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0.1 ABSTRACT i

0.1 Abstract

In our work we use small angle neutron scattering (SANS) as a versatile tool for the
investigation of two different kinds of complex magnetic order: We examine the static
and dynamic properties of the vortex lattice (VL) of the conventional superconductor
niobium and we prove that a skyrmion lattice exists in the A-phase of the weak itinerant
heli-magnet MnSi. Both the VL in superconductors and the skyrmion lattice in MnSi
can be regarded as a macroscopic lattice, formed by topological entities with particle-like
properties, emerging from continuous fields.

The structure and elasticity of condensed matter is determined by the particular inter-
actions between their building blocks, the atoms. Similar to crystal lattices, the structural
and dynamic properties of superconducting VLs reveal a deep insight into the characteristic
vortex-vortex interactions. Especially deviations from the ideal six-fold VL symmetry sen-
sitively reflect both the symmetry and nature of the superconducting order parameter,
the morphology of the underlying Fermi surface as well as individual sample properties
and purity [1]. The elastic matrix Φα,β of a VL describes the energy, associated with
a distortion of the VL due to thermal fluctuations, gradients of magnetic field or tem-
perature, pinning and transport currents. Similar to the symmetry of VLs, the elastic
constants c11 for compression, c44 for tilt and c66 for shear sensitively reflect the micro-
scopic nature of the superconductivity [2, 3, 4, 5]. In addition, Φα,β strongly influences
the pinning/depinning properties of vortices and determines the thermal stability and the
state of aggregation of vortex matter. This leads to a particular relevance for technical
applications of superconductors.

However, the unambiguous mapping of different sources of anisotropy is intricate [1] for
both the symmetry and the elastic matrix of VLs. The variety of different influences thus
raises the question how to generalize the behaviour of VLs and vortex matter:

With its low Ginzburg-Landau parameter κ = λ/ξ, situated at the border of type-I and
type-II superconductivity and the corresponding flat free energy landscape, niobium (Nb)
is ideally suited as model system for systematic studies of vortex matter. Nb is charac-
terized by isotropic single gap s-wave superconductivity [6, 7], avoiding the complexities
of multi-gap systems and unconventional order parameters [1]. The low κ causes a high
value of the lower critical field Hc1. For samples with a finite demagnetizing factor, this
leads to an extended intermediate mixed state (IMS). The IMS is characterized by the
macroscopic coexistence of Meissner phase and VL in Shubnikov-islands, reminiscent of
the intermediate state of type-I superconductors. The emergence of the IMS reflects the
underlying crossover from attractive to repulsive vortex interaction as function of tem-
perature and magnetic field. The superconductivity in Nb thus allows to precisely tune
the vortex-vortex interaction.

In this thesis, we present a comprehensive small angle neutron scattering study of the
VL in an ultra-pure Nb single crystal sample, characterized by a residual resistivity
ratio of ∼ 104. We systematically investigate the morphology of vortex structures with
the magnetic field applied along a four-fold 〈100〉 axis. Caused by the interplay of
the four-fold crystal and the six-fold VL symmetry, a cornucopia of four different VL



ii

phases emerges, comprising symmetry breaking structures combined with various lock-in
transitions [8, 9, 10]. We succeed to deconvolute the general morphology of the VL and
its orientation to three dominant mechanisms: First, non-local contributions, second, the
transition between open and closed Fermi surface sheets and, third, the IMS between the
Meissner and the Shubnikov phase [10]. Our study paves the way for systematic studies
of superconducting VLs exhibiting a complex symmetry of the order parameter.

Until now, the microscopic access to the elastic matrix of VLs was only possible by means
of surface sensitive techniques, however, strongly hampered by surface induced pinning
effects. In this thesis, we present first time microscopic measurements of the intrinsic bulk
VL tilt modulus c44 by means of time resolved stroboscopic small angle neutron scattering
[11] in combination with a tailored magnetic field setup. In our study we find that the
VL in Nb responds to an external force — in the form of a changed magnetic field —
with an exponential relaxation, described qualitatively in good agreement with a damped
diffusion model proposed by Brandt [12] and Kes [13].

As expected, the relaxation process shows increasing VL stiffness with increasing mag-
netic field and reduced damping with increasing temperature. Besides this general trend,
we observe a dramatic changeover of the relaxation process associated with the non-trivial
VL morphology in the IMS and the crossover from attractive to repulsive vortex-vortex
interaction. This changeover is attributed to the decomposition of the VL into Shub-
nikov domains including a Landau-branching of the Shubnikov domains at the surface
of the sample. Our study represents a show-case how to access directly VL melting, the
formation of vortex-glass states and vortex pinning in unconventional superconductors,
notably the cuprates, heavy-fermion, boro-carbide or ironarsenide systems.

It was discussed recently whether vortex-like structures and forms of order comprised of
topological entities also occur in magnetism [14, 15, 16, 17, 18]. Similar to VLs in super-
conductors which are stabilized by the negative energy associated with a normal/super-
conducting interface, the stabilization of vortices by Bloch domain walls was proposed in
ferromagnets [19, 20, 21, 22]. Especially systems exhibiting a helical magnetic order seem
to be promising candidates for such structures, as they naturally favour a rotation of mag-
netic moments similar to Bloch domain walls. For ferro- or antiferromagnetic systems,
crystallizing in structures lacking inversion symmetry, the Dyzhaloshinskii-Moriya (DM)
interaction [23, 24] emerges which favours a perpendicular alignment of neighbouring
spins. Together with ferromagnetic exchange on a stronger energy scale, this can lead
to the formation of a helical arrangement of magnetic moments with a long pitch on an
atomic scale. Furthermore, the long pitch leads to an efficient decoupling of the magnetic
structure and the crystal lattice.

The archetypal helical magnet MnSi crystallizes in the cubic B20 structure, lacking in-
version symmetry. MnSi exhibits itinerant helical ferromagnetism below a transition
temperature Tc = 29.5 K, explained quantitatively by a Stoner model, including correc-
tions arising from enhanced fluctuations [25] in combination with the DM interaction.
The magnetic phase diagram of MnSi is characterized by four distinct phases: Below the
critical field Hc1, the helices are pinned by weak crystal field anisotropy to the crystalline
〈111〉 directions. Above Hc1, the helices realign into the magnetic field direction until at
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Hc2 a field polarized state is reached. In vicinity of Tc at approximately 1/2Hc2, a small
phase pocket, called A-phase, separated by weak first order phase transitions [26] was
found where neutron scattering studies established a perpendicular alignment of helices
and magnetic field [27, 28, 29].

In our work, we use small angle neutron scattering to establish the existence of a skyrmion
lattice in the A-phase of MnSi [30]. Due to a parallel alignment of the magnetic field with
respect to the neutron beam, we are able to resolve the complete magnetic structure of
the A-phase: The structure in the A-phase, reminiscent of a vortex lattice, consists of
topological knots of the magnetization with particle-like properties, arranged in a regular
six-fold lattice. The orientation of this lattice is strictly driven by the orientation of the
applied magnetic field, regardless of the underlying crystal symmetry. The periodicity of
the observed structure is much larger, compared to the atomic spacing of MnSi.

A Ginzburg-Landau ansatz analog to [31] shows that in the presence of a uniform magneti-
zation Mf , the quartic M4-term is effectively cubic in the modulated moment amplitudes,
giving rise to a triple-q structure: A mean field model yields that a spin crystal, composed
by the superposition of three single-k helices perpendicular to the magnetic field inclined
at an angle of 120◦ with respect to each other represents a meta-stable state. Including
Gaussian fluctuations reduces the energy of the spin crystal which then assumes a stable
ground state. The spin crystal was identified as skyrmion lattice: The integration of the
winding density yields a topological charge Ctop = −1 per unit cell of the skyrmion lattice,
proving the existence of stable topological solitons of the magnetization.
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Zusammenfassung

In dieser Dissertation wird Neutronen Kleinwinkelstreuung als vielseitige Messmethode
benutzt, um zwei verschiedene Formen von komplexer magnetischer Ordnung zu unter-
suchen: Es werden sowohl die statischen als auch die dynamischen Eigenschaften des
Flussgitters des konventionellen Supraleiters Niob untersucht. Weitere durchgeführte
Messungen weisen die Existenz eines Skyrmion-Gitters in der A-Phase des schwachen
itineranten helikalen Magneten MnSi nach. Sowohl Flussgitter in Supraleitern als auch
das Skyrmion-Gitter in MnSi können als makroskopisches Gitter, bestehend aus topolo-
gischen Objekten mit teilchenartigen Eigenschaften beschrieben werden.

Die strukturellen und dynamischen Eigenschaften kondensierter Materie werden durch
die zugrundeliegenden Wechselwirkungen zwischen ihren Bausteinen, den Atomen, be-
stimmt. Ebenso wie bei Kristallgittern erlauben die strukturellen und dynamischen Eigen-
schaften supraleitender Flussgitter einen tiefen Einblick in die Wechselwirkung der einzel-
nen Flussfäden. Insbesondere Abweichungen von der idealen hexagonalen Symmetrie des
Flussgitters spiegeln dabei sowohl die Symmetrie des supraleitenden Ordnungsparame-
ters, die Morphologie der Fermifläche des supraleitenden Materials als auch individuelle
Eigenschaften der Proben wie ihre Reinheit wieder [1]. Die Elastizitätsmatrix Φα,β eines
Flussgitters beschreibt die elastische Energie, welche durch eine Verzerrung des Flussgit-
ters durch thermische Fluktuationen, Gradienten des Magnetfeldes oder der Temperatur,
durch Pinning oder in der Gegenwart von Transportströmen verursacht wird. Ähnlich
wie die Symmetrie des Flussgitters spiegeln auch die elastischen Moduli c11 für Kom-
pression, c44 für Verkippung und c66 für Scherung die mikroskopischen Eigenschaften der
Supraleitung wieder [2, 3, 4, 5]. Darüber hinaus beeinflusst Φα,β sowohl die thermische
Stabilität und den Aggregatszustand der Flussgittermaterie als auch die Pinning/Depin-
ning Vorgänge der Flussfäden. Dies führt zu einer großen Relevanz für den technologischen
Einsatz von Supraleitern.

Die eindeutige Zuordnung verschiedener Ursachen für anisotropes Verhalten des Flussgit-
ters ist jedoch schwierig, sowohl für die Symmetrie als auch die Elastizitätsmatrix [1].
Die Vielzahl unterschiedlicher Einflüsse wirft die Frage auf, wie die Eigenschaften von
Flussgittern und Flussgittermaterie verallgemeinert werden können:

Der klassische Typ-II Supraleiter Niob ist ideal als Modellsystem zur Untersuchung von
Flussgittermaterie geeignet. Niob zeigt eine isotrope single-gap s-Welle Supraleitung [6, 7]
und ist durch einen kleinen Wert des Ginzburg-Landau Parameters κ = λ/ξ ∼ 1/

√
2 nahe

am Typ-I Verhalten ausgezeichnet. Mögliche Beiträge einer unkonventionellen Symmetrie
des supraleitenden Ordnungsparameters werden also vermieden [1]. Der niedrige Wert von
κ führt zu einem hohen Wert für das untere kritische Feld Hc1. Darüber hinaus führt der
niedrige Wert von κ bei Proben mit endlichen Demagnetisierungsfaktor zu der Ausbil-
dung des gemischten Zwischenzustandes (IMS), analog dem Zwischenzustand bei Typ-I
Supraleitern. Der IMS ist durch die makroskopische Koexistenz von Meissner Domänen
und Shubnikov Domänen, die ein Flussgitter tragen, gekennzeichnet. Das Auftreten des
IMS wird durch eine in diesem Temperatur- und Magnetfeldbereich anziehende Wechsel-
wirkung zwischen den einzelnen Flussfäden getrieben. Die Supraleitung in Niob erlaubt
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es daher, die Wechselwirkung zwischen den Flussfäden gezielt zu beeinflussen.

In dieser Arbeit werden mit Hilfe von Neutronen Kleinwinkelstreuung die Eigenschaften
des Flussgitters in einem höchst reinen Niob Einkristall systematisch untersucht. Die ver-
wendete Niob Probe ist durch ein außergewöhnlich hohes Restwiderstandsverhältnis von
∼ 104 ausgezeichnet. Es wird dabei im Speziellen die Morphologie der Flussgitterstruk-
turen für eine Orientierung des Magnetfeldes parallel zur vierzähligen 〈100〉 Kristallrich-
tung untersucht. Durch das Zusammenspiel der hexagonalen Symmetrie des Flussgitters
und der vierzähligen Symmtrie des Kristalles ergibt sich ein reiches Phasendiagramm,
das vier verschiedene Flussgitterphasen beinhaltet. Die einzelnen Phasen des Flussgit-
ters brechen dabei spontan die Kristallsymmetrie [8, 9, 10]. Mit Hilfe von Messungen
der Flussgittersymmetrie als Funktion des Winkels zwischen Magnetfeldrichtung und der
〈100〉 Kristallrichtung gelingt es, die verschiedenen Ursachen für die spezielle Morpholo-
gie des Flussgitters zu separieren und drei dominanten Mechanismen zuzuordnen: Er-
stens nicht-lokalen Korrekturtermen, zweitens dem Übergang von offenen zu geschlosse-
nen Elektronenbahnen auf der Fermifläche und drittens dem IMS zwischen Meissner und
Shubnikov Phase [10]. Unsere Arbeit liefert die Basis für nachfolgende systematische
Untersuchungen des Flussgitters von Supraleitern mit komplexer Symmetrie des supralei-
tenden Ordnungsparameters.

Messungen der Elastizität von Flussgittern auf mikroskopischer Skala sind nur mit Hilfe
von oberflächensensitiven Messmethoden möglich. Diese werden jedoch stark durch para-
sitäre Einflüsse, insbesondere durch Oberflächenpinning beeinträchtigt. In dieser Arbeit
wird erstmals zeitaufgelöste stroboskopische Neutronen Kleinwinkelstreuung in Kombina-
tion mit einem speziellen Magnetfeldaufbau benutzt, um das intrinsische Kippmodul c44

des Flussgitters im Inneren der Probe direkt zu messen. Die Reaktion des Flussgitters
in Niob auf eine Änderung des Magnetfeldes lässt sich dabei durch eine exponentielle
Relaxation mit einem Diffusionsmodell nach Brandt [12] und Kes [13] beschreiben.

Die Relaxation des Flussgitters zeigt dabei, wie theoretisch erwartet, eine mit dem Mag-
netfeld wachsende Steifigkeit und eine abnehmende Dämpfung der Relaxation mit steigen-
der Temperatur. Neben diesem generellen Trend zeigen die Messungen qualitativ eine
scharfe Änderung des Relaxationsprozesses, der durch die nicht-triviale Morphologie des
Flussgitters im IMS und dem Übergang von anziehender zu abstoßender Wechselwirkung
der Flussfäden verursacht wird. Die Änderung des Relaxationsvorganges wird dem Zer-
fallen des Flussgitters in die einzelnen Shubnikov-Domänen und der Aufzweigung dieser
Domänen an der Oberfäche der Probe (Landau-branching) zugeschrieben. Die entwickelte
Messtechnik ermöglicht darüber hinaus die direkte Messung von Flussgitterschmelzen, die
Bildung von Flussgittergläsern und die Bestimmung des Pinningverhaltens, insbesondere
in unkonventionellen Supraleitern in der Gegenwart von Transportströmen.

Die Existenz von Wirbeln und ähnlichen topologisch stabilen Strukturen in magnetisch
geordneten Systemen wird aktuell diskutiert [14, 15, 16, 17, 18]. Analog zu supralei-
tenden Flussfäden, die thermodynamisch durch die negative Grenzflächenenergie zwi-
schen normal- und supraleitendem Bereich stabilisiert werden, wurde die Stabilisierung
von magnetischen Wirbeln in ferromagnetischen Materialien durch Bloch Domänenwände
vorgeschlagen [19, 20, 21, 22]. Insbesondere Systeme, die eine helikale magnetische Ord-
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nung zeigen, scheinen vielverspechende Kandidaten für solche Strukturen zu sein, da sie
eine Rotation der magnetischen Momente, wie sie in Bloch Domänenwänden beobachtet
wird, inhärent unterstützen. In ferro- oder antiferromagnetischen Systemen, die in Kristall-
strukturen ohne Inversionssymmetrie kristallisieren, erlaubt die fehlende Inversionsym-
metrie die sogenannte Dyzhaloshinskii-Moriya (DM) Wechselwirkung [23, 24], welche
eine senkrechte Ausrichtung benachbarter magnetischer Momente bevorzugt. Zusammen
mit einer ferromagnetischen Austauschwechselwirkung auf einer größeren Energieskala
führt dies zur Ausbildung einer helikalen magnetischen Ordnung, die durch eine lange
Wellenlänge auf atomarer Skala gekennzeichnet ist. Die lange Wellenlänge der helikalen
magnetischen Struktur führt darüber hinaus zu einer effizienten Entkopplung von mag-
netischer und kristalliner Ordnung.

Die intermetallische Verbindung MnSi kristallisiert in der kubischen B20 Struktur, die
keine Inversionssymmetrie aufweist. Unterhalb einer kritischen Temperatur Tc = 29.5 K
zeigt MnSi schwache itinerante helikale magnetische Ordnung, die durch ein erweitertes
Stoner Modell, das erhöhte Fluktuationen berücksichtigt, in Kombination mit der DM
Wechselwirkung beschrieben werden kann. Das magnetische Phasendiagramm von MnSi
ist durch vier verschiedene Phasen gekennzeichnet: Unterhalb des kritischen Feldes Hc1

sind die Helices durch die schwache Kristallfeldanisotropie an die kristallinen 〈111〉 Rich-
tungen gepinnt. Oberhalb von Hc1 reorientieren sich die Helices in die Richtung des
Magnetfeldes und bilden die konische Phase, bis am oberen kritischen Feld Hc2 ein feld-
polarisierter ferromagnetischer Zustand erreicht ist. Knapp unterhalb von Tc bei etwa
1/2Hc2 wird in einem kleinen Temperatur- und Magnetfeldbereich die sogenannte A-
Phase beobachtet, die durch Phasenübergänge schwacher erster Ordnung von der konis-
chen Phase getrennt ist [26]. Messungen mit Hilfe von Neutronenstreuung zeigten dabei
eine senkrechte Anordnung des Propagationsvektors der Helices und des Magnetfeldes in
der A-Phase [27, 28, 29].

In dieser Arbeit wird mit Hilfe von Neutronen Kleinwinkelstreuung die Existenz eines
Skyrmion Gitters in der A-Phase von MnSi gezeigt [30]. Durch eine parallele Anord-
nung von Magnetfeld und Neutronenstrahl kann die vollständige magnetische Struktur
der A-Phase beobachtet werden: Die A-Phase besteht aus topologischen Knoten der Mag-
netisierung mit teilchenartigen Eigenschaften, die sich — ähnlich wie bei einem supralei-
tenden Flussgitter — in einem hexagonalen Gitter anordnen. Die Orientierung dieses
Gitters ist dabei, unabhängig von der Kristallrichtung, ausschließlich durch die Richtung
des Magnetfeldes gegeben. Die Periodizität des beobachteten Gitters ist viel größer als der
atomare Gitterabstand von MnSi und entspricht der Wellenlänge der helikalen Ordnung.

Mit Hilfe eines Ginzburg-Landau Ansatzes nach [31] wird gezeigt, dass der quartische
Term M4 in Gegenwart einer uniformen Magnetisierung Mf effektiv kubisch in den mod-
ulierten Momenten ist. Dies führt zu einer 3-q Struktur: Ein Mean-Field Modell zeigt,
dass ein magnetischer Spinkristall, der aus der Superposition von drei Helices, die untere-
inander einen Winkel von 120◦ einschließen, und jeweils senkrecht zum Magnetfeld ori-
entiert sind, ein metastabiler Zustand ist. Werden Gauss’sche Fluktuationen einbezogen,
so wird die freie Energie des Spinkristalls im Vergleich zur konischen Phase reduziert und
dieser stellt einen stabilen Grundzustand dar. Durch die Integration der Windungsdichte



0.1 ABSTRACT vii

über eine Einheitszelle des Spinkristalles wurde dieser als Skyrmion Gitter identifiziert:
Die Integration ergibt eine topologische Ladung von Ctop = −1 pro Einheitszelle und
beweist die Existenz stabiler topologischer Solitonen der Magnetisierung.
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Chapter 1

Vortices in Superconductors and
Ferromagnets

1.1 Introduction

Vortices — originating from latin vertere, to turn — are a widely spread phenomenon in
physics and nature. Vortex structures can be found over many orders of magnitude in
size. Our galaxy — the milky way — owns a spiral shape with a diameter of ∼ 1021 m.
Vortices are present everywhere in our daily life: The rotating water in the sink of a bath
tub, whirl winds of several kinds reaching from harmless small dust devils to enormous
hurricanes in the atmosphere of the earth. But vortices can also be found on a sub-µm
scale, e.g., in superconductors [32] and ultra-cold Bose-Einstein condensates of 4He or
trapped atoms [33]. Some selected examples of vortices of different dimensions are shown
in Fig. 1.1.

In the focus of this thesis are studies of the properties of vortices and vortex lattices in su-
perconductors and similar vortex structures in ferromagnets. Following this introduction
and historical overview, a brief mathematical description of vortices is given in section
(1.2). We then introduce in detail the properties of vortex lattices in superconductors and
vortices in magnetically ordered systems in sections (1.3) and (1.4), respectively, where
we also motivate our research. This chapter is closed with a short outline on the structure
of this thesis (section (1.5)).

The history of vortices is actually quite old. An overview has been given by Brandt
et al. [34, 35]: Already in 1644 René Descartes [36] proposed in his book Principia
Philosophiæ a model of the universe, based on a mechanism of weighty fluid celestial
matter, moving as vortices: Due to the dense filling of space with celestial matter, the
rectilinear motion of matter will be deflected into a rotation. Descartes compared this
mechanism with some light pieces of wood swimming in a basin filled with water. If
the water is put into rotation, the pieces of wood will gather in the centre of the rota-
tion. With this model of celestial vortices (cf. Fig. 1.2), gravitation and the rotation of
planetary objects were explained.

1
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(iii) (iv)

(vi)

(i) (ii)

(v)

Figure 1.1: Vortices of different magnitudes. The spiral shape of the galaxy M101 is shown in
panel (i). The diameter of galaxies is typically ∼ 1021 m. Panel (ii) shows an image of a hurricane
taken from the ISS on March 26th 2005 [37] on the southern Brazilian state of Santa Catarina.
Note the clockwise circulation of southern Hemisphere cyclones. The Kármán vortex street,
a series of vortices with alternating rotation is shown in panel (iii), observed off the Chilean
coast near the Juan Fernandez Islands [38]. A picture of a tornado is shown in panel (iv) [39].
Different configurations of vortices, emerging in a Bose-Einstein-condensate of superfluid 4He
(typical size ∼ 100µm) [40] and of trapped, ultra-cold sodium atoms (typical size ∼ 50µm)
observed after ballistic expansion [41] are shown in panels (v) and (vi), respectively.

In the 1800s, the stability of vortex loops in fluids has been examined by Lord Kelvin
[42] and J. J. Thomson [43], who solved the case for two up to seven vortices, whereby
instability was predicted for seven vortices. Kelvin and Thomson initially suggested a
model of the atoms, based on a knotted structure in an ideal fluid, where the manifold of
knot types represents the different elements [44]. In 1911, the picture of the vortex street
was introduced by Theodore von Kármán, a fluid dynamist, writing in his autobiography
later on: Vortices were observed and recorded many years before I came on scene. In a
museum in Bologna, Italy, I remember seeing a painting of the great Christoph (Saint
Christopher) wading through water with the child Jesus on his shoulder. Behind his heels
was a series of alternating vortices [45]. The so-called Kármán vortex street is of great
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importance for the aerodynamically stable design of bridges and buildings amongst other
applications. A depiction can be found in Fig. 1.1.

The concept of superfluid quantum vortices was introduced by Onsager in 1949 [46],
the description was later generalized by Feynman in 1955 [47] and Abrikosov. In 1957,
Abrikosov predicted the existence of vortices in type-II superconductors by a solution
of the Ginzburg-Landau equations with spatially varying order parameter [32]. Besides
type-II superconductors, vortex structures have been identified in a variety of strongly
correlated condensed matter systems, amongst others in superfluid 4Helium (cf. Fig. 1.1)
[48] and superfluid 3Helium. Ketterle et al. received the Nobel prize 2001 for the discovery
of vortices in a Bose-Einstein condensate of bosonic sodium atoms [33]. The first atomic
fermionic condensate has been achieved by Greiner et al. [49] (2003).

In the following paragraphs, we briefly introduce the topological properties of vortices and
their description as solitons [51]: In a nonlinear and dispersive medium, a self-reinforcing
solitary wave is called soliton. Solitons emerge due to the cancellation of nonlinear and
dispersive effects. Solitons are characterized by three typical properties: Their form is
permanent, they are localized within a region and they can interact with other solitons.
Vortices as topological objects are a matter of studies since the 1960s and 1970s, where a
novel approach to quantum field theory was introduced: The classical field equations were
studied in detail, including their fully non-linear form and excitations: A characteristic
feature of the newly obtained solutions was their topology: In contrast to excitations from
the vacuum, associated with the quantization of smooth wave-like deformations of a field,
the new particle-like solitons own their stability from a different topology:

The different topology arises mostly due to particular boundary conditions of the under-
lying set of differential equations. We assume that the boundary has a non-trivial homo-

(i) (ii)

Figure 1.2: Panel (i): Descartes’ celestial vortices from Principia Philosophiæ, 1644 [36]. Panel
(ii): Portrait of René Descartes by Frans Hals, 1649 [50].
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topy group, which will be preserved by the differential equations. The solutions of the
differential equation may then be classified into homotopy classes as well. Since there is
no continuous transformation that will map a solution in one homotopy class to another,
the solutions are truly distinct, and maintain their integrity even in the presence of pow-
erful forces [52]. The topology of such a solution may be described by a single integer
Ctop, which is called generalized winding number or topological charge [14, 53]. A field
configuration with Ctop = 1 is a classical stable solution, which is called topological soliton.

Historically, the first successful example of a topological soliton was the skyrmion, named
after Tony Skyrme. Skyrme firstly managed to show that particle-like excitations of
continuous fields emerge in the presence of non-linear excitations. In Skyrme’s pioneering
work, the constituents of the nucleus, protons and neutrons emerge naturally as the soliton
states of the pion medium, consisting of spinless (π+, π−, π0) [54]. Skyrmionic states have
also been observed in numerous different condensed matter systems:

The vortices in superconductors arrange themselves into a macroscopic lattice — analog to
the crystallization of atoms into a crystal lattice — they also own particle-like properties.
They further are characterized by a non trivial topology: Due to continuity conditions
for the superconducting phase on a closed loop around the vortex, the magnetic flux of
a vortex is quantized. A vortex in a superconductor thus can be solely nucleated at the
surface of the sample or as closed vortex loop inside the superconductor. Vortices observed
in superconductors (or superfluid condensates) may therefore be described as topological
solitons of the superconducting order parameter [51].

Besides superconductivity and superfluidity, forms of order composed by topological en-
tities have been identified in numerous systems, e.g., Turing patterns in classical liquids
[55], which are stationary and periodic in space. They result from the interplay between
diffusion and non-linear reaction kinetics, firstly observed in chemical reaction-diffusion
systems. A depiction of a typical Turing pattern is given in Fig. 1.3, panel (i). A further
example are the so-called blue phases in liquid crystals [56], which have been firstly ob-
served in the melting behaviour of cholesteryl benzoate, which briefly turned blue upon
changing from clear to cloudy during cooling. This is attributed to the existence of a
twisted structure of chiral nematic liquid crystals: A large structure, composed of twisted
cylinders, as schematically given in Fig. 1.3, panel (ii) is observed. Yet at the contact
points of the cylinders, as marked in Fig. 1.3, panel (iii), defects naturally occur which
are then arranged in a cubic lattice akin to a crystal lattice. As the characteristic size
of such a crystal of topological defects is of the same order of magnitude compared to
the wavelength of light, a blue colour arises due to Bragg reflections. Skyrmion states
have also been found in the spin textures in quantum Hall magnets [57], stabilized by
charge as additional freedom, where the two-dimensional electron gas was studied in a
high magnetic field for a filling factor v = 1. A depiction is given in Fig. 1.3, panel (iv).

However, these given examples of skyrmionic states are either limited to non-equilibrium
states or stabilized by external fields or topological defects. Recently, forms of order com-
posed of topological entities have also been discovered in so-called topological insulators
at zero field, where a robust quantum hall state is found on the boundaries of two-
dimensional band insulators with large spin-orbit effects. This quantum spin Hall effect
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leads to topological non-trivial states of quasi non-interacting gapped fermions [58, 59].

It was discussed whether such vortex-like topological forms of order also occur in the field
of magnetism: On the one hand, smectic, nematic and hexatic forms of order, akin to
liquid crystals as well as multi-q structures have been proposed for spin-liquids or spin-
glasses. Such states can be found for systems, which are characterized by frustration
as e.g. Kagomé lattices or 3D Pyrochlore antiferromagnets [60, 61]. On the other hand,
Bogdanov, Jablonskii and Hubert et al. [19, 20, 21, 22] propose the stabilization of vortices
in ferromagnets by Bloch domain walls, similar to vortex lattices in superconductors
which are stabilized by the negative energy associated with a normal to superconducting
interface.

(i) (iv)

(ii) (iii)

Figure 1.3: Panel (i) depicts a so-called Turing pattern arising from spatial resonances and
superposition patterns in a reaction-diffusion model with interacting Turing mode, adopted from
[62]. Panel (ii) and panel (iii) schematically depict the structure of twisted cylinders – where
straws represent the twisted cholesterol cylinders – as observed in the so-called blue phase of
liquid crystals, adopted from [63]. Panel (iv) presents the skyrmionic state, observed in the
two-dimensional electron gas of quantum hall systems in the presence of strong magnetic fields,
taken from [64].

We have shown in the previous paragraphs, that the universal concept of vortices and
vortex lattices, where topological entities with particle-like properties emerge from con-
tinuous fields is applied in numerous systems. The properties of the vortices thereby
not only sensitively reflect the underlying physics, but also are of general importance for
fundamental questions in quantum physics.
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1.2 Mathematical Description of Vortices

In this paragraph, we briefly present the fundamental mathematical properties of vortices.
We thereby follow the work by Brandt [34]. In classical fluid dynamics, two general types
of vortices have to be distinguished: The forced or rotational vortex and the free or
irrotational vortex. The first type is best described by a rotating pool of water, where a
parabolic shape of the surface is observed; the forced vortex is only possible in media with
finite viscosity. Vortices in superconductors are characterized by the irrotational vortex
type, reminiscent of water being drawn down a plug hole, which has the mathematical
form of a potential field, i.e., owns no vorticity if one neglects the vortex core.

At sufficiently large distance from the vortex core, which is situated at (x, y) = (0, 0),
such a vortex is characterized by a vector field v(r) with r = (x, y, z)

v(r) =
κv

2πr⊥
eφ (1.1)

with the distance to the vortex center r⊥ = (x2 + y2)1/2, the unit vector in azimuthal
direction eφ and the circulation of the vortex κv =

∮
v · dl. The flow of the fluid is

rotational free for a irrotational or free vortex field in a superconducting medium

∇× v(r) = 0 . (1.2)

For arbitrarily curved vortices where the position of the vortex core is described by the
function Cs : rv(s) = [xv(s), yv(s), zv(s)] with the line element drv(s) = [x′v(s), y

′
v(s), z

′
v(s)]

and the line parameter s, the rotation reads in three dimensions

∇× v(r) = κv

∫
Cs

drvδ3(r− rv) . (1.3)

The ideal vortex core is thereby described by the delta function δ3 = δ(x)δ(y)δ(z). In real
systems, the core size of the vortex is either finite, i.e. the delta function is replaced by a
Gaussian or a Heavyside function (for a rigidly rotating cylinder) or the core is sharply
defined by a delta function and thus the velocity field follows v ∝ 1/r⊥. In this case, the
density of the fluid ns has to vanish close to the core at least as ns ∝ r2

⊥, reminiscent of the
water in the bath tub, rotating around an empty funnel. For superconducting vortices,
the density of superconducting electrons vanishes with ns = |ψ|2 ∝ r2

⊥.

In contrast to vortices of water in the sink of a bath tub, quantum vortices as observed in
superconductors own a second characteristic feature: Superconductors exhibit the prop-
erty of having a phase φ(r). Due to the continuity conditions for the superconducting
order parameter, a closed loop at a sufficiently large distance around a vortex center re-
quires for the phase

∮
∇φ · dl = 2πn with an integer n = 0,±1,±2, etc. This yields for

the magnetic flux φmag of a superconducting vortex (due to the coupling to the vector
potential A)

φmag =

∮
A · dl =

~
2e

∮
∇φ · dl = n

h

2e
= nφ0 (1.4)

with the flux quantum φ0.
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Generalizing the description given above, two different types of quantum vortices are
distinguished [51]: We already have introduced, that the phase of v(r) has to increase by
a factor of 2πn with an integer n upon a closed loop around the vortex. (i) The so-called
global vortex is simply defined by the basic scalar field v(r). (ii) For a gauged vortex, e.g.,
in superconductors, the scalar field v(r) is electromagnetically coupled with a gauge group
U(1). We now have to deal with two fields, namely v(r) and the gauge field aµ(r). The
consequence is, that the fixed phase relation leads to a quantized magnetic flux, which is
not the case for a global vortex.

1.3 Vortex Lattices in Superconductors

1.3.1 Introduction

Although superconductivity was firstly observed almost a century ago by Kammerlingh
Onnes (1911) in mercury, it is still one of the most fascinating and important fields
of interest in modern physics. The superconducting state is characterized both by the
vanishing electrical resistivity as well as the complete expulsion of magnetic fields, regard-
less whether the magnetic field was applied below or above the superconducting transition
temperature Tc. The expulsion of external magnetic fields, which is denoted Meissner-
Ochsenfeld effect (1933) [65] established superconductivity as own thermodynamic phase.
A first phenomenological description of superconductivity was given by London [66] based
on the Maxwell equations.

The superconducting state was then described by the phenomenological Ginzburg-Landau
theory (1950) [67] by introducing a superconducting wavefunction ψ with finite stiffness
ξGL. The superconducting groundstate was derived by an expansion of the free energy F
in terms of |ψ|2 for temperatures close to the transition temperature Tc, where |ψ|2 is still
small. The Ginzburg-Landau framework introduces and explains the different behaviour of
type-I and type-II superconductors in a magnetic field by means of the energy, associated
with a normal- to superconducting interface, characterized by the parameter κ. The
Ginzburg-Landau theory further yields the correct values for the critical fields of various
superconductors.

The Ginzburg-Landau theory was extended by Abrikosov [32] to type-II superconductors
with negative interface energy by introducing a periodic solution of the phenomenological
Ginzburg-Landau equations, where the magnetic field can penetrate bulk type-II super-
conductors in form of vortices, each carrying one flux quantum φ0 = h/2e. This is referred
to as Shubnikov phase. The vortices arrange themselves in a so-called superconducting
vortex lattice with Bravais properties, reflecting the minimal free energy landscape, where
a regular hexagonal symmetry was obtained for isotropic superconductors. However, the
difference of energy between a six-fold symmetry and a four-fold symmetry is only a few
percent. The experimental evidence of vortex lattices in superconductors was given by
Cribier et al. in 1964 [68] by Bragg diffraction of cold neutrons from the vortex lattice.

A first microscopic explanation of superconductivity was given independently by Bardeen,
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Cooper and Schrieffer (BCS) [69] and Bogoliubov [70]. By means of a retarded phonon
mediated interaction between two conduction electrons close to the Fermi surface with
opposite wavevector and spin (a schematic depiction is given in Fig 1.4), a net attractive
potential leads to the formation of a bound state called Cooper-pair. The total spin
of both electrons in a Cooper-pair adds up to zero. This leads to a macroscopically
occupied new groundstate, a condensate of Cooper-pairs, separated by the energy gap ∆
and characterized by a single, macroscopically coherent phase φ(r) of the superconducting
wavefunction ψ.

-
+

Figure 1.4: Schematic depiction of an electron moving through a crystal lattice. The electron
causes a dynamic polarisation of the crystal lattice. By means of a retarded electron-phonon
interaction, overscreening can lead to a net attractive potential (marked with the blue ellipsoid)
for a second electron.

While prior to the 1970s, all superconducting materials could be identified as phonon-
mediated condensate of Cooper-pairs, this dogma fell after the discovery of superfluidity
in 3He [71], providing an example of non-phonon induced coupling. The observation
of high temperature superconductivity in cuprate and ruthenate systems in the 1980s,
initially by Bednorz and Müller [72] has led to a burst of new superconducting materials.
The discovery of superconductivity in heavy fermion systems which are characterized by
a renormalized electron mass by a factor of up to three orders of magnitude — firstly
observed in the compound CeCu2Si2 by Steglich et al. [73] — has been a prime example
for non-electron-phonon superconductivity with possible complicated order parameters.
A depiction of two different symmetries of the superconducting order parameter is given
in Fig 1.5.

