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Abstract—We present a mean-square-error (MSE) duality
between the broadcast channel and the multiple access channel
for multiantenna users communicating with a single base sta-
tion. We introduce three levels of the duality which allow for a
problem specific customization with different computational com-
plexities and resolutions. The first level preserves the sum-MSE
during the conversion from the uplink to the downlink and vice
versa, whereas the second level not only keeps the sum-MSE
constant but also ensures the preservation of the individual users’
MSEs. The third level involves the finest resolution and pre-
serves the individual streams’ MSEs and the individual streams’
signal-to-interference-and-noise ratio (SINR) simultaneously. In
contrast with hitherto existing MSE-dualities, the proposed sort
of duality features a lower complexity since no MSE computation
detouring is necessary during the conversion to the dual domain
and is capable of handling all combinations of active and passive
transmitters and receivers. Moreover, we show how two of these
three dualities can be exploited to solve the unweighted total
sum-MSE minimization problem and the weighted sum-MSE
minimization in the broadcast channel in an efficient way by
revealing the hidden convexity in the first case and drastically
reducing the computational complexity in the latter case.

Index Terms—Broadcast channel (BC), decentralized receivers,
duality, joint minimum mean-square error (MMSE) filtering,
linear precoding, projected gradient.

I. INTRODUCTION

D URING the last few years, dualities have gained in im-
portance in signal processing and information theory. The

basic idea which is behind a duality consists in the conversion of
an existing system setup to a dual system that has some funda-
mental properties in common with the original system but fea-
tures additional attributes that can be exploited. Among those
attributes are for example a better mathematical structure, the
revealing of a hidden convexity [1], and the reduction of the
computational complexity.

A. Literature Review of Existing Dualities

Three types of dualities can be found in the literature: The first
one implies the equality of the signal-to-interference-and-noise
ratio (SINR) region representing all feasible tuples of SINRs
in a nondegraded downlink broadcast channel (BC) under a
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sum-power constraint and the SINR region of the dual mul-
tiple-access channel (MAC) in the uplink. Given a downlink
system setup, the duality allows to construct a virtual dual up-
link with reversed signal flow where all streams feature the same
individual SINRs and vice versa. Early work in this field fo-
cused on the signal-to-interference ratio (SIR) neglecting the
noise amount, see, for example, [2], [3], or [4]. Rashid-Farrokhi
et al. [5] were the first introducing the SINR duality concept for
nonvanishing noise in the context of power minimization under
minimum SINR requirements. In [6], Visotsky et al. constructed
a virtual uplink channel by normalizing the users’ channels.
However, an explicit duality framework was not presented yet,
since duality aspects were proven only for simultaneously op-
timum beamformers and power allocation. Boche et al. proved
the uplink-downlink SINR duality for general unit-norm beam-
forming vectors [7], [8], whose power allocations have to fulfill
a balancing of certain SINR ratios, i.e., the SINR targets have
to be set to the currently achieved SINRs. At the same time,
Viswanath et al. derived the SINR duality between the MAC
and the BC from the duality of the MIMO point-to-point system
[9]. Up to that time, all dualities were applicable only for single
antenna receivers. This restriction was eliminated by Tse et al.
in [10], who extended the SINR duality to single-stream trans-
mission for multiantenna receivers/transmitters. An interesting
property that was observed already in the first contributions on
SINR duality is, that when applying a set of unit-norm beam-
forming vectors in the downlink with an arbitrary power allo-
cation, the achieved SINR tuple in the downlink can also be
achieved in the dual uplink by means of the same set of beam-
formers as receive filters, but different power allocation at the
single antenna transmitters in the dual uplink. This property is
exploited by the authors in [11] to find the first “stand-alone”
SINR duality with the lowest complexity available. Note that the
SINR duality in [11] can be seen as a byproduct of the third level
of the proposed mean-square-error (MSE) duality. Based on the
SINR duality concept, the quality-of-service (QoS) sum-power
minimization problem subject to minimum SINR-requirements
and the balancing problem with given relative SINR ratios could
be solved, see, e.g., [7], [12]–[16] and [12], [13], [16], respec-
tively. For the case of nonlinear filtering, duality was shown in
[9] and [17] making use of Costa’s dirty paper coding [18]. The
power minimization problem with nonlinear filtering was then
tackled in [19] and [20].

The second kind of duality is the MSE duality where the
MSEs remain constant during the conversion from uplink to
downlink and vice versa. Many existing MSE dualities for
linear filtering (e.g., [14], [15], [21], and [22]) are deduced
from the SINR duality. Thus, such MSE-dualities fail to work
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for switched off data-streams, i.e., when there exist SINRs,
that are zero. In SINR optimizations, this case does not occur,
but for many MSE based optimization criteria such as joint
sum-MSE minimization for example, it can be observed that
individual data streams or even users are switched off if the
SNR and channel quality are too low, cf. [23] and [24]. Another
effect resulting from the SINR deduction is that the MSE of
every user specific stream is maintained. The very first direct
MSE duality based on a layer-wise MSE preservation was
derived in [25]. Clearly, not only the individual streams’ MSEs
remain constant during the conversion, but also the user-wise
MSEs and the sum-MSE do not change when the MSEs of
all streams do not change. However, QoS requirements often
imply requirements that are formulated user-wise, as several
streams may be associated to a single user who can jointly
decode them. A layer-wise MSE-duality therefore is not always
necessary and even leads to a computationally more complex
description of the system. The first user-wise MSE-duality was
introduced by the authors in [16] and is proven without SINR
detouring. Later, in [26] we generalized the framework from
[16], treating precoders, receivers, and channels as operators
in Hilbert space. For the MSE-duality of nonlinear systems,
see [21], [27], [28], and [29]. But up to now, even the direct
MSE dualities fail, if streams at the transmitter are switched off
or receivers completely ignore streams while the other end of
the link has an active receive filter or an active transmit filter,
respectively.

Finally, a rate-region duality can be established in case of
nonlinear filtering and Gaussian signaling. The duality between
the MAC and the BC for single antenna terminals or single
stream transmission with multiantenna terminals with fixed
precoder/receive filters already follows from the SINR duality.
The first direct duality between the Gaussian MAC and BC
for single-antenna users and a single-antenna base station was
given in [30] and earlier versions of it, and the first direct sum
capacity duality proof for a multiantenna base station was
given in [9] by showing that the achievable sum-rate with Costa
precoding merges with the maximum sum-rate in the MAC.
Vishwanath et al. came up with an extension to multiantenna
terminals supporting an arbitrary number of data streams per
user in [31]. Weingarten et al. afterwards proved that the dirty
paper rate region exactly corresponds to the capacity region
of the MIMO BC [32]. Duality in terms of outage capacity,
minimum-rate capacity, and ergodic capacity for fading chan-
nels was derived in [33] by Jindal et al. Thanks to the duality,
broadcast problems can be transferred to the MAC, where the
maximization of the sum-rate boils down to a convex problem,
see [34] and [35].

