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Abstract—Recently, the capacity region of the Gaussian broad-
cast channel has been characterized. For a given transmit power
constraint, those points on the boundary of the capacity region
can be regarded as the set of optimal operational points. The
present work addresses the problem of selecting the point within
this set that satisfies given constraints on the ratios between rates
achieved by the different users in the network. This problem is
usually known as rate balancing.

To this end, the optimum iterative approach for general MIMO
channels is revisited and adapted to an OFDM transmission
scheme. Specifically, an algorithm is proposed that exploits the
structure of the OFDM channel and whose convergence speed
is essentially insensitive to the number of subcarriers. This is
in contrast to a straightforward extension of the general MIMO
algorithm to an OFDM scheme. Still, relatively high complexity
and the need of a time-sharing policy to reach certain rates
are at least two obstacles for a practical implementation of the
optimum solution. Based on a novel decomposition technique
for broadcast channels a suboptimum non-iterative algorithm is
introduced that does not require time-sharing and very closely
approaches the optimum solution.

Index Terms—MIMO systems, multiuser channels, OFDM,
rate balancing, successive encoding.

I. INTRODUCTION

INCREASING demand for broadband services calls for
higher data rates in future wireless communication systems

[1]. Data rates of several Mb/s for high mobility scenarios and
up to 1 Gb/s in low mobility or static scenarios are expected
in fourth generation systems. In the way to such transmission
rates there are two major barriers to overcome. The first is
scarcity of spectrum, which limits the amount of bandwidth
available for transmission. The second is the wireless channel
that severely distorts the signal due to multipath propagation.

The use of multiple antennas increases capacity. On the
other hand, multicarrier technology effectively combats the
effects of multipath propagation. Therefore, combination of
multiple antennas and multicarrier technology seems to be
ideal to achieve the expected rates under the mentioned con-
straints [2]. In the work at hand we consider the downlink of a
wireless communication system with multiple antennas at the
transmitter and the receivers and orthogonal frequency division
multiplexing (OFDM) as transmission scheme. We assume
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that receivers know their respective transmission channels
perfectly and the transmitter has perfect knowledge of the
channel of every user. This assumption presumes perfect chan-
nel estimates, a quasi-static scenario, in which channels do
not change significantly for the time between two consecutive
channel estimations, and channel reciprocity in case of a time
division duplex (TDD) system or a feedback link in case
of a frequency division duplex (FDD) system. Under these
assumptions we study approaches that aim at maximizing
the sum of rates with a constraint on the ratios between the
final rates achieved by the users in the network. To be more
precise, if Rk is the rate obtained by user k and R is the
sum of the rates of all users, the constraint can be given as
a vector of relative rates ρ = [ ρ1 · · · ρK ]T, where
ρk = Rk/R. This can be regarded as a quality of service
(QoS) constraint that gives the transmitter the opportunity
to choose the transmission strategy considering possible rate
requirements coming from higher system layers.

In the context of OFDM and SISO channels rate balancing
approaches have been proposed in [3]–[6]. In the context
of multiple input multiple output (MIMO) channels, initial
work reported in [7] presents a necessary condition for the
optimal solution and several suboptimum algorithms. More
recently, an optimal non-iterative algorithm has been presented
in [8] for the case of single receive antennas and fixed encod-
ing/decoding order. This solution is based on recently appeared
duality results between the multiple access channel (MAC)
and the broadcast channel (BC) [8], [9]. Essentially the same
algorithm can be found in [10] applied to the minimization
of power with given rate constraints. The main drawback of
this approach is the limitation to single receive antennas and
the non-optimization of encoding/decoding order. Moreover,
time-sharing points on the boundary of the capacity region
are not reachable. Also for the problem of power minimization
with given rate constraints, an optimum iterative algorithm is
proposed in [10] that applies to the general MIMO setting
with multiple receive antennas and incorporates optimization
of encoding/decoding order. There, time-sharing points can
also be identified as solutions of the optimization problem.
The same subgradient approach used in this algorithm can be
followed in order to solve the rate balancing problem. How-
ever, convergence speed and convergence itself very strongly
depend on the choice of step sizes. Recently, an algorithm has
been presented in [11] that uses the ellipsoid method in order
to solve the rate balancing problem. Although this method
guarantees convergence in polynomial time, it is known to be
very slow in practice [12]. Basically, both approaches, i.e.,
the subgradient approach in [10] and the ellipsoid algorithm
in [11], iteratively search in the space of user priorities until
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a vector of priorities is found such that the corresponding rate
vector satisfies the given QoS constraint. To this end, within
one iteration a weighted sum rate optimization problem has
to be solved in order to obtain the rate vector corresponding
to a given priorities vector. For this problem an iterative
line search algorithm has been proposed in [13]. However, a
straightforward extension of this algorithm to OFDM requires
a number of iterations in order to reach convergence that
seems to grow linearly with the number of subcarriers. This,
of course, poses serious impediments to the applicability of
this algorithm in broadband communication systems.

