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Abstract—We consider the problem of bargaining over block
fading interference channels, where interaction between players
takes place over multiple channel realizations. Based on the
assumption that the transmitters have conflicting objectives,
we use axiomatic bargaining theory to derive optimal rate
allocations in each block. In the setup under consideration,
the Nash bargaining solution (NBS) is non-causal, i.e., cannot
be implemented in a real-world system. We argue that the
invariance axiom is superfluous when bargaining over a rate
region. Without the invariance axiom, an equivalent solution
follows from the maximization of a sum of utilities under
minimum utility constraints. This alternative solution is also
non-causal. We propose causal approximations to the optimal
solutions. The sum utility solution allows for a more systematic
approximation than the NBS. Thus, dropping the invariance
axiom makes it possible to choose a solution which can be better
approximated. We provide numerical results to illustrate the
performance of the proposed solutions.

I. I NTRODUCTION

A simple network consisting of two transmitter-receiver
pairs is considered. Transmitterk sends information to receiver
k, k = 1, 2. Information for receiver1 is not of interest for
receiver2, and vice versa. It is assumed, however, that both
transmitters operate in the same band. From the viewpoint
of information theory, such a configuration represents an
interference channel (IFC) [1], [2]. With respect to practical
wireless systems, the IFC is a model for interference be-
tween two base stations operating in the same band [3]. It
is assumed that the transmitters are equipped with multiple
transmit antennas, while the receivers have a single antenna
each. Multiple antennas enable the transmitters to perform
spatial signal processing – and thereby manage interference.
The capacity region of such a multiple-input, single-output
(MISO) IFC is not known. By treating interference as noise,
however, it is straightforward to find an achievable rate region
for a given channel realization [3].

The ability of each transmitter to choose from a set of
transmission strategies immediately leads to the questionof an
optimal choice of transmission strategies. If both transmitters
share a common objective, the answer is obvious: choose
a pair of transmission strategies that optimizes the common
objective. In this work, however, it is assumed that there is
no common good– on the contrary, it is assumed that both
transmitters have conflicting objectives. A typical scenario
where the transmitters do not share a common objective is
that of two base stations owned by different operators [3].
The assumption of conflicting objectives turns the problem

of choosing a transmission strategy into a game theoretic
problem [4].

The case that interaction between transmitters (or players)
takes place for the duration of a single channel realizationis
investigated in [3], from both a noncooperative and cooperative
game theory point of view. It is shown that in the MISO
IFC, Nash Equilibria, which correspond to non-cooperative
behaviour, are highly inefficient, and both players can signif-
icantly improve their outcome by cooperation. By allowing
for cooperation between the players, the problem of choosing
a transmission strategy can be cast as a bargaining problem.
The authors in [3] propose using the Nash Bargaining Solution
(NBS) [5] as outcome of the bargaining problem. The NBS
has been frequently used in the context of resource allocation
in communication systems [6], [7], [8], [9].

In this work, we consider the case that the players interact
over multiple channel realizations. Similar to [3], we use
axiomatic bargaining theory [10] to discuss the choice of
transmission strategies. The interaction over multiple channel
realizations, however, leads to the problem of causality: In
a real-world system, the transmitters have to decide on a
transmission strategy for the current channel realizationwith-
out knowing about the future channel. We show that when
bargaining over a block of channel realizations, the NBS leads
to a non-causal solution, i.e., it is not implementable in a real-
world system. As a result, the NBS has to be approximated
by a causal solution.

The NBS is one possible solution to a bargaining problem.
In contrast to previous work on bargaining over rate regions,
we argue that when bargaining over rate regions, other solu-
tions are equivalent from an axiomatic viewpoint, based on
the fact that information rate represents a technical measure
and therefore does not require scale invariance. Based on
this observation, we propose sum utility maximization under
minimum utility constraints (SU) as an equivalent solution
to the bargaining problem. As shown in this work, the SU
solution is again non-causal, and has to be approximated by a
causal solution. In contrast to the NBS, approximation of SU
by a causal strategy is straightforward.