Today, a cornucopia of superconducting materials is known, leading from phonon-mediated
coupling in niobium below a Tc of 9.2 K over superconductivity in Bi2Sr2Ca2Cu3O10+δ

(BSSCO) with a Tc of 120 K, to pressure induced superconductivity in Hg-compounds
with a Tc of 164 K [74, 75]. Recently, high temperature superconductivity was observed
in oxypnictide materials as, e.g., FeAs [76]. In addition, superconductivity is also ob-
served in organic materials, e.g., (TMTSF)2PF6, in the alcalic-metal-fullerene K3C60 and
at the quasi two-dimensional interface of the insulating oxides LaAlO3 and SrTiO3 [77].
On the other hand, a close interplay of magnetism and superconductivity is observed in
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particular in the heavy fermion compounds. Besides electron-phonon mediated supercon-
ductivity, spin fluctuations at the border of instabilities and competing or coexisting forms
of electronic order (mostly antiferromagnetism) are recently discussed [78] as alternative
coupling mechanisms.

(i) (ii)

+

+

-- Fermi 
Surface

Fermi 
Surface

s-wave
Symmetry

dx2- y2 -wave
Symmetry

node|ΔK| |ΔK|

Figure 1.5: Panel (i) schematically depicts the superconducting gap for an isotropic s-wave
order parameter in k-space. Panel (ii) shows the symmetry of the superconducting gap for
dx2−y2-wave symmetry of the order parameter, where nodes of the superconducting gap occur
for certain directions in k-space.

1.3.2 Properties of Superconducting Vortex Lattices

Similar to crystals lattices, composed of atoms, the defining properties of superconducting
vortex lattices and vortex matter are their symmetry and structure as well as their elastic
matrix. Anisotropy and deviations from the ideal six-fold vortex lattice symmetry reflect
sensitively the fundamental electronic properties of the superconducting material as well
as the number and symmetry of the superconducting gaps due to non local corrections
and individual sample properties as, e.g., pinning or mean free electron path. However,
the unambiguous mapping of different sources of anisotropy is intricate [1].

The symmetry and structure of superconducting vortex lattices is mostly determined by
means of small angle neutron scattering measurements, exploiting the weak interaction
of the charge-neutral neutron with the magnetic field distribution of the superconducting
vortex lattice on the one hand and the Bravais properties of the vortex lattices on the
other hand.

A reentrant square to hexagonal to square vortex lattice transition in the compound
LuNiB2C [79], inferred from small angle neutron scattering measurements, was attributed
to the interplay of superconducting gap symmetry and Fermi symmetry [80]. If the
magnetic field is applied along a four fold 〈100〉 axis in the isotropic s-wave superconductor
niobium, four different vortex lattice phases emerge, comprising symmetry breaking vortex
structures combined with various lock-in transitions [8, 9] caused by the interplay of the
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four-fold crystal symmetry and the six-fold vortex lattice symmetry. However, the origin
of the symmetry breaking and tilting was not completely understood for both LuNiB2C
and niobium. For materials exhibiting strong anisotropy or possible unconventional order
parameter symmetries, the situation is even more complicated:

The pronounced anisotropy of the layered cuprate compounds can yield significant distor-
tions of the vortex lattice. Such as for the high-Tc compound YBCO, where a distortion
of the vortex lattice symmetry to an ellipsoidal shape was found by Keimer et al. [81]
by means of neutron scattering, which was explained by the four-fold symmetry of the
order parameter near the vortex core. In contrast, the field and temperature dependence
of vortex lattice distortions in the heavy fermion compound PrOs4Sb12 by Huxley et al.
[82] was attributed to the presence of gap nodes in the superconducting state on at least
some Fermi surface sheets. In CeCoIn5, the increase of the form factor of the vortex
lattice with increasing field was attributed to a Fulde-Ferrell-Larkin-Ovchinnikov FFLO
state [83]. Small angle neutron scattering measurements on the complicated vortex lattice
phase diagram of the heavy fermion compound UPt3, where three different vortex phases
are distinguished, lead to an unconventional two-component picture [84].

The elastic matrix Φα,β of a vortex lattice describes the energy associated with a distortion
of the vortex lattice due to thermal fluctuations, gradients of magnetic field or temper-
ature, pinning and transport currents. Φα,β also determines the dynamic properties of
superconducting vortex matter in non-equilibrium states. Similar to the symmetry of vor-
tex lattices, the elastic constants of the vortex lattice c11 for compression, c44 for tilt and
c66 for shear sensitively reflect the microscopic nature of the superconductivity [2, 3, 4, 5].
In addition, the elastic matrix of the superconducting vortex lattice is closely related to
the pinning and depinning properties of vortices, leading to a particular relevance for
technical applications of superconductors.

In analogy to properties of ordinary matter, the thermal stability and the state of aggre-
gation of vortex matter is determined by Φαβ. A variety of different vortex matter has
been identified, comprising, e.g., vortex lattice melting transitions as observed by means
of small angle neutron scattering in the high-Tc material BSCCO [85] and other high-Tc
compounds [86]. Vortex lattice Bragg glasses, liquids and ices have been identified by
transport and magnetization measurements, e.g., in NbSe2 and MgB2 [87],[88],[89].

In contrast to the symmetry of vortex lattices, which can be directly measured by means of
small angle neutron scattering, neutron scattering measurements only give limited access
to the dynamic properties of superconducting vortex matter [90]. Microscopic measure-
ments of the intrinsic elastic constants of vortex lattices are typically performed by means
of surface sensitive techniques, however, strongly hampered by surface induced pinning
effects and geometrical constrains in the commonly used thin film samples [2]. In contrast,
bulk techniques as measurements of teh transport properties and the magnetization can
give no micropcopic information.
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1.3.3 Motivation

The broad variety of different influences on the properties of superconducting vortex
lattices raises the question how to generalize the behaviour of superconducting vortex
matter and makes studies of conventional superconductors of general interest. In this
thesis, we particular focus on the symmetry and structure on the one hand and on the
elasticity of superconducting vortex lattices on the other hand:

The superconductivity in niobium is ideally suited to provide such general information
of the vortex lattice [8, 9, 10], avoiding the complexities of multi-gap systems and com-
plex order parameter symmetries [91, 82, 92]. The low value of the Ginzburg-Landau
parameter, κ ≈ 0.8, places niobium at the immediate border between type-I and type-II
superconductivity. This makes the underlying change from attractive to repulsive vor-
tex interactions experimentally accessible [93]. Moreover, the large coherence length of
niobium implies that the Fermi surface topology and thus non-local effects are important.

We have already mentioned, that the structure and symmetry of the superconducting vor-
tex lattice of niobium — for the magnetic field applied along a four-fold 〈100〉 crystalline
direction — comprises gradual variations with various lock-in transitions and symmetry
breaking rotations [8, 9] caused by the interplay of the four-fold crystal symmetry and the
six-fold vortex lattice symmetry. However, in these studies the precise evolution of the
vortex lattice morphology as a function of the direction of the magnetic field, necessary
to identify the origin of the morphology and tilting, remained open. This originated in
incomplete data sets and, more importantly, in the purity of the samples studied so far,
which still displayed distinct pinning effects.

In our work, we use small-angle neutron scattering to systematically study the vortex
lattice in an ultra-pure single crystal of niobium as a function of the orientation of the
applied magnetic field. With our study, we succeed to deconvolute the general morphology
of the vortex lattice and its orientation to three dominant mechanisms. First, non-local
contributions to the free energy due to the general four-fold Fermi symmetry, second,
the transition between open and closed Fermi surface sheets and, third, the intermediate
mixed state between the Meissner and the Shubnikov phase [10]. On the one hand, our
study paves the way to systematic examinations of samples with reduced purity and
reduced mean free electron path to quantify to influence of non-local corrections. On the
other hand, our study provides an ansatz how to deconvolute the symmetry and structure
of the superconducting vortex lattice in systems exhibiting an unconventional symmetry
of the superconducting order parameter.

We have introduced, that microscopic measurements of the vortex lattice elasticity are
strongly hampered by surface induced pinning effects. In our work, we exploit a novel
time-resolved neutron scattering technique in combination with a tailored magnetic field
setup for first-time direct microscopic measurements of the superconducting vortex lattice
tilt modulus c44 in ultra-pure niobium. This technique allows to measure the intrinsic
tilt modulus c44 for bulk samples on a microscopic scale. With the used setup, we can
overcome the limitations due to surface pinning effects in the commonly used thin film
samples:
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In our study we find, that the vortex lattice in niobium responds to an external force
— in the form of a changed magnetic field — with an exponential relaxation, described
qualitatively in good agreement with a damped diffusion model proposed by Brandt [12]
and Kes [13]. As expected, the relaxation process shows increasing vortex lattice stiffness
with increasing magnetic field and reduced damping with increasing temperature. Besides
this general trend, we observe a dramatic changeover of the relaxation process associated
with the non-trivial vortex lattice morphology in the intermediate mixed state and the
crossover from attractive vortex-vortex interaction to repulsive vortex interaction in the
Shubnikov phase. Whereas the relaxation exhibits a single exponential shape in the
Shubnikov phase, an additional second process on a very fast time scale is observed in
the intermediate mixed state. This changeover is attributed to a Landau-branching of
the Shubnikov domains at the surface of the sample. This study represents a show-case
how to access directly vortex lattice melting and the formation of vortex glass states
in unconventional superconductors, notably the cuprates, heavy-fermion systems, boro-
carbide or ironarsenide systems.

1.4 Vortices in Magnetically Ordered Systems

1.4.1 Properties of Vortices in Magnetically Ordered Systems

We have already introduced that similar to vortex lattices in superconductors, which are
stabilized by the surface energy associated with a superconducting to normal conducting
interface, Bogdanov, Jablonskii and Hubert et al. [19, 20, 21, 22] propose the stabilization
of vortices in ferromagnets by Bloch domain walls. As they naturally favour a rotation
of magnetic moments similar to Bloch domain walls, ferromagnetic systems exhibiting
helical order are promising candidates for the formation of magnetic vortex lattices with
topological properties:

Helical instabilities of ferromagnetic order are mostly provided by the Dzyaloshinskii-
Moriya interaction: For systems crystallizing in a structure lacking inversion symmetry,
the competition between the Dzyaloshinskii-Moriya interaction [23, 24], which favours a
perpendicular alignment of neighbouring spins, and ferromagnetic coupling, which favours
a parallel alignment, leads to the formation of an incommensurable spiral order with long
periodicity. The periodicity is thereby given by the ratio of both competing energy scales.
A depiction of a typical helical and conical arrangement of magnetic moments is given in
Fig. 1.6, panel (i).

In contrast to magnetic vortices and multi-q structures, which are caused by geometrical
frustration of the magnetic exchange interaction with respect to the crystalline structure
[61], the long pitch observed in helical magnets leads to an efficient decoupling of the
magnetic order from the underlying crystal lattice on the one hand. On the other hand,
the Dzyaloshinskii-Moriya interaction naturally provides the non-linear coupling terms in
the field theory, necessary for the formation of skyrmionic topological order as pointed
out by Bogdanov and coworkers [21, 20]. Finally, the spatial size of the magnetic vortices
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is determined by the pitch of the helical order, leading to large structures on an atomic
scale. However, clear experimental evidence for the existence of stable vortices in ferro- or
antiferro magnetic systems was missing. A schematic depiction of the proposed magnetic
vortices and the corresponding magnetic vortex lattice is given in panels (ii) and (iii) of
Fig. 1.6.

Recently, the ideas of Bogdanov and coworkers have been revitalized by a number of ex-
perimental findings in the archetypal helical magnet MnSi, which crystallizes in the cubic
B20 structure, lacking inversion symmetry. MnSi exhibits weak itinerant ferromagnetism
below a transition temperature Tc = 29.5 K, explained quantitatively by a Stoner model,
including corrections arising from enhanced fluctuations [25]. The magnetic phase dia-
gram of MnSi is characterized by four distinct phases, a depiction is given in Fig. 1.7.
Below the critical field Hc1, the helices are pinned by weak crystal field anisotropy to
the crystalline 〈111〉 directions. Above Hc1, the helices realign into the magnetic field
direction until at Hc2 a field polarized state is reached. In vicinity of Tc at approximately
1/2Hc2, a small phase pocket, called A-phase, separated by a weak first order phase tran-
sition was found. Neutron scattering studies established a perpendicular alignment of
helices and magnetic field [27, 28] in the A-phase.

The possible existence of an intermediate phase in MnSi [95, 96] in the vicinity of Tc
at ambient field and pressure was interpreted theoretically in terms of a spontaneous
skyrmion ground state [18], stabilized by a phenomenological parameter. However, the
authors of this study point out, that the conical phase always has lower energy compared
to the skyrmionic state in a mean field calculation for cubic systems [18]. Furthermore, a
partial order with unusual scattering pattern was observed above a critical pressure pc in
an extended non-Fermi-liquid regime in MnSi by Pfleiderer et al. [97]. The partial order
thereby survives far into the non-Fermi-liquid phase. It supports the existence of novel
phases with partial ordering of the conduction electrons similar to liquid crystals.

Calculations by Binz et al. and Fischer by means of Landau theory [15, 14, 16] compare
favourably with existing data on the high pressure behaviour: Binz et al. construct a
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Figure 1.6: Panel (i) shows a schematical drawing of a helical order (upper illustration) and
a conically distorted helical order in the presence of a magnetic field (lower illustration), as
observed e.g. in MnSi. Panel (ii) represents a single magnetic vortex, panel(iii) depicts a
hexagonal arrangement of vortices to a skyrmion lattice. Panels (i) to (iii) adopted from [94].
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Figure 1.7: The magnetic phase diagram of MnSi is shown at ambient pressure as function of
temperature T and applied magnetic field H. Plot adopted from [30].

magnetic spin crystal by a linear superposition of helices and calculate its stability by
means of Landau theory, where they find, that the bcc spin crystal is favoured. Tewari
et al. [17] evoke close analogies to the blue phases in cholesteric liquid crystals and
propose that similar condensation transition involving a chiral order parameter can occur
in itinerant helimagnets. Recent calculations by Butenko et al. [94] show that skyrmion
textures are stabilized by uniaxial distortions in noncentrosymmetric cubic heli-magnets.

1.4.2 Motivation

In this thesis, we use small angle neutron scattering to revisit the magnetic phase diagram
of the archetypal helical magnet MnSi in detail. In contrast to previous studies [27, 28],
we choose both a parallel alignment of the magnetic field with respect to the incoming
neutron beam as well as a perpendicular alignment. In particular, the parallel alignment
of the magnetic field with respect to the incident neutron beam allows to resolve the
complete magnetic structure of the A-phase, which is characterized by a perpendicular
alignment of the propagation vector k of the helical order and the magnetic field.

With our experiments, we establish the existence of a skyrmion lattice in the A-phase of
MnSi [30]: The observed scattering pattern in the A-phase exhibits a regular, hexagonal
symmetry reminiscent of a vortex lattice. The orientation of this lattice is strictly driven
by the orientation of the applied magnetic field, regardless of the underlying crystal sym-
metry, whereas the periodicity of the observed structure is identical to the pitch of the
helical magnetic spiral, observed in MnSi under zero field.

We interpret our experimental findings as lattice of topological knots of the magnetization
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with particle-like properties, arranged in a regular six-fold manner. A Ginzburg-Landau
ansatz following earlier work by Bak and Jensen [31] shows, that in the presence of a
uniform magnetization Mf , the quartic M4-term, which describes the mode-mode inter-
actions is effectively cubic in the modulated moment amplitudes. This naturally gives rise
to a triple-Q structure: An expansion of the free energy including numerical calculations
of Gaussian fluctuations confirms, that a spin crystal, composed by the superposition of
three helices with Q = k, inclined at an angle of 120◦ with respect to each other and per-
pendicular to the magnetic field represents a stable groundstate. The integration of the
winding density yields a topological charge Ctop = −1 per unit cell, proving the existence
of a stable magnetic topology and identifies the spin-crystal as skyrmion lattice.

1.5 Outline

In the following paragraph we give a brief overview of the structure of this thesis:

Both, vortex lattices in superconductors and heli-magnets exhibit large scale magnetic
structures with respect to atomic scales. The charge-neutral neutron deeply penetrates
condensed matter samples but nevertheless weakly interacts with magnetic moments due
to its spin. The wavelength of a cold neutron beam typically meets several atomic lattice
constants, thus avoiding contributions from nuclear scattering. Using a cold neutron
beam, neutron scattering thus is ideally suited to measure the structure and symmetry
of superconducting vortex lattices and complex forms of long range magnetic order. In
the following chapter (2), we briefly introduce the technique of neutron scattering on
superconducting vortex lattices and helical magnets.

The main part of this thesis work splits into two parts. For a better readability, both
parts are self-contained.

In the first part, we focus on the studies performed on the properties of the supercon-
ducting vortex lattice of the model system niobium (chapter (3)). We therefore introduce
in detail the symmetry and structure as well as the dynamic properties of vortex lattices,
using a Ginzburg-Landau ansatz. We then focus on the special properties of low-κ su-
perconductors before presenting the details of our measurements on the morphology and
elasticity of the vortex lattice in the model system niobium.

In the second part, we briefly review the properties of weak helical ferromagnets and intro-
duce the Dzyaloshinkii-Moriya interaction and the Bak-Jensen model for helical magnets.
We then introduce the properties of the weak itinerant heli-magnet MnSi, before we
present our small angle neutron scattering measurements of the magnetic phase diagram
of MnSi (chapter (4)).

We finally close with a brief summary on recent studies on the evolution of the skyrmion
lattice under presence of doping and disorder in the isostructural siblings of MnSi, Fe1−xCoxSi,
Mn1−xCoxSi and Mn1−xFexSi and give an outlook on future studies.
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Chapter 2

Neutron Scattering

2.1 Introduction

We have introduced the properties of vortex lattices in superconductors and vortex struc-
tures in helical ferromagnets in chapter (1). Both superconducting vortex lattices and
akin structures in helical ferromagnets exhibit complex magnetic superstructures with
long periodicity on atomic scales. Neutron scattering is a powerful and versatile tool for
the examination of the static and dynamic properties of such structures. This is due
to the unique interaction of the charge-neutral neutron with condensed matter. In the
following, we give a brief introduction into the fundamental principles of neutron scatter-
ing from nonmagnetic and magnetic samples using unpolarised neutrons in sections (2.2)
and (2.3). We then derive the elastic neutron scattering cross-section of vortex lattices in
superconductors and of the helical order in the weak ferromagnet MnSi in sections (2.4)
and (2.5), respectively. Finally, the typical small angle neutron scattering setup as used
for our studies is introduced.

Salient features of the interaction of neutrons with condensed matter are:

• The de-Broglie wavelength of thermal neutrons is of the same order of magnitude
compared to the atomic distance of solid or liquid condensed matter (typically a few
Å). If neutrons are scattered from such a sample, interference effects occur which
yield valuable information on the structure and dynamics of the scattering system.
The energy of a thermal neutron beam (En = 81.81/λ2 [meV] with λ in Å) and
its momentum are of the same order of magnitude as elementary excitations in
condensed matter systems. Inelastic neutron scattering thus gives easy access to
phonon or magnon excitations throughout the complete Brillioun-zone. However,
the use of a cold neutron beam, where the wavelength typically meets several atomic
lattice constants allows to suppress nuclear Bragg reflections.

• The interaction of the charge-neutral neutron with matter is determined by the
nuclear force. Due to its short range, the interaction may be treated as point-
like, leading to a high, q independent form factor for nuclear Bragg reflections. In

17
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contrast to X-ray scattering, the nuclear interaction is no monotonic function of the
atomic number. In contrast, it varies strongly for neighbouring elements and even
for different isotopes of the same element. This allows to tailor scattering contrasts,
which can be favourable especially for light or strongly absorbing elements. The
absence of charge and hence missing Coulomb interaction permits neutrons to deeply
penetrate into matter, allowing to study the bulk properties of samples.

• Due to their spin, neutrons weakly interact with the magnetic fields present in the
sample with a dipolar interaction. Neutron scattering thus also yields valuable
insight into the magnetic properties of condensed matter systems.

The de-Broglie relation for the wavelength of a free neutron reads

λ =
h

p
(2.1)

with the momentum of the neutron
p = ~k (2.2)

and its energy

E =
1

2
mv2. (2.3)

In a typical neutron scattering experiment, neutrons with wavelength λi and wavevector
ki and associated energy Ei are impinged on the sample to be investigated. Due to the
scattering process at the sample, the momentum and energy of the neutrons change from
the initial states ki and Ei into the final states kf and Ef , respectively. The conservation
of momentum and energy for the scattering process yields

q = ki − kf

~ω = Ei − Ef =
~2

2mn

(|ki|2 − |kf |2)
(2.4)

with the momentum transfer q and the energy transfer ~ω.

The probability of neutrons being scattered in a particular direction kf with the en-
ergy transfer ~ω is described by the scattering function S(q, ω), which yields the Fourier
transform of the scattering potential in real space and time. The cross-section σ is defined
by the ratio of scattered neutrons per second per incident neutron flux Φ. The double
differential cross-section then reads

d2σ

dΩfdEf
=

Neutrons, scattered into the solid angle dΩf and the energy interval dEf
Incident flux of neutrons ΦdΩfdEf

.

(2.5)
A schematic depiction of the double differential cross-section is given in Fig. 2.1.

It is convenient, to express the double differential cross-section as sum over coherent
and incoherent scattering, where the coherent part contains information on collective
effects amongst the scattering entities such as Bragg scattering, magnons or phonons. In
contrast, the incoherent part yields information on the individual particle motion due
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Figure 2.1: Depiction of the scattering process: Neutrons with initial wavevector ki are scat-
tered into the solid angle dΩf with the final energy Ef .

to fluctuations, diffusion or isotope variations. In contrast to coherent scattering, the
incoherent scattering cross-section is isotropic in q.

d2σ

dΩfdEf
=

d2σ

dΩfdEf

∣∣∣∣
coh

+
d2σ

dΩfdEf

∣∣∣∣
inc

(2.6)

For a detailed review on neutron scattering, we refer to the books by Bacon [98], Lovesey
[99] and Squires [100]. In the following, we derive the basic scattering formulæ for elastic
nuclear and magnetic scattering with unpolarized neutrons following the description given
by Shirane, Shapiro and Tranquada [101].

2.2 Nuclear Neutron Scattering

A neutron beam with wavevector ki impinging on a sample can be treated as weak pertur-
bation of the sample. A scattering neutron yet can cause a transition from one quantum
state of the sample to another, but the quantum states themselves remain conserved.
The scattering cross-section can therefore be derived using Fermi’s Golden Rule. The
interaction operator is represented by V , the initial and final states are labeled with the
quantum numbers λi and λf . The double differential cross-section then reads

d2σ

dΩfdEf

∣∣∣∣
λi⇒λf

=
kf
ki

( mn

2π~2

)2

|〈kfλf |V |kiλi〉|2δ(~ω + Ei − Ef ) . (2.7)

As the effective interaction is weak and its range is small compared to the neutron wave-
length λ, the scattering process can be treated in Born approximation, describing both
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incoming and outgoing neutrons with plane waves. This yields for the interaction matrix
element

〈kfλf |V |kiλi〉 = V (q)〈λf |
∑
j

eiq·rj |λi〉 , (2.8)

with rj representing the position of the scattering centres, which are assumed to be
identical, and the nuclear pseudopotential

V (q) =

∫
drV (r)eiq·r . (2.9)

Due to the short range of the interaction, the nuclear pseudopotential is represented by a
delta function in r

V (r) =
2π~2

mn

∑
j

bjδ(r−Rj) . (2.10)

This yields

Vj(q) =
2π~2

mn

bj (2.11)

with the nuclear scattering length bj of the j’th atom.

For coherent elastic scattering on a sample, whose nuclear scattering centres are arranged
on a Bravais lattice, the double differential cross-section then simplifies to [101]

dσ

dΩ

∣∣∣∣
el

= Nn
(2π)3

v0

∑
G

δ(q−G)|Fn(G)|2, (2.12)

with the static nuclear structure factor Fn containing the scattering length bj and the
position dj of the j’th atom within the unit cell

Fn(G) = bje
iG·dje−Wj . (2.13)

v0 identifies the volume of the unit cell whereas the vectors G represent the unit vectors of
the associated reciprocal lattice. This means, that scattered intensity is observed solely,
when the momentum transfer q coincides with a reciprocal lattice vector G, referred to
as Bragg peak. The Debye-Waller factor Wj is a measure of the fluctuations of the atoms
around their equilibrium position. The Debye-Waller effect reduces the intensity of the
Bragg peaks leading to an incoherent background.

2.3 Magnetic Neutron Scattering

As neutrons own a magnetic dipole moment, every ordered magnetic structure of the
sample likewise contributes to coherent scattering. The magnetic moment of a neutron
reads

mn = −γµnσ (2.14)
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with the gyromagnetic ratio γ, the nuclear magneton µn and the spin operator σ. The
potential energy of a neutron in a magnetic field B then yields

E = −γµnσ ·B . (2.15)

In an unpolarized neutron beam, all polarization directions are equally distributed, the
probability for spin up and spin down is equal. The scattering length then consists of two
components: The nuclear and the magnetic contribution.

Magnetic moments in condensed matter can be generated by the spin of the nuclei and
the spin or angular momentum of the electron shell. As the nuclear and the magnetic
scattering centres often share the same position in the unit cell but their scattering lengths
can be of opposite sign, interference effects do occur. In analogy to nuclear scattering,
the magnetic form factor f(q) is the Fourier transform of the normalized unpaired spin
density %m(r) of an atom. As the magnetic moment of the neutrons as well as the magnetic
moments of the systems examined are vectorial quantities, the magnetic cross-section
depends on their relative orientation. The magnetic form factor reads

f(q) =

∫
%m(r)eiq·rdr (2.16)

with f(0) ≡ 1.

Neglecting the contribution of the angular momentum of the electrons at first, the cross-
section for magnetic scattering was derived by Halpern and Johnson (1939) [102]. The
cross-section depends not only on the initial and final wavevector of the scattered neutron
but also on the corresponding neutron spin states si and sf with s = σ/2. Generalizing
equation (2.7) then yields for the double differential cross-section, summing over all pos-
sible initial states λi and final states λf

d2σ

dΩfdEf

∣∣∣∣
si→sf

=
kf
ki

∑
P (λi)

∣∣∣∣∣〈λf
∣∣∣∣∣∑

l

eiq·rlU
sisf
l

∣∣∣∣∣λi〉
∣∣∣∣∣
2

δ(~ω + Ei − Ef ) . (2.17)

The atomic scattering amplitude U
sisf
l , associated with a transition from the spin state

si to sf of the neutron being scattered at the atomic site l reads

U
sisf
l = 〈sf |bj − plS⊥lσ +BlIlσ|si〉 (2.18)

with the coherent nuclear scattering length bj. Bl represents the spin-dependent nuclear
amplitude with the nuclear spin operator I. S⊥ denotes the magnetic interaction vector,
firstly introduced by de Gennes (1963)[103] and later adopted by Moon, Riste and Koehler
(1969) [104]

S⊥ = qe × (S× qe) , (2.19)

with the unit vector qe in direction of q. Thus, only the components of S, which are
oriented perpendicular to q, contribute to magnetic scattering. This effect is also denoted
magnetic selection rule.
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Considering only moments attributed to spin yields

M(q)/µb = gSf(q) (2.20)

with g = 2. We now relax this restriction and include the magnetic moment, associated
with the angular momentum of the electron shell. With the radial wavefunction Φ(r)
corresponding to the unpaired spin, this yields for the magnetic form factor in the dipole
approximation

f(q) =

∫ ∞
0

r2jo(Qr)|Φ(r)|2dr = 〈j0〉 (2.21)

where jn is a spherical Bessel function of the order n, ignoring aspherical contributions.

In analogy to the nuclear cross-section, the coherent elastic cross-section for magnetic
scattering of unpolarized neutrons can be simplified, if the magnetic moments of the
scattering sample are arranged on a Bravais lattice. The cross-section then reads

dσ

dΩ

∣∣∣∣
el

= Nm
(2π)3

vm

∑
Gm

δ(q−Gm)|Fm(Gm)|2 (2.22)

with the static magnetic structure factor Fm

Fm(Gm) =
∑
j

pjS⊥je
iGm·djeWj . (2.23)

where the index m identifies the volume vm of the magnetic unit cell and the number of
magnetic unit cells Nm in the sample. The sum in equation (2.23) is over sites within the
magnetic unit cell.

2.4 Neutron Scattering from Superconducting Vor-

tex Lattices

We have already introduced, that superconducting vortex lattices are magnetic Bravais
lattices with a lattice constant that is large compared to the underlying crystal lattice.
The magnetic structure of a vortex is not carried by localized magnetic moments, associ-
ated with magnetic ions: The spatial magnetic field distribution of the vortex lattice is
determined by the direction and modulus of the applied magnetic field, the vortex lattice
symmetry and structure and the London penetration depth λ, which characterizes the
magnetic field profile of a single vortex.

In a neutron scattering experiment, the magnetic contribution to the scattering cross-
section is solely caused by the superconducting vortex lattice. Due to the long periodicity
of the vortex lattice the use of a long wavelength cold neutron beam is necessary. The
wavelength of a cold neutron beam typically meets several atomic lattice constants. The
Bragg condition for nuclear diffraction can therefore not be satisfied. Thus, also no
scattering can arise from the interference between nuclear and magnetic scattering.
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The superconducting vortex lattice owns the symmetry of a two-dimensional Bravais line
lattice, whereby the vortices are oriented strictly parallel to the applied magnetic field.
The reciprocal lattice of the vortex lattice can then be easily obtained by a rotation
around the magnetic field axis by 90◦ and vice versa. Accordingly, the reciprocal lattice
vectors GV L of the superconducting vortex lattice are oriented strictly perpendicular to
the magnetization direction. However, the demagnetizing factor N of the sample and the
refraction of the magnetic field at the surface of the sample cause a bending of the vortex
lattice, which is neglected for this description.

The lattice constant ai of a superconducting vortex lattice is defined solely by its symmetry
and the equilibrium induction B. This yields the useful equation

|ai| =
(

2φ0√
B

)1/2

=
2π

|GV L|
(2.24)

for a regular six-fold symmetry. For instance, an equilibrium induction of B =150 mT
then leads to a lattice spacing of ∼1260 Å.

The scattering geometry used for our examinations of superconducting vortex lattices is
sketched in Fig. 2.2, panels (i) to (iii): The incoming neutron beam is oriented almost
parallel to the applied magnetic field, hence perpendicular to GV L. As the wave vector ki
of a cold neutron beam is typically much larger compared to the reciprocal lattice vector
GV L of the vortex lattice, the Bragg angles of vortex lattices are of the order of a few
tenths of a degree. This means, that the reciprocal lattice of the superconducting vortex
lattice has to be rocked by a small angle φ to satisfy the Bragg condition (cf. panel (ii)).

Figure 2.2: Panel (i) schematically depicts the sample with the superconducting vortex lattice
in real space. The resulting scattering geometry (in reciprocal space) for small angle neutron
scattering on a vortex lattice is given in panel (ii). Panel (iii) shows typical small angle neutron
scattering data of a vortex lattice of superconducting niobium at T = 5.5 K and µ0H = 150 mT,
obtained by a summation over a rocking scan.

By rocking the magnetic field and the sample together with respect to a vertical axis per-
pendicular to the neutron beam by the angle φ, the reciprocal lattice of the vortex lattice is
rotated through the Ewald sphere. In this manner, all Bragg peaks of the superconducting
vortex lattice not lying on the axis of rotation can be observed. Typical data is shown in
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Fig. 2.2, panel (iii). Due to the small scattering angles, neutron diffraction experiments
on superconducting vortex lattices are usually performed on so-called small angle neutron
scattering instruments. The setup of a typical small angle neutron scattering instrument,
as it was used for our studies, is described in section (2.6).

Integrated Intensity of a Vortex Lattice Bragg Reflection

For the derivation of the integrated intensity of a vortex lattice Bragg peak, we follow the
description given by Huxley, Brandt and Eskildsen [1, 105, 106]. The magnetic scattering
length of a regular vortex lattice is defined by

bV L =
γµN

π~2/2mn

σ

∫
drB(r)eiqr (2.25)

with the neutron gyromagnetic ratio γ and the neutron spin (1/2)σ.

Exploiting the periodicity of the vortex lattice, it is possible to express its field distribution
by a two-dimensional Fourier series

B(r) =
∑
q

h(q)eiqr . (2.26)

With

B(q) = A0th(q) (2.27)

and the unit cell area of the vortex lattice A0 = φ0/B, the sample thickness t and the
nuclear magneton µn/(4π~2/2mn), one finds for the scattering length

bV L =
γ

4φ0

A0tσh(q) (2.28)

and the elastic differential scattering cross-section

dσ

dΩ

∣∣∣∣
el

= (2π)3

(
γ

4π0

)2

Asamplet
∑
q

δ(q−GV L)|h(q)|2 (2.29)

with the vortex lattice form factor |h(q)|.

To compute the form factor of a vortex lattice, the detailed knowledge of the spatial
distribution of the magnetic field B(r) and the order parameter |Ψ(r)|2 is necessary. As
will be derived in section (3.2.3), this leads to the following limitations: For low inductions,
a linear superposition of the vortex fields yields a valid description. In contrast, the
Ginzburg-Landau formalism describes the vortex lattice in the limit T → Tc and B → Bc

with strongly overlapping vortex cores. Nevertheless, neutron scattering experiments
on vortex lattices are often performed in the intermediate field range to assure either a
sufficient separation of scattered neutrons and direct beam and a reasonable signal to
noise ratio.
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The form factor of vortex lattices has been calculated within various approximations.
Mostly used for superconductors with high κ is a modified London model, where the
effects of the vortex cores are included by multiplying the London equations with a cut-
off function. The form factor is approximately given by

h(q) =
φ0

(2πλ)2
e−2π2Bξ2/φ0 (2.30)

with a Gaussian cut-off. For the integrated reflectivity of a vortex lattice Bragg peak,
obtained by a rocking scan of φ then follows

R =
N

I0Asample
=

2πγ2λ2
nt

16φ2
0|q| cos (βQ)

|h(q)|2 (2.31)

with the total number of scattered neutrons N = I0

∫
dΩ
∫
dt dσ

dΩ
, the incident neutron flux

I0, the vortex lattice form factor |h(q)|2 and the Lorentz factor cos (βQ).

Measurements of the form factor of vortices can yield valuable information on the penetra-
tion depth λ and the Ginzburg-Landau coherence length ξ. However, the pronounced
dependence of h(q) on the penetration depth λ leads to significant loss of scattering
intensity for strong type-II superconductors. Measurements of the penetration depth yield
λ(T → 0)=470±50 Å for pure niobium [107]. In contrast, the heavy fermion compound
CePt3Si exhibits λ(T → 0) ∼ 11000 Å [108]. This leads to a reduction of the integrated
reflectivity by a factor 3.3·10−6. For a detailed description, we refer to Brandt [105], Pesch
and Kramer [109] and Clem [110].

2.5 Neutron scattering from Helical Magnets

In the following section we derive the elastic magnetic cross-section of the incommensurate
helical order observed in the weak itinerant magnet MnSi. We follow the work by Izyumov
et al. [111] and Janoschek [96].

MnSi exhibits helical magnetic order below a transition temperature Tc = 29.5 K. The
magnetic moments are arranged in spirals with a pitch of 180 Å. The propagation vector
of the helical order k is aligned perpendicular to the magnetic moments. A sketch of the
helical order is given in Fig. 2.3, panel (i). Using the description by Bak and Jensen [31]
the incommensurate helical order in MnSi can be written in terms of

S(r) = αk cos (kr)− βk sin (kr) (2.32)

with its propagation vector k. Similar to the description of the scattering length of a
superconducting vortex lattice, we also perform an expansion in Fourier modes. Then
follows for the total spin (or angular momentum) with the magnetic ion on site d in the
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unit cell l

〈Sld〉 = Rk
d cos (k · l + φd) + Ik

d sin (k · l + φd)

=
Rk
d

2

(
ei(k·l+φd) + e−i(k·l+φd)

)
+

Ik
d

2i

(
ei(k·l+φd) − e−i(k·l+φd)

)
=

Rk
d − iIk

d

2
eiφdeik·l︸ ︷︷ ︸

≡Sk
d

+
Rk
d + iIk

d

2
e−iφde−ik·l︸ ︷︷ ︸

≡S−k
d

(2.33)

where Rk
d and Ik

d represent the real and imaginary part of the magnetic Fourier mode
Sk
d with the propagation vector k, respectively. φd defines the phase with respect to the

origin. Different magnetic structures with different periodicities can be modeled upon
varying Sk

d and k. Avoiding some lengthy maths, it follows for the cross-section of both
terms k and −k, taking all prefactors and the magnetic form factors into account [111]

dσ

dΩ

∣∣∣∣
mag,el

= N(γr0)2 (2π)3

v0

∑
G

∑
k

∑
α,β

(δαβ − q̂αq̂βF kα†
M F kβ

M δ(q− k−G), (2.34)

with the magnetic structure factor

Mk
M =

∑
d

gdFd(q)e−Wd(q)eiq·dSk
d . (2.35)

The summation is taken over both positive and negative propagation vectors ±k. It is
immediately clear from eq. (2.34), that if neutrons are scattered at an incommensurate
magnetic structure, intensity appears at satellite positions q = G ± k around nuclear
Bragg peaks situated at G. Note, that the magnetic moments are associated with the
crystalline lattice positions for the incommensurate helical magnetic structure in MnSi.

The helical order in MnSi is characteristic of a sinusoidal modulation of magnetic moments
(cf. eq. (4.8)), yielding only a single Fourier component k. Thus no higher order reflections
can be detected in a neutron diffraction experiment. In contrast, in the presence of an
external magnetic field, anharmonic components arise due to the distortion of the helical
order, as either the sinusoidal modulation of spins distorts from its ideal helical form or
the length of the magnetic moments varies. Similar effects have been observed by Lebech
et al. [29] and Grigoriev et al. [112, 27, 113].

