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Abstract

Despite rapidly increasing numbers of available 3D structures, membrane proteins still
account for less than 2% of all structures in the Protein Data Bank. In contrast, mem-
brane proteins often constitute key components in a variety of important biological
processes and estimations suggest that more than 50% of all prescribed drugs are tar-
geted against this class of proteins. Accordingly, the demand for additional insights
into the structural universe of membrane proteins is high motivating the development
of reliable structure prediction methods specifically tailored for this class of molecules.

Generally, such methods have to cope with the specific environment of membrane
proteins, the lipid bilayer, which restraints both the sequence composition but also the
structural diversity of embedded proteins. Still unclear is however, to what extent mem-
brane protein structures are limited in their variety since all structurally characterized
membrane proteins so far adopt either a beta-barrel or helix-bundle fold but recent high-
resolution structures also indicated a clearly broader structural diversity within these
overall fold architectures than initially anticipated.

Several structural features contribute to the distinct characterization of an alpha-
helical membrane protein structure. This thesis is focused on one of these character-
istics, namely helix interactions formed by helix-helix residue contacts, and aims at a
better understanding of membrane protein structural diversity in general but also at the
evaluation of new paths in structure prediction and classification of membrane proteins.

First, the diverse nature of helix interactions is illustrated by presenting several newly
detected helix interaction motifs that were found to promote high-affine self-association
within the genetic screening tool ToxR/POSSYCCAT but importantly could also be
recovered from naturally occurring bitopic membrane proteins.

Subsequently, the prediction of helix interactions is addressed. Thereby, the predic-
tion of individual helix-helix contacts was tackled in the first place, on the one hand by
conducting the first analysis of co-evolving residues in membrane proteins and on the
other hand by developing a novel machine-learning approach trained for the prediction
of residue contacts in transmembrane regions. While co-evolving residues were found
to carry a strong signal for the detection of interacting transmembrane helices due to
their frequent occurrence in close sequence neighborhood to helix-helix contacts, their
detection alone was not sufficient to reliably predict helix-helix contacts. However, the
neural network based predictor TMHcon incorporating different types of sequence in-
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formation significantly improved prediction accuracies up to 26%, therefore constituting
the first available method able to predict contacting residues within transmembrane
domains with equal accuracy to the best methods available for contact prediction in
soluble proteins.
Following the prediction of residue contacts, a detailed analysis is presented addressing

the prediction of helix interaction patterns from obtained helix-helix contacts. Using
contact predictions derived with TMHcon, interacting helices could be identified with
high accuracy (>78%). Interestingly, the sensitivity of obtained predictions can be
further improved by incorporating contacts predicted for homologous proteins thereby
confirming that helix interactions are likely to be conserved among related proteins.
Finally, a new structural classification approach is introduced identifying proteins

with highly similar helix architectures as expressed by their helix interactions. This
classification could be shown to closely resemble classification approaches such as SCOP
or CATH, which rely on full structure comparisons, thus demonstrating that helix inter-
actions in fact are major structural determinants of membrane proteins. Furthermore,
common helix interaction patterns could not only be derived from known structures but
also using predicted helix interactions offering the possibility of complementing available
sequence-based classification systems of membrane proteins.
As the prediction and classification of helix interactions and accordingly helix archi-

tectures constitutes a completely new and valuable field in structural bioinformatics of
membrane proteins, it will hopefully gain further interest in the coming years when the
number of available membrane protein structures required for the development of such
methods is likely to represent the full structure space of membrane proteins even better
than is the case at the moment.
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Zusammenfassung

Obwohl die Zahl der vorhandenen Membranproteinstrukturen ständig anwächst, ist ihr
Anteil an allen Strukturen der Protein Data Bank (PDB) mit nur 2% noch immer
verschwindend gering. Dies steht im starken Widerspruch zur biologischen und medi-
zinischen Bedeutung von Membranproteinen, die nicht nur als Schlüsselkomponenten in
einer Vielzahl biologischer Prozesse fungieren sondern auch den Angriffspunkt von mehr
als 50% aller verschriebenen Medikamente darstellen. Dementsprechend hoch ist das
Interesse an Einblicken in die strukturelle Vielfalt von Membranproteinen und damit
auch der Bedarf an zuverlässigen Strukturvorhersagemethoden speziell für diese Klasse
von Proteinen.

Bei der Entwicklung derartiger Methoden muss insbesondere berücksichtigt werden,
dass Sequenzen und Strukturen von Membranproteinen durch Anpassung an ihre spez-
ifische Umgebung - die Lipiddoppelschicht - stark beeinträchtigt sind. Noch ungeklärt
ist jedoch, wie weit die strukturelle Vielfalt von Membranproteinen eingeschränkt ist,
da zum einen alle Strukturen entweder einer Beta-Barrel oder Helix-Bundle Architektur
zugeordnet werden können, zum anderen jedoch immer mehr hochaufgelöste Strukturen
auch deutliche Diversität innerhalb dieser übergeordneten Faltungen aufweisen.

Mehrere strukturelle Eigenschaften charakterisieren speziell alpha-helikale Membran-
proteinstrukturen. Diese Arbeit hat eines dieser Charakteristika zum Thema, nämlich
die Interaktionen einzelner Transmembranhelizes. Hauptziele sind dabei zum einen ein
besseres Verständnis der strukturellen Vielfalt von Membranproteinen, zum anderen je-
doch auch die Entwicklung und Evaluierung neuer Methoden zur Strukturvorhersage
und Klassifikation speziell membrangebundener Proteine.

In einer ersten Analyse wird dabei zunächst die Vielfalt beobachteter Helixinteraktio-
nen vorgestellt, indem mehrere neuartige Interaktionsmotife präsentiert werden. Diesen
Motifen konnte nicht nur experimentell nachgewiesen werden, dass sie hochaffine He-
lixinteraktionen ermöglichen, ihre biologische Bedeutung wurde darüber hinaus durch
Analyse natürlicher bitopischer Membranproteine bestätigt.

Im Anschluss werden neuartige Methoden zur Vorhersage von Helixinteraktionen
vorgestellt. Dabei wird zunächst auf die Vorhersage von Helix-Helix Kontakten zwis-
chen einzelnen Aminosäureresten eingegangen, da diese eine wichtige Information zur
Ableitung kompletter Helixinteraktionsmuster darstellen. Zwei Verfahren werden vorge-
stellt und verglichen, zum einen die Analyse ko-evolvierender Alignmentpositionen, zum
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anderen die Vorhersage mittels eines spezifisch für Membranproteine entwickelten neu-
ronalen Netzes. Dabei konnte beobachtet werden, dass ko-evolvierende Reste zwar häufig
in direkter Nachbarschaft zu tatsächlichen Kontakten gefunden werden, ihre Genauigkeit
jedoch nicht ausreichend ist für eine zuverlässige Vorhersage. Durch die Kombination
verschiedener Sequenzeigenschaften in einem neuronalen Netz dagegen wird die Vorher-
sagegenauigkeit deutlich verbessert. Die entwickelte Kontaktvorhersagemethode namens
TMHcon stellt mit einer finalen Genauigkeit von 26% damit die erste verfügbare Meth-
ode speziell für Membranproteine dar, die verfügbaren Methoden für lösliche Protein an
Genauigkeit gleich kommt.
Nach der Vorhersage einzelner Aminosäurekontakte, wird die Vorhersage ganzer Helix-

interaktionsmuster adressiert. Es wird gezeigt, dass interagierende Helizes unter Verwen-
dung vorhergesagter Kontakte mit einer Genauigkeit >78% identifiziert werden können.
Die Sensitivität der erhaltenen Vorhersagen kann zusätzlich noch durch Einbeziehung
homologer Proteine verbessert werden, wodurch bestätigt wird, dass Helixinteraktionen
tendenziell zwischen verwandten Proteinen konserviert sind.
Im letzten Abschnitt der Arbeit wird schließlich gezeigt, wie Helixinteraktionen in

einem neuartigen Klassifikationsansatz Verwendung finden, in dem Proteine mit ähn-
lichen Helixarchitekturen identifiziert werden. Dabei wird gezeigt, dass eine derartige
Klassifikation praktisch identisch ist mit strukturellen Klassifikationen der Datenbanken
SCOP und CATH, obwohl diese auf kompletten Strukturvergleichen beruhen. Helixin-
teraktionen stellen daher in der Tat ein wichtiges, wenn nicht gar das am stärksten
charakterisierende Merkmal einer Membranproteinfaltung daher. Dies gilt sogar dann,
wenn Helixinteraktionen nur vorhergesagt werden, da auch dann Proteine mit ähnlichen
Helixarchitekturen mit hoher Genauigkeit erkannt werden konnten.
Mit der Vorhersage und Klassifikation von Helixinteraktionen und daran anschließend

ganzen Helixarchitekturen steht der strukturellen Bioinformatik damit ein komplett
neues und potentiell wertvolles Gebiet zur Verfügung, das hoffentlich weiter an Bedeu-
tung gewinnen wird, je mehr experimentell gelöste Strukturen von Membranproteinen
vorhanden sind.
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1
Introduction

Life is incredibly diverse yet simple. Despite hundreds of thousands different species
known and catalogued today, all organisms are built up of the same building block: the
cell. First described in 1665 by the British scientist Robert Hooke [1], biologists all over
the world have put remarkable effort in elucidating function and assembly of this basic
unit of life since then, detecting common features and conserved fundamental molecular
mechanisms in all analyzed species.

One of the main concepts of a cell is the separation of its content from the surround-
ing environment. This is achieved by the presence of a phospholipid bilayer, the cell
membrane, forming a barrier molecules generally can not bypass without assistance.
However, cells need to uptake nutrients in order to sustain life. Waste products of ongo-
ing reactions on the other hand need to get disposed. To this end, proteins are embedded
into the cell membrane providing means for transporting molecules in and out of the
cell. Additional proteins, inside the membrane or attached to it, allow for the transport
of external signals across the membrane giving the cell the possibility to react to envi-
ronmental stimuli as well as to communicate with other cells. Finally, membranes and
their integral proteins play an important role in the energy balance of a cell providing
the possibility to build up ion or electron gradients across the membrane which can be
used to generate ATP, the energy currency of the cell.

As this work deals with structural properties of a specific class of membrane pro-
teins, namely integral membranes proteins having an alpha-helix bundle architecture,
the following introduction aims at summarizing current knowledge regarding this class
of proteins. As many properties of membrane proteins can be directly attributed to their
surrounding environment, the first section of the introduction provides a short overview
about the present view of biological membranes. In the following, special emphasis is
put on sequence and structural characteristics of alpha-helical membrane proteins as
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well as on known principles guiding the folding process of these proteins. Finally, as one
of the major aspects of this work is the development of new methods for the prediction
of structural features of membrane proteins, available methodology in this field will be
presented.

1.1 Biological membranes

Besides their important role as barrier between the cell content and the environment,
biological membranes are also found within eukaryotic cells surrounding intracellular
compartments such as the nucleus, mitochondria, chloroplasts, the endoplasmatic retic-
ulum (ER) and the Golgi apparatus. Accordingly, a large variety of different substrates
and signals need to be transported across these different membranes influencing strongly
the presence of different proteins embedded into the membrane but also composition
and organization of the membrane itself. The following paragraphs summarize first how
membranes differ among each other with respect to their molecular composition. Sec-
ondly, a short overview will be given about present ideas regarding the organization of
biological membranes, a field of research facing ongoing evolution from the fluid mo-
saic model proposed in the seventies [2] to the idea of lipid microdomains becoming
increasingly popular over the last fifteen years (for current reviews see [3, 4]).

1.1.1 Membrane composition

Within biological membranes, amphipatic lipids spontaneously arrange into a bilayer
structure where hydrophobic lipid tails are held together by non-covalent interactions
while hydrophilic head regions are exposed to the aqueous environment which can be ei-
ther the extracellular or cytosolic space but also the interior of cellular organelles. Three
major types of amphiphatic lipids are observed (Figure 1.1A, page 4), namely phospho-
lipids (prominent examples are phosphatiylcholine and phosphatidylserine), glycolipids
and steroids with cholesterol being the most common representative of the latter class
[5].
The occurrence of lipids and lipid types differs on a number of different scales between

individual membranes. Plasma membranes of different organisms vary among each
other just as plasma membrane and organelle membranes do of the same eukaryotic
organism. While bacterial plasma membranes for example generally lack cholesterol
and often contain only a small number of different phospholipids, eukaryotic plasma
membranes tend to be enriched in cholesterol and are composed mostly of a larger
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variety of phospholipids [5]. Furthermore, different sides of the same lipid bilayer are
known to consist of different lipids, an asymmetry specific enzymes are required to
maintain [6]. Generally, negatively charged phospholipids dominate the intracellular
side of plasma membranes providing a slightly charged environment helpful for binding
of membrane-associated or integrated proteins [7]. The enrichment of cholesterol and
sphingolipids on the extracellular side on the other hand immobilizes neighboring lipids
thereby leading to increased membrane stability but is also important for lipid curvature
required for cell structure [8].

Embedded and attached to the membrane bilayer itself are specialized membrane
proteins. The ratio protein to lipid is typically 1:1 based on mass proportions which
translates to approximately one protein molecule per 50 lipid molecules (assuming a 40
kDa molecular mass for an average protein and 750 Da per lipid molecule) [9]. How-
ever, individual membranes may diverge from the 1:1 ratio remarkably such as neuronal
plasma membranes where lipids make up roughly 82% of the complete membrane mass
or mitochondrial membranes where proteins are dominant contributing 75% of the mem-
brane mass [10]. In both cases, the enrichment of either lipid or protein molecules is
tightly coupled to major functions of the respective membranes which is electric isolation
in the first case but energy generation in the second case.

1.1.2 Membrane organization: from fluidity to mosaicism

While the asymmetric distribution of lipids across the two individual leaflets of the
bilayer is well established, the lateral organization of molecules within the same leaflet
is still under extensive experimental research. Following the central ’fluid mosaic model’
proposed by Singer and Nicolson in 1972 [2] (Figure 1.1B), lipids are mainly regarded as
solvent for membrane embedded proteins and hence the membrane is often referred to as
’2D liquid’ [2, 5, 11]. Furthermore, the same model suggests free lateral and rotational
mobility of membrane molecules leading to unrestricted diffusion and therefore random
distribution of lipids and proteins within the membrane [11].

This canonical view has been challenged by experiments including single-particle
tracking (SPT) [13], fluorescence recovery after photobleaching (FRAP) [14] and optical
laser trapping [15] which found indications that membrane molecules in fact may be
hindered in their free lateral diffusion [16]. In accordance with these results, membranes
should rather be imaged as environments containing a distinct degree of heterogene-
ity with so called membrane microdomains (differentiated membrane patches) imposing
order on the submicrometer level (Figure 1.1C).
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Figure 1.1: Membrane composition and organization. (A) Three major types of amphiphatic
lipids observed in biological membranes (figure taken and adapted from [5]). (B) Membrane
organization according to the fluid mosaic model proposed by Singer and Nicolson (figure
taken from [11]). (C) Membrane heterogeneity caused by microdomains enriched in specific
lipids. Membrane proteins may be needed for stabilization of these microdomains (figure
taken and adapted from [12]).

While specific structural and functional details often still remain unsolved, two major
sources of membrane heterogeneity are presently well accepted [17, 18]. The first type of
restriction on protein lateral diffusion arises from barriers formed by the submembrane
actin cytoskeleton together with cytoskeleton anchored transmembrane proteins [19].
Lipids and proteins are thought to be confined within corraled areas by this picket fence
like structure with long range diffusion between adjacent domains occurring only rarely
if the fence fluctuates.
The second line of thought regarding lateral membrane organization emphasizes the

role of lipid-lipid interactions and focuses mainly on the analysis of so-called lipid rafts
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[20, 3]. This specific class of membrane microdomains corresponds to lateral complexes
consisting mainly of sphingomyelin and chosterol whose properties have been extensively
analysed using artificial model membranes [21]. Depending on the temperature, such
model membranes consisting of a hydrated phospholipid bilayer are observed either in
a solid ordered state (termed the So phase) or a liquid disordered state (termed the Ld

phase). In the presence of cholesterol and sufficient amounts of sphingomyelin and sat-
urated phospholipids, a third Lo phase characterized by lateral mobility in combination
with ordered acyl chains can appear besides the Ld phase. Analogous to these observa-
tions, lipid rafts are thought to be Lo isles within an Ld phase environment. However,
as simplistic model membranes obviously not capture all properties of far more complex
plasma membranes, the exact structure and function of lipid rafts is still controversial.
A recently proposed model suggests that Lo microdomains are intrinsically unstable and
need to be stabilized by membrane proteins [22]. Innovative cell imaging techniques to-
gether with in silico modelling experiments will be required to gain deeper insights into
the organization of biological membranes at microdomain level.

In any case, membrane domains are thought to be transient and small with expected
diameters of tens to hundreds of nanometers [17] but highly biologically relevant at the
same time as proteins that are supposed to interact are trapped in close neighborhood
while other proteins are excluded from a potential interaction. Accordingly, membrane
domains have been associated with protein sorting, receptor-mediated signaling and
pathogen entry [17, 22].

1.2 Membrane proteins

Alpha-helical membrane proteins constitute between 20 and 30 percent of all ORFs
in already sequenced genomes [23]. With a large variety of functions being mediated
by membrane proteins and their immense importance for the pharmaceutical industry,
remarkable effort has been put over the last years in the experimental as well as compu-
tational research on integral membrane proteins. Although this has already produced
important insights into occurrence, structure and functions of membrane proteins, avail-
able information is still scarce compared to soluble proteins. Especially the number of
available 3D structures is still low with less than 2% of all structures in the Protein Data
Bank corresponding to membrane proteins. Even though the number of membrane pro-
tein structures increases exponentially doubling approximately every third year (White,
2004), structural biology of soluble proteins has an advance of approximately 15 years
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which can be mainly attributed to experimental challenges caused by the hydrophobic
character of membrane proteins.
Within the following paragraphs, recent findings regarding importance and occur-

rence of membrane proteins will be summarized. Furthermore, main characteristics of
membrane protein topology (describing number and position of transmembrane helices
as well as the position of the protein’s N-terminus) and 3D structure will be intro-
duced providing the biological background for any computational method addressing
membrane protein structures.

1.2.1 Biological and medical importance of membrane proteins

Integral membrane proteins appear in two main architectures: alpha-helix bundle pro-
teins or proteins of beta-barrel type. Together with proteins anchored to the membrane
by lipid groups and non-hydrophobic proteins bound in membrane complexes they form
the even larger class of membrane-associated proteins.
All-beta integral membrane proteins are found only in the outer membrane of Gram-

negative bacteria, mitochondria or chloroplasts. Generally, they form large transmem-
brane pores, which function mainly as toxins or transporters across the membrane [24].
Alpha-helical membrane proteins on the other hand are often found in oligomeric com-
plexes mediating wide-spread functions such as active transport, ion flow, energy and
signal transduction. Important biological processes such as cell-cell-signaling, cell-cell-
recognition and the formation of electrical and chemical gradients across membranes are
accomplished by this class of proteins [25]. Since alpha-helical membrane proteins are
not only much more frequent and much more functionally divers but also the focus of
this work, the following paragraphs deal focus only on this class of proteins.
With membrane proteins being key components of a variety of important biological

processes, they are also of great interest for the pharmaceutical industry. The large
superfamily of G-protein coupled receptors (GPCRs) alone includes receptors for hor-
mones, neurotransmitters, growth factors, light and odor-related ligands [26, 27] and it
was estimated that more than 50% of all prescribed drugs are targeted against this pro-
tein family [28]. Additionally, several mutations in membrane proteins have been related
to the cause of diseases. Nonpolar to polar or charged mutations in the cystic fibrosis
conductance regulator (CFTR) for example lead to the clinical pattern of cystic fibrosis
[29] and mutations in the insulin receptor may cause diabetes [30]. Hence, membrane
proteins are a major factor in the development of new drugs raising the need for further
insights into their structural features.
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1.2.2 The membrane protein universe: lessons from protein
classification

Large-scale classification approaches try to characterize the whole set of genes or proteins
for one or several organisms. Membrane proteins have been addressed specifically by a
couple of such analyses improving our knowledge of occurrence, diversity and prevalent
functions of these proteins.

Membrane protein occurrence Within their ground-breaking first genome-wide anal-
ysis of membrane proteins from 16 organisms covering all three kingdoms of life, Wallin
and von Heijne could show that membrane proteins cover between 20% and 30% of the
ORFs in all analyzed genomes [23]. They further demonstrated that membrane proteins
with a small number of transmembrane helices are more frequent than larger membrane
proteins although bacterial and archaean genomes have increased numbers of proteins
with six and twelve helices corresponding to transporters for small solutes, amino acids
or sugars, while eukaryotes have a distinct peak for proteins with seven transmembrane
helices representing the important class of G-protein coupled receptors.

In the following, similar analyses have been conducted for individual organisms such as
E.coli [31] and S.cerevisiae [32] using prediction tools in combination with experiments
to obtain improved topology models for a large fraction of the membrane proteome of
each organism. Among the major findings of both analyses was the prevalent occurrence
of membrane proteins with even numbers of transmembrane helices and a Nin − Cin

topology where both N- and C-terminus are found within the cytoplasm suggesting the
importance of helix hairpin structures for membrane protein evolution. Furthermore,
transporters were found to be the most common functional class of membrane proteins in
both E.coli and S.cerevisiae covering 41% and 32% of all analyzed membrane proteins,
respectively, while proteins with six or less transmembrane helices are mostly still lacking
a functional annotation.

Protein family classification The classification of proteins into families provides in-
sights into evolutionary relationships among sequences and helps to understand the va-
riety of observed protein sequences. While protein family classification databases such
as Pfam [33] generally contain both soluble and membrane proteins, a few protein family
classification approaches have been described addressing membrane proteins specifically
[34, 35].
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In 2002, Liu and colleagues reported in total 637 membrane protein families covering
proteins from 26 organisms. In the following, they used the obtained families to de-
termine residues and motifs conserved within related membrane proteins. In contrast,
Oberai and colleagues obtained membrane protein families primarily to estimate the
number of membrane protein folds in nature and the time required to experimentally
solve the structure of a representative set of membrane proteins [35]. They classified
roughly 86,000 membrane proteins from 95 genomes into 4075 families with at least 2
members and showed that family size decreases rapidly with few families such as the
GPCRs, ABC transporters or the major facilitator family of secondary transporter cover-
ing a high number of membrane proteins while most families are found with only a small
number of members. From their analysis it seems likely that the space of membrane
protein families is already largely saturated given the momentary available sequence
data. On a structural level on the other hand, at least ten more years will be required
until structural representatives are available for 300 membrane proteins folds which they
estimated would cover approximately 80% of all membrane proteins.

Protein fold classification Aiming specifically at the analysis of membrane protein
folds, the CAMPS database of membrane proteins [36] classifies membrane proteins
directly into clusters likely to represent folds based on sequence similarity and conserved
protein topology. From nearly 45,000 membrane proteins from 120 prokaryotic genomes,
around 70% could be assigned to 266 fold clusters with at least 15 members, a number
very similar to the estimation of Oberai and colleagues [35]. Since at the moment
of database construction only 24 of these clusters included a representative structure,
structural genomics approaches should aim to choose representatives of the remaining
242 clusters for 3D structure elucidation.

In total, the sequence and structure space of membrane proteins appears to be ap-
proachable despite the high percentage of membrane proteins and the experimental
difficulties imposed by their high hydrophobicity. With only few new membrane protein
families expected to appear in the future [35], computational and experimental biolo-
gists seem to have all required sequence data at hand needed for a complete analysis
and description of the membrane protein universe. As the number of membrane protein
structures increases slowly but exponentially, the next years promise exciting insights
into the structural diversity of membrane proteins. Hopefully, this will help to gain a
better understanding regarding the fascinating question of how the broad range of mem-
brane proteins functions can be mediated despite strong structural restrictions imposed
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by the lipid bilayer.

1.2.3 Membrane proteins in 2D: protein topology

Approaching membrane proteins from a structural perspective, a simplified yet highly
informative feature of a membrane protein is its topology describing the number and
position of all transmembrane helices and the in/out orientation of the protein with re-
spect to the membrane. Several sequence features have been shown to be deterministic
for protein topology with the hydrophobicity of transmembrane segments and an en-
richment of positively charged residues in cytoplasmic loops being the most prominent
ones. The latter observation has found broad acceptance under the term ’positive-inside
rule’ especially since it could be shown that this rule holds for both prokaryotic and
eukaryotic organisms [37, 38] .

However, as an increasing number of structures and genome-wide studies of mem-
brane proteins become available, not only our understanding of structural diversity of
membrane proteins deepens but also our knowledge of membrane protein topology is
challenged. While it is still believed that in most cases membrane protein topology is
completely defined by the protein’s amino acid sequence and hence is conserved within
protein families and over the lifetime of a protein, a number of exceptions of this rule
have been reported (for an excellent review see [39]).

• Homologous proteins with opposite topology were found in large-scale analyses of
the E.coli and S.cerevisiae membrane proteomes [31, 32].

• Even more remarkable, proteins such as the small multidrug resistance proteins
EmrE and SugE were discovered that insert into the membrane in both possible
orientations with an approximate stoichiometry of 1:1 [40]. Such proteins were
termed dual topology proteins.

• In addition to proteins with undecided in/out orientation, inefficiently inserting
transmembrane helices can give rise to proteins with multiple topologies such as
the scrapie prion protein which has four reported topologies including a fully cy-
toplasmic and a fully secreted form [41].

• Finally, cases of dynamic topology are discussed where proteins or individual helices
change their membrane orientation post-translationally either to adopt their final
structure or as part of executing their function as suggested for the protein SecG,
a subunit of the SecYEG translocon [42].
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So far, topology-predicting programs completely rely on the conventional definition of
membrane protein topology assuming a fixed topology for each protein as well as trans-
membrane helices fully crossing the membrane and oriented largely perpendicular to
the membrane. More advanced methods will be required in the future to cope with the
diversity of membrane protein topology and structure observed recently.

1.2.4 Membrane proteins in 3D: structural characteristics

Knowing the number and position of transmembrane helices is a first step in under-
standing the structure of a membrane protein. A full structural description however
requires further knowledge especially regarding the packing of individual helices against
each other and interactions of helix residues with the lipid environment. Additionally,
further structural features such as re-entrant helices or helix kinks need to be consid-
ered. The following paragraphs cope with these aspects of membrane protein structure
starting with characteristics regarding single transmembrane helices. Afterwards, known
types of helix-helix and helix-lipid interactions will be described and recently detected
aberrants of regular helix bundle structures are summarized. Especially with the lat-
ter being observed frequently in recent membrane protein structure, our view of the
diversity of membrane proteins is constantly renewed [43, 44] (Figure 1.2).

Transmembrane helices

Statistical analyses of amino acids in transmembrane helices have consistently observed
a distinct distribution of amino acid types along the length of a transmembrane helix.
While aliphatic residues and phenylalanine are enriched in the centre of the membrane,
tryptophan and tyrosine are frequently found at the border between hydrophobic mem-
brane core and hydrophilic environment [45, 46]. Charged or polar amino acids are only
poorly represented in transmembrane segments with a total frequency of lower than 5%
[47, 48]. Analyzing the conservation of individual amino acids within transmembrane
helices, glycine and proline were found to be significantly enriched in conserved posi-
tions, while the opposite was the case for Ile, Val, Met and Thr, which seem to be highly
mutable within transmembrane segments [34]. Lately, approaches have been developed
to determine the contribution of all twenty amino acids to the free energy of membrane
insertion [49, 50]. These experiments provide a biophysical explanation for the observed
statistical amino acid distributions as they could demonstrate that for example trypto-
phan and tyrosine in central helix positions are unfavorable for membrane insertion but
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A B C

Figure 1.2: Structural diversity of membrane protein structures. (A) Structure of bacteri-
orhodopsin (PDB 2BRD). Seven transmembrane helices form a regular alpha-helix bundle
structure. (B) Structure of aquaporin 1 (PDB 1J4N) containing two re-entrant helices (shown
in red). (C) Structure of the H(+)/Cl(-) exchange transporter clcA (PDB 1KPK) consisting
of ten transmembrane helices. Helices differ significantly in their length and may be strongly
tilted with respect to the membrane (shown in yellow).

less problematic in border positions.
Another important property of transmembrane helices beside amino acid composi-

tion is their length. With typically 30 Å thick hydrophobic core membrane regions,
transmembrane helices consist in general of 20 to 30 amino acids with 23 amino acids
being the average [51]. Helices significantly longer than this average are expected to tilt
with respect to the membrane normal in order to adjust to the membrane thickness and
prevent a so-called ’hydrophobic mismatch’ [52, 53].

Helix-helix packing

With helix-helix interactions being an important stabilizer and determinant of mem-
brane protein structures, major efforts have been put into the understanding of these
interactions. Thermodynamic measurements [54, 55, 56] as well as genetic approaches
[57, 58] have been developed and applied to determine the strength of individual helix
interactions and estimate the effect of mutations on helix assembly (for a recent review
see [59]). Furthermore, available membrane protein structures have been rigorously ana-
lyzed to obtain insights into the helix-helix packing of membrane proteins and to derive
amino acid propensities for the participation in interhelical interactions [60, 61, 62].

While the packing of α-helices in membrane proteins is commonly described by a
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‘knobs-into-holes’ packing introduced originally for soluble coiled coils [63], comparative
studies of helix packing have found remarkable differences between soluble and mem-
brane proteins. It has been shown that membrane proteins are on average tighter packed
than soluble proteins [48] and that closely packed small residues are the major source
for this observation [61]. In contrast, large hydrophobic and aromatic residues have the
highest packing values within soluble proteins [61]. Furthermore, membrane proteins
were found to have a strong preference for left-handed crossing angles around +20◦ al-
though angles between -56◦ and +67◦ are principally possible as reported by a study of
88 transmembrane interfaces [64]. Within soluble proteins, the preference for a certain
range of helix crossing angles seems to be less clear. Additionally, the range of possible
interhelical angles is larger [62] and right-handed angles are found more frequently than
in membrane proteins [62, 65].

Interestingly, left-handed and right-handed helix interactions within membrane pro-
teins were found to differ in their preferred mode of interaction. Left-handed interactions
are often promoted by a heptad motif such as the LxxLxxxLxx motif of leucine zippers,
where amino acids at positions a and d are the main contributors to the contact inter-
face [63]. Right-handed interactions on the other hand seem to rely on a regular tetrad
pattern with amino acids at positions a and b forming the helix-helix interface [66].

Detailed analyses of amino acids in helix-helix interfaces as well as mutational studies
have given further insights into the nature of non-covalent interactions within membrane
proteins highlighting the special importance of polar residues as well as small residues
for transmembrane helix assembly. Although van der Waals packing is the main de-
terminant of this process and hence residue pairs formed from apolar amino acids (F,
L, V, I and A) are the most frequently found ones in membrane helix interfaces [60],
several studies observed that the composition of helix interfaces in membrane proteins is
even more diverse than in soluble proteins [60, 61]. While soluble proteins have a strong
preference for salt-bridge interactions formed by oppositely ionizable amino acids, mem-
brane proteins feature a much broader range of polar-polar interactions covering residue
pairs of polar residues such as S, T, Y, N and Q [60]. In average, every transmem-
brane helix is expected to form at least one hydrogen bond with side chain-backbone
hydrogen bonds contributing substantially to this observation as every second hydrogen
bond between transmembrane helices seems to be of this type [62]. Experimentally,
transmembrane helices with motifs of multiple serine and threonine residues or single
glutamine, asparagine, aspartic acid or glutamic acid residues were found to promote
strong self interaction [67, 68] further confirming the importance of polar residues for
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helix associations. Small residues (G, A and S) on the other hand, were repeatedly
found to be among the most overrepresented ones within membrane helix interaction
interfaces [61, 62]. The importance of these residues has found even more attention
after detecting that motifs consisting of two small residues spaced by three residues
([GAS]xxx[GAS]) are a recurrent theme in helix-helix-interfaces [69, 70, 71]. GxxxG,
the most prominent motif of this kind, was originally identified in mutagenesis exper-
iments using the glycophorin A (GlpA) transmembrane helix dimer [72, 73] and was
later found not only to be frequently present within transmembrane helices [74] but also
to be strongly conserved [34]. Generally, small residues are thought to allow very close
contact between transmembrane helices and accordingly extensive van der Waals inter-
actions [75] as well as the formation of Cα-H ···· O hydrogen bonds across the helical
backbone [76]. Lately, measurements of helix interaction energies have indicated how-
ever, that GxxxG-containing transmembrane segments may interact with remarkably
different strength suggesting that sequence context is equally important for interaction
as the GxxxG motif itself [77, 59].