Notation: Vectors and vector-valued functions are denoted
by bold lowercase letters, matrices by bold uppercase letters.
The transpose and the Hermitian transpose ofQ are denoted
by QT and QH, respectively. The identity matrix is denoted
by I , and the vector of all ones is denoted by1. The following
definitions of order relations between vectorsx, y ∈ RK , with
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K > 1, are used:

x ≥ y ⇔ ∀k : xk ≥ yk,

x > y ⇔ x ≥ y, ∃k : xk > yk,

x ≫ y ⇔ ∀k : xk > yk.

Order relations≤, <,≪ are defined in the same manner.
Finally, on subsets ofR2 we define the operator()P as follows:
SP = {(x2, x1) : (x1, x2) ∈ S}. Accordingly, if a setS ⊆ R2

is symmetric, we haveSP = S.

II. MISO I NTERFERENCECHANNEL

A. System Model

We consider the following interference channel (IFC): Two
transmitters, TX1 and TX2, send information to two receivers,
RX1 and RX2. The transmitters are equipped withN > 1
transmit antennas, while the receivers have a single receive
antenna each. Such a multiple-input, single-output (MISO)
IFC was previously considered in [3], [11].

The received signal at receiverk, k ∈ {1, 2}, is given by

yk =
2
∑

q=1

hT
q,kwqsq + ηk, (1)

wherehq,k ∈ CN is the channel from transmitterq to receiver
k, wq ∈ CN and sq are the beamforming vector (precoder)
and transmitted symbol of transmitterq, respectively, andηk

is circularly symmetric AWGN with zero mean and variance
σ2.

We assume that each transmitter is subject to a peak power
constraint with maximum powerP , which, under the assump-
tion of uncorrelated, unit power data symbols, translates into
a constraint on the precoderswk:

‖wk‖2

2
≤ P, k = 1, 2. (2)

In the remainder of this section, it is assumed that the
channelsh1,1, h1,2, h2,1, andh2,2 are fixed and do not change
over time. In Section III, the channel model is extended to a
block fading model.

B. An Achievable Rate Region

Treating the interference from other users as noise, for given
precoders(w1, w2) and channelshq,k, an achievable rate
vectorR = (R1, R2) is given byR ∈ R2

+ : Rk < rk(w1, w2)
[3], with

rk(w1, w2) = log2

(

1 +
|hT

k,kwk|2

σ2 +
∑

q 6=k |hT
q,kwq|2

)

.

The set of achievable rate vectors is defined as the closure of
all such vectors for given transmit power constraints,

R̃ =
{

r(w1, w2) : ‖wk‖2

2
≤ P, k = 1, 2

}

. (3)

Let R denote the convex hull of̃R. By time-sharing between
vectors inR̃, any vector inR is also achievable. The setR
is convex and compact [3].

C. Bargaining Over the Rate Region

While R provides a set of achievable rates, it is not
immediately obvious how both transmitters should choose
their beamforming vectorswk. In this work, it is assumed
that there isno common good, i.e., the two transmitters do not
share a common objective, but instead both aim at maximizing
their individual rate.

If both transmitters (players) do not cooperate, the only
reasonable outcome is an operating point which constitutes
a Nash equilibrium [3]. As shown in [3], the Nash Equilibria
are given by the following set of beamforming vectors:

WNE =

{

(w1, w2) : wk =
αkh∗

k,k

‖hk,k‖2

, |αk|2 = P

}

. (4)

Let rNE denote the corresponding rate vector. given by

rNE = r

(√
Ph∗

1,1

‖h1,1‖2

,

√
Ph∗

2,2

‖h2,2‖2

)

. (5)

The rate vectorrNE is in general not Pareto optimal, i.e., it does
not lie on the Pareto boundary ofR. Based on this result, both
players can jointly improve their outcome by cooperation [3].

By allowing for cooperation between the players, the prob-
lem of choosing a point fromR turns into a bargaining
problem. The authors in [3] propose using the Nash Bargaining
Solution (NBS) [5] as outcome of the bargaining problem (cf.
Section IV for details on the NBS).

D. Weighted Sum Rate Maximization

An important problem in the MISO IFC is the maximization
of a weighted sum of rates over the set of achievable rates:

max
r∈R

λTr, (6)

for a given weight vectorλ ≥ 0. As time-sharing is not
required to maximize a weighted sum of rates, the problem is
equivalent to maximizing over̃R. Moreover, as the objective
function is increasing inr, the maximum is achieved on the
Pareto boundary of̃R [12]. A parameterization of the Pareto
boundary is provided in [11]. Based on the parameterization
from [11], we can write the weighted sum rate maximization
problem as a monotonic optimization problem [12]. As a
result, using methods from monotonic optimization, we can
solve the weighted sum rate maximization on the MISO IFC
to global optimality.