In MnSi, four degenerate domains of the helical order are observed for the four 〈111〉
directions, each giving rise to scattering intensity for ±k, respectively. A schematic de-
piction of the reciprocal lattice of MnSi, where therefore eight satellite peaks appear in
the 〈111〉 directions around a nuclear Bragg peak is given in Fig. 2.3, panel (ii). A sketch
of the scattering geometry is given in Fig. 2.3, panel (iii). By rocking the sample akin
to an experiment on vortex lattices, all Bragg spots of the helical order not lying on the
axis of rotation can be rotated through the Ewald sphere formed by ki and kf . Similar to
superconducting vortex lattices, the long pitch of the helical order in MnSi leads to small
Bragg angles, e.g., ∼ 1.7◦ for a neutron wavelength of ∼ 10 Å.
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A small angle neutron scattering instrument is thus used for our studies, as introduced
in section (2.6). In a typical small angle setup, the satellite peaks of the helical order
are investigated around the (000) nuclear Bragg reflection, which is identical to the direct
beam. Due to the finite divergence of the neutron beam and the large intrinsic mosaicity
of the helical order — which is typically of the same order of magnitude or even larger
compared to the scattering angle for cold neutrons — both domains of the helical order
can be observed simultaneously. Typical small angle scattering data of the helical order
in MnSi is given in panel (iv), where two pairs of diffraction spots correspond to ±k for
two 〈111〉 directions.

Figure 2.3: Panel (i) schematically depicts the helical order in MnSi, characterized by the
propagation vector k. Panel (ii): Depiction of the relative orientation (in reciprocal space)
of the satellite peaks associated with the propagation vectors k of the helical order in MnSi
with respect to the nuclear reciprocal lattice vectors G1 and G2. For a typical triple axis
experiment, the satellite peaks are measured around a nuclear 〈110〉, 〈111〉 or 〈222〉 reflection
due to the magnetic structure factor and an insufficient energy transfer at the 〈000〉 reflection. In
contrast, in a small angle neutron experiment, the satellite peaks are measured around the direct
beam, corresponding to the nuclear (000) reflection. (iii) Schematic depiction of the scattering
geometry, as used for our work. Panel (iv) depicts typical data, obtained for the helical phase
of MnSi at a temperature of 27 K and zero applied magnetic field, obtained by the summation
over a rocking scan.
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2.6 Experimental Setup

In this paragraph, we present the typical setup of a small angle neutron scattering instru-
ment, as it is used for the measurements on superconducting vortex lattices in niobium
and the helical magnetic order in MnSi throughout this thesis. A small angle neutron
scattering instrument is optimized for small scattering angles: A schematic setup is shown
in Fig. 2.4: In a small angle neutron scattering instrument, the neutron beam is collimated
over a large distance L1 (typical 10-20 m) by a slit system upstream of the sample position.
The scattered neutrons are detected by a two-dimensional position sensitive detector at
the distance L2 to the sample. To prevent scattering by air, the collimation system and
the detector flight tube are evacuated.

(i)
Velocity selector Collimation Sample Detector 2nd position

Neutron guides/
collimation

Evacuated scattering
tube 

L
1 L

2

Sample ap.

Figure 2.4: Typical setup of a small angle neutron scattering instrument. For details, see text.

The measurements of the static and dynamic properties of superconducting vortex lattices
in niobium covered in this thesis have been performed at the small angle neutron scattering
instrument V4 at BENSC [114]: The experimental settings for these measurements will
be introduced in-depth in sections (3.6.2) and (3.7.2), respectively.

The measurements of the magnetic structure of MnSi have been performed on the cold
diffractometer MIRA at FRM II [115], where MIRA was used like a small angle scatter-
ing instrument. The specific experimental settings will be introduced in-depth in section
(4.4.2). The instrumental resolution of the different setups, arising from the finite colli-
mation of the neutron beam, the wavelength spread and the detector resolution will be
derived in section (A.1).



Chapter 3

Static and Dynamic properties of
Superconducting Vortex Lattices

3.1 Introduction

We have introduced in section (1) that both the static and dynamic properties of super-
conducting vortex lattices and vortex matter, namely their symmetry and structure as
well as their elastic matrix Φαβ sensitively reflect the microscopic nature of the super-
conductivity as well as individual sample properties. In addition, the elastic matrix of
vortex lattices defines the state of aggregation and the pinning/depinning properties of
vortex matter, leading to a strong relevance for technical applications of superconductors.
However, the unambiguous mapping of different sources of anisotropy is intricate [1] for
both the symmetry and the elastic matrix of superconducting vortex lattices. We have
further illustrated that the manifold of different influences on the properties of vortex
matter raises the question how to generalize the behaviour of vortex matter and makes
studies of conventional superconductors of general interest.

The conventional, isotropic single gap superconductor niobium [6, 7] is ideally suited to
provide such general information [8, 9, 10]. As we have already introduced and motivated
in section (1.3), small angle neutron scattering measurements of the static and dynamic
properties of the superconducting vortex lattice in the model system niobium represent
a major focus of this thesis. In particular, we study the multitude of vortex lattice
structures, emerging due to frustration between the six-fold vortex lattice symmetry and
the four-fold crystal symmetry for the magnetic field applied parallel and in vicinity of a
four-fold 〈100〉 axis. We further present direct microscopic measurements of the intrinsic
vortex lattice tilt modulus c44 of bulk samples by a novel time resolved small angle neutron
scattering technique.

In the following section (3.2), we therefore briefly review the framework of the Ginzburg-
Landau theory which we use to derive the symmetry of an ideal superconducting vortex
lattice in the region close to the superconducting transition temperature Tc. We then
abandon the limit close to Tc and use the BCS theory to derive the symmetry of vortex

29
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lattices for the complete superconducting phase region. In our description, we particular
focus on different origins of anisotropy on the vortex lattice symmetry.

In section (3.3), the elastic energy and the elastic matrix of a distorted vortex lattice
for an ideal bulk, pinning-free superconductor is derived by means of a Ginzburg-Landau
approach. In particular, we focus on the elastic constants for uniform distortions and
briefly introduce the thermal stability and melting of vortex lattices. In section (3.4)
we summarize the topology of the vortex lattice for a low-κ superconductor like niobium
with non-zero demagnetizing factor. In particular, we concentrate on the morphology of
the intermediate-mixed state and its intimate analogy to the intermediate state in type-I
superconductors. The properties of the ultra-pure niobium sample, used for our studies,
are presented in depth in section (3.5).

In section (3.6) we finally present the small angle neutron scattering study on the vortex
lattice structure and symmetry in niobium where the phase diagram is examined close to
a 〈100〉 axis. In section (3.7) we explain microscopic measurements of the vortex lattice
tilt modulus c44 by means of time resolved stroboscopic small angle neutron scattering.

3.2 Vortex Lattice Symmetry from Ginzburg-Landau

and BCS Theory

In the following section, we first derive the different magnetic field behaviour of type-I
and type-II superconductors before we briefly review the different sources of anisotropy
influencing the symmetry and structure of superconducting vortex lattices within the
Ginzburg-Landau and BCS theory.

3.2.1 Ginzburg-Landau Theory

The unique property of the superconducting state is the existence of a macroscopic, co-
herent wavefunction ψ(r) =

√
(ns/2)eiφ with the condensate density of superconducting

electrons ns and a phase φ(r). The Ginzburg-Landau theory introduces a spatially varying
ns, allowing a non-linear coupling between magnetic fields and |ψ|2. The Ginzburg-Landau
theory is based on an expansion of the free energy F in terms of |ψ|2 in the limit close to
Tc, where |ψ|2 is a small quantity,

F = Fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− e∗

c
A

)
ψ

∣∣∣∣2 +
h2

8π
(3.1)

where Fn0 describes the free energy of the normal conducting state and α and β are the
expansion coefficients. m∗ and e∗ denote the mass and the charge of the Cooper-pairs.
The so-called Ginzburg-Landau equations are derived from equation (3.1) by variation
with respect to ψ and the vector potential A. They read

αψ + β|ψ|2ψ +
1

2m∗

(
~
i
∇− e∗

c
A

)2

ψ = 0 (3.2)
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and

J =
c

4π
×H =

e∗~
2m∗i

(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψψ∗A . (3.3)

with the density of the superconducting screening currents J.

Two characteristic length scales can be deduced from the Ginzburg-Landau equations (cf.
Fig. 3.1, panels (i) and (ii)): The first is denoted London penetration depth λ

λ2(T ) =
m∗c2

4πnse∗2
. (3.4)

λ describes the characteristic penetration of an external magnetic field into the bulk
superconductor. The temperature dependence of |ψ|2 yields λ2(T ) ∝ (1 − T

Tc
)−1. The

second length scale is the Ginzburg-Landau coherence length

ξ2(T ) =
~2

2m∗|α(T )|
∝ 1

1− T
Tc

(3.5)

describing the characteristic stiffness of the superconducting wavefunction ψ. The Ginzburg-
Landau parameter κ = λ/ξ is then a direct measure for the energy, associated with a
normal- to superconducting interface (cf. Fig. 3.1): A long London penetration depth
leads to a gain of energy, as the magnetic field has not to be expelled. Due to the su-
perconducting condensation energy a short coherence length leads to a gain of energy as
well. κ is independent of T within the valid range of the Ginzburg-Landau theory for
temperatures close to Tc.

For superconducting materials with κ < 1/
√

2, the surface energy is positive, thus the
magnetic flux of an external field is totally expelled out of the superconductor except
a surface layer with thickness λ. For such materials, the magnetic field is expelled for
increasing magnitude until the superconductivity breaks down at the thermodynamical
critical field Bc. Bc reads

Bc =
φ0√
8πξλ

. (3.6)

This behaviour is called type-I superconductivity. The magnetic phase diagram of a type-I
superconductor is sketched in Fig. 3.1, panel (iii).

For so-called type-II superconductors with κ > 1/
√

2, the formation of interfaces be-
tween normal and superconducting regions leads to a gain of energy. The solution for this
problem was obtained by Abrikosov [32] by extending the Ginzburg-Landau equations to
the parameter regime of type-II superconductors: Abrikosov introduced a solution of the
phenomenological Ginzburg-Landau theory where the superconducting order parameter
exhibits periodic nodes. The magnetic field can penetrate bulk type-II superconductors
in form of vortices, situated at the nodes, each carrying one flux quantum φ0 = h/2e.
As introduced in section (1.2), the magnetic flux is quantized due to the continuity con-
ditions for the superconducting phase on a closed loop around a vortex and the electro-
magnetic coupling to the gauge field A. The magnetic field behaviour of ideal type-II
superconductors is characterized by two distinct phases (cf. Fig. 3.1, panel (iv)): For
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Figure 3.1: Schematic profiles of the order parameter ψ(x, y) and the magnetic field B(r)
along a normal- to superconducting interface for type-I (panel (i)) and type-II superconductors
(panel(ii)). A sketch of the magnetic phase diagram for a type-I and type-II superconductor is
given in panels (iii) and (iv).

B < Bc1(T ) ≤ Bc(T ) the material is in the Meissner phase, the magnetic field is expelled.
The lower critical field Bc1 reads

Bc1 ∼
φ0

4πλ2
(lnκ+ 0.5) . (3.7)

In the field range Bc1(T ) ≤ B ≤ Bc2(T ) the so-called Shubnikov phase is formed where
the vortices penetrate the sample and form a vortex lattice. For increasing field the
vortex density increases until the upper critical field Bc2 is reached, where the cores of the
vortices, given by the coherence length ξ, completely overlap and the superconductivity
vanishes. Bc2 reads

Bc2 =
φ0

2πξ2
=
√

2κBc . (3.8)

The order parameter |ψ(r)|2 and the magnetic field of an isolated flux line are given
approximately by Clem et al. [116] and Hao et al. [110]

|ψ(r)|2 ∼ 1/(1 + 2ξ2/r2) (3.9)

and

B(r) ∼ φ0

2πλ2
K0[(r2 + 2ξ2)1/2/λ] (3.10)

with r = (x2 + y2)1/2, B ‖ z and the modified Bessel function K0(x).
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Similar to the energy, associated with a normal- to superconducting interface, the interac-
tion of vortices may naively be separated into the electromagnetic interaction due to the
London penetration depth λ and the interaction due to the condensation energy with the
characteristic length scale ξ: The free energy of straight parallel vortices was instructively
expressed by Brandt [117] by

F (ri) =
φ2

0

2πλ2µ0

∑
i

∑
i>j

[
K0

(
|ri − rj|
λ′

)
−K0

(
|ri − rj|

ξ′

)]
(3.11)

λ′ = λ/〈|ψ|2〉1/2 ∼ λ/(1− b)1/2

ξ′ = ξ/[2(1− b)]1/2

b = B/Bc2

(3.12)

where the first term after the summation in eq. (3.11) represents the repulsive electro-
magnetic vortex-vortex interaction with an effective London penetration depth λ′. The
second term represents the attractive interaction with an effective coherence length ξ′ for
reduced fields b = B/Bc2.

One easily realizes that the energy landscape is flattening for superconductors with κ
close to 1/

√
2. For κ = 1/

√
2, all vortex lattice arrangements have the same energy. This

establishes superconductors with low κ as sensitive tools, analyzing different influences
on vortex lattice symmetries and properties. Moreover, a crossover from attractive to
repulsive vortex-vortex interaction is observed for low-κ superconductors at low inductions
(cf. section (3.4).

3.2.2 Ideal Vortex Lattice Symmetry

The ideal spatial arrangement of vortices is determined by the minimum of the free energy.
For low inductions B < 0.2Bc2, the profile of the superconducting order parameter is given
by a product of terms of the form eq. (3.9) whereby the field distribution can be obtained
by a linear superposition of terms as given in eq. (3.10), often referred to as London
approximation. This approximation holds for arbitrary arrangements of non-overlapping
vortices at distances greater than ∼ 5 ξ. The free energy is given by the simple expression

F =
φ0

8π

∑
i,j

hj(rj) (3.13)

with the magnetic field of a vortex hj. Due to the large vortex spacing, only nearest neigh-
bour interactions have to be considered. A repulsive vortex-vortex interaction then leads
to a six-fold symmetry of the vortex lattice where the inter-vortex distance is maximized.

In contrast, at high inductions B > 0.5Bc2, the Ginzburg-Landau theory for a periodic
vortex lattice yields for the magnetic field distribution and the order parameter [117]:

|ψ(r)|2 =
1−B/Bc2

[1− 1/(2κ2)]βA

∑
K

aK cos Kr (3.14)
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Figure 3.2: Panel (i): Profiles of order parameter ψ(x, y) and magnetic field B(x, y)/Bc2 for
a triangular vortex lattice at reduced inductions b = B/Bc2 = 0.9, 0.8, 0.6, 0.4, 0.2, 0.05, 0.01
for κ= 1.5. Plot taken from Brandt [118]. Panel (ii) and (iii) depict the typical hexagonal and
quadratic symmetry of vortex lattices.

B(r) = B − (φ0/4πλ
2)|ψ(r)|2 (3.15)

The summation is carried out over all reciprocal vortex lattice vectors Kmn = (2π/x1y2)
(my2;−mx2 + nx1) at the positions Rnm = (my2;−mx2 + nx1). Schematic profiles for
the order parameter and the magnetic field are given in Fig. 3.2, panel (i).

The Fourier coefficients aK and the Abrikosov parameter βA yield for general vortex lattice
symmetries [119]

aK = (−1)m+mn+ne−K
2
mnx1y2/8π βA =

∑
K

a2
K . (3.16)

This yields (still for B > 0.5Bc2) for the free energy and the negative magnetization
−M = µ0H −B ≥ 0 of an arbitrary vortex arrangement

F (B) =
B2

2µ0

− (Bc2 −B)2

2µ0(2κ2 − 1)βA
(3.17)

M(B) =
Bc2 −B

(2κ2 − 1)βA
=

φ0

4πλ2
〈|ψ|2〉 (3.18)

with the applied magnetic field µ0H = µ0∂F/∂B, which is in local equilibrium with the
vortices at the induction B and the magnetization −M , averaging over several unit cells
of the vortex lattice.
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The Abrikosov parameter obtained for the ideal hexagonal symmetry reads βA = 1.16,
whereas βA = 1.18 for a square vortex lattice symmetry. A depiction of the square
and hexagonal vortex lattice symmetry is given in Fig. 3.2, panels (ii) and (iii). This
demonstrates that the energy landscape is rather flat, leading to strong deviations from
the ideal hexagonal symmetry, e.g. for an anisotropic Fermi mass or velocity. As we have
pointed out in the previous section, this is of particular importance for superconductors
characterized by a Ginzburg-Landau parameter close to 1/

√
2 as, e.g., niobium.

3.2.3 Vortex Lattice Symmetries from Microscopic Theory

We have presented the Ginzburg-Landau model and the London model which yield a good
qualitative description of vortex lattices symmetries for both low and high inductions.
However, for intermediate inductions 0.2Bc2 < B < 0.5Bc2 both models fail to explain the
magnetic field distribution and the vortex lattice symmetry due to an invalid parameter
regime. Nevertheless, small angle neutron scattering measurements on superconducting
vortex lattices — including the measurements performed for this thesis — are mostly
performed in the intermediate field region: For low inductions, the lattice spacing of the
vortex lattice is large, leading to very small Bragg angles. In contrast for high inductions,
the form factor of the vortex lattice decreases as given by eq. (2.30).

According to Brandt [117], a valid description of the vortex lattice symmetry over the
complete superconducting phase region can be achieved by a Ritz variational method using
Fourier series as trial functions for |ψ(r)|2 and B(r) [120] extending the early analytical
solutions by Kleiner et al. [121] and Eilenberger [122]. A similar variational method was
employed to derive the ideal symmetry of vortex lattices for the complete superconducting
phase diagram for superconductors with arbitrary purity from microscopic BCS theory, as
firstly done by Eilenberger [123]. Eilenberger expresses the free energy in terms of energy
integrated Greens functions. Numerical calculations which use the circular cell method,
have been performed by various groups for many different applications: They comprise
various accounts allowing for different mean free electron paths and purity, for multi-gap
systems with non-conventional order parameters, anisotropies of the superconducting gap
and non-local corrections due to Fermi anisotropies.

However, the determination between different sources of deviations from the ideal six-fold
symmetry is intricate: Allowing for anisotropies of the Fermi mass leads to a distor-
tion of the vortex lattice, that can be described by an anisotropic mass tensor mij =
〈∆2vfivfj〉/ det(m). This model is widely used for the layered cuprate and ruthenate
compounds as a first approximation [124]. The resulting anisotropy of the vortex lattice
shows almost no temperature and magnetic field dependence.

In contrast, anisotropy introduced by non-local corrections to the Ginzburg-Landau or
Eilenberger theory show a pronounced magnetic field dependence as they are corrections
to the free energy. The non-locality arises due to the stiffness of the superconducting
wavefunction: The current at a certain point is then given by the vector potential in the
region with an extent given by ξ. In addition, such corrections depend on the magnitude
of the coherence length ξ and, in particular, on the ratio of the mean free electron path
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with respect to ξ, showing an increasing influence with increasing purity of the sample.
For instance, the weak four-fold anisotropy of the critical fields and the superconducting
gap for bcc niobium is explained by non-local corrections due to the four-fold crystal lattice
symmetry [125, 126].

(i) (ii)

Figure 3.3: Panel (i) shows the low temperature phase diagram of UPt3 for the magnetic field
applied along the hexagonal crystalline c direction. Three different superconducting phases,
denoted A, B and C are separated by second order phase transitions. The gap symmetries for
A, B and C, are schematically depicted for the E2u model [127]. Panel (ii) shows the vortex
lattice structures, obtained by small angle neutron scattering on UPt3 [1]. The magnetic field
of 0.19 T is aligned parallel to the hexagonal c direction. (a) corresponds to the vortex lattice
formed at low temperature in the B-phase after zero field cooling. (b) depicts the frozen vortex
lattice of the A-phase during a field cooling procedure starting from 475 mK. (c) depicts the
vortex lattice resulting from field cooling above Tc ∼ 520 mK where the vortex lattice is aligned
with extended metallurgical defects. These metallurgical defects are present in the star-like
shaped background (d).

Recently Nakai et al. [80] have calculated the symmetry of vortex lattices using the micro-
scopic Eilenberger formalism comprising a weak four-fold symmetry of the Fermi velocity
vF (θ) = vF (π/8)(1 +β cos 4θ) and a weak four-fold symmetry of the superconducting gap
|∆(r, θ)|2 = |∆(r, π/8)|2(1 − α cos 4θ) with the polar angle θ, finding a reentrant vortex
lattice transition from rhombic to square back to rhombic symmetry as function of applied
magnetic field and temperature, explaining the reentrant square to hexagonal to square
vortex lattice transition identified in the compound LuNiB2C [79].

The interplay of gap and Fermi surface anisotropy can therefore yield various vortex lattice
symmetry changes and lock-in transitions. We have already pointed out that such effects
have also been observed in the isotropic s-wave superconductor niobium [8, 9, 10] caused
by the interplay of the four-fold crystal and the six-fold vortex lattice symmetry. The



3.3 VORTEX LATTICE ELASTICITY 37

deconvolution of the different sources of anisotropy to the vortex lattice in niobium is a
central point of this thesis.

The intrinsic symmetry of the order parameter is a further source of anisotropic behaviour,
as e.g. for the heavy fermion compound PrOs4Sb12 [82] where the presence of nodes of
the superconducting gap on at least some Fermi surface sheets is assumed. Small angle
neutron scattering measurements on the complicated vortex lattice phase diagram of the
heavy fermion compound UPt3, where three different vortex phases are distinguished,
lead to an unconventional two-component picture. The phase diagram of UPt3 is given
in Fig. 3.3. A review of the physics of UPt3 can be found in the book by Mineev and
Samokhin [84].

Summarizing, both for the case of conventional and unconventional superconductivity
the superconducting gap can be anisotropic. Yet for conventional systems, the anisotropy
rarely exceeds 10%, whereas for unconventional order parameter symmetry nodes are
expected to occur. For a summary on vortex lattice symmetries we refer to the work by
Brandt [117], Goll [128] and Huxley [1] and the references therein.

3.3 Vortex Lattice Elasticity

In this section, we introduce the dynamic behaviour of vortex lattices. We first concentrate
on the derivation of the free energy of an arbitrarily curved vortex lattice using a Ginzburg-
Landau ansatz. We then derive the elastic matrix Φαβ and deduce the eigenfrequencies,
characteristic timescales and the moduli for compression, tilt and shear of superconducting
vortex lattices. In particular, we discuss the elastic moduli for uniform tilt which are
relevant for the interpretation of our measurements of the vortex lattice elasticity in
superconducting niobium. Finally, we briefly discuss the criterions for vortex lattice
melting transitions. For a detailed theoretical description on vortex lattice elasticity, we
refer to [12, 117, 129, 13].

3.3.1 Elastic Energy of Vortex Lattices

Similar to the elasticity of crystal lattices, which is determined by electrostatic or covalent
forces, the elasticity of superconducting vortex lattices is determined by the vortex-vortex
interactions. The free energy F of an arrangement of arbitrarily curved vortices in the
Ginzburg-Landau regime close to Tc may be approximated according to Brandt [117] by
the following expression: In analogy to eq. (3.11) for the interaction for parallel vortices,
the free energy for curved vortices can be written in terms of three components

F (ri{z}) =
φ2

0

8πλ2µ0

∑
i

∑
j

(∫
dri

∫
drj

e−rij/λ
′

rij
−

∫
|dri|

∫
|drj|

e−rij/ξ
′

rij

)
.

(3.19)
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Figure 3.4: Panel (i) schematically depicts the vortex-vortex (electromagnetic interaction and
condensation energy) and intra-vortex interactions (self energy or string tension) determining
a particular symmetry, structure and elasticity of a superconducting vortex lattice. Panel (ii)
depicts the cusp-like reaction of a superconducting vortex lattice to a pinning force dF . Panel (iii)
schematically depicts a thermally fluctuating superconducting vortex lattice for a temperature
T ≤ Tm compared to the melting temperature Tm.

with

rij = |ri − rj|,
λ′ = λ/〈|ψ|2〉1/2 ∼ λ/(1− b)1/2,

ξ′ = ξ/[2(1− b)]1/2.
(3.20)

Again, the first term of the sum in eq. (3.19) represents the repulsive electromagnetic
vortex-vortex interaction with an effective London penetration depth λ′. The second term
represents the attractive interaction of vortex lines due to the superconducting condensa-
tion energy of overlapping vortices with an effective coherence length ξ′. The vortex self
energy or line tension is included in the diagonal terms i = j. A schematic sketch is given
in Fig. 3.4, panel (i).

The elastic energy of a distorted vortex lattice, caused by pinning, structural defects, field
gradients or transport currents, temperature gradients or thermal fluctuations, however,
is small for most cases. Therefore, it can be calculated by linear elastic theory, most
conveniently expressed in k-space. The displacements of a vortex line ui(z) = ri(z) −
Ri(z) = (ui,x;ui,y; 0) from its ideal position Ri = (Xi;Yi; z) is expressed by its Fourier
components

ui(z) =

∫
BZ

d3k

8π3
u(k)eikRi (3.21)

and

u(k) =
φ0

B

∑
i

∫
dz ui(z)e−ikRi . (3.22)

With u(k) = (ux;uy; 0) the elastic energy reads

Felast =
1

2

∫
BZ

d3k

8π3
uα(k)Φαβ(k)u?β(k) (3.23)
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Figure 3.5: A schematic depiction of the elastic constants of a superconducting vortex lattice
is given on the left-hand side. The right-hand side depicts the k dependence of the elastic matrix
Φα,β and of the elastic constants c11, c44 and c66 of the vortex lattice. Note the different scaling
for c66.

where (α, β) = (x, y). The integrals in eq. (3.21) and eq. (3.22) cover the first Brillouin
zone of the vortex lattice in k-space and −ξ−1 ≤ kz ≤ ξ−1, respectively. Φαβ(k) is called
the elastic matrix of the vortex lattice.

Φαβ(k) is real, symmetric and periodic in k-space and is related to the elastic moduli c11

for compression, c44 for tilt and c66 for shear within continuum theory by

Φαβ( bfk) = (c11 − c66)kαkβ+

δαβ[k⊥c66 + k2
zc44 + αL(k)]

(3.24)

with k⊥ = (k2
x + k2

y). The k-dependence of the elastic matrix is plotted in Fig. 3.5, panel
(ii). The Labusch parameter αL describes the elastic interaction of the vortex lattice
with pinning potentials caused by material inhomogeneities. For individual pinning, αL
is k-independent [130], for weak collective pinning [131], αL(k) decreases when k⊥ > R−1

c

or kz > L−1
c where Rc and Lc = (c44/c66)1/2Rc are the radius and length of the coherent

short range ordered regions of the pinned vortex lattice.

3.3.2 Uniform Distortions

For uniform distortions, the elastic moduli of the vortex lattice can be written as [117]

c11 − c66 =
B2∂2F

∂B2
=
B2∂µ0H

µ0∂B

c44 =
B∂F

∂B
=
Bµ0H

µ0

= BH

c66 ≈
(

Bφo
16πλ2µ0

)(
1− 1

2κ2

)
(1− b)2

(3.25)

with the reduced field b = B/Bc2 and the Ginzburg-Landau parameter κ. c11 − c66 is the
modulus for isotropic compression. H is the applied field, which is in equilibrium with the
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vortex lattice at the equilibrium induction B, given by the magnetization M = µ0H−B ≤
0. The magnetic field and temperature dependence of the equilibrium induction B will
be derived in depth in section (3.4). The response of a vortex lattice to a change of the
magnetic field direction is characterized by the tilt modulus c44 of the vortex lattice. Note
that c66 vanishes either for B → Bc2, which corresponds to strongly overlapping vortex
cores, for λ→∞, corresponding to strongly overlapping vortex fields, or for κ = 1/

√
2. As

we already have pointed out, in the special case κ = 1/
√

2, all vortex lattice arrangements
have the same free energy.

3.3.3 Non-local Elasticity

Due to the long effective interaction lengths λ′ and ξ′, c11 and c44 strongly depend on
the k-vector of the disturbance which is referred to as non-locality of the vortex lattice.
This leads to a strong softening of the vortex lattice for short range distortions. This
non-locality is giving rise to large distortions, caused by pinning, disorder or thermal
fluctuations, whereby the vortex lattice reacts to external forces in the form of a sharp
cusp and not like pulling a string (cf. Fig. 3.4). The lattice softening is caused mainly
by the dispersion of c44, whereas the dispersion and reduction of c11 is not crucial. c66 is
typically much smaller compared to c11 (cf. Fig 3.5, panel (ii)). Thus, the shear modes of
the vortex lattice deformations dominate the modes for compression [117]. Summarizing,
this means that the vortex lattice is softer for short wavelength tilt or compression than
it is for long wavelengths.

3.3.4 Characteristic Timescales

Until now, we have derived the elastic matrix of superconducting vortex lattices which
determines the restoring force of k-dependent distortions. However, the eigenfrequencies
of vortex lattice fluctuations are determined by the restoring force as well as the viscous
damping of the vortex lattice motion. The movement of the vortices with the velocity v
is damped by the viscosity

η =
B2

%FF
≈ BBc2

%n
(3.26)

creating a drag force vη per unit volume, where %FF represents the flux-flow and %n the
normal conducting resistivity. The elastic eigenmodes of the vortex lattice are given by a
diagonalization of the elastic matrix φαβ. The result is a compressional and a shear eigen-
mode, relaxing with exponential time dependencies [117]. In continuum approximation,
this yields:

Γ1(k) = (c11(k)k2
⊥ + c44(k)k2

z)/η ≈ Γ1

Γ2(k) = (c66k
2
⊥ + c44(k)k2

z)/η ≈ Γ1k
2
z/k

2 (3.27)

For the vortex lattice in a typical clean low κ superconductor as e.g. niobium, the eigen-
frequencies Γ1 and Γ2 of the vortex lattice are in the range of 10−9 s−1.
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3.3.5 Vortex Lattice Melting and Transport Properties

The magnitude of thermal fluctuations of superconducting vortex lattices are mostly de-
termined by the vortex lattice shear modulus c66. Strong thermal fluctuations of the
vortices can lead to vortex lattice melting transitions at the melting temperature Tm,
akin to the melting of ordinary crystals. A typical phase diagram is given in Fig. 3.6,
panel (i): A vortex disordered state, a lattice Bragg glass and vortex lattice liquid are
distinguished. A simple melting criterion for vortex lattices can be estimated from the
Lindemann criterion for thermal fluctuations of vortex lattices [117]: At the melting tem-
perature Tm, thermal fluctuations 〈u2〉 yield 〈u2〉 = c2

La
2 with the Lindemann parameter

cL ≈ 0.1 ...− 0.2 and the vortex lattice spacing a.

Melting transitions of vortex lattices show up as characteristic dips of the differential
resistivity. Melting of vortex lattices can also lead to tiny jumps of the local magnetization
of the order of few tenths of a Gauss, detectable with sensitive Hall probes [132]. The
temperature and magnetic field dependence of the elastic constants of vortex lattices
and their melting can also be determined by vibrating reed measurements. However,
measurements to detect vortex lattice melting transitions are intricate, as effects induced
by pinning can yield similar results. In particular, the presence of pinning is required
in general, as a perfect, pinning free vortex lattice shows no signature in the resistivity
or local magnetization at the melting transition [117]. In contrast to the discussed bulk
measurement techniques, small angle neutron scattering gives a clear indication of melting
transitions: The sharply defined Bragg-reflections of the superconducting vortex lattice
smear out to an isotropic ring [85] as the long range order of the vortex lattice vanishes
at the melting transition.

Vortex lattice melting was observed for various superconducting systems, mostly for high-
Tc compounds due to their high transition temperature [85, 86], but also in NbSe2 and
MgB2 [87],[88],[89] which are characterized by disorder. Surprisingly, a vortex lattice
melting transition was recently reported also for the heavy fermion compound URu2Si2
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Figure 3.6: Panel (i) shows a typical phase diagram of a high Tc-superconductor. Above the
melting line at Tm, a vortex liquid is found. Panel (ii) depicts the phase diagram for super-
conducting vortex lattices under transport current, where rigid pinning, flux creep, thermally
assisted flux flow (TAFF) and flux flow are distinguished. Panel (iii) depicts the corresponding
IV-characteristic.
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[133]. For clean niobium, the melting temperature was estimated using the Lindemann
criterion to be ∼ 10 mK below Tc. However, measurements by Ling et al. [134] using small
angle neutron scattering on niobium report a melting transition and strongly hysteretic
behaviour of the vortex lattice. This order to disorder transition was attributed to a lack
of sample quality by Forgan et al. [135] in later studies.

Furthermore, the magnitude of thermal fluctuations and the elastic matrix of vortex lat-
tices also strongly influence the pinning/depinning properties, in particular in the presence
of a transport current where the Lorentz force additionally acts on the vortices. As mov-
ing vortices lead to the dissipation of energy, the pinning properties are of particular
importance for applications of superconductors. Four different regions are distinguished:
For small current densities J , the vortex lattice is rigidly pinned. Increasing the current
density first leads to flux creep [136], thermally assisted flux flow (TAFF) [13] and finally
flux flow [137]. Both the I-V characteristic and the phase diagram for increasing transport
current J are given in Fig. 3.6, panels (ii) and (iii).

3.4 Vortex Lattices of low κ Superconductors

The morphology and the topological properties of superconducting vortex lattice phases
sensitively depend on the Ginzburg-Landau parameter κ and on demagnetizing effects. In
the following, we qualitatively derive the phase diagram and the equilibrium magnetiza-
tion B for a low-κ type-II superconductor like niobium where the crossover from attractive
to repulsive vortex-vortex interaction has proven a drastic influence on the properties of
the vortex lattice: It leads to an extended intermediate mixed state. We particularly
concentrate on the morphology of the intermediate mixed state and its analogon, the
intermediate state in type-I superconductors.

3.4.1 Phase Diagram and Critical Fields for low κ Superconduc-
tors with Non-Zero Demagnetizing Factor

We have already introduced that the Ginzburg-Landau parameter κ describes the surface
energy associated with a superconducting/normal conducting interface. For type-II su-
perconductors with κ > 1√

2
, this leads to the nucleation of vortices, each carrying one flux

quantum φ0 = h/2e. Neglecting demagnetizing and pinning effects, the first fluxoid enters
the bulk superconductor at the lower critical field Bc1 = µ0Hc1. In the Shubnikov phase
between Bc1 = µ0Hc1 and Bc2 = µ0Hc2, the sample fills with vortex lattice according to
eq. (2.24) until the vortex cores completely overlap at the upper critical field Bc2 = µ0Hc2.
For superconductors with large κ � 1, thus Hc1 � Hc2, a homogeneous distribution of
vortex lattice throughout the Shubnikov phase can be assumed [138] due to the repulsive
vortex-vortex interaction throughout the superconducting phase diagram.

For superconductors with κ close to type-I behaviour as niobium and non-zero demag-
netizing factor, the situation is more complicated [139, 93, 140]. In the following, we
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again denote with H the values for the applied magnetic field, whereas B stands for the
equilibrium induction with the magnetization M = µ0H − B ≤ 0. Please note, that the
equilibrium induction was defined being in a local equilibrium with the vortex lattice,
assuming a spatial average over several vortices. Due to an inhomogeneous filling of the
sample with vortices, the induction obtained by integration over the complete sample
varies.

We have introduced that for low κ superconductors, a crossover from long-range attractive
to repulsive vortex-vortex interaction can occur as function of magnetic field and temper-
ature. Solely for superconducting specimens with non-zero demagnetizing factor N , this
leads — in analogy to type-I superconductors — to the formation of an intermediate state
of macroscopic coexisting domains, where normal conducting regions in the intermediate
state of type-I superconductors correspond to the Shubnikov phase in the intermediate
mixed state of low κ type-II superconductors. Due to the long-range attractive vortex
interaction, the lattice spacing in the intermediate mixed state is constant. In contrast to
conventional type-II superconductors, exhibiting a second order phase transition at the
lower critical field Hc1, the transition at Hc1 is of first order for type-II superconductors
with low κ [125].

Fig. 3.7 panel (i) shows a typical phase diagram, obtained for a low κ type-II super-
conductor with non-zero demagnetizing factor N . No vortex lattice is observed in the
Meissner phase for H < H1 = (1 − N)Hc1 where Bc1 = µ0Hc1 defines the lower critical
field. For H1 < H < H2, with H2 = (1 − N)Hc1 + NB0/µ0), the sample is in the so-
called intermediate mixed state. The constant vortex lattice spacing in the intermediate
mixed state is thereby described by the equilibrium induction B0. For further increasing
the magnetic field (1 − N)Hc1 + NB0/µ0 < H < Hc2 with Bc2 = µ0Hc2 the sample is
completely filled with vortex lattice in the Shubnikov phase 1. Panel (ii) shows the corre-
sponding magnetization curve obtained at the temperature TA. In the Meissner phase, the
sample exhibits ideal diamagnetism, in the intermediate mixed state and the Shubnikov
phase, vortices fill the sample and reduce the diamagnetism.

The vortex lattice spacing is shown in panel (iii) where the reciprocal lattice vector |GV L|
of the vortex lattice at the temperature TA is depicted as function of H: The value of
|GV L| reversibly assumes a constant value between H1 and H2, identifying this regime as
the intermediate mixed state, whereas in the Shubnikov phase, |GV L| ∝ H1/2. Panel (iv)
shows the integrated scattering intensity of a vortex lattice Bragg peak obtained by means
of neutron scattering at the temperature TA, indicating a linear dependence of the filling
factor V of the sample with vortex lattice with respect to increasing applied magnetic
field in the intermediate mixed state, as is also indicated by the magnetization curve
[125]. Hysteretic effects are observed due to the first order phase transition at Hc1 for
superconductors with a low κ type-II behaviour. At H2, the Shubnikov phase completely
fills the sample.