Helix-lipid interactions

While helix-helix interactions are established as major determinants of membrane pro-
tein structure for many years now, the influence of surrounding membrane lipids on
membrane protein assembly and membrane protein structure in general is just recently
emerging. Nevertheless, several well studied examples have demonstrated that interac-
tions between transmembrane helices and membrane lipids modulate different aspects
of membrane protein structures including helix-helix interactions and helix tilts (for a
recent review see [78]). Accordingly, transmembrane helices are thought to interact not
only due to the presence of specific sequence motifs or favorable helix-helix contacts
but also as a result of less favorable helix-lipid interaction which would be observed for
example in the case of a hydrophobic mismatch between bilayer thickness and transmem-
brane helix length [79]. As mentioned earlier, such hydrophobic mismatch is thought
to be one of the reasons for tilted helices [53]. Additionally, helices are expected to
tilt due to interactions between anionic lipid headgroups and positively charged helix
anchoring residues [78]. Generally, changes in lipid composition can be expected to sig-
nificantly alter transmembrane helix assembly which can further propagate changes in
extramembranous parts and quarternary structure of the protein. Such changes can be
even extensive enough to shape membrane protein function [80].
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’Unusual’ structural features of membrane proteins

The recent increase in available membrane protein structures - Steve White’s list of mem-
brane proteins with solved structure currently contains 193 unique proteins 1- has gained
remarkable insights into the structural variability of alpha-helical membrane proteins.
Despite the limited number of overall fold architectures and the general restrictions
imposed by the hydrophobic nature of the lipid bilayer, a still increasing number of
structural aberrations have been described modulating our view of canonical membrane
protein structures (for example structures see Figure 1.2, page 11).

In a typical transmembrane segment the residue at position i forms a hydrogen bond
with the residue at position i+4 within the same transmembrane helix. However, sev-
eral alterations of this canonical helix conformation have been described for membrane
proteins such as π-bulges resulting from hydrogen bonds between a residue at position
i and a residue at position i+5 [81], helix unwinding [82] and proline-induced kinks
[83]. These irregularities lead to local conformational instability and are thought to
be primary spots for conformational changes [84]. Additionally, at least one backbone
carbonyl group is exposed which can be important for the binding of cofactors [83] or
inter-helical hydrogen-bond formation. An analysis of structures in the PDB in 2001
observed, that nearly 50% of all transmembrane segments in alpha-helical membrane
proteins contain such elements [85]. Additionally, transmembrane helices may form so-
called ’reentrant loops’ which cross the membrane only halfway and then return to the
side where they entered the membrane [86]. Helices may also be disrupted and much
longer and much more tilted than expected from the first available membrane protein
structures [62].

Altogether, membrane proteins emerge to be structurally diverse to an extent not
anticipated ten years ago. Despite limited variability on amino acid level and restricting
influences of the lipid bilayer, evolution has found means of diversification that provide
the basis for the wealth of known functions mediated by membrane embedded proteins.
With increasing evidence that membrane protein structure is not only dependant on
protein sequence but also the specific membrane environment, an additional level of
complexity is added to the analysis and understanding of α-helical membrane proteins.
Accordingly, the rapid development of experimental techniques for the analysis of mem-
brane protein structures - for reviews see [87, 88] - promises exciting insights over the
next years.

1http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html, 15th June 2009
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1.2.5 Membrane protein folding

While helix association is an important step in the complete membrane protein folding
process, equally important is the insertion of transmembrane helices into the lipid bilayer
after their synthesis by the ribosome. Accordingly, membrane protein folding has been
described as a multi-step process, for example by the two-stage model [89, 90] which
suggests that α-helices are formed and inserted into the membrane in a first step and
associate then into the final structure during the second step.

The molecular translocation machinery where these processes mostly take place is a
multi-subunit complex located in the endoplasmic reticulum membrane of eukaryotes
(Sec61 translocon) or the plasma membrane of eubacteria and archaea (SecYEG and
SecYEβ, respectively). Due to the X-ray structure of an archaean translocon ([91])
solved in 2004 and advanced experimental systems for analyzing helix insertion effi-
ciency [49, 50], increasing information about the molecular mode of operation of this
complex is now at hand (for a recent review see [92]). Proteins meant for secretion or
insertion into the membrane are recognized during translation by a signal recognition
particle (SRP) and transported to the translocon. There, the nascent protein chain is
transported through the so-called hydrophobic collar within the SecY subunit of the
translocon with the possibility of releasing transmembrane segments laterally into the
surrounding lipid bilayer through a lateral gate formed by two transmembrane helices
of SecY. According to recent theories, the decision whether a protein segments leaves
the translocon through the lateral gate or not is a direct result of a simple partitioning
process [93, 92]. Hydrophobic segments with favorable free energy of insertion due to
interactions with surrounding lipids leave the translocon while polar segments prefer to
stay in the aqueous environment of the translocon. In case of polytopic proteins con-
taining more than one transmembrane segments, individual helices are believed to be
inserted strictly in a N- to C-terminal order although helix interactions between already
inserted segments and the helix currently inside the translocon seem to be possible facil-
itating the membrane insertion of helices likely not hydrophobic enough by themselves
[94, 95].

1.3 Structural bioinformatics of membrane proteins

As membrane proteins are challenging to work with experimentally while at the same
time their structural diversity is strongly limited by the surrounding membrane, their
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analysis using computational methods seems to be both useful and promising. Ac-
cordingly, a whole field of structural bioinformatics has opened up developing methods
specifically tailored for this class of proteins. Addressed problems range from the se-
quence based prediction of membrane protein topology over the prediction of individual
structural properties such as helix kinks or re-entrant helices to the full 3D structure
prediction of membrane proteins (for recent reviews see [43, 44, 96]). The following
section summarizes results and open questions in each of these fields.

1.3.1 Topology prediction

Predicting the topology of a membrane protein aims at detecting the correct position of
all transmembrane segments as well as the in-out orientation of the protein within the
membrane, the latter being equivalent with predicting the position of the N-terminus of
the protein. While the prediction of the inside/outside orientation is consistently based
on two topogenic signals, namely the enrichment of positively charged amino acids
within inside loops [97] and the occurrence of N-terminal cleavage signals indicating an
outside position of the N-terminus [98], the detection of transmembrane helices has seen
major enhancements over the years. Early hydrophobicity-scannning algorithms such as
the Kyte-Doolittle method [99] applied a sliding-window approach, where a hydropathy
value was assigned to all amino acids within a window of given size and all segments
having a summed hydrophathy value above a certain threshold were predicted to be
transmembrane helices. First improvements of these early methods used neural networks
or sequence profiles generated from multiple sequence alignments rather than single
sequences [100]. A significant increase in prediction accuracy was gained by methods
relying on Hidden Markov Models (HMMs) with several hundreds of free parameters
required to be optimized using a training set of proteins with known topology. TMHMM
[97] as well as HMMTOP 2.0 [101] are prominent examples of this type of methods,
which have found widespread application as they were repeatedly ranked among the
best methods in comparisons of available topology-predicting tools [102, 103, 104, 105].
Despite the prominence of methods such as TMHMM and HMMTOP, the develop-

ment of new methods for the prediction of membrane protein topology is still ongoing.
Recently proposed methods use dynamic Bayesian networks instead of HMMs [106] or
compile and evaluate predictions of several individual predictors into a consensus pre-
diction [107]. Increasing effort is put also into the development of methods predicting
simultaneously protein topology and signal peptide sequences as misprediction of signal
peptides is known as one major error source for topology prediction [98, 106]. Finally,
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as the molecular forces guiding transmembrane helix insertion are better understood,
topology predictors try to predict transmembrane helices rather based on experimen-
tally derived physical properties known to be important for membrane insertion instead
of statistical analysis of proteins with known topology [108]. As such methods could be
shown to perform already with equal accuracy as statistics-based methods [108], they
promise further advances in the field of topology prediction as soon as more and more
information regarding the folding and insertion of membrane proteins is available.

Generally, state-of-the-art topology prediction methods can be expected to reach full-
topology prediction accuracies between 70% and 80% [43, 107], where a correctly pre-
dicted topology requires the correct number of transmembrane helices, the correct posi-
tion of the N-terminus and approximately correct position of all helices. However, with
only about 400 membrane proteins having an experimentally confirmed topology [43],
the validation and comparison of different prediction methods is still error-prone and
varies strongly depending on the used dataset leaving room for further improvements.

1.3.2 3D structure prediction

Given the limited number of folds membrane proteins and alpha-helical membrane pro-
teins specifically can comprise, 3D structure prediction of membrane proteins seems to
be clearly easier than for soluble proteins suggesting that currently available computa-
tional resources might be sufficient for ab initio folding of membrane proteins. However,
overall success of 3D structure prediction for membrane proteins is still small especially
since available methods for soluble proteins generally can not be directly applied to
membrane proteins due to the different environment formed by the membrane. Ho-
mology modeling techniques based on known structures would principally be able to
produce structural models of membrane proteins with similar accuracy as reported for
soluble proteins [109], but the small number of available membrane protein structures
strongly limits the practical usage of these methods.

Historically, 3D structure prediction efforts were focused mainly on individual mem-
brane proteins or specific membrane protein families. Especially structure prediction of
GPCRs has found significant interest with several methods being developed specifically
for this class of proteins [110, 111, 112, 113]. Lately, structural models have been derived
for all human GPCR candidates using the threading and refinement protocol TASSER,
which could be shown to model bovine rhodopsin with a global Cα RMSD of 4.6 Å.
Addressing structure prediction of membrane proteins in general, a membrane protein

specific version of the Rosetta algorithm for structure prediction has been introduced
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in 2006 [114]. There, low-resolution models of membrane proteins are calculated using
the Rosetta fragment assembly method in combination with a membrane protein spe-
cific energy function modelling residue-residue and residue-lipid interactions within a
membrane environment. Subsequently, the method has been further improved by the
incorporation of an all-atom physical model able to produce high-resolution structures
of membrane proteins [115] and the usage of constraints derived from known helix inter-
actions or mutation experiments which allow for the prediction of membrane proteins
up to 300 amino acids [116]. Using these improvements, high-resolution models of small
(<150 residues) and large membrane proteins could be obtained with RMSDs <2.5 Å
and <4 Å, respectively.
In addition to the work of Barth and colleagues [116], several other approaches have

been developed using constraints from experimental or low-resolution structural data
to obtain high-resolution models of membrane proteins (reviewed in detail in [117]).
Results from FRET experiments or chemical crosslinking for example have been used
to distinguish native helix conformations from non-native conformations [118]. Further-
more, cryo-EM structure with a resolution of 5-10 Å have been successfully refined to
atomic models by methods assigning and orientating individual transmembrane helices
based on observed hydrophobicity, evolutionary conservation and residue co-evolution
[119, 120, 121].

1.3.3 Prediction of individual structural features

When alpha-helical membrane proteins were still thought to fold into regular helix bun-
dle structures, structural bioinformatics was dealing mainly with the determination of
membrane protein topology followed by the prediction of possible helix arrangements.
Recent structures displaying a previously unexpected complexity have opened up a com-
plete new field tackling the prediction of individual structural elements such as for exam-
ple reentrant helices. Elofsson and van Heijne have termed these kind of prediction tools
2.5D prediction methods [43] since they are positioned between 2D topology predictions
and 3D ab initio structure predictions.
A commonly addressed task of 2.5D prediction methods is the prediction of lipid ex-

posure for each residue within the membrane based mostly on side chain polarity and
sequence conservation since lipid-exposed residues were shown to be generally more hy-
drophobic and less conserved. Several methods have been published over the last years
[122, 123, 124] with reported accuracies up to 88% for correctly predicted individual
residues [122]. Furthermore, methods are available for the prediction of proline-induced
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kinks [125] as well as the detection of reentrant helices [126, 86]. Such helices were origi-
nally observed in the structures of the KcsA potassium channel [127] and the aquaporin-1
water channel [128] and were later shown to contain preferentially small residues and
special functional motifs usable for their prediction. Finally, the detection of long and
tilted helices is now approachable by a method predicting each residue’s distance from
the membrane center [129].

1.4 Motivation and overview of this work

With only a very limited number of available 3D protein structures and a high bi-
ological and medical importance, membrane proteins are an important research sub-
ject for structural bioinformaticians. As the amino acid composition of transmembrane
segments deviates remarkably from soluble proteins, the development of structure pre-
diction methods specifically tailored for this class of proteins is required. Given the
structural variability observed in recent membrane protein structures, more and more
methods are developed that are neither predicting membrane protein topology nor full
membrane protein structures, but are addressing specific structural aspects of mem-
brane proteins. This work is placed in this field of structural bioinformatics focusing on
the analysis and prediction of residue and full helix interactions within transmembrane
domains of alpha-helical membrane proteins. The following paragraphs will give a short
overview about all analyses and projects conducted as part of this thesis. Thereby, the
term ’helix-helix contact’ is always used to describe pairwise residue interactions be-
tween amino acids placed on different transmembrane helices while the term ’helix-helix
interaction’ corresponds to two full transmembrane helices connected by at least one
helix-helix contact.

Within the following chapter "Detection of helix interaction motifs", results of a ex-
perimental and computational study of helix interaction motifs in membrane proteins
will be presented. As described in section 1.2.4, several sequence motifs are known
that promote strong helix interactions within a membrane environment. Using the
ToxR/POSSYCCAT system, a genetic screening tool for high affinity transmembrane
helix interactions, further candidates for such sequence motifs were identified by the
group of Prof. Dieter Langosch (TU München). Subsequent sequence analysis of natu-
rally occurring membrane proteins proves that the candidate motif FxxGxxxG as well as
several identified motifs consisting of a charged amino acid in combination with GxxxG
are significantly overrepresented in this dataset thus highlighting their biological rele-
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vance.

Within chapter 3, entitled "Co-evolving residues in membrane proteins", the first
analysis of concurrently mutating residues within transmembrane domains is presented.
Such residues have been frequently analyzed in soluble proteins and have been used
for residue contact prediction suggesting their possible application for the prediction of
helix-helix contacts in membrane proteins. The executed analysis demonstrates that co-
evolving residues alone are not sufficient to reliably predict helix-helix contacts, but that
these residues still carry a strong signal for the detection of interacting transmembrane
helices due to their frequent occurrence in close sequence neighborhood to helix-helix
contacts. A developed consensus predictor combining predictions from several individ-
ual prediction algorithms was further able to predict helix-helix contacts with higher
accuracy than any single method available.

Following the work on co-evolving residues, the prediction of residue contacts be-
tween transmembrane helices was continued by the development of an advanced, neural
network based predictor incorporating different types of input information for the iden-
tification of helix-helix contacts. As described within the chapter "Prediction of helix-
helix contacts using neural networks", the developed method called TMHcon is the first
method able to predict contacting residues within transmembrane domains with equal
accuracy to the best methods available for contact prediction in soluble proteins. The
prediction of helix-helix contacts using a neural network was jointly executed with Dr.
Andreas Kirschner (TU München).

Chapter 5 (termed "Prediction of interacting helices") switches the focus from the
level of individual amino acids to the level of full transmembrane helices. Here, it is
demonstrated, how obtained helix-helix contacts can be used to predict the interaction
of transmembrane helices and accordingly the helix architecture of membrane proteins
with high accuracy and specificity. While prediction quality can be shown to increase
already significantly by using helix-helix contacts predicted with the earlier developed
TMHcon method instead of co-evolving residues alone, especially prediction sensitiv-
ity can be further improved by incorporating additional contact information predicted
within a consensus approach incorporating structurally related proteins obtained from
the CAMPS database of membrane proteins ([36], version 2.0 developed by Sindy Neu-
mann, TU München).

Finally, the chapter "Classification of helix architectures" introduces a possible field
of application where helix interactions (obtained from experimentally determined struc-
tures or computationally predicted) can be of great value. After analyzing first the cur-
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rent classification of membrane proteins in major structural databases (namely SCOP
and CATH), a new classsification system is introduced that specifically addresses mem-
brane protein helix architectures. Using graph representations of transmembrane helices
and their interactions, such helix architectures can be visualized and compared among
each other. Clustering proteins based on the similarity of these helix interaction graphs
is able to closely resemble classification approaches such as SCOP or CATH, which rely
on full structure comparisons, thus demonstrating that helix interactions in fact are
major structural determinants of membrane proteins. For membrane proteins with no
experimentally solved structure available, predicted contacts can be used to identify
proteins whose helix architectures have a high likelihood of being similar.

Altogether, the main goal of the work presented in this dissertation is to enrich the
field of structural bioinformatics of membrane proteins by a new 2.5D prediction task not
addressed in the past by any other research group, but equally valuable to biologist work-
ing with membrane proteins as well as bioinformaticians trying to predict full membrane
protein structures. For biologists, predicted helix-helix contacts and helix interactions
can be helpful to gain insights into the structural organization of membrane proteins
when no experimentally solved structure is available. Structural bioinformaticians on
the other hand can employ predicted helix-helix contacts to constrain the conforma-
tional search space in ab initio structure predictions making the detection of the native
structure easier approachable. Finally, the large scale application of helix-helix contact
and helix architecture predictions complement available sequence clustering approaches
permitting additional insights into the structural variability of alpha-helical membrane
proteins.
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2
Detection and analysis of helix

interaction motifs

The importance of individual amino acids for the association of transmembrane helices
has been extensively studied in the past [57, 60, 61, 130]. Thereby, recurrent sequence
motifs have been discovered that promote strong helix interactions in both artificial and
naturally occurring transmembrane sequences (for a review see [65]). So far, the best
characterized helix interaction motif is the GxxxG motif, which was first detected by an-
alyzing the dimerisation of human glycophorin A (GpA) [72], but has meanwhile shown
to be one of the most frequent sequence motifs in natural transmembrane helices [74].
However, further energetic measurements have indicated that GxxxG alone often may
not be sufficient for strong transmembrane helix association [59]. Instead, local sequence
context seems to strongly influence dimerisation free energy [77, 131] motivating further
analyses of strongly interacting transmembrane domains.

Genetic screening tools such as the TOXCAT [58] and the ToxR/POSSYCAT system
[132, 133] can be used to evaluate the effect of sequence context on known interaction
motifs but also to detect completely new motifs. Within these systems, self-dimerisation
of a bitopic membrane protein (i.e. a membrane protein containing one single transmem-
brane helix) is linked to expression and accordingly activity of a reporter gene. Recent
enhancements of both the TOXCAT and the ToxR/POSSYCAT approach additionally
allow for the detection of heteromeric interactions [134, 135].

Within the following chapter, results of two ToxR/POSSYCAT analyses aiming at
the detection of high affinity transmembrane helix interactions will be presented. As
all experiments were carried out by members of the group of Prof. Dieter Langosch
(Chair of Biopolymer Chemistry, TU München), the experimental setup as well as all
results gained directly with the ToxR/POSSYCAT system will only be briefly summa-
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rized in the first section of this chapter. Following the experimental detection of motif
candidates based on combinatorial libraries of transmembrane sequences, computational
analyses of naturally occurring bitopic sequences were executed to ensure the biological
relevance of all detected motifs. The second section of the chapter summarizes results of
these bioinformatic analyses executed by myself confirming the occurrence of individual
candidate motifs in a large set of bitopic membrane proteins.
Experimental and computational results presented in this chapter were already pub-

lished in [136, 137], another publication was recently submitted [138].

2.1 Experimental motif identification using the ToxR/
POSSYCAT system

2.1.1 The ToxR/POSSYCAT system

Using the ToxR/POSSYCAT system, self-interacting transmembrane domains can be
selected from combinatorial sequence libraries and the affinity of selected sequences can
be characterized, both within an in vivo environment. The system is based on the ToxR
transcription activator originating from the proteobacterium Vibrio cholerae where it
is located inside the inner membrane. This transcription factor regulates expression of
genes controlled by either the ctx or ompU promoter and is only active after di- or
oligomerisation of its cytoplasmic domain. Naturally, activation of ToxR is triggered by
environmental stimuli leading to expression of several target proteins such as cholera
toxin, the outer membrane protein OmpU and other virulence factors [139, 140, 141].
For the detection and characterization of high-affinity transmembrane domains with

the ToxR/POSSYCAT system (Figure 2.1), chimeric proteins are constructed where
the original ToxR transmembrane domain is replaced by the transmembrane domain
of interest. Furthermore, the maltose-binding protein (MalE) is attached as periplas-
mic domain which serves as control for correct membrane insertion as only constructs
placing the MalE domain within the periplasma are able to complement the MalE de-
ficiency of E.coli PD28 cells. In case the integrated transmembrane domain is able to
self-interact, the induced dimerisation of the cytoplasmic ToxR domain activates the
expression of a reporter gene controlled by a ctx or ompU promoter within engineered
E.coli cells . In E.coli EL61 cells, chloramphenicol acetyltransferase is used as reporter
gene in combination with the ompU promoter indicating self-interacting transmembrane
domains by chloramphenicol resistance. Subsequently, interaction affinity can be fur-
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Figure 2.1: The ToxR/POSSYCAT system. After self-interaction of transmembrane domains,
cytoplasmic ToxR dimers activate the transcription of reporter genes under the control of a
ctx or ompU promoter. Periplasmic MalE domains allow for the analysis of correct membrane
insertion. Figure adapted from [142]

ther quantified by E.coli strain FHK12 where the gene lacZ encoding β-galactosidase
(β-gal) is under control of the ctx promoter. By monitoring β-gal activity via the
hydrolysis of o-nitrophenyl-β-D-galactopyranoside (OPNG), ToxR activity and hence
dimerisation affinity of tested transmembrane segments can be compared among differ-
ent constructs (further details regarding the ToxR/POSSYCAT system are summarized
in [73, 132, 136, 137]).

2.1.2 Interaction motifs identified with the ToxR/POSSYCAT
system

Within two independent analyses, combinatorial libraries of transmembrane domains
were screened for high-affinity self-interactions using the ToxR/POSSYCAT system by
Stephanie Unterreitmeier, Jana Herrmann and Johanna Panitz (Chair of Biopolymer
Chemistry, Prof. Dieter Langosch, TU München). While both analyses were executed
following the same procedure (Figure 2.2A), tested sequence libraries differed substan-
tially from each other to allow for the identification of yet uncharacterized interaction
motifs (Figures 2.2B and C).

Briefly, during each analysis a library of randomized helix interface sequences was gen-
erated using PCR in combination with a partly degenerated forward primer. From this li-
brary, helices with the possibility to interact were selected with the ToxR/POSSYCCAT
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Figure 2.2: Identification of helix interaction motifs using the ToxR/POSSYCAT system. (A) Ma-
jor experimental steps executed during the identification of helix interaction motifs (TMD
is used as abbreviation for transmembrane domain). (B) Interfacial helix positions (X) ran-
domized during the first analysis executed by Stephanie Unterreitmeier. (C) Interfacial helix
positions (X) randomized during the second analysis executed by Jana Herrmann and Jo-
hanna Panitz.

system by testing the chloramphenicol resistance of EL61 cells transformed with the
constructed plasmid library. Identified candidate sequences were then tested for correct
membrane insertion using MalE deficient PD28 cells and were further analyzed with
respect to their interaction strength by measuring β-gal activity in FHK12 cells. Those
transmembrane sequences interacting with high affinity were compiled and sequenced.
After detecting manually common patterns within all obtained sequences which might
correspond to helix interaction motifs, individual mutational studies were executed to
verify the importance of certain amino acids at specific positions within the transmem-
brane helix interface (Figure 2.2A).
In both analyses, eight positions of a 16-residue heptad repeat motif were random-

ized during library construction. However, during the first screening process executed
by Stephanie Unterreitmeier, mostly hydrophobic amino acids were allowed during ran-
domization and non-interface positions were filled with alanine residues as these residues
are known not to be beneficial for helix interaction [143] (Figure 2.2B, the obtained set
of sequences is from now on referred to as Library Ala). In the second analysis executed
mainly by Jana Herrmann and Johanna Panitz, all naturally occurring amino acids were
permitted in interface positions. Furthermore, the remaining positions were occupied
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by leucine instead of alanine to facilitate the integration of polar or charged residues in
interface positions by increasing the average hydrophobicity of all randomized sequences
(Figure 2.2C, this set of obtained sequences is referred to as Library Leu).

In both analyses, high- and low-affinity interactions were identified by comparing mea-
sured β-gal activities to a canonical leucine zipper sequence. Within the first analysis,
60 high-affinity clones were detected in total (see Appendix, Table 9.1), while the second
analysis resulted in 52 high-affinity sequences (see Appendix, Table 9.2). The sequence
composition of high-affinity transmembrane domains was then compared to low-affinity
sequences (42 and 22 in the first and second analysis, respectively) in order to detect
amino acids and combinations thereof significantly enriched in high-affinity sequences.

Identification of the FxxGxxxG motif

Inspection of the 60 high-affinity sequences detected from Library Ala within the first
analysis (Appendix, Table 9.1) revealed several major results (for details see [136]).
First, Phe was found to be significantly enriched in high-affinity sequences (3.5-fold
enrichment compared to low-affinity sequences, p<0.001). Additionally, Gly was slightly
more common in high- than low-affinity sequences by a factor of 1.5 resulting again in
a significant enrichment (p<0.001). Differentiating amino acid frequencies according to
positions within the helix interface, Phe was observed most often at position 5 while
Gly was preferentially located at positions 8 and 12 leading to frequent formation of
the motif FxxGxxxG. In total, this motif was found in nearly 42% of all high-affinity
sequences in contrast to only one occurrence in low-affinity sequences.

Site-directed mutagenesis confirmed the importance of Phe at position 5 since β-gal
activity decreased remarkably after mutation of this residue to Leu. Furthermore, self-
interaction of glycophorin A could be improved by replacing Ile76 with Phe thereby
generating the pattern FxxGxxxG together with the naturally present GxxxG motif
(further details regarding these experiments are presented in [136]). Based on these
results, the sequence motif FxxGxxxG clearly seems to be a potent mediator of helix-
helix interactions. However, sequence analysis of bitopic membrane proteins is still
required to prove its relevance within naturally occurring transmembrane domains.

Identification of sequence motifs containing histidine

Within the second analysis based on Library Leu covering a broader range amino acids,
identified high-affinity sequences varied remarkably from the first analysis (Appendix,
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Table 9.2). Here, the most significantly overrepresented amino acid was found to be his-
tidine with a 5-fold enrichment in high-affine sequences (p<0.001). Less clearly, but still
significantly enriched were Trp and Tyr (∼3-fold enrichment, p<0.005 and p<0.0005,
respectively). Position specific enrichment on the other hand was only detected for His
and Gly with His dominating at position 6 and Gly preferentially found at position
13 forming a GxxxG pattern with the first position of the C-terminal vector sequence.
These residues form the pattern HxxxxxxGxxxG which was found in ten out of all
52 high-affinity sequences. Furthermore, 18 high-affinity sequences were detected con-
taining histidine at position 6 and Gly, Ser and/or Thr at positions 2, 5, and/or 8
suggesting that histidine can either promote helix interactions via the GxxxG motif or
by hydrogen-bond formation with polar side-chains or the backbone of glycine residues.

Again, the importance of His for self-association of transmembrane domains was con-
firmed by site-directed mutagenesis. Additionally, interaction strength was found to be
distinctly improved by either the additional presence of hydrogen bond-forming residues
or a C-terminal GxxxG motif as suspected from the analysis of high-affinity transmem-
brane domains (for further details see [137]).

Identification of sequence motifs consisting of charged residues

In addition to the overrepresentation of histidine, the 52 high-affinity sequences identi-
fied from Library Leu showed also a significant overrepresentation of pairs of charged
amino acids. Individually, these residues were not detected to be more common in high-
affine than in low-affine sequences, positively charged amino acids were even slightly
less frequent. However, eleven high-affinity sequences contained at least two charged
amino acids with six of these sequences covering even three or four charged amino acids
(Appendix, Table 9.2). Notably, in all eleven sequences amino acids of opposite charge
were present as well as a GxxxG motif. Given the frequencies of single charged amino
acid in the 52 high-affinity sequences, this observation is significant with a p-value of
6.4E-4.

Additional mutational analyses proved that neutral and polar amino acids are not able
to replace any of the charged positions without reduced interaction strength although
single ionizable side-chains of either charge can also promote helix interaction, yet to
a less distinct degree. At the same time, the GxxxG motif seems to be required for
high-affine interaction between oppositely charged amino acids while polar residues can
further enhance the interaction ([138], manuscript submitted).
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2.2 Sequence analysis of naturally occurring membrane
proteins

To complement the screening for motifs promoting high-affine helix interactions with the
ToxR/POSSYCAT system, a database of naturally occurring bitopic transmembrane
domains (consisting of one transmembrane helix) was compiled. From this database,
membrane protein sequences were identified containing those motifs earlier detected
experimentally.

Furthermore, the enrichment of individual motifs within the database was probed us-
ing the TMSTAT formalism introduced in the year 2000 by Senes and co-workers for the
statistical analysis of amino acid motifs within transmembrane sequences [74]. Applied
to a database of 13,606 transmembrane helices originating from both bitopic and poly-
topic membrane proteins, Senes and colleagues were able to prove that GxxxG is in fact
the most strongly overrepresented motif in transmembrane sequences. Here, TMSTAT
was applied to the database of solely bitopic proteins in order to match more closely
the experimental setup of the ToxR/POSSYCAT system where single transmembrane
helices were tested for self-association. As the number of available sequences continues
to increase exponentially, enough non-redundant membrane proteins were meanwhile
available in public databases to make such an analysis feasible despite the reduction on
only a fraction of all membrane proteins.

2.2.1 Materials and methods

Non-redundant database of bitopic membrane proteins

Protein sequences for the analysis of naturally occurring bitopic membrane proteins
were obtained from the UniProt Knowledgebase consisting of the intensively annotated
Swiss-Prot database and the computer-annotated TrEMBL database [144]. For every
independent analysis the latest UniProt release was considered as denoted in Table 2.1.

To select only bitopic membrane proteins, all sequences containing one TRANSMEM
annotation in the FT field were extracted from the Swiss-Prot dataset. From the
TrEMBL dataset, bitopic proteins were identified using topology prediction programs.
For the first analysis addressing the occurrence of FxxGxxxG and related motifs, pre-
calculated TMHMM [97] and SignalP [145] annotations were obtained using the SIMAP
database [146]. To exclude mispredicted transmembrane domains, the TMHMM and
SignalP predictions were compared for every protein and all transmembrane sequences
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overlapping by at least eight amino acids with a predicted signal peptide were elim-
inated. For the second analysis aiming at the role of histidine for helix association,
Phobius predictions [98] were additionally obtained from SIMAP and only proteins con-
taining one predicted transmembrane segment according to TMHMM and Phobius were
considered. For the final analysis addressing charged amino acids, only Phobius pre-
dictions were used for the identification of bitopic membrane proteins. In any case,
all TrEMBL proteins containing one predicted transmembrane segment were combined
with the extracted proteins from the Swiss-Prot database resulting in an initial dataset
of redundant bitopic proteins (Table 2.1).