III. B LOCK-FADING IFC

Section II summarized the case of two players bargaining
over a single channel realization of a MISO IFC. In a wireless
communication system, players will usually not meet for the
duration of only a single channel realization, but their interac-
tion will last for the duration of several channel realizations.
We adopt a block-fading channel model, where the quadrupel
of channel vectors(h1,1, h1,2, h2,1, h2,2) at blockℓ is the re-
alization of a random variableHℓ. Random variablesHm and
Hn, with m 6= n, are assumed to be statistically independent
and identically distributed. The probability density function
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of Hℓ is denoted bypH . The problem of bargaining over a
sequence ofL blocks is considered.

Let Rℓ denote the achievable rate region at thel-th block.
Depending on the transmit strategies of both players, player k
gets a raterℓ

k in block l. The players’ utility is defined as the
average rate over theL blocks:

uk =
1

L

L
∑

l=1

rℓ
k. (7)

Accordingly, the achievable utility region is given by

U =

{

u ∈ R
2
+ :

1

L

L
∑

l=1

rℓ, rℓ ∈ Rℓ

}

. (8)

The achievable utility region is a convex set: Letu, ũ ∈ U .
Define

u(α) = αu + (1 − α)ũ

=
1

L

L
∑

l=1

αrℓ + (1 − α)r̃ℓ =
1

L

L
∑

l=1

rℓ(α),

with rℓ, r̃ℓ ∈ Rℓ. Due to the convexity ofRℓ, rℓ(α) ∈ Rℓ,
thusu(α) ∈ U for α ∈ [0, 1]. Moreover,U is compact, due to
the compactness ofRℓ.

IV. BARGAINING OVER THE UTILITY REGION

In this work, we consider the case of cooperative bargaining,
i.e., both players cooperate in order to achieve an outcomeu ∈
U that is better than an outcome which would result from non-
cooperative behaviour. The non-cooperative outcome is given
by the utility point that results from both users choosing their
transmission strategy to optimize their rate without considering
the interference caused to the other player:

d =
1

L

L
∑

l=1

dℓ =
1

L

L
∑

l=1

rℓ
NE, (9)

whererℓ
NE is defined in (5). In the following, we will use the

theory of axiomatic bargaining to discuss possible methods
to choose an outcomeu ∈ U . In the language of axiomatic
bargaining, a pair(U , d), with U compact and convex, and
d ∈ int U , represents a bargaining problem [10]. LetB denote
the set of all bargaining problems. Then a functionf : B → R2

that assign to each problem(U , d) a unique element ofU is
a bargaining solution.

A. Nash Bargaining Solution

One popular solution to a family of bargaining problemsB
is theNash Bargaining Solution(NBS),

fNBS(U , d) = argmax
u∈U ,d≤u

(u1 − d1)(u2 − d2). (10)

The NBS can be found by computing the optimal rate alloca-
tion in each block:

max
r1,...,rL

1

L2

2
∏

k=1

(

L
∑

l=1

(rℓ
k − dℓ

k)) s.t.
1

L

L
∑

l=1

rℓ ≥ d, rℓ ∈ Rℓ.

(11)

Let r̂ = (r̂1, . . . , r̂L) denote a maximizer of (11). Then

fNBS(U , d) =
1

L

L
∑

l=1

r̂ℓ. (12)

Equation (11) shows that the NBS is a non-causal solution:
In order to determine the optimal rate allocation in the first
block, knowledge of the rate region and Nash Equilibrium of
the blocks2, . . . , L is required. This is due to the fact that
the optimization problem in (11) does not decouple, thus the
optimal ratesr̂1, . . . , r̂L have to be computed jointly.