Panel (v) depicts the magnetic field dependence of the vortex lattice equilibrium induction
B which is obtained by averaging over a few vortex lattice unit cells. In the Meissner

1Note, that demagnetizing effects disappear at the upper critical field Hc2 due to the vanishing mag-
netization M for conventional type-II superconductors
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phase, one has B = 0 due to the perfect diamagnetism of the sample. Between H1 and H2,
B jumps to B0, associated with the constant vortex lattice spacing in the intermediate
mixed state, while the macroscopic magnetization of the sample rises due to the intrusion
of flux as indicated by the broken line. For further increasing magnetic field in the
Shubnikov phase, the vortex lattice spacing shrinks |a| ∝ H−1/2 and B increases, until
the magnetization is zero for the breakdown of superconductivity at H = Hc2.

The temperature dependence of the equilibrium induction B is given in panel (vi) for two
different values of a constant applied magnetic field H, yielding a constant value above
Hc2(T ), neglecting possible weak dia- or paramagnetism of the superconducting material.
Due to the negative dHc1/dT , dHc2/dT and dB0/dT , the vortex lattice spacing grows for
decreasing T during the Shubnikov phase due to the rising diamagnetism of the supercon-
ductor. In the Shubnikov phase, the vortex lattice is homogeneously distributed over the
sample. Thus also the equilibrium induction B decreases for decreasing T , until B0(T )
is reached and the sample enters the intermediate mixed state. For further decreasing T ,
the equilibrium induction B follows B0(T ). This corresponds to the intermediate mixed
state where islands of vortex lattice with constant spacing coexist with Meissner phase.
Following the B0(T ) line, the filling factor V shrinks until the vortex lattice is completely
expelled out of the sample at (1−N)Hc1(T ). For detailed studies on magnetization and
small angle neutron scattering measurements on the intermediate mixed state of niobium,
we refer to the studies by Christen and Kerchner [141, 125, 142].

3.4.2 Morphology of the Intermediate Mixed State

The morphology of the intermediate state of type-I superconductors and the intermediate
mixed state of type-II superconductors is determined by the surface energy, associated
with interfaces between the different phases. Note, that a vortex lattice region inside a
Meissner domain exhibits a surface tension, due to the different vortex lattice coordination
number for vortices at the surface of the Shubnikov region. A theoretical description
has been given by Landau [143, 144], minimizing the free energy of simply connected
normal conducting laminae including a branching of the normal conducting laminae at
the sample surface. Numerous experiments on the topology of the intermediate state of
type-I superconductors show a variety of different patterns including striped, dendritic
and bubble phases [145, 146, 147, 148, 149], as shown in Fig. 3.8, panels (i) and (ii).

In particular, the morphology of the intermediate state is strongly depending on the path
in the B(H)− T phase diagram. Three different paths are generally distinguished [150]:
Increasing the field after having performed a zero field cooling to the desired temperature
(ZFC), decreasing the field from H > Hc for the desired temperature (HFC) and finally
cooling the sample in field (FC). It has been found experimentally for type-I superconduc-
tors, that the ZFC transition produces magnetic flux structures with closed morphology
where normal conducting material is surrounded with superconducting laminae. In con-
trast, the HFC transition leads to an open morphology with normal domains which are
open and connected to the sample edges [150]. Further decoration experiments on the
type-II superconductor niobium show both Shubnikov islands in a multiply connected
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Figure 3.7: Panel (i) shows the phase diagram of a type-II superconductor with non-zero
demagnetizing factor N and low κ as measured with small angle neutron scattering. No vortex
lattice is observed in the Meissner phase below H1. For H1 < H < H2, the sample is in the
so-called intermediate mixed state, characterized by the coexistence of macroscopic domains
of Meissner and Shubnikov phase with constant vortex lattice spacing. For the Shubnikov
phase H2 < H < Hc2, the sample is completely filled with vortex lattice. Panel (ii) shows
the corresponding magnetization curve and panel (iii) depicts the dependence of the reciprocal
lattice vector |GV L| of the vortex lattice with respect to the applied magnetic field H for the
temperature TA. The intermediate mixed state is characterized by a constant vortex lattice
spacing. Panel (iv) shows the integrated scattered intensity of a vortex lattice obtained with
neutron scattering for the temperature TA. The increasing filling factor V of the sample is
proportional to H in the intermediate mixed state. Panel (v) shows the typical dependence of
the equilibrium induction B on the applied magnetic field H for a temperature TA, whereas the
broken line depicts M. Panel (vi) gives the temperature dependence of B. For details see text.
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Meissner state and vice versa [151].

In the Shubnikov phase for a type-II superconductor, a homogeneous distribution of vortex
lattice in the sample is assumed. In the intermediate mixed state, the sample is character-
ized by coexisting domains of Shubnikov and Meissner phase. The equilibrium induction
follows the B0(T ) line for decreasing temperature in the intermediate mixed state, thus
the spacing of the vortex lattice remains almost constant while the filling factor decreases
(cf. Fig. 3.7). Thus, the vortex lattice is expelled out of the sample for a FC path. In
analogy to a HFC process in type-I superconductors, where the flux is also expelled for
decreasing field, a similar morphology is expected for the intermediate mixed state in
type-II superconductors on field cooling, namely an open, multiply connected structure
of Shubnikov phase (Fig. 3.8, panel (ii)). In addition, the morphology is characterized by
Landau branching at the surface of the sample.

L
1

L
2

L
3

L
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B B

(iii)(i) (ii)

Figure 3.8: Panel (i) and Panel (i) (taken from [146]) show different structures of the inter-
mediate state in type-I superconductors, obtained by magneto-optical experiments on Pb single
crystal discs. Bright region correspond to superconducting material, dark regions to normal con-
ducting material. Panel (iii) schematically shows the branched morphology on the intermediate
mixed state in a low κ superconductor with non-zero demagnetizing factor. The dark shaded
regime corresponds to Shubnikov phase, the light shaded area corresponds to Meissner phase.

Branching is supposed to occur only in rather thick samples. A sketch is given in Fig. 3.8,
panel (iii). Note that in type-II superconductors, branching is more pronounced due to
the lower energy density at the boundary between Meissner and Shubnikov phase. For
niobium at low inductions, branching of Shubnikov domains in the intermediate mixed
state was indeed observed at the surface of bulk samples of 0.1 mm and 6 mm thickness
by means of a high resolution decoration technique [152, 151]. The characteristic length
scale of the intermediate mixed state, observed at the surface of the sample was 10µm
for the sample of 100µm thickness. In contrast, the sample with 6 mm thickness showed
a characteristic length scale of 1µm. According to Landau, for the length scale of the
unbranched intermediate mixed state in the bulk sample follows ∼250µm [152].
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3.5 Superconducting Model System Niobium

The following section splits into two parts: In the first part, we introduce the bulk proper-
ties of the low-κ superconducting model system niobium. In the second part, we present
detailed information on the ultra-pure niobium sample Nb 1 which was used for our stud-
ies.

3.5.1 Properties of Superconducting Niobium

Niobium crystallizes in the cubic bcc structure with a lattice constant of aNb =3.3 Å. The
properties of the strong coupling type-II superconductor niobium are characteristic of an
isotropic single gap [6, 7] that opens below the superconducting transition temperature
Tc =9.2 K. The complexities, arising from multi-gap systems or multi-component order
parameters, are thus avoided [91, 82, 92].

We have introduced in section (3.3), that for exactly κ = 1/
√

2, all vortex lattice arrange-
ments are degenerate. The Ginzburg-Landau parameter of niobium is close to 1/

√
2 and

decreases with increasing purity. There have been speculations that niobium even displays
type-I superconducting behaviour in the pure limit [126] close to Tc. This places high pu-
rity niobium at the immediate border between type-I and type-II superconductivity. As
introduced in section (3.4), this leads to the formation of an extended intermediate mixed
state for samples with non-zero demagnetizing factor [93]. The low κ further leads to a
remarkable high value of the lower critical field µ0Hc1(T → 0) = 120 mT.

The low κ of niobium therefore allows to tune the vortex-vortex interactions from attrac-
tive to repulsive as function of temperature and applied magnetic field. This establishes
niobium as model system for sensitive examinations of vortex-vortex interactions and vor-
tex matter. The low Ginzburg-Landau parameter κ further implies that the coherence
length ξ(T → 0) = 660 Å in pure niobium is large. As introduced in section (3.2.3), the
superconductivity in niobium is therefore strongly dependent on the Fermi surface topol-
ogy and thus on non-local effects: For the upper critical field µ0Hc2(T → 0) ∼380 mT, the
lower critical field µ0Hc1(T → 0) ∼120 mT as well as for the equilibrium induction B0 in
the intermediate mixed state of pure niobium single crystals, a weak four-fold anisotropy
of a few percent [125, 142] is observed which is attributed to general four-fold non-local
corrections due to the four-fold Fermi topology.

Niobium is characterized by a complicated Fermi topology which has been calculated by
Mattheiss by means of the augmented-plane-wave method [153]. The reduced Brillouin
zone schemes of the second and third zone are depicted in Fig. 3.9, panels (i) and (ii).
The third zone contains closed hole pockets centered at the symmetry points Γ and N
of the bcc Brillouin zone plus a multiply connected open sheet which extends from Γ to
H along 〈100〉 directions, often referred to as ”jungle gym” geometry. Panel (iii) shows
a stereographic projection of the Fermi topology of niobium with open orbits around the
〈100〉 directions.

The reflectivity of a vortex lattice Bragg reflection is given by eqs. (2.30) and (2.31) and
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Figure 3.9: Fermi surface of niobium, calculated by Mattheiss [153] by means of the augmented-
plane-wave method. Panel (i) and panel (ii) show the second and third Brillouin zone. Panel
(iii) shows a stereographic projection of the Fermi topology of niobium.

exhibits a strong dependence on the London penetration depth λ. Niobium is character-
ized by a small value of λ ∼ 470± 50 Å, which leads to a large form factor. The resulting
high reflectivity of the vortex lattice Bragg reflections allows to use a high resolution small
angle neutron scattering setup with reasonable counting times.

3.5.2 Sample Used for Investigation

For our studies, a cylindrical niobium single crystal Nb 1 with a length of 20 mm and a
diameter of 4.5 mm was cut by spark erosion from a rod that had been produced at the
ZFW Dresden [154] more than 30 years ago (cf. Fig. 3.10). A crystallographic 〈110〉
axis is oriented parallel to the cylinder axis of the sample. The preparation process con-
sisted of purification by liquid-liquid extraction combined with chlorination and thermal
decomposition of NbCl5 followed by electron beam floating zone melting, decarburization
in oxygen atmosphere and annealing in UHV [126, 155]. The impurity content was es-
timated to be less than 1 ppm for interstitial and better than 2 ppm for substitutional
impurities.

To remove the surface layer, the sample was etched with a mixture of HF and HNO3

for several minutes. Thereafter, the sample was again RF-annealed in UHV above 2000◦

at the University of Birmingham for one week to remove interstitials followed by surface
oxygenation to reduce the Bean-Livingston barrier for surface pinning [8]. The residual
resistivity ratio was measured with an eddy current decay method at the University of
Birmingham. The residual resistivity ratio was extrapolated to T → 0 at B = 0 for
14.5 K - 9.3 K using %phonon ∝ T 3 as well as extrapolated to B = 0 from Bc2(4.2 K) using
%B ∝ B, yielding values from 8000 to 16000, respectively. However, the first extrapolation
is more realistic, leading to a residual resistivity ratio ∼ 104. According to [126], this leads
to a Ginzburg-Landau coefficient κ ∼ 0.74 at 0.9T/Tc. The AC susceptibility and the
magnetization, measured at the Technische Universität München were consistent with the
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Nb 1Nb 1

<110>

Figure 3.10: The picture shows the niobium rod which was produced at the ZFW Dresden
[154]. The position where the sample Nb 1 was cut is marked. The inset shows Nb 1 in a copper
sample holder as used for the neutron scattering experiments. The crystallographic 〈110〉 axis
is oriented parallel to the cylinder axis of the sample. Note the golden colour of Nb 1 due to the
surface oxygenation.

literature.

The flux-flow resistivity %FF determines the damping of vortex motion in superconductors.
%FF is closely related with the normal conducting resistivity by eq. (3.26). For high purity
niobium, the normal conducting resistivity was determined by Berthel [126] in the clean
limit and numerically approximated by

%n(T ) =%0 + cn

(
bT 2 +

cT 3

7.212

∫ ΘD/T

Θmin/T

x3

(ex − 1)(1− ex)
dx+

+
dT 5

124.4

∫ ΘD/T

Θmin/T

x5

(ex − 1)(1− ex)
dx

)
,

(3.28)

where

cn = 1.8 · 10−7

b = 1.63 · 10−6 1

K2

c = (2.864± 0.003) · 10−7 1

K3

d = (1.81± 0.004) · 10−10 1

K5

(3.29)

with ΘD = 270 K, Θmin = 35 K and the normalization constant cn. The measured residual
resistivity ratio of Nb 1 of ∼ 104 and the literature value for %n(300 K)∼ 1.3·10−7 Ωm [156]
lead to %0 ∼ 1.3 ·10−11 Ωm. This yields an increase of the normal conduction resistivity %n
in the relevant temperature range from 4 K to 8 K by a factor of about 2 from 1.8 nΩcm
to 3.2 nΩcm.



50 CHAPTER 3: STATIC AND DYNAMIC PROPERTIES OF
SUPERCONDUCTING VORTEX LATTICES

In small angle neutron scattering measurements on the superconducting vortex lattice in
Nb 1 as described in section (3.6), the systematic behaviour of the vortex lattice, namely
intensity, reciprocal lattice vector and mosaicity was investigated as function of magnetic
field and temperature. Typical data is given in Fig. 3.11 for T = 3.6 K, where the field
dependence of the integrated scattering intensity of a vortex lattice Bragg spot and its
reciprocal lattice spacing |GV L| are shown. The magnetic field behaviour of low-κ super-
conductors has been introduced in section (3.4) where we denote the constant flux density
due to the attractive flux line interactions in the intermediate mixed state with B0. As
expected for our cylindrical sample with demagnetization factor of 1

2
, no intensity is ob-

served for both increasing and decreasing magnetic field up to µ0H1 = 1
2
µ0Hc1 = 70 mT,

followed by a gradual increase up to µ0H2 = 1
2
B0 + 1

2
µ0Hc1 ≈ 115 mT [141].

Above µ0H2 = 1
2
B0 + 1

2
µ0Hc1 the intensity decreases characteristic of a conventional Shub-

nikov phase. The value of GV L reversibly assumes a constant value GV L ≈ 0.004 Å−1

between µ0H1 = 1
2
µ0Hc1 and µ0H2 = 1

2
B0 + 1

2
µ0Hc1, identifying this regime as the in-

termediate mixed state, approximately in agreement with B0 ∼ 90 mT. In contrast the
integrated intensity displays hysteretic behaviour between 110 mT and 125 mT. Moreover,
also the rocking width of the vortex lattice is increased for decreasing field. The same
behaviour in sign and magnitude has been observed in the intermediate mixed state in
low quality niobium [142]. The data in our high quality sample hence reflect an intrinsic
property, most likely due to dendritic flux intrusion for increasing fields in contrast to
vortex lattice islands for decreasing fields [151].
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field. The characteristic values of |GV L| are shown. Note the complete Meissner flux expulsion
for both increasing and decreasing field.
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Figure 3.12: Superconducting phase diagram of the ultra pure niobium sample Nb 1, obtained
by small angle neutron scattering measurements for H ‖ [100].

The superconducting phase diagram of Nb 1 as inferred from the small angle neutron
scattering measurements is given in Fi. 3.12 for the magnetic field applied along a [100]
crystalline direction. The data points have been obtained by both field ramps at constant
temperature as well as temperature ramps at constant field. Due to the small values of
H2(T ) for temperatures close to the superconducting transition temperature Tc and due
to the finite q resolution, the H2(T ) line cannot be followed above 8 K. Note, that below
H1, a complete Meissner flux expulsion is observed for all temperatures throughout the
superconducting temperature regime [10] for both HFC and ZFC paths. To the best of
our knowledge such a complete Meissner flux expulsion, even for decreasing fields, has
never been seen before in small angle neutron scattering, underscoring the outstanding
purity and perfection of our sample.
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3.6 Morphology of the Vortex Lattice in Ultra-Pure

Niobium for Magnetic Fields along a [100] Axis.

In the following section, we present our small angle neutron scattering measurements on
the vortex structures and symmetries in the superconducting model system ultra pure
niobium, which unfold for the magnetic field applied along a four-fold 〈100〉 crystalline
symmetry direction. We systematically map out the vortex structure as function of the
direction of the magnetic field with respect to the 〈100〉 high symmetry direction, where
we identify the systematic trends and succeed to deconvolute the different origins of the
observed symmetry breaking and tilting transitions. This work has been published in [10]
as well.

A theoretical overview of the different sources of anisotropy, which influence the symmetry
of superconducting vortex lattices has been given in section (3.2) within the Ginzburg-
Landau and BCS theory. The bulk properties of the ultra pure niobium sample, used for
our studies have been introduced in section (3.5). The magnetic cross-section of supercon-
ducting vortex lattices for small angle neutron scattering experiments and the schematic
scattering geometry have been introduced in sections (2.4) and (2.6), respectively.

In the following paragraph, we first give an overview of the existing studies of vortex
lattice structures in niobium by Schelten [157], Fischer et al. [158], Christen et al. [141,
142], Laver et al. [8, 9], which have been performed prior to our work. We particularly
focus either on the symmetry breaking vortex structures emerging for the magnetic field
H ‖ 〈100〉 as well as on the vortex lattice domain structure and degeneracy. We then
present the experimental setup, which was used for our studies before we continue with
the presentation of the experimental data and their interpretation.

3.6.1 Vortex Structures in Niobium for Magnetic Fields along
a [100] Axis.

Vortex Lattice Symmetry in Niobium

We have already introduced, that the existence of superconducting vortex lattices was
proven by Cribier [68] in 1964 in a superconducting niobium sample by means of neutron
diffraction. Since then, the vortex lattice symmetry and structure of superconducting
niobium has been systematically investigated by various groups as function of sample
purity and crystalline direction:

For a magnetic field H applied along a three-fold 〈111〉 crystalline direction, an ideal
hexagonal vortex lattice symmetry with nearest neighbour direction in a 〈110〉 crystalline
direction was reported by various groups [125, 158, 157] for the complete superconduct-
ing phase region. In contrast, for H parallel 〈110〉, the underlying two-fold crystalline
symmetry leads to a distortion of the regular hexagonal vortex lattice symmetry on an
ellipsoidal shape. An isosceles half unit cell was observed where the opening angle varies
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from ∼ 65◦ [158] to 61.5◦ [157]. The nearest neighbour direction of the vortex lattice
coincides with a 〈100〉 crystalline direction. The distortion of the vortex lattice symmetry
was attributed to an anisotropic Fermi mass.

In contrast, for the magnetic field H aligned along a four-fold 〈100〉 crystalline direction2,
a rich manifold of vortex lattice structures unfolds: For low fields and temperatures, both
Fischer et al. [158] as well as Schelten and Christen et al. [157, 142] report a square vortex
lattice unit cell, however, the precise orientation of the nearest neighbour direction of
the vortex lattice was inconclusive, which was attributed to varying sample purity. For
intermediate fields at temperatures above T =2 K an isosceles vortex lattice structure
with an opening angle of 63.4◦ was reported [142]. The nearest neighbour direction was
found to be a 〈100〉 crystalline direction. In conclusion, due to the varying sample purity
no coherent picture of the superconducting phase diagram of the vortex lattice symmetry
for the magnetic field H aligned along 〈100〉 could be obtained.

The complete phase diagram of the vortex lattice in superconducting niobium with mag-
netic field H applied along a [100] direction was unraveled by Laver et al. [8] by means of
small angle neutron scattering measurements. A high purity single crystal niobium sphere,
characterized by a residual resistivity ratio RRR ∼ 1000 was used. Fig. 3.13, panel (i)
schematically depicts the phase diagram as reported by Laver: A two-fold isosceles phase
and three distinct vortex lattice phases are observed in the vicinity of Tc and at low tem-
peratures, respectively. For increasing magnetic field H at low temperature these are at
first a square phase (low-field-square), a scalene phase at intermediate fields and a square
phase near Hc2 (high-field-square).
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η=25°
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Meissner Phase
2 4 6 800

100

200

300
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ηη=0°
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2 4 6 80 T (K)
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[011]
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Figure 3.13: Panel (i): Schematic vortex lattice phase diagram (in reciprocal space) for a
niobium sample with a finite demagnetizing factor with the magnetic field applied along a four-
fold 〈100〉 axis, where η = 0◦ denotes the angle between the applied magnetic field and the 〈100〉
axis in a (011) plane. Panel (ii): Phase diagram for η = 25◦. See text for further details.

It had been further established [8] that the three low-T phases are tilted with respect to the
four-fold symmetry of the underlying crystal structure into a low symmetry direction, thus
additionally breaking the crystal mirror symmetry. For instance, the nearest neighbour
direction of the low-field-square phase is tilted by 15◦ with respect to the crystalline [011̄]
direction. For increasing field, the symmetry and the orientation of the vortex lattice

2In our work, we use (...) to denote crystal lattice planes, 〈...〉 for a set of symmetry equivalent lattice
directions and [...] for particular crystalline directions.
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changes at a first order transition to a scalene vortex lattice symmetry, characterized
by the lowest possible Bravais symmetry. Based on the magnetic field and temperature
dependence of the low-field-square phase for H parallel 〈100〉 and the first order transition,
separating the low-field-square and the scalene phase, it had been speculated that the low-
field-square may be related to the intermediate mixed state [8].

Upon further increasing field, the scalene vortex lattice phase smoothly distorts to the
high-field square phase which is tilted by 11◦ with respect to the crystalline [011̄] direction.
In contrast, the two-fold isosceles phase observed at high temperatures breaks crystal
rotational symmetry but still obeys mirror symmetry.

Vortex Lattice Domain Structures and Degeneracy

We have introduced in the previous section, that for magnetic field applied along a four-
fold crystal symmetry direction, frustration between the six-fold vortex lattice symmetry
and the underlying crystal symmetry leads to the observation of vortex structures, which
either do not share the crystal symmetry or are furthermore tilted with respect to the
crystal symmetry directions. This allows the existence of several degenerate vortex lattice
domains, as described by Laver et al. [8, 9]. The vortex lattice domain structure thus
sensitively reflects the degeneracy of the vortex lattice symmetry with respect to the
magnetic field direction and crystal direction.

In the scalene phase, the vortex lattice nearest neighbour direction is aligned in a low sym-
metry direction with respect to the underlying crystal lattice. This structure therefore
leads to the existence of four degenerate vortex lattice domains, which may be constructed
using the crystalline symmetry directions as mirror planes. The construction of the dif-
ferent vortex lattice domains is schematically depicted in Fig. 3.14, panel (i), where the
half unit cell of each domain is shaded, respectively.

The domain population sensitively changes, if the direction of the magnetic field is rotated
away from a high symmetry direction, here [100]. Typical data for the domain population
of the scalene phase, taken from Laver et al. [9], is shown in Fig. 3.14, panel (ii), where
the domains are colour-coded as introduced in panel (i). For this plot, the direction of the
magnetic field was rotated close to (011) plane around the [100] axis at the magnetic field
µ0H = 200 mT and a temperature of T =2 K. A polar schematic of the domain population
close to the [100] axis is given in Fig. 3.14 panel (iii), where the radial coordinate illustrates
the domain strength. The domain population is well fitted by the function with the
required periodicity A0 +

∑3
n=1(An cos 2nτ + Bn sin 2nτ) with τ = ±η,−π/2 ± η for

the four scalene domains, respectively. Strong changes of the domain population within
rotation angles below 1◦ are observed. The population and degeneracy of vortex lattice
domains thus may be used for a precise alignment of the sample with respect to the
magnetic field direction.
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Figure 3.14: Panel (i): For a scalene vortex lattice with lowest possible Bravais symmetry,
where the nearest neighbour direction is not aligned in a high symmetry direction, four de-
generate vortex lattice domains are observed. The domains are constructed, using the crystal
symmetry directions, namely the (011) plane and (011̄) plane as mirror planes. The half unit
cell is shaded, respectively. The population of four degenerate scalene vortex lattice domains
for a magnetic field µ0H = 200 mT and temperature T =2 K as function of the magnetic field
direction with respect to the [100] axis is shown in panel (ii), taken from Laver et al. [9]. The
four domains are colour-coded as introduced in panel (i). The magnetic field is applied close to
the (110) plane and rotated by the angle η with respect to a [100] axis. Panel (iii) shows a polar
schematic of the domain population where the radial distance represents the domain population.
The solid lines are fits as described in the text.



56 CHAPTER 3: STATIC AND DYNAMIC PROPERTIES OF
SUPERCONDUCTING VORTEX LATTICES

Vortex Lattice Evolution close to 〈100〉

It had finally been established in further neutron scattering studies [9] that the vortex
lattice symmetry and tilt/orientation is very sensitive to the direction of the magnetic field
H with respect to the crystalline 〈100〉 direction: Rotating the magnetic field H away
from the high symmetry direction 〈100〉, both the symmetry breaking tilt of the vortex
lattice as well as the symmetry of the vortex lattice unit cell gradually evolve until the
equilateral vortex lattice symmetry is recovered for 〈111〉. In these studies, the magnetic
field was rotated away from the direction [100] both in a (110) as well as in a (100) plane.
A qualitative phase diagram of the vortex lattice, where η = 25◦ denotes the angle between
the applied magnetic field and the [100] axis in a (011) plane is given in Fig. 3.13, panel
(ii): For η = 25◦, a gradual evolution from equilateral to square vortex lattice symmetry
is observed, however, the nearest neighbour direction of the vortex lattice is aligned in a
crystalline [011] direction throughout the superconducting phase regime.

The evolution of the vortex lattice symmetry and tilt/orientation as function of the mag-
netic field direction close to a (110) plane is is given in Fig. 3.15 [9]. Panel (i) introduces
the nomenclature to describe the internal angles and the tilt/orientation of half unit cell
of the vortex lattice with respect to the crystal lattice: α, β and γ denote the internal
angles of the vortex lattice half unit cell. The orientation of the vortex lattice unit cell
with respect to the crystalline (110) plane is denoted by µ: Shown in panel (ii) is the
behaviour for the high field square phase: In the high-field-square phase for µ0H=350 mT
and T=2 K, the symmetry of the vortex lattice half unit cell smoothly distorts until a
equilateral shape is observed for H parallel [1̄11]. Shown in the inset of panel (ii) is the
tilt/orientation of the nearest neighbour direction of the vortex lattice with respect to the
crystal axis, which already disappears in a pronounced transition between 12◦ and 15◦

rotation of the magnetic field with respect to the [001] direction.

As shown in panel (iii), a gradual distortion of the vortex lattice symmetry — similar to the
high-field-square phase — is also observed for µ0H=200 mT and T=2 K (red symbols),
µ0H=200 mT and T=4.5 K (black symbols) and for T=2 K in the intermediate mixed
state (IMS) in blue: For the magnetic field along [1̄11], a equilateral vortex lattice is
again observed. Panel (iv) shows the evolution of the vortex lattice tilt/orientation for
µ0H =200 mT and T =2 K (red symbols), µ0H =200 mT and T =4.5 K (black symbols)
and for T =2 K in the intermediate mixed state (IMS) (blue symbols) as function of the
rotation angle of the magnetic field. For the data obtained in the intermediate mixed
state at T =4.3 K the tilting with respect to the crystalline direction vanishes with a
sharp transition at a rotation angle ∼ 20◦ similar to the high-field-square phase.

For the magnetic field direction applied in a (100) plane, similar phenomena have been
reported [9]. However, in the presented studies the precise evolution of the vortex lat-
tice morphology as a function of field orientation, necessary to identify the nature of the
morphology and tilt/orientation, remained open. This originated in incomplete data sets
and, more importantly, in the purity of the samples studied so far, which still displayed
distinct pinning effects despite their residual resistivity ratios RRR ≈ 1000. In particular,
no angle resolved systematic study of the reorientation transition with respect to the crys-
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talline direction of the four vortex lattice phases was available. Moreover, the evolution
of the vortex lattice symmetry in the intermediate mixed state remained unclear as well.

Motivation

To resolve the open issues we have studied the ultra-pure single crystal sample Nb 1 by
means of small angle neutron scattering. Nb 1 is of unprecedented purity, characterized by
a residual resistivity ratio ∼ 104. Previous small angle neutron scattering studies of Nb 1
have proven excellent sample quality and vanishing pinning effects. Due to the high purity,
non-local corrections due to gap or Fermi anisotropy are suspected to strongly influence
the symmetry of the vortex lattice, vanishing pinning effects allow the observation of the
intrinsic vortex lattice properties of the model system niobium. A brief description of the
bulk properties of Nb 1 can be found in section (3.5). In our study, we systematically map
the evolution of the vortex lattice symmetry for magnetic fields around the [100] crystalline
direction close to an (011) plane for the complete superconducting phase. In particular,
we either focus on the evolution of the low-field-square phase and the assumed connection
to the intermediate mixed state as well as on the field and temperature dependence of the
tilt/reorientation transition of the different vortex lattice phases.

3.6.2 Experimental Setup

The small angle scattering measurements were carried out at the small angle neutron
scattering diffractometer V4 at BENSC [114]. The typical setup of a small angle neu-
tron scattering instrument has been introduced in section (2.6), a detailed description of
neutron scattering experiments on vortex lattices is given in section (2.4).

For our experiment, neutrons with a wavelength λ = 12 Å ± 5.5% were collimated over
a distance of L1=12 m before reaching the sample, with a multidetector at a distance of
L2=12 m from the sample. An ’orange’ cryomagnet was used for measurements down to
1.5 K and a horizontal magnet for fields up to 500 mT. The sample was mounted on a
motorized sample stick that could be rotated about the vertical axis with an accuracy of
±0.05◦. A sketch of the scattering geometry is given in Fig. 3.16 (i). The cylinder axis of
the sample Nb 1 coincided with the rotation axis and corresponded to a crystalline [011]
direction. Magnetic fields were applied in the (011) plane, perpendicular to the cylinder
axis so that demagnetizing effects (N = 1/2) did not change during our measurements.
Thus the direction of H could be rotated away from the [100] axis towards a [11̄1] axis
in the (011) plane 3. In the following we denote with φ the rocking-angle between the
incoming neutron beam and H, while η denotes the angle between H and the 〈100〉
direction. For the precise sample alignment within ±0.2◦ we exploited the degeneracy
of the superconducting domains for field parallel 〈100〉 as described above (cf. ref. [9]).

3Due to a small sample misalignment of ≈ 1◦ around the beam axis, the rotation plane is not exactly
a (011) plane.
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Rocking scans of φ were performed for each measurement point. To avoid any hysteretic
effects, each data point was taken after field cooling the sample 4.
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Figure 3.16: Panel (i): Small angle neutron scattering set-up. φ denotes the angle between the
incoming neutron beam and the magnetic field, while η denotes the angle between magnetic field
and the crystallographic [100] direction. Panel (ii): Typical detector image in the scalene vortex
lattice phase. For clarity just one domain is marked in red. Panel (iii): The nomenclature for
describing the vortex lattice: α, β and γ represent the internal angles of the half vortex lattice
unit cell, δ represents the tilting angle of the vortex lattice with respect to the horizontal [011̄]
axis. The azimuthal instrumental resolution is denoted ∆βAZ .

Typical data is shown in Fig. 3.16 panel (ii) for a rotation angle η = 0 at the magnetic
field µ0H = 250 mT and a temperature of T = 1.7 K. As expected, several domain
populations may be seen due to the degeneracy of the vortex lattice domains with respect
to the four-fold symmetry of the crystal lattice. For clarity only one of these domains has
been marked with red lines. Due to a slight misalignment of a few tenths of a degree, one
domain is favoured. To extract the symmetry and orientation of the vortex lattice the
scattered intensities were fitted by 2D-Gaussians. The azimuthal instrumental resolution
∆βaz depends on the magnitude of the reciprocal lattice vector of the vortex lattice, which
in turn is determined by the applied magnetic field. The azimuthal resolution as derived
in section (A.1) yields ∆βaz = 15◦ for 100 mT, ∆βaz = 10◦ for 200 mT and ∆βaz = 8◦ for
a field of 300 mT. However, due to the high count rate, the quality of the 2-D-Gaussian
fit allows a precise determination of the position of the vortex lattice Bragg spots which

4However, the results for a zero field path with following field ramp showed identical results.
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is significantly better compared to the instrumental resolution.

As shown in Fig. 3.16 panels (ii) and (iii) α, β and γ describe the internal angles of the
scattering pattern, defining the structure of the primitive half unit cell, while δ describes
the orientation of the vortex lattice with respect to the horizontal [011̄] axis. As given
in Fig. 3.14, measurements have shown that changes of domain population of the vortex
lattice already occur within small changes of η, while the shape and orientation of the
unit cell are conserved [9]. We thus focus on the morphology of the vortex lattice.

3.6.3 Experimental Results

We have studied the evolution of the vortex lattice morphology in detail for temperatures
1.5 K < T < 5.5 K, magnetic fields 110 mT < µ0H < 330 mT, and η ≤ |±25◦|. This
covered the parameter range necessary to determine the vortex lattice phase diagram
with special regard on the vortex lattice tilt/reorientation and lock-in transitions. In
the following paragraphs, the precise evolution of the vortex lattice morphology will be
presented for the four characteristic vortex lattice phases.

High-Field-Square Vortex Lattice Phase

Shown in Fig. 3.17 are typical scattering patterns of the vortex lattice in the high-field-
square phase obtained at µ0H = 330 mT and T =1.5 K as function of the rotation angle
η: For η = 0◦, one of two degenerate square vortex lattice domains is visible, which is
tilted with respect to the crystalline [011̄] direction by the angle δ 5. The square unit cell
is marked with red lines, the half unit cell of the vortex lattice is indicated with broken
red lines. For increasing rotation angle η, the domain population changes between η = 0◦

and η = 5◦. The change of domain population is attributed to a a slight misalignment
of ≈ 1◦ around the beam axis, leading to a rotation of the magnetic field close to the
(011) plane. For further increasing rotation angle η, the tilting angle δ decreases until the
vortex lattice realigns with the crystal lattice at ηc ≈ 15◦, lifting the degeneracy of both
vortex lattice domains.

The precise evolution of the internal angles and the orientation of the vortex lattice as
obtained by the 2-D Gaussian fits for the high-field-square phase at µ0H = 330 mT and
T =1.5 K is shown in depth in Fig. 3.21, panel (i): For η = 0◦, α = β ≈ 45◦, γ ≈ 90◦

and a tilting angle δ ≈ 11◦ is observed. As a function of increasing rotation angle η
the symmetry breaking tilt vanishes gradually until for ηc ≈ 15◦ the nearest neighbour
direction coincides with a crystalline [011̄] direction. Above ηc the internal angles α = β
increase and γ decreases characteristic of an isosceles lattice that transforms into the
hexagonal lattice with α = β = γ = 60◦ for H ‖ 〈111〉.

5Again, due to a slight misalignment of a few tenths of a degree, one domain is favoured.
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Scalene Vortex Lattice Phase

Fig. 3.18 shows typical scattering patterns of the vortex lattice in the scalene phase at
µ0H = 250 mT and T =1.7 K as function of the rotation angle η: The scalene phase is
characterized by lowest Bravais symmetry with its nearest neighbour direction aligned in
a low symmetry direction. For η = 0◦, four degenerate vortex lattice domains are thus
observed. For increasing rotation angle η, the scalene vortex lattice symmetry smoothly
distorts to an isosceles symmetry and the symmetry breaking transition vanishes above
ηc ≈ 15◦. Similar to the vortex lattice in the high-field-square phase, a change of domain
population is observed for small rotation angles η between 0◦ ≤ η ≤ 4◦.

Fig. 3.21 panel (ii) shows the detailed evolution of the internal angles and orientation of
the scalene phase, as obtained by the 2-D Gaussian fits. For η = 0◦, the scalene phase
is characterized by α ≈ 50◦, β ≈ 60◦ and γ ≈ 70◦. Like the high-field-square the scalene
phase is tilted, where δ ≈ 14◦. The tilting vanishes at ηc ≈ 15◦, where the scalene
structure turns isosceles, i.e., α = β ≈ 50◦ and γ ≈ 80◦. Approaching the 〈111〉 direction
the vortex lattice finally turns hexagonal.

Low-Field-Square Vortex Lattice Phase

We now address the evolution of the low-field-square phase as function of the rotation
angle η for temperature T = 1.5 K and magnetic field µ0H = 100 mT, as given in Fig. 3.19
6. For η = 0◦, the square unit cell of the vortex lattice is marked in red lines. Due to
the tilted alignment of the square vortex lattice with respect to the square crystal lattice,
two degenerate vortex domains are visible. For rotation angles 5◦ ≤ η ≤ 7.5◦, the vortex
lattice symmetry abruptly turns into a scalene symmetry, while the tilting of the vortex
lattice with respect to the crystal axis remains constant. For increasing rotation angle η
the tilted scalene vortex lattice symmetry then gradually evolves to a isosceles symmetry
as well as the symmetry breaking tilting simultaneously vanishes for η ≥ 20◦.