B. Rationale for MSE-Based Optimizations

Taking the MSE as the figure of merit offers some decisive
advantages compared to SINR-based problem formulations for
example. In combination with a minimum mean-square-error
(MMSE) receiver, the streamwise MSE formulation inherits
all properties of an SINR-based description by the bijective
mapping

(1)

The standard SINR-based rate expression can
conveniently be expressed by the MMSE via ,
so rate-based optimizations can also be transformed into MSE-
based optimizations. A user-wise description of the SINR does
not exist as in the MSE case, there is no single scalar describing
the link quality of a multistream transmission between a user
and a base station. Indeed, the SINRs of the individual streams
of a user could be computed. However, the significance of the
resulting values is limited as different streams of a single user
are treated as interference, which becomes impractical if the re-
ceivers decode their streams jointly. Unlike the SINR approach,
the user-wise MSE description allows to lower bound/approx-
imate the rate of the individual users when they jointly decode
their streams: With MMSE receivers, the capacity of a user’s
link can be rewritten as the negative logarithm of the determi-
nant of the MMSE error covariance matrix, which itself can be
lower bounded/approximated by a function which is monoton-
ically increasing in the MSE achieved by this user, see [16].
Hence, minimizing the MSE of a user maximizes a (tight) lower
bound of his capacity. Finally, a system-wide sum-MSE de-
scription is also attractive as the minimization of this metric
yields excellent uncoded bit-error ratios.

C. Contributions

We present an application specific MSE duality between the
broadcast channel and the multiple access channel consisting
of three different kinds corresponding to three different reso-
lutions of the MSE conservation. In the first and likewise sim-
plest level, the overall users sum-MSE is conserved. The ap-
plication of this kind of duality to the sum-MSE minimization
problem in the broadcast channel allows for a solution with min-
imum complexity. Hitherto existing dualities were targeted to
the preservation of the individual streams’ MSEs involving a
drastically higher complexity to solve this problem. A derivation
of this kind of MSE duality from an SINR duality is not possible,
since any SINR duality naturally exhibits a streamwise formu-
lation, whereas only the total sum-MSE is of interest here. The
second kind features a finer resolution and preserves not only
the sum-MSE, but also the MSEs of the individual users. To this
end, scalars are deduced from a linear system of equations,
where represents the number of users in the system. Due to
the application specific nature of our duality, these scalars are a
byproduct of the weighted sum-MSE minimization problem in
the downlink and thus need not be computed explicitly. Again,
the duality requires almost no computational effort. And note
that there is no way to derive this kind of duality from any ex-
isting SINR duality due to the same reasoning as above. The
finest resolution is obtained by the third kind where not only
the users’ MSEs are preserved, but also the MSEs of the indi-
vidual streams of the multiantenna receivers. In principle, this
third kind is similar to the existing (layer-wise) MSE dualities in
[22], [25], and [29], and, as has been shown in [22], a layer-wise
MSE duality results from the SINR duality if no streams are
switched off. This level of duality becomes attractive if one fo-
cuses on rate optimization problems where the joint decoding
of all streams together is not desired and separate decoding per
stream has to be preferred. The reason for this follows from the
fact that the third kind of the proposed duality leaves the SINRs
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of the individual streams unchanged and hence, the rates do not
change when switching from one domain to its dual under the
assumption of Gaussian signaling. The third kind, therefore, has
a twofold functionality.

To the best of our knowledge, our duality is not only char-
acterized by the smallest complexity and a direct conversion of
the transmit and receive beamformers from one domain to its
dual, but also the first one being capable of handling not sup-
ported data streams and/or not supported users correctly. Hith-
erto existing dualities have to spend extra computation time on
the calculation of the currently achieved MSE values during an
intermediate step although only the transmit and receive beam-
formers in the dual domain are of interest. Moreover, they fail if
a single stream or user is actively transmitting and the respective
receive filter is switched off or if a stream or user is actively re-
ceiving although the respective transmitter did not send anything
at all. This generalizes previous dualities where such a case had
to be intercepted. Finally, we present some applications where
the proposed duality can be implemented and highlight the re-
sulting benefits.

D. Organization

The remainder of this contribution is organized as follows:
In Section II, we describe the system model of the uplink and
downlink underlying our multiuser scenario. A brief overview
of the three levels offered by the proposed duality is presented
in Section III by turning our attention to the principles behind
them and their inherent properties. Having presented the three
kinds of uplink-to-downlink conversion for the strictly active
users in the first part of Section IV, we extend it to the general-
ized case with passive receivers or transmitters in the Appendix.
The downlink-to-uplink conversion counterpart is shown in
Section V in a slightly shortened version due to its similarity.
In Section VI, we mention two possible applications for two
different kinds of the duality. The first one is the total sum-MSE
minimization in the broadcast channel, where the problem can
efficiently be solved by revealing its hidden convexity. The
second application is concerned with the weighted sum-MSE
minimization, where a weighted sum of the users’ MSEs is
minimized and the duality allows to reduce the computational
complexity.

Notation

Throughout this paper, we use the following operations and
abbreviations: Matrices and vectors are upper and lower case
bold, respectively. denotes the set of complex-valued num-
bers, means expectation with respect to symbols and noise.
The operators , , , , and stand for Eu-
clidean norm, Frobenius norm, transposition, Hermitian trans-
position, and trace of a matrix, respectively. represents the

identity matrix.

II. SYSTEM MODEL

A. Downlink Description

The downlink of the -user MIMO broadcast channel with
different messages is shown in Fig. 1. There, decentralized

Fig. 1. Downlink system model.

users are served by a centralized base station, which assigns a
symbol vector taken from the symbol-alphabet to
each user . Here, denotes the number of
streams allocated to user . Spatial filtering is applied by means
of precoding matrices to form the broadcast
transmit vector

(2)

dissipating a symbol-averaged power

(3)

where we made use of the common assumption that the symbol
vectors are mutually uncorrelated with identity
covariance matrix, i.e., . The propaga-
tion over the frequency flat channel to user is described
by the matrix , where denotes the number
of receiving antennas at mobile . In the downlink, every
precoded symbol , propagates over the
same channel to user . Zero-mean white noise
with covariance matrix is added before the
receiving filter generates the continuous symbol
estimate . Finally, this estimate is passed to the
quantizer which maps the continuous to the finite alphabet

. In case of an OFDM system, each frequency chunk has
its own channel matrix describing the propagation in the re-
spective frequency band. We avoid the notation of an additional
superscript describing the frequency chunk for the sake of
readability and because of the circumstance that the individual
frequency chunks do not interfere. All dualities presented
in this paper remain valid in an OFDM system, the conver-
sions simply have to be applied for every chunk separately.