B. The Invariance Axiom is Superfluous

The NBS is the only bargaining solution that fulfills

f(U , d) ≥ d (13)

and the following four axioms:

1) Weak Pareto Optimality (WPO). Letu, u′ ∈ U , with
u′

k > uk, ∀k. Thenu 6= f(U , d).
2) Symmetry (SYM). If U = UP and d1 = d2, then

f1(U , d) = f2(U , d).
3) Independence of Irrelevant Alternatives (IIA). Let(U , d)

and (U ′, d) be bargaining problems, withU ′ ⊂ U and
f(U , d) ∈ U ′. Thenf(U , d) = f(U ′, d).

4) Scale Invariance (INV). Define an affine transforma-
tion g(u) = Tu + b, where T = diag(t1, t2) is
a positive definite diagonal matrix, and letU ′ =
{u′ = g(u), u ∈ U} , d′ = g(d). Then f(U ′, d′) =
g(f(U , d)).

Judging whether NBS is a good solution strategy for the
problem at hand has to be based on a discussion of the
four axioms – if all four axioms are desired, there is no
other option. For a detailed discussion of the axioms WPO,
SYM, and IIA, see, e.g., [5], [10]. For the bargaining problem
considered in this paper, they all imply desirable properties.

The desirability of the axiom INV is less obvious. Assume
that INV holds. Then

fNBS
1 (U ′, d′) = t1f

NBS
1 (U , d) + b1,

i.e., the utility of user1 is independent of the scale transfor-
mationst2 andb2 of user2. In other words, user2 can choose
any valuest2 > 0 andb2 without affecting user1. Why would
such a property be desirable? The answer lies in the utility
model that Nash assumed in his work: Nash assumed that the
users’ utility functions arevon Neumann-Morgenstern utilities,
and such utility functions are unique only up to a positive
affine transformation [4], [10]. Obviously, if the utility of user
1 shows such an ambiguity, it is desirable to not have this
ambiguity impact the outcome for user2, and vice-versa.

We argue that the utility defined in (7) is unique, i.e., it is
not invariant to positive affine transformations: The utility uk

as defined in (7) is the average of information rates, and there
is a clear understanding thatr = 0 means no information (thus
we cannot choosebk arbitrarily), andr′ = 100r means100-
fold more information (thus we cannot choosetk arbitrarily).
Consequently, the axiom INV is not necessary for bargaining
over rate regions.
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C. Maximum Sum Utility

From an axiomatic viewpoint, if the axiom INV is not
needed, any solutionf that fulfills (13) and the axioms WPO,
SYM, and IIA is as good as the NBS. Consider a solutionfSU

defined as follows:

fSU(U , d) = s(M(U , d), d) (14)

where

M(U , d) = argmax1
Tu s.t. u ∈ U , u ≥ d, (15)

ands is a function satisfying

s(M, d) ∈ M, (16)

M = MP, d1 = d2 ⇒ s1(M, d) = s2(M, d). (17)

The solutionfSU fulfills (13) and the axioms WPO, SYM, and
IIA [10]. The function s is needed to select one maximizer
if the set of maximizers has multiple elements. Property (17)
ensures that the solution fulfills the SYM axiom.

Consider the problem

max
r1,...,rL

1

L

L
∑

l=1

1
Trℓ s.t.

1

L

L
∑

l=1

rℓ ≥ d, rℓ ∈ Rℓ. (18)

Let r̂ = (r̂1, . . . , r̂L) denote a maximizer of (18). Define

uSU =
1

L

L
∑

l=1

r̂ℓ.

Clearly, uSU ∈ M(U , d). The solutionfSU requires that
fSU(U , d) is chosen fromM by a function satisfying (17).
Under the assumption thatM 6= MP or d1 6= d2, we can set

fSU(U , d) = uSU. (19)

On the other hand, ifM = MP andd1 = d2, we have to find
the point inM with u1 = u2. This corresponds to computing
the intersection between the line{x1, x ∈ R} andM. As all
points in M are Pareto optimal, this corresponds to finding
the maximumx such thatx1 ∈ U . The optimization problem
to find the intersection point is thus formulated as

max
x,r1,...,rL

x s.t. x1 ≤ 1

L

L
∑

l=1

rℓ, rℓ ∈ Rℓ. (20)

Let x̌ denote the optimum solution of (20). While it is simple
to test whetherd1 = d2, it is not obvious whetherM =
MP. Still, if x̌1 ∈ M, thenx̌1 achieves the same sum utility
asuSU. Accordingly, one possible algorithm for computing a
solutionfSU(U , d) is specified by

fSU(U , d) =

{

x̌1, x̌1
T
1 = 1

TuSU,

uSU, otherwise.
(21)

Similar to the NBS solution, problem (18) is non-causal,
due to the sum over all blocks in the constraint. The objective
function is decomposable: it is a sum of terms that are inde-
pendent for each block. This property allows for a systematic
causal approximation and represents the main motivation for
considering the SU solution. Another solution that satisfies
the axioms WPO, SYM, and IIA is the so-called egalitarian

solution [13]. While the egalitarian solution has an interesting
robustness property [13], it does not provide a decoupling in
the objective.