Table 2.1: Database of bitopic membrane proteins. The database was updated for each executed
analysis to contain the latest content of both Swiss-Prot and TrEMBL.

Analysis Swiss-Prot release TrEMBL release Redundanta Non-redundantb

Phec 52.0 (updates until June 12, 2007) 35.0 167,125 19,854
Hisd 55.4 38.0 204,449 20,342

Chargee 56.3 39.3 471,336 25,558
a Redundant: total number of proteins in the database.
b Non-redundant: number of non-redundant proteins in the database.
c Phe: analysis of FxxGxxxG and related motifs.
d His: analysis of histidine containing motifs.
e Charge: analysis of motifs containing one or more charged residues.

To remove sequence redundancy from the initial dataset, the filtering procedure orig-
inally introduced by Senes and colleagues for the TMSTAT approach was adapted [74].
First, all transmembrane segments were extended or shortened to a common length of
30 residues. Homologous transmembrane domains were then removed from the dataset
by comparing any two sequences in all possible frame shifts using a PAM 100 matrix
obtained specifically for transmembrane proteins [47] with a maximal similarity score of
50 or higher being the threshold for identifying homologous transmembrane segments.
Proteins obtained from the Swiss-Prot database were kept with higher priority than
proteins originating from the TrEMBL dataset. Among Swiss-Prot proteins, transmem-
brane sequences marked as POTENTIAL, PROBABLE or POSSIBLE were removed
in case homology was detected to transmembrane segments either annotated with BY
SIMILARITY or without annotation. Additionally, sequences considered to be too hy-
drophilic (indicated by a hydrophobicity score according to the GES scale [147] < 15)
and low-complexity sequences with one amino acid constituting more than half or two
amino acids constituting more than two-thirds of the sequence were also excluded from
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the analysis, resulting in a final database of non-redundant bitopic transmembrane seg-
ments (Table 2.1).

Sequence analysis of bitopic membrane proteins

While the database of bitopic membrane proteins was also used for the identification
of naturally occurring transmembrane domains with a certain sequence motif, its main
purpose was the statistical evaluation of motif occurrences within a large set of sequences.

If possible, the TMSTAT formalism was applied for this evaluation which explicitly
models finite sequence length effects as observed for transmembrane helices and calcu-
lates the expected occurrence of a pair or triplet motif by taking into account individual
sequence compositions rather than the overall amino acid composition of the database
[74]. For every sequence motif under analysis, the algorithm calculates an expectancy
distribution describing the probability of finding this motif a certain number of times
after randomly permutating each sequence in the database. Briefly, this is done within
two steps. First, the probability of observing a pair or triplet motif (XY k or XY Zk1k2)
within a single sequence a specified number of times is pre-calculated which is dependent
on the sequence length l, the sequence distance of motif amino acids k (k1 and k2 for
triplet motifs) and the occurrence of these amino acids within the analyzed sequence
(NX and NY , additionally NZ for triplets). Within the second step, the full probabil-
ity distribution PDB(NXY k) or PDB(NXY Zk1k2) for this motif and the given database
is iteratively calculated from the single sequence probabilities following the recursive
equations

PDB(N)(NXY k) =

NXY k∑
i=0

PDB(N−1)(i)Pn(NXY k − 1|l, k,NX,n, NY,n)
�� ��2.1

or

PDB(N)(NXY Zk1k2) =
NXY Zk1k2∑

i=0

PDB(N−1)(i)Pn(NXY k1k2 − 1|l, k1, k2, NX,n, NY,n, NZ,n)
�� ��2.2

with Pn(NXY k − 1|l, k,NX,n, NY,n) and Pn(NXY k1k2 − 1|l, k1, k2, NX,n, NY,n, NZ,n) cor-
responding to the precalculated single sequence probabilities for sequence n of the
database.

Following the procedure used by Senes et al. [74], the statistical analysis was limited
to the most hydrophobic window of all transmembrane domains consisting of either 18
amino acids (analysis of phenylalanine containing motifs) or 23 amino acids (analysis of
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histidine motifs and motifs with charged amino acids) which were determined using the
GES scale [147]. Slightly longer sequences were used for the latter analyses in order to
account for the polar nature of the analyzed residues. For every motif evaluated with the
TMSTAT algorithm, the observed occurrence was counted from the non-redundant se-
quence database and compared to the expected occurrence obtained from the calculated
probability distribution:

N̄XY k =
∑

NXY k

NXY kPDB(NXY k)
�� ��2.3

The statistical significance of the difference between observed and expected occurrence
was assessed using the two-tailed integral of the probability distribution.
In case transmembrane domains consisting of more than 23 amino acids had to be con-

sidered or motifs consisting of more than three amino acids or with amino acid spacings
of more than five positions were analyzed, the TMSTAT approach was not applicable. In
these cases, the expected number of occurrence for a given motif was calculated using a
simplified approach relying on average database amino acid frequencies instead of single
sequence analysis. To this end, the probability of observing the analyzed motif within a
sequence of predefined length was calculated from the individual amino acid frequencies
of all contributing motif residues and the number of positions the motif can occur in
the given sequence considering the length of both sequence and motif. Multiplying this
probability with the number of sequences within the database resulted in the expected
occurrence of this motif.

2.2.2 Results

Depending on the previous experiments, different database analyses were executed for
identified interaction motifs. In the following, main results of these analyses will be pre-
sented starting with the strong candidate motif FxxGxxxG, followed by His-containing
motifs and finishing with motifs consisting of one or more charged residues.

Occurrence of FxxGxxxG and related motifs

In order to examine the potential relevance of the FxxGxxxG motif for self-interaction of
natural transmembrane domains, its frequency of occurrence was analyzed in comparison
to that of related motifs in 19,854 non-redundant bitopic membrane proteins. In total,
2394 sequences from this dataset originated from the intensively annotated Swiss-Prot
database while the remaining sequences were obtained from the computer-annotated
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TrEMBL database [144]. From this dataset of bitopic protein transmembrane sequences,
the abundances of the GxxxG motif and of various F/GxxxG triplets were extracted and
compared to their expected occurrences as determined using the TMSTAT formalism
[74].

Initially, to test the quality of the obtained dataset and to ascertain the validity of
subsequent analyses, the occurrence of the GxxxG motif was calculated which was pre-
viously shown to be significantly overrepresented in transmembrane helices of naturally
occurring membrane proteins [45, 74]. In total, 12.4% of all sequences contained this
motif which is in perfect agreement with the results reported by Senes et al. based on
their Swiss-Prot dataset (12.5%) [74]. The overrepresentation of GxxxG in the dataset
was highly significant with a p-value of 3.32E-23.

In the second step, frequencies of different triplet motifs containing a Phe residue
placed within one helical turn either N- or C-terminal of a GxxxG motif were compared
(Table 2.2). Notably, the FxxGxxxG motif was found to be the most overrepresented one
of all these motifs, occurring 42% more often than expected (ratio observed/expected
= 1.42). This observation is highly significant with a p-value of 1.08E-6. In total, the
FxxGxxxG motif was detected 210 times in transmembrane domains of 207 different
proteins corresponding to 1% of all sequences in the database. Only the motif GxxxGxF
is overrepresented roughly at the same level with a ratio observed/expected of 1.38
(p = 4.38E-6). Some other motifs appeared to be less frequent, yet still significantly
overrepresented (GxxFG and GxxxGF). The remaining motifs were found to be either
slightly overrepresented or to occur as often as expected.

Additionally, the occurrence of triplet motifs where Phe at the -3 position of GxxxG
is replaced by Trp or Tyr was analysed (Table 2.2). In both cases, the observed oc-
currence was clearly lower than expected (YxxGxxxG, ratio observed/expected = 0.90;
WxxGxxxG, ratio observed/expected = 0.80). However, due to the low abundance of
these motifs, these underrepresentations are statistically not significant. These results
show that the motif FxxGxxxG is significantly overrepresented in naturally occurring
transmembrane domains of single-span membrane proteins which suggests its function
as interaction motif. The statistical analysis additionally underlines the specific role of
Phe compared to other aromatic amino acids.

Based on these results, further experiments were conducted by Stephanie Unterre-
itmeier. First, one of the 207 bitopic membrane proteins containing a FxxGxxxG
motif, the vesicular stomatitis virus G protein (VSV-G), was selected and tested for
self-association using the ToxR/POSSYCAT system. After demonstrating its principal
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Table 2.2: Statistical analysis of triplet motif frequencies containing GxxxG and one aromatic
residue (Phe, Trp, Tyr) at different spacings in a non-redundant database of bitopic mem-
brane proteins. Expected numbers of occurrence and significances were calculated using
the TMSTAT approach. From all tested motifs, the motif FxxGxxxG was most strongly
overrepresented.

Triplet Occurrence Expectation Odds ratioa Significance (p)

FxxxGxxxG 134 134 1.00 1
FxxGxxxG 210 148 1.42 1.08E-6
FxGxxxG 172 161 1.07 0.411
FGxxxG 221 175 1.26 0.001
GFxxG 211 188 1.12 0.100
GxFxG 204 188 1.09 0.255
GxxFG 243 188 1.29 9.59E-5
GxxxGF 226 175 1.29 1.61E-4
GxxxGxF 222 161 1.38 4.30E-6
GxxxGxxF 185 148 1.25 0.003
GxxxGxxxF 159 134 1.19 0.038
WxxGxxxG 32 40 0.80 0.219
YxxGxxxG 32 36 0.90 0.640
a Odds ratio: ratio of observed occurrence divided by the expected occur-
rence.

potential for significant interaction, further mutational analyses were executed to prove
that self-interaction is strongly affected by all residues forming the FxxGxxxG motif.
Additionally, the dependence of self-association on the spacing between Phe and the
GxxxG motif was examined experimentally. It could be shown that FxxGxxxG is the
only motif promoting strong helix association while Phe positioned at a different spacing
with respect to GxxxG seems to have no positive effect. Furthermore, the replacement
of Phe by another aromatic residues also leads to clearly reduced interaction strength
confirming the singularity of the interaction motif FxxGxxxG (for further details refer
to [136]).

Occurrence of sequence motifs containing histidine

The biological relevance of His-containing motifs was again analyzed using natural
bitopic membrane proteins, however with less clear results as in the case of the FxxGxxxG
motif. The observed occurrence of residue pairs consisting of His and either Gly,
Ser or Thr that were found to increase self-association experimentally ([G/S/T]xxxH,
[G/S/T]H, Hx[G/S/T]) was generally not significantly higher than expected with the
TMSTAT approach. Only the motif SxxxH was significantly overrepresented with a
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ratio observed/expected of 1.20 (p = 0.004). Similarly, the motif HxxxxxxGxxxG was
detected in 12 proteins closely resembling the expected occurrence of 11.5 times. Gen-
erally, the TMSTAT analysis of His-containing motifs is strongly limited by the lack of
histidine residues within transmembrane helices (<1% in the bitopic dataset) leading to
small absolute numbers and hence insignificant results.

However, several membrane proteins could be identified that carry even more complex
His-containing motifs consisting of the basic HxxxxxxGxxxG motif in combination with
an additional Gly, Ser or Thr residue. Using only the most hydrophobic 23 amino acid
stretch of each transmembrane domain, in total five non-redundant sequences with such
motifs could be found. Extending the analysis to transmembrane domains elongated
to 30 amino acids to account also for flanking regions possibly enriched in polar amino
acids, 19 hits were identified. Interestingly, motifs of the type [G/S/T]HxxxxxxGxxxG
were most frequent which is in line with the experimental observation that this motif
(containing Thr) was found to promote stronger self-interaction than the other tested
motifs. While a large fraction of all detected proteins with a His-containing motif were
found to be still uncharacterized, several were also functionally annotated such as a num-
ber of BNIP3 homologs carrying the motifs THxxxxxxGxxxG and SHxxxxxxGxxxG,
the probable ubiquinone biosynthesis protein ubiB (motif HxTxxxxGxxxG) and a N-
acetylmuramoyl-L-alanine amidase (motif HxSxxxxGxxxG). Subsequent experimental
confirmation of self-association of a 16 residue BNIP3 construct demonstrated that nat-
ural bitopic membrane proteins contain variants of His-containing motifs that are likely
to self-interact and induce oligomerisation although the enrichment of such motifs in
naturally occurring sequences can not be shown significantly.

Occurrence of sequence motifs containing charged residues

Prompted by the enrichment of oppositely charged residues within high-affinity se-
quences of the second library screen (Library Leu), natural bitopic membrane proteins
were analyzed for the occurrence of charged amino acids in combination with GxxxG
motifs. Searching for single charged residues placed up to eleven positions up- or down-
stream of a GxxxG motif resulted in several motifs being significantly enriched in nat-
urally occurring transmembrane domains despite the general low frequency (<2%) of
charged amino acids in transmembrane domains (Figure 2.3, Table 2.3). Most strongly
overrepresented were the motifs KxxxxxxxxxGxxxG and DxxxxxxxxxxGxxxG with ra-
tios observed/expected of 2.46 and 2.54, respectively. In total, 1179 non-redundant
transmembrane domains were identified containing GxxxG and one or more charged
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residues corresponding to 4.6% of all non-redundant sequences or 37% of all sequences
with a GxxxG motif.
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Figure 2.3: Enrichment of motifs consisting of GxxxG and a charged amino acid N-terminal of
GxxxG in naturally occurring bitopic membrane proteins. Shown is the relative position of
the charged amino acid with respect to the GxxxG motif. From all tested motifs, nine were
found to be significantly overrepresented within bitopic membrane proteins (indicated by *).

Table 2.3: Significantly overrepresented motifs consisting of GxxxG and a charged amino acid. In
total, 11 motifs significantly enriched in bitopic membrane proteins were detected.

Triplet Occurrence Expectation Odds ratioa Significance (p)

RxxxxxGxxxG 25 14.3 1.75 0.0061
KxxxxxxxxxGxxxG 24 9.8 2.46 0.0001
KxxxGxxxG 25 14.5 1.73 0.0071
GxxxGxK 24 16.4 1.46 0.0451
GxxxGxxxxK 25 13.5 1.85 0.0031
DxxxxxxxxxxGxxxG 15 5.9 2.54 0.0012
DxxxxxxxxxGxxxG 12 6.6 1.81 0.0379
DxxxxxxxxGxxxG 13 7.4 1.76 0.0375
DxxxxxxGxxxG 15 8.9 1.70 0.0360
DGxxxG 22 12.9 1.71 0.0120
ExxxxxxGxxxG 16 9.9 1.62 0.0440
a Odds ratio: ratio of observed occurrence divided by the expected occurrence.

All sequences containing GxxxG and a charged amino acid either C- or N-terminal
of the GxxxG motif were further analyzed for the presence of polar residues (Cys, Ser,
Thr, His, Asn, Gln, Tyr, Gly). To this end, the frequency of polar residues at a specific
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distance to the GxxxG motif was counted within all sequences containing a charged
amino acid at another position and compared to the expected frequency as obtained
from all sequences having a GxxxG motif. In total, 220 different motifs consisting of a
charged amino acid, a polar amino acid and the GxxxG motif were tested. Thereof, 92
motifs were enriched within the subset of sequences with charged amino acid, 24 motifs
even significantly with p<0.05.

Addressing sequence motifs consisting of two charged residues and a GxxxG motif as
obtained from the experimental screen, in total 91 transmembrane domains could be
detected containing such a motif within the non-redundant dataset of 25,558 sequences.
From these domains, 42 had both charged residues placed N-terminal of the GxxxG motif
and 24 contained two oppositely charged residues. Apart from several uncharacterized
proteins, several functionally annotated proteins were detected among these sequences
such as a lipid A biosynthesis lauroyl acyltransferase, a subunit of NADH dehydrogenase
and of cytochrome b5. Charged residues were therefore not only found to form several
significantly overrepresented motifs with GxxxG, but several natural bitopic membrane
proteins even contain motifs with multiple charged residues likely to be important not
only for membrane protein function but also for the structure of transmembrane domains
as indicated by ToxR/POSSYCAT experiments.

2.2.3 Discussion

Genetic screening tools such as the ToxR/POSSYCAT system are well suited to identify
transmembrane sequences with high potential for self-association. Site-specific mutation
analyses can further evaluate the contribution of individual amino acids to helix assembly
thereby revealing minimal sequence motifs sufficient for successful helix interaction.
However, these experiments can not secure that these motifs are indeed biologically
relevant and not only an evolutionary possibility. To this end, database analyses of
naturally occurring membrane proteins are a necessary step in the analysis of helix
interaction motifs.

Here, several sequence motifs were presented that could be shown to promote high-
affine helix interaction within the ToxR/POSSYCAT system and whose biological sig-
nificance was further secured by analysis of bitopic membrane protein sequences. All
motifs are variants of the GxxxG motif which is known to promote strong helix inter-
action [72, 73] although energetic measurements suggested that sequence context may
strongly modulate interaction strength [77, 131]. The identification of specific amino
acids that stabilize GxxxG-mediated helix interaction is therefore an important step in
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the understanding of transmembrane helix association. Interestingly, these amino acids
were found to be highly diverse ranging from aromatic phenylalanine to single charged
residues or combinations of oppositely charged side-chains, which is in line with previ-
ous results suggesting that transmembrane helix interfaces are in fact more diverse than
those of soluble proteins [60, 61].

The FxxGxxxG motif is frequently found in bitopic membrane domains

Optimally, sequence analysis and experiments complement each other as observed in the
case of the sequence motif FxxGxxxG. This motif, which was experimentally found to
promote high-affine helix interaction, was also the most significantly enriched arrange-
ment of Phe and GxxxG in a dataset of non-redundant bitopic membrane proteins.
Mutational analysis of one example protein found to contain the FxxGxxxG motif (the
viral fusion protein VSV-G) further confirmed that Phe as well as the GxxxG motif
are essential for helix interaction in this case. In contrast, similar motifs replacing Phe
with other aromatic residues (WxxGxxxG and YxxGxxxG) were found to occur less
frequently than expected in natural bitopic transmembrane domains consistent with the
experimental observation that both motifs can not promote helix self-interaction. Mech-
anistically, this suggests that only Phe residues are appropriately sized for close helix
association and/or can be properly oriented to enter aromatic π-π interactions or form
a hydrogen bond between the Cα-H of Gly and the Phe side-chain.
Naturally, sequence analysis will always reveal motifs significantly overrepresented

yet not found to self-interact within the ToxR/POSSYCAT system such as a number of
additional motifs containing Phe and GxxxG (Table 2.2). First, overrepresentation may
arise not only due to structural but also due to functional reasons. Additionally, within
a structural context motifs may also be responsible for heterotypic helix interactions or
may require additional residues not included within a specific sequence library. In the
case of Phe, previous analyses of helix interactions of polytopic membrane proteins have
confirmed the importance of Phe for heterotypic helix interactions [60, 148] suggesting
that this might also be the reason causing the enrichment of other F/GxxxG motifs in
bitopic transmembrane domains.

His-containing motifs promote helix interaction in artificial and natural
transmembrane domains

The imidazole side-chain of histidine has principally both acidic and basic properties
making it a prominent participant in intra- and inter-protein hydrogen bonds. Accord-
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ing to an analysis of membrane protein structures, more than one-third of all inter-helical
hydrogen bonds are formed by either His, Ser or Thr [130]. Using the ToxR/POSSYCAT
system, the role of histidine in high-affine helix interactions was now further evaluated.
It could be shown that helix interactions mediated by His are strongly dependent on se-
quence context requiring either the additional presence of polar residues (Ser/Thr/Gly)
or a GxxxG motif within the interface. While polar side-chains may serve as poten-
tial hydrogen bond partners, the GxxxG motif seems to stabilize helix interaction by
properly orienting the histidine side-chains.

Analyzing transmembrane domains of naturally occurring bitopic membrane domains,
several examples containing the motif HxxxxxxGxxxG could be identified. However, as
histidine is rarely found within transmembrane regions (<1% overall frequency), no sta-
tistical significant enrichment of this or related motifs containing His could be observed.
Still, histidine is able to promote strong helix interaction within natural transmembrane
domains via polar residues and a GxxxG motif as illustrated by the protein BNIP3, one
of the examples identified from the database of bitopic proteins. BNIP3 is known to
form a homodimer with the motif SHxxAxxxGxxxG forming the interaction interface as
discovered using mutagenesis studies and NMR spectroscopy [149, 150]. Thereby, histi-
dine was shown to form multiple hydrogen bonds with the neighboring serine residue.
Although other interaction motifs such as the previously presented FxxGxxxG may
therefore be easier approachable by evolution leading to more significant overrepresen-
tation within natural membrane proteins, the example of BNIP3 nevertheless clearly
demonstrates the biological relevance of the less numerous His-containing motifs such
as HxxxxxxGxxxG and variants.

Charge-charge interactions require stabilization via a GxxxG motif

In addition to the detailed analysis of histidine in helix interaction interfaces, the role
of charged side-chains and accordingly ionic interactions for helix association was sepa-
rately addressed with mutation experiments and sequence analysis of bitopic membrane
proteins. In contrast to an earlier analysis, which suggested that charged amino acids
per se are not beneficial for transmembrane helix interaction [151], it was observed that
oppositely charged amino acids are enriched in high-affine transmembrane domains and
that heterotypic helix interaction is enhanced by the incorporation of such oppositely
charged residues. However, all selected high-affine domains additionally contained a
GxxxG motif and subsequent experiments proved that this motif is essential for inter-
action with pairs of charged amino acids alone not being able to promote strong helix
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association. Hence, GxxxG seems to be required for bringing charged residues in appro-
priate positions and orienting them for proper ionic interactions, similarly as observed
in case of the motif FxxGxxxG and also the His-containing motifs.
The importance of the motif GxxxG for ionic interactions was further confirmed by

the observation that sequence motifs consisting of a single charged amino acids and
GxxxG are commonly enriched in natural bitopic membrane domains (several motifs
even significantly). Sequences containing several charged amino acids such as inferred
from experimentally selected high-affine transmembrane domains were also found, how-
ever less commonly, which is not surprising given the general low frequency of charged
amino acids in transmembrane domains (<1% for Arg, Lys, Asp, Glu, respectively). Mo-
tifs consisting of a charged residue, a polar residue and GxxxG on the other hand could
again be found more commonly as expected, which is in agreement with results gained
from the executed mutation experiments indicating that helix interactions promoted by
charged residues can be further enhanced by the presence of polar side-chains.
Importantly, significantly overrepresented motifs containing GxxxG together with a

charged amino acid were further tested experimentally for their capability to interact in
heterotypic fashion and one pair of motifs containing either Asp six position or Lys nine
positions N-terminal of GxxxG were in fact found to interact successfully. While several
motifs might be still overrepresented due to other reasons (charged amino acids for
example might be functionally relevant while the GxxxG motif alone could be required
for helix association), ionic interactions between oppositely charged amino acids are
clearly one of the possibilities of natural membrane proteins to achieve high-affine helix
association if they are stabilized via a GxxxG motif.
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3
Co-evolving residues in membrane

proteins

In contrast to the preceding chapter which presented results gained from a combination
of experimental and computational analyses, all following chapters will concentrate now
on the fully computational analysis of helix-helix contacts and helix interactions in
membrane proteins.

First, the prediction of residue contacts within transmembrane regions of membrane
proteins will be addressed within the current and the subsequent chapter. Available ap-
proaches to predict residues participating in helix-helix contacts are generally based on
the idea of identifying membrane-exposed and buried residues [122, 152, 153]. However,
pairs of contacting residues can not be predicted with these methods. Methods dealing
with the pairwise prediction of residue contacts specifically within transmembrane por-
tions of membrane proteins are so far still lacking prompting the evaluation of possible
routes in this direction.

In order to maintain protein function, mutations which tend to destabilize a partic-
ular protein structure may provoke other positions to mutate concurrently in order to
compensate for the loss of stability. Amino acid contacts have been suggested to be pri-
mary spots of these compensatory processes, making the detection of sequence positions
with correlated mutational behavior an important feature for residue contact prediction
methods.

While first examples of such compensatory mutational changes were described by an-
alyzing individual families with solved structure [154, 155], several large scale analyses
have been executed since then (for example [156, 157, 158, 159]). However, most studies
on co-evolving residues so far were conducted on soluble proteins. Membrane proteins
were considered only in few individual case studies [160, 161, 121, 120]. Due to the
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paucity of three-dimensional structures, a general analysis of co-evolving residues in a
large non-redundant dataset of membrane proteins is still missing. With the accumula-
tion of more membrane protein structures in recent years, this analysis has now become
feasible.

Within the following chapter, the first large-scale analysis of co-evolving residues in
membrane proteins is presented and their potential for the identification of helix-helix
contacts is evaluated. First, the introduction will shortly summarize preceding work on
co-evolving residues including their current status within contact prediction approaches
for soluble proteins. The remaining sections will then introduce the dataset of membrane
protein structures used for evaluation purposes, describe execution and main results of
all performed analyses and will discuss possible applications for co-evolving residues
in membrane proteins based on these results. Furthermore, a new consensus predic-
tion method for correlated mutations in membrane proteins called HelixCorr will be
introduced which improves the prediction accuracies obtained by individual prediction
algorithms.

All main results of this chapter were published in [162].

3.1 Introduction

3.1.1 Detection of co-evolving residues

While the first approach to detect co-evolving residues in a multiple sequence alignment
was published already in 1994 [163], a variety of additional detection algorithms have
been reported since then. The strategy most commonly used relies on the calculation of
a Pearson correlation coefficient to detect alignment positions with similar patterns of
amino acid change [163, 164, 165, 156, 166, 167, 168]. Other prediction algorithms try to
detect significant co-evolution based on a chi-square goodness-of-fit test comparing the
observed co-occurrence of two residues with their expected co-occurrence [169, 170, 171],
by using a maximum likelihood approach [172] or through the application of information
theory [173, 174, 175]. An alternative approach is constituted by perturbation-based
methods such as SCA (Statistical Coupling Analysis) [176, 177, 178] where co-evolution
of residues is identified by the analysis of statistical coupling of amino acid distributions.
Subalignments having a changed amino acid distribution at certain positions are used
to evaluate the effect of this perturbation on the residue compositions at other positions
of the alignment.
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Common to all prediction algorithms is the generally high number of false positive
predictions caused by random noise or misleading phylogenetic signals. Accordingly,
several authors have proposed means to reduce false positives by applying special filtering
steps [168, 179] or including phylogenetic information about the analyzed sequences in
the prediction process [180, 181, 121, 171, 182]. Lately, especially information theory
based approaches have been significantly enhanced by filtering procedures addressing
background noise [183, 184] giving hope that other currently used methods may also
still offer room for further improvement.

3.1.2 Residue contact prediction using co-evolving residues

Originally, most approaches for detecting co-evolving residues were developed with the
goal to use these residues for predicting residue contact pairs. Following common prac-
tice as performed also in recent CASP experiments [185, 186], obtained contact predic-
tions are generally evaluated and compared by providing contact prediction accuracies
corresponding to the fraction of correctly predicted contacts out of all correlated residues
found. Several authors calculate also the completeness of the prediction (fraction of cor-
rectly predicted contacts out of all real contacts). As both prediction accuracy and
completeness depend strongly on the number of predicted contacts, this number is most
often selected not dependent on the obtained correlation score but dependent on the
length of the protein under analysis to make different predictions better comparable to
each other.

Following two independent comparative studies [158, 159], individual prediction meth-
ods can be clearly ranked in their ability of predicting residue contacts via the detec-
tion of mutationally correlated positions. In both analyses, methods based on Pearson
correlation coefficients or using a chi-square goodness-of-fit test clearly outperformed
perturbation-based methods or approaches using information theory. However, recent
publications have suggested that the reduction of background noise may improve the
contact prediction of the latter methods to a level at least equal or even better than the
best methods available so far [183, 184]. Independent of the prediction method used, sev-
eral studies consistently reported that decreasing prediction accuracies can be expected
with increasing protein size [163, 156], while alignment size positively correlates with
prediction accuracy [175, 187]. Evaluating contact prediction performance on different
structural classes (all-β, all-α, α+β, α/β) resulted in high contact prediction accuracies
for proteins with mixed secondary structure (α+β, α/β), while the predictive accuracy
for all-α proteins was clearly reduced compared to the average accuracy [187, 188].
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Despite all progress in the development of new methods, prediction accuracies for
structural contacts in globular proteins hardly exceeded 20% with any known method
based on co-evolving residues alone (Fodor and Aldrich, 2004), strongly limiting the
practical utility of the predicted contacts as structural constraints in ab initio structure
prediction. While some authors have explained these low contact prediction accuracies
with the difficulty of differentiating correlation signal from random noise [172, 165],
recent studies indicate that co-evolution of amino acids in fact may originate not only
from structural contacts but from a much broader range of biological reasons motivating
a couple of other fields of application (see below). Currently best performing contact
predictors for soluble proteins are therefore also not based on co-evolving residues alone,
but mostly use sequence co-evolution together with other sequence features as input for
machine-learning approaches (see section 4.1 as well as [189, 190, 191]).

3.1.3 Other applications for co-evolving residues

In addition to residue contact prediction, co-evolving residues have been employed for a
number of other fields of application. When using them as constraints in ab initio fold-
ing simulations, the global fold of 20 non-homologous proteins with less than 100 amino
acids could be successfully predicted within a root-mean-square deviation (RMSD) be-
tween 3.0Å and 6.5Å [192, 193]. Furthermore, they have been used in fold recognition
experiments [157] and were also found to be helpful in detecting both interacting proteins
and interaction regions between two proteins [161, 194, 195]. In 2005, Ranganathan et
al. published results which demonstrated that their method called Statistical Coupling
Analysis (SCA) was able to detect correlation rules in the WW domain which describe
aspects of the fold architecture rather than simple protein contacts. They introduced
the concept of a fold correlation backbone which they claimed was nearly sufficient to
describe the structural architecture of a protein without additional information [196].
They impressively demonstrated the power of this idea by synthesizing artificial WW
domains solely based on the previously derived correlation model of which a substantial
percentage was able to fold into functional WW domains in vitro [197].
In addition, further contributions have demonstrated that correlated mutations may

also occur due to reasons related to protein function. Gloor et al. analyzed 12 mutations
of the ATP synthase ε subunit and 7 missense mutations of the homeodomain coming
to the conclusion that co-evolving residues mutating concurrently with several other
residues are more likely to be functional sites than structural contacts [174]. Within
a study on the Hsp70-Hop-Hsp90 system, regions previously known to be functionally
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important could be identified based on residue co-evolution [198]. Additionally, the au-
thors pointed out that co-evolving amino acids were often found to be in close proximity
to functionally important sites. Similar results were obtained in an analysis of correlated
mutations within the cytochrome c oxidase subunit I where many co-evolving residues
were found adjacent to hypothesized proton pumping channels [199]. In a recent study,
Lee et al. provided further evidence for the hypothesis that correlated mutation may
be related to functional importance in an analysis of 44 selected protein families [200].
Accordingly, residue co-evolution seems to be a phenomenon employed by evolution to
gain variety while concurrently conserving structural hot-spots of a protein but simi-
larly it may also be used to secure a proteins ability to interact with other proteins or
conserve its core functionality.

3.2 Materials and methods

3.2.1 Membrane protein datasets

Dataset of high-quality alignments

To obtain a dataset of membrane proteins having a solved structure and carefully cu-
rated alignments, protein sequences were taken from the first version of the CAMPS
database of membrane proteins [36] covering 120 prokaryotic genomes. For all proteins,
CAMPS contains transmembrane segment annotations predicted by TMHMM 2.0 [97].
Furthermore, it provides clusters of related sequences at different granularity levels with
precalculated and often manually curated cluster alignments.