In this work, exploiting the block diagonal structure of
the OFDM channel, an algorithm is introduced that divides
the original weighted sum rate optimization problem into a
set of smaller subcarrier specific optimization problems and
a power allocation problem in the frequency domain. As a
consequence, convergence becomes essentially insensitive to
the number of subcarriers. Still, the relatively high complex-
ity involved in the computation and implementation of the
optimum solution motivates the introduction of a subopti-
mum non-iterative approach. This approach is based on a
decomposition algorithm called cooperative zero-forcing with
successive encoding and successive allocation method (CZF-
SESAM) that was first introduced in [14]. The algorithm se-
quentially assigns non-interfering spatial dimensions to users
in successive steps and ensures that the number of spectral
components assigned to each user in each of these steps is
consistent with the given QoS constraint. Full compliance with
the QoS constraint is enforced by subsequent power loading
over the set of allocated subchannels. Besides the fact that no
iterations are needed, the solution obtained from application
of this algorithm can be realized without resorting to time-
sharing strategies. Note that practical implementation of time-
sharing requires longer transmission times in order to achieve
nearly error-free transmission as well as signaling multiple
transmission strategies, which increases signaling overhead.
Simulation results show that performance of this approach is
in most cases almost as good as that of the optimum iterative
approach.

The remainder of this paper is organized as follows. In
Section II the system model is introduced. In Section III the
optimum solution to the rate balancing problem is discussed
and adapted to the OFDM setting. In Section IV a subopti-
mum non-iterative approach to the rate balancing problem is
presented. Numerical results are provided in Section V and,
finally, conclusions are drawn in Section VI.

In the following, vectors and matrices are denoted by
lower case bold and capital bold letters, respectively. Random
variables are represented by sans-serif characters. We use (•)∗
for complex conjugation, (•)T for matrix transposition and
(•)H for conjugate transposition. E{•} and Tr{•} denote the
expectation and trace operators, respectively. Given a matrix
A, |A| represents its determinant. For Hermitian matrices,
A ≥ 0 indicates that matrix A is positive semidefinite. Letting
{Ai}i=1,··· ,I be the set of all matrices indexed by the variable
i, diag[A1, . . . , AI ] represents a block diagonal matrix with
matrices {Ai}i=1,··· ,I as blocks in the main diagonal. Finally,
the identity matrix of dimension q is denoted by Iq and its
sth column by es.

II. SYSTEM MODEL

We consider the downlink of a cellular wireless communi-
cation system. The base station is equipped with t transmit
antennas. Each user k ∈ {1, . . . , K} has rk receive antennas.
An OFDM transmission scheme is employed with a cyclic
prefix that is assumed to be longer than the length of the power
delay profile of the channel so that no intersymbol interference
occurs. The channel is assumed to be invariant for the duration
of an OFDM symbol so that orthogonality between subcarriers
is preserved during transmission. According to these assump-
tions the relationship between the vector of transmitted signals
xn ∈ Ct×1 and the vector yn,k ∈ Crk×1 of received signals
for user k at subcarrier n ∈ {1, . . . , N} can be expressed as

yn,k = Hn,kxn + wn,k,

where Hn,k ∈ Crk×t is the channel matrix of user k at
subcarrier n and wn,k ∈ Crk×1 a realization of a zero-
mean circularly symmetric complex Gaussian distributed ran-
dom variable wn,k representing noise with covariance matrix
E{wn,kwH

n,k} = Irk
. Noise processes of different subcarriers

are assumed to be uncorrelated. The transmitter is assumed
to perfectly know all matrices Hn,k and the average transmit
power over the whole spectrum is limited, i.e.,

1
N

N∑
n=1

Tr
{
E{xnxH

n}
} ≤ PTx. (1)

A MIMO OFDM system can be viewed as a MIMO non
frequency selective system where blocks of transmit and
receive antennas are decoupled from each other. Specifically,
if we define

H̃k = diag [ H1,k · · · HN,k ],

ỹk = [ yT
1,k · · · yT

N,k ]T, ñk = [ nT
1,k · · · nT

N,k ]T

and x̃ = [ xT
1 · · · xT

N ]T, we can write

ỹ = H̃x̃ + ñ, (2)

with ỹ = [ ỹT
1 · · · ỹT

K ]T, ñ = [ ñT
1 · · · ñT

K ]T and

H̃ = [ H̃
T

1 · · · H̃
T

K
]T. Equation (2) corresponds to the

usual MIMO BC model. Therefore, at least conceptually, every
algorithm applicable to the MIMO BC can straightforwardly
be extended to a MIMO OFDM setting. The essential differ-
ence consists of the high dimensionality of OFDM systems
and the special structure of matrix H̃ that, as we shall see
in the next section, can be exploited to improve performance
of iterative optimization algorithms. The vector of transmitted
signals in (2), i.e., x̃, results from the superposition of user
specific signals s̃k with covariance matrices Σ̃k, i.e., x̃ =∑K

k=1 s̃k. Assuming statistical independence of the signals
transmitted to different users, (1) can be rewritten as

1
N

K∑
k=1

Tr
{
Σ̃k

}
≤ PTx. (3)
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III. OPTIMUM APPROACH

A. Problem Formulation

The rate balancing problem in the MIMO BC can be
mathematically formulated as

max
r,γ

γ s. t. r = γρ, r ∈ C
(
H̃ , PTx

)
. (4)

Here, maximization is performed over the choice of the
scalar γ and the rate vector r = [ R1 · · · RK ]T, which
is constrained to belong to the capacity region denoted by
C
(
H̃, PTx

)
and to lie on the straight line defined by ρ and the

origin. Obviously, the solution to the rate balancing problem
is given by the point on the boundary of the capacity region
that lies on this straight line.