D. A Special Case: Infinite Horizon and Symmetric Physical
Layer

In general, the solutionsfNBS andfSU will yield different
outcomes to a given bargaining problem. There is an im-
portant special case, however, in which both solutions yield
an identical outcome: The interaction between both players
lasts for infinitely many blocks and the interference channel is
statistically symmetric. We say that the channel is statistically
symmetric if the probability density functionpH fulfills

pH(h1,1, h1,2, h2,1, h2,2) = pH(h2,2, h2,1, h1,2, h1,1).

Define the ergodic utility region̄U and disagreement point
d̄ as follows:

Ū = lim
L→∞

U , d̄ = lim
L→∞

d.

From the symmetry of the physical layer immediately follows
that in the case of a statistically symmetric channel,

Ū = ŪP, d̄1 = d̄2.

In other words, the bargaining problem(Ū , d̄) is symmetric if
the channel is statistically symmetric. As bothfNBS andfSU

fulfill the SYM axiom, we have

fNBS(Ū , d̄) = fSU(Ū , d̄).

As a result, if the channel is statistically symmetric and the
interaction between the two players is long enough, it does
not matter whether the players cooperate based on a Nash or
sum utility strategy, as both yield the same result.

In addition, from the SYM axiom and (13) it follows that

fSU(Ū , d̄) = γd̄,

with γ ≥ 1. Accordingly,

fSU(Ū , d̄) ∈ argmax
u∈Ū

1
Tu.

In other words, the sum utility solution can be obtained
without considering the constraintu ≥ d̄. Now let

r̂ℓ ∈ argmax
rℓ∈Rℓ

1
Trℓ. (22)

Define

û = lim
L→∞

1

L

L
∑

ℓ=1

r̂ℓ.

It follows that

û ∈ argmax
u∈Ū

1
Tu.

Moreover, if the algorithm to computêrℓ is not biased towards
one user, symmetry implies thatû1 = û2. As a result,

fSU(Ū , d̄) = û.

Accordingly, in the symmetric case, bothfNBS(Ū , d̄) and
fSU(Ū , d̄) can be obtained in a causal manner by solving (22)
in each block.
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V. CAUSAL SOLUTIONS

A causal solution denotes a solution which provides a rule
to choose the raterℓ at time instantℓ based on knowledge
from the current and past time instants. Any such solution has
to ensure that cooperation does not make any player worse-off
than noncooperation, i.e., the solution has to guarantee that

1

L

L
∑

l=1

rℓ ≥ d, (23)

otherwise it would clearly be irrational of the players to
cooperate.

A. Causal NBS

A straightforward causal solution is simply to ignore that
the bargaining takes place over multiple blocks and compute
the NBS for each block separately. The corresponding rates
are maximizers of

max
rℓ∈Rℓ

(rℓ
1 − dℓ

1)(r
ℓ
2 − dℓ

2) s.t. rℓ ≥ dℓ. (24)

Let r̂ℓ denote a maximizer of (24). Clearly, (23) is satisfied,
as

uCNBS =
1

L

L
∑

l=1

r̂ℓ ≥ 1

L

L
∑

l=1

dℓ = d.