Introducing as the stacked
symbol estimates, and defining a system-wide precoding matrix

, a system-wide channel

matrix , and a system-wide
blockdiagonal receive matrix

, the complete receive signal can be
expressed as (cf. Fig. 1)
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where and are defined similar to . Thus, the system-wide
sum-MSE reads as

(4)

For a higher resolution, the individual user-MSEs need to be
resolved and the symbol estimates have to be computed in-
dividually for every user. For user , we find

and derive its downlink MSE to

(5)

Because of the invariance property of the MSE with respect
to a unitary similarity transformation, the transmit and receive
matrices sets and
achieve the same individual user MSEs as the sets
and for unitary without increasing
the power. For example, this can be exploited to obtain stream-
balanced MSEs, see [36] and [37].

The finest granularity is obtained from resolving the MSEs
per data stream. With denoting the th row of the matrix

corresponding to the th data stream, and denoting the
th column of , the MSE of the th stream of user reads as

(6)

B. Uplink Description

The dual uplink model is obtained by switching the roles of
transmitters and receivers. Thus, we end up with the multiple
access channel (MAC), where decentralized users send their
different messages to one centralized receiver. Now,
the precoders are denoted by , and the channel
from user needs to be (Hermitian1) transposed for dimension
matching. Consequently, the MAC receive signal reads as

(7)

where now represents the number of receiving antennas de-
ployed at the base station. In the dual model the same symbol-
averaged power

(8)

1This is just for a more convenient notation—conventional transposition
would suffice as well.

Fig. 2. Uplink system model.

shall be transmitted. Since a sum-power constraint for decentral-
ized users is of little practical use, the dual uplink is only virtual
and not a model for the link with transmission in the opposite
direction of the BC. It features, however, some nice properties
that can be exploited, like the revealing of a hidden convexity
[1] or a reduced complexity during the filter computation. In-
stead of noise vectors , a single vector
with covariance is added. Linear filtering by
means of the matrix then delivers the symbol es-
timate of user .

Stacking all receive vectors yields the total receive vector

. Composing the system-wide

matrices and

, the total receive
vector reads as (cf. Fig. 2)

Similar to the downlink, the system-wide uplink sum-MSE
reads as

(9)

A finer resolution is again obtained by resolving the individual
users’ MSEs. The symbol estimate of user in the dual MAC
can be written as

(10)

Thus, we obtain for the uplink MSE of
user [cf. (5)]

(11)

Again, the invariance property of the user-wise MSEs with re-
spect to unitary matrices applied from the RHS to and

applied from the LHS to is valid and allows for a dis-
tribution of the MSE of every user onto its individual streams
according to the Schur-Horn theorem (e.g., [37]).
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For the third level of our duality, we need to resolve the MSEs
in a streamwise fashion, so we define the th row of as
and the th column of as . This results in an MSE expres-
sion for the th stream of user which reads as

(12)

III. PRINCIPLE AND KEY PROPERTIES OF THE

THREE-LEVEL DUALITY

The switching of the roles between uplink and downlink is re-
flected by interchanging every transmit filter in the uplink with
the respective receive filter in the downlink and by choosing the
transmit filters from the downlink as the respective receive fil-
ters in the uplink. As the dual domain has to consume the same
amount of transmit power, we need to weight every stream’s pre-
coder with a scaling factor and the respective receive filter with
the reciprocal scalar such that (3) and (8) hold simultaneously.
Depending on whether we set all scaling factors to the same
value, whether we allow for different factors, one for each
user, or whether we spend different factors for every stream,
we arrive at different levels of the proposed duality. These dif-
ferent levels allow to customize the duality to a specific applica-
tion by achieving different resolutions. They have the following
features:

1) Level 1: System-Wide Sum-MSE Preservation: In its
simplest form, the duality preserves only the total sum-MSE of
the complete system when switching from uplink to downlink
and vice versa. In general, the distribution of the sum-MSE
onto the individual users’ MSEs changes when switching from
one domain to the other. Only a single scalar needs to be com-
puted leading to an extremely low computational complexity.
This scalar and its inverse are associated to the precoder and
the receive filter of every stream, respectively. As a possible
application of the first level of our duality, we mention the
joint sum-MSE minimization in the broadcast channel. There,
applying the first level of the duality, i.e., the switching from
the broadcast to the multiple-access channel with one common
scalar, directly reveals the hidden convexity of the problem and
therefore allows for a convenient solution, see Section VI-A for
further details.

2) Level 2: User-Wise MSE Preservation: Preserving the
MSE of every user can be obtained by assigning different
scalars to the individual users, but each user applies the same
scalar for every single stream belonging to him. These
scalars are computed from a linear system of equations leading
to a higher computational complexity than the one in the first
level. However, not only the sum-MSE remains the same
during the uplink-downlink conversion, but also the MSEs per
user do not change. A possible area of application to which
the second level of the proposed duality is tailored to is the
weighted sum-MSE minimization, where the weighted sum of
the users’ MSEs is optimized. A direct minimization in the
downlink is of course possible as well. However, the optimum
receive filters involve different inverses leading to

a high computational complexity. Instead, the receive matrices
in the dual uplink all feature the same inverse

resulting in a reduced complexity. Moreover, the different
scaling factors need not be computed explicitly in case of the
weighted sum-MSE minimization because the ratio of these
weights already determines the ratio of the squared scaling
factors. In a nutshell, the uplink downlink conversion is for free
in this case, so solving the problem in the dual uplink is clearly
advantageous, see Section VI-B.

3) Level 3: Stream-Wise MSE Preservation: The full-fea-
tured version maintains the MSE of every single stream during
the conversion. It can be interpreted as an extended form of the
second kind, where we associate a virtual single-stream-user to
every data stream in the system. Streams belonging to a spe-
cific real user all have the same channel matrix in common,
and different scaling factors are allocated to every virtual user,
i.e., to every data stream in the system. Consequently,
scaling factors need to be determined which again follow from
a linear system of equations. Obviously, the third level has the
highest complexity. Needless to say, the level-3 duality includes
the functionality of the former two levels which means that both
the sum-MSE and the user-wise MSEs are preserved as well.
However, these two properties are achieved at a much higher
computational effort in the third level. So if less restrictive MSE
conservations are required, for example if only the users’ MSEs
or the sum-MSE shall be maintained, one should go for the first
or the second level of our duality and save computation time.
Interestingly, the proposed kind of streamwise MSE duality not
only preserves the individual MSEs per stream, but also the
SINRs per stream remain unchanged, see Section IV-C. There-
fore, the third level of the proposed duality keeps the individual
SINRs and consequently the data rate of every stream constant
during the conversion. So if the focus lies on the data rate in
linear transceiver design where the receivers do not decode their
streams jointly, the third kind becomes attractive.