From a practical point of view this problem formulation
is important since it incorporates system requirements, rep-
resented by the QoS constraint ρ, into the design of the
transmission strategy. This is in contrast with a pure sum
rate maximizing strategy [15]–[17] that completely adapts
transmission to the channel, possibly switching off some of
the users for the sake of total throughput. Contrary to weighted
sum rate maximization [13], rate balancing determines the
share of throughput finally achieved by each user.

B. Iterative Algorithms

Iterative algorithms for the solution of (4) can be found by
exploiting Lagrangian duality. Due to convexity of the capacity
region [9], [18], (4) is convex. Furthermore, as rate vectors in
the interior of C

(
H̃, PTx

)
can always be found that lie on

the straight line defined by the QoS constraint, strong duality
holds [19]. As a consequence, (4) can be alternatively solved
by solving the dual problem. The dual objective function can
be written as

g(λ) = max
r,γ

γ

(
1 −

K∑
k=1

λk

)
+

K∑
k=1

λk
Rk

ρk
,

with r ∈ C
(
H̃ , PTx

)
and λ = [ λ1 · · · λK ]T. This

function is equal to ∞ unless
∑K

k=1 λk = 1, therefore, the
corresponding dual problem can be stated as

min
λ

max
r

K∑
k=1

λk
Rk

ρk
, (5)

subject to
∑K

k=1 λk = 1. Problem (5) can be rewritten as

min
λ̃

max
r

RK

ρK
+

K−1∑
k=1

λk

(
Rk

ρk
− RK

ρK

)
,

where the constraint has been incorporated into the objec-
tive function and λ̃ = [ λ1 · · · λK−1 ]T. Let r∗

λ̃
=

[ R∗
λ̃,1

· · · R∗
λ̃,K ]T be the optimum rate vector for

g(λ̃) = max
r

RK

ρK
+

K−1∑
k=1

λk

(
Rk

ρk
− RK

ρK

)
.

It can be easily observed that r̃λ̃ = [ R̃1 · · · R̃K−1 ]T

with

R̃k =
R∗

λ̃,k

ρk
−

R∗
λ̃,K

ρK

is a subgradient of g(λ̃) at λ̃, i.e., g(λ̃+Δλ̃) ≥ g(λ̃)+r̃T
λ̃
Δλ̃.

Hence, in order to minimize g(λ̃) a subgradient approach can
be followed moving in each iteration a step in the direction
Δλ̃ = −Ar̃λ̃ with A ≥ 0. This is essentially the approach
chosen in [10] to solve the power minimization problem.
Alternatively, this subgradient can be used as an oracle that,
at each iteration, allows the computation of a new ellipsoid of
smaller volume than the previous one but still containing the
minimizing λ̃. This is the approach followed in [11]. In any
case, at each iteration, it is necessary to solve the weighted
sum rate problem corresponding to the maximization step in
(5) in order to compute the subgradient.

C. Weighted Sum Rate Optimization

In this and the next sections we turn our attention to the
weighted sum rate maximization problem. Although this is
a nonconvex problem in the BC, the following equivalent
problem in the dual MAC can be stated which turns out to
be convex provided that the decoding order π is optimally
chosen [20],

max
π,{Q̃k}k=1,··· ,K

K∑
k=1

μkRk, (6)

s. t.
1
N

K∑
k=1

Tr
{

Q̃k

}
≤ PTx, Q̃k ≥ 0, ∀k.

In the dual MAC the achievable rates are given by

Rπ(k) = log

∣∣∣ItN +
∑K

i=k H̃
H

π(i)Q̃π(i)H̃π(i)

∣∣∣∣∣∣ItN +
∑K

i=k+1 H̃
H

π(i)Q̃π(i)H̃π(i)

∣∣∣ ∀k, (7)

where π(i) denotes the user whose information is de-
coded in ith place. Optimization is performed over the set
{Q̃k}k=1,··· ,K of transmit covariance matrices and the de-
coding order π. The optimum π is such that users with
a certain priority μk are decoded before users with higher
priority and later than users with lower priority. The optimum
MAC covariance matrices can be converted into optimum BC
covariance matrices by means of the transformations given in
[9].

In the following, for the sake of notational simplicity we
shall assume that μ1 ≥ μ2 ≥ . . . ≥ μK , i.e. π corresponds to
a reverse map. Under this assumption, substitution of (7) in
(6) yields,

max
{Q̃k}k=1,...,K

K∑
k=1

ηk log

∣∣∣∣∣ItN +
k∑

i=1

H̃
H

i Q̃iH̃ i

∣∣∣∣∣ , (8)

s. t.
1
N

K∑
k=1

Tr{Q̃k} ≤ PTx, Q̃k ≥ 0 ∀k,

where ηk = μk − μk+1 and μK+1 = 0. In the Appendix it
is shown that, optimally, the covariance matrices Q̃k have a
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block diagonal structure matching the structure of their respec-
tive channels H̃

H

k , i.e., Q̃k = diag [ Q1,k · · · QN,k ] ∈
CrkN×rkN . This result dramatically reduces the dimension-
ality of the input space, thereby decreasing the complexity
required by standard convex optimization methods to solve
this problem. Consequently, the above optimization problem
can be rewritten as

max
{Qn,k}n=1,...,N

k=1,...,K

K,N∑
k=1
n=1

ηk log

∣∣∣∣∣It +
k∑

i=1

HH
n,iQn,iHn,i

∣∣∣∣∣ , (9)

subject to 1
N

∑K,N
k=1,n=1 Tr{Qn,k} ≤ PTx and Qn,k ≥

0 ∀n, k. In order to compute optimum covariance matrices
corresponding to boundary points of the capacity region, an
algorithm has been proposed in [13] that at each step improves
the choice of covariance matrices by searching on the line
defined by the eigenvector associated to the largest eigenvalue
of the gradients of the objective function. This algorithm
can readily be applied to the multicarrier formulation of the
problem given by (9) as follows. The gradient obtained by
deriving the objective function with respect to any covariance
matrix Qn,k can be written as,

Gn,k =
K∑

j=k

ηjHn,k

(
It +

j∑
i=1

HH
n,iQn,iHn,i

)−1

HH
n,k.