Still, by considering each block separately, this solutiondoes
not take into account the rate allocation at the previous blocks.
Consider the following set of inequalities:

ℓ
∑

q=1

rq ≥
ℓ
∑

q=1

dq, ℓ = 1, . . . , L. (25)

Clearly, (25) implies (23). Re-arranging (25) yields

rℓ ≥ d̃ℓ, ℓ = 1, . . . , L. (26)

with

d̃ℓ =
ℓ
∑

q=1

dq −
ℓ−1
∑

q=1

rq. (27)

Note that with (26) and (27),

d̃ℓ = dℓ −
(

rℓ−1 − d̃ℓ−1
)

≤ dℓ. (28)

Equation (28) shows that the constraint in problem (24) is
unnecessarily tight. Accordingly, we can modify problem (24)
by replacingdℓ by d̃ℓ:

max
rℓ∈Rℓ

(rℓ
1 − d̃ℓ

1)(r
ℓ
2 − d̃ℓ

2) s.t. rℓ ≥ d̃ℓ. (29)

While the original version does not consider the rate alloca-
tions at the previous blocks, the modified version subtracts
any surplusrℓ−1 − d̃ℓ−1 from the previous block from the
disagreement pointdℓ of the current block.

Assume that (29) was solved forℓ = 1, . . . , L, thus the
correspondingd̃ℓ are known. Then solving problem (29) for
ℓ = 1, . . . , L is equivalent to solving the problem

max
r1,...,rL

1

L2

L
∑

l=1

(rℓ
1 − d̃ℓ

1)(r
ℓ
2 − d̃ℓ

2)

s.t. rℓ ≥ d̃ℓ, rℓ ∈ Rℓ, ℓ = 1, . . . , L

(30)

with d̃ℓ set to the previously obtained values. Comparing
(30) with the non-causal NBS problem (11) shows that to
obtain the modified causal NBS as an approximation of the
noncausal NBS, the constraint onrℓ is tightened, while in
the objective functiondℓ is replaced byd̃ℓ and the order
of multiplication and summation is reversed. Due to the
significant modifications of the cost function, an assessment of
the quality of this approximation other than numerical seems
infeasible.

B. Causal Sum Utility

A causal approximation of the sum utility solution is found
in two steps: First, the constraint (23) in (18) is replaced by
the tighter constraint (26), yielding the problem:

max
r1,...,rL

1

L

L
∑

l=1

1
Trℓ s.t. rℓ ≥ d̃ℓ, rℓ ∈ Rℓ, ℓ = 1, . . . , L.

(31)

Second, by neglecting the dependency ofd̃ℓ on r1, . . . , rℓ−1,
problem (31) decouples intoL independent problems, with the
problem at thel-th time instant given by

max
rℓ∈Rℓ

1
Trℓ s.t. rℓ ≥ d̃ℓ. (32)

Let r̂ℓ denote a maximizer of (32) in theℓ-th block. The
resulting utility pointuCSU ∈ U is given by

uCSU =
1

L

L
∑

l=1

r̂ℓ. (33)

Let the setL contain the indices of the blocks in which the
inequality constraints in (32) are inactive at the optimal rate
r̂ℓ. In contrast to the causal approximations of the NBS, the
causal sum utility solution (32) uses the same cost functionas
the non-causal one (18). As a result, if for allℓ = 1, . . . , L
the inequality constraints in (32) are inactive in the optimum,
problems (18) and (32) are equivalent in the sense that theL
maximizers of (32) also represent a maximizer of (18). As an
immediate result, ifL = {1, . . . , L}, the pointuCSU is Pareto
optimal. Note thatd̃ℓ is smaller the larger the surplus from
previous blocks. Thus, if channel realizations are such that a
surplus can be accumulated over time, a good approximation
can be expected.

VI. COMPUTING THE OPTIMAL RATE ALLOCATIONS

In this section, we briefly discuss how to compute the opti-
mum rate allocations for the bargaining solutions presented in
Sections IV and V by solving the corresponding optimization
problems.

A. Nash Bargaining Solution

Let u∗ = fNBS(U , d). From the definition offNBS and the
assumption that there existsu ∈ U with u ≫ d, it follows
that u∗ ≫ d.
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We compute the optimum rate allocationsr̂ℓ, ℓ = 1, . . . , L,
of (11) by solving the following optimization problem:

max
s,r1,...,rL

K
∑

k=1

ln(sk) s.t. s ≤ 1

L

L
∑

l=1

rℓ − d, rℓ ∈ Rℓ,

(34)

with an extended definition ofln: ln(x) = −∞, x ≤ 0 and
slack variabless ∈ R2. Problem (34) is solved by Lagrange
duality. Define the Lagrangian as

L(s, r1, . . . , rL, λ) =

2
∑

k=1

ln(sk) + λT(
1

L

L
∑

l=1

rℓ − d − s),

(35)

with λ ∈ R2
+. The dual function follows as

q(λ) = −λTd + sup
s

2
∑

k=1

ln(sk) − λTs +
1

L

L
∑

l=1

max
rℓ∈Rℓ

λTrℓ.