For the study of co-evolving residues all SC-clusters were extracted from CAMPS. At
this clustering level, the generated groups of proteins roughly correspond to structural
folds. As co-evolving residues should be predicted specifically within transmembrane
domains, conserved transmembrane regions (TMS cores) were extracted from CAMPS
and concatenated to form sequences representing only the transmembrane parts of each
protein. From the set of pre-aligned TMS sequences all sequences considered inappro-
priate for the analysis were discarded. Since highly similar sequences might result in few
correlations due to a lack of variability, sequences with a pair-wise identity above a pre-
set threshold were considered redundant and removed. Different thresholds were used
in individual predictions ranging from 95% pairwise identity down to 50% identity. The
thresholds were chosen dependent on the total number of sequences in the alignment to
allow for an optimal tradeoff between a minimal number of required sequences and suf-
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ficient sequence diversity for a successful prediction. In addition, sequences with 25% or
more gaps within at least one TMS were removed. According to these rules, the number
of removed sequences varied between 3 in clusters with well-aligned sequences uniformly
covering the cluster sequence space and 346 in the case of a cluster with several tightly
connected subclusters. The final number of sequences in individual alignments ranged
from 20 to 228.
During an initial prediction step, co-evolving residues were predicted for all SC-

clusters of CAMPS. In a subsequent selection step clusters found to be suboptimal
due to high sequence diversity were either discarded in case the number of valid se-
quences in the final multiple alignments was below 15 or replaced by sub-clusters with
higher similarity among their members. Inappropriate clusters were identified by either
an average pair-wise identity of below 15% or an extremely small number of obtained
correlations (less than one per TMS). This procedure was repeated until a cluster was
either appropriate for the analysis of correlated mutations or had to be removed due
to an insufficient number of sequences. In total, starting from 266 SC-clusters cur-
rently available in CAMPS 91 optimal clusters were obtained, 14 of which contained a
representative structure (Table 3.1, referred to as dataset MP_14).

Table 3.1: High-quality dataset MP_14 used for the prediction of co-evolving residues.

Protein description PDB Chain TMSpred
a TMSexp

b Lc

Na neurotransmitter symporter (snf family) 2A65 A 11 12 249
Probable ammonium transporter 1XQE A 10 11 253
AcrB bacterial multidrug efflux transporter 1IWG A 12 12 262
Succinate dehydrogenase cytochrome B-556 subunit 1NEK C 4 3 77
Succinate dehydrogenase hydrophobic membrane anchor 1NEK D 3 3 71
Aquaporin Z 1RC2 A 6 6 (8)d 135
Nitrate reductase A γ subunit 1Q16 C 5 5 105
Formate dehydrogenase N 1KQF C 5 4 108
Vitamin B12 transport system permease protein 1L7V A 7 10 172
Glycerol-3-phosphate transporter 1PW4 A 13 12 262
Mechanosensitive channel protein 1MXM A 3 3 79
ATP synthase subunit A 1C17 M 5 (6)e 4 128
Preprotein translocase secY subunit 1RHZ A 10 10 228
Fumarate reductase cytochrome B subunit 1QLA C 5 5 117
a TMSpred: number of transmembrane segments predicted with TMHMM.
b TMSexp: number of transmembrane segments determined from the PDB structure.
c L: length of the alignment consisting only of transmembrane segments.
d Protein contains two membrane loops which were not considered.
e PDB structure covers only five of all six transmembrane segments.
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Full dataset of membrane protein structures

While the high-quality dataset was used to test optimal conditions for the prediction
of co-evolving residues in membrane proteins, a second larger dataset was compiled
covering all non-redundant alpha-helical membrane protein structures included in the
Protein Data Bank of Transmembrane Proteins (PDBTM) [201] and the membrane
protein structure dataset provided by the Stephen White laboratory at UC Irvine (http:
//blanco.biomol.uci.edu/Membrane_proteins_xtal.html, further referred to as the
White dataset) as of September 17, 2007.

Starting with the non-redundant set of PDB chains containing alpha-helical trans-
membrane segments obtained from the PDBTM, an initial dataset of those proteins
was created whose structure was solved by X-ray with a resolution of less than 3.5Å
and which contained at least three transmembrane segments according to the PDBTM
annotation. Since this initial set consisting of 50 PDB chains was lacking several promi-
nent membrane proteins with solved structures such as rhodopsin, it was subsequently
enriched with sequences from the White dataset. To this end, all chains with less than
three transmembrane segments in their PDBTM entry were eliminated from the White
dataset. Additionally, all sequences with at least 40% sequence identity to another se-
quence with better resolution (either within the White dataset or in the initial dataset)
or with a resolution worse than 4Å were removed. Both the moderate threshold for
sequence identity and the relaxed threshold for structural resolution at this step were
concessions needed to be made due to the limited number of available membrane protein
structures. The remaining 12 sequences were merged with the sequences from the initial
dataset to form the final set of 62 protein chains originating from 52 PDB structures
(Appendix Table 9.3). This dataset is from now on also referred to as MP_62.

Exact transmembrane segment positions and the in/out topology for each protein
were obtained from the recently developed TOPDB [202], which contains comprehen-
sive topology information derived both from literature and public databases for a large
number of membrane proteins. For two cases (PDB proteins 2UUH chain A and 1ORQ
chain C) no entry could be found in TOPDB, therefore transmembrane positions for
these proteins were obtained from PDBTM and the in/out topology from OPM [203].
PDBTM summarizes results obtained with the algorithm TMDET [204], which de-
termines the position of transmembrane regions of membrane proteins from their 3D
structure, and is itself one of the databases covered by TOPDB.

The final dataset included proteins with three up to thirteen transmembrane segments
with close to 25% of all sequences (15 out of 62) containing ten or more transmembrane
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segments. Despite the liberal threshold of 40% sequence identity used for the construc-
tion of the dataset, the pairwise sequence identity in the final dataset was low, with less
than 2.5% of all possible sequence pairs having a sequence identity above 30% and less
than 0.5% having a sequence identity above 35%. Considering only the transmembrane
parts of each protein, pairwise sequence identities were slightly higher due to the hy-
drophobic nature of transmembrane segments. Still, less than 5.5% of all protein pairs
had a sequence identity of higher than 35%.
Multiple sequence alignments used for the calculation of correlation scores were de-

rived from initial alignments obtained with PSI-BLAST [205] searches against NCBI’s
unfiltered NR database [206], with three iterations and the inclusion of related database
sequences into the profile with an E-value threshold of 1x10−4. First, all positions were
removed from the full length PSI-BLAST alignment which did not correspond to any
transmembrane segment of the PDB sequence resulting in an alignment representing
only the transmembrane parts of the reference sequence. Following the procedure devel-
oped for the dataset MP_14 (see above), sequences thought to be inappropriate for the
prediction of correlated positions were discarded.

3.2.2 Prediction of co-evolving residues

Co-evolving residues were predicted using seven different prediction algorithms: McBASC
[156], OMES [169, 158], CORRMUT [121], CAPS [182], MI [174], SCA [176] and ELSC
[178]. For the McBASC algorithm two different substitution matrices (the Miyata ma-
trix [207] and the McLachlan matrix [208]) were evaluated and the OMES algorithm
was applied in two different versions, as originally introduced by Kass and Horovitz
(OMES-KASS) [169] and in its modified version presented by Fodor and Aldrich (OMES-
FODOR) [158].

McBASC

For predictions with the McBASC algorithm, the original method of Gobel et al. [163]
with its refinements as introduced by Olmea and Valencia [156] was implemented. To
select significantly correlated sequence positions a length-dependent threshold was ap-
plied by choosing only the number of highest correlated pairs corresponding to one fifth
of the protein length (L/5 criterion, only transmembrane regions were considered for
determining the protein length as correlations were only predicted for these parts of the
protein).
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OMES

First, the original version of the algorithm (OMES-KASS) [169] was implemented where
the statistical significance of the difference between observed and expected frequencies is
calculated using the chi-square goodness-of-fit test. All covariations with p-values of less
than 0.001 were considered to be significantly correlated and the L/5 most significant
correlations were selected. Additionally, co-evolving residues were predicted with the
modified OMES algorithm as provided by A. Fodor (www.afodor.net). Based on the
calculated correlation scores the L/5 highest correlated residues were selected.

CORRMUT

For predictions using the CORRMUT algorithm [121] a phylogenetic tree of all sequences
in each obtained multiple alignment was calculated and ancestor sequences at internal
nodes of the tree were reconstructed with the program FASTML (Pupko, et al., 2000).
The Miyata matrix [207] was chosen as substitution matrix. The significance of the
derived correlation coefficients was estimated by confidence intervals obtained from a
bootstrap procedure using a sample size of 400. Correlation coefficients calculated for
each sample were used to derive a mean Pearson correlation coefficient (r) as well as the
95% confidence intervals (rlow,rhigh). To identify significantly correlated residue pairs a
minimal threshold of 0.4 for the mean correlation coefficient and a minimal rlow-value of
0.05 was applied. Then, the length/5 highest correlated sequence positions were selected.
The thresholds for the mean correlation coefficient and the lower confidence boundary
were established in preliminary experiments where they were found to permit the best
tradeoff between number of detected correlations and prediction accuracy. Although
CORRMUT predictions were only obtained for the high-quality dataset, the number of
correlations satisfying these thresholds was clearly lower in comparison to other predic-
tion algorithms such as McBASC or OMES (with the exception of one protein, 1PW4
chain A).

CAPS

Predictions with the CAPS algorithm [182] were executed using the provided program
(http://bioinf.gen.tcd.ie/~faresm/software/caps/) and recommended standard
parameters. Again, a minimal correlation coefficient of 0.4 was applied as threshold
and the length/5 highest correlated pairs were selected. Similar to the CORRMUT
algorithm, predictions were only obtained for the high-quality dataset as the algorithm
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seemed to be highly sensitive to alignment quality. Still, predictions for only five proteins
could be obtained (1XQE chain A, 1IWG chain A, 1RC2 chain A, 1L7V chain A, and
1RHZ chain A). In all other cases the number of sequences in the multiple alignment
(generally less than 50) seemed to be insufficient for this prediction algorithm.

MI

The MI algorithm was implemented as described earlier in comparative studies on cor-
related mutations [159]. The L/5 pairs with the highest MI score were selected.

SCA / ELSC

Both algorithms were used in the implementation provided by A. Fodor (www.afodor.
net). The L/5 correlations with the highest score were again chosen in both cases.

3.2.3 Structural validation

Observed distances between residue pairs were extracted by calculating the minimal
distance between side chain or backbone atoms of the two residues. Two residues were
considered in contact if their minimal distance was less than 5.5Å. The 5.5Å cutoff was
chosen as the maximal distance between a pair of heavy (i.e., non-hydrogen) atoms that
is indicative of a direct contact; at larger distances, a third atom may fit in between the
atom pair. Other studies on correlated mutations have often used a contact definition
based on Cβ-distances and a 8Å cutoff. However, due to the regular backbone confor-
mation of alpha-helical membrane proteins a contact criterion incorporating side chain
atoms seems to be better suited for the analysis of helix-helix interactions. Neverthe-
less, contact prediction accuracies based on Cβ-distances and a contact threshold of 8Å
were also calculated showing only minor deviations from the presented results (data not
shown).
The prediction accuracy (fraction of correctly predicted contacts out of all correlations

found) was calculated from the number of predicted contacts and the number of observed
contacts considering only those correlated pairs lying on different transmembrane helices.
In order to estimate the significance of the obtained prediction, a p-value was calculated
describing the enrichment of contact pairs within all co-evolving residues. This was done
based on the hypergeometric distribution and the probability to pick a residue pair in
contact by random.
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Since correlated positions may contain information beyond mere physical contacts
between individual residues, two additional quality measures were used to investigate
the prediction outcome. First, the harmonic average Xd as introduced by Pazos et al.
[194] was used as a measure of relative proximity rather than direct contact. For the
calculation of the Xd value the distribution of Cβ-distances between correlated residues
was compared to the distribution of distances for all pairs of positions. Distances from
both distributions were grouped into bins of 4Å and the difference between the two
distributions was calculated for each bin. The differences were weighed with the inverse
of the normalized distance of the corresponding bin and were added. When analyzing the
results, a value of Xd = 0 indicates no separation between the two distance distribution,
while Xd > 0 indicates a shift of correlated residues towards smaller distances. The
larger a positive Xd-value the more successful is the corresponding prediction:

Xd =
n∑

i=1

Pic − Pia

din

�� ��3.1

where Pic and Pia are the percentages of correlated and all residue pairs with distance
between di and di−1, di is the upper limit of each bin (normalized to 60) and n is the
number of distance bins (15 for the range from 4 to 60Å).

Additionally, a ’δ-analysis’ [209] was used to investigate the position of found correla-
tions with respect to observed helix-helix contacts. Within this analysis the fraction of
correlations with residues i and j was calculated which have an observed contact between
residues in the interval {i-δ,i+δ} and {j-δ,j+δ}. With δ=4 the fraction of correlations
where both participating residues lie within one helix turn of residues forming an interhe-
lical contact was detected. Again a p-value was calculated based on the hypergeometric
distribution to estimate the significance of the prediction.

3.2.4 Consensus prediction of co-evolving residues in membrane
proteins

A consensus prediction method for co-evolving residues within transmembrane regions
was developed combining detected co-evolving residues from different prediction meth-
ods while concurrently filtering likely false positive predictions. Within the full con-
sensus approach, all methods were considered except SCA and MI as their individ-
ual contact prediction performance was found to be clearly inferior compared to all
other methods. Additionally, a reduced version of the consensus method was tested
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incorporating only predictions of the four best performing methods (McBASC-Miyata,
McBASC-McLachlan, OMES-KASS and CAPS).
Within a first prediction step, the consensus method obtains co-evolving residues

using all methods considered for the prediction. These residues are then combined and
mapped on transmembrane helix pairs. All correlations found on helices with a total
amount of correlations less than a predefined threshold N are removed within a second
step as these residues are likely to be false positive predictions.
The developed method is available in both versions (full and reduced) under the name

HelixCorr at http://webclu.bio.wzw.tum.de/helixcorr/.

3.3 Results and discussion

3.3.1 Selection of optimal sequence alignments

For the analysis of co-evolving residues in membrane proteins a procedure was devel-
oped to extract optimal protein clusters and hence optimal sequence alignments from
the CAMPS database of membrane proteins [36]. Starting with all 266 clusters corre-
sponding to structural folds (SC-clusters), clusters whose sequences were too diverse to
allow for reliable predictions were discarded or replaced by sub-clusters. On the other
hand, since highly similar sequences might result in few correlations due to a lack of
variability, sequences with a pairwise identity above a pre-set threshold were considered
redundant and removed. Based on this selection procedure, 91 optimal protein clusters
were selected, of which 14 contained at least one representative protein structure forming
the dataset with high-quality alignments (dataset MP_14, Table 3.1, page 46).
Multiple alignments for these clusters were obtained by concatenating transmembrane

core sequences extracted from CAMPS. Co-evolving residues were extracted using seven
different prediction algorithms (McBASC [156], OMES [169, 158], CORRMUT [121],
CAPS [182], MI [174], SCA [176], ELSC [178]) which broadly cover the range of predic-
tion approaches known from literature. Additionally, two different substitution matrices
(the Miyata matrix [207] and the McLachlan matrix [208]) were evaluated in combina-
tion with the McBASC algorithm (McBASC-Miyata, McBASC-McLachlan) and the
OMES algorithm was applied in two different versions, as originally introduced by Kass
and Horovitz (OMES-KASS) [169] and in its modified version presented by Fodor and
Aldrich (OMES-FODOR) [158], resulting in a total of nine different predictions for ev-
ery multiple alignment. The number of significantly correlated residue pairs was chosen
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proportional to the length of the multiple alignment by extracting the top L/5 corre-
lations, with L being the alignment length. However, in the case of the two prediction
algorithms CORRMUT and CAPS the number of obtained correlations with a minimal
correlation coefficient of 0.4 was less than L/5 in most proteins. Figure 3.1 shows the
sequence separation between all co-evolving residue pairs obtained by this procedure. A
clearly resolved peak corresponding to a sequence separation of four residues (one turn
of an alpha-helix) is observed which confirms that the obtained multiple alignments are
indeed well suited for the prediction of co-evolving residues in membrane proteins.

Figure 3.1: Sequence separation of co-evolving residues detected in the dataset MP_14 with nine
different prediction algorithms. The top L/5 correlations were considered for every protein
and every prediction method (L being the alignment length). Residue pairs separated by one
helix turn are most commonly found to mutate concurrently.

3.3.2 Helix-helix contact predictions obtained with different
prediction algorithms

In order to evaluate the ability of individual algorithms to predict structural contacts in
membrane proteins, contact prediction accuracies (fraction of correctly predicted con-
tacts out of all correlations found) were calculated for all correlations with residues lying
on separate transmembrane segment. For the dataset MP_14, between 3% (SCA) and 9%
(McBASC-McLachlan) of these correlations were found to be helix-helix contacts (Table
3.2). The McBASC algorithm was slightly better when using it in combination with the
McLachlan than the Miyata matrix. While the ELSC algorithm was clearly better than
its predecessor SCA, the OMES algorithm in its original version as introduced by Kass
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and colleagues was slightly better than its later version published by Fodor and Aldrich.
According to a hypergeometric distribution significant predictions with p-values of less
than 0.001 were obtained for all prediction methods except SCA.

Table 3.2: Contact prediction accuracies with different prediction algorithms applied to the dataset
MP_14. CONSENSUS-14 and CONSENSUS-R-5 correspond to two consensus predictions,
where predicted correlated mutations obtained with different prediction algorithms are com-
bined. The algorithms McBASC and OMES obtain the highest prediction accuracies of all
individual methods, only outperformed by the consensus predictions.

Method Proteins Acc [%]a P-value Xd Acc (|δ|=4) [%]b P-value

McBASC-Miyata 14 8 2.59E-14 5.6 49 3.91E-30
McBASC-McLachlan 14 9 3.05E-17 5.0 42 1.36E-16
OMES-KASS 14 8 6.37E-13 4.9 43 2.55E-17
OMES-FODOR 14 7 1.38E-11 4.0 38 4.73E-11
CORRMUT 13 7 3.26E-05 4.4 38 9.25E-06
CAPS 5 7 8.06E-04 4.4 42 5.09E-05
MI 14 5 2.08E-04 -1.8 19 0.998
SCA 14 3 0.032 0.48 26 0.152
ELSC 14 7 4.42E-09 3.2 37 2.24E-09
CONSENSUS-14 14 11 1.08E-54 8.5 53 4.1E-100
CONSENSUS-R-5 14 10 4.35E-47 6.7 51 5.18E-82
a Acc: prediction accuracy for residues lying on separate transmembrane helices.
b Acc (|δ|=4): prediction accuracy for residues lying on separate transmembrane helices with
all correlations considered to be correct lying within one helix turn of an observed contact.

Similar results were obtained when the number of selected correlations was not chosen
proportional to the length of the multiple alignment used for the prediction but varied
over a broad range independent of the protein lengths (Figure 3.2A). Again McBASC
used with the McLachlan matrix performed slightly better than the other prediction
algorithms. From the two OMES variations the original version (OMES-KASS) was
slightly superior to its variation introduced by Fodor and Aldrich except for very small
numbers of selected correlations. MI and SCA were found to be the least powerful algo-
rithms in the prediction of helix-helix contacts independent of the number of significantly
correlated residue pairs selected. The algorithms CAPS and CORRMUT were excluded
from this analysis since the number of significantly correlated residues obtained with
these two algorithms was in most proteins clearly smaller than with the other prediction
algorithms.

After evaluating the prediction of helix-helix contacts on a small set of membrane
protein structures with high-quality multiple alignments, the best performing methods
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Figure 3.2: Comparative assessment of contact prediction performance of seven methods pre-
dicting co-evolving residues on the dataset MP_14. (A) Prediction accuracies for helix-helix
contacts. McBASC-McLachlan obtains highest prediction accuracies over a wide range of
selected correlations. (B) Fraction of correlations lying within one helix turn of a helix-helix
contact (accuracy with |δ|=4). Here, the McBASC-Miyata method is superior to all other
methods.

were applied to a larger dataset consisting of 62 non-redundant membrane proteins
(dataset MP_62). Multiple alignments for these proteins were obtained using PSI-BLAST
in combination with the same sequence filters used also on the smaller dataset. Again,
prediction accuracies were calculated for all prediction algorithms (Table 3.3).

Generally, all tested methods perform with similar accuracy on the large dataset MP_62
as on the earlier introduced dataset containing only 14 membrane proteins. Again,
McBASC-McLachlan shows the highest predictive performance with even slightly in-
creased performance compared to the smaller dataset MP_14. In contrast to the smaller
dataset however, OMES-FODOR outperforms now the related OMES-KASS method.
Generally, this demonstrates, that the small dataset is well chosen resembling closely
the larger set of available membrane protein structures. All results gained on the small
dataset are therefore likely to hold also for membrane proteins in general. Secondly,
the procedure developed for deriving optimal alignments for the analysis of co-evolving
residues in membrane proteins seems to be appropriate for a large set of proteins.
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Table 3.3: Contact prediction accuracies for 62 membrane proteins (dataset MP_62).
CONSENSUS-R-5 corresponds to a consensus prediction, where predicted correlated mu-
tations obtained with different prediction algorithms are combined. Contact prediction ac-
curacies obtained on a reduced set of membrane proteins (MP_14) can be reproduced on an
increased number of membrane protein structures.

Method N(Contacts) Acc [%]a P-value Acc (|δ|=4) [%]b P-value

McBASC-Miyata 1589 12 <2.2E-16 49 <2.2E-16
McBASC-McLachlan 1589 14 <2.2E-16 50 <2.2E-16
OMES-KASS 1589 8 <2.2E-16 40 <2.2E-16
OMES-FODOR 1589 12 <2.2E-16 51 <2.2E-16
ELSC 1589 8 <2.2E-16 40 <2.2E-16
CONSENSUS-R-5 3641 14 <2.2E-16 54 <2.2E-16
a Acc: prediction accuracy for residues lying on separate transmembrane helices.
b Acc (|δ|=4): prediction accuracy for residues lying on separate transmembrane helices with
all correlations considered to be correct lying within one helix turn of an observed contact.

3.3.3 Sequence separation between co-evolving residues and
helix-helix contacts

Despite the low percentage of correctly predicted contacts, a high fraction of all correla-
tions was detected to be in direct neighborhood of helix-helix-contacts. Starting with a
general analysis of residue-residue distances within the dataset MP_14, distances between
correlated residues lying on different transmembrane segments were clearly shifted to-
wards smaller values compared to the distance distribution observed for all possible pair
of amino acids, as was already described for soluble proteins [157]. When analyzing the
results of every prediction method individually (Figure 3.3), this shift towards smaller
residues was observed for all algorithms except MI and SCA. In the case of MI, distances
between correlations were even shifted towards larger distances compared to the overall
distances distribution.

The difference between the two distance distributions can be also quantified using
the harmonic average Xd as introduced by Valencia and co-workers [194], where Xd>0
indicates a shift of the population of predicted residue pairs to smaller distances with
respect to the population of all pairs. For the dataset MP_14maximal Xd-values up to 5.6
(McBASC-Miyata) were obtained considering individual prediction methods (Table 3.2,
page 54). Intermediate Xd-values between 3.2 and 5.0 were obtained with the methods
ELSC, McBASC-McLachlan, OMES-KASS, OMES-FODOR, CAPS and CORRMUT.
Apart from the results obtained with MI and SCA (negative Xd-value or Xd close to
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Figure 3.3: Spatial distances of highly co-evolving residues (orange) obtained with nine different
prediction methods for the dataset MP_14 compared to the distribution of all residue distances
within 14 membrane proteins (black). For all methods except MI and SCA, distances between
co-evolving residues are clearly shifted towards smaller values compared to the full distribution
of distances.

zero, respectively), these results are comparable to those obtained for soluble proteins,
where a contact prediction accuracy of 9% and a Xd of 4.31 was reported for a dataset of
173 proteins using the McBASC algorithm in combination with the McLachlan matrix
[188]. However, it is noteworthy that all-alpha soluble proteins are known to be the
most difficult targets for contact prediction using correlated mutations. Using a neural
network approach, incorporating also other sequence information such as conservation or
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predicted secondary structure, an average prediction accuracy of 7% and Xd-values for
individual proteins between -5.0 and 2.7 were reported for this class of proteins [188].
While the contact prediction accuracy is comparable to the results obtained here for
alpha-helical membrane proteins, the Xd-values are clearly smaller for all-alpha soluble
proteins. The better results obtained for membrane proteins suggest that their typical
structural arrangement, with several contacting residues between approximately parallel
interacting helices, is more inclined to prompt residues lying in close structural distance
to co-evolve than this is the case for soluble all-α proteins.

Using a ’δ-evaluation’ [209], where the fraction of correlated positions i and j is cal-
culated with an observed helix-helix contact between residues in the intervals {i-δ,i+δ}
and {j-δ,j+δ}, on average up to 49% (McBASC-Miyata) of all detected correlated pairs
within the dataset MP_14 were found to be situated within the same helical turn as
an actual contact (accuracy with |δ|=4) (Table 3.2, page 54). The exact fraction dif-
fered strongly, depending on the protein and the applied prediction algorithm (data not
shown). In individual cases, such as the mechanosensitive channel protein (1MXM),
the best prediction was obtained with the MI algorithm, which, on average, performed
worse than all other prediction algorithms. Again, these results were fairly consistent
between the small and large dataset (Tables 3.2 and 3.3) although a noticeable increase
in prediction accuracy (|δ|=4) was observed for the methods McBASC-Mclachlan and
OMES-FODOR when testing them on 62 instead of 14 membrane proteins.

As presented earlier for helix-helix contact prediction accuracies, the influence of the
selected number of correlated residues on the obtained accuracy with |δ|=4 was also
analyzed (Figure 3.2B, page 55). In contrast to the prediction of helix-helix contacts,
where the McLachlan matrix performed better than the Miyata matrix, in this analysis
best results were obtained using the McBASC algorithm in combination with the Miyata
matrix over the full number of analyzed correlations. Results using SCA and MI were
again clearly inferior to results from all other prediction algorithms.

In publications on co-evolving residues in soluble proteins, low contact prediction ac-
curacies using correlated mutations have often been attributed to methodological prob-
lems in separating real correlated mutational behavior from random noise as well as to
co-evolution of distant residues due to long-range interactions [121, 176] or functional
reasons [174]. In membrane proteins, pairs or networks of compensatory mutations seem
to affect the packing context of transmembrane helices rather than the contacts them-
selves, as can be concluded from the high fraction of co-evolving residues found in direct
neighborhood to helix-helix contacts (illustrated also by Figure 3.5 on page 60). The

58



3.3. RESULTS AND DISCUSSION

surrounding residues of helix-helix-contacts might be generally more amenable to muta-
tional change than the residues in actual contacts, but are still sufficiently important for
proper helix interactions to make the compensation of destabilizing amino acid substi-
tutions beneficial for protein stability. Notably, this finding is in line with experimental
evidence that helix-helix-interactions mediated both by polar residues and interaction
motifs are dependent on the sequence context ([131], see also Chapter 2).

3.3.4 Improvement of prediction accuracies using a consensus
approach combining several prediction methods

Based on the observation that results with different prediction algorithms vary remark-
ably for individual proteins (data not shown), a consensus prediction method was devel-
oped combining for every protein co-evolving residues from different prediction methods.
Since the two prediction methods SCA and MI were found to perform worse regardless
of the prediction quality measure used, these two algorithms were excluded of any con-
sensus approach. Within a first step, the results of the remaining seven predictions
were combined to form a initial list of candidate correlations. To further improve the
obtained prediction by reducing likely false positives, all correlations lying on a pair of
helices with a total number of detected correlations less than a given threshold N were
removed resulting in the final consensus prediction (termed CONSENSUS).

Figure 3.4: Improvement of helix-helix contact prediction accuracy (A) and accuracy (|δ|=4) (B)
by applying a consensus approach to the dataset MP_14. For comparison, the horizontal
line indicates the maximal value obtained with a single prediction algorithm. Prediction
accuracies increase the higher the threshold N is chosen.
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Figure 3.4 demonstrates that both helix-helix contact prediction accuracy and accu-
racy (|δ|=4) indeed increase with an increase in this threshold N. With N=14 (CONSEN-
SUS-14) the helix-helix contact prediction accuracy could be improved close to 11%
(compared to 9% as best result for a single algorithm) and the accuracy (|δ|=4) could
be elevated to 53% (compared to 49% again as best results for an individual algorithm)
(Table 3.2, page 54).
For a second consensus approach, correlations detected with the four best performing

prediction methods (McBASC-Miyata, McBASC-McLachlan, OMES-KASS and CAPS,
selected based on their accuracy with |δ|=4) were combined and again all correlations
on helix pairs with less than N correlations in total were removed (reduced consensus
or CONSENSUS-R). With N=5 (CONSENSUS-R-5) helix-helix contacts could be pre-
dicted with 10% accuracy and the fraction of correlations lying within one helical turn
of an actual helix-helix contact was found to be 51% on the small dataset consisting of
14 proteins. The contact map of the AcrB bacterial multidrug efflux transporter (Figure
3.5) illustrates how false positive predictions can be removed by applying this threshold
N=5 in comparison to a mere combination of individual prediction methods.

Figure 3.5: Contact maps of the AcrB bacterial multidrug efflux transporter (PDB 1IWG chain
A). (A) All correlations detected with the methods McBASC-Miyata, McBASC-McLachlan,
OMES-KASS and CAPS. (B) Improved prediction with CONSENSUS-R-5. Observed con-
tacts are shown in black, co-evolving residues in orange, correctly predicted contacts in blue.
Individual transmembrane helices are indicated by H1-H12.
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3.3.5 Prediction accuracies based on experimentally determined
transmembrane segments

All results presented so far for the dataset MP_14 were based on multiple alignments
consisting of transmembrane segments predicted with TMHMM. As shown in Table 3.1
(page 46) these predicted transmembrane helix positions may differ slightly from those
determined based on the PDB structure. To evaluate whether these differences have a
noticeable effect on the detection of co-evolving residues, multiple alignments consisting
of experimentally determined transmembrane segments (as annotated in PDBTM [201])
were obtained. Correlated mutations were predicted with the same procedure used
earlier for multiple alignments consisting of predicted transmembrane segments. Helix-
helix contact prediction accuracies were found to increase by 1% to 5% while the fraction
of correlations within one helix turn of a helix-helix contact increased even by 13% in the
case of the MI algorithm (Table 3.4). The analysis of co-evolving residues in membrane
proteins, where solved protein structures as well as experimentally determined topologies
are generally only available in rare cases, is therefore also significantly dependant on the
quality of the predicted transmembrane helix positions.

Table 3.4: Contact prediction accuracies for different prediction algorithms applied to the dataset
MP_14 with experimentally determined transmembrane segments. CONSENSUS-14 and
CONSENSUS-R-5 correspond to two consensus predictions. Prediction accuracies improve
by 1% to 5% when using experimentally determined instead of predicted transmembrane
helices.