The precise evolution of the internal angles and orientation for the low-field-square phase
as obtained by the 2-D Gaussian fits is again shown in Fig. 3.21 panel (iii): For η ≤ 5◦

α = β = 45◦ and γ = 90◦, which abruptly turns scalene lattice already for an angle
η1 ≈ 5◦, while the tilting of the flux lattice exists up to ηc ≈ 20◦, i.e., in contrast to all
other phases the fundamental symmetry and the tilting exhibit distinctly different critical
angles.

Isosceles Vortex Lattice Phase

We finally address the isosceles vortex lattice phase for high temperatures, given in
Fig. 3.20 for the temperature T = 5.5 K and the magnetic field H =150 mT. The evolu-
tion of the internal angles and orientation as obtained by the 2-D Gaussian fits is given

6Note the large intensity of the diffraction spots of the vortex lattice for low magnetic field and
temperature, which result from the magnetic field and temperature dependence of the form factor.



62 CHAPTER 3: STATIC AND DYNAMIC PROPERTIES OF
SUPERCONDUCTING VORTEX LATTICES

η= 14°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 16°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 18°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 20°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 0°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 5°

-5
  

 -5       0       5 

5
  

0
  
q

y
(10-3Å-1)q

X (10
-3Å

-1)

η= 10°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 12°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

330m
T 1.5K

F
igu

re
3.17:

E
volution

ofthe
vortex

lattice
in

the
high-field-square

vortex
lattice

phase
as

a
function

ofthe
rotation

angle
η

w
ith

respect
to

a
[100]

axis
for

tem
perature

T
=

1
.5

K
and

m
agnetic

field
µ

0 H
=

330
m

T
,

w
here

typical
sum

s
over

rocking
scans

are
show

n.
T

he
half

unit
cell

of
the

vortex
lattice

is
m

arked
in

broken
red

lines.
For

details
see

text.



3.6 MORPHOLOGY OF THE VORTEX LATTICE IN ULTRA-PURE
NIOBIUM FOR MAGNETIC FIELDS ALONG A [100] AXIS. 63

η=
 14

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 16

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 18

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 20

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 0°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 4°

-5
  

 -5       0       5 
5 

 
0 

 
qy(10

-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 8°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 12

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

25
0m

T 
1.

7K

F
ig

u
re

3.
18

:
E

vo
lu

ti
on

of
th

e
vo

rt
ex

la
tt

ic
e

in
th

e
sc

al
en

e
vo

rt
ex

la
tt

ic
e

ph
as

e
as

a
fu

nc
ti

on
of

th
e

ro
ta

ti
on

an
gl

e
η

w
it

h
re

sp
ec

t
to

a
[1

00
]

ax
is

fo
r

te
m

pe
ra

tu
re
T

=
1.

7
K

an
d

m
ag

ne
ti

c
fie

ld
µ

0
H

=
25

0
m

T
,

w
he

re
ty

pi
ca

l
su

m
s

ov
er

ro
ck

in
g

sc
an

s
ar

e
sh

ow
n.

T
he

ha
lf

un
it

ce
ll

of
th

e
vo

rt
ex

la
tt

ic
e

is
m

ar
ke

d
in

br
ok

en
re

d
lin

es
.

Fo
r

de
ta

ils
se

e
te

xt
.



64 CHAPTER 3: STATIC AND DYNAMIC PROPERTIES OF
SUPERCONDUCTING VORTEX LATTICES

η= 18°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 20°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 22°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 24°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 10°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 12°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 14°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 16°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 0°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 2.5°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

η= 5°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q
X (10

-3Å
-1)

η= 7.5°

-5
  

 -5       0       5 

5
  

0
  

q
y
(10-3Å-1)q

X (10
-3Å

-1)

100m
T 1.5K

F
igu

re
3.19:

E
volution

of
the

vortex
lattice

in
the

low
-field-square

vortex
lattice

phase
as

a
function

of
the

rotation
angle

η
w

ith
respect

to
a

[100]
axis

for
tem

perature
T

=
1
.5

K
and

m
agnetic

field
µ

0 H
=

100
m

T
,

w
here

typical
sum

s
over

rocking
scans

are
show

n.
T

he
half

unit
cell

of
the

vortex
lattice

is
m

arked
in

broken
red

lines.
For

details
see

text.



3.6 MORPHOLOGY OF THE VORTEX LATTICE IN ULTRA-PURE
NIOBIUM FOR MAGNETIC FIELDS ALONG A [100] AXIS. 65

η=
 22

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 24

°

-5
  

 -5       0       5 

5 
 

0 
 

[0
11

]

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 14

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 16

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 18

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 20

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 0°

-5
  

 -5       0       5 

5 
 

0 
 

[0
10

]
qy(10

-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 5°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 10

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

η=
 12

°

-5
  

 -5       0       5 

5 
 

0 
 

qy(10
-3
Å

-1
) q X(1

0-3
Å

-1
)

15
0m

T 
5.

5K

F
ig

u
re

3.
20

:
E

vo
lu

ti
on

of
th

e
vo

rt
ex

la
tt

ic
e

in
th

e
is

os
ce

le
s

vo
rt

ex
la

tt
ic

e
ph

as
e

as
a

fu
nc

ti
on

of
th

e
ro

ta
ti

on
an

gl
e
η

w
it

h
re

sp
ec

t
to

a
[1

00
]

ax
is

fo
r

te
m

pe
ra

tu
re
T

=
5.

5
K

an
d

m
ag

ne
ti

c
fie

ld
µ

0
H

=
15

0
m

T
,

w
he

re
ty

pi
ca

l
su

m
s

ov
er

ro
ck

in
g

sc
an

s
ar

e
sh

ow
n.

T
he

ha
lf

un
it

ce
ll

of
th

e
vo

rt
ex

la
tt

ic
e

is
m

ar
ke

d
in

br
ok

en
re

d
lin

es
.

Fo
r

de
ta

ils
se

e
te

xt
.



66 CHAPTER 3: STATIC AND DYNAMIC PROPERTIES OF
SUPERCONDUCTING VORTEX LATTICES

η= 0°

-5  5  0  

 -5
   

   
 0

   
   

 5
 

-5  5  0  

 -5
   

   
 0

   
   

 5
 

η= 0°

η= 0°

-5  

 -5
   

   
 0

   
   

 5
 

5  0  

 

  

  

0  
10

  4
0  

    
 60

    
   

80
0  

10
  4

0  
    

 60
    

   
80

0  
10

  4
0  

    
 60

    
   

80
(i)

(ii)

(iii)

330mT
1.5 K

250mT
1.7 K

100mT
1.5 K

γ
δ

α
β

q y(1
0-3

Å
-1
)

η= 0°
[010]

-5  5  0  

 -5
   

   
 0

   
   

 5
 

  

η  (°)

(iv)

150mT
5.5 K

0  
10

  4
0  

    
 60

   
    

80

0     10           20     30

-5  5  0  

q y(1
0-3

Å
-1
)

q y(1
0-3

Å
-1
)

q y(1
0-3

Å
-1
)

q
X
(10-3Å-1)

q
X
(10-3Å-1)

q
X
(10-3Å-1)

q
X
(10-3Å-1)

η
c

η
c

η
c

η
c

η
1

An
gle

s (
°)

0     10           20     30

Figure 3.21: Evolution of the vortex lattice as a function of η for various temperatures and
magnetic fields, where typical sums over rocking scans are shown for the high-field-square (i),
scalene (ii), low field square (iii) and isosceles (iv) structures. All vortex lattice structures are
given in reciprocal space, with the angles plotted in the left hand side panels. The nomenclature
was defined in Fig.3.16. The scattered intensity is plotted on a logarithmic scale. Due to a slight
misalignment of the sample, the scattering patterns are rotated by ≈ 1◦ around the beam axis.
Note, that due to a small sample misalignment of ≈ 1◦ around the beam axis, the rotation plane
is not exactly a (011) plane.
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in Fig. 3.21, panel (iv), where β = γ ≈ 62◦ [141]. The reorientation angle ηc ≈ 20◦ is
also important in the isosceles phase: For η = 0◦ the unit cell is orientated such that a
[010] axis acts as mirror plane, yielding α

2
+ δ = 45◦, i.e., δ ≈ 16◦. The two-fold isosce-

les phase hence does break the underlying four-fold rotational symmetry of the lattice
at η = 0◦ but still obeys mirror symmetry. With increasing η this orientation changes
between η ≈ 10◦ and ηc such that [011̄] becomes a mirror plane of the isosceles unit cell
(δ=0). During reorientation, the unit cell is scalene. This may be compared with the
low-field-square shown in Fig. 3.21 panel (iii), which becomes scalene already at η1 ≈ 5◦

as discussed above. At ηc ≈ 20◦ both the tilting vanishes and the lattice returns to the
isosceles structure.

3.6.4 Interpretation

In the following section we make use of our systematic measurements of the vortex lat-
tice structure and orientation to identify the systematic trends and explain the different
sources of anisotropy, responsible for the vortex lattice symmetry and the lock-in angles
of the tilting transition.

Magic Angle ηc

For the magnetic field H aligned parallel to [100] (η = 0◦), the vortex lattice orientation
is tilted with respect to the underlying crystalline directions for all four vortex lattice
phases by the angle denoted δc. If the direction of the magnetic field is rotated away from
the [100] direction, the vortex lattice tilting vanishes at the rotation angle ηc, whereas the
symmetry of the vortex lattice unit cell shows a smooth crossover at ηc. The magnetic
field and temperature dependence of the angle ηc is shown in Fig. 3.22 panels (i) and (ii)
where the error bars indicate the width of the transition. The show that ηc represents
a magic angle ηc ≈ 17◦ that is essentially the same for all vortex lattice phases. The
physical origin of the specific tilting angle δ and the magic angle ηc and will be discussed
in the next paragraphs.

Low-Field-Square Vortex Lattice Phase

The constant value ηc = 17◦ is strongly contrasted by η1 = 5◦ of the low-field-square phase,
where the square symmetry abruptly changes to a scalene symmetry of the half unit cell,
whereas the tilt/orientation δ remains constant at η1. Moreover, the reversible transition
fields of the low-field-square phase and the phase boundaries of the intermediate mixed
state (the superconducting phase diagram inferred from previous small angle scattering
measurements is depicted in Fig. 3.11) places the low-field-square vortex lattice phase
right in the intermediate mixed state.

We have introduced the properties of superconducting niobium, which is characterized by
a low value of κ in section (3.4). Due to the large ξGL as compared to the spacing of the
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flux lines, the interaction between vortices includes contributions from an overlap of the
vortices for low inductions. For samples with a non-zero demagnetizing factor this leads
to a long-range attractive vortex-vortex interaction, responsible for the emergence of an
intermediate mixed state. For low-κ superconductors, a square vortex lattice is expected
closely above the lower critical field Hc1 in a theoretical analysis, ignoring any symmetries
imposed by the crystal lattice [159], consistent with our experiment. Taken together this
identifies the low-field-square phase as a property of the intermediate mixed state.
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Figure 3.22: Panels (i) and (ii) show the temperature and field dependence of ηc, which is
essentially unchanged, where the error bars indicate the range of the transition. The evolution
of the internal angles α,β and γ for η = 20◦ is depicted as a function of magnetic field for low
temperatures (panel (i)) and as a function of temperature for 100 mT and 150 mT (panel (ii)).
Note the trend towards a square lattice for low T and high H. The lines serve as guide to the
eye.

Isosceles to Square Trend

With the low-field-square vortex lattice phase being a property of the intermediate mixed
state we may now address the remaining phase diagram. We first consider gradual varia-
tions of the vortex lattice morphologies, where it is instructive to begin with the isosceles
phase for η > ηc (cf Fig. 3.13 panel (ii)). As shown in Fig. 3.22 panels (iii) and (iv) for
η ≈ 20◦ we find that α = β → 45◦ and γ → 90◦ for decreasing temperature and increasing
magnetic field. In other words the lower the temperature and the higher the magnetic field
the stronger the trend to form a square lattice. This is underscored by the weak four-fold
anisotropy of B0,Hc1 and Hc2 [125, 142]. The same trend to form a square lattice is also
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present for η < ηc, where the vortex lattice morphology locks into distinct vortex lattice
phases.

In a pioneering study Nakai et al. [80] have shown for high-κ superconductors, that the
trend observed here is expected for a four-fold Fermi surface symmetry and related four-
fold gap anisotropy: A reentrant vortex lattice transition from rhombic to square back
to rhombic symmetry as function of applied magnetic field and temperature was found,
explaining the reentrant square to hexagonal to square vortex lattice transitions identified
in the compound LuNiB2C [79]. Here, the low field symmetry is driven by the anisotropy
induced by the Fermi surface and the high field symmetry driven by non-local corrections
due to the four-fold gap anisotropy.

We have pointed out in section (3.2.3), that the influence of non-local corrections is
expected to increase for increasing purity. We have also introduced, that the influence
of non-local correction increases for increasing magnetic field. Ultra pure niobium is
characterized by a low Ginzburg-Landau parameter κ ≤ 1/

√
2, close to type-I behaviour

and a long coherence length ξ ∼ 660 Å. This leads to a low energy difference of different
vortex lattice symmetries. We therefore conclude, that the isoscleses to square trend for
increasing magnetic field and decreasing temperature for H ‖ 〈100〉 is driven by four-fold
non-local corrections due to the general four-fold Fermi symmetry, where a decreasing
amount of this trend may be expected to survive when the direction of the magnetic field
is turned towards the 〈111〉 crystalline direction.

Scalene Vortex Lattice Symmetry

Our data further show, that the scalene vortex lattice symmetry and phase thereby always
emerges in the transition regime between structures and vortex lattice phases with higher
symmetry (isosceles or square), i.e., under conditions of maximum frustration. This may
be readily seen in Fig. 3.21 panels (ii), (iii) and (iv), where we find that α and β differ
for η < ηc, while α = β for η > ηc. Likewise, a scalene vortex lattice due to frustration is
also seen during the rotation between the two isosceles phases in Fig. 3.21 panel (iv) with
[011̄] and [010] acting as mirror planes, respectively. Hence the same systematic trend is
observed for all reorientation transitions shown in Fig. 3.21 panels (ii), (iii) and (iv), but
the width of the transition differs.

Vortex Lattice Lock-In Transitions

We finally note, that roughly the same value of ηc and the size of the tilting, δc, are
observed across the entire phase diagram. These values are remarkably close to the angle
separating open and closed Fermi surface sheets inferred from the magnetoresistance and
Fermi surface calculations: The reduced zone scheme of the Fermi surface in niobium
as calculated by Mattheiss [153] was depicted in Fig. 3.9 panels (i) and (ii). The Fermi
surface of niobium is characterized by closed hole pockets centered at the symmetry points
Γ and N of the bcc Brillouin zone plus a multiply connected open sheet which extends from
Γ to H along 〈100〉 directions, often referred to as ”jungle gym” geometry. A schematic
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depiction of the ”jungle gym” sheet is given in Fig 3.24, panel (i). The rod-like rungs of
the ”jungle gym” are aligned along 〈100〉 crystalline directions.

In Fig. 3.23, panel (i), magnetoresistance data of niobium is shown as function of the
rotation angle with respect to the [100] axis [160]. Pronounced maxima are observed
roughly at ηc ∼ 15◦ reflecting the crossover from open to closed orbits in the ”jungle
gym” Fermi surface, empirically suspected to be important for the superconductivity
[126]. Fig 3.24 panel (i) and panel (ii) schematically depict the associated open and
closed orbits as function of the angle η. Moreover, the tilting angle δc compares very well
with the size of certain necks in the ”jungle gym” Fermi surface (cf. Fig. 3.23, panel (ii))
[161]. Thus the trend of the vortex lattice morphology to lock into stable phases wins at
the expense of the symmetry breaking rotations as driven by the Fermi surface topology.

3.6.5 Conclusion and Outlook

In conclusion, we attribute the general morphology of the vortex lattice in niobium for
magnetic field parallel to 〈100〉 and its orientation to three dominant mechanisms:

• First, non-local contributions as described by Nakai in an Eilenberger [123] treat-
ment of a Fermi surface with four-fold symmetry [80] for high-κ superconductors,
leading to a gradual evolution from an equilateral vortex lattice at high temperature
and low field to a square vortex lattice at low temperature and high field.
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Figure 3.23: Panel (i) shows magnetoresistance data of a niobium single crystal sample, mea-
sured by Fawcett [160] as function of the orientation of the magnetic field H with respect to a
crystalline 〈100〉 direction, where the magnetic field was applied in a 〈110〉 plane. Pronounced
maxima at rotation angles η ∼ |15◦| indicate the crossover from open to closed orbits. Panel
(ii) shows the minimal crossection through the Fermi surface necks of the open ”jungle gym”
surface. The plot is adopted from Reed [161].
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Figure 3.24: Panel (i) schematically depicts the multiply connected, open ”jungle gym” Fermi
surface of niobium, where the rod-like rungs are oriented along the crystalline 〈100〉 directions.
Panel (ii) shows the multiply connected open Fermi surface sheet for the magnetic H field applied
parallel to a crystalline 〈100〉 direction. Panel (iii) schematically depicts the closed Fermi surface
sheets for the magnetic field tilted by an angle η ≤ ηc with respect to a crystalline 〈100〉 direction.

• Second, the transition between open and closed Fermi surface sheets, leading to
lock-in transitions of the vortex lattice below a magic angle near 〈100〉, where the
locked phases are also tilted: The magic angle of the transition to tilting corresponds
remarkably well to a change between open and closed Fermi surface sheets, empir-
ically suspected to affect the superconductivity [126]. The scalene vortex lattice
thereby appears in transitional regions of high frustration.

• Finally, our study identifies the low-field-square as a property of the intermediate
mixed state at the border between the Meissner and the Shubnikov phase.

In our study we show, that ultra pure niobium is an appropriate model system for the
examination of the morphology of vortex lattices in superconductors: On the one hand,
our work paves the way to further systematic analysis of the superconducting vortex
lattice symmetry and structure in niobium samples with reduced purity and reduced
mean free electron path to quantify to influence of the non-local corrections and the
Fermi topology in a controlled way. On the other hand, our study provides an ansatz how
to deconvolute and structure of the superconducting vortex lattice in systems exhibiting
both an unconventional symmetry of the superconducting order parameter as well as a
complicated Fermi topology.
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3.7 Dynamic Properties of Vortex Lattices in Super-

conducting Niobium

We have deconvoluted the different sources of anisotropy influencing the symmetry of the
superconducting vortex lattice in niobium in the previous section of chapter (3). In the
following section, we present first time direct microscopic measurements of the intrinsic
vortex lattice elasticity: For our measurements we use a novel time resolved neutron
scattering technique where we measure the magnetic field and temperature dependence of
the vortex lattice tilt modulus c44. Our study of the vortex lattice elasticity was performed
on the superconducting model system niobium as well.

The elastic matrix Φαβ of superconducting vortex lattices and their dynamic properties
have already been derived in section (3.3). The properties of the ultra pure niobium single
crystal sample used for our investigations and the typical small angle neutron scattering
setup for experiments on vortex lattices have been given in sections (3.5) and (2).

We give a short outline: In the following section (3.7.1), we briefly revisit the salient
features of the elasticity of superconducting vortex lattices and review different experi-
mental techniques for their measurement. The experimental setup which was developed
for our measurements is discussed in depth in section (3.7.2). We present the results
obtained for the tilt modulus c44 in section (3.7.3): The response of the vortex lattice
to a changed magnetic field environment is discussed in the k = 0 limit with a diffusion
ansatz [12, 117, 129, 13] (section (3.7.4)). Finally, the relevance of our experimental setup
for the investigation of different magnetic systems showing complex forms of long range
order is discussed in section (3.7.5).

3.7.1 Vortex Lattice Elasticity

Vortex Lattice Elasticity

Salient features of the elasticity of vortex lattices are: (i) Three different vortex-vortex
interactions have to be considered. The electromagnetic vortex-vortex interaction, charac-
terized by the effective London penetration depth λ′, the interaction due to the supercon-
ducting condensation energy characterized by the effective coherence length ξ′ and finally
the self energy or line tension [117]. (ii) For small dislocations of the vortices associated
either with pinning forces, magnetic field gradients, temperature gradients or driving cur-
rents, the elastic matrix Φαβ of the distorted vortex lattice can be derived within linear
elasticity theory. The elastic constants of the vortex lattice c11 for compression, c44 for
tilt and c66 for shear hence depend on the microscopic nature of the superconductivity
as well as impurity or surface properties of the superconducting sample due to pinning
[2, 3, 4, 5].

Due to the long range effective interaction between vortices — either by the electro-
magnetic force or due to the superconducting condensation energy — the elasticity of
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superconducting vortex lattices is strongly dispersive, which is denoted as non-local elas-
ticity [117]. The non-locality gives rise to a pronounced softening of the vortex lattice
with increasing k of the vortex lattice perturbation, leading to large vortex dislocations
induced by thermal fluctuations and pinning. The vortex lattice thereby responds to
external forces in the form of a sharp cusp, not like pulling a string. In contrast, the vor-
tex lattice elasticity for uniform distortions k = 0 can be described as damped diffusion
process [13, 12].

We have already introduced in sections (3.1) and (3.3) that in analogy to condensed matter
composed of atoms, a large variety of different superconducting vortex matter has been
observed in numerous superconducting systems, e.g., molten vortex lattices, vortex lattice
Bragg glasses and liquid phases. The elastic matrix φαβ of a vortex lattice, especially the
shear modulus c66 thereby determines the thermal stability and the state of aggregation
of superconducting vortex matter. In particular, the shear modulus assumes c66 = 0 at
vortex lattice melting transitions, where the long range order vanishes. Moreover, we have
also introduced that the elastic matrix of vortex lattices is intimately related to the pinning
and depinning properties of superconductors, leading to a particular relevance for technical
applications: If transport currents are applied to superconducting materials, the Lorentz
force acting on the vortices leads — with increasing current — to dissipative processes
as vortex creep [136], thermally assisted flux-flow (TAFF) [13] and flux-flow (FF) [137].
Therefore, the ability of superconducting materials to carry large transport currents for
technical applications is intimately related to the pinning properties of superconductors
and the elasticity of the vortex lattice.

The experimental access to the dynamic properties of vortex lattices and their elastic
matrix — in particular for non-equilibrium states — is, on the one hand, possible by
macroscopic bulk techniques as, e.g., measurements of the transport properties [2], mea-
surements of the magnetization [132] or measurements using vibrating reeds [162]. How-
ever, as we have introduced in section (3.3), parasitic effects induced by volume and
surface pinning as well as geometrical effects significantly hamper the unambiguous de-
termination of the intrinsic elastic constants of vortex lattices. Moreover, the mapping of
the k-dependence of the elasticity of vortex lattices cannot be performed by macroscopic
measurements. Microscopic surface sensitive measurement techniques, e.g., decoration
or magneto-optical methods suffer from similar or even stronger pinning and geometry
induced effects: This is due to the commonly used thin film samples. On the other hand,
local probes as muon spin relaxation µSR and scattering techniques as neutron scatter-
ing can yield microscopic information on bulk vortex lattices. However, as the accessible
timescale of inelastic neutron scattering techniques is still to short for vortex lattice dy-
namical properties, neutron scattering was up to now limited to characterize the static
properties of vortex lattices with only a few exceptions [90, 163].

Motivation

To overcome the limitations induced by pinning, hindering microscopic measurements
of the intrinsic elastic constants of superconducting vortex lattices, we exploit a new
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time resolved stroboscopic small angle neutron scattering technique [11] combined with a
tailored magnetic field setup consisting of two orthogonal magnetic fields — one of them
time-dependent— for the microscopic measurements of the intrinsic bulk vortex lattice
tilt modulus c44. On the one hand, stroboscopic small angle scattering allows the access
to long time-scales inaccessible with inelastic neutron scattering methods. On the other
hand, neutron scattering allows direct microscopic measurements of the properties of bulk
vortex lattices, with less or even without surface induced pinning effects.

Our niobium sample is of unprecedented purity, characterized by a residual resistivity
ratio ∼ 104 and has proven to exhibit vanishing volume and surface pinning in previous
studies [10]. Moreover due to the low κ, the model system niobium is ideally suited to
provide general information on the vortex lattice elasticity: Niobium is situated directly
at the border between type-I and type-II superconductivity, thus making the underlying
change from attractive to repulsive vortex interactions experimentally accessible [93, 140]:
The vortex-vortex interaction in pure niobium can be tuned as a function of temperature
and magnetic field in a controlled way.

3.7.2 Experimental Setup

To measure the vortex lattice tilt modulus c44 by means of time resolved small angle
neutron scattering, a time varying magnetic field setup, consisting of two orthogonal pairs
of Helmholtz-coils has been designed. The vortex lattice thereby follows the magnetic field
direction, the time dependent relaxation is measured by means of stroboscopic neutron
scattering. The time resolved stroboscopic small angle neutron scattering measurements
have been performed on the small angle diffractometer V4 at BENSC [114, 11]. In the
following paragraphs, we introduce the details of the experimental setup, used for time
resolved study.

Stroboscopic Small Angle Neutron Scattering

In contrast to inelastic neutron scattering, where the change of energy ~ω of the scattered
neutrons is analyzed by means of a Bragg reflection at the monochromator and at the
analyzer, by time-of-flight (TOF), or by neutron resonance spin echo (NRSE) methods,
the fundamental principle of stroboscopic neutron scattering is the excitation of the sam-
ple by an external control parameter followed by a measurement of the time dependent
dynamic response and relaxation of the system 7. To increase time resolution and signal
statistics, these measurements are performed in a stroboscopic manner, i.e. the measure-
ment is repeated many times where the data obtained for the individual cycles is summed
coherently [11]. The stroboscopic small angle neutron scattering technique is realized,
using a standard small angle neutron scattering setup (cf. section (2.4)), extended by
a time resolved position sensitive detector. Both repetition cycles of the time resolved
detector and the control parameter have to be phase locked.

7Note, that only elastic scattering is considered for the stroboscopic small angle neutron scattering
technique used for our experiment.
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The time resolution of the setup is merely determined by a time-smearing of the single
frames, caused by the wavelength spread ∆λ/λ of the neutron beam. The different ve-
locities of the neutrons lead to a variation of their time of flight from the sample to the
detector. The time of flight of the neutrons is given by the equation [11]

tTOF [ms] = λ[Å] · L2[m] · 0.253 (3.30)

with the wavelength of the neutron beam λ and the sample-detector distance L2, re-
spectively. For small angle neutron scattering measurements, L2 and λ determine the
accessible q-range. A large sample-detector distance L2 and large wavelength λ have to
be chosen in order to resolve large real space structures associated with small q-vectors.
This leads to a significant loss in time resolution. For our time resolved measurements on
the vortex lattice in niobium, presented in this manuscript, a wavelength λ =8Å with a
wavelength spread ∆λ/λ = 0.1 and a detector distance L2=8 m was chosen, leading to a
time resolution of 5 ms.

Time Varying Magnetic Field Setup

A schematic drawing of the magnetic field setup is given in Fig. 3.25. The static main field
Hstat ≤ 150 mT, applied along the Y-axis is generated by bespoke water cooled copper
coils [164]. The time varying field Hosc ≤ 5 mT is generated by a small air-cooled set of
Helmholtz-coils inside the main coil, driven with an arbitrary waveform generator and an
amplifier. Hosc is oriented along the X-axis perpendicular to Hstat. The resulting field
Htotal is rotated with respect to Hstat by the angle ε = arctan |Hosc|

|Hstat| in the XY plane.

Hstat � Hosc, yields that |Htotal| ≈ |Hstat| = |H| 8. H is oriented approximately parallel
to the incoming neutron beam. The rise and fall time of the amplifier used for Hosc causes
a smearing of the applied pulses. They have been determined with a Hall-probe at the
sample position and found to be in the range of ∼ 5 ms.

Experimental Setup

The sample is located in the center of both Helmholtz-coils, cooled with a closed-cycle
cryostat to a minimum temperature of 4 K. Both magnetic fields and the sample can be
rocked together with respect to the vertical Z-axis. The angle enclosed between Hstat and
the incoming neutron beam, which is also applied in the XY plane, is denoted rocking
angle φ. The sample Nb1 (cf. section 3.5) is of cylindric shape with its symmetry axis
aligned parallel to the Z-axis, i.e. a constant demagnetizing factor N = 1/2 applies for
all angles ε. The vertical symmetry axis of the sample coincides with a crystallographic
〈110〉 axis. A further 〈110〉 axis is oriented parallel to the incident neutron beam.

The oscillating magnetic field Hosc was driven with a rectangular pulse shape with an
amplitude of Hosc =0 mT↔5 mT and a repetition cycle of 0.2 Hz. A magnetic field
75 mT≤ Hstat ≤135 mT was applied. Two equilibrium positions for the magnetic field

8Due to the perpendicular alignment we omit the vectorial notation of Hstat and Hosc.
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Figure 3.25: Schematic depiction of the experimental setup, used for time resolved small
angle neutron scattering measurements of the vortex lattice tilt modulus c44. The sample is
located in the centre of two orthogonal magnetic fields, generated by Helmholtz coils. With a
combination of a static magnetic field Hstat ‖ Y and a time-varying magnetic field Hosc ‖ X
with Hosc � Hstat, the resulting magnetic field can be rotated with respect to the sample in
the XY plane. Both magnetic fields and the sample can be rocked around the vertical Z-axis
with respect to the incoming neutron beam by the angle φ, whereas the resulting magnetic field
Htotal is roughly parallel to the incoming neutron beam. The scattered intensity is recorded on
a two-dimensional detector.

and the vortex lattice emerge, which are separated by ε ≈ 2◦ if Hosc is alternated between
Hosc =0 mT and Hosc =5 mT (cf. Fig. 3.25). For a typical field µ0H =100 mT, the vortex
lattice assumes a six-fold scattering pattern with a Bragg angle of ≈ 0.17◦. The instru-
mental resolution for the width of a rocking scan ∆βkf yields a value of 0.2◦ for L1 = 8 m,
L2 = 8 m, R1 = 10 mm and R2 = 2 mm (cf. section (A.1)).

Measurements of the tilt modulus c44 of the vortex lattice have been performed for an
applied magnetic field µ0H =75 mT, 100 mT and 135 mT, each for sample temperatures
between 4 K and Tc. A schematic sketch of the measurement range with respect to the
phase diagram, obtained in previous small angle neutron scattering on Nb 1 [10] is given
in Fig. 3.26, panel (i): Both, the intermediate mixed state and the crossover to the Shub-
nikov phase are covered, where the vortex-vortex interaction changes from attractive to
repulsive. The intrinsic mosaicity of the vortex lattice as inferred from static rocking
scans is given in panel (ii): For the highest temperatures the mosaicity of the vortex
lattice is limited by the instrumental resolution. For decreasing temperatures T ≤6 K
for µ0H =75 mT and T ≤5 K for µ0H =100 mT the mosaic spread shows a pronounced
increase. However, in the Shubnikov phase for µ0H =135 mT only a weak increase of
the mosaic spread is observed for decreasing temperatures. This increase of mosaicity is
attributed to the crossover to the intermediate mixed state where an additional bending
of vortices is caused by the complicated vortex lattice domain structure in combination
with increasing demagnetizing effects with increasing Meissner effect for decreasing tem-
perature. The transition from the Shubnikov phase to the intermediate mixed state is
furthermore characterized by hysteretic behaviour of the integrated intensity (cf. Fig 3.11,
panel (i)) and mosaicity.
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To avoid hysteretic effects, all measurements have been taken after cooling in a field to the
desired temperature (FC). Furthermore, the direction of the magnetic field is oscillated
continuously due to Hosc. This leads to an effective depinning of the vortex lattice.
Summarizing, an equilibrium state can be assumed. In analogy to HFC paths in the B-T
phase diagram of type-I superconductors in the intermediate state, where the magnetic
flux is expelled for decreasing field, a similar behaviour and morphology is expected in the
intermediate mixed state for type-II superconductors upon FC. The result is supposed
to be an open, multiply connected topology of Shubnikov domains enclosing regions of
Meissner phase. In addition, the intermediate mixed state is characterized by Landau
branching at the surface of the sample. The detailed topology of the intermediate mixed
state has been reviewed in section (3.4).
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Figure 3.26: Panel (i) depicts the phase diagram for Nb 1, obtained by previous small angle
neutron scattering measurements [10]. Note that a demagnetizing factor N = 1/2 applies. The
dashed red lines locate scans, performed for our measurements of c44, in the phase diagram.
Panel (ii) depicts the intrinsic mosaicity of the vortex lattice as measured with small angle
neutron scattering as function of temperature for magnetic fields µ0H = 75 mT, 100 mT and
135 mT. The lines serve as guide to the eye.

Measuring Principle

The vortex lattice motion and relaxation, driven by the changed magnetic field direction
was measured in two different ways:

• The rocking angle φ is precisely adjusted to satisfy the Bragg condition for a recip-
rocal lattice vector of the vortex lattice q = GVL = ki−kf (lying in the XY plane)
exactly for Hosc = 0, i.e. ε = 0◦. The observed scattering intensity at the 2D de-
tector at GVL thus is a measure for the quantity of vortex lattice which points into
this direction. Hosc is oscillated between µ0Hosc = 0 mT and µ0Hosc = 5 mT. Thus,
the relaxation process between these two equilibrium positions can be followed by
measuring the integrated intensity at the Bragg reflection at GVL as function of
time. We emphasize that two different time-dependent processes have to be con-
sidered: The characteristic time-scale observed for µ0Hosc decreasing from 5 mT to
0 mT corresponds to a different physical relaxation process, compared to µ0Hosc

increasing from 0 mT to 5 mT:
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(i) The first process (µ0Hosc decreases from 5 mT to 0 mT) is attributed to the vortex
lattice relaxing into the Bragg condition which yields a macroscopic displacement
of the vortices. The instrumental resolution ∆βkf = 0.2◦ is significantly smaller
compared to the angular separation of both vortex lattice equilibrium positions
ε ≈ 2◦. The corresponding time-scale is denoted τ1.

(ii) The latter process (µ0Hosc increases from 0 mT to 5 mT) describes a time-scale,
necessary to pull the vortex lattice out of the Bragg condition denoted as τ3.

In the following, this method is denoted fixed angle scan. An exemplary fixed angle
scan for a temperature of T = 4 K and a magnetic field of µ0H =100 mT is shown
in Fig. 3.27, panel (i), where the red line indicates the modulus of Hosc
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Figure 3.27: Panel (i) shows a typical time resolved measurement for a rectangular pulse
shape of Hosc for a fixed rocking angle φ denoted as fixed angle scan. The red line indicates
the modulus of Hosc. The change in magnetic field direction yields a changed direction of the
vortex lattice in the sample, thus leading to a different scattering intensity. Panel (ii) shows a
typical time resolved scan for varying rocking angles φ denoted time resolved rocking scan, again
for rectangular pulses of Hosc. Two equilibrium positions for the vortex lattice, as induced by
the change of Hosc, are visible for φ = 0.5◦ and φ = 2.75◦. The switching process between these
equilibrium positions can be monitored as a function of time. The horizontal broken white line
in panel (ii) represents the fixed angle scan given in panel (i). Both, scans (i) and (ii) have been
performed at T = 4 K and µ0H =100 mT. For details see text.

• The whole relaxation process of the vortex lattice can be traced angle and time
resolved, when fixed angle scans are performed for each rocking angle φ. The latter
method is denoted time resolved rocking scan. A typical representative scan is given
in Fig. 3.27, panel (ii) for T = 4 K and µ0H = 100mT.

It is important to note that the angular distribution of the vortex lattice is always in-
tegrated over the complete sample and thus is additionally convoluted with the intrinsic
vortex lattice mosaicity and the angular resolution of the small angle scattering instru-
ment. Further note that fixed angle scans are represented by cuts at a fixed rocking angle
φ in the time resolved rocking scans.
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3.7.3 Experimental Results

Time Resolved Rocking Scans

In the following paragraphs we present our data obtained for the vortex lattice relaxation
and diffusion. First, we focus on the time resolved rocking scans. Fig. 3.28 depicts the
relaxation of the vortex lattice at a magnetic field µ0H=100 mT for a temperature of
T =6.5 K (panels (i) and (ii)) and T = 4 K (panels (iii) and (iv)). The relaxation of the
vortex lattice is plotted as function of time and rocking angle φ. The integrated intensity
is plotted on a linear scale. The horizontal broken white lines marked with the black
arrows indicate the time when the magnetic field direction is switched between the two
equilibrium positions. Note, that the time-range displayed corresponds to the gray shading
in Fig. 3.27, panel (ii), however, the axes have been rotated for better visibility. Both
equilibrium positions, at φ = 0.5◦ and φ = 2.75◦ are clearly visible for the data obtained
at T = 4 K (indicated with vertical broken white lines), whereas the measurements range
was reduced for T = 6.5 K due to the limited beamtime. Salient features of the vortex
lattice relaxation are:
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Figure 3.28: Panels (i) and (ii) depict time resolved rocking scans for an applied magnetic field
µ0H=100 mT and a temperature of 6.5 K, whereas panels (iii) and (iv) depict similar scans for
µ0H=100 mT and 4 K. Note the reduced measurement range for T = 6.5 K. The contours are
plotted on a linear scale. The change of magnetic field direction is indicated by horizontal broken
white lines marked with black arrows, whereas the equilibrium positions of the vortex lattice
are marked with vertical broken white lines. The continuous red lines indicate the relaxation
process of the vortex lattice. The red lines serve as guide to the eye.
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(i) A larger intrinsic mosaicity of the vortex lattice is observed for T = 4 K in com-
parison to T = 6.5 K. The additional mosaic spread, caused by a possible bending of
the vortices due to the domain structure of the intermediate mixed state in combination
with demagnetizing effects is in agreement with static data as displayed in panel (ii) of
Fig. 3.26.