(36)

Accordingly, evaluating the dual function atλ ≫ 0 basically
corresponds to solvingL weighted sum rate maximization
problems on the underlying MISO IFCs. This actually is the
motivation for introducing the variabless in (34): All problems
that directly involveRℓ are weighted sum rate problems,
and globally optimal solution methods for this problem are
available, cf. Section II.

The dual solution is obtained by minimizing the dual
function with respect toλ ≥ 0. We use an outer approximation
method to obtain the dual optimizerλ∗ [14]. A primal opti-
mum rate allocation̂r = (r̂1, . . . , r̂L) is obtained by primal
recovery, using the method described in [14]. Note thatr̂ may
only be achievable by time-sharing. Strong duality holds, thus
the primal recovery yields the primal optimal solution – and
implicitly performs a time-sharing in the case of time-sharing
optimality.

B. Sum Utility Maximization

To find an optimum rate allocation of (18), we proceed
similar to the NBS solution. Again, the solution is found via
Lagrange duality. Define the Lagrangian of (18) as

L(r1, . . . , rL, λ) =

L
∑

l=1

1
Trℓ +

L
∑

l=1

λTrℓ − λTd (37)

for λ ≥ 0. Then the dual function follows as

q(λ) = −λTd +

L
∑

l=1

max
rℓ∈Rℓ

(1 + λ)Trℓ. (38)

Evaluating the dual function atλ ≥ 0 corresponds to solving
L weighted sum rate maximization problems on the underlying
MISO IFCs, with weightµ = 1+λ. The dual solution is again
found by an outer linearization method, and a primal optimal
rate allocatioňr is obtained by primal recovery. Note that [15]
solves a similar problem in the context of MIMO broadcast
channels.

Problem (20) can also be solved via Lagrange duality, for
details, see, e.g., [16].
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Figure 1. Bargaining solutions,L = 500, identical channel distributions

C. Causal NBS

The optimum rate allocation in theℓ-th block under the
causal NBS strategy is obtained analogous to the non-causal
NBS solution, withr1, . . . , r

L replaced byrℓ andd replaced
by d̃ℓ, resulting in the Lagrangian

L(s, rℓ, λ) =

2
∑

k=1

ln(sk) + λT(rℓ − d̃ℓ − s). (39)

D. Causal Sum Utility

The optimum rate allocation in theℓ-th block under the
causal maximum sum utility strategy is obtained analogous to
the non-causal solution, withr1, . . . , r

L replaced byrℓ and
d replaced byd̃ℓ, resulting in the Lagrangian

L(rℓ, λ) = 1
Trℓ + λTrℓ − λTd̃ℓ. (40)

VII. N UMERICAL RESULTS

In order to investigate the performance of the causal so-
lutions proposed in Section V, we compute the bargaining
solutions for different number of blocks and different distribu-
tions of the channelshq,k. In all simulations,P/σ2 = 10 and
N = 2. Figure 1 shows the utility setU , the disagreement point
d, and the corresponding bargaining solutions forL = 500
blocks. For each block, the channelshq,k are drawn from
a circularly symmetric Gaussian distribution with zero mean
and covariance matrixChq,k

= I . The solid line in Figure 1,
labelled by∂U , corresponds to the boundary ofU . Shown are
the following solutions: non-causal NBS (NBS), causal NBS
(CNBS), modified causal NBS (CNBSM), non-causal sum
utility maximization (SU), and causal sum utility maximization
(CSU).

As expected, for largeL and identical channel distributions,
the utility setU is almost symmetric andd1 = d2. Moreover,
NBS and SU almost coincide. The causal NBS solution is
clearly not Pareto optimal. On the other hand, the modified
causal NBS and the causal SU solution perform very close to
the optimum non-causal solutions.