IV. UPLINK-DOWNLINK CONVERSION

In this section, we construct an equivalent downlink channel
given a fixed uplink setup. Strictly speaking, given arbitrary
and for all users and all respective streams

we derive vectors and such that ac-
cording to the level of duality, either the sum-MSE remains con-
stant, the users’ MSEs do not change, or the individual streams’
MSEs are the same in the downlink and in the uplink.

A. Uplink-Downlink Conversion of the First Kind

In the first kind, the system-wide sum-MSE is preserved.
Hence, we only need a single degree of freedom which turns
out to leave the sum-MSE unchanged during the conversion
and simultaneously preserves the sum-power constraint (3)
in the dual domain. With the aforementioned positive scaling
factor common to all streams, we set

and

or, equivalently

and
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leading in conjunction with the composite matrices to

and (13)

Inserting (13) into the downlink MSE expression (4), we obtain

Equating this to the uplink MSE expression (9), we find by
means of (8) that

(14)

needs to hold in order to satisfy the retention of the sum-MSE.
The resulting precoders read as and dissipate the
power , which means that the dual down-
link has the same sum-power consumption as the uplink.

B. Uplink-Downlink Conversion of the Second Kind

In order to leave the individual users’ MSEs unchanged
during the conversion, different scalars

have to be assigned to the individual users. To this
end, we set

and

corresponding to

and (15)

It will be shown later that the cases and may
occur. The computation of the matrices and has to be
handled separately then. Given the uplink MSE of user
in (11) and the downlink MSE in (5), we observe that the
first three summands in the trace expressions in (11) and (5) are
again identical and cancel out when equating and , and
we get

(16)

It is obvious that we can neglect nonactive users having simul-
taneously passive transmitters and passive re-
ceivers . For them, the MSE-equality in (16) is
obtained for and , i.e., their respec-
tive filters in the downlink also vanish, and the respective scalars

are arbitrary, see (15). We observe that the duality
simplifies, when a passive transmitter also has

a passive receiver , and vice versa. In the fol-
lowing we will see that the proof for the duality is not so simple
for the case where either the transmitter or the receiver is
inactive but the filter at the other side of the link is active. How-
ever, any reasonable optimization should switch off the receive
filter, if the respective transmitter does not send anything at all.
Conversely, if the receive filter for a certain user vanishes, the
respective transmit filter should vanish as well. As mentioned
above, the duality for those nonactive users is obvious. Thus,
we assume in the following that no users are present that nei-
ther transmit nor receive. We first treat the simplified version of
the uplink/downlink duality with active users (
and ) and then extend it to the full functionality.

1) Uplink to Downlink Transformation for Strictly Active
Users: For the strictly active users with and

we find , since all users need
to transmit and receive in the corresponding downlink as well.
We can therefore, rewrite (16)

(17)

In matrix vector notation, we obtain

(18)

with the column diagonally dominant matrix

for
for .

(19)

Since is real-valued and has only nonpositive off-diagonal
entries, it is a Z-matrix [38]. Furthermore, it is strictly column
diagonally dominant for , so its inverse exists and is
also an M-matrix [38]. As a consequence, its inverse has
only nonnegative entries [38]–[40]. The necessity of positive
scalars is therefore automatically fulfilled, and one direction
of the proof of the duality can always be guaranteed, namely
that every MSE tuple in the uplink can also be achieved in the
downlink.

Summing up all rows of (18) yields

(20)

and from (15), we identify the left-hand side (LHS) of (20) to
be , i.e., the transmitted power in the downlink
scaled by the noise variance . According to (8), the right-
hand side (RHS) of (20) represents the transmit power in
the uplink scaled by the noise variance . From this, we can
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conclude that the sum power constraint is inherently fulfilled
when we compute the scalars via

(21)

Clearly, it is advantageous to solve for the unknowns via the
LU-decomposition of [41] and a subsequent forward-back-
ward substitution. Doing so, finding given and

requires FLOPs, cf. [41]
and [42]. Setting and , we have
found the transmit and receive filters in the uplink that achieve
the same user-MSEs as the matrices and in the uplink
with the same power consumption .

2) Generalized Uplink to Downlink Transformation: The
conversion for strictly active users presented in the previous
section cannot handle the case when a user features a nonzero
receive filter but the respective transmit filter matrix is zero or
vice versa. Although such a configuration of transmit and re-
ceive matrices probably won’t be applied during transmission,
it might arise in an intermediate step of an iterative algorithm
that applies the uplink-downlink conversion in each step. A
generalized uplink to downlink transformation being capable
of such semiactive users is presented in the Appendix I.

C. Uplink-Downlink Conversion of the Third Kind

Maintaining the MSE of every single stream is achieved by
choosing different scaling factors for every stream’s precoding
and equalization vector

and (22)

In the following, we assume that all streams have active re-
ceivers and active transmitters. Otherwise, the concept of the
generalized duality from Appendix I can be extended to the
streamwise MSE duality in a straightforward fashion. Inserting
(22) into the streamwise downlink MSE expression for in
(6) and equating the result with the uplink MSE in (12), we
obtain for and similar to (16)

(23)

Since both expressions in above formula also denote the
interference plus noise power seen by stream of user
and since the desired signal part remains con-
stant during the uplink-downlink conversion, the SINR is
not affected by the conversion. Hence, the third kind of
our MSE duality can also be regarded as an SINR duality.
It is easy to see that (23) leads to the system of equations

similar
to (18), which now has unknowns but still features
the M-matrix property guaranteeing feasible solutions for the
unknowns .

V. DOWNLINK-UPLINK CONVERSION

The downlink to uplink transformation is important to com-
plete the duality by showing that every MSE tuple in the down-
link can also be achieved in the uplink. This means that the
MSE region in the downlink is a subset of the MSE region in
the uplink. In conjunction with the fact proven in the previous
sections that the MSE region in the uplink is also a subset of
the MSE region in the downlink, we can infer that both regions
are identical and the duality is established. For our purpose, the
downlink to uplink conversion is only important to show that
optimal solutions of uplink and downlink are identical. How-
ever, the explicit use of the downlink-uplink conversion is neces-
sary when repeatedly switching between uplink and downlink,
cf. [29], [43], [44].