Method Proteins Acc [%]a P-value Acc (|δ|=4) [%]b P-value

McBASC-Miyata 14 9 6.22E-14 49 7.82E-28
McBASC-McLachlan 14 10 6.48E-17 46 4.92E-21
OMES-KASS 14 9 1.17E-14 50 2.55E-28
OMES-FODOR 14 8 7.78E-12 41 1.73E-14
CORRMUT 14 7 1.65E-05 33 0.0016
CAPS 5 12 1.29E-06 47 8.31E-07
MI 12 8 3.07E-10 32 0.0014
SCA 14 3 0.0702 27 0.1131
ELSC 14 10 6.48E-17 41 1.73E-14
CONSENSUS-14 14 12 1.41E-53 55 2.48E-95
CONSENSUS-R-5 14 11 3.64E-42 56 6.26E-94
a Acc: prediction accuracy for residues lying on separate transmembrane helices.
b Acc (|δ|=4): prediction accuracy for residues lying on separate transmembrane helices
with all correlations considered to be correct lying within one helix turn of an observed
contact.
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4
Prediction of helix-helix contacts using

neural networks

After conducting the first analysis of co-evolving residues in polytopic membrane pro-
teins (Chapter 3), the results of this study clearly indicated that co-evolving residues
alone are not sufficient to predict helix-helix contacts, but that these residues still carry
a strong signal for the detection of interacting transmembrane helices due to their fre-
quent occurrence in close sequence neighbourhood to helix-helix contacts. Subsequently,
the prediction of helix-helix contacts was further addressed within a second project try-
ing to improve obtained contact predictions by correlated mutations alone. To this
end, a neural-network based approach was developed specifically for the prediction of
helix-helix contacts in alpha-helical membrane proteins. It integrates sequence profiles,
correlated mutations, protein topology, sequence separation and predicted scores for
lipid-exposure and hence is the first predictor of residue-residue contacts incorporating
membrane protein specific input data.

Neural networks have been used for contact prediction of soluble proteins already for
several years (see for example results of the latest CASP competitions, [185, 186]) re-
sulting in important insights regarding usefulness and execution of this approach, which
often are also transferable for the application to membrane proteins. The following
introduction will therefore summarize the progress within the field of residue contact
prediction in general. In the following, the development of the first membrane pro-
tein specific contact predictor will be described and its success will be evaluated and
compared to those methods originally developed for soluble proteins.

The prediction of helix-helix contacts in membrane proteins using neural networks
was jointly executed with Andreas Kirschner (TU München). While Andreas Kirschner
was mainly concerned with the realization of the neural network itself, I was responsible
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for dataset creation, the selection of possible input features and the testing of external
methods. All remaining results were analysed together by Andreas Kirschner and me.
Comments in the following sections will further clarify individual contributions.
The results of this chapter were published in [210].

4.1 Introduction

While the first contact predictors available for soluble proteins were mostly based on
co-evolving residues (see Chapter 3), recent contact prediction methods can be classified
into two categories. First, machine learning methods try to learn the interrelationship
between a number of predefined sequence features and the contact state of a given residue
pair. In contrast, template-based approaches deduce contacts for the target sequence
from template proteins which are assumed to have a similar fold than the target sequence.
Here, both approaches are shortly reviewed and the current status of obtained contact
prediction accuracies for soluble proteins is presented. Finally, potential applications of
predicted residue contacts are discussed.

4.1.1 Sequence-based contact prediction

When contact prediction approaches were still mainly focused on the analysis of co-
evolving residues, additional sequence information was already shown to improve the
accuracy of obtained predictions significantly [156]. Accordingly, machine learning ap-
proaches which are able to incorporate a variety of sequence features have been consis-
tently demonstrated to outperform methods using co-evolving residues alone [211, 188,
187]. Generally, these methods require contact maps of proteins with known structures.
During a training phase, the machine learning algorithm tries to deduce association rules
between selected sequence features of each protein in the training set and its contact
map. These rules are then applied to proteins without known contact map.
Over the years, several different implementations of machine learning approaches

have been applied for the residue contact prediction problem with neural networks
[211, 188, 189, 191], support vector machines [190] and hidden Markov models [212, 213]
being the most commonly used ones. While the first neural network developed for the
prediction of residue contacts was based on only a limited number of sequence features
(namely sequence profiles, sequence conservation, correlated mutations and predicted
secondary structure) [211, 188], additional input features have been incorporated and
tested in recent contact predictors. For example, PROFcon, one of the best performing
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methods of CASP6 [185, 189], reported increased contact prediction accuracies due to
the incorporation of additional sequence features such as predicted solvent accessibility,
sequence distance of two residues and global information such as protein length. Sim-
ilarly, Shackelford and Karplus contributed on of the superior methods to the CASP7
competition with their neural network using a novel statistic for correlated mutational
behaviour of two residues in combination with several other sequence features [186, 191]).
As indicated by the increased number of contributions in the recently conduced CASP8
experiment [214], the development of new contact prediction methods is still ongoing
promising further insights into the correlation between sequence features and residue
contact state.

4.1.2 Template-based contact prediction

In contrast to sequence-based contact prediction methods which are completely inde-
pendent of homologous structures, template-based contact predictions require the avail-
ability of related proteins having a solved 3D structure. Within a first step, appropriate
template structures which most likely share the same fold as the target protein are identi-
fied using threading techniques. After aligning the target sequence to found templates,
contacts are then inferred from the template structures [213, 215, 216, 217]. Recent
improvements in the field of template-based contact prediction introduced the identifi-
cation of templates with a meta-server combining several threading programs [216] as
well as the usage of machine learning methods for the ranking of contacts obtained from
different templates [217]. While contacts obtained from structural templates are fre-
quently used as restraints in 3D structure prediction of soluble proteins [218, 215, 219],
membrane proteins are only rarely approachable with these methods due to the lack of
available homologous protein structures.

4.1.3 Contact prediction accuracies obtained for soluble proteins

Contact prediction methods have been evaluated independently in several rounds of the
CASP experiment (see for example [185, 186, 214]). Results obtained from these evalu-
ations suggest that at least slight increases in prediction performance are observed over
the last years as methods performing best within previous CASP experiments are gener-
ally outperformed by newly developed methods of recent CASP experiments. However,
prediction accuracies are not steadily increasing which seems to be a result of differ-
ent target difficulties (all-alpha proteins for example were repeatedly shown to be more
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difficult to predict than other protein structures [188, 189]).
Within CASP6, three methods performed slightly better than other participants with

prediction accuracies between 16% and 23% for long-range contacts separated in se-
quence by at least 24 positions. While one of these methods (GPCpred) was based on
genetic programming, the two remaining methods used neural networks for their pre-
diction. During the CASP7 experiment, again a neural network based predictor was
found to predict targets with higher accuracy than the remaining methods although the
general level of obtained accuracy was clearly lower than in the preceding CASP round.
On average, 13% prediction accuracy was reported for all participating groups (for a
sequence separation ≥24) and even the best performing methods gained maximal pre-
diction accuracies of roughly 20%. The recently conducted CASP8 experiment resulted
again in improved prediction accuracies (mean accuracy of 21.5% over all targets and
predictors) with several groups reaching average accuracies of higher than 25%.
Within all CASP evaluations, contacts predicted with specialized contact predictors

were also compared to contacts derived from predicted 3D structures. No general trend
could be observed with contact specialists performing superior on some targets while 3D
structure predictions resulted in better contact predictions for other targets. A recent
comparison of sequence-based and template-based contact prediction methods suggests
that template-based methods are only superior in case target and template share an
sufficient amount of evolutionary and structural similarity [217]. For proteins without
appropriate template, predictions of more than 10% higher accuracy were obtained with
a sequence-based machine learning approach than using a template-based threading
approach.

4.1.4 Applications of contact predictions

Long-range contacts constitute an important information in ab initio protein structure
predictions as they can be used to constrain the conformational search space. While
predicted contacts are principally valuable for this task, the high numbers of false posi-
tives obtained with current contact predictors (see above) are still strongly limiting their
practical application. According to estimations, one correct contact in every eight posi-
tions would be sufficient for guiding protein folding simulations of proteins smaller than
200 amino acids [220]. The number of false positives that can be tolerated on the other
hand is less clear. Nevertheless, several efforts have been reported trying to incorporate
predicted residue contacts as constraints in de novo structure prediction [209, 215, 219].
In addition to the direct incorporation in ab initio structure prediction experiments,
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predicted residue contacts may be used for the ranking of alternative protein models
as well as the refinement of initially course-grained models as recently demonstrated by
Latek and Kolinski [221].

4.2 Materials and methods

4.2.1 Dataset

For the development and evaluation of the presented neural network, the non-redundant
dataset MP_62 containing membrane proteins with solved structure was used as intro-
duced already in Chapter 3 (section 3.2.1, page 47).

Briefly, this dataset was obtained from the database PDBTM [201] and the dataset
provided by the Stephen White laboratory at UC Irvine (http://blanco.biomol.uci.
edu/Membrane_proteins_xtal.html). After redundancy removal (for details see sec-
tion 3.2.1), 62 protein chains remained (Appendix Table 9.3). Transmembrane segment
positions and the in/out topology for each protein were obtained from the database
TOPDB [202] except for the proteins 2UUH (chain A) and 1ORQ (chain C) which were
not included in TOPDB. Topology information for these proteins was obtained from
PDBTM, instead.

The dataset was constructed by myself.

4.2.2 Contact definition

In addition to the dataset, the same helix-helix contact definition was used as in the
analysis of residue co-evolution within membrane proteins (see section 3.2.3, page 50).
According to this criterion, two residues within different transmembrane segments were
considered in contact if the minimal distance between side chain or backbone atoms was
less than 5.5Å. Thereby, side chain conformations were more appropriately considered
than would be the case if contacts were defined based on Cβ-distances as mostly done by
contact prediction methods developed for soluble proteins. Accordingly, other studies
on helix packing and helix-helix contacts in membrane proteins have also used contact
definitions including side chain atoms [60, 62].

Importantly, the difficulty of the contact prediction problem for membrane proteins is
not influenced by the choice of contact criterion since the number of observed contacts
remains basically the same. Using the contact criterion based on side chain atoms,
the observed overall contact density (the number of observed contacts divided by the
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number of possible pairs) was 0.021 while the usage of the Cβ contact criterion resulted
in a contact density of 0.020 for the dataset of 62 membrane proteins.

4.2.3 Contact density

To estimate the optimal number of contacts to predict per protein, the dependency
between the number of transmembrane residues and the amount of helix-helix contacts
was estimated. The observed contact density within transmembrane parts of all 62
transmembrane proteins in the dataset was afterwards compared to corresponding values
derived for soluble proteins taken from the 25% homology threshold list of the pdb_select
database from October 2007 [222]. Two different subsets of pdb_select were used, one
comprising all 3652 pdb_select proteins belonging to the SCOP [223] classes all-alpha,
all-beta, alpha and beta (a/b), alpha and beta (a+b) and multidomain proteins and
one subset consisting of all-alpha proteins only. In any case, contacts were calculated
according to the definition given above.
For every dataset linear functions were fitted describing the dependency of the number

of observed contacts on the length of the protein (for membrane proteins only the trans-
membrane parts were considered). The following (rounded) dependencies between the
number of considered residues L and the amount of observed contacts C were obtained:
For soluble proteins in general C=3.15L-76.5, for all-alpha proteins C=2.5L-75 and for
the transmembrane parts of all 62 membrane proteins C=2.25L-100 (see Results, Figure
4.4, page 79). As can be seen from these formulas, contacts between transmembrane
segments are generally less frequent than contacts within soluble proteins having the
same number of residues (see also Results and discussion).
The contact density analysis was conducted by Andreas Kirschner and myself.

4.2.4 Neural network input features

The prediction of spatial contacts between two amino acid residues is generally based
on the analysis of multiple sequence features. These features can be divided into out-
of-context features defined for single residues without any contact related information,
features targeting properties related to residue pairs in contact, and features that de-
scribe global properties of the proteins. Contact prediction is then derived by mapping
these features onto the contact state of the residues under observation. Over the last
years, machine learning algorithms have become the method of choice to obtain such
mapping in an automated fashion (for example see [211, 188, 212, 189, 190, 191, 217]).
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The better the chosen features relate to the contact information of two residues, the
better the mapping and thus the better the predictive performance of the developed al-
gorithm. Accordingly, for the membrane protein contact prediction problem, prominent
features used for globular protein contact prediction were included together with various
features that are available for membrane proteins only.

All input features were selected together by Andreas Kirschner and myself, the im-
plementation of the selected features was done by Andreas Kirschner.

Out-of-context features

The used out-of-context features describing individual residues are: windowed PSSM
(Position-specific Scoring Matrices) profiles, the position of each residue within the
transmembrane helix (cytosolic side of the membrane, hydrophobic core or extracellular
side), and the orientation of its side chain, i.e. whether the residue is facing towards the
lipophilic membrane or the protein interior.

The PSSM profiles were obtained using PSI-BLAST [205] searches against the NCBI’s
unfiltered NR database [206], with three iterations and the inclusion of related database
sequences into the profile with an E-value threshold of 1x10−4. The raw profiles from
PSI-BLAST contained scores for all residue positions representing their amino acid pref-
erences. These scores were transformed by the standard logistic function to obtain values
in the range [0...1]. In order to include information about adjacent residues as well, a
window of five residues to the left and five residues to the right was employed together
with the central target residue. An additional feature was included to indicate whether
the window was not built properly due to missing data (i.e. at the end of protein
sequences).

The position of each residue within the transmembrane helix was encoded by two
distinct features. First, a boolean vector of length S was used to represent each trans-
membrane helix divided into a set of S fragments of equal size. The values of the vector
were initialized with 0 and the value at vector index s = b S

N
· ic was set to 1 with N

representing the length of the transmembrane helix, i being the position of the described
residue within the transmembrane helix numbered from 1 to N from the N- to C-terminal
end and the function f(x) = bxc returning the largest integer which is less or equal the
real number x. Based on preliminary optimization experiments, the parameter S was
fixed at S=7. Second, a boolean vector of size three was used, to encode whether a
residue lies close to the extracellular side of the membrane, close to the cytoplasm or
within the hydrophobic core of the helix. A region of seven residues was used to define
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both the extracellular or cytoplasmic side of the helix.
The side chain orientation of each residue was calculated using LIPS [122], a method

for the prediction of transmembrane helix orientation with a reported accuracy of close
to 90%. LIPS defines seven helical surfaces called faces which are identified based on
the average lipophilicity and the conservation of residues within each face. Large LIPS
scores indicate that a particular face is oriented towards the membrane while low scores
indicate an orientation towards the hydrophilic membrane protein interior. The helix
orientation was encoded in a boolean vector of length seven with the elements in the
vector representing the seven helical faces ordered by increasing average lipophilicity.
The vector was initialized by zeros. If a residue is member of the helical face with the
i-th highest LIPS score, this i-th element was set to 1 in the boolean vector. A single
residue can participate in up to three helical faces, as defined by Adamian and Liang
[122].

Features of residue pairs

To represent properties pertinent to paired residues, two features were considered: se-
quence distance between the residues and predicted correlated mutation rates indicating
co-evolving residues. The distance between two residues was encoded by a boolean vec-
tor of length eight corresponding to sequence separations of less than 25, 50, 75, 100,
150, 200, 300 residues, or more. For a given pair of residues having a sequence separation
corresponding to the vector element i, not only this vector element was set to 1 but also
all vector elements at positions ≤ i.
Residue co-evolution was calculated using three different prediction methods. The

algorithm McBASC [156] was applied in two variations, using either the McLachlan
[208] or the Miyata [207] substitution matrix, and the OMES algorithm was used in its
modified version by Fodor and Aldrich [158]. Multiple sequence alignments used for the
calculation of correlation scores were obtained from the PSI-BLAST alignments. First,
all positions were removed from the full length PSI-BLAST alignment which did not
correspond to any transmembrane segment of the PDB sequence resulting in an align-
ment representing only the transmembrane parts of the reference sequence. Following
the procedure developed during the analysis of residue co-evolution (Chapter 3, section
3.2.1, page 45), sequences thought to be inappropriate for the prediction of correlated
positions were discarded. The raw correlation scores were standardized individually for
all proteins following the formula y = x−min

max−min
, where x is the raw correlation score

and min and max are the minimal and maximal scores observed for a given protein and
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algorithm. Applying this type of standardization conserved relative scores but made re-
sults from different proteins comparable. As observed within the analysis of co-evolving
residues (Chapter 3, section 3.3.3, page 56), co-evolution in membrane proteins occurs
much more often at residue pairs in close vicinity to an actual helix-helix contact than
at the contact positions themselves. Therefore, not only correlation scores found for the
pair of residues i and j under observation were considered, but also for adjacent residue
pairs with a window size of 5 centred around the positions i and j, respectively.

Global features

Two global protein features were considered for the neural network: protein length and
the number of transmembrane helices. Both descriptors were again encoded as boolean
vectors using the same strategy as described for the sequence distance. The protein
length vector had a size of five elements corresponding to protein lengths of less than
100, 200, 400, 800 or more residues. The vector describing the number of transmembrane
helices had a length of ten encoding proteins with 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 and
more transmembrane regions.

Combination of features

Each input vector representing a residue pair contains out-of-context features for both
participating residues, residue pair features, and global features of the particular pro-
tein. To estimate the importance of the various features, input vectors of increasing
complexity and thereupon iteratively improved prediction performance were constructed
(Figure 4.1). Starting with an input vector consisting of only those features available
also for soluble proteins (NN1 and NN2, without and with correlated mutations, respec-
tively), membrane protein specific features were gradually added (NN3: position within
transmembrane segment and total number of transmembrane helices; NN4: side chain
orientation). The NN4 implementation was additionally evaluated with a dataset that
did not include instances with residue pairs from sequentially adjacent helices (termed
NN4-distant or NN4-D) in order to estimate the dependence of predictive performance on
short range contacts between neighbouring helix pairs. Throughout this work, NN4 and
NN4-D, the neural networks based on the full set of input features, are synonymously
also referred to as TMHcon. This final version of the contact predictor is available
on-line (http://webclu.bio.wzw.tum.de/tmhcon/).
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Figure 4.1: Input features used for the prediction of helix-helix contacts of membrane proteins.

4.2.5 Neural network architecture and training

Similar to many contact prediction methods for globular proteins, a feed-forward neural
networks specially trained for data with biased class distributions was used. Every
network consisted of the same number of input nodes as features available and two output
nodes representing the two prediction classes ’contact’ (positive class) and ’nonContact’
(negative class). The number of hidden nodes was varied in order to optimize prediction
performance, and finally an architecture with 90 hidden nodes was chosen.
Generally, during each training iteration of a neural network, called epoch, a set

of instances is presented to the neural network, the average error on the given set is
estimated and this error is used to calculate the weight update for all node connections.
The presentation and weight update process is repeated until a defined stop criterion
is reached. The contact prediction network was trained such that for each epoch all
positive (contact) instances of the training proteins were chosen as well as a randomly
selected equal number of negative instances. The training was iterated over 200 epochs.
The neural network was implemented and trained by Andreas Kirschner.

4.2.6 Measuring contact prediction performance

To assess the prediction performance of the developed neural networks a take-one-out
jackknife cross validation was used whereby the method was tested on a single protein

72



4.3. RESULTS AND DISCUSSION

while all other proteins formed the training set. Performance measures were obtained for
the test protein and the procedure was repeated for all proteins. The overall prediction
performance was calculated by averaging the individually obtained performance results
leading to an accurate assessment of method performance.

Following common practice the number of predicted contacts was chosen based on
the length of the protein L. Since contacts should be predicted for the transmembrane
helices of a protein only, L was calculated as the sum of the lengths of all transmembrane
helices of a given protein. Reported contact prediction accuracies are based on the L/5
highest scoring residue pairs, a threshold commonly used in contact prediction assess-
ment [186]. From this number of predicted contacts the prediction accuracy (fraction of
correctly predicted contacts out of all predicted contacts) was calculated. Additionally,
the coverage (fraction of correctly predicted contacts out of all observed contacts) was
calculated. In order to investigate the position of predicted contacts with respect to
observed helix-helix contacts, a ’δ-Analysis’ [209] was used, calculating the fraction of
predicted contacts between residues i and j given an observed contact between residues
in the interval {i-δ,i+δ} and {j-δ,j+δ}. To determine the fraction of predicted con-
tacts where both participating residues lie within one helix turn of residues forming an
inter-helical contact, δ=4 was used.
Contact prediction performance was evaluated together by Andreas Kirschner and

myself.

4.3 Results and discussion

4.3.1 Prediction of helix-helix contacts using neural networks with
increasing complexity

Machine learning techniques have been applied for the prediction of amino acid contacts
in soluble proteins for more than five years [211, 188, 212, 189, 190, 191, 217]. Here, the
first application of neural networks for the specific problem of predicting helix-helix con-
tacts in membrane proteins is presented. Using contact data derived from 62 membrane
proteins with solved structure, five neural networks for the prediction of helix-helix con-
tacts were trained. While four of these networks were developed in order to analyze
the influence of different input features on the resulting prediction, the neural network
NN4-D included the same input features as the network NN4, but was trained only on
long-range contacts lying on non-neighbouring transmembrane helices. Such long-range
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contacts are particularly important for the discrimination of membrane protein folds re-
sulting from differential helix packing in alpha-helix bundles and therefore, these residue
contacts should be predicted with optimal sensitivity and reliability.

Influence of different input features on the prediction of helix-helix contacts

Following the strategy reported for the first contact map predictions using neural net-
works in globular proteins [211, 188], neural networks of increasing complexity were
constructed by incorporation of an increasing number of input features. While the
first two neural networks (NN1 and NN2) included only sequence features also avail-
able for soluble proteins (e.g. sequence profiles, sequence separation, protein length and
correlated mutations), membrane protein specific features were incorporated in neural
networks NN3 and NN4 (position of each residue within a transmembrane helix, num-
ber of transmembrane helices and orientation of each residue). This step-wise procedure
reveals the contribution of individual feature sets, in particular those not available for
soluble proteins and therefore missing in earlier studies on contact prediction with neural
networks.
In agreement with publications on contact prediction for soluble proteins, the L/5

highest scoring contact pairs were selected for every protein and prediction accuracy
(fraction of correctly predicted contacts out of the total number of predictions) and
coverage (fraction of correctly predicted contacts out of the total number of observed
contacts) were calculated. Additionally, the accuracy (|δ|=4) was determined, a measure
describing the fraction of predicted contacts that are found within one helix turn of an
observed contact and therefore lie in close sequence neighbourhood to an actual helix-
helix contact (Table 4.1).
As seen in Table 4.1, prediction accuracy increases by more than 8% with the addition

of more and more input features. While the incorporation of correlated mutations leads
to an improvement of 1.6% accuracy, the most significant increase in prediction accuracy
of 4.6% is achieved with the first addition of membrane protein specific features in NN3.
The incorporation of LIPS scores in NN4 leads to a further improved prediction accuracy
of 25.9%. Since the number of analyzed predictions is equal for all neural networks,
the coverage increases accordingly. The same trend can be observed for the accuracy
(|δ|=4), which increases by more than 13% from NN1 (65.2%) towards NN4 (78.5%).
Interestingly, the observed value is basically constant between NN3 and NN4. In both
cases around 78% of all predicted contacts are found in close sequence neighbourhood
to an observed helix-helix contact. Since the number of predicted contacts located close
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Table 4.1: Contact prediction with neural networks of increasing complexity. All values are reported
based both on the selection of the L/5 highest scoring residue pairs (L being the length of
the concatenated transmembrane segments), and after selecting the expected number of
contacts derived using the contact formula for membrane proteins describing the observed
number of contacts in dependence on the number of participating residues (see section 4.2.3).
Contact prediction accuracies increase with the incorporation of additional sequence features
into the prediction process.

Predictor L/5 Contact density formula

Acc [%]a Acc (|δ|=4) [%]b Cov [%]c Acc [%]a Acc (|δ|=4) [%]b Cov [%]c

NN1 17.2 65.2 2.3 10.5 61.2 10.6
NN2 18.9 68.4 2.6 11.4 65.4 11.6
NN3 23.5 78.7 3.2 15.7 70.8 15.8
NN4 25.9 78.5 3.5 15.8 70.7 16.0

NN4-D 14.8 50.2 3.9 10.0 46.0 10.1
a Acc: fraction of correctly predicted contacts out of all predicted contacts.
b Acc (|δ|=4): fraction of predicted contacts lying within one helix turn of an observed
contact.

c Cov: fraction of correctly predicted contacts out of all observed contacts.

to an actual contact stays the same while the number of correctly predicted contacts
increases from NN3 towards NN4, the addition of LIPS scores seems to be helpful in
determining the exact position of helix-helix contacts, which are otherwise only located
slightly misplaced from the correct position.

Since the most remarkable increase in prediction accuracy is obtained from NN2 to-
wards NN3 with the inclusion of a feature group defining each residue’s position within
the transmembrane helix, the predictions of NN3 were investigated in greater detail. As
can be seen from the example in Figure 4.2, the given relative position of each residue
within the transmembrane helix seems to aid the neural network in detecting the parallel
or antiparallel interaction pattern of two transmembrane helices and therefore constrains
predicted contacts. Figure 4.2A illustrates observed and the top L/5 predicted contacts
for residues on transmembrane helices 1 and 2 from cytochrome B6 (PDB 1VF5 chain
A) when using NN2. Here, contacts are predicted for the given two transmembrane
helices, but the algorithm is not able to detect in which orientation the two helices are
positioned relative to each other, resulting in a significant deviation of the predicted
contacts from the known ones. In contrast, NN3 (Figure 4.2B) is able to deduce in-
formation on the helix orientation, and thus the predicted contacts lie on the correct
diagonal of the contact map. The neural network is constrained by the transmembrane
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residue positions: a residue near the extracellular membrane surface cannot contact a
residue near the cytoplasmic membrane surface.

Figure 4.2: Observed and top L/5 predicted contacts between transmembrane helix 1 and trans-
membrane helix 2 of the protein 1VF5, chain A. (A) Predictions with NN2. (B) Predictions
with NN3. NN3 includes information about each residue’s position within the transmem-
brane helix and therefore is aware of the helix orientation. While NN2 has problems to detect
the anti-parallel character of the helix interaction and predicts many contacts off diagonal,
NN3 exclusively predicts contacts that capture the anti-parallel interaction pattern.

Dependence of the contact prediction performance on the number of
transmembrane helices

For the best performing neural network NN4 it was further analyzed how the prediction
success depended on the number of transmembrane segments within a protein. All
62 membrane proteins were grouped into subsets of proteins with similar number of
transmembrane segments and the prediction accuracy and coverage was calculated for
every subset (Table 4.2).
As expected, prediction accuracy decreases for large proteins. For proteins with eight

or more transmembrane helices prediction accuracies of close to 20% were obtained, while
proteins with less than eight transmembrane segments achieved prediction accuracies of
25% or more. Interestingly, the fraction of predicted contacts in close vicinity to observed
contacts (accuracy (|δ|=4)) is largely independent of protein size since in proteins having
more than ten transmembrane helices contacts are still detected with an accuracy (|δ|=4)
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Table 4.2: Contact prediction using NN4 for subsets of membrane proteins grouped according to
their number of transmembrane helices. All values are reported based on the selection of the
L/5 highest scoring residue pairs (L being the length of the concatenated transmembrane
segments). Proteins with seven transmembrane helices are clearly better predicted than all
other proteins.

TMS N(Proteins) N(Contacts) L/5

Acc [%]a Acc (|δ|=4) [%]b Cov [%]c

3-4 19 260 33.1 77.7 7.8
5-6 17 359 25.1 72.4 4.2
7 7 201 40.3 93.5 5.0

8-10 7 242 19.0 71.9 2.6
>10 12 549 20.9 80.1 2.2
a Acc: fraction of correctly predicted contacts out of all predicted contacts.
b Acc (|δ|=4): fraction of predicted contacts lying within one helix turn of an
observed contact.

c Cov: fraction of correctly predicted contacts out of all observed contacts.

of more than 80% which is even slightly above the mean value found for all proteins
(78.5%, Table 4.1). However, the best contact predictions within the dataset were
obtained for proteins with seven transmembrane helices. Five out of the seven proteins
in the dataset having this number of transmembrane segments belong to the superfamily
of G protein-coupled receptor-like proteins according to the Pfam database [33]. Despite
low sequence identity among each other, these proteins typically have a structure largely
resembling the canonical alpha-helix bundle structure with only few helix-helix contacts
between sequentially distant transmembrane helices [224], facilitating contact prediction
for these targets.

Dependency of contact prediction performance on the number of selected
contacts

Additionally, the dependency of prediction quality on the number of predicted contacts
was evaluated. Figure 4.3 illustrates how the obtained prediction accuracy and the
coverage depend on the cutoff for the number of analyzed contacts. While NN2 performs
better than NN1 for all tested contact numbers, as do the two neural networks with
membrane protein specific input features NN3 and NN4 compared to NN1 and NN2,
the improvement of NN4 compared to NN3 is varying with the number of selected
contacts. While for large numbers of predicted contacts NN3 and NN4 perform more or
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less with equal accuracy and coverage, the highest improvement of prediction accuracy
due to addition of LIPS scores as input features in NN4 is obtained for small numbers
of predicted contacts (L/3 or less).

Figure 4.3: Contact prediction accuracy (A) and coverage (B) of different neural networks as a
function of the number of predicted contacts (L/X). As expected, the accuracy is increasing
while the coverage is decreasing for more stringent criteria. Both performance curves increase
steadily for the NN1-NN3 architectures while the improvement of NN4 is less clear cut. L/X
scaling for NN4-D is not comparable to the other architectures since the number of possible
residue pairs and the number of observed contacts is different.

The same can be observed from Table 4.1 which also summarizes the quality of ob-
tained predictions after selecting a number of predicted contacts determined using a con-
tact formula derived from available membrane protein structures describing the number
of expected contacts for a given number of participating residues (Materials and Meth-
ods, section 4.2.3). Obviously, a higher number of predicted contacts leads to a decrease
in prediction accuracy in favour of an increased coverage. While the increase in predic-
tion accuracy from NN1 towards NN3 is still clearly visible, NN3 and NN4 perform with
more or less equal accuracy and coverage in this case.

4.3.2 Contact prediction in membrane proteins compared to soluble
proteins

It is well known that the prediction of intra-molecular amino acid contacts gets increas-
ingly difficult with decreasing contact density (fraction of observed contacts among the
total number of possible residue pairs) [189]. This is the reason why contact predic-
tions for large proteins are generally less successful than predictions for small proteins
[211, 212] and why all-alpha soluble proteins, whose contact density is roughly only half
of the contact density found for all-beta proteins [189], were consistently found to pose
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special difficulties for the prediction. To evaluate the success of contact predictions ob-
tained with TMHcon (NN4) at least at a very basic level to comparable results obtained
for soluble proteins, the contact density was calculated for all membrane proteins in the
MP_62 dataset. Figure 4.4 shows the dependency of the number of observed contacts
in a protein on the protein length for four different types of proteins: soluble proteins,
soluble proteins in the SCOP class all-alpha, the 62 membrane proteins of MP_62 (only
transmembrane segments considered), and the 62 membrane proteins of MP_62 (again
only transmembrane segments) where residue pairs lying on neighbouring helices were
not considered. For all four datasets linear fits were calculated.

Figure 4.4: Contact density (number of contacts depending on protein length) of membrane
proteins compared to soluble proteins. The amount of contacts for any type of protein is
linearly proportional to protein length with membrane proteins having generally less contacts
than soluble proteins. The fitted curves represent contact functions that can be used for the
selection of an appropriate amount of contacts.