Let λ�
n,k denote the principal eigenvalue of the gradient

matrix G�
n,k obtained in the �th iteration. Then, similar to [13],

we consider the one-dimensional subspace defined by the unit
norm eigenvector v�

n′,k′ associated with the maximum princi-
pal eigenvalue λ�

n′,k′ = max
n,k

{λ�
n,k}n=1,...,N

k=1,...,K
in order to search

for an improved set of covariance matrices. Accordingly, the
new set of covariance matrices are computed as

Q�+1
n,k = ξQ�

n,k + (1 − ξ)NPTxv
�
n′,k′v

�,H
n′,k′δn,n′δk,k′ , (10)

where 0 ≤ ξ ≤ 1, and δs,s′ = 1 if s = s′ and δs,s′ = 0
otherwise. As indicated in [13], the optimum value of ξ along
this segment can be found applying bisection. Henceforth, this
algorithm will be referred to as line search (LS) algorithm.

Although, theoretically, the LS algorithm converges to the
optimum, in practice, the number of iterations required to
achieve convergence appears to increase linearly with the
number of subcarriers. This is related to the fact that the step
size per iteration disminishes as the number of subcarriers
increases, i.e., ξ in (10) approaches 1. This is, in turn, a
consequence of the fact that, at each iteration, only the
structure of the covariance matrix of one user on one subcarrier
is updated. As a result, the algorithm becomes very inefficient
and eventually impracticable if applied to systems with a large
number of subcarriers.

D. Divide and Conquer

In order to speed up computation of covariance matri-
ces, we propose to divide problem (9) into a number of
smaller problems. To this end, for each subcarrier, we fac-
torize Qn,k = pnQ̄n,k such that

∑K
k=1 Tr{Q̄n,k} ≤ 1 and∑N

n=1 pn ≤ NPTx. Taking this factorization into account,

optimum covariance matrices are found iterating the following
two steps.
First, for given p = [ p1 · · · pN ]T, solve

max
{Q̄

n,k
}k=1,...,K

K∑
k=1

ηk log

∣∣∣∣∣It + pn

k∑
i=1

HH
n,iQ̄n,iHn,i

∣∣∣∣∣ ,
(11)

subject to
∑K

k=1 Tr{Q̄n,k} ≤ 1 and Q̄n,k ≥ 0 ∀k, for every
n.
Second, for a given set {Q̄n,k}n=1,...,N

k=1,...,K
, solve

max
p

N∑
n=1

K∑
k=1

ηk log

∣∣∣∣∣It + pn

k∑
i=1

HH
n,iQ̄n,iHn,i

∣∣∣∣∣ , (12)

subject to
∑N

n=1 pn ≤ NPTx and pn ≥ 0.
Both problems are convex. In the second step, an optimum
power allocation over subcarriers p is found for a given
set of normalized covariance matrices. In the first, given the
optimum power allocation p obtained in the previous iteration,
an optimum set of normalized covariance matrices is found
for every subcarrier. It is clear that each step improves the
value of the objective function in (9) and hence convergence
is guaranteed.

In the first step, optimization of normalized covariance
matrices can be done applying the algorithm presented in [13].
In the second step, the Karush-Kuhn-Tucker (KKT) conditions
of the optimization problem [19] yield the following set of
equations,

K∑
k=1

ηk Tr
{

(It + pnAn,k)−1
An,k

}
− ν + ξn = 0 ∀n, (13)

NPTx −
N∑

n=1

pn ≥ 0, ν ≥ 0, pn ≥ 0, ξn ≥ 0 ∀n,

ν

(
NPTx −

N∑
n=1

pn

)
= 0, ξn pn = 0 ∀n,

where An,k =
∑k

i=1 HH
n,iQ̄n,iHn,i. Considering the eigen-

values {λs
n,k}s=1,··· ,t of matrix An,k, (13) can be rewritten

as
K∑

k=1

t∑
s=1

ηkλs
n,k

1 + pnλs
n,k

− ν + ξn = 0 ∀n.

An efficient algorithm can be implemented that computes the
power allocation p satisfying these conditions based on the
following two observations.

Observation 1: For a given ν, pn �= 0 if and only if∑K
k=1

∑t
s=1 ηkλs

n,k > ν. In that case, ξn = 0 and

K∑
k=1

t∑
s=1

ηkλs
n,k

1 + pnλs
n,k

− ν (14)

is a monotonically decreasing function of the transmit power
pn.

Observation 2: The optimum ν is a monotonically decreas-
ing function of the transmit power PTx. In addition,

ν < max
n

{
K∑

k=1

t∑
s=1

ηkλs
n,k

}
,
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Fig. 1. Capacity region and rate balancing points for a BC with K = 2,
t = 4, rk = 2 and N = 16.

i.e., at least one subcarrier gets some power.
From observation 1 it becomes clear that for a given ν

there is a unique power allocation p which can be efficiently
computed. On the other hand, according to observation 2, if
this power allocation exceeds the available transmit power,
ν should be increased, otherwise it should be decreased.
In this way, bisection can be used in order to compute ν
corresponding to the particular transmit power constraint.