(ii) As expected, the general trend is a relaxation characteristic of an exponential decay
∝ e−t/τ1 for both T = 4 K and T = 6.5 K, as indicated by the continuous red lines. The
corresponding time constant τ1, obtained for T = 6.5 K yields 0.04±0.008 s, whereas τ1

yields 0.16±0.02 s for T = 4 K. In addition, we further define τ ′1 as the characteristic
time-scale, when the vortex lattice has reached its new equilibrium position. τ ′1, obtained
for T = 6.5 K yields 0.2±0.05 s, whereas τ ′1 yields 0.45±0.1 s for T = 4 K.

(iii) τ3 indicates the time, where the intensity at the Bragg spot GV L has decreased to
1/e of its initial value. The values obtained for τ3 yield 0.06±0.008 s for T = 4 K and
0.025±0.005 s for T = 6.5 K, respectively.

(iv) The intensity map, obtained for T = 4 K is characterized by a drastic increase of
mosaic spread immediately after the magnetic field direction is changed. The time-scale
observed for this drastic increase of mosaicity is faster, i.e. below τ3. In contrast, only a
moderate increase of mosaic spread is observed for T = 6.5 K. In particular, no edge-like
step is observed for very short timescales after the magnetic field direction is changed, i.e.
the vortex lattice changes its direction coherently.

Fixed Angle Scans

New light is shed on the details of the vortex lattice relaxation process, focusing on the
fixed angle scans as function of applied magnetic field H and temperature T , as given in
Fig. 3.29, panels (i) and (ii) for a magnetic field of µ0H = 75 mT, Fig. 3.30, panels (i)
and (ii) for µ0H = 100 mT and Fig. 3.31, panels (i) and (ii) for µ0H = 135 mT. The time-
range displayed for the three figures also corresponds to the gray shadings in Fig. 3.27,
panel (i).

• We first focus on panels (i) of Figs. 3.29, 3.30 and 3.31 which show fixed angle
scans for µ0H =75 mT, 100 mT and 135 mT, respectively, each for increasing sample
temperature from T = 4 K to Tc (as labeled in panels (ii)). The increase of scattering
intensity after the vertical line, labeled with trigger is attributed to the relaxation
of the vortex lattice into the Bragg condition q = GVL = ki − kf as function of
time for µ0Hosc decreasing from 5 mT to 0 mT. The characteristic relaxation time
for this process was denoted τ1. However, it turns out that the qualitative shape
of the relaxation process changes as function of temperature. It is therefore not
possible to determine the characteristic times-scale τ1, in a way similar to the time
resolved rocking scans 9. However, to cover the systematic trends, the magnetic field
and temperature dependence of τ ′1 was analyzed. Salient features are:

9Due to the limited beamtime, the systematic temperature and magnetic field dependence of the
vortex lattice relaxation was measured only for the fixed angle scans.
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(i) The same general trend as observed for the time resolved rocking scans can also
be identified here: Increasing temperature and increasing applied magnetic field
lead to a significantly faster relaxation. The relaxation time τ ′1 is indicated with a
black marker in each fixed angle scan. The resulting magnetic field and temperature
dependence of τ ′1 is shown in Fig. 3.32, panel (i): For low temperatures T ≈4 K and
magnetic fields of µ0H =75 mT and 100 mT, τ ′1 =0.5±0.1 s. For increasing temper-
atures, τ ′1 decreases characteristic of a smooth crossover to values of τ ′1 =0.2±0.05 s.
The crossover temperature thereby decreases with increasing field from T = 6.5 K
at µ0H=75 mT to T = 5.5 K at µ0H =100 mT. In contrast, for a magnetic field of
µ0H =135 mT, τ ′1 assumes a constant value of τ1 =0.2±0.05 s except at the lowest
temperature where a slight shift to τ ′1 = 0.25 s±0.05 s is observed. The crossover
temperature for µ0H =135 mT is expected to be at ≈ 3.5 K, i.e. slightly below
the accessible temperature regime. The magnetic field dependence of the crossover
temperature of τ ′1 corresponds to the crossover from the intermediate mixed state
to the Shubnikov phase.

The data points obtained for τ1 from the time resolved rocking scans are given in
Fig. 3.32, panel (i) as well.

(ii) The characteristic shape of the relaxation changes as function of temperature
and magnetic field: For the low temperature data points at each magnetic field,
namely for T = 4 K to T = 6 K at µ0H =75 mT, for T = 4 K to T = 5 K at
µ0H =100 mT and for T = 4 K at µ0H =135 mT, the relaxation is characterized
by a sharp kink, associated with a distinct increase of intensity immediately after
the magnetic field is changed. This sharp increase is more pronounced for the
lowest temperatures. It is associated with the step-like broadening of the vortex
lattice mosaic, as observed in the time resolved rocking scans, e.g., for T = 4 K and
µ0H =100 mT (Fig. 3.28, panels (iii) and (iv)). This step-like increase is followed
by a slow relaxation characteristic of the time-scale τ ′1. Note, that the data points
at low temperatures and low fields, where the additional sharp increase is observed,
are situated in the intermediate mixed state.

(iii) In contrast, the characteristic shape of the relaxation process exhibits a smooth
increase with exponential shape for high temperatures, namely for T = 6.5 K to
T = 7.25 K at a magnetic field of µ0H =75 mT, for T = 6 K to T = 6.75 K at
µ0H =100 mT and for T = 5 K to T = 6.25 K at µ0H =135 mT. This is attributed
to the lack of the above-mentioned sharp increase of intensity directly after the
magnetic field is changed.

• We now concentrate on Figs. 3.29, 3.30 and 3.31, panels (ii), showing so-called fixed
angle scans for a magnetic field of µ0H =75 mT, 100 mT and 135 mT, each for in-
creasing temperature. The decrease of intensity after the vertical line, labeled with
trigger, is attributed to the vortex lattice being pulled out of the Bragg condition for
µ0Hosc increasing from 0 mT to 5 mT. The decreasing intensity is characterized by
two different time-scales: τ3 characterizes the overall time after the change of mag-
netic field direction when the scattering intensity has decreased to 1/e of its initial
value. τ3 is indicated with a blue marker in each scan. In contrast, τ2, indicated
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Figure 3.32: Panels (i) and (ii) show the values measured for time constants τ1, τ ′1, τ2 and τ3

as function of temperature T and magnetic field µ0H. Note the different scaling for panel (i)
and panel (ii). The lines serve as guide to the eye.

with a green marker, describes the characteristic delay-time between the change of
magnetic field direction and the response of the vortex lattice. The temperature
and magnetic field dependence of τ2 and τ3 is shown in Fig. 3.32, panel (ii):

(i) τ3 exhibits a linear decrease as a function of increasing temperature for all mag-
netic fields measured: For µ0H =75 mT, τ3 decreases from 0.08±0.01 s at T = 4 K
to 0.02±0.005 s at T = 7.25 K. For µ0H =100 mT, τ3 decreases from 0.06±0.01 s
at T = 4 K to 0.02±0.005 s at T = 6.75 K and for µ0H =135 mT, τ3 decreases
from 0.045±0.01 s at T = 4 K to 0.02±0.005 s at T = 6.25 K. No signature of a
crossover from the intermediate mixed state to the Shubnikov phase is observed in
the temperature and magnetic field dependence of τ3.

(ii) The temperature dependence of τ2 is characterized by a linear decrease from
τ2 =0.047±0.01 s at T = 4 K to τ2 = 0 at T = 7.25 K for a magnetic field of
µ0H =75 mT. For a magnetic field of µ0H =100 mT, τ2 decreases from τ2 =0.03±0.005 s
at T = 4 K to τ2 = 0 for temperatures above T = 6 K. In contrast, for µ0H=135 mT,
τ2 = 0 for all temperatures. Note, that the observation of τ2 6= 0 seems to be asso-
ciated with the phase region of the intermediate mixed state as well.

3.7.4 Interpretation

For an interpretation of our data, we first review the vortex lattice diffusion for uniform
tilt before we start with a qualitative description of the vortex lattice relaxation for a
displacement of the magnetic field direction. Adjacent, we calculate the temperature and
magnetic field dependence of the vortex lattice tilt modulus c44, using the vortex lattice
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diffusion model for uniform distortions.

Vortex Lattice Elasticity and Diffusion for Uniform Distortions

We have derived the eigenfrequencies of vortex lattices in section (3.3). For the vortex
lattice in a typical clean low κ superconductor such as niobium, the eigenfrequencies Γ1

and Γ2 of the vortex lattice are in the range of 10−9 s−1. In our experimental setup, the
magnetic field direction was oscillated with a repetition frequency of 0.2 Hz. Therefore, the
associated relaxation process of the superconducting vortex lattice can be calculated in the
k = 0 limit. For a change of the magnetic field direction, as used in our experimental setup,
the relaxation process is essentially given by the vortex lattice tilt modulus c44(k = 0).

For uniform distortions, the vortex lattice tilt modulus c44 = BH depends only on the
applied magnetic field H which is in local equilibrium with the equilibrium induction B
resulting in a magnetization M = µ0H − B ≤ 0 [117]. For the case that the spatially
varying part of B is smaller than the average value of B, the highly nonlinear equations
of motion may be linearized. The response of the vortex lattice in a bulk sample (sample
diameter r >> λ′) to a changed magnetic direction field may then be written as damped
diffusion process [12], using the diffusion equation derived by Kes [13].

It is important to note that the vortex lattice initially responds to a change of applied
magnetic field H solely at the surface of the superconductor, as the magnetic field is
screened by supercurrents from the bulk of the specimen (in particular by the Meissner
domains in the intermediate mixed state). Note that due to continuity conditions, the
slope of the vortex lattice is slightly refracted at the surface of the sample. However, for
the following description, the refraction of the magnetic field is neglected.

According to the diffusion model, the distortion of the vortex lattice propagates from the
surface of the sample into the bulk due to the finite elastic constants of the vortex lattice.
The resulting diffusion equation of the tilt distortion u(x, t) of the vortex lattice is given
by

du

dt
= D · u′′ (3.31)

with the diffusion constant D given by the ratio of the tilt modulus c44 and the viscosity
η [165]:

D =
c44

η
. (3.32)

η describes the viscous damping of the vortex motion by flux flow resistivity, assuming
either vanishing pinning effects or an efficient depinning due to thermally assisted flux
flow effects (cf. section (3.3), eq. (3.26)):

η =
B2

%FF
≈ BBc2

%n
(3.33)

η depends on the upper critical magnetic field Bc2, the equilibrium induction B and the
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resistivity %n in the normal conducting state. This yields for the diffusion constant D:

D(T ) =
H%n(T )

Bc2(T )
(3.34)

The diffusion equation can be solved easily, if the sample is approximated by a flat plate
with thickness 2r, ignoring the pre-existing field Hstat: We consider a conducting plate to
which the transverse field Hosc is applied at t = 0. The distribution of the field across the
plate is then described through a square wave. As time progresses, the edges and then the
middle of the sample relax to the outside applied field. This corresponds to the so-called
Dirichlet condition of the diffusion equation which is generally solved by a sum of cosine
waves with a half period of 2r:

u(x, t) =
∞∑
n=1

Dn(cos
nπx

2r
)e
−n2π2Dt

4r2 (3.35)

where n = 1, 3, 5... and

Dn =
2

2r

∫ 2r

0

f(x) cos
nπx

2r
dx (3.36)

with the initial condition f(x, t = 0).

The Fourier components thereby decay independently with a characteristic time ∝ 1/n2,
so that after a short time, only the fundamental remains. This yields for the relaxation
time for the mode with n = 1

τ = − 4r2

Dπ2
. (3.37)

For a sample of cylindrical shape and radius r with the magnetic field applied perpendicu-
lar to the cylinder axis, the resulting diffusion constant for a rotation of the magnetic field
with respect to the cylinder axis was calculated by Brandt [12]. The resulting relaxation
time is

τr ≈
r2

(2.405)2D
(3.38)

where x0 = 2.405 is the first node in the Bessel function J0(x).

Vortex Lattice Relaxation Process

We start with a qualitative description of the diffusion process of the vortex lattice.
As the repetition cycle of Hosc = 0.2 Hz is slow compared to the involved relaxation
processes τ1, τ ′1, τ2 and τ3 of the vortex lattice, a complete relaxation can be presumed
for each measurement cycle of the stroboscopic measurement, i.e. the vortex lattice is in
an equilibrium state before each change of magnetic field direction.

We assume that the vortex lattice has relaxed for µ0Hosc = 5 mT. The vortex lattice thus
does not satisfy the Bragg condition. No scattering intensity is observed at detector for
GVL. We then consider the next cycle of the stroboscopic measurement where µ0Hosc =
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5 mT is decreased to µ0Hosc = 0 mT: The vortex lattice firstly interacts with the changed
magnetic field direction at the surface of the sample. The perturbance then diffuses into
the sample. The vortex lattice relaxates into the Bragg condition, the scattering intensity
at the detector thus increases. The relaxation of the vortex lattice from the equilibrium
position for µ0Hosc = 5 mT (and thus ε = 2◦) to µ0Hosc = 0 mT (and thus ε = 0◦) yields
a large displacement u� λ′ of the vortices. This relaxation process is characteristic of a
slow exponential relaxation with the timescales τ1 and τ ′1 as defined in the previous section.
The temperature and magnetic field dependence of τ1 and τ ′1 was given in Fig 3.32, panel
(i).

We now assume that the vortex lattice has relaxed for µ0Hosc = 0 mT, giving rise to
maximum scattering intensity. If the direction of the magnetic field is shifted as Hosc is
increased from µ0Hosc =0 mT to 5 mT, the vortex lattice again interacts with the changed
magnetic field direction at the surface of the sample. The perturbance diffuses into the
sample, the vortex lattice is pulled out of the Bragg condition, the scattering intensity at
the detector decreases. After τ3, the intensity has decreased to 1/e of its initial value. τ3

is thus a measure for the time-scale when the perturbance of the vortex lattice propagates
across the complete sample 10.

Vortex Lattice Tilt Modulus c44

According to the diffusion model introduced by Kes [13] and Brandt [117, 12] for uniform
distortions, the vortex lattice tilt modulus c44 can be derived from τ1 and τ3 using the
eqs. (3.32), (3.33), (3.34) and (3.38). The temperature dependence of %n(T ) thereby is
given by eq. (3.28) as introduced in section (3.5). It is depicted in Fig. 3.33, panel (i).
The characteristic properties of the equilibrium induction B were derived in section (3.4).
B is inferred from the modulus of the reciprocal lattice vector |GV L| of the vortex lat-
tice according to eq. (2.24). Its temperature and magnetic field dependence is given in
Fig. 3.33, panel (ii).

The temperature and field dependence of cτ144(T,H), calculated from the measured values

of τ1, c
τ ′1
44(T,H) calculated from the measured values of τ ′1 and cτ344(T,H), calculated from

the measured values of τ3 is given in Fig. 3.34, panel (i) and panel (ii), respectively.

Only two data points could be obtained for cτ144(T,H) at µ0H = 100 mT for T = 4 K and
T = 6.5 K from the time resolved rocking scans. cτ144 shows increasing vortex stiffness with
increasing temperature, increasing from cτ144 ≈ 1 · 104 TAm−1 for T = 4 K to cτ144 ≈ 1.4 · 104

TAm−1 for T = 6.5 K.

The vortex lattice tilt modulus c
τ ′1
44(T,H) shows increasing vortex lattice stiffness with in-

creasing magnetic field. For a temperature of T = 4 K and a magnetic field of µ0H =135 mT

c
τ ′1
44 yields c

τ ′1
44 ≈ 1 · 104 TAm−1. For a temperature of T = 4 K and magnetic fields of

µ0H =75 mT and µ0H =100 mT the vortex lattice tilt modulus c
τ ′1
44 ≈ 0.3 · 104 TAm−1.

10Strictly speaking, the perturbance propagates through the sample from both sides as the geometry
is symmetric.
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Moreover, for magnetic fields µ0H =75 mT and µ0H =135 mT, c
τ ′1
44 exhibits a weak de-

crease by a factor of two for increasing temperature from T = 4 K to Tc. In contrast, for

µ0H =100 mT c
τ ′1
44 = 0.3 · 104 TAm−1 shows no temperature dependence.

cτ344(T,H) also shows increasing vortex lattice stiffness with increasing magnetic field.
However, no significant temperature dependence is observed. Due to τ ′1 � τ3, cτ344 yields
cτ344 ≈ 5.5 · 104 TAm−1 for µ0H =135 mT, cτ344 ≈ 2.5 · 104 TAm−1 for µ0H =100 mT, and
cτ344 ≈ 2 · 104 TAm−1 for µ0H =75 mT.
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Figure 3.33: Panel (i) depicts the resistivity of niobium in the non-superconducting state in the
pure limit for a residual resistivity ratio of ∼ 104 according to Berthel [126]. The temperature
dependence of the equilibrium magnetization B is given in panel (ii) for µ0H = 75 mT, 100 mT
and 135 mT. The lines serve as guide to the eye.
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Figure 3.34: Panels (i) and (ii) show the calculated temperature and magnetic field dependence
of the vortex lattice tilt modulus cτ144(T,H), cτ

′
1

44(T,H) and cτ344(T,H), according to the model of
Brandt [12]. The lines serve as guide to the eye.

The expected temperature and magnetic field dependence of c44, calculated from litera-
ture values of niobium is given in Fig. 3.35, panel (i). The calculated diffusion time τD is
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given in panel (ii). Again, the temperature and magnetic field dependence of the equilib-
rium induction B as given in Fig. 3.33, panel (ii), and the normal conducting resistivity
%n (panel (i)) are used. The effects of thermal depinning have been neglected. For a
magnetic field of µ0H =135 mT c44 assumes a value of 1.7·104 TAm−1, for µ0H =100 mT
c44 =0.8·104 TAm−1 and finally for µ0H =75 mT c44 = 0.6 · 104 TAm−1. The calculated
temperature dependence of c44 is weak for all fields and reflects the temperature depen-
dence of the equilibrium induction B.

A qualitative agreement between the theoretical value of c44(T,H) and the measured

values of cτ144(T,H), c
τ ′1
44(T,H) and cτ344(T,H) is observed: At first, the magnetic field be-

haviour which was observed is consistent with an increased vortex lattice stiffness c44 for
increasing field, according to eq. (3.25). The most accurate agreement is obtained for
cτ144(T,H). The origin of the slight deviation is most likely due to uncertainties of the ex-
trapolation of the normal conducting resistivity %n to low temperatures, associated with
the extrapolation of the residual resistivity ratio. Moreover, the involvement of the shear
modulus c66 in the relaxation process is still unclear. The shear modulus is responsible for
the perfection of the local structure of the vortex lattice. However, no azimuthal smearing
of the scattering pattern was observed during the relaxation process of the vortex lattice,
indicating a loss of long range order akin to a melting transition of the vortex lattice. The

values c
τ ′1
44(T,H) are undersized by a factor two from the expected values. In contrast,

the values for cτ344(T,H) exceed the calculated values by a factor of 3.5. This deviation is
presumably resulted by the definition, used for τ ′1 and τ3.

We have introduced in the previous paragraphs that the Fourier modes of the vortex
lattice relaxation decay independently with a time constants ∝ 1/n2. Note, that the
values of τ1 exceed τ3 by a factor of approximately two to three. Whereas the fundamental
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Figure 3.35: The vortex lattice tilt modulus c44 calculated of literature values is plotted in
panel (i), whereas panel (ii) yields the calculated timescale for the diffusion of a vortex lattice
distortion in a cylindric niobium sample, according to the model of Brandt [12]. The lines serve
as guide to the eye.
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relaxation mode τ1 may be easily identified with the Fourier mode for n = 1 11, the values
obtained for τ3 suggest that the corresponding relaxation process is a mixture of several
different mechanisms. This leads to the following picture of the vortex lattice relaxation,
schematically given for a half-infinite sample in Fig. 3.36, already accounting for most the
observed features:

• In general, a faster propagation of perturbations in the vortex lattice is observed for
increasing temperatures and increasing magnetic fields. This general behaviour is
explained by the decreased damping η for increasing temperature, according to an
increase of %n(T ) with T as given in eq. (3.33) and increasing vortex lattice stiffness
c44 with increasing field according to c44 = BH.
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Figure 3.36: Schematic depiction of the vortex lattice diffusion and relaxation for a tilting of
the magnetic field direction with respect to the vortex lattice. The vortex lattice relaxation is
solely shown for the left half of the sample due to symmetry considerations. The magnetic field
direction is switched at t = 0, the propagation of the initial perturbance through the sample is
given as function of time: τ3 is a measure for the time-scale, when a distortion of the vortex
lattice has traveled through the sample. The complete relaxation of the vortex lattice into the
new equilibrium position is given by τ ′1. The refraction of the magnetic field direction at the
surface of the sample has been neglected.

• The time resolved rocking scans show that at high temperatures and high magnetic
fields in the Shubnikov phase, the vortex lattice responds to the changed magnetic

11After a certain time, only the fundamental mode survives.
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field direction as a whole, stiff lattice with its motion characterized by the diffusion
constant D. A single, exponential relaxation is thus observed.

• In contrast, due to the low stiffness and strong damping for low temperatures and
fields in the intermediate mixed state, the macroscopic relaxation is typical of a
slow exponential relaxation with large mosaic spread which is characterized by an
additional fast process on a short timescale. This is attributed to the decomposition
of the vortex lattice into vortex lattice (Shubnikov) domains and Meissner phase
domains in the intermediate mixed state, including a branching of the Shubnikov
domains at the surface of the sample. The origin of the additional fast process will
be discussed below.

• The macroscopic relaxation of the vortex lattice between the two equilibrium po-
sitions is associated with a large vortex displacement. It is strongly dependent on
the vortex lattice topology, as the crossover from the intermediate mixed state to
the Shubnikov phase is reflected in the mere temperature dependence of τ ′1.

• τ3 is a measure for the time of a vortex lattice distortion propagating through
the sample. No signature of the transition from intermediate mixed state to the
Shubnikov phase is observed in the temperature and magnetic field dependence of
τ3 which is thus insensitive to the vortex lattice topology.

Vortex Lattice Relaxation in the Intermediate Mixed State

The intermediate mixed state is characterized by an increased mosaicity of the vortex
lattice (cf. Fig. 3.26). In addition, for very short time-scales directly after the magnetic
field direction is changed, certain characteristic features show up exclusively for data
points, situated in the intermediate mixed state: Typical data of the relaxation process
for T = 4 K and µ0H =100 mT in the intermediate mixed state is shown in Fig. 3.37. The
time range displayed corresponds to a short time-scale after the magnetic field direction
was changed. In the time resolved rocking scan (panel (i)), a sharp increase of mosaicity
shows up which is associated with a sharp increase of intensity observed in the fixed
angle scans for the equilibrium position at φ = 2.75◦ (panel (ii)). We note, that the
characteristic time-scale of this feature is well below τ3 for all temperatures and fields in
the intermediate mixed state.

We have introduced in the previous sections, that τ3 is a measure for the time, necessary for
a perturbation of the vortex lattice to cross the sample from both sides. This locates the
related relaxation process — responsible for the sharp increase of intensity and mosaicity
— at the surface of the sample. This effect is therefore attributed to branching of the
Shubnikov domains at the surface of the sample in the intermediate mixed state (cf.
Fig. 3.8). The branching of Shubnikov domains leads to a fine vortex lattice structure
at the surface, consisting of connected Shubnikov domains with open topology enclosing
Meissner islands. In particular, no rigid vortex lattice is observed. Branching of the
vortex lattice is responsible for the large intrinsic mosaicity as well.

As remaining feature, we now discuss the characteristic delay τ2 when the vortex lattice
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is pulled out of the Bragg condition for µ0Hosc increasing from µ0Hosc =0 mT to 5 mT.
Fig. 3.37 shows typical data of the relaxation process for a short time-scale after the
magnetic field direction was changed: The delay τ2 =30 ms is visible in both the time
resolved rocking scan (panel (i)) and the corresponding fixed angle scan for φ = 0.5◦.
Note, that τ2 6= 0 solely for data points in the intermediate mixed state. As described
above, a sharp increase of intensity is observed simultaneously at the new equilibrium
position (φ = 2.75◦) for these measurement points.
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Figure 3.37: Panel (i): Time resolved rocking scan for T =4 K and µ0H =100 mT. The relax-
ation process of the vortex lattice is shown for a short time-scale after the magnetic field direction
was switched. Panel (ii) shows the associated fixed angle scans for φ = 0.5◦ and φ = 0.2.75◦ as
indicated with the vertical broken red lines in panel (i).

This sharp increase was attributed to a mechanism close to the surface of the sample.
The intermediate mixed state is characterized by an intrinsically increased mosaicity of
the vortex lattice which is caused by a bending of vortices at the surface. The scattered
intensity exactly at the position q = GVL = ki− kf is caused by the vortex lattice which
points to the initial equilibrium position, thus which is not bent due to branching. τ2
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thus describes the delayed reaction of the unbranched vortex lattice buried beneath the
surface of the sample.

3.7.5 Conclusion and Outlook

In our study, we are able to show that it is possible to measure the intrinsic dynamic
properties of bulk vortex lattices with time resolved stroboscopic small angle neutron
scattering combined with a time varying magnetic field setup. We have shown that the
qualitative magnetic field and temperature dependent behaviour of the vortex lattice for
uniform distortions can be described in reasonable agreement with a diffusion model by
Brandt [12, 117] and Kes [13]. The values obtained for the vortex lattice tilt modulus
c44, diffusivity D and damping η can be reproduced theoretically. We further argue
that the topology of the vortex lattice is reflected sensitively in the associated diffusion
process. This is readily seen for measurement points in the intermediate mixed state
where a second, very fast relaxation process is attributed to branching of the vortex
lattice domains at the surface of the sample. Branching was observed by previous high
resolution decoration techniques on bulk niobium single crystal samples [152, 151]. To
model the relaxation of the vortex lattice, computer simulations of the diffusion process
are in progress.

This study represents a show-case how to access directly vortex lattice melting and the
formation of vortex glass states in unconventional superconductors, notably the cuprates,
heavy-fermion systems, boro-carbide or ironarsenide systems. The possibility to precisely
determine the pinning properties of vortices in future experiments on samples of varying
purity is of great relevance for the research on technical applications of superconducting
devices, as the pinning properties are intimately related to the maximal critical current
density of superconductors.

Furthermore, the technique developed for our study is of general relevance for materials
exhibiting complex forms of magnetic order, i.e. long range helical order as observed in
materials without inversion symmetry [78, 166], magnetic Skyrmion lattices, as observed
recently in the helimagnet MnSi [30] or colloidal magnetic suspensions and liquid crystals.
However, it is expected theoretically that the characteristic time-scales — in particular
of ferromagnetic materials — are significantly faster compared to the characteristic time-
scales of superconducting vortex lattices.

To further increase the time resolution, the TISANE technique can be used instead of
stroboscopic small angle neutron scattering [167]. TISANE is benefiting from a neutron
chopper which is placed upstream of the sample position at the distance L1 to the sample.
By carefully adjusting the distances L2 and L1, the chopper and control parameter duty
cycle frequencies and phase, a coherent summation of the scattered neutrons at the de-
tector position in space and time without time smearing can be achieved. The accessible
time resolution of TISANE is mainly determined by the time resolution of the detector
and the opening time of the chopper system. Timescales from µs to hours are possible,
closing the gap to the inelastic technique NRSE. For a detailed description, we refer to
[11, 167].



Chapter 4

Skyrmion Lattices in Chiral Magnets

4.1 Introduction

In chapter (3) we have presented neutron diffraction measurements on the structural and
dynamic properties of the superconducting vortex lattice in the model system niobium.
However, as we have introduced in section (1), it was suspected that vortex structures
similar to those of superconductors can also exist in magnetic systems [14, 15, 16, 17, 18].
We have pointed out that, in particular, systems which exhibit helical ferromagnetic order
have been identified [19] as promising candidates for the emergence of such magnetic
vortices, as these materials naturally support a rotation of magnetic moments similar to
Bloch domain walls. The rotation of magnetic moments with a long periodicity leads (i)
to an efficient decoupling of the magnetic structure from the underlying crystal structure
and is (ii) supposed to stabilize vortex structures, similar to superconducting vortices [19,
20, 21, 22] which are stabilized by the energy, associated with a normal to superconducting
interface.

Helical magnetic order can be provided through the Dzyaloshinskii-Moriya (DM) interac-
tion [24, 23]: For otherwise ferromagnetic systems, characterized by a crystalline struc-
ture lacking inversion symmetry, the DM interaction favours a perpendicular alignment
of neighbouring magnetic moments. The competition between the DM interaction and
ferromagnetic coupling, favouring a parallel alignment of the magnetic moments, leads to
the formation of a helical instability of the ferromagnetic order with long periodicity on
atomic scales.

In this chapter, we reinvestigate the magnetic phase diagram of the archetypal weak
itinerant helical magnet MnSi by means of small angle neutron scattering, where we
observe a magnetic spin crystal in the so-called A-phase of MnSi: The structure of the
spin crystal is characteristic of topological knots of the magnetization, arranged in a
macroscopic six-fold lattice, which we identify as skyrmion lattice. This work has been
published in [30] as well.

This chapter is organised as follows: In section (4.2) we start with a short introduction

95
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into the properties of the DM interaction. Adjacent in the second part of section (4.2)
we briefly present the Bak-Jensen model for MnSi, where we introduce the properties of
the helical magnetic order. We then give a detailed review of the properties of MnSi in
section (4.3), where we concentrate on the magnetic phase diagram at ambient pressure
and its evolution under hydrostatic pressure. We finally present our small angle neutron
scattering experiments in section (4.4).

4.2 Helical Magnetic Order

In the following section, we introduce the Dzyaloshinskii-Moriya (DM) interaction [24, 23]
and the Bak-Jensen model [31] in greater depth. We use the DM interaction and the
Bak-Jensen model to explain the long wavelength helical order in the weak itinerant
ferromagnet MnSi, where we use a simplified model of localized magnetic moments. The
model we use for our description is considered as the standard model of helical magnetic
order with long wavelength.

4.2.1 The Dzyaloshinskii-Moriya Interaction

For a long time, the weak ferromagnetic behaviour of otherwise antiferromagnetic com-
pounds as observed e.g. in α-Fe2O3 (Hematite) and the carbonates of Mn and Co has
been a controversial problem. In these materials, the magnitude of their spontaneous
magnetic moments is extremely small and experimentally found to vary between 10−2

and 10−5 of the expected value for ferromagnetic coupling. The small value of the ordered
moment indicates, that pure ferromagnetic coupling H = J · (Si ·Sj) is excluded as origin
of the behaviour observed. α-Fe2O3 (Hematite) belongs to the rhombohedral system and
exhibits the space symmetry group D6

3d. The unit cell is shown in Fig. 4.1: In the unit
cell, four Fe3+ ions are distributed over the space diagonal of the rhombohedron (which
is a trigonal axis).

Upon cooling, α-Fe2O3 changes at the so-called Morin [168] transition at Tm = 260 K from
state II, characterized by weak ferromagnetism, to the state I, assuming an antiferromag-

1 2 3

4

Figure 4.1: Crystal structure of α-Fe2O3 (Hematite). The open circles represent the O2− ions
and the dark circles represent the Fe3+ ions.
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netic behaviour with vanishing spontaneous moment. Early neutron diffraction data by
Shull et al. [169] and Brockhouse [170] showed, that the magnetic unit cell is identical to
the crystalline unit cell in the antiferromagnetic state I of α-Fe2O3. The weak ferromag-
netism of α-Fe2O3 in state II has been a controversial problem until Dyzaloshinskii 1958
[23] could show, that an α-Fe2O3 crystal in the antiferromagnetic state I, with spins along
the crystalline 〈111〉 direction owns the same symmetry compared to a canted arrange-
ment of spins. This canted arrangement exhibits a net magnetic moment perpendicular
to the trigonal axis. By writing down the free energy in terms of spin variables, indicating
four magnetic sublattices and by an expansion of the free energy Dzyaloshinskii showed,
that a coupling term

D · (Si × Sj) (4.1)

arises, which favours a perpendicular rather than an antiferromagnetic arrangement of
magnetic moments. D is a constant vector, which is parallel to the trigonal axis in
α-Fe2O3. The theory by Dzyaloshinskii however is based on purely phenomenological
considerations and does neither explain the origin of the observed coupling nor how the
vector D can be calculated.

In 1960 Moriya [24] was able to show that the coupling term eq. (4.1) naturally arises,
extending the theory by Anderson [171] for anisotropic superexchange by taking the spin
orbit coupling into account: Moriya could prove that when the symmetry of the crystal
structure is sufficiently low, the largest term of the anisotropic superexchange which
is linear in the spin-orbit coupling, has the antisymmetric form as reported earlier by
Dyzaloshinskii [23]. It was further recognized by Moriya that the crystal symmetry is of
particular importance for the magnetic coupling described by eq. (4.1): In actual crystals,
some components of the symmetric or antisymmetric coupling tensors disappear due to the
crystal symmetry. The following simple symmetry rules were derived for the orientation
of the coupling vector D. Imagine a crystal structure with two spins located at the points
A and B. The point bisecting the line AB is denoted C:

1. When a centre of inversion is located at C,

D = 0 .

2. When a mirror plane perpendicular to AB passes through C,

D ‖ mirror plane or D ⊥ AB .

3. When there is a mirror plane including A and B,

D ⊥ mirror plane .

4. When a two-fold rotation axis perpendicular to AB passes through C,

D ⊥ two fold axis .
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5. When an n-fold rotation axis (n ≤ 2) is oriented along AB,

D ‖ AB

For a Fe3+ - Fe3+ pair in α-Fe2O3 along the three-fold axis, this leads to the following
orientation of D: D is parallel to the trigonal axis for the Fe3+ ions (1 or 4) and (2 or
3), whereas D is zero for the other pairs. This causes a non-zero coupling between the
four sub-lattices of α-Fe2O3 with the coupling parameter D parallel to the trigonal axis,
leading to a canting of the sublattices. A magnetic coupling as described by eq. (4.1) is
hence called Dzyaloshinskii-Moriya interaction.

4.2.2 The Bak-Jensen Model

We have introduced in the previous sections, that the DM interaction may lead to a helical
instability of ferro- and antiferromagnets, if allowed by a particular crystal symmetry,
whereas evidence of such helical structures was still lacking for a long time. In 1980
Bak and Jensen [31] proved, that the long range helical ordering, observed by neutron
diffraction experiments in the weak ferromagnet MnSi and in the cubic phase of FeGe by
Hansen 1977 [172] and Ishikawa et al. 1979 [173] is due to a DM instability:

In MnSi, a left handed helical order with a pitch of λh=180 Å (∼ 0.035 Å−1) oriented along
the crystalline 〈111〉 directions was identified. FeGe exhibits a pitch of λh=700 Å. MnSi
as well as FeGe crystallize in the cubic B20 (P213) structure, lacking inversion symmetry.
A depiction of the corresponding chemical unit cell of MnSi is given in Fig. 4.4.

The central point of the model, introduced by Bak and Jensen for MnSi and FeGe is an
expansion of the free energy in terms of a slowly varying spin density S(r). Following
the theory of phase transitions by Landau and Lifshitz, especially taking into account the
crystal symmetry it follows for the free energy

F (r) =
1

2
A(S2

x + S2
y + S2

z ) +DS(∇× S)

+
1

2
B1[(∇Sx)2 + (∇Sy)2 + (∇Sz)2]

+
1

2
B2

[(
∂Sx
∂x

)2

+

(
∂Sy
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)2

+

(
∂Sz
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)2
]

+ C(S2
x + S2

y + S2
z )

2 + E(S4
x + S4

y + S4
z ) ,

(4.2)

which is the most general expression up to fourth order in spin and to second order in
gradients. Note, that this expression is invariant with respect to the symmetry operations
of the space group of MnSi and FeGe, B20 (P213). The term A represents the ferromag-
netic exchange, the term D stands for the DM interaction destabilizing the ferromagnetic
order and the terms B1 and B2 represent first and second order anisotropy terms. D is
a small correction, compared to the other second order terms. In the absence of D and
for positive B1 and B2, a minimization of F (r) leads to an uniform S(r) (ferromagnetic
coupling).
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Near to the transition temperature Tc the free energy is minimized by periodic structures
of the form

S(r) =
1√
2

[Ske
ikr + S?ke

−ikr] . (4.3)

If eq. (4.3) is inserted into eq. (4.2), Bak and Jensen obtain (to second order in Sk)

F (k) =
1

2
A|Sk|2 + iDk(Sk × S?k)

+
1

2
B1k

2|Sk|2

+
1

2
B2(k2

x|Skx|2 + k2
y|Sky|2 + k2

z |Skz|2) .