While all-alpha soluble proteins were found to possess slightly fewer contacts than
soluble proteins in general, as was reported earlier [189], the number of observed contacts
within membrane proteins was found to be even more reduced compared to soluble
proteins in general and all-alpha soluble proteins in particular. When residue pairs
on neighbouring helices were ignored, the number of observed contacts was further
decreased significantly. These results indicate that the prediction of helix-helix contacts
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in membrane proteins is at least of comparable difficulty to the prediction of intra-
molecular contacts within all-alpha soluble proteins, if not more difficult. Therefore,
it is feasible to compare the performance measures of TMHcon to published values of
available contact predictors for soluble proteins. Of special interest is the prediction of
contacts within all-alpha soluble proteins due to their structural similarity to membrane
proteins and their contact density being more similar to the contact density of membrane
proteins than is observed for soluble proteins in general.
Compared to prediction accuracies reported for all-alpha soluble proteins (20% for

a L/10 prediction based on 30 proteins at a minimal sequence separation of 8 [225],
24% for a L/2 prediction based on 131 proteins and a minimal sequence separation
of 6 [189]), the developed contact predictor TMHcon for membrane proteins performs
with equal quality to state-of-the-art methods for soluble proteins. This is also true for
the prediction of long-range contacts. Using the neural network NN4-D, which predicts
only contacts between non-neighbouring transmembrane helices, a prediction accuracy
of 14.8% was obtained (Table 4.1). Reported values for all-alpha soluble proteins with
a sequence separation of at least 24 amino acids range between comparable values of
13.5% (L/2 prediction,[189]) and 15.3% (L/10 prediction, [225]).

4.3.3 Comparison to other contact prediction methods

To further assess the benefit of the new contact prediction method specifically developed
for membrane proteins, the obtained prediction results were compared to predictions
obtained with available state-of-the-art contact prediction methods when applying these
methods to the same set of membrane proteins. Despite the fact that these predictors
were developed exclusively for soluble proteins, they might still be capable of detecting
the contact patterns originating from the alpha-helical bundle structures of membrane
proteins. Accordingly, predictions were obtained for all protein in MP_62 using the
contact predictor PROFcon [189], a neural network based predictor ranking among the
best performing methods in the CASP6 competition [185], as well as using SVMcon [190],
a contact map predictor based on support vector machines, one of the top predictors in
the CASP7 experiment [186]. Since both methods returned predicted contacts for the
full length sequence of each protein, all contacts lying outside the transmembrane parts
or within the same transmembrane helix of a protein were not considered. From the
remaining contacts, the top L/5 scoring ones were selected for every protein and every
method (Table 4.3).
Using PROFcon, predictions could be obtained for 43 proteins out of the total set
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Table 4.3: Contact predictions for 62 membrane proteins using external contact predictors, TMH-
con (NN4) and the residue co-evolution consensus predictor HelixCorr. HelixCorr predictions
correspond to CONSENSUS-R-5 predictions introduced in section 3.3.4 (page 59). All values
are reported based both on the selection of the L/5 highest scoring residue pairs (L being
the length of the concatenated transmembrane segments). TMHcon performs clearly better
than other contact predictors developed for soluble proteins.

Predictor N(Proteins) N(Contacts) L/5

Acc [%] Acc (|δ|=4) [%] Cov [%]

HelixCorr 62 4822 10.8 51.9 4.4
ProfCon 24 503 4.2 36.8 0.2
SvmCon 62 1600 9.3 55.8 1.3
TMHcon 62 1611 25.9 78.5 3.5
a Acc: fraction of correctly predicted contacts out of all predicted contacts.
b Acc (|δ|=4): fraction of predicted contacts lying within one helix turn of an
observed contact.

c Cov: fraction of correctly predicted contacts out of all observed contacts.

of 62 proteins. However, since PROFcon restricts the number of returned contacts to
2L, the number of proteins with predicted contacts within their transmembrane helices
was only 24. Based on the L/5 selection criterion, an average contact prediction accu-
racy of 4.2% was obtained for these 24 proteins. The accuracy (|δ|=4) was found to be
36.8%. Despite these low values, PROFcon was still able to produce comparable results
to TMHcon in individual cases with a maximum prediction accuracy of 21% and an ac-
curacy (|δ|=4) of 98% obtained for the ammonia channel AmtB (PDB 2NMR chain A).
Using SVMcon, predictions were obtained for all 62 proteins. The average prediction
accuracy was 9.3% and the prediction accuracy (|δ|=4) was 55.8%, resulting in total in a
clearly superior prediction compared to PROFcon without reaching the prediction accu-
racies observed with TMHcon. Again the obtained prediction quality was significantly
differing among proteins with eight proteins having a prediction accuracy of 20% or
more while 23 proteins were found with no correctly predicted contact at all. The best
prediction using SVMcon was obtained for the sensory rhodopsin II with a prediction
accuracy of 31% and an accuracy (|δ|=4) of 97%. Based on these results it is clear that
the development of a membrane protein specific contact predictor is in fact highly valu-
able since currently available contact predictors are not able to predict contacts within
transmembrane helices over a large set of proteins with comparable prediction accuracy
as on soluble proteins.

Comparing the neural network based predictions of TMHcon to predictions with the
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earlier developed consensus co-evolution method HelixCorr, again TMHcon was found
to be clearly superior than the predecessor method. With a prediction accuracy for
helix-helix contacts of roughly 10% (Table 4.3), HelixCorr was easily outperformed by
even the most basic neural network NN1 reaching a prediction accuracy of 17% (Table
4.1, page 75). The same is true for the prediction accuracy (|δ|=4) where the most basic
neural network achieves a more then 10% higher quality score than HelixCorr (64.6%
compared to 51.9%). This observation is consistent with reported results for soluble
proteins where the prediction of intra-molecular contacts was improved by at least 7%
after using a neural network instead of correlated mutations alone [211].

4.3.4 Application of TMHcon to three membrane proteins with
recently solved structure

To test TMHcon predictions of helix-helix contacts and interacting helices under ‘real-
life’ conditions, the newly developed method was applied to three membrane proteins
whose structure was solved after the construction of the test and trainings data set MP_
62: the site-2 protease (PDB 3B4R chain B) [226], the sodium-potassium pump (PDB
3B8E chain A) [227] and the plasma membrane proton pump (PDB 3B8C chain A) [228].
None of these proteins had more than 30% sequence identity to any of the proteins in
MP_62. Transmembrane helix positions determined from the 3D structure were obtained
from PDBTM. Additionally, transmembrane helices were predicted using Phobius [98]
to simulate the case when no protein structure is available. While Phobius predicted
transmembrane helix number and position consistent with the PDBTM annotation in
the case of 3B8C, one transmembrane helix was not detected in case of 3B4R, and two
were missing in case of 3B8E. Subsequently, helix-helix contacts were predicted with
TMHcon (NN4).
While for all three proteins an average prediction accuracy (L/5) for helix-helix con-

tacts close to 20% was obtained for transmembrane helices taken from the PDBTM, this
value decreased to only 13% in case transmembrane helices were predicted with Phobius.
However, the fraction of predicted contacts within one helix turn of an observed contact
was remarkably high both for transmembrane helices taken from PDBTM and predicted
by Phobius, resulting in an even higher accuracy (|δ|=4) than in our original data set
(87.1% for Phobius, 86.3% for PDBTM). Therefore, the majority of all predicted con-
tacts can be expected to be found on actual interacting helices both for transmembrane
helices obtained from 3D structures or predicted by a topology prediction program.
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5
Prediction of interacting helices

Membrane proteins show a relatively high structural simplicity compared to soluble
proteins due to the severe structural constraints imposed by the lipid bilayer. Thus, in a
first approximation, structure prediction of transmembrane domains is basically reduced
to the question of how transmembrane segments interact along the membrane.

However, with more and more 3D structures of membrane proteins being available, it is
now common understanding that alpha-helical membrane proteins may deviate remark-
ably from simple helix bundle structures [43]. Already in 1999, a study on helix-packing
arrangements proposed a possible number of 1,500,000 different folds for a membrane
protein with seven transmembrane helices [229]. Recent studies trying to classify the
naturally occurring membrane protein fold space suggested a limited number of 250-500
different membrane protein folds [36, 35]. Nevertheless, the difficulty of membrane pro-
tein structure determination has led to the estimation that three more decades will be
required to obtain a structural representation of 90% of the current membrane protein
sequence space [35]. Therefore, the reliable prediction of helix interaction patterns may
be a valuable tool to distinguish membrane proteins of different folds without knowing
their structure or to assign a new protein sequence to a known membrane protein fold.

Here, different methods for predicting interacting helices in membrane proteins are
introduced and the success of individual methods is compared to each other. First, co-
evolving residues alone are used to identify which transmembrane helices of a membrane
protein are likely to interact. As these residues were previously found to occur in close
sequence neighbourhood to helix-helix contacts (section 3.3.3), they seem well suited for
this predictive task. Within the next step, TMHcon contact predictions are applied for
the identification of interacting helices. Similar to the prediction of helix-helix contacts,
these predictions hopefully will increase again significantly the accuracy of predictions
obtained with co-evolving residues alone. Finally, homologous proteins are incorporated
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in the prediction process in order to obtain consensus predictions of interacting helices
whose sensitivity is again increased compared to helix interactions obtained from single
contact predictions.
Parts of this chapter were published in [162] and [210] while the consensus prediction

of helix interaction graphs is still unpublished.

5.1 Introduction

5.1.1 Determinants of membrane protein folds

Within structural classification systems such as SCOP and CATH, protein folds are gen-
erally defined based on the number, spatial orientation and connectivity of secondary
structure elements [230]. For soluble proteins, a large number of different fold architec-
tures have been identified based on this definition, with estimations suggesting a total
number of distinct globular folds existing in nature of around 1000 [231]. Applying the
same fold definition to alpha-helical membrane proteins would lead to a small number
of obtained membrane protein folds as mostly all membrane proteins having the same
number of transmembrane helices would be classified to the same alpha-helix bundle
fold due to the physical constraints imposed to membrane protein structures by the
lipid bilayer.
On the other hand, membrane proteins are structurally divers to an extent not antic-

ipated years ago (see also Introduction, section 1.2.4). According to a recent survey of
structural complexity in membrane protein architectures, more than 30% of all analyzed
structures contained re-entrant loops and/or incomplete helices within transmembrane
domains, which again covered only 25% of all residues suggesting that extramembrane
elements are also important determinants of membrane protein structures [232]. An
analysis of cytoplasmic and extracellular loops for example suggested that more than
50% of all extramembrane loops are stretched thereby restricting the structural dis-
tance between two neighbouring transmembrane helices and supporting their potential
to interact [233].
Nevertheless, helix-helix interactions are still believed to be the main characteristic of

membrane protein structures as they also drive the folding process according to the two-
stage model [90]. While helix-helix interactions between sequentially adjacent helices
contribute to the canonical helix bundle structure, long-range interactions between non-
neighbouring helices define an additional level of structural complexity between proteins
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having the same number of transmembrane helices. Such long-range interactions have
been shown to occur frequently and have been suggested to be essential for full assembly
of the protein [233]. A complete overview of helix architectures arising from varying helix
interactions however is still missing.

5.1.2 Graph visualization of helix architectures

For the analysis of transmembrane helix architectures a novel way of visualization is
suggested here and used throughout the remaining parts of this thesis. Thereby, the
transmembrane domain of a protein is represented by a graph where the transmembrane
helices constitute the graph nodes while the interactions between pairs of helices cor-
respond to the edges of this graph. Edges are weighted with the number of individual
residue contacts between two helices (for two examples see Figure 5.1).

A

B

Figure 5.1: Example graph visualizations of helix architectures. (A) Structure of aquaporin 1
(PDB 1J4N) containing two re-entrant helices (shown in red) and six transmembrane helices.
(B) Structure of the H(+)/Cl(-) exchange transporter clcA (PDB 1KPK) consisting of ten
transmembrane helices. Strongly tilted helices with respect to the membrane are shown in
yellow.
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Such helix interaction graphs are well suited to visualize and compare the diversity of
helix bundles consisting of the same number of transmembrane helices (see also Chap-
ter 6). Furthermore, internal symmetries of membrane protein structures as observed
in the case of aquaporin 1 (Figure 5.1A) are immediately approachable and protein
substructures or domains can be identified as strongly connected subgraphs having few
connections with remaining helices.

5.2 Materials and methods

5.2.1 Prediction of helix-helix-interactions using co-evolving
residues

For the prediction of interacting helices based on co-evolving residues only, a dataset
of helix-helix pairs was extracted from the membrane protein dataset MP_14. In to-
tal, 370 possible helix pairs were obtained considering predicted transmembrane helices
from all proteins with at least four transmembrane segments. Predicted transmembrane
segments were compared against transmembrane helix positions determined using struc-
tural information as obtained from the Protein Data Bank of Transmembrane Proteins
(PDBTM) [201]. The comparison revealed a total number of 3 missing helices, 3 addi-
tionally predicted helices and 3 cases where segments were either joined or split (Table
3.1, page 46). These transmembrane segments were not included in the further analysis
resulting in 325 helix pairs, of which 166 were considered to be in contact since they
contained at least one residue pair having a minimal distance of less than 5.5Å.

Interacting helices were predicted using several consensus helix pair prediction meth-
ods where both the required number of correlated mutations for a predicted helix pair
was varied and combinations of different prediction methods for correlated mutations
were tested. In each case the sensitivity (TP/T) and specificity (TN/N) of the observed
prediction was calculated and compared to a random prediction obtained by calculating
the expected number of correctly predicted helix pairs based on the probability for a
contacting helix pair. The significance of each prediction was evaluated using a chi-
square test. As best predictions were obtained with the developed consensus predictor
HelixCorr (’reduced’ version, for details regarding HelixCorr see section 3.2.4 on page
51), prediction accuracies are only reported for this predictor.
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5.2.2 Prediction of interacting helices with TMHcon

The prediction of interacting helices using TMHcon was evaluated using the dataset
MP_62. For this dataset, a total number of 1486 helix pairs was obtained. Thereby, helix
positions as determined from the 3D structure were directly obtained from TOPDB
[202] or alternatively PDBTM [201] if a protein was not available in TOPDB. From
this set of helix pairs, 714 helix pairs (48.0%) were considered to be in contact since
they contained at least one residue pair corresponding to a helix-helix contact (spatial
distance of maximal 5.5Å). For comparison, a second set of helix pairs was obtained
where helix positions were predicted with the topology prediction program Phobius [98]
instead of using helix positions determined from 3D structures. To this end, topology
predictions were obtained for all proteins in MP_62 and those predicted transmembrane
helices were used for evaluation that overlapped by at least 50% of all positions with
a transmembrane helix as listed in TOPDB/PDBTM. In total, the number of helix
pairs was reduced due to mispredicted helices to 1212 helix pairs with 554 pairs (45.7%)
connected by at least one helix-helix contact and hence classified as interacting helix
pair.

Interacting transmembrane helices were predicted based on the number of residue
contacts predicted for every helix pair with TMHcon using either one or both neural
networks NN4 and NN4-D. To this end, an initial list of predicted contacts was compiled
based on two different strategies, either using the protein length based L/5 criterion or
employing the contact density formulas describing the number of observed contacts for
a given number of residues obtained earlier (section 4.2.3, page 68). Subsequently, every
helix pair was predicted as interacting for which a number of predicted contacts was
found on this initial list exceeding a predefined threshold. Several thresholds for this
required number of predicted contacts were evaluated by calculating the sensitivity and
specificity of each obtained prediction. The significance of each prediction was calculated
based on a chi-square test. In case both networks NN4 and NN4-D were used, two initial
contact lists were obtained and different contact thresholds were tested for both networks
resulting in an optimal trade-off between prediction sensitivity and specificity.

5.2.3 Consensus prediction of helix interactions

The prediction of helix interactions using additional contact information predicted for
homologous sequences was executed based on the CAMPS database (version 2.0). Sim-
ilar to the first CAMPS version used during the analysis of co-evolving residues in
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membrane proteins (see section 3.2.1 on page 45), membrane proteins are classified in
this database according to sequence and topology similarity into clusters thought to rep-
resent membrane protein folds. However, in addition to prokaryotic genomes covered in
CAMPS1.0, the new CAMPS2.0 database also considers eukaryotic genomes. In total,
286,476 different proteins from 535 genomes are included which are classified into 1384
structurally correlated (SC-)clusters. As all proteins belonging to the same SC-cluster
are expected to share the same fold and hence mostly the same helix interactions, these
clusters seem to be an appropriate starting point for the consensus prediction of helix
interactions.

For testing, all SC-clusters were selected containing a protein with at least 95% se-
quence identity (at 95% sequence coverage) to a PDB structure without considering
theoretical models and structures with >4Å resolution. In case more than one repre-
sentative structure was obtained for a given SC-cluster, their number of transmembrane
helices was obtained from TOPDB (alternatively PDBTM if a protein was not present
in TOPDB) and from all proteins with the same number of transmembrane helices the
one with the best resolution was selected. The remaining list of representative struc-
tures was further filtered based on 40% sequence identity resulting in the final dataset
consisting of 34 PDB proteins from 32 SC-clusters (Appendix, Table 9.4). Proteins
2R6G Chain F/2R6G Chain G and 3BEH Chain D/1ORQ Chain C originated from the
same SC-cluster but differed in their number of transmembrane helices and hence were
all included in the subsequent evaluation process as their helix interaction patterns are
likely to be different. In the following, the final dataset will be referred to as MP_CAMPS.

The prediction of helix interaction consensus graphs from a number of structurally
related proteins was executed and evaluated within several steps. First, TMHcon predic-
tions were obtained for all proteins in MP_CAMPS based both on transmembrane helices
as obtained from TOPDB/PDBTM and predicted with Phobius. Helix interactions
were calculated from the TMHcon contact predictions as described above (section 5.2.2)
and used later on as reference to evaluate the subsequent consensus predictions. For
the actual consensus graph generation, related sequences were selected for each protein
from the same SC-cluster which were required to have an identical number of trans-
membrane helices predicted with Phobius as the representative protein structure. The
number of selected sequences was set to 40 during initial optimization experiments (data
not shown) as a larger set of sequences was not found to improve prediction accuracy
but significantly reduced calculation speed. In case SC-clusters were smaller than the
required number of sequences, all appropriate sequences were collected. From this set of
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structurally related proteins, a consensus helix interaction graph was obtained by calcu-
lating helix-helix contacts for each protein with TMHcon and predicting all helix pairs
of the consensus graph as interacting that were also positively predicted in a predefined
fraction of all analyzed proteins. To obtain optimal results, two main parameters of
the full consensus prediction process were varied and adjusted to each other, first the
number of helix-helix contacts required for the prediction of an interacting helix pair
within a single protein and second the required fraction of positive predictions over all
proteins. The parameter setting resulting in optimal prediction sensitivity at a given
specificity was selected for the final consensus predictions. Finally, consensus predictions
and predictions obtained for single PDB proteins were combined to evaluate the extent
of overlap between these two prediction strategies and test whether individual predic-
tions can be further improved by the addition of contact information from homologous
proteins

5.3 Results and discussion

5.3.1 Prediction of interacting helices using co-evolving residues

Going from the residue contact level to the helix interaction level, the applicability of co-
evolving residues for the prediction of interacting helix pairs in membrane proteins was
first evaluated since co-evolving residues were found to frequently appear in close neigh-
bourhood to helix-helix contacts. To minimize the number of incorrectly predicted inter-
actions without loosing too much valuable information, the CONSENSUS-R approach
was used for this analysis, which combines results from four prediction algorithms which
were earlier found to perform best on membrane proteins (McBASC-Miyata, McBASC-
McLachlan, OMES-KASS and CAPS, see Table 3.2).

Out of 325 helix pairs obtained from 14 membrane proteins (dataset MP_14, Table 3.1),
the 166 actual interacting pairs were predicted with varying specificity and sensitivity,
depending on the number N of correlated mutations required for a positive prediction
(Table 5.1). For example, with N=5, i.e., where a helix pair is predicted as interacting
in case at least 5 correlations were found for this helix pair, interacting helices could
be predicted with a sensitivity of 42% and a specificity of 83%. A prediction accuracy
of 71.9% could be achieved in this case. According to a chi-square test, this prediction
is significant with a p-value of 2.19E-06. By raising the threshold N to higher values,
the specificity of the prediction rises at the expense of a smaller number of predicted

89



CHAPTER 5. PREDICTION OF INTERACTING HELICES

interactions. For example, with N=7 about one fourth (27.1%) of all interacting helices
in the dataset can be predicted with a specificity of around 92.5% (p-value 7.14E-06).
The prediction accuracy increases to 78.9%.

Table 5.1: Prediction of interacting helices for the dataset MP_14 based on co-evolving residues
using a consensus approach. Sensitivity and specificity can be adjusted by varying the number
of required correlations for the positive prediction of an interacting helix pair.

Required correlations Accuracy [%] Sensitivity [%] Specificity [%] P-value

1 56.8 78.3 37.7 2.30E-03
2 61.5 66.2 56.6 5.54E-05
3 64.1 56.0 67.3 3.85E-05
4 65.0 45.8 74.2 2.74E-04
5 71.9 41.6 83.0 2.19E-06
6 72.5 30.1 88.0 1.09E-04
7 78.9 27.1 92.5 7.14E-06
8 78.3 21.7 93.7 1.33E-04
9 84.8 16.9 96.9 9.20E-05
10 88.5 13.9 98.1 1.62E-04

Applying the same procedure to the dataset MP_62 (Appendix Table 9.3) resulted in
predictions with similar sensitivity and specificity (Table 5.2, page 93). Here, 42.9% of
all interacting helices could be predicted with a specificity of 79.8% while 30.4% of all
interacting helices could be predicted with a specificity of 90.3% (see Table 5.2 on page
93). For these predictions, accuracies of 66.2% and 74.2%, respectively, were achieved.
These results demonstrate that co-evolving residues in fact can be used to identify

interacting helices with good accuracy although most of them are not residue contacts
themselves. However, especially the sensitivity of the prediction leaves further room for
improvements.

5.3.2 Improved prediction of interacting helices with TMHcon

After demonstrating the capability of TMHcon to predict helix-helix contacts in mem-
brane proteins with equal accuracy to state-of-the-art methods for soluble proteins
(Chapter 4), the potential application of these predicted contacts for the identifica-
tion of interacting helices should be evaluated and compared to the results obtained
with co-evolving residues alone (section 5.3.1).
Based on the dataset of 62 proteins (MP_62) used also for helix-helix contact prediction,

interacting helices were predicted from helix-helix contacts using two different strategies.
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On the one hand, the L/5 highest scoring contact pairs were selected (with L being
defined as the sum of the transmembrane segments’ lengths) and every helix pair was
predicted as interacting with at least one predicted contact. However, as can be seen
from Figure 4.4 (page 79), the solely sequence length dependent threshold L/5 is much
too restrictive to obtain a number of contacts typical for an alpha-helical membrane
protein. Additionally, it can be observed that the number of contacts per helix pair
predicted by the neural network NN4 tends to increase with the number of observed
contacts per helix pair (Figure 5.2). After selecting predicted contacts based on the
contact density formula for alpha-helical membrane proteins introduced in section 4.2.3
(page 68), helix pairs with more than 5 actual helix-helix contacts were found to have on
average 15 predicted contacts (median: 8) while helix pairs with only a small number
of helix-helix contacts between one and five had nine predicted contacts on average
(median: 3).

Figure 5.2: Dependency of the number of contacts predicted with TMHcon (neural network NN4)
on the number of observed contacts. Helices with a given number of observed helix-helix
contacts (0, 1-5, or more than 5) were grouped. The number or predicted contacts increases
in average with the number of observed contacts.

Based on these observations a second prediction strategy was developed for interact-
ing helices where the initial number of predicted contacts for every protein was derived
from the contact density formula. Afterwards, a threshold of required contacts for an
interacting helix pair was applied to remove wrongly predicted interacting helices. Sim-
ilar to the approach introduced in section 5.3.1 where co-evolving residues alone were
used for the identification of interacting helices, this contact threshold can be used to
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achieve predictions of increasing specificity at the cost of decreasing sensitivity. Using
these two strategies (termed length-based prediction and contact-based prediction) in-
teracting helix predictions were obtained for all four neural networks developed earlier
(see section 4.2.4, page 68) and specificity, sensitivity, accuracy and significance (based
on a chi-square test) were calculated for each prediction (Table 5.2). Since contact-
based predictions made at different thresholds of required contacts are hard to compare,
results are always provided for those predictions having the specificity closest to 80%
and 90%. As can be seen from Table 5.2, the contact-based selection resulted in a more
significant prediction for all of four neural networks than the length-based selection.

Prediction performance of neural networks with increasing complexity

A comparison of the performance of different neural networks produced similar results to
those obtained in the analysis of predicted helix-helix contacts (Table 5.2). Predictions
based on the same selection strategy showed a clear increase in accuracy and sensitivity
(accompanied by decreasing p-value) at the same specificity level with increasing com-
plexity of the used neural network. For example, using length-based (L/5) selection, all
four neural networks resulted in a prediction of interacting helices with a specificity be-
tween 87% and 89%, while the prediction accuracy increased from 72% towards 78%. At
the same time, the sensitivity increased by 9%, and the p-value decreased from 1.76E-25
to 3.72E-46. The same can be observed using the contact-based selection strategy. When
predictions with the same specificity (for example 90%) were compared, again accuracy
and sensitivity increased (3% and 8%, respectively, in the case of 90% specificity) while
the p-value decreased (from 4.43E-34 towards 8.48E-51, again for predictions with 90%
specificity).

Prediction of interacting helices distant in sequence

For every prediction, the fraction of predicted interacting helices that are neighbouring in
sequence were calculated. Despite all deviations from the canonical alpha-bundle struc-
ture found in membrane proteins, neighbouring helices still have a clearly higher proba-
bility for interaction with each other compared to non-neighbouring helix pairs (80.5%
compared to 37.9% for non-neighbouring helix pairs in the dataset MP_62). Therefore, a
primitive way of predicting interacting helices in membrane proteins would be to predict
all neighbouring helices as interacting and non-neighbouring helices as not interacting.
While this prediction method would lead to a high prediction accuracy of 80.5% for
MP_62, its subsequent application for the discrimination of different membrane protein
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Table 5.2: Prediction of interacting transmembrane helices using helix-helix contacts predicted by
neural networks of increasing complexity. All results are based on the dataset MP_62. For
comparison, results obtained with HelixCorr (the consensus predictor based on correlated
mutations) are reported as well. Predicted contacts used for the identification of interacting
helices were selected with two different procedures. L/5 corresponds to the length based
selection of predicted contacts while CX describes the number X required contacts for an
interacting helix pair after compiling an initial list of contact predictions using the contact
density formula for membrane proteins described in section 4.2.3.

Method Threshold N(predicted)a Neighbourb Accuracy Sensitivity Specificity P-value
[%] [%] [%] [%]

HelixCorr C7 462 38.1 66.2 42.9 79.8 7.36E-21
C11 292 42.8 74.3 30.4 90.3 2.35E-23

NN1
L/5 359 60.4 72.1 36.3 87.0 1.76E-25
C4 494 57.9 71.3 49.3 81.6 2.71E-36
C9 336 73.2 77.4 36.4 90.2 4.43E-34

NN2
L/5 327 65.1 76.1 34.9 89.9 2.28E-30
C3 531 57.1 71.8 53.4 80.6 5.06E-42
C7 366 72.4 79.5 40.8 90.3 2.05E-43

NN3
L/5 380 69.7 76.1 40.5 88.2 1.97E-36
C4 565 59.3 72.9 57.7 80.2 1.04E-50
C10 373 79.6 79.6 41.6 90.2 8.39E-45

NN4
L/5 413 65.4 78.0 45.1 88.2 3.72E-46
C4 587 57.1 72.2 59.4 78.9 5.10E-51
C9 397 75.6 80.4 44.7 89.9 8.48E-51

NN4-D C7 324 - 58.0 43.8 80.7 1.76E-18
C10 212 - 66.5 32.9 89.9 3.49E-21

NN4/ C9/C10 552 54.3 74.8 57.8 82.0 2.09E-56
NN4-D C9/C15 485 61.9 78.1 53.1 86.3 2.24E-58
a N(predicted): number of predicted interacting helices.
b Neighbour: percentage of neighbouring helix pairs out of the total number of predicted interacting
helices.

folds would be impossible, since no differences in the helix packing of proteins with the
same number of transmembrane helices could be determined. Optimally, one would
therefore wish to obtain predictions with a small fraction of neighbouring helices (possi-
bly close to the naturally occurring fraction of 39.9% as observed for the tested dataset
MP_62), to get a maximum of information about the specific fold of a protein.

A comparison of NN1 and NN2 (Table 5.2) reveals that the incorporation of correlated
mutations as input feature results in predictions of higher sensitivity and accuracy at
equal specificity with a slightly smaller fraction of neighbouring helices in the set of pre-
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dicted helices using the contact-based selection (with 90% specificity 73.2% neighbouring
helices with NN1 and 72.4% with NN2). The additionally detected interacting helices
are therefore primarily long distance helix pairs, implying that co-evolving residues are
generally independent of sequence separation (see also the discussion of HelixCorr results
later).

In contrast, the first incorporation of membrane protein specific features (residue
position within the transmembrane helix as well as the total number of transmembrane
helices) within NN3 resulted in a strong increase of the number of neighbouring helices in
the prediction (at 90% specificity 79.6% with NN3 compared to 72.4% with NN2). This
demonstrates a general tendency of the neural network to learn about the helix-bundle
structure of membrane proteins from basic membrane protein specific input features.
The addition of LIPS scores within NN4 reduces the fraction of neighbouring helices
again to a final value of 75.6% for the prediction with 90% specificity. Since the fraction
of falsely predicted non-interacting neighbouring helices decreases at the same time
(from 17.2% with NN3 towards 15.3% with NN4), the inclusion of LIPS scores (the
predicted orientation of each residue towards the membrane or the protein interior)
seems to prevent the incorrect prediction of those amino acid residues as being in the
contact state which would originally be well positioned on neighbouring helices to form
a contact in a perfect helix bundle structure.

In order to increase the fraction of non-neighbouring helices in the final prediction a
neural network was trained especially on long-range contacts by omitting all helix-helix
contacts from neighbouring helices from the training set (network NN4-D). Using con-
tacts predicted by this neural network and selected according to the contact formula
derived for non-neighbouring helices (see section 4.2.3) a prediction of distant inter-
acting helices was obtained. Due to the increased difficulty of predicting contacts on
non-neighbouring helix pairs resulting from the smaller contact density, the sensitiv-
ity and accuracy of this prediction was clearly lower than those obtained for the full
dataset (Table 5.2). However, at 80% specificity still 43.8% of all distant interacting
helices could be correctly predicted. More than 32% of these interacting helices were
predicted with close to 90% specificity. To enhance the original NN4 prediction with
long distant interactions, helix pairs predicted as interacting by NN4-D were combined
with the initial NN4 prediction. After adding all helix pairs with at least 10 predicted
contacts (corresponding to the 90% specificity prediction of NN4-D), the significance
of the prediction increased to 2.1E-56 (Table 5.2). While still 57.8% of all interacting
helices were predicted with a specificity of 82%, the fraction of neighbouring helices

94



5.3. RESULTS AND DISCUSSION

decreased to only 54.3%. This prediction was further improved by raising the threshold
of required contacts for NN4-D, corresponding to the increased difficulty of long-range
contact prediction. With 15 required contacts a final prediction with a significance of
2.2E-58, a sensitivity of 53.1% and a specificity of 86.3% was obtained. The fraction
of neighbouring helices was only 61.9%, a clear improvement compared to the original
NN4 prediction.

Comparison to predictions based on co-evolving residues

Comparing the results obtained with the combination of the neural networks NN4 and
NN4-D to the results obtained with co-evolving residues, the increase in prediction
quality from HelixCorr towards TMHcon was quite remarkable (Table 5.2).