The number of iterations per tone required by the divide and
conquer (DC) algorithm to reach convergence is essentially
independent of the total number of subcarriers. Indeed, the
number of subcarriers does not appear in the formulation
of problem (11). Thus, for a given power allocation vector,
computation of the optimum normalized covariance matrices
is independent of this parameter. In turn, for fixed normalized
covariance matrices the power allocation on a certain subcar-
rier n is computed by equating (14) to zero and solving for
pn. We also note that this computation does not essentially
depend on the number of subcarriers. Figs. 1 and 2 show
the boundary of the capacity regions of two randomly chosen
BCs with N = 16 and N = 64, respectively. Each circle
represents a point on the boundary of the capacity region
corresponding to a particular choice of priorities, μ1 = 0.1m,
m ∈ {0, 1, . . . , 10}, and μ2 = 1−μ1. These points have been
computed with the DC algorithm presented in this section. As
starting point a uniform power allocation over the frequency
and scaled identity covariance matrices have been chosen.
Table I shows the number of iterations that the DC and the LS
algorithms need in order to reach some of these points. For
the DC algorithm, outer iterations means the number of times
that the power allocation problem (12) needs to be solved.
Inner iterations refers to the average number of iterations
needed to solve (11) accumulated over the total number of
outer iterations. This number is equivalent to the average
number of gradient computations per user and subcarrier that
is required to reach the final solution. It can be observed that
these numbers are almost invariant with respect to the number
of subcarriers. By contrast, the number of iterations needed by
the LS algorithm in order to reach the same performance as
the DC algorithm is observed to increase by approximately
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Fig. 2. Capacity region and rate balancing points for a BC with K = 2,
t = 4, rk = 2 and N = 64.

factor 4 when passing from N = 16 to N = 64 subcarriers.
In the LS algorithm the number of iterations are equivalent
to the number of gradient computations performed per user
and subcarrier. Limiting this number to that required by the
DC algorithm, the rate vectors achieved by the LS algorithm
are represented by the black dots in Figs. 1 and 2. For an
approximately constant number of operations per subcarrier,
we observe that points computed by the LS algorithm tend to
accumulate around the starting point for increasing number of
subcarriers.1

IV. NON-ITERATIVE ALGORITHM

Despite the significant complexity reduction obtained by
introducing the DC algorithm in the previous section, the
optimum approach to the rate balancing problem remains cer-
tainly involved. On the one hand subgradient based methods,
in general, and the ellipsoid method, in particular, are known
to converge very slowly. Furthermore, convergence speed of
the LS algorithm in the inner loop of the DC algorithm has
been observed to be very sensitive to the number of transmit
antennas [21]. A further practical drawback of the optimum
approach consists of the existence of solutions that are only
achievable by means of time-sharing. This is the case of the
optimum points corresponding to the QoS constraint in the
middle in Figs. 1 and 2. These rate vectors are only achievable
by switching between transmission strategies yielding points at
the border of the time-sharing segment. For K users, switching
between K different transmission strategies might be required,
which increases signaling overhead and the time needed to
effectively realize nearly error-free transmission at the desired
rates.

In this section a non-iterative algorithm is introduced that
requires a complexity similar to that involved in one inner
iteration of the DC algorithm and very closely approaches the
optimum solution. Furthermore, any solution can be readily
implemented without resorting to time-sharing. In the follow-
ing, this algorithm will be referred to as CZF-SESAM-QoS.

1Note that the initial covariance matrices in these examples yield a solution
close to both ends of the time-sharing segment.
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TABLE I
NUMBER OF ITERATIONS NEEDED BY DC AND LS ALGORITHMS FOR CONVERGENCE WITH N = 16 (N = 64).

μ1 0 0.2 0.4 0.6 0.8 1
inner iterations (DC) 38.4 (38.4) 30.0 (29.7) 15.1 (15.7) 10.1 (10.0) 23.6 (23.4) 38.6 (37.6)
outer iterations (DC) 3 (3) 9 (9) 3 (3) 2 (2) 7 (7) 3 (2)

iterations (LS) 895 (3665) 965 (3852) 607 (2986) 415 (2755) 604 (2525) 897 (3602)

Figs. 1 and 2 show the solutions achieved by CZF-SESAM-
QoS for the three particular QoS constraints depicted in these
examples.

A. CZF-SESAM

CZF-SESAM-QoS is based on the CZF-SESAM algorithm
that was first introduced in [14]. On each subcarrier, this algo-
rithm decomposes the broadcast channel into a set of virtually
decoupled scalar subchannels by performing a successive
allocation of spatial dimensions to users. Here, a subchannel
is characterized by a unit norm transmit weighting vector
(beamformer), and a unit norm receive weighting vector. The
procedure is recalled in Table II. In order to allocate the
jth spatial dimension, first, channel matrices are projected
into a subspace that is orthogonal to the subspace spanned
by beamformers of previously established subchannels. In the
second step, a singular value decomposition of the projected
channel matrices is performed. Every pair of right and left
singular vectors represents a subchannel that may be allocated
to the respective user in the third step of the algorithm. Due
to the projection in the first step, it is guaranteed that signals
sent over any of these spatial subchannels do not interfere
with previously assigned subchannels. In the third step, one
subchannel, i.e., a pair of right and left singular vectors, is
selected according to a given selection rule On and is assigned
to the corresponding user. In step 4, the projector is updated
by removing the spatial dimension allocated in step 3. These
four steps are repeated until no more spatial dimensions are
available. Note that the number of available spatial dimensions
is upperbounded by min{t,∑k rk}. It was shown in [22] that
CZF-SESAM practically achieves the Sato bound on sum rate
of the broadcast channel. An algorithm for weighted sum rate
maximization based on CZF-SESAM was presented in [23],
where it was shown that CZF-SESAM can achieve a large
fraction of the capacity region. Further aspects of the CZF-
SESAM algorithm have been discussed in [24], [25] and [22].