A. Downlink-Uplink Conversion of the First Kind

The first stage of the duality allows for a conservation of
the system wide sum-MSE during the conversion by setting the
composite matrices to

and (24)

Plugging this into the uplink sum-MSE expression (9) and
equating the result with the downlink sum-MSE expression in
(4), the solution for reads as

(25)

Again, the amount of transmitted power is invariant under the
conversion.

B. Downlink-Uplink Conversion of the Second Kind

Given the precoders and receive matrices in the down-
link, the respective filters in the dual uplink are set to

and (26)

In turn, the cases and may occur and will be
handled separately as for the transformation from the uplink to
the downlink. By means of (26), we equate the downlink MSE

from (5) and the uplink MSE from (11) of all users
to obtain

(27)

Again, we start with the simplified version of the transformation
where all transmitters and receivers are active, i.e., their matrices
are different from zero.

1) Downlink to Uplink Transformation for Strictly Active
Users: For the strictly active users, we have and

. Consequently, holds for all .
Rearranging (27) and making use of yields

(28)
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with the column diagonally dominant M-matrix

for

for

(29)

Summing up the rows of (28), we observe that the power con-
servation is inherently fulfilled, and the desired weight vector
reads as

(30)

whose elements are nonnegative and finite due to the properties
of .

2) Generalized Downlink to Uplink Transformation: Semi-
active users where either the receive matrix or the transmit
matrix is zero can be handled by the generalized version of
above conversion. Similar to its uplink-downlink counterpart in
Appendix I, this generalized downlink uplink transformation is
presented in Appendix II.

C. Downlink-Uplink Conversion of the Third Kind

Finally, the streamwise MSE conservation is again obtained
by means of individual scaling factors for every stream’s pre-
coding and receive vector:

and

Inserting this into the uplink MSE expression from (12) and
equating the result with the downlink MSE expression from (6),
we arrive at a linear system of equations which can be solved for
the squared scaling factors , cf. Section IV-C.
In addition to the MSEs, the SINRs are not altered during the
conversion.

VI. APPLICATIONS FOR THE THREE-LEVEL DUALITY

In the following subsections, we investigate two of the afore-
mentioned areas of application for the proposed three-level
duality in more detail. First, we apply the first kind to the
sum-MSE minimization in the broadcast channel and reveal
the hidden convexity of the problem. Afterwards, we show that
the second kind of the proposed duality allows us to reduce
the complexity of the weighted sum-MSE minimization in the
broadcast channel drastically.

A. Total Sum-MSE Minimization in the Broadcast Channel

Finding the jointly optimum composite matrices and that
minimize the downlink sum-MSE from (4) subject to a total
sum-power constraint cannot be done in closed
form in general. However, given , we can solve for the op-
timum depending on the precoders . Due to the block-di-
agonal structure of , the optimum have to be computed
separately and read as

achieving an MSE of user from (5) reading as

(31)

Unfortunately, it is not possible to merge the individual inverses
when summing up the users’ MSEs

to the sum-MSE . Thus, statements on the
convexity of are not obvious at first glance. The second ap-
proach one might think of when directly operating in the down-
link is to optimize the precoders depending on the receive ma-
trices in . Unfortunately, a closed form expression is again
infeasible because of the sum-power constraint
the composite precoding matrix underlies. The only chance
of revealing the hidden convexity of the problem is the splitting
of into a common scalar and the remaining matrix

[37], i.e., and optimizing the precoder and for
fixed simultaneously. Afterwards, a tricky modification of
the cost function has to be applied to end up at a convex problem.
In detail, the optimum reads as

yielding an MSE

which still does not feature any convex structure. However,
is invariant under a scaling of , since it will be revoked by the
common scalar . Hence, we are free to impose a constraint on
the squared Frobenius norm and set it arbitrarily to .
The problem then reads as

(32)

which now is convex in every product since
and is a matrix

convex function for positive semidefinite arguments [45].
A much more convenient way to reveal the hidden convexity

and gain the resultant benefits is the application of the first kind
of the proposed duality and handle the problem in the dual up-
link. To this end, we solve the dual multiple-access problem and
convert the resulting optimum matrices and into the down-
link via (13) and (14). In turn, the receive filters
can be computed independently and read as

(33)
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with the substitution

(34)

which is in contrast to the downlink solution for common to
all users since the channel is always bound to the precoder

in the uplink. The resulting MSE of user is

involving a sum-MSE

(35)

being jointly convex in all transmit covariance matrices
. Note the similarity of the expressions for the uplink

MSE in (35) and for the cost in (32).
We solved the total sum-MSE minimization problem in the

downlink in [37] by means of the concept of alternating op-
timization, where the transmitter and receivers are updated in
an alternating fashion. Unfortunately, the speed of convergence
turned out to be slow at high SNR values. The authors in [21],
[22], [29], and [43] also make use of an alternating optimiza-
tion. The alternation between the power allocation and the com-
putation of the beamforming vectors or the transmit covariance
matrices and repeated switching between uplink and downlink
makes the proposed approaches computationally expensive. An-
other approach to sum-MSE minimization is due to Tenenbaum
et al. in [46], where the interference is treated as additional noise
via its covariance matrix. Then, several iterations based on the
single-user MIMO sum-MSE minimization [47] are performed.
In contrast to the sum-rate maximization problem, treating other
users as colored noise does not yield the global optimum for the
MSE minimization problem.

Here, we tackle the problem with the aid of the projected
gradient algorithm [48], which is an extension of the conven-
tional steepest descent algorithm for constrained optimizations.
It features good convergence properties especially at large SNR
values. The iteration step reads as

(36)

where is blockdiagonal with all precoders
in the iteration step , is the total sum-MSE from (35),

is a preconditioning scalar, and is the step-size. The
conjugate nabla operator generates all conjugate Jacobi
matrices

(37)

The update rule (36) first performs a standard steepest de-
scent step and then applies an orthogonal projection onto the
constraint set defined by . It can be shown

that the unprojected gradient algorithm would always require
more transmit power than available, hence the projection is al-
ways necessary. Moreover, since the constraint set is a hyper-
ball with radius , the orthogonal projection is very simple,
it is nothing else than a scaling of all precoders by a common
factor such that is fulfilled with equality,
i.e., the projection is onto the hypersphere. The preconditioning
scalar is intended to speed up
the convergence at high SNRs, since is almost flat there,
and the Jacobian has a small Frobenius norm, which makes this
scaling important. Alternating optimization algorithms suffer
from this flatness at high SNRs and require a large number of
iterations. The inverse step-size is increased, as soon as the
objective tends to increase during the iterations. The conver-
gence of this algorithm is proven in [48] by means of a descent
argument:

Theorem 1: Given is bounded below and Lipschitzian
with the Lipschitz constant , and , then
the sequence of precoders generated by the gradient projection
algorithm converges. Furthermore, the limit point of this se-
quence satisfies the first-order KKT optimality conditions. In
particular, if is convex on the constraint set, then the global
minimum is obtained.