(4.4)

With Sk = αk + iβk, they find that eq. (4.4) is minimized if αk ⊥ βk, |αk| = |βk| and
k antiparallel to αk × βk for D > 0. For D < 0, k is parallel to αk × βk. Both possi-
bilities represent a left-handed or right-handed spiral arrangement of magnetic moments,
respectively. As the term D owns full rotational symmetry, no preferential orientation of
the wavevector (or propagation vector) k is inferred. Nevertheless, the direction of the
propagation vector k is defined by the anisotropic second-order gradient term with its
coefficient B2:

B2 < 0 : k ‖ 〈111〉
B2 > 0 : k ‖ 〈100〉

(4.5)

Neutron diffraction results by Ishikawa et al. [173] on MnSi and Hansen [172] on FeGe
show, that MnSi and FeGe exhibits B2 < 0, as the propagation vector k of the helical
order is aligned in the crystalline 〈111〉 directions. However, for FeGe a reorientation
to the crystalline 〈100〉 axes was observed as function of decreasing temperature below
T2 ∼ 211− 245 K. In addition, the parameter B2 is small as the propagation vector k can

Figure 4.2: Schematic depiction of a helical magnetic structure with a wavelength of λ. The
individual magnetic moments are aligned perpendicular to the propagation vector k. Only the
half pitch of the helix is shown. The given helical order is incommensurate, i.e. its pitch λh in
no integer multiple of the lattice constant a.
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be rotated into the magnetic field direction by a small applied magnetic field (∼ 0.1 T for
MnSi). Bak and Jensen finally obtain for the free energy

F (k) = (
1

2
A− |D|k)|Sk|2 + (

1

2
B1 +

1

6
B2)k2|Sk|2 (4.6)

which is minimized by

k =
|D|

B1 + 1
3
B2

. (4.7)

The spin structure can then be expressed conveniently in terms of real vectors in the form

S(r) = αk cos (kr)− βk sin (kr) (4.8)

describing a long wavelength helical spiral as given in Fig. 4.2. The helix in MnSi and
FeGe is incommensurate, i.e. the pitch of the helical order λh is no integer multiple of
the crystal lattice constant a.

The small value of k and the associated long pitch of the helical order in MnSi and
FeGe follows from the smallness of D compared to B1 + 1

3
B2. The free energy of a left-

handed (D < 0) and a right-handed (D > 0) helical structure is given in Fig. 4.3. The
ferromagnetic solution k = 0 is unstable. For comparison, the free energy of a system
with inversion symmetry D = 0 is plotted on a broken line. Note, that the left- and
right-handed solutions are degenerate, thus a further source of anisotropy is necessary to
lift this degeneracy. In MnSi, as upon today, solely left-handedness was observed for the
crystal structure [174] as well as for the helical magnetic structure [175, 174].

F

k
k-k

Figure 4.3: The free energy is depicted as function of wavevector k for left- and right-handed
spirals. The broken line depicts the free energy for a system with inversion symmetry b = 0
(ferromagnetic order). The plot is adapted from [31].
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4.3 Properties of MnSi

We have used the Bak-Jensen model [31] to explain the prerequisites for the long range
helical order of the archetypal helical magnet MnSi in the previous section. In the following
section, we review the properties of MnSi, where we discuss the magnetic phase diagram
at ambient pressure and its evolution upon applied hydrostatic pressure [97].

4.3.1 Properties of MnSi at Ambient Pressure

The 3d intermetallic compound MnSi crystallizes in the cubic B20 structure. Its unit
cell is depicted in Fig. 4.4: Four Mn and four Si atoms are located at the positions
(x, x, x), (1

2
+ x, 1

2
− x,−x), (1

2
− x,−x, 1

2
+ x), (−x, 1

2
+ x, 1

2
− x) with xMn = 0.137

and xSi = 0.841, respectively, giving rise to left-handed, chiral crystal structure. The
transport properties of MnSi at ambient pressure are characteristic of a metal, exhibiting
a quadratic temperature dependence of the electrical resistivity %(T ) ∝ Tα (α = 2), as
explained by the usual Fermi-liquid model [25, 176].

Figure 4.4: A schematic depiction of the chemical unit cell of MnSi is given. The manganese
atoms are represented by the blue circles, red circles represent the silicon atoms, respectively.
MnSi is characterized by a left-handed crystalline structure.

Magnetic Phase Diagram

MnSi exhibits weak itinerant helical magnetic order. The magnetic phase diagram at
ambient pressure is shown in Fig 4.5. It may be comprehensively interpreted as result of
the interplay of three hierarchical energy scales:

• The strongest scale is determined by weak itinerant ferromagnetism below a transi-
tion temperature of Tc = 29.5 K. MnSi is characterized by a spontaneous magnetic
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moment of 0.4µB per Mn atom and a fluctuating moment of 2.2µB estimated from
the Curie-Weiss behaviour in the paramagnetic regime [25]. The susceptibility of
MnSi follows a Curie-Weiss law over a large temperature range above Tc, a behaviour
normally viewed as more characteristic of the conventional Heisenberg model.

In contrast to large moment canted ferro- or antiferromagnets described by a clas-
sical Heisenberg exchange (including the DM interaction), weak itinerant ferromag-
nets exhibit a small Tc, and a small localized but large fluctuating moment so that
peff/p0 is larger than unity. The qualitative behaviour of weak itinerant ferromag-
nets was explained by Lonzarich and Taillefer 1985 [25] by means of an extended
Stoner theory including enhanced fluctuations in the local magnetization: In partic-
ular, Lonzarich and Taillefer perform a self-consistent renormalization of the linear
response, taking into account the effects of interactions, causing non-linear behaviour
and magnetic order. The transition temperature of MnSi and the size of the ordered
moment can be quantitatively explained by the model of Lonzarich and Taillefer.

• The formation of the helical order of MnSi was derived in section (4.2) using the
symmetry considerations by Dzyaloshinskii [23] and Moriya [24] and the theoretical
model by Bak and Jensen [31]: Due to the relative smallness of the DM interaction
compared with the ferromagnetic exchange, an incommensurate helical order with
a long periodicity of λ ∼ 180 Å emerges.

• We have furthermore derived in section (4.2) that the propagation vector k of the
helices in MnSi is locked to a crystalline 〈111〉 direction by the weakest energy scale,
represented by cubic crystal field anisotropy.

The magnetic phase diagram of MnSi — as given in Fig 4.5 — comprises three distinct
phases: In the helical phase below Tc = 29.5 K and below Hc1 with µ0Hc1(T → 0) = 0.1 T
(represented by the medium blue region), numerous small angle neutron scattering studies
established a left-handed helical order [172, 173, 177, 29]. Four degenerate helical domains
are observed corresponding to the four crystalline 〈111〉 directions, each giving rise to
scattering in ±k.

For magnetic fields exceeding µ0Hc1 = 0.1 T, the helices unpin and their propagation
vector k starts to realign in the direction of the magnetic field. This phase is called conical
phase (indicated by the light blue shading) as the helix is simultaneously deformed into a
conical helix, as observed by Ishikawa et al. [173]. With increasing field, the helices align
more and more into the direction of the magnetic field, leading to a single domain state.
In addition, the cone angle decreases for increasing field until a fully field polarised state
is reached at the upper critical field Hc2 with µ0Hc2(T → 0) = 0.6 T. The field polarised
ferromagnetic state exhibits a spontaneous moment of 0.4µB per Mn site. Note, that
the modulus of the propagation vector k of the helical order shows only slight changes as
function of temperature T or magnetic field H.

Close to the transition temperature Tc and at ∼ 1/2Hc2, an additional phase is observed,
denoted as A-phase (shaded in dark blue), separated by weak first order phase boundaries
inferred from measurements of the AC susceptibility, the specific heat [26], and torque
magnetometry [178]. Small angle neutron scattering experiments established that the
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propagation vector k of the helical order aligns perpendicular to the direction of the
applied magnetic field in the A-phase [177, 27, 28, 29]. The data was interpreted for a
long time that the A-phase is characterized by a single k helix.
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Figure 4.5: Magnetic phase diagram of MnSi at ambient pressure as function of temperature
T and applied magnetic field H parallel to a crystalline 〈100〉 direction. The phase diagram
for H along the crystalline 〈110〉 and 〈110〉 directions is qualitatively identical, whereas the
temperature regime of the A-phase slightly differs. Plot adopted from [30]. For details see text.

Possible Intermediate Phase at Tc

Measurements of the specific heat C of MnSi at zero magnetic field [95, 179] show that
the temperature dependence of C exhibits a characteristic lambda-shaped peak at Tc1,
associated with the breakdown of the long-range helical order. Typical data is given in
Fig. 4.6, panel (i). Moreover, a pronounced shoulder is observed at Tc2, approximately
1 K above the transition temperature Tc1. Measurements of different samples indicate a
significant dependence of the shape of the shoulder at Tc2 on the purity of the samples
[180].

Small angle neutron scattering experiments in zero magnetic field [112, 181, 95, 96] show
a ring of intensity emerging in vicinity of Tc where the |q|-vector of the ring is identical
to |k|. Typical data is shown in Fig. 4.6, panel (ii) for a temperature of T = 29.6 K. The
temperature range where the ring is observed approximately corresponds to the anomaly
in specific heat. Further measurements [96] reveal that the ring of intensity represents
a cut through a homogeneous sphere in reciprocal space with radius |k|. Integrating
the intensity of the sphere thereby approximately yields the extrapolated intensity of
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Figure 4.6: Panel (i): Specific heat C of MnSi as function of temperature in zero magnetic
field as reported in [96]. Panel (ii): Small angle scattering pattern of MnSi at zero magnetic
field for T =29.6 K, taken from [96]. For details see text.

the helical phase for T → 0. Recent measurements [182] using a combination of spherical
neutron polarimetry and the neutron spin echo technique show that chirality is still present
in the disordered state above Tc.

The microscopic origin of the behaviour in vicinity to Tc is controversly discussed, es-
pecially considering the possible existence of an intermediate phase and the connection
between the ring of intensity and the specific heat anomaly: Grigoriev et al. [112] attribute
both to critical paramagnetic scattering around the phase transition. A softening of the
pinning of the helices to the cubic crystal field anisotropy was reported by Janoschek
[96], using the model of Maleyev [183]. This leads to randomly disordered helices, ex-
plaining the observed sphere in reciprocal space. Nevertheless, data obtained by spherical
polarimetry [96] suggest that additional contributions arise besides critical scattering.

4.3.2 Properties of MnSi under Hydrostatic Pressure

In the following paragraphs, we summarize the properties of MnSi as function of pressure.
The phase diagram as function of hydrostatic pressure and temperature at zero magnetic
field is given in Fig. 4.7, panel (i). For increasing pressure, the heli-magnetic transition
temperature Tc is suppressed and assumes Tc = 0 at the critical pressure of pc =15 kbar.
The character of the phase-transition thereby changes from second order to weak first
order at p? =12 kbar as inferred from AC-susceptibility [184, 185].

Extended Non-Fermi-Liquid Regime

An extended region of non-Fermi-liquid (NFL) behaviour emerges for pressures above pc
[186, 187, 188]. It is characterized by an exponent of the electrical resistivity %(T ) ∝
Tα with α = 3/2 . The crossover from Fermi liquid to non-Fermi-liquid behaviour is
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characteristic of first order transition. The regime of the NFL behaviour (green shading
in Fig 4.7 panel (i)), extends over three orders of magnitude in temperature, from few
mK to ∼ 12 K and up to pressures of ∼ 30 kbar. Above ∼ 45 kbar, the exponent α starts
to increase [189].

Measurements of the magnetic field dependence of the electrical resistivity [188] suggest
that the NFL regime survives to fields substantially exceeding Hc2. Its large temperature
and pressure range and the magnetic field stability naturally rises the question if the
NFL state is a signature of an unknown metallic state. However, no broadly accepted
explanation of the low temperature dependence of the electrical resistivity exists for MnSi
[78].
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Figure 4.7: Panel (i): Phase diagram of MnSi as function of hydrostatic pressure and temper-
ature, taken from [78]: The regime of the helical order is shaded in blue, exhibiting the typical
fermi liquid behaviour of a metal. Under pressure, a partial order (PO) seen in neutron scatter-
ing experiments emerges (shaded in dark blue and dark green) above the pressure p?. Between
p? and pc, a crossover from the helical order to the partial order is observed. The partial order
is embedded in an extended NFL regime. The transition temperature Tc is deduced from the
susceptibility and transport measurements [185, 186]. The upper boundary T0 of the PO is de-
duced from elastic neutron scattering measurements [97]. Tc,L and TTE are deduced from Lamor
diffraction measurements of the thermal expansion [190]. Panel (ii): Intensity distribution in
reciprocal space of the helical order in MnSi at ambient pressure and zero field (left). The
propagation vectors |k| of the helices are aligned along the crystalline 〈111〉 directions. Partial
order in MnSi under pressure (right). For details see text.

Partial Order Above p?

A weak partial magnetic order (PO) is observed by elastic neutron scattering above
p?=12 kbar. The regime of the partial order (indicated by the dark blue and dark green
shading in Fig. 4.7 [97]) is significantly smaller, compared to the non-Fermi-liquid region:
Between p? and pc, a crossover from helical order to partial order is observed, whereas
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the intensity of the helical order tracks Tc as function of pressure which is not the case for
the partial order. µSR measurements [191] showed signs of phase segregation, indicated
in the dark blue shading in Fig. 4.7, panel (i). The partial order gradually disappears for
increasing pressure until it vanishes at p0=20 kbar.

The partial order is characterized by a smooth distribution of intensity on the surface of
a small sphere in reciprocal space with radius k. The intensity distribution shows weak,
smeared-out maxima in the crystalline 〈110〉 directions, given in Fig. 4.7, panel (ii) 1.
However, the value for the intensity integrated over the complete sphere is large. Further
small angle neutron scattering measurements reveal a highly hysteretic magnetic field
behaviour of the partial order: The scattered intensity can be aligned into the direction
of the magnetic field [193]. No significant pressure dependence of the critical fields Hc1

and Hc2 was reported by means of small angle neutron scattering [194] data and AC
susceptibility measurements [185, 26].

In addition to elastic neutron scattering, which reflects an energy resolution of δE =
0.05 meV, µSR measurements [191] show no magnetic intensity above pc, revealing that
the partial order is not static on the slower timescales probed by µSR and hence is dynamic
on a time scale between τ =10−10 to τ =10−11 s. The upper boundary of the partial order
T0 as inferred from elastic neutron scattering is featureless in the AC-susceptibility.

4.3.3 Motivation

We have pointed out that systems exhibiting helical magnetic order have been identified
as promising candidates for the existence of ferromagnetic vortices with topological prop-
erties [19, 20, 21, 22]. Both the possible intermediate phase in the proximity of Tc and the
partial order above p? have recently been interpreted in terms of magnetic spin crystals
with topological properties. An introduction into the properties of such topological states
has been given in section (1).

Theoretical considerations by Rössler et al. [18] in 2006 discuss the possible spontaneous
formation of a skyrmionic groundstate at zero field for a helical magnet: In their study,
an additional, purely phenomenological term stabilizes a doubly twisted, fan-like helical
structure with varying amplitude of the magnetic moments.

Calculation by Binz et al. [15, 14] and Fischer [16] by means of Landau theory compare
favourably with existing data on the high pressure behaviour: Binz et al. construct a
magnetic spin crystal by means of a linear superposition of single k helices and calculate its
stability by means of Landau theory, where they find, that the bcc spin crystal is favoured.
Tewari et al. [17] evoke close analogies to the blue phases in cholesteric liquid crystals
and propose that similar condensation transitions involving a chiral order parameter can
occur in itinerant helimagnets.

1Note, that for randomly oriented helices on a sphere, an intensity pattern with maxima in the
crystalline 〈110〉 directions is expected for MnSi, when measured near a [110] nuclear Bragg reflection
due to a selection rule [192]. However, the intensity is supposed to drop to its half value, whereas the
experimentally observed decrease is much faster, ruling out experimental artifacts.
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We have introduced that several small angle neutron scattering studies have shown that
the A-phase of MnSi is characterized by a perpendicular alignment of the propagation
vector k and the magnetic field. However, the detailed structure of the A-phase was
unclear [177, 28, 29, 95, 27]. This lack of information originated in the measurement
setup where the applied magnetic field was aligned perpendicular to the incident neutron
beam. With this setup, only k-vectors aligned parallel to the intersection line of a plane
perpendicular to the field direction and a plane, perpendicular to the incident neutron
beam satisfy the Bragg condition and are observable. However, it has been speculated,
that the spin structure is unlikely to be helical, it is probably either a fan or a sinusoidal
structure, in which case the spins would still be perpendicular to the magnetic field [29].

In our work, we use small angle neutron scattering to revisit the magnetic phase diagram
of MnSi at ambient pressure. In particular, we focus on the structure of the A-phase. In
contrast to previous studies, we choose both a perpendicular alignment of the magnetic
field with respect to the incoming neutron beam as well as a parallel alignment, where
we succeed to resolve the complete magnetic structure of the A-phase, a skyrmion lattice,
reminiscent of a superconducting vortex lattice.
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4.4 Skyrmion Lattice in the A-Phase of MnSi

In this section, we present our small angle neutron scattering study on the magnetic
structure of the A-phase of the helical magnet MnSi. We give a short outline: We first
explain the preparation of the samples (section (4.4.1)) and the details of the experimental
setup (section (4.4.2)) which were used for our studies, before we present our experimen-
tal results in section (4.4.3) and the salient features of their interpretation by means of
a Ginzburg-Landau ansatz in section (4.4.4). A detailed description of the theoretical
considerations is given [30].

4.4.1 Samples Used for Investigation

For our studies, three different MnSi samples have been examined. A picture of the
samples is given in Fig. 4.8: Sample I corresponds to a flat disk with a diameter of 19 mm
and a thickness of d = 3 mm. The normal vector of the disk is slightly misaligned with
respect to a crystalline 〈110〉 axis. Sample II has the form of a small parallelepiped with a
length of 14 mm and 1.5 mm × 1.5 mm in cross section. The long axis of the parallelepiped
coincides with a crystalline 〈110〉 direction. Sample III consists of an irregular shaped
thin plate with a length of ∼ 14 mm, a width of ∼ 9 mm and a thickness of ∼ 1.4 mm.
The normal vector of sample III is aligned in the crystalline 〈110〉 direction.

Sample I Sample II

14mm

19mm

<110><110>

Sample III

<110><110>

Figure 4.8: The figure shows the MnSi samples which were used for our studies: Sample I has
the form of a disk with a diameter of 19 mm and a thickness of 3 mm. A crystallographic 〈110〉
direction is slightly misaligned with respect to the normal vector of the disk. Sample II has the
form of a long parallelepiped with a length of ∼ 14 mm and 1.5 mm × 1.5 mm in cross section.
A crystalline 〈110〉 direction is oriented along the long side of the parallelepiped. Sample III
consists of a irregular shaped thin plate with a length of ∼ 14 mm, a width of ∼ 9 mm and a
thickness of ∼ 1.4 mm. A crystalline 〈110〉 direction is oriented perpendicular to the thin plate.

The samples have been cut from a single crystalline MnSi rod using spark erosion and a
diamond wire saw, respectively. The MnSi rod has been produced with the Bridgeman
method using high purity starting materials. Sample I as well as other MnSi samples cut
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from the rod described above have previously been studied in experiments using triple
axis spectroscopy [96, 195, 196] and small angle neutron scattering, revealing excellent
sample quality [96, 95]. The crystalline mosaic of sample I is ∼ 0.15◦. Measurements of
specific heat and resistivity reproduce literature values [95]. The residual resistivity ratio
(RRR) was determined to be RRR∼100 [197], proving good sample quality.

4.4.2 Experimental Setup

To further study the magnetic phase diagram and in particular the magnetic structure of
the A-phase of MnSi, we have carried out small angle neutron scattering measurements on
the cold diffractometer MIRA at FRM II on sample I, sample II and sample III at ambient
pressure. MIRA is a versatile instrument that can be used like a small angle neutron
scattering instrument. A schematic drawing is given in Fig. 4.9. The samples were aligned
by means of X-ray Laue backscattering. They were mounted inside the sample tube of a
cryogenic free pulsetube cryostat [198], thermally coupled to the cryostat by means of He
exchange gas of low pressure. The temperature was controlled with a thermometer and
a heater, mounted next to the sample on the sample holder. A temperature stability of
better than T ± 0.01 K was achieved for sample II and sample III, T ± 0.05 K for sample
I, respectively.

A magnetic field up to µ0H =0.5 T, generated by bespoke water cooled Helmholtz-coils
[164] could be applied either vertical or parallel to the incident neutron beam. A schematic
depiction of both geometries is given in Fig. 4.9, panels (ii) and (iii). Both the magnetic
field and the cryostat containing the sample could be rocked together with respect to a
vertical axis by the angle φ, as indicated in Fig 4.9. The magnetic field was characterized
by a Hall probe and found to be uniform within <1% over the sample volume. The wave-
length of the neutron beam was adjusted to λ =9.7 Å with a wavelength spread ∆λ/λ =
5% FWHM by means of a multilayer monochromator. The neutron beam was collimated
over a distance of L1 =1.5 m. The diffracted neutrons were recorded by means of a posi-
tion sensitive 3He delay-line detector at a distance to the sample between L2 =0.8 m and
L2 =1.3 m.

Note, that the instrumental resolution was relaxed for sample I in order to increase in-
tensity and search for higher order diffraction peaks and double scattering: For sample
I, a source aperture with an opening of 8×8 mm2 and a sample aperture of equal size
were chosen. The resolution of the detector was 2×2 mm2. The instrumental resolution,
which is a result of the convolution of beam divergence, wavelength spread and detector
resolution is derived in section (A.1). The instrumental resolution for the low resolution
setup yields ∆βaz = 10◦ in azimuthal direction, ∆βq = 0.006 Å−1 in radial direction and
∆βkf

= 0.63◦ parallel to kf .

Sample II and sample III were measured using a high resolution setup to increase the
resolution in the rocking scans and to resolve the magnetic structure: For sample II and
III, both source aperture and sample aperture were adjusted to an opening of 4 × 4 mm2
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2. We obtain an instrumental resolution of ∆βaz = 4◦, ∆βq = 0.004 Å−1 and ∆βkf
= 0.35◦

for the high resolution setup.

The diffraction patterns presented in this study have been obtained by a summation over
the individual diffraction patterns during rocking the sample about typically ±8◦ with
respect to a vertical axis (as indicated in Fig. 4.9). Rocking the sample further yields
the magnetic mosaicity of the helical order convoluted with the instrumental resolution
∆βkf

. The spot size at the detector represents the resolution limit for sample I, sample II
and sample III, respectively. The position of the diffraction spots at the two-dimensional
detector have been obtained by 2-D Gaussian fits. Note, that the error of the fitted
position of the diffraction spots is significantly below the instrumental resolution due to
a good signal to noise ratio.

Figure 4.9: Panel (i) shows the setup used for the measurements on the cold diffractometer
MIRA: Instead of a velocity selector, usually used for small angle neutron scattering, a multilayer
monochromator is used on MIRA due to geometrical constrains. Panel (ii) and (iii) depict both
magnetic field setups which were used for our experiments. Note, that the sample and the
magnet can be rocked together with respect to a vertical axis by the angle φ.

Sample I, II and III (cf. Fig. 4.8) have been measured with the neutron beam aligned
parallel to a crystalline 〈110〉 axis. In particular, the neutron beam was aligned almost
parallel to the normal vector of the disk for sample I, perpendicular to the long axis of

2However, due to the size of sample II with a width of 1.5 mm and a length of 14 mm, an effectively
smaller sample aperture was the result.
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sample II and parallel to the normal vector of the flat plate for sample III. The vertical axis
of sample I corresponds to a 〈112〉 axis, whereas the vertical axis of sample II corresponds
to a 〈110〉 axis. Sample III was measured in two configurations, with a 〈110〉 crystalline
direction aligned vertical as well as horizontal, respectively. To avoid hysteretic effects, all
data at finite field was taken after zero-field cooling to the desired temperature, followed
by a field ramp to the desired field value.

4.4.3 Experimental Results

In the following section, we first discuss the results, obtained in zero magnetic field in
the helical phase, before we focus on the conical phase and finally on the A-phase of
MnSi. Measurements of the helical and conical phase of all three samples reproduce the
behaviour as reported in the literature [28, 95, 27].

Helical Phase

Fig. 4.10, panels (i) and (iv) show scattering patterns characteristic of the helical phase
for sample I at T = 27 K and sample II at T = 16 K in zero magnetic field, respectively:
The spots of panel (iv) are labeled for reference. Four diffraction spots are visible, each
pair (spots 1 and 3) and (spots 2 and 4) corresponds to one 〈111〉 helical domain with
±k. The diffraction spots in the 〈100〉 directions arise due to double scattering 3. The
value obtained for k = 0.034 Å−1 yields a periodicity of the helical order of λh=180 Å. A
transition temperature Tc = 29.5 K was obtained.

This behaviour is underscored by a plot of the helical phase of sample II at T = 16 K
and µ0H =0 T as function of the azimuthal angle ψ, which is given in Fig. 4.11, panel (i):
The labels of the diffraction spots correspond to Fig. 4.10, panel (iv). Note, that ψ=0◦

corresponds to a vertical direction. The spots appear along the 〈111〉 directions under
approximately 35◦ with respect to the crystalline 〈110〉 direction (ψ=0◦), their full width
half maximum yields ∼ 5◦. This is consistent with the azimuthal instrumental resolution
∆βAZ = 4◦. The difference in intensity between the pairs of spots (1 and 3) and (2 and
4) is due to intrinsically different domain populations.

A typical rocking curve of the helical phase obtained in the high resolution setup for
sample II at T = 16 K is given in Fig 4.12, panel (i). Again, the labels of the diffraction
spots correspond to Fig. 4.10, panel (iv). The rocking curve is well fitted by a Gaussian
function yielding a full width at half maximum of ηm ∼ 3.5◦, consistent with previous
work [29, 194]. The instrumental resolution of a rocking scan yields ∆βki = 0.35◦ for the
high resolution setup.

3Note, that for an ideal helical arrangement of magnetic moments, no higher order diffraction peaks
are observed due to the single k.
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Figure 4.10: Typical small angle neutron scattering patterns. Note, that the color scale is
logarithmic to make weak features visible. The data represents the sum over rocking scans with
respect to a vertical axis. The background was measured above Tc and subtracted in all panels
except (i). Spots are labeled for reference. Panels (i) to (iii) show data, obtained on sample I,
where we allow for a large neutron beam divergence to increase the neutron intensity. Panels
(iv) to (vi) correspond to sample II which was measured with high resolution. For both, sample
I and II the spot size represents the resolution limit. Panel (i) shows the helical order in sample
I at 27 K at zero field. Panel (ii) depicts the A-phase of sample I at 26.45 K and 0.16 T, same
orientation as (i), whereas panel (iii) depicts the A-phase for a random crystalline orientation of
sample I at 26.77 K and 0.16 T. Panel (iv) depicts the helically ordered state of sample II at 16 K
in zero field whereas panel (v) depicts the A-phase of sample II at 27.7 K and 0.16 T. Panel (vi)
shows the coexisting conical phase and A-phase in conventional setup with the magnetic field
perpendicular to the incident neutron beam at 27.7 K and 0.19 T. Spots (12) and (15) correspond
to spots (12) and (15) in panel (v). See text for details.
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Conical Phase

In the conical phase, the propagation vector k of the helical order is aligned in the direction
of the applied magnetic field while the cone angle decreases with increasing field. The
conical phase is observed with the applied magnetic field aligned perpendicular to the
incident neutron beam as given in Fig. 4.9, panel (ii).
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Figure 4.11: Panel (i): Azimuthal plot of the helical phase in sample II at 16 K and 0 T,
corresponding to Fig. 4.10, panel (iv). Panels (ii) and (iii): Azimuthal plot of the A-phase of
sample I at 26.45 and sample II at 27.7 K and 0.16 T, corresponding to Fig. 4.10, panels (ii) and
(v), respectively. Spots are numbered for reference. The width of the spots is limited by the
instrumental resolution. Note that for sample II, a small deviation of the ideal six-fold symmetry
is observed. Further note, that ψ=0◦ corresponds to a vertical direction for all panels.

Typical data obtained for the conical phase is given in Fig. 4.10 panel (vi) for sample II at
a temperature of T = 27.7 K and at µ0H =0.19 T. The magnetic field was aligned parallel
to a crystalline 〈110〉 direction: Four diffraction spots are visible. The spots labeled with
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(17) and (18) are aligned parallel to the direction of the magnetic field, they correspond
to the conical phase. The pair of diffraction spots labeled with (12) and (15) are oriented
perpendicular to the applied magnetic field and belong to the A-phase.

A-Phase

It was long believed that the A-Phase was explained by a single helix with its propagation
vector k aligned perpendicular to the applied magnetic field [28, 29, 95, 27]. Using a
scattering geometry where the magnetic field is applied perpendicular to the neutron
beam, as given in Fig. 4.9, panel (ii), the intensity of the spots associated with the conical
phase (spots 17 and 18 in Fig. 4.10, panel (iv)) gradually weaken when entering the A-
phase, whereas strong scattering appears perpendicular to the applied field (spots 12
and 15) associated with the A-phase. The modulus of the reciprocal lattice vector k is
conserved at the transition to the A-phase. This behaviour is consistent with previous
work and may be attributed to phase coexistence characteristic of a weak first-order phase
transition with possible extra effects of demagnetizing fields.

We, however, emphasize, that this scattering geometry where the magnetic field is aligned
perpendicular to the neutron beam — as used for all previous work—cannot map all k-
vectors which are oriented perpendicular to the applied magnetic field. Solely k-vectors
are visible, which are oriented parallel to the intersection line of the Ewald sphere and
the plane, perpendicular to the magnetic field. For detailed investigations of the complete
structure of the A-phase, we have chosen the direction of the incident neutron beam
parallel to the magnetic field. A schematic depiction of the setup is given in Fig. 4.9, panel
(iii). In this scattering geometry, all k-vectors perpendicular to the applied magnetic field
simultaneously satisfy the Bragg condition.

Fig. 4.10, panel (ii) and panel (v) show typical data, obtained in the A-phase for sample
I and sample II at T = 26.45 K and T = 27.7 K at µ0H =0.16 T, respectively: The A-
phase is characterized by six diffraction spots which emerge on a regular hexagon. The
diffraction spots are labeled for reference. We have tested the variation of the scattering
pattern on the orientation of the field relative to the crystal direction in all samples.
Whereas the field was always aligned parallel to the incident neutron beam, the sample
was rotated for a large number of orientations. Typical data is shown in Fig. 4.10, panel
(iii) for a random orientation of sample I at T = 26.77 K and µ0H =0.16 T: For all
samples and all crystalline directions a regular six-fold scattering pattern always emerges.
However, a weak pinning of the nearest neighbour direction of the six-fold structure in
the crystalline 〈110〉 direction is observed, if a 〈110〉 direction is contained in the plane,
perpendicular to the magnetic field.

Fig. 4.11, panels (ii) and (iii) show the integrated intensity of the A-phase plotted as
function of the azimuthal angle ψ for sample I at T = 26.45 K and in µ0H =0.16 T and
sample II at T = 27.7 K and µ0H =0.16 T. Again, ψ=0◦ indicates the vertical direction.
The labels of the diffraction spots correspond to Fig. 4.10, panels (ii) and (v): For both
samples, the symmetry direction of the regular hexagon is aligned along a 〈110〉 crystalline
direction. For sample I, the spots appear strictly under an angle of ∆ψ =60◦ characteristic
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of the six-fold symmetry. A small distortion of ∼ 1.5◦ of the ideal six-fold structure to an
ellipsoidal shape is observed for sample II. The reason for the deviation from the regular
hexagonal shape is unclear, it may be attributed to the weak pinning in the crystalline
〈110〉 direction. However, the distortion is below the instrumental resolution.
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Figure 4.12: Panel (i) and (ii): Both plots depict typical rocking scans of sample II. The
intensity represents counts integrated over the individual spots during the rocking scan with
labels referring to Fig. 4.10, panels (iv) and (v). Lines serve as guide to the eye. The upper plot
corresponds to the helical state at 16 K and zero field. A spontaneous difference of intensity
between the domain populations (1,3) and (2,4) is observed. The lower panel corresponds to
the A-phase at 27.7 K and 0.16 T.

The azimuthal width of the spots is limited by the instrumental resolution and yields ∼6◦

for sample II and ∼10◦ for sample I, which is approximately consistent with the calculated
instrumental resolution ∆βAZ = 10◦ for the low resolution setup and ∆βAZ = 4◦ for the
high resolution setup, as derived in section (A.1). Note, that the intensity of spots, lying
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on the axis rotation4 (namely spots 7, 10, 11, 14) is systematically lower. The reason for
this behaviour will be discussed below.

We have performed rocking scans in the A-phase where the sample and the magnetic field
have been rocked together with respect to a vertical axis. Foremost, the rocking scans
performed show that the magnetic structure in the A-phase is strictly aligned perpendic-
ular to the applied magnetic field, independent of the underlying crystalline orientation.
In comparison to the helical order where the rocking curve is described by a Gaussian
function with a half width at full maximum of ηm ∼ 3.5◦, the rocking curve obtained in
the A-phase exhibits a characteristic change of shape and full width at half maximum:
The shape of the rocking scans is characteristic of an exponential function with a full
width at half maximum of ηA =1.75◦, taking the Lorentz factor of 15% into acount. The
instrumental resolution for rocking scans yields ∆βki

= 0.35◦. However, the shape of the
rocking curve is very sensitive to demagnetizing effects as well.

Finally, due to the misalignment of the crystalline 〈110〉 axis with respect to the normal
vector of sample I, a deflection of the magnetic field direction inside the sample was
observed which is caused by demagnetizing effects. A schematic depiction of the magnetic
field direction inside and outside of sample I is given in Fig 4.13, panel (iii).

Magnetic Field H

Normal to Skyrmion lattice

α

Orientation sample I
<110>

Figure 4.13: Caused by the misalignment of the normal vector of sample I with respect to
the 〈110〉 crystalline direction, the orientation of the A-phase is deflected by the angle α due to
demagnetizing effects inside sample I.

High Resolution Rocking Scans

To quantize the influence of demagnetizing fields on the structure and the rocking curve
of the A-phase we have performed further scans using sample III in the high resolution
setup. With a sample aperture of 4×4 mm2, only the central part of sample III is exposed
to the neutron beam. Edge effects can be neglected. Sample III can be regarded as flat,

4The diffraction patterns are obtained by the summation over a rocking scan with respect to a vertical
axis.
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Figure 4.14: Panel (i): Scattering pattern characteristic of the helical phase of sample III at
T =10 K and zero magnetic field. The crystalline 〈110〉 axis is aligned horizontal. Panel (ii)
depicts a rocking scan of the helical phase of sample III at T = 10 K and zero magnetic field:
The integrated intensity of the diffraction spots as indicated in panel (i) is plotted with respect
to the rocking angle. Panel (iii): Scattering pattern characteristic of the A-phase of sample III
at T = 32 K and at µ0H =0.16 T. Due to a non-optimal thermal coupling of the sample to the
sample holder, a shift of the transition temperature Tc was observed. The crystalline 〈110〉 axis
is aligned horizontal. Panel (iv) depicts the corresponding rocking scan of the A-phase of sample
III, where the integrated intensity of the diffraction spots as indicated in panel (iii) is plotted
with respect to the rocking angle. Panel (v): Scattering pattern characteristic of the A-phase of
sample III at T = 32 K and at µ0H =0.16 T. The crystalline 〈110〉 axis is aligned vertical.
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thin plate, oriented perpendicular to the applied magnetic field and the neutron beam. A
demagnetizing factor N = 1 applies.

Rocking scans with respect to a vertical axis with a step-size of η = 0.075◦ have been
performed in the helical phase at a temperature T = 10 K and at zero field as well as
in the A-phase at a temperature T = 32 K and a magnetic field µ0H = 0.16 T. Due
to a non-optimal thermal coupling of the sample to the sample holder, a shift of the
transition temperature Tc was observed. Typical data is shown in Fig. 4.14, panel (i) for
the helical phase and panel (iii) for the A-phase. The horizontal axis corresponds to a
〈110〉 crystalline direction.

Consistent with sample II and previous work [29, 194], a rocking width of ηm = 3.0± 0.3◦

has been obtained for the helical phase of sample III, well described by a Gaussian line
shape, taking the Lorentz factor into account. The rocking curve is given in Fig. 4.14,
panel (ii). However, the rocking width obtained for the A-phase in sample III yields a
value of ηA = 0.4◦ which represents the instrumental resolution limit ∆βkf = 0.35◦. The
line shape is characteristic of a Gaussian function as depicted in Fig. 4.14, panel (iv). The
small value of ηA = 0.4◦ indicates a well ordered state exhibiting long range order over
several 1000 Å and underscores the influence of demagnetizing effects on the shape of the
rocking scans, seen in sample II.

To check, whether the distortion of the hexagonal scattering pattern of the A-phase to an
ellipsoidal shape as observed for sample II is an intrinsic feature, rocking scans of sample
III have been recorded in the high resolution setup with both a crystalline 〈110〉 direction
aligned vertical as well as horizontal. The data is shown in Fig. 4.14: Panel (iii) depicts
the typical hexagonal scattering pattern of the A-phase at a temperature T = 32 K and
a magnetic field µ0H = 0.16 T where the 〈110〉 crystalline direction is aligned horizontal.
Panel (v) depicts the typical hexagonal scattering pattern of the A-phase at identical
temperature and magnetic field where the 〈110〉 crystalline direction is aligned vertical.
A regular hexagonal shape with diffraction spots aligned under ∆ψ = 60 ± 0.4◦ was
obtained for the crystalline 〈110〉 direction aligned horizontal whereas ∆ψ = 60 ± 0.7◦

was obtained for the crystalline 〈110〉 direction aligned vertical. This strongly indicates
that the elliptical distortion, observed for sample II is a result of demagnetizing effects
due to the sample geometry or caused by instrumental artifacts.

