangian of (18) as N = 2. Figure 1 shows the utility sét, the disagreement point

I L d, and the corresponding bargaining solutions for= 500
1 Ly — T, .t T, 0 _ T blocks. For each block, the channdig ; are drawn from
Lrsser® 2 = Zl T Z)‘ moAd B0 a circularly symmetric Gaussian distribution with zero mea
and covariance matri€’, , = I. The solid line in Figure 1,
labelled byoi, corresponds to the boundary@f Shown are
the following solutions: non-causal NBS (NBS), causal NBS
q(A) = —ATdJrZrme‘c% (1+0" (38) (CNBS), modified causal NBS (CNBSM), non-causal sum
utility maximization (SU), and causal sum utility maximiizm
Evaluating the dual function & > 0 corresponds to solving (CSU).
L weighted sum rate maximization problems on the underlying As expected, for largé& and identical channel distributions,
MISO IFCs, with weightu = 1+ . The dual solution is again the utility seti/ is almost symmetric and; = d». Moreover,
found by an outer linearization method, and a primal optim&lBS and SU almost coincide. The causal NBS solution is
rate allocation® is obtained by primal recovery. Note that [15]clearly not Pareto optimal. On the other hand, the modified
solves a similar problem in the context of MIMO broadcastausal NBS and the causal SU solution perform very close to
channels. the optimum non-causal solutions.

Problem (20) can also be solved via Lagrange duality, for Figure 2 shows the boundary#f the disagreement poid

details, see, e.g., [16]. and the corresponding bargaining solutionsfor 10 blocks.

for A > 0. Then the dual function follows as
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L

For each block, the channel realizations are drawn from-zefdgure 3. Average relative distances, identical chanretriduitions

mean Gaussian distributions with the following covariance

matrices:Ch, , = Ch,, = 0.5I, andCy, , = Chp,, = 51. 0.08
In such a non-symmetric scenario, the solutions NBS and

SU yield clearly different outcomes. Still, from an axiomeat 0.071
viewpoint, they are equivalent — they are different, buthbot o 0.06l
provide a gain compared to the disagreement pdirénd ~
fulfill the axioms WPO, IIA, and SYM. The causal SU 2 (05l
solution closely approximates the SU solution, although it 3

is not strictly PO. The causal NBS is clearly not Pareto © 0.04}
optimal. The modified causal NBS fares much better than the &,
unmodified version. While the CNBSM point seems to lie on g 0.03}
the Pareto boundary, it is not very close to the NBS solution P

— in other words, while being PO, it does not provide a good 0.021 &—su

approximation of NBS. 001l ' =A~  NBS
To further investigate the quality of approximation proadd - @ = NBSM
by the causal strategies, Figure 3 shows the average eelativ 0 ‘ ‘ ‘ ‘
distance between the solutions for different numbers afisio 0 5 10 I 15 20 25
L. The relative distances are computed as follows:
SuU csu NBS CNBS Figure 4. Average relative distances, asymmetric scenario
= — &, ™S — S

(SVL), (NBS),

[V
||uNBS _ uCNBSMH
2

[[uNES]|,

[[uNBS],

sum utility solution is considerably worse than in the sym-
metric scenario. As a result, the modified block-wise NBS
and the causal sum utility provide a similar performances Th
For eachL, results are averaged ove00 realizations oft/. reduced performance of the causal sum utility solution can
For each block, the channel realizations are drawn frompa explained as follows: Due to the strong asymmetry of the
circularly symmetric Gaussian distribution with zero meaa  gcenario, with much better channels to u&en many channel
covariance matrixCh,,, = I. The causal solution obtainedyeajizations sum rate is maximized by allocating a large rat
by simply computing the NBS at each block provides thg yser2 and only the minimal required rati to userl. As a
worst approximation. Taking into account the surplus frofsyit, usent cannot accumulate a surplus over time, resulting

previous blocks significantly improves the performance f constraints¢ > d¢ that are much tighter than necessary.
the causal NBS. The causal sum utility strategy provides the

best approximation, and its outcome is close to the optimum
solution if the number of blocks is sufficiently large.

For the results in Figure 4, the channel realizations areWe investigated the problem of bargaining over fading
drawn from zero-mean Gaussian distributions with the folaterference channels, where interaction between plagkes
lowing covariance matricesCp, , = Cr,, = 0.5I, and place over multiple blocks, with each block corresponding
Ch,, = Ch,, = 5I. Again, the block-wise NBS solutionto a channel realization. We showed that the Nash bargain-
provides worst performance. The performance of the caugaj solution is non-causal. Based on the argument that an

(NBSM).
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btained b . f utiliti d . Communicationsvol. 26, no. 7, pp. 1059-1069, 2008.
obtaine y maximizing a sum or utliués under rTlInImum[4] J. v. Neumann and O. Morgensterfiheory of Games and Economic

utility constraints. This alternative solution is also reausal. Behavior Princeton University Press, 1944.
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