For the proof, see [48].
From Theorem 1 we know that the projected gradient ap-

proach would yield the global optimum of the sum-MSE mini-
mization if we were operating on the covariance matrices

, since the cost function is convex in the covariances.
However, our projected gradient approach works on the pre-
coders instead of their outer products. Therefore, we intro-
duce a unitary invariance of the cost function with respect to
RHS multiplications of unitary matrices onto the precoding ma-
trices. Whether the global minimum of the sum-MSE is obtained
although the cost is not convex in the precoders depends on the
number of transmitted streams per user:

1) As Many Data Streams as Transmit Antennas: For
, the covariance matrices can achieve the full rank .

Consequently, there is no constraint on the rank of the allowed
covariance matrices , the traces of all covariances only have
to sum up to the maximum available transmit power. In this case,
the cost in (35) is convex and we optimize over a convex set
yielding a convex optimization without local nonglobal minima.
The update rule from (36) can be rewritten by means of (37)

(38)

where is chosen such that . From
(38), we see that the rank of does not change in a fi-
nite number of iterations2 since

is positive definite and the LHS multiplication of by a
matrix of full rank does not change its algebraic rank. Con-
sequently, if the initial does not have full rank, but the
global optimum does have full rank, the projected gradient
algorithm never achieves this optimum. The solution obtained
when starting from a rank deficient precoder corresponds

2In particular, the rank cannot increase, even for an infinite number of itera-
tions.
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to the minimization of the system under the assumption that
less than streams are transmitted, since any rank deficient
can be transformed via unitary rotations (that do not change the
user-MSE) into a precoder with some zero-columns that corre-
spond to switched off data streams. In addition, if we start with

, the system is optimized under the assumption
that this user is not present. If we start with a full rank ini-
tialization but an optimum turns out to be rank deficient,
the projected gradient algorithm reduces the rank of in the
asymptotic limit. Although the algebraic rank cannot decrease
during a finite number of iterations, the LHS multiplication of

in (38) can increase the condition number of , and
after several iterations, the numerical rank may have decreased
as well. In the limit after an infinite number of iterations,
the distance between and goes down to zero, the alge-
braic rank of has decreased and matches the one of . We
can conclude that we need to initialize all precoders with
full rank.

Changing from the covariances to the pre-
coders does not create additional minima except the
ones possible with the unitary rotations. However, addi-
tional rank-deficient matrices fulfilling the KKT conditions
emerge, which can be seen from (38). These stationary points
are saddle points corresponding to rank-deficient precoders.
Moreover, a single maximum arises which corresponds to the
special case of transmitting only a single stream to a single
user on the eigenmode belonging the smallest eigenvalue

. If one starts on the
stable eigendirection of these saddle points with a rank defi-
cient precoder, the global optimum cannot be obtained. If we
initialize a precoder in a rank deficient fashion and the precoder
achieving the global minimum is also rank deficient, we may
achieve this global optimum, if we do not start exactly on the
stable eigendirection of a saddle point. Summing up, if we ini-
tialize all precoders with full rank matrices and transmit as
many data streams as transmit antennas (full multiplexing), the
projected gradient algorithm converges to the global optimum.

2) More Streams Than Transmit Antennas: For ,
is a wide matrix and the covariance matrix can again achieve
the full rank . Hence all propositions made for are
also valid here and the global optimum is achieved. However,
for , the MSE of this specific user is always larger
than for linear3filtering even if the SNR goes to infinity.
Via unitary rotations, we can always transform any precoder to
a precoder with zero-columns without increasing the
respective MSE. Hence, streams are ignored, which
obviously does not make sense.

3) Less Streams Than Transmit Antennas: If we want
to exploit some (additional) diversity gain for user with

, then is a tall matrix. Therefore, the rank of the
covariance matrix of user is upper
bounded by its maximum number of active data streams
and hence, cannot be chosen arbitrarily. If all covariance
matrices were allowed to achieve their full ranks

, minimizing (35) under a sum-power constraint
would be convex in the covariances. However, if ,

3In case of nonlinear filtering, it may be desirable to transmit more streams
than transmit antennas available, see [49].

we need to add a rank constraint which
obviously does not define a convex set4, yielding a nonconvex
optimization potentially featuring local minima that are not
globally optimal. Limiting the maximum number of active data
streams to a value smaller than the number of antennas
inevitably leads to the fact that the resulting optimization is no
longer convex in the covariance matrices.

In any case, the solution of the uplink problem is followed
by the conversion to the downlink. As only the sum-MSE needs
to be preserved, we can apply the first kind of our duality de-
scribed in Section IV-A since it features the smallest complexity
of all three kinds that preserve the sum-MSE. Regarding this
kind of minimization, the application of the first kind of duality
first reveals the hidden convexity of the problem, second, allows
for a gradient-based algorithm with low computational com-
plexity due to a common user-independent inverse, and third,
transforms the problem back to the downlink with negligible
complexity.

B. Weighted Sum-MSE Minimization in the Broadcast Channel

We intend to minimize a weighted sum-MSE in the downlink.
Instead of solving the problem in the downlink, we first solve the
equivalent uplink problem and then transfer it back to the down-
link by means of the second kind of our duality. The squared
scaling factors from (15) need not be computed via
the duality presented in the previous section, since they turn out
to be a byproduct of the solution of the optimization problem,
what clearly saves computational complexity.

In the direct approach in the downlink domain a huge compu-
tational complexity is required to minimize the sum of weighted
user-wise MSEs:

(39)

where the weights are positive. The Lagrangian
function associated to (39) reads by means of (5) in conjunc-
tion with the MMSE receiver as

(40)

with the substitution

(41)

Any gradient-based approach minimizing the sum of weighted
MSEs inevitably requires the evaluation and computation of the
expression

(42)

where the matrix is defined via

(43)

4The sum of two rank-one matrices can be of rank two for example.

Authorized licensed use limited to: T U MUENCHEN. Downloaded on June 22, 2009 at 09:02 from IEEE Xplore.  Restrictions apply.



708 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY 2009

From (42), it is obvious to see that different matrices
need to be inverted, or at least the product

has to be generated which brings about an enormous compu-
tational complexity.