B. CZF-SESAM-QoS

Incorporation of QoS constraints into CZF-SESAM
uniquely affects step 3 of this algorithm, i.e., the selection rule
On, where index n indicates that this selection rule might be
frequency dependent. Aiming at the allocation of the jth spa-
tial component on every subcarrier, the first and second steps
of the CZF-SESAM algorithm are independently executed on
all frequency dimensions. Let Λj

n,k be the matrix of singular
values of user k, on subcarrier n, in the jth execution of the
repeat loop (jth layer), and let λs,j

n,k be the sth eigenvalue of
this matrix. In the following a method is described for the
selection of the jth spatial subchannel on every subcarrier. In
order to determine the particular subchannel to be allocated on

TABLE II
CZF-SESAM ALGORITHM

initialization : j = 1, T n,1 = It ∀n

repeat :

1. Hj
n,k = Hn,kT n,j ∀n, k

2. Hj
n,k = U j

n,kΛ
j
n,kV j,H

n,k ∀n, k

3. (k0, s0) = On{λs,j
n,k},

vj
n = V j

n,k0
es0 , uj

n = U j
n,k0

es0 ∀n

4. T n,j+1 = T n,j − vj
nvj,H

n ∀n, j = j + 1

until j >
K∑

k=1

rk or T n,j = 0 ∀n

each subcarrier this method considers the set of all the singular
values {λs,j

n,k} and the given QoS constraint. The procedure
consists of three basic steps.

1) Selection of Largest Singular Values: First, for each user,
the largest singular value on each subcarrier is selected, i.e.,

λj
n,k = max

s
{λs,j

n,k} ∀n, k,

and only these subchannels are considered in the following
steps.

2) Determination of Spectral Shares: Second, the number
of frequency components is determined that shall be assigned
to each user taking into account a given QoS constraint. To
this end, first, the capacity is computed that each user could
achieve in this layer should all frequency components be
assigned to that user. As an example, capacity of user k is
computed as

Cj
k =

1
N

N∑
n=1

log
(
1 + pn,k(λj

n,k)2
)

,

where N is the number of subcarriers and pn,k is obtained
from a waterfilling power allocation over the singular values
λj

n,k. In order to compute capacities at layer j, it is assumed
that the average power is limited to PTx/j. This is merely a
heuristic that permits computation of capacity in a particular
layer without considering subchannels assigned in previous or
subsequent layers. The reason for the division by j is that
channel gains become smaller in each layer and so does the
power finally allocated to each layer.

Now, we consider the plane defined by the rate vectors
Rk = Cj

kek, ∀k, and compute the intersection point of this
plane and the straight line defined by the given QoS constraint
ρ. The equation of the plane is given by R =

∑K
k=1 βkRk

with
∑K

k=1 βk = 1, and that of the straight line by R = γρ.
The intersection point is obtained solving the following linear
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system of equations,

γρ = β1R1 + β2R2 + . . . + βKRK

1 = β1 + β2 + . . . + βK .

The resulting weight βk is interpreted as the fraction of
subcarriers that should be allocated to user k at layer j to
comply with QoS constraint ρ. Correspondingly, the number
of subcarriers assigned to that user in that layer is given by
Nk = βkN , which can be rounded and readjusted to obtain
integers adding up to the total number of subcarriers. This
procedure and interpretation of the parameters βk is optimum
if there is only one spatial dimension, e.g., t = 1, the channels
are non frequency selective, each subcarrier is exclusively
assigned to a unique user and the same amount of power is
allocated on every subcarrier. Only in such a case the plane
represents the boundary of the set of achievable rates and
the intersection of this plane with the QoS constraint is the
optimum operational point. Even though in all other cases
this method is suboptimum, it shall be seen that it delivers
excellent results.

3) Effective Subchannel Allocation: In the third step, al-
location of subcarriers to users is performed such that com-
pliance with the subcarrier numbers obtained in the previous
step is guaranteed. To this end, first, on each subcarrier the
subchannel is selected with largest gain, i.e.,

λj
n = max

k

{
λj

n,k

}
∀n. (15)

This selection is optimum with respect to sum capacity but it
might not be in agreement with the numbers of subcarriers
computed in the previous section. If this is the case the
selection must be modified in order to match these numbers.
This can be done as follows.

Let Ñk be the number of subchannels of user k selected
according to (15) and define the following sets: The set of
users to which additional subchannels should be assigned,
R = {k|Nk − Ñk > 0}, the set of users from which
subchannels should be removed, D = {k|Nk − Ñk < 0},
the set of subcarriers on which subchannel selection could
be modified, i.e., subcarriers on which a user of set D has
been assigned a subchannel, C = {n|λj

n = λj
n,k, k ∈ D}

and, finally, a set with the differences between gains of
selected subchannels and gains of non-selected subchannels,
S = {Δλn,k|k ∈ R, n ∈ C}, where Δλn,k = λj

n−λj
n,k. With

these definitions the following procedure is repeated until the
sets D and R are empty, i.e., until the number of subcarriers
assigned to each user coincides with the number Nk computed
in the previous section.