Summary

We now briefly summarize the salient features of the A-phase as inferred from our small
angle neutron scattering measurements as well as other studies:

• The A-phase is stabilized at finite fields, approximately 1/2Hc2 and close to Tc,
separated by weak first order phase boundaries as inferred from AC-susceptibility
[26], specific heat [26], torque magnetometry [178] and several small angle neutron
scattering measurements [28, 27].

• The complete structure of the A-phase is characteristic of a regular six-fold scatter-
ing pattern, whereby the k-vectors are strictly aligned perpendicular to the applied
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magnetic field. The scattering pattern is independent of the underlying crystal
structure. Moreover, we have shown that the orientation of the scattering pattern is
extremely sensitive to demagnetizing effects as indicated by the shape of the rocking
curves for different sample geometries. Note, that all data obtained at finite field
have been measured after zero field cooling to the desired temperature followed by a
field ramp to the desired field value. However, the results obtained for the A-phase
upon field cooling were identical.

• A weak pinning of the nearest neighbour direction of the six-fold scattering pattern
is observed in a crystalline 〈110〉 direction, for the case that a 〈110〉 direction is
contained in the plane, perpendicular to the magnetic field.

• The modulus of the k-vector of the A-phase is identical to the propagation vector
k of the helical phase.

We now address various additional features which account for less than 1% of the total
integrated scattering intensity: Weak, continuous streaks of intensity emerge radially
outward from the six main spots in the A-phase (cf. Fig. 4.10, panels (ii) and (iii)) and
the coexistance of conical and A-phase (cf. Fig. 4.10, panel (vi)), which may be the result
of weak heterogeneities resulting from the generic first-order boundaries of the A-phase,
possibly in combination with demagnetizing effects.

Measurements with high incident neutron flux and relaxed instrumental resolution, per-
formed in the A-phase on sample I (cf. Fig 4.10, panels (ii) and (iii)) show weak intensity
at the positions of higher order peaks, although this may arise from double scattering
rather than true higher order reflections. Note, that for a perfect sinusoidal arrangement
of magnetic moments, no higher order reflections are expected.

Furthermore, we observe that the integrated intensity distribution of the six spots, asso-
ciated with the A-phase is systematically inhomogeneous for all samples (cf. Fig. 4.10,
panel (v), Fig. 4.11 panels (ii) and (iii) and Fig. 4.14, panel (v)): The diffraction spots
along the vertical direction are weaker. For a neutron beam divergence comparable to the
rocking width, only the tail of the Bragg peaks can satisfy the Bragg condition, especially
for a vertical rocking axis. Therefore, when summing over a rocking scan with respect to
a vertical axis, these spots remain weak.

4.4.4 Interpretation

We have summarized the key results of our neutron scattering data on the structure of the
A-phase in MnSi in the last part of the previous section. A theoretical interpretation of
the data in terms of a triple-q spin crystal, composed of the superposition of three helices
with fixed modulus under an angle of 120◦ with respect to each other, has been given by
Rosch and Binz [30] based on previous work [14, 15, 199, 16]. In the following section,
we summarize the salient features of the theoretical model. For a detailed description we
refer to [30].
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Triple-Q Spin Crystal

For our theoretical account to explain the A-phase, we evoke strong analogies to the
solidification of ordinary crystals out of the liquid state: The formation of crystals is
driven by three main features: Foremost, the interplay of long range attractive and short
range repulsive interactions leads to an instability of the liquid, whereas the correlations
are completely isotropic and show no preferred direction. Second, the free energy is
lowered by cubic interactions of density waves (three particle collisions) which may be
written in momentum space by the expression∑

q1,q2,q3

%q1%q2%q3δ(%q1 + %q2 + %q3) . (4.9)

The free energy is lowered when the three ordering vectors of the crystal structure add
up to zero. This naturally leads to a body centered cubic symmetry which is the crys-
tal structure with the largest number of such triples of reciprocal lattice vectors [200].
However, exceptions arise due to strong first order transitions. Third, the atoms form
countable entities.

It was long believed that the formation of similar structures in magnetic systems was not
possible due to (i) the strong breaking of the translational and inversion symmetry by the
underlying atomic lattice and Fermi surface. (ii) Three particle collisions are forbidden
by time-reversal symmetry for paramagnetic fluctuations. (iii) The magnetic entities,
playing the analog role of the quantized atoms are still unknown, possible candidates are
topologically stable objects as vortex-like structures or topological solitons (cf. section
1).

We start with writing down the free energy functional near to Tc, using a standard
Ginzburg-Landau ansatz [201, 31]. We thereby closely follow [30]. The free energy is
given by

F (M) =

∫
d3r
(
r0M

2 + J(∇M)2 + 2DM · (∇×M) + UM4 −B ·M
)

(4.10)

where the first and the second term represent the usual quadratic contribution with the
conventional gradient term, the third term represents the DM interaction and the last term
represents the coupling to an external induction B. The quartic term UM4 accounts in
lowest order for the effects of mode-mode coupling and stabilizes the magnetic order.
Higher order spin orbit coupling terms, representing anisotropy are neglected for this
description. r0, J , U and D are parameters, where we chose D > 0 (see the Bak-Jensen
model introduced in section (4.2)).

In the presence of a finite uniform magnetisation Mf —which breaks time-reversal symme-
try — allowing for three particle interactions of magnetic excitations, a similar mechanism,
compared to the solidification of crystals can occur in MnSi. It is possible to single out the
uniform ferromagnetic magnetization of the magnetic structure Mf =

∫
M(r)d3r/V with

the volume V . The uniform magnetization Mf ||B is induced by the external magnetic
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field. The actual order parameter is thus given by Φ = M−Mf . The quadratic part of
eq. (4.10) is minimized by a helix with wave length 2π/|k| with k = D/J , described by

Mh
Q(r) = A(n1 cos[kr] + n2 sin[kr)]. (4.11)

The propagation vector k of the helices and the two unit vectors, n1,n2 are orthogonal
to each other. The sign of D in eq. (4.10) determines the chirality of the helices where
k · (n1 × n2) > 0 leads to left-handed helices for D > 0.

To quadratic order, the free energy is also minimized by arbitrary linear combinations of
such helices and the magnetic structure is selected by the interaction M4. Expanding the
quartic term M4, we obtain

M4 = M4
f + 4M2

f Φ ·Mf + 2M2
fΦ

2 + 4(Mf · ~Φ)2 + 4~Φ2 ~Φ ·Mf + Φ4 (4.12)

The crystalline state can gain energy from the second last term ∝ Φ2 Φ ·Mf , which is
cubic in the order parameter. Fourier transformation leads to∫

Mf ·Φ Φ2 d3r =
∑

k1,k2,k3 6=0

(Mf ·mk1)(mk2 ·mk3)δ(k1 + k2 + k3), (4.13)

where mk is the Fourier transform of M(r). Therefore, the cubic term vanishes unless
the magnetic structure contains Fourier modes of at least three wavevectors kj with
k1 + k2 + k3 = 0. Similar to the formation of ordinary crystals, the free energy for this
expression is lowered when the three k-vectors add up to zero.

The modulus of the k vectors thereby is given by the interplay of the gradient terms
of eq. (4.13) |q| = |k| = D/J . This naturally leads to a relative angle of 120◦ of the
k-vectors. The k-vectors thus define a plane, characterized by the normal vector n. The
energy change thereby is proportional to Mf · n. Therefore, all three k-vectors have to
be oriented perpendicular to the applied field. A schematic depiction of the structure is
given in Fig. 4.15.

With this intuitive model, we already can account for three main features of our exper-
imental findings: (i) A triple-q structure with k-vectors aligned under 120◦ explains the
hexagonal scattering pattern, as each k-vector gives rise to scattering in ±k. (ii) The
alignment of the k-vectors is strictly perpendicular to the applied field. (iii) For an ideal
sinusoidal modulation of the helices, no higher order diffraction peaks are expected.

We therefore conclude that the A-phase is described by a chiral spin crystal, composed by
the superposition of helices under 120◦ with respect to each other with fixed propagation
vector q = k and phase ∆ri. It is approximately characterized by the magnetization

M(r) ∼Mf +
3∑
i=1

Mh
ki

(r + ∆ri) (4.14)

where Mh
ki

= A(ni1 cos kir+ni2 sin kir) represents the magnetization of a single helix with
the propagation vector ki, the amplitude A and two unit vectors ni1 and ni2 perpendicular
to ki.



122 CHAPTER 4: SKYRMION LATTICES IN CHIRAL MAGNETS

Figure 4.15: Schematic depiction of the triple-q crystal, formed by a superposition of three
single-k helices under 120◦ with respect to each other and perpendicular to the applied magnetic
field.

By computing the free energy of the spin crystal in the mean-field model, the minimum
of F (M) can be found rigorously. Within the parameter range where the A-phase is
observed experimentally (close to Tc and at ∼ 0.4Hc2), Rosch and Binz find that the
energy difference between the conical phase and the spin crystal becomes very small.
However, the conical phase still represents the ground state, as the spins can be tilted in
the magnetic field direction easily. The conical phase evolves continuously into the helical
state at zero field. The energy difference of the ferromagnetic (i), the spin crystal (iii)
and a single helix (ii) oriented perpendicular to the applied magnetic field, with respect
to the conical phase is given in Fig. 4.16.

The minimization process shows that the three helices have equal weight. The energy
minimum for the spin crystal can be traced back to the size of the modulation of |M(r)|,
which is minimal at ∼ 0.4Hc2. Note, that the spin crystal therefore is most stable, when
the variation of the magnetization is smallest, rather than largest. In particular, the
local suppression of the magnetization to zero would cost a large energy. In conclusion,
within our Ginzburg-Landau model, the spin crystal thus appears as a metastable state.
However, the free energy of the spin crystal becomes close compared to the conical phase.

Fluctuation Stabilized Groundstate

To account for thermal fluctuations, Binz and Rosch consider the leading correction arising
from Gaussian fluctuations to the mean field theory from above

G ∼ F (M0) +
1

2
log det

(
δ2F

δMδM

)∣∣∣∣
M0

(4.15)
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with the mean field spin configuration for the A-phase as well as for the conical phase. A
cutoff for short length scales at |k| < 2π/a has been introduced to make eq. (4.15) well
defined. The nuclear lattice constant of MnSi is denoted a. Due to the long pitch of the
helical order in MnSi of λ =180 Å, most contributions arise from fluctuations on a short
length scale except for temperatures close to Tc. For intermediate magnetic fields, short
and long range fluctuation favour the spin crystal. A detailed discussion is given in [30].
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Figure 4.16: Difference of mean-field free energy between the conical state and (i) the ferro-
magnetic state, (ii) a single helix perpendicular to the applied magnetic field, and (iii) the spin
crystal, as a function of magnetic field. The energy difference is plotted in reduced units in the
limit of small temperatures [30].

The phase diagram, as obtained by means of numerical calculations by Rosch and Binz is
depicted in Fig. 4.17 as function of the applied magnetic field B/B0 and the renormalized
temperature t which is approximately proportional to T −Tc. The regions of stability are
indicated in the phase diagram for the paramagnetic, conical and spin crystal phase: The
spin crystal is stable in the regions, shaded in grey, however at very low fields below the
red dotted line, the spin crystal is unstable.

Eq. (4.15) is only valid for small fluctuations and cannot be applied to close to Tc. The
strength of the fluctuations has been examined by a calculation of the leading correction
to the order parameter for both conical and spin crystal phase. Above and to the right
of the red dashed line in Fig. 4.17, the fluctuation correction to the order parameter
becomes uncontrollable. The region on the left of the red dashed line corresponds to
small corrections below 20%, so that eq. (4.15) is well defined. The inset shows the
energy difference between the conical and the spin crystal as function of field for identical
parameters where the energy of the spin crystal is lowered by fluctuations. The area
shaded in dark grey therefore reliably establishes the regime where the spin crystal is
stabilized within our mean field model including fluctuations.
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Figure 4.17: Theoretical phase diagram of MnSi as function of magnetic field B/B0 and
temperature t in reduced units. The light grey area indicated with spin-crystal marks the region
where the spin crystal solution exhibits a minimum of the free energy. The layer shaded in
dark grey marks the region where the spin crystal is stable and the fluctuations are controlled.
The inset shows the energy difference between the conical and the spin crystal as function of
field for identical parameters and t = −3.5, both in mean field approximation with fluctuation
corrections.

Pinning of the Spin Crystal to the Atomic Lattice

Our experiments indicate that a nearest neighbour direction of the spin crystal is aligned
in a crystalline 〈110〉 direction, if such a direction is contained in the plane, perpendicular
to the magnetic field. Eq. (4.10) owns full rotational symmetry. A rotation of the spin
crystal is described by M(r)→ RM(R−1r), with the SO(3) operator R. The coupling to
the external magnetic field breaks the rotation symmetry to SO(2), describing rotations
around the direction of the magnetic field. Higher-order terms in spin-orbit coupling
which have been neglected so far in eq. (4.10) break this symmetry. Then, a coupling of
the spin crystal to the atomic lattices can arise.

In the model by Binz and Rosch, these terms are organized in powers of spin-orbit cou-
pling, taking into account the temperature regime of the spin crystal which is close to
Tc. The leading anisotropy terms are fourth order in spin-orbit coupling and are treated
perturbatively. Due to the six-fold symmetry of the spin-crystal, it turns out that the
pinning of the spin-crystal is provided by sixth order terms of spin orbit coupling. Finally,
the pinning of the spin crystal in the crystalline 〈110〉 directions can be reproduced. For
a detailed description, we refer to [30].
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Topology of the Spin Crystal

We finally consider the topology of the spin crystal, obtained in the previous paragraphs.
A schematic real space depiction of the spatial arrangement of magnetic moments in a
plane perpendicular to the applied magnetic field H is given in Fig. 4.18, panel (i): Note,
that the structure of the spin crystal is translation invariant in magnetic field direction.
The depicted arrangement can be comprehensively interpreted in two different ways: On
a short length-scale, the spin crystal is characteristic of a doubly twisted, helical structure.
However, on a large scale, a hexagonal lattice of knots of the magnetization is observed,
similar to a superconducting vortex lattice. The magnetization in the cores of the knots
is aligned anti-parallel to the uniform magnetization Mf .

(i)
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z
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Figure 4.18: Panel (i): Real space depiction of the spin crystal in a plane, perpendicular to the
magnetic field H. Note, that the spin crystal is translation invariant in magnetic field direction.
The spin crystal is composed of the superposition of three helices under 120◦ perpendicular the
applied magnetic field. The spin crystal may be seen as regular hexagonal macroscopic lattice
of topological knots of the magnetization. Panel (ii) depicts the winding density φ of the spin
crystal plotted as function of x and y, where x and y are perpendicular to the applied magnetic
field. For details see text.
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We have introduced in section (1) that topological solitons are characterized by their
integer topological charge Ctop 6= 0. The topological charge can be obtained by integration
of the winding density or skyrmion density. The winding density is comprehensively given
by

φ =
1

4π
n · ∂n

∂x
× ∂n

∂y
(4.16)

where x and y are perpendicular to the magnetic field H and n = M(r)/|M(r)| is the
normalized direction of the magnetization. The vector φ is a measure for the variation
of the direction or winding of the normalized magnetization. The flux of φ through any
two-dimensional rectangle with periodic boundary conditions is then a measure for the
winding of a structure, i.e. an integer for a stable configuration. φ is even under inversion,
thus a broken inversion symmetry is not necessarily connected to φ 6= 0 [199].

In Fig. 4.18, panel (ii), the winding density φ of the spin crystal is plotted as function
of x and y for a plane perpendicular to the magnetic field H. Integration of φ over one
primitive unit cell of the spin crystal (marked in broken red lines in Fig. 4.18, panel (ii))
then yields a topological charge

Ctop =

∫
φ(r)d2r = −1 . (4.17)

The sign of the topological charge thereby implies that the magnetization is oriented
antiparallel to the applied magnetic field in the core of the vortex-like knots.

In contrast, the winding density vanishes for a single domain helical phase, as there, the
normalized direction of the magnetization n = M(r)/|M(r)| only depends on one single
space coordinate. This is also the case in the presence of a uniform magnetization in the
conical phase. Thus, no smooth deformation without suppressing the magnetization to
zero of the helical or conical phase can lead to the spin crystal as given in Fig. 4.18, panel
(i). The helical/conical phase and the spin crystal thus belong to different topological
groups.

This implies that the spin crystal can be interpreted as crystal, formed by the condensation
of topological solitons of the magnetization. The spin crystal in the A-phase of MnSi can
thus be described as skyrmion lattice, similar to a vortex lattice, found in superconductors.
Due to the anti-parallel alignment of magnetic moments with respect to the magnetic field
in the core of the skyrmion lines, the skyrmion lattice is in fact an anti-skyrmion lattice.

The non-trivial topology of the skyrmion lattice naturally leads to first order phase bound-
aries, consistent with experimental observations, explaining the stability of our solution.
Note, that a fundamental difference to the vortex lattice characteristic of type II super-
conductors arises due to the coupling of the superconducting order parameter ψ to a
gauge field, leading to the quantization of the magnetic flux. In contrast, the coupling to
a gauge field is missing for the skyrmion lattice. The magnetic vortices, identified in the
A-phase of MnSi thus can be described as global vortices (cf. section (1).
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Further Remarks

We finally address issues, which are not covered by our theoretical account:

A weak deviation of the six-fold structure of the spin crystal to an ellipsoidal shape
was observed for sample II for certain crystalline directions. It is assumed that a weak
distortion can be caused by the weak pinning of the skyrmion lattice to the crystal lattice,
akin to effects, observed for vortex lattices (cf. section (3)). However, the effect is
weak and may be related to demagnetizing effects and instrumental artifacts as well. A
systematic mapping of the structure of the skyrmion lattice as function of the underlying
crystalline direction is proposed.

The mean-field model shows that the spin crystal is most stable when the modulation
of the magnetic moments is minimal. Measurements of the uniform magnetization Mf

show, that Mf,A−phase(T = 28 K) ∼ 0.1µB, which approximately corresponds one third of
the spontaneous moment at T = 28 K. This yields that a considerable modulation of the
magnetic moments is present. However, the delicate influence of phase coexistence with
the conical phase, induced by demagnetizing fields and surface effects is unclear. Further
measurements of the uniform magnetization for different sample geometries will help to
quantify the detailed structure of the spin crystal and the precise distribution of magnetic
moments.

Neutron scattering experiments do not couple directly to topology: A multi-q single do-
main state, as proposed for the skyrmion lattice thus cannot be ultimatively distinguished
from a single-q multi-domain state. However, the fact that a six-fold scattering pattern
is observed independent of the underlying crystalline orientation indicates that a single-q
multi-domain state is very unlikely. This is underscored by the equally populated domains
of the spin crystal leading to six diffraction spots 5. In contrast, the domain population
of the helical phase is inhomogeneous for most cases and additionally exhibits strong
hysteretic behaviour.

In contrast to neutron diffraction, measurements of the Hall effect are sensitive to the
magnetic topology. In recent measurements, an additional contribution to the anomalous
Hall-effect was identified in the A-phase of MnSi [197]. When the conduction electrons are
forced to follow the local magnetization M(r), they acquire a Berry’s phase [199]. This
effect may be regarded as extra effective field, proportional to the winding density φ. The
integrated winding density is non-zero for the skyrmion lattice in the A-phase, but φ = 0
for the trivial topology of the helical and conical phase. This additional contribution
proves the existence of a skyrmion lattice in MnSi.

In our theoretical account, the structure and the topological properties of the skyrmion
lattice emerge from the superposition of three single-k helices. This naturally leads to
a fixed spacing of the skyrmion-lines which is identical to the pitch λh and the fixed
hexagonal structure of the skyrmion lattice. In contrast, Bodanov and coworkers [21] use

5Diffraction spots lying on the vertical axis exhibit lower intensity due to the summation over a rocking
scans with respect to a vertical axis.
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a circular cell method to calculate the free energy of a single knot of the magnetization 6

surrounded by the conical phase and arrange these knots to a hexagonal lattice similar to
the one introduced in our work. However, they find that the conical phase still represents
the groundstate of the system [18]. In our study we show, that the difference of the
free energy of the skyrmion lattice with respect to the conical phase is small and that
introducing Gaussian fluctuation lowers the free energy of the skyrmion lattice. Using
[21] and additionally introducing thermal fluctuation can provide a theoretical ansatz to
evaluate the stability of different skyrmion phases. In analogy to the different phases
of superconducting vortex matter, a dilute skyrmion gas, molten skyrmion liquids or
skyrmion glasses may be introduced.

6Similar to the technique used for superconducting vortex lattices.
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4.4.5 Conclusion and Outlook

Conclusion

By means of small angle neutron scattering, we established the existence of a skyrmion
lattice in the A-phase of the weak itinerant helical magnet MnSi: The skyrmion lattice
is characteristic of the condensation of topological knots of the magnetization into a
macroscopic lattice in the presence of a magnetic field. Similar to vortex lattices in
superconductors, the orientation of the skyrmion lattice is driven by the direction of the
magnetic field, hence is independent of the orientation of the underlying crystal lattice.
Within a mean field model including Gaussian fluctuations, we confirm that a magnetic
spin crystal — composed of a superposition of three single-k helices under 120◦ with
respect to each other and perpendicular to the applied magnetic field — forms a stable
ground state. The integration of the winding density over one unit cell of the spin crystal
proves a stable, non-trivial topology with a topological charge Ctop = −1.

Measurements of the Hall effect, where an additional contribution to the anomalous Hall
effect is attributed to the Berry’s phase, the conduction electrons collect due to the non-
trivial spin structure in real space proves the existence of stable, topological solitons of the
magnetization. In contrast to earlier theoretical work [18], where a skyrmion lattice was
stabilized by an additional artificial parameter in zero field, we show that it is sufficient
to include the effects of thermal fluctuations to stabilize skyrmion lattices in a magnetic
field.

Outlook

Our study paves the way to further detailed small angle neutron scattering studies of the
magnetic properties of MnSi. In particular, the structural and dynamic properties of the
possible intermediate phase in vicinity of Tc and the pressure induced partially ordered
state will be investigated. Moreover, transport measurements of the anomalous Hall
effect are foreseen in the pressure induced partially ordered phase to confirm a possible
topological state. In contrast to the A-phase, both phases emerge in zero field. This
raises the question if topological states in ferromagnets can form stable ground states at
zero field as well. In addition, a systematic mapping of the pinning potentials and lock-in
transitions of the skyrmion lattice with respect to the underlying crystalline direction
is foreseen, using a MnSi sphere with constant demagnetizing factor. We point out,
that a continuous pinning of the nearest neighbour direction of the skyrmion lattice in
a crystalline 〈110〉 direction is impossible for all directions in space. The pinning has to
vanish at least at two points on the unit sphere due to the hairy ball 7 theorem.

In the mean-field approximation, the skyrmion lattice appears as meta-stable state. Binz
and Rosch [30] show that the difference of energy between the skyrmion lattice and the
conical phase is lowered by thermal fluctuations and the skyrmion lattice assumes a sta-
ble ground state. The MIEZE technique, which is a variation of the neutron resonance

7It is not possible to comb a hairy ball without at least two discontinuities.
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spin echo technique (NRSE), allows the determination of the quasi-elastic linewidth Γ
with a very small energy resolution of a few µeV as function of magnetic field and tem-
perature [202]. Preliminary measurements indicate an increased quasi-elastic linewidth
in the A-phase compared to the helical phase at identical temperature. Parallel to the
measurements of the quasi-elastic linewidth, first inelastic measurements of the spin-wave
spectrum of the A-phase are performed currently on a cold triple axis spectrometer [203].
On a cold triple axis spectrometer, an energy resolution of 70µeV can be achieved. Both
the quasi-elastic as well as the inelastic measurements will provide helpful insight in the
fluctuation spectrum of the spin crystal in the A-phase of MnSi.

The influence of doping and disorder on the evolution of the skyrmion lattice was ad-
dressed recently in the B20 siblings of MnSi, Fe1−xCoxSi, Mn1−xCoxSi and Mn1−xFexSi:
Measurements of the specific heat, the AC-susceptibility and the Hall effect [204] in com-
bination with small angle neutron scattering experiments [166, 205], proved the existence
and stability of skyrmion lattices in the A-phase of doped compounds as well. Fig., 4.19
depicts the typical six-fold scattering patterns of the skyrmion lattice in Fe1−xCoxSi for
x = 0.2 in panel (i), Mn1−xFexSi for x = 0.08 in panel (ii) and Mn1−xCoxSi for x = 0.02
panel (iii).

(i) (ii)Fe1-xCoxSi (x=0.2) Mn1-xFexSi (x=0.08) (iii) Mn1-xCoxSi (x=0.02)
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Figure 4.19: Typical six-fold scattering patterns of the skyrmion lattice in the doped B20 com-
pounds Fe1−xCoxSi for x = 0.2 panel (i), Mn1−xFexSi for x = 0.08 in panel (ii) and Mn1−xCoxSi
for x = 0.02 panel (iii).

For both Fe1−xCoxSi as well as MnSi doped with Fe or Co, the Skyrmion lattice exhibits
increasing hysteretic behaviour and increasing disorder with increasing doping x. More-
over, the temperature regime of the A-phase simultaneously increases with respect to
the helical phase upon increasing doping. However, especially for high doping, a clear
determination of the phase transitions is intricate due to the large amount of disorder.

Interestingly, measurements of specific heat and AC-susceptibility furthermore indicate
[205] that with increasing doping x an intermediate phase opens in vicinity of Tc in
Mn1−xCoxSi and Mn1−xFexSi: The transition temperature Tc of the helical phase system-
atically assumes lower values compared to the intermediate phase. Small angle neutron
scattering measurements [205] reveal a distribution of intensity on a ring in the intermedi-
ate phase. Strong analogies are drawn to the possible existence of an intermediate phase
in vicinity to Tc and the pressure induced partial order of undoped MnSi.

An important prerequisite enabling the existence of the Skyrmion lattice in pure MnSi
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as well as in the doped systems Mn1−xCoxSi and Mn1−xFexSi and Fe1−xCoxS is their
helical magnetic structure, driven by a DM instability. The DM interaction is allowed
by particular crystal symmetries, lacking inversion symmetry. However, a lack of space
inversion is very common: Not only 65 of 230 space groups but also surfaces or interfaces
break the inversion symmetry. This suggests that skyrmionic textures in fact represent a
quite common structure in magnetism.
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Chapter 5

Concluding Remarks

We have used both static as well as time resolved stroboscopic small angle neutron scat-
tering as a versatile tool for the investigation of two different kinds of complex magnetic
order characterized by topological properties: We have examined the static and dynamic
properties of the vortex lattice of the superconducting model system niobium (chapter
(3)) and we have proved that a skyrmion lattice exists in the A-phase of the archety-
pal helical magnet MnSi (chapter (4)). An overview of the properties of vortex lattices
in superconductors and vortices with topological properties in ferromagnets was given
in chapter (1). The fundamental principles of neutron scattering from superconducting
vortex lattices and helical magnets have been introduced in chapter (2).

Our measurements show that the vortex lattices in superconductors and the skyrmion
lattice, observed in the A-phase of MnSi, show intimate similarity however emerging
from different physical backgrounds: Both the vortex lattice in a superconductor and the
skyrmion lattice can be seen as a macroscopic lattice, formed by topological entities with
particle-like properties, emerging from continuous fields.

A superconducting vortex is stabilized by the negative surface energy, associated with a
normal- to superconducting interface, leading to a solution where the superconducting
order parameter ψ exhibits periodic nodes. At these nodes the magnetic field penetrates
the superconductor, shielded by a circulating supercurrent. Due to the continuity condi-
tions of the superconducting phase

∮
φ(r)ds = 2πn and the electromagnetic coupling to

a gauge field, the magnetic flux of a single vortex is quantized and represents the flux
quantum φ0 = ~/2e.

The magnetic vortices are stabilized by a rotation of the magnetic moments in a helical
structure (similar to Bloch domain walls), provided by the DM interaction. A mean
field ansatz including Gaussian fluctuations leads to the emergence of a stable ground
state, a magnetic spin crystal with two-dimensional symmetry: The spin crystal can be
regarded as crystal, composed of topological knots of the magnetization. The integration
of the winding density proves that the spin-crystal belongs to a different topological class
compared to the helical or conical phase, thus cannot be smoothly transformed into a
helical or conical state without local suppression of the magnetization to zero. In contrast
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to superconducting vortices, the order parameter is continuous and does not exhibit nodes.
The magnetic flux of a single vortex is not quantized due to the missing coupling to a
gauge field [51].

The similarity of superconducting vortices and magnetic vortices raises the question, how
the properties of superconducting vortex lattices can be translated to magnetic skyrmion
lattices: In particular the variety of different superconducting vortex matter, where pinned
vortex lattices, vortex liquids, vortex glassy states and vortex Bragg glasses have been
identified, suggests that similar phases may also exist for magnetic vortices. It is also
unknown at the moment whether magnetic vortices can exist as stable ground states in
zero magnetic field. Further open questions concern the behaviour of magnetic vortices
in the presence of transport currents and their emergence in thin film materials, leading
to possible applications in new magnetic and logical devices.
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Figure 5.1: Panel (i) depicts a typical phase diagram of a high temperature superconductor.
For low magnetic fields, the vortex lattice is disordered due to the large inter-vortex spacing.
For increasing magnetic field, a Bragg glass vortex lattice emerges that undergoes a melting
transition at the melting temperature Tm . Panel (ii) shows the magnetic phase diagram of
MnSi at ambient pressure (a detailed description is given in section (4.3)). The dashed line
indicates the possible intermediate phase observed in proximity of the transition temperature
Tc.

Fig. 5.1, panel (i) depicts a schematic phase diagram of a high temperature superconduc-
tor as function of magnetic field and temperature. For low magnetic fields, the vortex
lattice assumes a disordered state due to the large inter-vortex spacing and strong pin-
ning. For increasing magnetic field, a vortex lattice Bragg glass emerges that undergoes
a melting transition at the melting temperature Tm (a detailed description is given in
section (3.3)). Panel (ii) of Fig. 5.1 shows the magnetic phase diagram of MnSi at am-
bient pressure (a detailed description is given in section (4.3)). The dashed line close
above the transition temperature Tc indicates the possible intermediate phase observed
by small angle neutron scattering [96, 95] and measurements of the specific heat [96]. It
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was speculated [18] that the intermediate phase is characterized by a molten or disor-
dered state of weakly stratified skyrmion lines, similar to molten superconducting vortex
lattices.

Similar to superconducting vortex lattices, the dynamic and structural behaviour of
skyrmion lattices is supposed to change at a melting transition. In our work, we have
introduced a novel time resolved small angle neutron scattering technique for measure-
ments of the intrinsic dynamic properties of superconducting vortex lattices. In addition,
the newly realized MIEZE technique allows the application of neutron spin echo methods
on samples in magnetic fields and ferromagnetic samples for precise measurements of the
quasi-elastic line-width and dynamic. It is planned to apply both techniques to deter-
mine the structural and especially the dynamic properties of skyrmion lattices of undoped
and doped materials to establish a complete phase diagram of the state of aggregation of
skyrmion matter.
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Appendix

A.1 Resolution of Small Angle Neutron Scattering

Instruments

We already have introduced in section (2) that small angle neutron scattering is a versatile
tool for the measurement of large nuclear and magnetic structures on scales between 100
and 104 Å. The measured quantity is the scattering function S(q) in reciprocal space,
given by the Fourier transform of the scattering length distribution G(r) in real space.
For the scattering vector q follows

|q| = 2
2π

λ
sin θ (A.1)

with the scattering angle 2θ. Large structures in real space thus lead to small q vectors
and small scattering angles.

For a small angle neutron scattering instrument, a large neutron wavelength λ and a
tight collimation of the neutron beam is necessary to resolve small scattering angles. A
schematic setup of a small angle neutron scattering instrument is given in Fig. A.1, panel
(i), whereby the mostly used pinhole setup is depicted: The instrument consists of a
variable collimation system with a source aperture and a sample aperture with radii R1

and R2, separated by the distance L1, situated after the a monochromator or velocity
selector. The position sensitive two-dimensional detector is situated at the distance L2 to
the sample.

The instrumental resolution of such a small angle neutron scattering instrument is mainly
defined by three parameters: (i) The collimation of the beam, as defined by the aperture
system. (ii) The monochromacity of the neutron beam and (iii) the spatial resolution of
the neutron detector. In the following, we derive the resolution function of a small angle
scattering setup according to [206], where the different contributions are approximated
by Gaussian functions.

For our experiments on the vortex lattice structures performed at the instrument V4 at
BENSC [114] (cf. chapter (3)) and the measurements of the magnetic structure of MnSi

141



142 CHAPTER A: APPENDIX

(cf. chapter (4)) performed at the instrument MIRA at FRM II [115], the effects of finite
neutron beam collimation dominate the instrumental resolution. We thus mainly focus
on the effects of finite collimation for our calculation.

According to Fig. A.1, panel (ii), we define ∆β1 as FWHM value of the neutron beam
divergence in the scattering plane and ∆β2 as FWHM of the neutron beam divergence
perpendicular to the scattering plane, respectively. For a collimation system as given
in Fig. A.1 panel (i) and (iii), consisting of a source aperture with radius R1, a sample
aperture with radius R2 at the distance L1 to the source aperture and for a sample detector
distance L2 then follows for ∆β1 and ∆β2 [206]
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and
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with the angles a1 and a2 as defined in Fig. A.1, panel (iii).

From ∆β1 and ∆β2, we define the azimuthal resolution ∆βaz in (◦) and the radial resolu-
tion ∆βq in (Å−1), as depicted in Fig. A.1 panel (iii), where we include the contributions
from the finite detector resolution and the wavelength spread. In addition, the resolution
in direction of kf is denoted ∆βki

in (◦), which is mostly determined by the divergence of
the neutron beam.

The modulus of the propagation vector k of the helical order in MnSi yields a Bragg angle
of θ = 1.7◦ for a neutron wavelength of λ =9.7 Å as used for the experiments on MIRA.
The width of the wavelength band yields 5 %. MIRA has been used either in a high
resolution setup, characterized by R1 ∼ 2 mm, R2 ∼ 2 mm, L1 = 1.5 m and L2 = 1.3 m.
This yields ∆β1 = 0.35◦ and ∆β2 = 0.35◦ for the high resolution setup. For the low
resolution setup with R1 ∼ 4 mm, R2 ∼ 4 mm, L1 = 1.5 m, and L2 = 0.8 m then follows
∆β1 = 0.62◦ and ∆β2 = 0.60◦. Including a detector resolution of 2 mm and a wavelength
spread of 5% we finally obtain ∆βaz = 4◦, ∆βq = 0.004 Å−1 and ∆βkf

= 0.35◦ for the
high resolution setup and ∆βaz = 10◦, ∆βq = 0.006 Å−1 and ∆βkf

= 0.63◦ for the low
resolution setup.
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The modulus of the q-vector of a vortex lattice is defined by the vortex lattice symme-
try and the applied magnetic field, as given by eq. (2.24). For a six-fold vortex lattice
symmetry GV L = 0.0047 Å−1 for µ0H =100 mT, GV L = 0.0063 Å−1 for µ0H =200 mT
and GV L = 0.0081 Å−1 for µ0H =300 mT. For a neutron wavelength of λ =12 Å± 5.5%,
a detector resolution of 10 mm, a source aperture of R1 ∼ 10 mm, a sample aperture of
R2 ∼ 2 mm, a detector and sample distance of L1 = 12 m and L2 = 12 m, we finally
obtain ∆βq = 0.0013 Å−1, ∆βkf

= 0.15◦ and ∆βaz = 15◦ for µ0H =100 mT, ∆βaz = 10◦

for µ0H =200 mT and ∆βaz = 8◦ for a field of µ0H =300 mT.

Figure A.1: Panel (i) shows a schematic drawing of a small angle scattering instrument. Panel
(ii) depicts the connection of the beam divergences ∆β1 and ∆β2 with the instrumental resolution
∆βaz, ∆βq and ∆βkf

. Panel (iii) defines the angles a1 and a2, respectively.
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[22] A. N. Bogdanov and U. K. Rößler. Chiral Symmetry Breaking in Magnetic Thin
Films and Multilayers. Phys. Rev. Lett., 87(3):037203, Jun 2001.

[23] I. E. Dzyaloshinskii. A thermodynamic theory of weak ferromagnetism of antifer-
romagnets. J. Phys. Chem Solids, 4:241, 1958.

[24] T. Moriya. Anisotropic superexchange interaction and weak ferromagnetism. Phys.
Rev., 120:91, 1960.

[25] G. G. Lonzarich and L. Taillefer. Effect of spin fluctuations on the magnetic equation
of state of ferromagnetic or nearly ferromagnetic metals. J. Phys. C: Solid State
Phys., 18:4339, 1985.

[26] C. Thessieu, C. Pfleiderer, A. N. Stepanov, and J. Flouquet. Field Dependence of
the Magnetic Quantum Phase Transition in MnSi. Phys. Rev. Lett., 9:6677, 1997.

[27] S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Yu. O. Chetverikov, and H. Ecker-
lebe. Field-induced reorientation of the spin helix in MnSi near Tc. Phys. Rev. B,
73(22):224440, 2006.



BIBLIOGRAPHY 147

[28] B. Lebech. Recent Advances in Magnetism of Transition Metal Compounds, p. 167.
World Scientific, Singapore, 1993, 1993.

[29] B. Lebech, P. Harris, J. S. Pedersen, K. Mortensen, C. I. Gregory, N. R. Bernhoeft,
M. Jermy, and S. A. Brown. Magnetic phase diagram of MnSi. J. Magn. Magn.
Mater., 140-144:119–120, 1995.
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