This large amount can be circumvented by switching to the
dual MAC. There, the optimization reads as

(44)

and the associated Lagrangian function is

(45)

Differentiating (45) with respect to yields

(46)

where the matrix now reads as

(47)

and is the Lagrangian multiplier associated with
the power constraint. Now in the dual uplink, there is only one
common matrix that needs to be inverted for the computation
of all gradients in contrast to the downlink gradients in (42),
where different inverses have to be evaluated.
This clearly reduces the computational complexity compared to
the direct downlink approach.

Having solved the minimization in (44) for example by means
of the projected gradient approach, it is obvious that the pre-
coding filters satisfy the first-order KKT conditions of (44):5

(48)

LHS multiplying (48) by and applying the trace operator, we
obtain at any stationary point by means of
from (33)

(49)

The above equation is similar to the system of equations for the
uplink to downlink transformation (17), except for the constant
factor . Therefore, we can interpret the weights as the
scaled and squared transformation coefficients

(50)

From (50) we can observe, that we do not need to solve the
system of (18) for the final uplink to downlink transformation

5The check-sign ���� denotes matrices where precoders are involved that fulfill
the KKT conditions.

as the scalars are already determined by the weights
up to a constant factor which is chosen such that

the resulting downlink filters fulfill the transmit
power constraint (3). Summing up, we first solve the dual up-
link problem for example by means of the projected gradient
approach. Afterwards, we exploit the relationship (50) between
the weights and the squared conversion coefficients

and set and make use of (15) to find
the respective filters in the downlink. Finally, the coefficient
is found from the transmit power constraint in the downlink.

C. Simulation Results

Although the main contribution of this paper are the various
kinds of dualities, we present some simulation results of the
described algorithm for the sum-MSE minimization to illus-
trate the usefulness of the proposed MSE duality framework.
We choose a system setup, where users are served by a
base station with antennas. Every terminal is equipped
with 2 antennas and two data streams are allocated to every user,
i.e., . For this configuration we compare the
sum-MSE minimization algorithm from Section VI-A with the
one taken from Table III in [29], which is said to be the fastest
one of the three variants presented in [29], and which will act
as the reference algorithm. As in [16], the inverse step-size
of the gradient projection update of our algorithm in (36) is ini-
tialized with . Different to our projected gradient based
approach which solves the sum-MSE minimization in the dual
MAC and converts only the final solution back to the BC, the
authors in [29] repeatedly switch between the BC and the dual
MAC. Their duality therefore has to be applied in every single
iteration instead of only once at the end. Moreover, the iteration
itself contains another convex minimization problem which has
to be solved by interior point methods as proposed in [29]. This
inner optimization has to be solved with high accuracy such that
the outer optimization yields accurate results as well. Otherwise,
the MSE saturates above its minimum value and increasing the
number of outer iterations does not bring any reduction of the
sum-MSE. As mentioned in Section I-C, the currently achieved
tuple of MSEs per stream has to be computed as a vehicle to
convert the precoders, receive beamformers, and the power al-
location of the dual uplink back to the BC in [29]. However, only
the respective filters in the BC are of interest and not the spe-
cific MSEs. Finally, eigenvalue decompositions must be per-
formed in [29]. Our duality clearly saves complexity during the
conversion by directly transforming the filters from one domain
to the other. Summing up, a single iteration of the algorithm in
[29] has a much higher computational complexity than an itera-
tion of the proposed one in this paper. Nonetheless, we compare
the convergence of the sum-MSE over the iteration ignoring the
difference in the computational complexity per iteration.

As a figure of merit we choose the number of iterations
necessary to reduce the sum-MSE until its relative error is
below a certain threshold. To this end, we averaged over 10000
different channel realizations with zero-mean i.i.d. Gaussian
entries and plotted the histogram of the number of iterations
for three different transmit signal-to-noise ratio regimes: a low
SNR regime with , a moderate SNR
regime with , and a high SNR
regime with . The precoders of
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Fig. 3. Histogram of the number of iterations needed to reduce the relative
error of the minimum sum-MSE below a certain threshold. The transmit SNR
�� ��� �� �� � is 0 dB in the upper plot, 10 dB in the middle plot, and 20
dB in the lower plot.

both algorithms were initialized with the same scaled identity
matrices such that the transmit power constraint is fulfilled.

In the upper plot of Fig. 3, the relative frequency of the
number of iterations to reduce the relative error below is
plotted for the low SNR regime with .
In the low power regime, the presented algorithm is outper-
formed by the algorithm taken from Table III in [29]. The latter
one reaches the desired accuracy of within 3 iterations
in about 99 percent of the channel realizations, whereas the
presented algorithm takes more than 3 iterations in 45 percent
of the cases. Although the algorithm in [29] needs less iterations
in the low power regime, its computational complexity can be
reduced by applying the presented duality instead of the one in
[29]. The performance of the two algorithm changes when the
transmit SNR is increased.

The middle plot in Fig. 3 shows the relative frequency of the
number of iterations for the moderate SNR regime and the same
accuracy of . In about 74 percent of the cases, only a single
iteration is necessary for the proposed algorithm to reach the
relative error target, in 23 percent of the cases, 2 iterations are
necessary. This means that only in 3 percent of the cases, more
than 2 iterations have to be run. In contrast, the algorithm in [29]
needs three or more iterations in about 90 percent of the cases.

Raising the transmit SNR to 20 dB, the algorithm in [29]
needs drastically more iterations. Hence, we reduced the accu-
racy to . For this threshold, the presented algorithm reached
the desired relative error target within 2 iterations for all channel
realizations, whereas the histogram for the iterations of the al-
gorithm in [29] is much broader, see the lower plot in Fig. 3.

The speed of convergence is depicted in Fig. 4, where the
relative error of the two algorithms is shown over the number of
iterations for a representative channel realization with

. Both algorithms converge linearly, which means that the
error is multiplied by a factor per iteration. It can be
observed that this factor is smaller for the presented algorithm
than for the one in [29]. Because of the nonzero tolerance of the

Fig. 4. Relative error versus iteration index showing the speed of convergence
for a typical channel with �� ��� �� �� � � �� 	
.

inner optimization during the iterations in the algorithm from
[29], the relative error saturates with an error floor of about

. We used a tolerance of on the cost function for
the inner optimization which is solved by a nonlinear problem
solver. The reason for the saturation of the presented algorithm
at about is the finite wordlength representation.

VII. CONCLUSION

We presented a complete framework for the MSE duality be-
tween the MAC and the BC, which is applicable for single and
multiantenna users. Due to the three different kinds of duality,
an application specific version with tailored complexity can be
chosen for the solution of common optimization problems. The
first kind is the simplest one which leaves the total sum-MSE
constant and has lowest complexity. A conservation of the in-
dividual users’ MSEs is obtained by the second kind. An even
finer resolution can be achieved by the third kind which pre-
serves every single stream’s MSE when switching from up-
link to downlink or vice versa. Two areas of application have
been presented: The first one was the minimization of the total
sum-MSE in the BC which turned out to be convex in the dual
uplink MAC. The second one was the weighted sum-MSE min-
imization for which the computational complexity can be re-
duced by means of our duality.