First, find the user of set R and carrier of set C correspond-
ing to the smallest gain difference with respect to a selected
subchannel,

(k′, n′) = argmin
n,k

{Δλn,k} , Δλn,k ∈ S.

Then, find the user to which initially the subchannel on
subcarrier n′ has been assigned,

k′′ = argmax
k

{λj
n′,k}.

Next, change the assignment on the selected subcarrier, i.e.
λj

n′ = λj
n′,k′ . Finally, update subchannel counters, Ñk′′ =

Ñk′′−1, Ñk′ = Ñk′ +1, and redefine sets accordingly. Though
suboptimal, this procedure yields a good performance and has
a clear rationale. It departs from the sum capacity optimum
subchannel selection and modifies at each step the allocation
so that the incurred channel gain loss is minimized.

Once allocation at layer j has been completed, projectors
are correspondingly updated on each subcarrier (see step 4
in Table II) and allocation of the (j + 1)th spatial dimension
starts.

C. Waterfilling With QoS Constraint

After the allocation process has been concluded, for each
user, a set of scalar mutually decoupled subchannels is ob-
tained over which power loading can be applied so as to
maximize sum rate under consideration of the given QoS
constraint. A suboptimum algorithm for this problem has been
previously proposed in [6]. An optimum algorithm is derived
in this section. Let gk,� represent the channel gain of the �th
subchannel assigned to user k and Lk the total amount of
subchannels assigned to that user. The optimization problem
to be solved in order to find the power loading that maximizes
sum rate subject to a QoS constraint ρ can be stated as follows,

max
{pk}k=1,...,K

1
ρ1

L1∑
�=1

log(1 + p1,�g
2
1,�),

subject to

1
ρk

Lk∑
�=1

log(1+pk,�g
2
k,�)−

1
ρ1

L1∑
�=1

log(1+p1,�g
2
1,�) = 0, ∀k > 1,

and pk,� ≥ 0 ∀k, �, NPTx −∑K
k=1

∑Lk

�=1 pk,� ≥ 0, where
pk = [ pk,1 . . . pk,Lk ]T and pk,� is the power allocated
on the �th subchannel of user k. The Lagrangian of this
optimization problem can be written as

L
(
{pk,�}k=1,...,K

�=1,...,Lk

, η, {μk,�}k=1,...,K
�=1,...,Lk

, {νk}k=1,...,K

)
=

=
K∑

k=1

νk

ρk

Lk∑
�=1

log(1 + pk,�g
2
k,�)+

+ η

(
NPTx −

K∑
k=1

Lk∑
�=1

pk,�

)
+

K∑
k=1

Lk∑
�=1

μk,�pk,�,

where ν1 = 1 −∑K
k=2 νk. The corresponding relevant KKT

conditions read

νk

ρk

g2
k,�

1 + pk,�g2
k,�

− η + μk,� = 0, ∀k, (16)

1
ρk

Lk∑
�=1

log(1 + pk,�g
2
k,�)−

− 1
ρ1

L1∑
�=1

log(1 + p1,�g
2
1,�) = 0, ∀k > 1, (17)
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Fig. 3. Average optimum and suboptimum rate balancing points for a
balanced BC with K = 2, t = 4, rk = 2 and N = 16.

NPTx −
K∑

k=1

Lk∑
�=1

pk,� ≥ 0, pk,� ≥ 0, ∀k, �, (18)

η ≥ 0, μk,� ≥ 0, ∀k, �,

η

(
NPTx −

K∑
k=1

Lk∑
�=1

pk,�

)
= 0, μk,�pk,� = 0, ∀k, �.

Considering pk,� ≥ 0, μk,�pk,� = 0 and (16) we can write

pk,� =

[
ξk − 1

g2
k,�

]+

∀k, �, (19)

where ξk = νk/ρkη. This result has the form of a waterfilling
solution with a user dependent water level ξk. These levels
are optimally chosen so that the K − 1 equalities in (17)
hold and (18) is satisfied with equality. A bisection procedure
can be used to determine these parameters in the following
way. First, the water level of a certain user is arbitrarily
chosen, e.g., ξ1. The water levels of all other users are then
determined so that equations (17) are satisfied. The total power
is subsequently computed using (19). If the resulting total
power is smaller than the available transmit power NPTx the
level ξ1 is increased. Otherwise, the level ξ1 is decreased.
These computations are repeated until the required power is
approximately equal to the available power. Note that the
optimization problem is non convex. However, in this case the
KKT conditions are sufficient as there is only one allocation
that fulfils them.