For predictions with both 80% and 90% specificity, TMHcon predictions with basi-
cally equal specificity to comparable HelixCorr predictions resulted in a clearly higher
sensitivity and accuracy. An increase in accuracy of up to 6% (HelixCorr with 7 required
correlations (C7) compared to TMHcon with 4 required contacts (C4)) and an increase in
sensitivity of up to 16% (again HelixCorr/C7 compared to TMHcon/C4) was observed.
The significance of the prediction increased from 7.4E-21 to 5.1E-51. However, it must
be noted, that the fraction of neighbouring helix pairs is significantly lower in the case of
HelixCorr compared to any prediction obtained by a neural network (42.8% with Helix-
Corr/C11 compared to maximal 79.6% with NN3/C10). While neural networks tend to
learn that neighbouring transmembrane helices have a higher probability for interacting
with each other, co-evolving residues are much more independent of this fact. Since the
obtained predictions favour specificity over sensitivity, resulting in a limited number of
predicted interacting helix pairs, this leads to an enrichment of neighbouring helices in
the prediction of the neural networks. In contrast, the prediction from HelixCorr with
a fraction of close to 40% neighbouring helices resembles nearly perfectly the naturally
occurring fraction of 39.9% neighbouring helices in the total set of interacting helices
(285 out of 714).

Prediction of interacting helices based on predicted transmembrane helices

Experimentally derived membrane protein topologies are only available in rare cases
similar to membrane protein structures. Hence, in most cases transmembrane helices
need to be predicted using state-of-the-art topology prediction programs. Such programs
can be expected to predict the correct topology of a protein with an accuracy of roughly
70% in case no experimental constraints are available [43]. A noticeable fraction of
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all proteins will therefore be predicted with an incorrect number or at least slightly
misplaced transmembrane helices. To test how this affects the prediction of interacting
helices, a second dataset of helix pairs was obtained from the dataset MP_62 where
transmembrane helices were predicted using the program Phobius [98]. For evaluation,
all predicted helices were used that overlapped by at least 50% of all positions with
an observed transmembrane helix thereby allowing a distinct degree of misplacement.
Nevertheless, the final dataset of helix pairs was reduced from 1486 helix pairs to 1212
helix pairs due to incorrectly predicted transmembrane helices.

Interacting helices were predicted once relying on the length-based approach (using
the best L/5 helix-helix contacts) and once relying on the best performing contact-
based approaches where predictions from networks NN4 and NN4-D were combined.
Using the length-based approach, prediction quality was noticeably inferior when using
predicted instead of structurally determined transmembrane helices (Table 5.3). At
equal specificity, accuracy decreased by more than 2.5% and sensitivity decreased by
more than 4%. Using the contact-based approaches C9/C10 and C9/C15 the decrease in
prediction quality was less eminent as predictions using the same prediction parameters
were clearly more sensitive but less specific in case of predicted transmembrane helices.

Table 5.3: Prediction of interacting helices with TMHcon based on predicted transmembrane
helices. All results are based on the dataset MP_62. Predicted contacts used for the iden-
tification of interacting helices were selected either based on protein length (L/5) or using
the contact density formulas for membrane proteins described in section 4.2.3 (CX, with the
number X describing the number of required contacts for an interacting helix pair). While
L/5 based predictions are less sensitive but equally specific using predicted transmembrane
helices, contact density formula based predictions are shifted towards higher sensitivity at
reduced specificity.

Method Threshold TMSa Accuracy [%] Sensitivity [%] Specificity [%]

NN4 L/5 TOPDB 78.0 45.1 88.2
Phobius 75.3 40.8 88.8

NN4/NN4-D C9/C10 TOPDB 74.8 57.8 82.0
Phobius 63.5 63.5 77.5

NN4/NN4-D C9/C15 TOPDB 78.1 53.1 86.3
Phobius 73.5 56.0 83.0

a TMS: transmembrane helix positions were obtained either from experimentally deter-
mined structures (TOPDB) or using the topology prediction program Phobius.

Overall, the prediction of interacting helices seems to be more robust than the predic-
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tion of helix-helix contacts when using predicted instead of experimentally determined
transmembrane helices (see also sections 4.3.4 and 5.3.2). Missing or additionally pre-
dicted helices may prompt the neural network to deduce wrong residue contacts since
on the one hand neighbouring helices may appear as non-neighbouring and vice versa.
Furthermore, misplaced transmembrane helices may obscure the correct position of a
residue with respect to the membrane (a residue close to the cytoplasmic side for ex-
ample may appear as one of the central residues) complicating the detection of correct
helix-helix contact positions. Interestingly, this seems to affect the prediction of inter-
acting helices only when the number of used residue contacts is small (L/5 predictions).
For contact-based predictions where larger numbers of helix contacts are used in the
first place, losses in specificity are largely balanced by gains in sensitivity indicating
that even incorrectly predicted residue contacts are still preferentially lying on interact-
ing helices. The shift towards more sensitivity and less specificity seems to be mainly an
artefact caused by predicted transmembrane helices being generally slightly longer than
corresponding helices determined from the 3D structures. Therefore, more predicted
helix-helix contacts are selected in the first place increasing prediction sensitivity while
reducing prediction specificity at the same time.

Prediction of interacting helices for three membrane proteins with recently solved
structure

To exemplary evaluate the prediction of interacting helices under ‘real-life’ conditions,
the same three membrane proteins were used as introduced in section 4.3.4 (page 82)
when testing contact predictions obtained with TMHcon. Again, transmembrane helix
positions were obtained once from PDBTM and once from predictions with the topology
program Phobius [98] to simulate the case when no protein structure is available. Helix-
helix contacts were predicted both with NN4 and NN4-D (for results see section 4.3.4)
and then used for the prediction of helix-helix interaction patterns for all three proteins.
The same prediction parameters were used as in the most significant earlier prediction,
thus requiring at least 9 predicted contacts by NN4 or 15 predicted contacts by NN4-D
to predict a helix pair as interacting.

As can be seen from Figure 5.3, predicted helix interaction graphs closely resemble
the expected interaction patterns although several edges may be missing. This is even
true for proteins such as 3B4R (chain B) and 3B8E (chain A) where Phobius was not
able to predict the correct number of transmembrane helices.
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Figure 5.3: Prediction of interacting helices for three example membrane proteins (3B4R chain
B, 3B8C chain A, 3B8E chain A). Helices were predicted as interacting with at least 9 or
15 helix-helix contacts predicted by NN4 or NN4-D, respectively. Bold edges in the case of
predicted helix interactions indicate positive predictions by NN4 and NN4-D while in the case
of observed helix interactions they correlate with the number of observed residue contacts.
For all proteins, predicted helix interaction graphs closely resemble observed helix interaction
graphs.

5.3.3 Prediction of consensus helix interaction graphs

Information from homologous proteins has been successfully incorporated into a number
of structural prediction tasks in the past (see for example [234, 235]). Here, a similar ap-
proach is presented trying to recover helix interactions of a given protein using predicted
contact information from a number of related proteins. Furthermore, the possibility is
evaluated whether such homologous proteins can also be helpful for improving the pre-
diction quality of helix interaction graphs by combining individual predictions into a
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consensus graph of increased sensitivity.
Ideally, proteins used for the construction of consensus helix interaction graphs should

be sequentially diverse (to add new information to the prediction process) while still fold-
ing into the same helix architecture with highly similar helix interactions. The CAMPS
database (version 2.0) was used to identify such proteins as membrane proteins are clas-
sified in this database into clusters corresponding to membrane protein folds (termed
SC-clusters) based on sequence and topology similarity (manuscript in preparation). In
total, 34 proteins could be identified that are associated with a known 3D structure and
are classified within CAMPS either into different SC-clusters or the same SC-cluster but
vary in their number of transmembrane segments (dataset MP_CAMPS, Appendix Table
9.4). For each protein, 40 related proteins from the same SC-cluster were selected whose
predicted number of transmembrane segments was consistent with the representative
protein structure. These proteins were used then to calculate consensus interaction
graphs representing the corresponding protein structure (for details see Materials and
methods, section 5.2.3 on page 87).

Reproduction of helix interaction patterns from structurally related sequences

After obtaining consensus helix interaction graphs for all proteins in MP_CAMPS, the ac-
curacy of these graphs was calculated and compared to predictions obtained for the
original PDB sequences of MP_CAMPS. Additionally, the individual helix graphs used for
constructing the consensus graph were evaluated against the observed helix graphs and
the average prediction accuracy, sensitivity and specificity of these graphs was deter-
mined and again compared to the final consensus graphs (Table 5.4).

Independent of the strategy applied for predicting helix interactions from helix-helix
contacts - length-based (L/5) vs. contact-based (CX/CX), for further explanations
see section 5.3.2 - consensus graphs were capturing observed helix interactions at least
equally good as predictions obtained from the PDB sequences directly and clearly better
than the average helix prediction based on proteins used for the construction of the con-
sensus graphs. Using for example the best L/5 predicted residue contacts and predicting
all helices as interacting with at least one helix-helix contact, the sensitivity of consensus
graphs was even nearly 9% higher (at only slightly reduced specificity) than both the
PDB sequence based predictions and than the average of all individual consensus se-
quence based predictions. For contact-based predictions with 90% specificity, consensus
predictions are still 1.5% more sensitive than the single PDB protein predictions and
5% more sensitive than the average single consensus sequence prediction.
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Table 5.4: Consensus prediction of interacting helices using structurally related sequences. All
results are based on the dataset MP_CAMPS. Helix interactions were predicted either based on
individual proteins having a PDB structure or within a consensus approach using 40 proteins
structurally related to the representative PDB structure (termed consensus sequences). In
all cases, transmembrane helices were predicted with Phobius. Helix interactions predicted
with the consensus graph are at least equally good as predictions obtained from the PDB
sequences directly and clearly superior to predictions obtained for single consensus sequences.

Graph type Contact thresholda Consensus thresholdb Accuracy [%] Sensitivity [%] Specificity [%]

PDBc
L/5

-
76.1 40.7 89.3

C6/C15 71.4 59.0 80.3
C20/C17 78.1 44.7 89.5

Consensus
L/5 0.3 77.3 49.5 87.6

C9/C18 0.3 72.4 60.4 80.3
C17/C23 0.4 80.2 46.2 90.2

Averaged
L/5

-
74.7 40.5 88.2

C9/C18 73.0 52.8 83.3
C17/C23 77.9 41.3 90.0

a Contact threshold: strategy to predict helix interactions for a single protein (for details see Table 5.2).
For contact-based predictions optimal results at 80% and 90% specificity are shown.

b Consensus threshold: fraction of single helix graphs required to contain a specific edge to transfer it to
the consensus graph.

c PDB: evaluation of all helix predictions obtained directly from the corresponding PDB sequences with
transmembrane helices being predicted with Phobius.

d Average: evaluation of all individual helix predictions obtained for homologous proteins used during con-
sensus graph generation. All helix predictions were evaluated against the corresponding PDB structure
and the average accuracy, sensitivity and specificity of these predictions was calculated.

This is highly encouraging as proteins used during consensus graph construction gen-
erally shared only minor sequence identity with the PDB structure whose helix inter-
actions should be predicted. In nearly 80% of all cases, the average sequence identity
between PDB structure and all consensus sequences was below 40%. First, this demon-
strates that CAMPS SC-clusters in fact contain proteins whose helix architectures are
likely to be highly similar as this prediction success would hardly be possible otherwise.
Furthermore, helix interaction predictions of individual proteins can be combined into
a common prediction thereby filtering out wrongly predicted helix interactions and/or
gaining additional correct helix predictions as can be seen from the increased sensitiv-
ity of consensus predictions (more than 5% gain for all presented contact thresholds)
compared to the average predictions of individual consensus sequences.
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Adding consensus information to PDB helix interaction graphs

Although consensus graphs were found to reproduce membrane protein helix architec-
tures at least equally good as predictions obtained from the PDB sequences themselves,
their prediction accuracy especially for contact-based helix predictions was also not sig-
nificantly better leaving room for further improvement. To this end, helix interactions
predicted from PDB sequences directly were combined with helix interactions obtained
with the consensus approach in order to test the overlap between these predictions and
evaluate the potential of further prediction improvements. Prediction parameters of in-
dividual helix predictions (number of initially selected helix-helix contacts and number
of required contacts for predicting a helix interactions) were varied conjointly with the
consensus threshold (fraction of single helix graphs required to contain a specific edge
to transfer it to the consensus graph) until optimal prediction conditions were found
(Table 5.5).

Table 5.5: Combining PDB helix interaction graphs with consensus information. All results are
based on the dataset MP_CAMPS. Helix interactions predicted for individual proteins having
a PDB structure were enriched with additional helix interactions predicted with a consensus
approach using 40 proteins structurally related to the representative PDB structure. In all
cases, transmembrane helices were predicted with Phobius. By adding consensus information
to PDB predictions, prediction sensitivity can be improved by 4 - 13%.

Graph type Contact thresholda Consensus thresholdb Accuracy [%] Sensitivity [%] Specificity [%]

PDBc
L/5

-
76.1 40.7 89.3

C6/C15 71.4 59.0 80.3
C20/C17 78.1 44.7 89.5

PDB+d
L/5 0.4 76.3 53.3 86.5

C21/C13 0.6 72.8 63.2 80.3
C21/C20 0.6 79.5 49.9 89.3

a Contact threshold: strategy to predict helix interactions for a single protein (for details see Table 5.2).
For contact-based predictions optimal results at 80% and 90% specificity are shown.

b Consensus threshold: fraction of single helix graphs required to contain a specific edge to transfer it to
the consensus graph.

c PDB: prediction of helix interactions based on the corresponding PDB sequences alone.
d PDB+: prediction of helix interactions by combining consensus information with predictions obtained for
the corresponding PDB sequences.

In fact, the prediction of helix interactions can be further improved when adding
consensus information. Using the best L/5 helix-helix contacts for all individual helix
predictions, the sensitivity increases by nearly 13% after the addition of consensus pre-
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dictions while the specificity decreases only by 3%. Compared to consensus predictions
alone (Table 5.4), the sensitivity still increases by 4% at equal specificity. Similarly,
using contact-based helix predictions the sensitivity of predictions with 80% and 90%
specificity rises by 4% and 5%, respectively. This demonstrates, that consensus helix in-
teraction graphs on the one hand are largely consistent with interaction graphs predicted
for single PDB proteins since the increase in sensitivity is rather moderate. However, at
least a small number of helix interactions is obtained from consensus predictions that
can not be derived from the PDB sequences themselves. When appropriately combined
into a common prediction, these additional interactions can contribute to increased pre-
diction sensitivity while not reducing prediction specificity. Figure 5.4 demonstrates
this increase in sensitivity for the example of bovine rhodopsin (PDB 1U19, chain A),
the first G-protein coupled receptor with experimentally solved structure [224]. In Fig-
ure 5.4A the helix interactions as obtained from the structure are shown with the edge
weights corresponding to the number of observed helix-helix contacts. Using only the
PDB sequence (Figure 5.4B), all interactions between sequentially neighbouring helices
are correctly predicted but only one distant interaction (between helices 3 and 7) is
obtained. Adding further consensus information (Figure 5.4C), one interaction between
neighbouring helices ist lost (helices 5 and 6) since more restrictive contact thresholds
are applied for individual predictions but three additional distant interactions are gained
which significantly contribute to an improved reproduction of the original helix archi-
tecture.

Figure 5.4: Consensus prediction of helix interactions for bovine rhodopsin (PDB 1U19, chain
A). All predictions are obtained with the contact-based approach using optimal prediction
parameters determined for a minimal prediction specificity of 80%. (A) Helix interactions as
observed from the 3D structure. (B) Helix interactions predicted from the PDB sequence
alone. (C) Helix interactions predicted with additional consensus information. Several inter-
actions between non-neighbouring helices are predicted only by the consensus approach.
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6
Classification of helix architectures

For nearly two decades, structural classification approaches try to organize the jungle
of available protein structures. For soluble proteins, between 80-90% of all protein do-
mains originating from completely sequenced genomes can already be classified to a
known structural family indicating that the fold space of soluble proteins is already
fairly well covered in available structure-based classification databases and new folds
are less likely to be identified [236, 237]. Structural classification of membrane proteins
on the other hand is still it its infancies due to the overall small number of available
experimentally solved structures. However, due to the technological increase in struc-
ture determination of membrane proteins [238, 239], the number of available unique
membrane protein structures has been significantly growing over the past years allow-
ing now for a first glimpse into the structural universe of membrane proteins based on
experimentally determined structures.

Still unclear is, to what extent structural classification procedures derived originally
mostly for soluble proteins can be directly applied to membrane proteins. Difficulties
result especially from the lack of a uniform fold definition for membrane proteins as
all integral membrane proteins on the one hand adopt either an overall alpha-helix
bundle or beta-barrel architecture but vary within several structural features such as
helix interactions, loop lengths or the presence of structural irregularities like tilted
helices and reentrant loops. Furthermore, the continuity of protein fold space has been
heavily discussed over the past years (see for example [240, 241, 242]). For membrane
proteins whose structures are additionally restricted by the lipid bilayer, the question
arises whether membrane proteins can be reasonably classified into distinct folds at all.

Here, these problems are addressed by proposing a completely membrane protein spe-
cific structural classification system that identifies common helix architectures based
on similarities between helix interaction graphs. Within a short introduction, available
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structural classification approaches are first briefly reviewed and the hotly debated idea
of a potentially continuous fold space is introduced together with the resulting impli-
cations for the classification of protein structures. Then, a short analysis of occurrence
and classification of membrane proteins in the structural databases SCOP [243, 223]
and CATH [244, 237] is presented summarizing the current status of membrane pro-
tein structural classification. Finally, the major part of the chapter describes the new
classification system which clusters membrane proteins based on similarity scores ob-
tained from comparing their helix interaction graphs. After testing how well obtained
helix architectures agree with protein folds as obtained from SCOP and CATH, several
questions regarding the diversity of alpha-helical membrane proteins are addressed such
as 1) how diverse can membrane protein sequences be to still fold into a common he-
lix architecture or 2) is the protein folding space of membrane proteins rather discrete
or continuous according to the similarity among all helix architectures containing the
same number of transmembrane helices. Finally, it is evaluated, whether the accuracy
and sensitivity of predicted helix interaction graphs is already sufficient for classifying
proteins without experimentally solved structure available.

The analysis of membrane proteins in SCOP and CATH was conducted conjointly
with Sindy Neumann (TU München) and was recently submitted for publication [245].
Comments in the section Material and methods will clarify individual contributions.
The helix interaction based classification of membrane proteins is still unpublished.

6.1 Introduction

6.1.1 Structural classification of proteins

Structure-based classification of proteins provides a helpful resource to reveal their evo-
lutionary relationships and to obtain an easily accessible overview of the existing protein
fold space and the number of naturally observed folds. In addition, classification ap-
proaches have found widespread application in many areas of structural bioinformatics,
including homology modelling, fold recognition, and structural genomics.

Several resources for structural classification of proteins exist, with SCOP [243, 223]
and CATH [244, 237] arguably being the most comprehensive ones. Both databases use
a hierarchic classification system and rely on a largely similar definition of a protein fold
which takes into account the number of secondary structure elements, their spatial orien-
tation, and connectivity [243, 244]. While SCOP and CATH incorporate different levels
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of manual supervision in their classification procedure, other classification approaches
have been proposed that completely rely on large-scale structure comparisons and are
therefore fully automated [246, 240, 247, 248, 249].

Given the varying classification procedures it is not surprising that several studies have
found remarkable differences between individual fold classifications [250, 240, 251]. First,
these differences may arise from variations in the applied domain assignment procedure,
which generally is the first step within each classification approach since structural
domains are used as classification entities. Furthermore, classification databases may
disagree in their fold and homology assignments. Large folds in one database might be
divided into several more specific folds within another classification system, leading to
proteins belonging to the same fold in the first case but to different folds in the latter
case. Even more drastic discrepancies can be observed where one database classifies two
proteins into an evolutionary related family while another classification approach places
the same pair of proteins into completely different folds due to the fact that proteins
may be structurally diverse despite a common evolutionary origin [250, 252].

However, all comparative analyses of structural classification systems have been exe-
cuted on datasets consisting of mostly soluble proteins. A comparable analysis specifi-
cally focusing on membrane proteins is still missing.

6.1.2 The protein fold space: discrete or continuous?

While many disagreements between different structural classification approaches can be
directly attributed to differences in their classification methodologies (see above), the
idea of structural classification itself is challenged by the recently discussed notion of a
continuous protein structure space, which would naturally complicate the classification
of proteins into discrete fold categories (see for example [240, 241, 242, 253]).

Rooted in the idea that short polypeptides (corresponding to structural motifs) form
basic evolutionary units [254, 255], compact domains are suggested to be constructed
from several such substructures leading to local structural similarity of one protein to
several other proteins that are not globally related to each other. Accordingly, the
protein structure space can be visualized not as composition of clearly distinct fold
entities but rather appears as network with different folds being connected by commonly
shared structural fragments [256]. Different views exist regarding the degree of continuity
of this network. While some studies suggest a mostly discrete fold space where only a
small subset of all folds (termed "gregarious" folds) are linked to several other folds
thereby serving as network hubs [257, 258], others proposed a highly continuous fold
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space using less restrictive similarity requirements [259]
However, while discussions regarding the nature of the protein fold space are still

ongoing, classification approaches such as SCOP and CATH are well established in the
scientific community and will continue to serve as valuable tools for structural biolo-
gists and bioinformaticians. Nevertheless, adjustments in the classification procedures
might be necessary to cope with the observed overlap caused by common supersecondary
structure motifs [252, 258].

6.2 Materials and methods

6.2.1 Membrane proteins in SCOP and CATH

For the analysis of membrane proteins in SCOP and CATH, all proteins were identified
that were classified in SCOP v1.73 [223] and/or CATH v3.2 [237] and contained at
least two transmembrane segments according to the annotation in PDBTM [201]. After
filtering redundancy at 95% sequence identity, the SCOP dataset contained 88 protein
chains and the CATH dataset contained 71 protein chains (corresponding to 92 and 80
unique classified domains, respectively). These domains were spread over 27 SCOP folds
and 17 CATH folds summarized in Tables 9.5 and 9.6 of the Appendix.

Comparison of domain and fold assignments

For the comparative analysis of domain assignments and membrane protein fold clas-
sifications a common dataset was constructed (further referred to as MP_SCOP_CATH)
containing proteins with assignments in both classification databases. To this end, all
protein chains classified in SCOP and CATH were extracted yielding 58 chains (cor-
responding to 60 SCOP and 63 CATH domains). Redundancy at the domain level
was removed from this set using the SCOP unique identifier (sunid) describing distinct
domains. The final non-redundant MP_SCOP_CATH dataset contained 42 protein chains
corresponding to 43 SCOP and 46 CATH domains all sharing a sequence identity below
95% (Appendix Table 9.7).
The occurrence of multi-domain assignments within alpha-helical membrane proteins

classified by SCOP and CATH was calculating for each database separately using all
membrane protein chains derived for this database. Furthermore, domain assignments
were directly compared between SCOP and CATH for all proteins in the dataset MP_
SCOP_CATH. For those proteins with an equal number of domains in SCOP and CATH,
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the extent of domain position overlap was additionally analyzed. To this end, the
fraction of residues consistently assigned by both databases was calculated and two
domains were said to agree regarding their domain boundaries if this fraction exceeded
90% of the length of both individual domains.

Similarities and differences in the fold assignment of membrane proteins within SCOP
and CATH were again analyzed using the MP_SCOP_CATH dataset. To this end, SCOP
and CATH folds containing exactly the same protein domains were identified and classi-
fied as ’fold agreements’. Folds sharing at least one overlapping protein domain without
constituting a fold agreement were added to the list of ’fold disagreements’. Such fold
disagreements were further subcategorized depending on whether they directly arose
from differences in domain assignments or whether they affected identical domains that
were classified differently leading to 1:N or N:M fold relationships also called ’fold over-
laps’. In order to compare the structural similarity of proteins involved in fold overlaps
to those of fold agreements, all-against-all protein structure comparisons were executed
using DaliLite v.3.1 [260]. SCOP domain coordinates were used for structure compar-
isons due to the higher degree of manual inspection. Only in one case (PDB 2atkC),
CATH domain coordinates were used as the SCOP domain did not cover the whole
transmembrane region.

The comparative analysis of membrane proteins in SCOP and CATH was initiated
and conducted in an initial version by myself. This initial analysis was extended and
turned into its final version presented here including all structural comparisons by Sindy
Neumann.

Analysis of four helix bundle proteins

In order to compare membrane proteins to alpha-helical soluble structures in terms of
diversity and classification, a detailed analysis was conducted based on the class of four
helix bundle proteins. Initial datasets of both soluble and membrane four helix bun-
dles were constructed by manually selecting all folds and corresponding protein domains
from the all-alpha and membrane protein classes in SCOP with a fold description con-
taining the terms ‘4 helices’ and ‘bundle’. In total, 38 soluble and three transmembrane
four helix bundle folds were identified containing 2601 and 78 protein domain entries,
respectively. After removing all domains with redundant SCOP domain sunid and in-
sufficient positional agreement (<90%) with a corresponding CATH domain, the final
dataset of four helix bundle domains was obtained consisting of 188 soluble and 11
membrane four-helix bundle domains. It should be noted that the protein 1c17 Chain
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M (ATP synthase subunit A) was included within the dataset of membrane four-helix
bundle proteins although its structure was not solved experimentally since both SCOP
and CATH provide a classification for this protein despite their general exclusion of
model structures. Again, all-against-all protein structure comparisons were executed for
all protein domains of the final datasets using DaliLite v3.1 [260]. Obtained similarity
scores (Z-scores) as well as the fraction of aligned residues with respect to the smaller
of the two compared structures (coverage) were used to compare proteins classified into
the same fold in both SCOP and CATH to proteins classified either together within only
one database or separately in both databases.

The analysis of soluble and membrane four helix bundle proteins was executed by
myself.

6.2.2 Classification of helix architectures

Dataset of membrane protein structures

To derive a structural classification protocol based specifically on transmembrane helix
interactions, all protein chains having a solved 3D structure and at least four annotated
transmembrane helices were obtained from PDBTM [201]. Proteins with less transmem-
brane helices were not considered as their helix architectures (defined by the observed
helix interactions) lack the combinatorial diversity required for such a classification sys-
tem. After removing sequence redundancy at 95% sequence identity, 182 protein chains
remained of which 33 chains were classified also in both SCOP and CATH and 31 more
chains had either a SCOP or CATH annotation. Helix interaction graphs were ob-
tained for all proteins in this dataset using the corresponding PDB structure and the
transmembrane helix annotations obtained from PDBTM.

Within the dataset, the number of observed transmembrane helices differed between
four and 13 with seven transmembrane helices being the most prevalent number (59
protein chains). For all further analyses, all protein chains were treated as single domain
proteins which is in line with results reported by Liu and colleagues stating that multi-
domain membrane proteins are generally scarce [261] and with own results from the
analysis of membrane proteins in SCOP and CATH where no protein could be found
that was consistently annotated with two domains in both databases (see section 6.3.1
on page 113).
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Similarity score HISS

A necessary requirement for the new classification system was the development of a
scoring system that appropriately captures the similarity of two helix architectures as
represented by their helix interaction graphs. Thereby, helix interactions should be
weighted by the number of residue contacts observed between two helices and non-
neighbouring helices should have a higher impact than neighbouring helices as especially
long-distant interactions define the specific helix architecture of a protein. The new
similarity score HISS (Helix Interaction Similarity Score) satisfies both requirements.

Given the two helix interaction graphs A and B, both containing the same number of
transmembrane helices, the one-sided HISS score (HISSA→B) formulates how well helix
architecture A is recovered from helix architecture B by calculating the fraction of edges
from structure A that are also present in structure B:

HISSA→B =

∑
edges(A∧B)wdist · wcon∑

edges(A)wdist · wcon

�� ��6.1

Thereby, all edges can be weighted differently according to the number of helix-helix
contacts they are based on (wcon) and/or dependent on whether they connect sequen-
tially adjacent helices or not (wdist). Here, the following weighting schemes were cho-
sen. First, sequentially neighbouring helix interactions were down weighted by a factor
wdist = 1 − a (a<1) and distant helix interactions were simultaneously up weighted by
a factor wdist = 1 + b with b = a·N(neighbouring edges)

N(distant edges) . Using the latter formula, the total
weight of all distant helix interactions is balanced with the total weight of all neigh-
bouring helix interactions. Accordingly, distant helix interactions are considered to be
proportionally even more important in case only few such interactions are present in
relation to the number of neighbouring interactions than in case of many distant helix
interactions. The number of individual helix-helix contacts of each helix interaction was
encoded by categorizing all edges into "weak", "intermediate" and "strong" interactions
according to their number of helix-helix contacts. "Weak" interactions (<5 helix-helix
contacts) were down weighted by wcon = w (w<1), "intermediate" interactions (between
5 and 15 helix-helix interactions) were weighted with wcon = 1 and "strong" interactions
(>15 helix-helix interactions) were up weighted with wcon = s (s>1). These categories
were used instead of deriving wcon directly from the number of helix-helix contacts to be
less dependent on small variations in the number of observed helix-helix contacts which
often may differ simply dependent on the used contact criterion. All parameters (a, b, w
and s) were fixed during a subsequent parameter optimization experiment (see below).
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As a perfect HISSA→B = 1 does not mean that two helix architecture are identical,
but rather implies that architecture A is a subset of architecture B, the final similarity
of two structures was calculated as the average HISS score of the two one-sided HISS
scores:

HISS(A,B) = avg(HISSA→B, HISSB→A)
�� ��6.2

Parameter optimization

Optimal parameters for the comparison of two helix architectures using HISS scores were
determined by repeatedly calculating pairwise similarities for a subset of all PDB chains
selected earlier and comparing how well these similarity scores recover other structural
classification approaches. SCOP and CATH were chosen as gold standards and hence
all PDB chains from the full list of 182 proteins obtained earlier were selected having
a classification in at least one of these databases resulting in 64 protein chains. All
possible pairs of proteins with the same number of transmembrane helices were formed
and classified into two groups containing either protein pairs classified to the same fold in
SCOP and/or CATH or to different folds. Protein pairs classified differently in SCOP
and CATH were not considered within this analysis. In total, the first group (same
fold) contained 102 protein pairs while the second group (proteins from different folds)
included 143 protein pairs. Considering only proteins with more than four helices, the
number of protein pairs in both groups decreased to 95 and 116 pairs, respectively. In
the following analysis, the first group of pairs was used as set of true positives while the
second group formed the set of true negative instances.

HISS scores were calculated for all protein pairs with varying score parameters a, b,
w and s (see above). For each parameter setting, it was evaluated how well these HISS
scores were suited to classify all protein pairs into protein pairs belonging to the same or
to different folds. A receiver operator characteristic (ROC) curve was calculated, which
plots the achieved true positive rate against the false positive rate, with any point above
the diagonal corresponding to better predictions than random. The quality of different
classifications was compared using the Area Under the Curve (AUC) measure, with AUC
values above 0.5 indicating classifications reproducing the gold standard classification
better than random. Finally, the classification with the best AUC value was selected
and the corresponding parameter setting was selected for the following classification of
all PDB chains.
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Clustering of helix architectures

To obtain the final classification of helix architectures, HISS scores were obtained for
all protein pairs from the full dataset of 182 protein chains varying maximal by one
transmembrane helix. The difference of one single transmembrane helix was permitted
as the addition of one helix C- or N-terminal is evolutionary likely but might not al-
ter significantly the observed helix interactions of already present helices. Practically,
proteins with different helix numbers were compared by removing separately either the
first or the last helix of the larger protein, comparing each substructure to the smaller
protein and taking the maximum of the two calculated HISS scores.