APPENDIX I
GENERALIZED UPLINK TO DOWNLINK TRANSFORMATION

In this section, we extend the second kind of our duality for
the strictly active users in Section IV-B-I to the general case,
where we also allow for active receive filters, when the respec-
tive transmit filters are zero matrices and vice versa. To this end,
it is advantageous to define the following four sets of users:

(51)

The set comprises all passive transmitters, whereas
consists of all active transmitters. For the receivers, the equiva-
lent definition holds for and . For the completely pas-
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sive users that neither transmit nor receive, one direction of the
duality is evident as aforementioned, so we can assume here that

(52)

For the normal users that actively transmit and receive, i.e.,
, the unknowns underlie the strict inequalities

, see (15). Passive receivers actively transmitting
have . From (16), we can infer that

must hold in order to let the RHS go to zero as the
left hand side is. This leads to a vanishing receive filter in the
dual downlink . However,
the transmit filter in the downlink turns out to be
finite! To prove this assertion, we model passive receivers and
transmitters as a limit process in the sequel. We set

(53)

with and an arbitrary6, but nonzero, matrix
. We will then let go down to zero in the limit. The

respective transmitter in the downlink then reads as

(54)

where and even in the limit .
For the passive receivers, the unknowns are . Finally, we have
the passive transmitters that actively receive .
Since , must hold to let the RHS of (16)
be different from zero as the LHS is. As a consequence

(55)

follows from (15), but is finite. Similar to the
passive receivers in (53), we introduce

(56)

with arbitrary, but nonzero . In the limit process, we will let
go to zero to model the passive transmitters. The receive filter

in the downlink is

(57)

with the finite unknowns for the passive transmitters
and even in the limit when .

Starting with the nonpassive users , (16)
can be rewritten by means of (52)–(57) to (58):

(58)

6Only the amount of generated interference is of interest.

The two sums in (58) with vanish in the limit
, hence we can drop them. Multiplying (58) by with

, we find for

(59)

Second, rewriting (16) for the passive receivers
and applying (52)–(57), we get

(60)

This time, (60) is already fulfilled in the limit when
. Hence, we are free to impose arbitrary constraints

with (60), which may be advantageous for the duality. The key
idea now is to multiply (60) by before is ap-
plied. The resulting product is finite also in the limit

, see (54). The reason for doing so is the nice
property of the resulting system of equations which again gen-
erates an M-matrix and hence ensures the functionality of our
duality by obtaining positive values for and . Multiplying
(60) by and applying the limit afterwards, we obtain
for

(61)

Interestingly, (59) and (61) suffice to determine the unknowns
and , which are overall

unknowns. Equations (59) and (61) represent a system of
equations with unknowns, which is again column

diagonally dominant with positive main diagonal entries and
negative off-diagonal entries. Hence, a positive solution for
and exists, and it is guaranteed that every user-MSE tuple
in the uplink can also be obtained in the downlink. Moreover,
summing up the equations, we find that

(62)
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We see that the power constraint is inherently fulfilled, i.e., the
LHS of (62), which corresponds to the consumed power in the
downlink, is identical to the RHS, which represents the con-
sumed power in the uplink.

Now, the MSE equality is assured for all active transmitters
in the uplink, and we have determined all transmit matrices
for the downlink. Remember that passive transmitters in the up-
link are passive transmitters in the downlink as well [see (55)].
The only task remaining is to ensure the MSE equality for the
passive transmitters by choosing the receive matrices for

. For those , and we want to de-
termine the values , see (57). As we will see, these can
be computed separately, which becomes obvious when we re-
flect the system scenario: In the downlink, all transmit filters

have been determined. Hence, the MSE obtained by user
only depends on the choice of the receive filter

. The downlink MSE is identical to the uplink
MSE for users with , if the fol-
lowing equality holds, where we again apply (52)–(57):

(63)

Multiplying (63) by and applying the limit , we obtain

(64)

By means of , we have determined all transmit
and receive matrices now. Summing up, one direction of the
generalized duality for the users’ MSEs is obtained by first
solving the system of (59) and (61), which, in conjunction
with the fact that passive transmitters in the uplink are passive
transmitters in the downlink as well, provides all precoders and
the receive matrices of all active transmitters. Then, the receive
filters of the passive transmitters are computed such that the
MSE equality between uplink and downlink holds. This can be
done independently, see (64).

APPENDIX II
GENERALIZED DOWNLINK TO UPLINK TRANSFORMATION

In this section, we describe the duality even for passive re-
ceivers that actively transmit and passive transmitters, that ac-
tively receive. To this end, we assume again that no virtual users
with are present in the system, since for them,
the duality is evident, i.e., and .
Hence, they can be dropped, and we assume that the set proper-
ties (52) are still valid.

Passive receivers have . From (27),
we can infer that must hold in order to let the RHS be
zero as the LHS is. Thus, , see (26).
The respective receiver in the dual uplink is herewith passive as
well. To show that the precoder in the uplink is
finite, we introduce [cf. (53)]

(65)

with arbitrary nonzero and in the limit to
model the passive receivers. The precoder in the uplink thus
reads as

(66)

with and .
Passive transmitters with have

leading to in order to let the RHS of (27) be different
from zero, as the LHS is not zero. The respective transmit filter

in the dual uplink reads as , whereas
the receive filter can be expressed as

(67)

where with , and

(68)

with arbitrary, but nonzero .
For the nonpassive users, i.e., , (27) can be

rewritten by means of (52) and (65)–(68) and after letting ,
we obtain [cf. (59)]

(69)
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After multiplying with , including (65)–(68), and ap-
plying , the condition (27) for passive receivers

transforms to [cf. (61)]

(70)

where we used . Equations (69) and (70) in addi-
tion to (26) and (66) determine the transmit filters and re-
ceive filters for with the same MSE for those
users as in the downlink. In combination with
for , all precoding matrices have been determined now.
The only remaining task is to find the receive matrices for

. In turn, these equations are decoupled, since after
including (65)–(68), multiplying with , and , (27) for

( ) leads to

(71)

Summing up, the downlink to uplink transformation is achieved
by first computing the unknowns
and from (69) and (70), respectively. This system
of equations has again the nice property that the unknowns are
positive and there is a unique solution as long as . After-
wards, we compute from (71) for all and determine
all transmit and receive filters via (26), (66), and (67).
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