V. NUMERICAL RESULTS

In order to avoid misleading conclusions from particular
examples, average results over a number of different channel
realizations are required. To this end, simulations have been
carried out of a system with N = 16, K = 2, t = 4 and
rk = 2. Entries of channel matrices on different subcarriers
have been assumed to be independently and identically dis-
tributed according to a zero-mean complex-valued Gaussian
distribution. Fig. 3 shows average results for a balanced BC
channel where the entries of the channel matrices of both users
are assumed to have unit variance. QoS constraints have been

0 5 10 15 20
0

5

10

15

R1 (bits/subcarrier)

R
2 (b

its
/s

ub
ca

rr
ie

r)

 

 
Optimum
CZF−SESAM−QoS

20 dB

10 dB

0 dB

Fig. 4. Average optimum and suboptimum rate balancing points for an
unbalanced BC with K = 2, t = 4, rk = 2 and N = 16.

considered such that R1/R2 = 0.1n and R2/R1 = 0.1n with
1 ≤ n ≤ 10, n ∈ N. Fig. 4 shows results for the case of
an unbalaced BC channel, where the variance of the entries
of the channel matrices of user 1 has been set to 4 and the
variance of the entries of the channel matrices of user 2 has
been decreased to 1/4. In both cases rate vectors have been
plotted for three different SNR values, which is here defined
as SNR = PTx/σ2, being σ2 the variance of the noise at
each receive antenna. It can be observed that CZF-SESAM-
QoS almost achieves the performance of the optimum solution
in both plots. This is specially true for the range of points
achieving the maximum sum rate as well as for points close to
the axes. For points in between some rate loss can be noticed.
However, in any case this loss is observed to be below 7% of
the optimum rate per user.

Fig. 5 shows average rate per user obtained in a BC with
N = 16, t = 4, rk = 2 and a "maximum" fairness constraint,
i.e., ρ1 = ρ2 = · · · = ρK , for K = 2, K = 5 and
K = 10 users. As above, all entries of channel matrices in
every subcarrier have been independently drawn from a zero-
mean complex-valued Gaussian distribution with unit vari-
ance. CZF-SESAM-QoS practically achieves the performance
of the optimum solution for 2 and 5 users. However, for the
case of 10 users the gap between the optimum solution and
CZF-SESAM-QoS is noticeable. The reason for that might
be the high number of users per subcarrier in the system. As
the number of users per subcarrier increases, the optimum
solution tends to split the users in groups that are served in
separate OFDM symbols as part of a time-sharing strategy.
By contrast, CZF-SESAM-QoS tries to comply with the QoS
constraint in each single OFDM symbol. This strategy be-
comes increasingly inefficient for growing number of users. In
Table III average numbers are given concerning computation
and implementation of the optimum solution in Fig. 5. As
stop condition for the ellipsoid method we require that the
maximum radius of the ellipsoid at a certain iteration become
smaller that ε = 0.01 or, alternatively, that

max
k

∣∣∣∣∣R
�
k

ρk
− 1

K

K∑
i=1

R�
i

ρi

∣∣∣∣∣ ≤ ε,
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i.e., the vector of rates obtained at a certain iteration � is
almost parallel to the constraint vector ρ. As stop conditions
for (11) and (12), we require the increment in the value
of the respective objective function at a certain iteration to
be smaller than 0.1% and 1% of the value achieved in the
previous iteration, respectively. Specially significant is the
degradation in convergence speed of the ellipsoid method as
the number of users increases. This can also be observed
in Fig. 6, where the convergence behavior of the ellipsoid
algorithm is shown for SNR = 10 dB. As already discussed
in the previous section, specially troublesome for practical
implementation is the number of time-sharing corner points
between which switching is required to actually achieve the
optimum rates. In Table III we observe that, for a maximum
fairness QoS constraint, the average number of necessary time-
sharing points approaches the actual number of users.

VI. CONCLUSIONS

The rate balancing problem and details around the com-
putation of the optimum solution have been discussed in a
MIMO OFDM context. In particular, an efficient algorithm
has been proposed to solve the weighted sum rate problem in
a multicarrier setting, which constitutes the most costly step of
the optimum rate balancing approach. The main merit of the
new algorithm is that the number of iterations per subcarrier
involved in the search of the optimum rate vector appears
to be independent of the total number of subcarriers in the
system. This is in contrast with a direct application of the
state-of-the-art solution to an OFDM setting. Furthermore, a
suboptimum non-iterative algorithm has been presented that
nearly reaches the optimum solution while showing important
advantages concerning computational complexity as well as
implementation of the resulting transmission strategy.

APPENDIX

OPTIMALITY OF BLOCK DIAGONAL COVARIANCE

MATRICES

Let {an}n=1,...,N be a set of random vectors with
an ∼ CN (0, An), ∀n. In addition, let a ∼ CN (0, A) be the
random vector defined as a = [ aT

1 · · · aT
n ]T. It holds

n log πe + log |A| = h(a1, . . . , aN )

=
N∑

n=1

h(an|a1, . . . , an−1)

≤
N∑

n=1

h(an)

= n logπe + log
N∏

n=1

|An|, (20)

where the inequality follows from the fact that conditioning
reduces entropy. Let {Q̃o

k}k=1,...,K be the set of covariance

matrices achieving the optimum in (8), and let {Q̃b

k}k=1,...,K

be a set of block diagonal matrices obtained out of the
optimum matrices by setting the off-diagonal elements to zero.

Certainly, the set {Q̃b

k}k=1,...,K satisfies the constraints of (8).
Moreover, using (20) we can write

log

∣∣∣∣∣ItN +
k∑

i=1

H̃
H

i Q̃
o

i H̃i

∣∣∣∣∣
≤ log

∣∣∣∣∣ItN +
k∑

i=1

H̃
H

i Q̃
b

iH̃ i

∣∣∣∣∣ , ∀k.

This contradicts the initial assumption of {Q̃o

k}k=1,...,K being
optimum unless these matrices are all block diagonal.
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