Figure 2 shows the boundary ofU , the disagreement pointd,
and the corresponding bargaining solutions forL = 10 blocks.
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Figure 2. Bargaining solutions,L = 10, asymmetric scenario

For each block, the channel realizations are drawn from zero-
mean Gaussian distributions with the following covariance
matrices:Ch1,1

= Ch2,1
= 0.5I , andCh1,2

= Ch2,2
= 5I .

In such a non-symmetric scenario, the solutions NBS and
SU yield clearly different outcomes. Still, from an axiomatic
viewpoint, they are equivalent – they are different, but both
provide a gain compared to the disagreement pointd and
fulfill the axioms WPO, IIA, and SYM. The causal SU
solution closely approximates the SU solution, although it
is not strictly PO. The causal NBS is clearly not Pareto
optimal. The modified causal NBS fares much better than the
unmodified version. While the CNBSM point seems to lie on
the Pareto boundary, it is not very close to the NBS solution
– in other words, while being PO, it does not provide a good
approximation of NBS.

To further investigate the quality of approximation provided
by the causal strategies, Figure 3 shows the average relative
distance between the solutions for different numbers of blocks
L. The relative distances are computed as follows:
∥

∥uSU − uCSU
∥

∥

2

‖uSU‖
2

(SU),

∥

∥uNBS − uCNBS
∥

∥

2

‖uNBS‖
2

(NBS),
∥

∥uNBS − uCNBSM
∥

∥

2

‖uNBS‖
2

(NBSM).

For eachL, results are averaged over900 realizations ofU .
For each block, the channel realizations are drawn from a
circularly symmetric Gaussian distribution with zero meanand
covariance matrixChq,k

= I . The causal solution obtained
by simply computing the NBS at each block provides the
worst approximation. Taking into account the surplus from
previous blocks significantly improves the performance of
the causal NBS. The causal sum utility strategy provides the
best approximation, and its outcome is close to the optimum
solution if the number of blocks is sufficiently large.

For the results in Figure 4, the channel realizations are
drawn from zero-mean Gaussian distributions with the fol-
lowing covariance matrices:Ch1,1

= Ch2,1
= 0.5I , and

Ch1,2
= Ch2,2

= 5I . Again, the block-wise NBS solution
provides worst performance. The performance of the causal
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Figure 3. Average relative distances, identical channel distributions
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Figure 4. Average relative distances, asymmetric scenario

sum utility solution is considerably worse than in the sym-
metric scenario. As a result, the modified block-wise NBS
and the causal sum utility provide a similar performance. The
reduced performance of the causal sum utility solution can
be explained as follows: Due to the strong asymmetry of the
scenario, with much better channels to user2, in many channel
realizations sum rate is maximized by allocating a large rate
to user2 and only the minimal required ratẽdℓ

1 to user1. As a
result, user1 cannot accumulate a surplus over time, resulting
in constraintsrℓ

1 ≥ d̃ℓ
1 that are much tighter than necessary.

VIII. C ONCLUSIONS

We investigated the problem of bargaining over fading
interference channels, where interaction between playerstakes
place over multiple blocks, with each block corresponding
to a channel realization. We showed that the Nash bargain-
ing solution is non-causal. Based on the argument that an
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invariance axiom is not needed when bargaining over rate
region, an equivalent solution to the bargaining problem is
obtained by maximizing a sum of utilities under minimum
utility constraints. This alternative solution is also non-causal.
We showed that a causal solution can be obtained in the
special case of infinite horizon and symmetric physical layer.
To deal with the general case of a finite number of blocks
and a nonsymmetric setup, we proposed causal approximations
to the optimal strategies. For the NBS, the approximation is
rather ad-hoc and basically corresponds to computing an NBS
in each block. For the sum utility solution, an approximation
is obtained by tightening the constraints on the rate allocation
in each block. Thereby, the sum utility solution allows for a
more systematic approximation than the NBS.

Numerical results show the quality of the proposed approxi-
mations. It turns out that simply computing the NBS separately
in each block often leads to inefficient results. A modified
version of the block-wise NBS that takes into account the sur-
plus from previous blocks performs significantly better. Inthe
statistically symmetric scenario, the causal approximation of
the sum utility strategy outperforms the other causal strategies
and yields an outcome close to the non-causal solution if the
number of blocks is large. In the asymmetric scenario, the
causal sum utility solution and the modified block-wise NBS
solution provide similar performance.
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