All calculated HISS scores above 0.85 (0.9 for proteins with different transmembrane
helix numbers) were subjected to MCL clustering [262] with an implementation of the
algorithm obtained from http://www.micans.org/mcl/. Scores below 0.85 were ne-
glected as this threshold resulted in maximal classification sensitivity and specificity
during the previous parameter optimization experiments with respect to the correspond-
ing SCOP/CATH classifications. Ultimately, the final MCL clusters were considered to
constitute unique helix architectures forming the basic unit of the new classification
approach.

Classification of predicted helix architectures

To test whether structural similarities of membrane proteins can also be derived from
predicted helix architectures, all analyses executed with helix architectures obtained
from PDB structures were also done after predicting helix interactions using helix-helix
contacts obtained with TMHcon. As membrane proteins with four transmembrane he-
lices were found to cause problems for structural classification approaches in preced-
ing analyses (see Results and Discussion, section 6.3.1), these proteins were excluded.
Therefore, helix interactions were predicted for 152 remaining proteins of which 54 were
annotated in SCOP and/or CATH.

To determine the best method for distinguishing proteins with similar helix archi-
tecture from those with different helix architecture even when only a fraction of all
observed helix interactions are predicted while other interactions are wrongly predicted,
HISS scores were calculated for all protein pairs having the same number of transmem-
brane helices and a consistent annotation (’same fold’ vs ’different fold’) in SCOP and
CATH. Thereby, different methods for predicting helix interactions (length-based pre-
diction and contact-based predictions) were combined with different variations of HISS
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scores (with or without edge weights) to select the optimal strategy to discriminate pro-
teins classified to the same fold in SCOP and CATH from those classified to different
folds. Finally, all proteins were clustered with the MCL algorithm [262] using similarity
scores obtained with this optimal strategy for all proteins having the same number of
transmembrane helices.

6.3 Results and discussion

6.3.1 Classification of membrane proteins in SCOP and CATH

So far, comparative analyses of structure classification databases have generally been
carried out on the full set of available PDB proteins [250, 251]. Membrane proteins,
which account for only 2% of all PDB entries, were therefore never in the focus of
any previous work. Here, results of the first comparative analysis of occurrence and
classification of alpha-helical membrane proteins within the two most commonly used
structure classification databases, SCOP [243, 223] and CATH [244, 237], are presented.
Special attention is focused on the question how these two databases cope with the fact
that alpha-helical membrane proteins share the overall structure of a largely parallel
alpha-helix bundle, while at the same time comprising a significant variety due to spe-
cific structural features such as helix interaction patterns or helix tilts. Furthermore,
observed classification similarities and discrepancies as well as quantitative structure
comparisons will be used to evaluate how continuous the currently known structure
space of membrane proteins is in order to access the feasibility of structural classifica-
tion approaches for membrane proteins now and in the future.

Membrane protein folds in SCOP and CATH

Membrane proteins with at least two transmembrane helices assigned by PDBTM are
currently found within 27 SCOP (Appendix Table 9.5) and 17 CATH folds (Appendix
Table 9.6). In SCOP, membrane proteins are classified within the class ‘Membrane and
cell surface proteins and peptides’ while CATH does not provide a separate class for
membrane proteins. Instead, alpha-helical membrane proteins are included within the
mainly-alpha class together with alpha-helical soluble proteins. Within this class, two of
the 17 folds containing membrane proteins belong to the orthogonal bundle architecture
(CATH code 1.10) and 15 folds to the up-down bundle architecture (CATH code 1.20).
Generally, membrane proteins of the same fold are rarely further subdivided into
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superfamilies and families in both databases. Only three out of 17 CATH membrane
protein folds (17.6%) are associated with more than one superfamily. In case of SCOP,
only two membrane protein folds are further subdivided into more than one superfamily
and only four folds contain more than one family, which corresponds to 7% and 15%
of all SCOP membranous folds, respectively. For comparison, 13% and 38% of all
globular folds (belonging to SCOP classes ‘a’, ‘b’, ‘c’ or ‘d’) are associated with more
than one superfamily or family, respectively. The number of distinct membrane protein
domains assigned to one fold varies only slightly ranging from 1 to 9 (SCOP) and 1 to 14
(CATH) domains (Appendix Tables 9.5 and 9.6). Not surprisingly, these numbers reflect
the substantially higher structural coverage of soluble proteins compared to membrane
proteins. While the number of newly identified folds for soluble proteins is steadily
decreasing [237], structure determination of membrane proteins is far from saturation,
limiting the number of folds with several unrelated representatives to a small number of
well studied folds, such as the two-helix hairpin and the four-helix bundle fold.

Unexpectedly, the number of transmembrane helices can vary significantly within the
same fold according to the annotation taken from PDBTM (Appendix Tables 9.5 and
9.6). For example, protein domains assigned to the ‘heme-binding four-helical bundle’
fold in SCOP (f.21) were found to contain between three and five transmembrane helices.
Within the CATH database, the biggest variance was found for the ‘cytochrome bc1 com-
plex; chain c’ fold (1.20.810), whose domains contain either four or eight transmembrane
helices corresponding to the cytochrome b6 of the b6f complex and the cytochrome b
of the bc1 complex, respectively. Local similarity between the N-terminal heme-binding
part of cytochrome b and cytochrome b6 [263] seems to cause the common classification
of these proteins.

Similarities and discrepancies between SCOP and CATH domain assignments

Since domains are the basic units of protein structure classification in SCOP and CATH,
the agreement of their assignments was analyzed first. As SCOP and CATH use differ-
ent methods to decompose proteins into domains (visual inspection compared to largely
automatic domain assignments), previous analyses reported significant differences be-
tween these two databases [250, 251]. However, since most membrane proteins are single-
domain proteins [261], one would expect disagreements between domain assignments for
membrane proteins to be less frequent than those observed for soluble proteins.

In total, four protein chains (4.5% of all chains) were classified as multi-domain within
SCOP, while amongst the 71 protein chains from CATH nine (12.7%) contained two
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domains. The observation that CATH identifies more multi-domain proteins than SCOP
was already reported in the work of Hadley and Jones [250] and was found to be a
direct result of the different domain definitions that are used in the two databases with
CATH addressing rather geometrical aspects while SCOP incorporates also functional
considerations.
Addressing differences in the domain assignments between SCOP and CATH more

specifically for individual proteins, the separation into domains was analyzed for all 42
alpha-helical membrane proteins classified by both databases (dataset MP_SCOP_CATH,
Appendix Table 9.7). In 37 cases, the two databases consistently assigned one domain
per protein chain. However, several cases were observed where this single domain was
not covering the entire protein chain resulting in three cases where SCOP and CATH
deviated by more than 10% of their assigned domain positions, while in the remaining 34
cases (81% of all proteins in MP_SCOP_CATH) domain position assignments were consistent
between SCOP and CATH. In total five protein chains were divided into two domains
either by SCOP or by CATH, with the majority (four chains) being assigned with a
single domain in SCOP but two domains in CATH.
Interestingly, the obtained results vary not much from similar results reported for

soluble proteins. There, 82% of all chains were found to agree in the number of assigned
domains [250] compared to 88% reported here for membrane protein chains. However,
a larger number of membrane protein structures will be required to confirm this trend
in the future.

Similarities and discrepancies between SCOP and CATH fold classifications

The agreement between SCOP and CATH with respect to their fold classification was
again compared using the dataset MP_SCOP_CATH. All domains of this dataset were
consistently assigned to 15 folds in both SCOP and CATH, although the composition
of individual folds was found to vary in several cases. Eight folds were found to contain
exactly the same domains in SCOP and CATH (Table 6.1). In total, 20 chains (47.6%
of MP_SCOP_CATH) containing each exactly one domain were assigned to these folds.
With only one exception where proteins with 12 and 13 transmembrane helices were
found within the same fold (SCOP fold f.24 / CATH fold 1.20.210), the number of
transmembrane helices was completely conserved within each of these folds.
Disagreements between SCOP and CATH fold assignments can be caused either by

discrepancies in domain assignments or by intrinsic differences in the classification pro-
cess. This latter type of disagreement was termed the fold overlap problem by Hadley
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Table 6.1: Comparison of membrane protein fold assignments in SCOP and CATH. Agreements
and differences in the fold classification were obtained for all proteins in MP_SCOP_CATH. Dis-
crepancies were further classified into two categories dependent on what caused the difference
(differing domain assignments or split/merging of folds). Roughly 50% of all membrane pro-
teins are classified differently with helix hairpins and four helix bundles accounting for nearly
all observed fold overlaps.

Relationship SCOP fold CATH fold

Fold agreements

f.13 1.20.1070
f.19 1.20.1080
f.20 1.10.3080
f.24 1.20.210
f.29 1.20.1130
f.30 1.20.860
f.31 1.20.1240
f.33 1.20.1110

Fold disagreement caused by domain disagreement f.26 1.20.85 + 1.20.85
f.21 + f.32 1.20.810

Fold disagreement caused by fold overlapa

f.14, f.25, f.36 1.20.120
f.14, f.17 1.10.287
f.21 1.20.810, 1.20.950, 1.20.1300
f.14 1.10.287, 1.20.120
f.17 1.10.287, 1.20.20

a Folds marked in bold correspond to folds containing two or four-helix bundle proteins.

and Jones [250] and for SCOP and CATH it arises from differences between the manual
fold assignment within SCOP and the largely automatic approach based on structure
comparisons within CATH. While the first type of discrepancy occurred three times
(Table 6.1) and involved five proteins as discussed above, additional five cases of fold
overlaps were observed within the MP_SCOP_CATH dataset. Remarkably, all five fold
overlaps involve domains with two or four transmembrane helices.

All-against-all protein structure comparisons executed with DaliLite v.3.1 [260] were
used to compare the structural similarity of proteins involved in fold overlaps to those
from fold agreements (Table 6.2). For fold agreements, average Z-scores varied between
23.9 (fold f.13/1.20.1070) and 44.3 (fold f.24/1.20.210). Proteins from fold overlaps on
the other hand were found to be structurally much more divers with average Z-scores
ranging between 3.4 and 11.3. Importantly, this observation is not necessarily caused by
fold overlaps generally consisting of less transmembrane segments than fold agreements
as for example two domains covering both ten transmembrane helices but classified into
two different folds from the list of fold agreements (f.20/1.10.3080 and f.33/1.20.1110)
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resulted in a Z-score of 1.0.

Table 6.2: All-against-all structure comparisons between membrane proteins classified in SCOP
and CATH. Structure comparisons were executed using DaliLite [260] for all folds containing
at least two domains. Average similarity scores obtained for folds identical in SCOP and
CATH (fold agreements) are clearly higher than for fold discrepancies.

Folds N(prot)a N(comp)b Max(Z-score)c Min(Z-score)c Avg(Z-score)c

Fold agreements
f.13 / 1.20.1070 6 15 35.6 8.5 23.9
f.19 / 1.20.1080 4 6 30.7 17.8 24.1
f.24 / 1.20.210 4 6 57.5 34.1 44.3
f.29 / 1.20.1130 2 1 34.1 34.1 34.1

Fold disagreements
1.20.120 / f.14,f.25,f.36 6 15 20.9 3.8 11.3
f.14 / 1.10.287,1.20.120 2 1 3.4 3.4 3.4
f.21 / 1.20.810,1.20.950,1.20.1300 6 14d 9.5 3.2 5.9
f.17 / 1.10.287,1.20.20 4 6 9.6 2.2 4.8
1.10.287 / f.14,f.17 4 5d 9.6 2.0 5.7
a N(prot): number of proteins within analyzed fold(s).
b N(comp): number of pairwise comparisons executed with DaliLite.
c Z-score: similarity score as obtained from DaliLite.
d For one comparison, DaliLite did not yield a result.

Associated with the reduced structural similarity, two main reasons can be identified
causing the presence of observed fold overlaps. First, the single-linkage clustering ap-
proach of CATH results in differences to the SCOP classification system which instead
applies an average linkage procedure [252]. As long as folds are structurally clearly dis-
tinct from each other, the impact of these clustering differences is likely to be minimal.
However, the more continuous the fold space the more prominent is the effect of different
clustering methods on classification results, as seems to be the case for membrane four
helix bundle proteins (see also below). Additionally, functional reasons may prompt
SCOP to classify proteins within the same fold despite low structural similarity that are
separated into several folds within CATH. For example, fold f.21 of SCOP contains four
helix bundle proteins that all bind heme(s). CATH disregards this functional aspect
and identifies enough structural differences to assign these proteins to different folds.
In summary, the comparative analysis of membrane proteins in SCOP and CATH

shows that available membrane protein structures with six and more transmembrane
helices are either very similar to each other (and thus are classified consistently to the
same fold) or sufficiently diverse that SCOP and CATH both assign them to different
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folds. Accordingly, the current structure space adopted by these proteins seems to be
mostly discrete and a structural classification similar to soluble proteins is possible.
Apparently more difficult is the classification of membrane proteins with two to five
transmembrane helices as can be seen from the fact that all cases of fold overlap in the
field of alpha-helical membrane proteins involve proteins with five or less transmembrane
segments. Obviously, these proteins are on the one hand diverse enough that both CATH
and SCOP separate them into several individual folds, but on the other hand display
differences too subtle to be captured using the classic definition of a fold, leading to
largely deviating classifications within SCOP and CATH.

Structural diversity of four helix bundle proteins

As four helix bundle proteins were found to pose problems for structural classification of
membrane proteins, it was further analyzed whether this was due to intrinsic properties
of this particular architecture, or whether the structural restrictions imposed by the
lipid bilayer additionally impede the classification. According to early studies soluble
four helix bundles comprise significant variety in their pattern of interhelical angles
despite the low number of helices [264, 265]. In order to test whether this diversity is
specific for soluble proteins and facilitates their classification, a non-redundant dataset of
188 soluble four-helix bundle domains from 28 SCOP folds was analyzed and compared
to an analogous dataset consisting of 11 distinct membrane four helix bundle domains
from 3 SCOP folds.

First, the consistency between SCOP and CATH with respect to their fold classifi-
cation of four helix bundles was analyzed. To this end, the frequency of all domain
pairs classified into the same fold in one database that are also assigned to the same
fold in the other database was calculated. For soluble proteins, these percentages were
remarkably high with 88% of all co-classified SCOP domains appearing also in the same
fold in CATH and as many as 94% of all CATH co-classified domain pairs being in the
same SCOP fold. As discussed above, the consistency between SCOP and CATH is
much lower for membrane four helix bundles than for other membrane folds. For these
proteins, from all domain pairs within the same SCOP four helix bundle fold, only 48%
were also found in the same CATH fold while 71% of all CATH co-classified domain
pairs were also in the same SCOP fold. No case of complete fold agreement between
SCOP and CATH could be found for membrane four helix bundles while 11 such fold
agreements were detected for soluble proteins. It thus appears that membrane four he-
lix bundle proteins in fact are more difficult to classify than their soluble counterparts,
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although in principle such low degree of agreement between SCOP and CATH for this
particular architecture could be a statistical artefact caused by the paucity of available
structural data.
In order to further explain the observed difficulties in the classification of membrane

four helix bundle proteins, all-against-all structure comparisons were executed using
DaliLite and the observed structural variety of membrane and soluble four helix bundle
domains was compared (Table 6.3). For soluble proteins, comparisons between proteins
consistently classified to different folds in SCOP and CATH (category 3 comparisons)
either retrieved no detectable similarity (45.4% of all comparisons) or the obtained
fractions of aligned residues (coverage) and Z-scores were clearly smaller on average than
for proteins classified either in one or in both databases to the same fold. Furthermore,
analyzing specifically those folds containing exactly the same domains in SCOP and
CATH it was observed that these folds in fact represent distinct regions of the structure
space of four helix bundle domains as structure comparisons of proteins within each fold
returned in all cases at least twice as high average Z-scores than comparisons of fold
members with proteins not belonging to the respective fold (data not shown).

Table 6.3: All-against-all structure comparisons of membrane and soluble four helix bundle do-
mains. Structure comparisons were executed using DaliLite [260] for 188 soluble and 11
membrane four helix bundle domains. The structural diversity of membrane proteins is gen-
erally less distinct than observed for soluble proteins.

Category 1a Category 2b Category 3c

soluble

N(comparisons) 1321 242 16015
NAd 3.5% 4.1% 45.4%

Avg(coverage)e 74.3% 70.9% 57.1%
Avg(Z-score) 6.7 5.3 2.1

membrane

N(comparisons) 10 15 30
NAd - 6.7% -

Avg(coverage)e 87.5% 74.3% 69.9%
Avg(Z-score) 14.4 6.0 4.5

a Category 1: protein pairs classified to the same fold in SCOP and CATH.
b Category 2: protein pairs classified to the same fold either in SCOP or CATH but to a different
fold in the respective other database.

c Category 3: protein pairs classified to separate folds in SCOP and CATH.
d NA: percentage of comparisons where DaliLite did not return any result.
e Avg(coverage): average fraction of aligned residues with respect to the smaller of the two compared
structures.

The structural space for the respective membrane proteins on the other hand seems
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to be much more continuous since structural differences among all proteins, no matter
whether they are classified within SCOP and/or CATH to the same or to a different
fold, are less pronounced. Average coverage and average Z-scores in all three analyzed
categories of comparisons (Table 6.3) were found to be higher than for soluble proteins.
Even proteins classified to different folds in both databases still had an average Z-score
of 4.5 and an average coverage of 69.9% which is comparable to those soluble proteins
classified to the same fold in one database but to separate folds in the other database.
Additionally, DaliLite was able to detect at least a minimal similarity (Z-score > 2.0)
among all proteins that were assigned to different folds, which was clearly not the case
for their soluble counterparts where 45% of all comparisons did not retrieve any result
and additional 30% resulted in a Z-score of less than 2.0. As structural variations are
more fine-grained for membrane four helix bundle proteins, their classification naturally
represents a harder problem as long as the same rules are applied as for soluble proteins.
This problem is likely to persist also with more solved structures becoming available
unless a more specific fold definition for membrane proteins is at hand.

6.3.2 Classification of helix architectures obtained from PDB
structures

Structural classification approaches such as SCOP and CATH base their classification
on structural similarity between full domains. For membrane proteins, this includes
transmembrane regions just as extramembranous parts although the contribution of in-
dividual regions to the final classification may vary. Here, a new structural classification
system for membrane proteins is proposed that specifically addresses the similarity of
transmembrane helix bundles as expressed in their helix interactions. To this end, a new
structural similarity score (termed HISS) was developed that quantifies to which extent
two helix interaction graphs resemble each other and this score was used to cluster the
full set of available membrane protein structures.

Consistency with SCOP and CATH

HISS, the similarity score derived for comparing helix interaction graphs, specifies the
average fraction of all edges of a given graph found also in the second graph and vice
versa. Thereby, interactions between neighbouring helices and those based on a small
number of residue contacts can be down weighted while distant and strong helix inter-
action can be up weighted. Within a first analysis, optimal weights were determined
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using a subset of membrane protein structures that were consistently classified in both
SCOP and CATH or were present in only one of these databases. For each set of tested
parameters, a ROC curve was calculated describing how well calculated HISS scores
can be used to distinguish protein pairs classified to the same fold in SCOP and/or
CATH from those proteins separated into different folds. The AUC ("area under the
ROC curve") statistic was used to compare the influence of different parameters and
estimate how well SCOP and CATH can be reproduced in general by a similarity score
considering only helix interactions (Table 6.4).

Table 6.4: Classification of proteins from SCOP/CATH using the helix interaction similarity score
HISS. Only proteins classified consistently in SCOP and CATH either to the same fold or
different folds were used (64 protein chains in total). Considering only proteins with more
than four transmembrane helices, SCOP and CATH can be reproduced nearly perfectly with
an AUC of close to 1.

Parameters AUCtotal
a AUC4+

b

ac wd se

0.0 1.0 1.0 0.955 0.992
0.1 1.0 1.0 0.956 0.991
0.5 1.0 1.0 0.955 0.978
0.0 0.9 1.1 0.957 0.993
0.0 0.7 1.3 0.964 0.997
0.0 0.5 1.5 0.966 0.998
0.1 0.9 1.1 0.961 0.993
0.1 0.7 1.3 0.967 0.996
0.1 0.5 1.5 0.969 0.997

a AUCtotal: area under the curve statistic using all proteins classified consistently in SCOP and
CATH.

b AUC4+: area under the curve statistic using only proteins with more than four transmembrane
helices classified consistently in SCOP and CATH.

c Parameter a: factor used to reduce the weight from neighbouring helix interactions and in-
crease the weight from distant interactions.

d Parameter w: edge weight used for helix interactions with less than five helix-helix contacts.
e Parameter s: edge weight used for helix interactions with more than fifteen helix-helix contacts.

As can be seen from Table 6.4, a HISS score based classification agrees nearly perfectly
with the consensus classification of SCOP and CATH used as reference. Using all protein
chains as a test set, AUC values were consistently above 0.95, restricting the dataset
to proteins with more than four helices, AUC values even increased to values higher
than 0.99 (for comparison, a perfect classification would result in an AUC value of
1.0). Down weighting neighbouring helix interactions while concurrently up weighting
distant helices has no positive effect by itself as can be seen when changing parameter ’a’
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alone but can be helpful in combination with the remaining two parameters ’w’ and ’s’.
Weighting edges according to the number of observed helix-helix contacts on the other
hand results in a slightly improved classification in all tested parameter settings. Overall
the best classification for all proteins (AUC=0.969) was obtained when down weighting
neighbouring and weak interactions by 0.1 and 0.5, respectively and up weighting strong
interactions by factor 1.5. For proteins with more than four helices, the best classification
was achieved with weights for weak and strong interactions of 0.5 and 1.5. Using a HISS
score of 0.85 as requirement for classifying two proteins with more than four helices
to the same "helix architecture fold", 98.9% of all proteins classified to the same fold
in SCOP/CATH would also be added to the same helix architecture and 97.4% of all
protein pairs not belonging to the same SCOP/CATH fold would also be separated
to different helix architectures. Only one protein pair would be wrongly classified to
separate folds while only three protein pairs would be incorrectly classified to the same
fold.

Importantly, these results demonstrate that helix interactions alone are basically suf-
ficient to reproduce the structural classification of membrane proteins as proposed by
SCOP and CATH. Accordingly, helix interactions are not only one of the characteristic
determinants of a membrane structure but seem to clearly outweigh other structural
features such as properties of extramembranous elements, helix tilts or helix kinks, at
least for proteins with more than four transmembrane helices where the combinatorial
freedom of possible helix interaction patterns is sufficient to distinctly separate different
helix architectures from each other. Consistent with previous results presented for the
comparison of SCOP and CATH, membrane proteins with four transmembrane segments
again stand out due to the limited number of possible helix interaction patterns leading
to an increased number of false positives (proteins with a highly similar helix interac-
tion graph but different SCOP and/or CATH folds). As suggested already earlier, the
classification of membrane four helix bundles seems to require special rules addressing a
most likely more continuous fold space or might even not be possible at all. Therefore,
these proteins were excluded from all further analyses.

Clustering of helix architectures

To obtain the final classification of helix architectures, all membrane proteins with solved
structure and more than four transmembrane segments were subjected to MCL cluster-
ing [262] based on HISS scores. In contrast to the previous analysis, HISS scores were
also obtained for proteins differing in their number of transmembrane helices to detect
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those cases where one transmembrane helix was added at the protein’s C- or N-terminus
without altering significantly the helix interaction pattern of the remaining helices. In
total, 152 proteins were clustered resulting in 20 helix architectures with at least two
members and 14 protein chains not classified at all. Figure 6.1 displays the members
of one helix architecture (HA13, see Table 6.5) demonstrating the amount of diver-
sity observed within one cluster with respect to weak helix interactions (formed by few
helix-helix contacts) and the conservation of strong helix interactions.

Figure 6.1: Example MCL cluster HA13 containing five membrane protein with highly similar
helix architecture. All cluster proteins correspond to transporters although with different
transporter specificity. A common pattern of strong helix interactions is clearly visible.

As can be seen from Table 6.5 and Figure 6.3, found helix architectures having at least
two members cover proteins with five up to twelve transmembrane helices. The high-
est number of distinct architectures was obtained for proteins with six transmembrane
segments. The cluster with the most member proteins on the other hand is helix ar-
chitecture (HA) 9 with 54 proteins having seven transmembrane segments. This cluster
includes structures of bacteriorhodopsin, archaean and eukaryotic rhodoposins as well
as other 7TM receptors which all were found to share the same overall helix architecture
despite a rather low average sequence identity of 28%. This observation is consistent
with results from a recently conducted large-scale modelling experiment of all human
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GPCRs which suggested that the structural core of these receptors is highly conserved
even though variation in helix packing, helix kinks and loop conformations is possible
[266]. Similar to the cluster of 7TM receptors, sequence identity among proteins of the
same helix architecture is generally rather low with thirteen of twenty clusters having an
average pairwise sequence identity below 40% indicating that proteins with surprisingly
diverse sequences may fold into structures having the same pattern of helix interactions.

Table 6.5: Detected helix architectures using HISS scores and MCL clustering. In total, 152
protein chains were clustered into 20 helix architectures covering at least two members, 14
proteins remained unclassified.

Helix architecture Members TMSa SCOPb CATHc Avg(ident) [%]d

HA1 10 5 f.26 - 38.8
HA2 3 5 f.21/f.25 1.20.120 38.5
HA3 13 6 f.19 1.20.1080 37.0
HA4 6 6 (5)e f.21 1.20.950 35.8
HA5 4 6 - - 50.6
HA6 2 6 - - 29.1
HA7 2 6 f.42 - 22.8
HA8 2 6 f.51 - 40.7
HA9 54 7 (6)f f.13/f.37 1.20.1070 28.0
HA10 4 7 f.25 - 57.0
HA11 2 7 - 1.20.1450 60.9
HA12 5 8 - 1.20.810 54.9
HA13 5 10 f.33 1.20.1110 30.4
HA14 3 10 f.41 - 30.6
HA15 2 10 f.20 1.10.3080 80.9
HA16 2 10 f.22 - 32.3
HA17 5 11 f.29 1.20.1130 56.2
HA18 3 11 f.44 - 26.5
HA19 8 12 f.38 - 27.4
HA20 6 12 (13)g f.24 1.20.950 39.6

a TMS: number of transmembrane segments characteristic for this helix architecture.
b SCOP: SCOP classification(s) found for members of this helix architecture.
c CATH: CATH classification(s) found for members of this helix architecture.
d Avg(ident): average pair wise sequence identity between all members of this cluster.
e Two proteins of this cluster had only five transmembrane segments in contrast to the majority
of proteins with six transmembrane helices.

f One proteins of this cluster had only six transmembrane segments in contrast to the majority
of proteins with seven transmembrane helices.

g One proteins of this cluster had thirteen transmembrane segments in contrast to the majority
of proteins with twelve transmembrane helices.

Generally, all clusters are highly conserved with respect to the number of transmem-
brane segments, only three cases were observed where one or two proteins had one
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transmembrane segment more or less than the majority of all proteins (HA4, HA9 and
HA20, Figure 6.2). Further analysis of these cases showed that proteins of HA4 (Figure
6.2A) and HA20 (Figure 6.2B) in fact seem to share highly similar helix architectures
due to evolutionary relationship since structures of these clusters can be superimposed
with RMSD values ≤ 2.5Å even though they have different numbers of transmembrane
segments. For HA20 the common evolutionary origin is also recognized by SCOP where
all proteins are classified not only to the same fold but also to the same superfamily
and family (f.24.1.1). The classification of protein 2HYD (chain A, six transmembrane
helices) to helix architecture 9 on the other hand seems to be an artefact as no significant
structural similarity could be detected between 2HYD and 7TM receptors (Dali Z-score
< 3.0). Accordingly, the helix interaction graph similarity seems to be caused by the
common presence of a strongly connected four helix bundle (helices 3-6) and a rather
loosely connected helix hairpin (helices 1 and 2) which seems to be a repeated pat-
tern in membrane protein structures (see below) not necessarily implying evolutionary
relationship.

Figure 6.2: Membrane proteins with differing number of transmembrane helices classified to the
same helix architecture. (A) Helix architecture 4 with proteins 3DHW (chain A, five trans-
membrane helices) and 3D31 (chain C, six transmembrane helices). (B) Helix architecture
20 with proteins 2DYR (chain A, twelve transmembrane helices) and 1EHK (chain A, thir-
teen transmembrane helices). (C) Helix architecture 9 with proteins 2HYD (chain A, six
transmembrane helices) and 1E12 (chain A, seven transmembrane helices). The common
classification may arise either due to evolutionary relationship (HA4 and HA20) or as result
of a clustering artefact (HA9).

Analysing the coverage of found helix architectures with SCOP and/or CATH anno-
tations, in total eight helix architectures contained proteins with annotations in both
databases and ten more helix architectures covered members with an annotation in at
least one structural database (Table 6.5). However, often only a subset of all members
of these clusters were found in SCOP and/or CATH. In case several proteins of the same
helix architecture in fact were annotated in either SCOP or CATH, these annotations
were highly consistent as expected from the previous detailed comparison of helix ar-
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chitecture based classification with SCOP and CATH (see page 119). Only two helix
architectures (HA2 and HA9) united proteins from two different SCOP folds. In the first
case (HA2), one of the cluster proteins was differently classified by SCOP to the ’heme-
binding four-helical bundle’ fold (f.21) due to the presence of a heme group although the
protein covers five helices whose interaction pattern is highly similar to two other five
helix bundle proteins. The second discrepancy arises from incorrectly classifying the six
transmembrane helix protein 2HYD (chain A) to the same helix architecture as known
7TM receptors discussed already above.

Overall, the proposed classification of helix architectures constitutes a comprehen-
sive classification approach of all known membrane protein structures while SCOP and
CATH both include only a subset of these structures. Therefore, it combines on the
one hand information present separately in SCOP and CATH but also generates new
information by identifying completely new helix architectures not present in SCOP and
CATH or adding proteins based on their helix interaction patterns to already known
folds.

Diversity of found helix architectures

Inspecting representative helix interaction graphs for all helix architectures with at least
two members (Figure 6.3), several observations can be made. First, even for proteins
with a limited number of five to seven transmembrane helices, clearly distinct helix
architectures can be differentiated illustrating impressively the structural variety open to
alpha-helical membrane proteins. This impression is even enforced when considering also
singleton proteins which were not classified with other proteins to one of the extracted
helix architecture clusters and therefore can be expected to represent to a large degree
distinct helix patterns by themselves (Figure 6.4, some singleton proteins also share at
least visual similarity with other proteins of the dataset which might cause a common
classification once more membrane protein structures are available, see for example
proteins 3G5U and 2GIF and helix architecture HA 19).

Especially for proteins with ten or more transmembrane helices it is furthermore ap-
parent that most helix architectures are densely packed with many helix interactions
among distant helices. Only in few cases (for example HA11 or singleton protein 1LVI)
the network of interactions is sparse with a majority of all interactions taking place
between sequentially close helices. Again, this demonstrates the surprisingly large space
of structural variation open to membrane proteins suggesting that many new helix ar-
chitectures will be observed with additional structures becoming available.
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Figure 6.3: Representative helix interaction graphs for all helix architectures with at least two
member proteins. Twenty architectures containing proteins with five to 12 transmembrane
segments (TMS) were obtained each represented by a distinct helix interaction pattern.

Nevertheless, several structural patterns are also observed repeatedly in multiple he-
lix graphs. Four helix bundles where all (or nearly all) helices interact with each other
distinctly are noticeable especially in structures with five to seven transmembrane he-
lices (for example, HA4, HA6, HA9 and HA10). Similarly, several structures contain
clearly disconnected helix hairpin structures consisting of two mutually connected he-
lices with no (or only weak) interactions to other helices (for example HA5, HA6, HA10
and HA17). Interestingly, this observation is consistent with a recent theory describ-
ing the evolutionary origin of membrane proteins which proposed that the evolution of
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membrane proteins started from simple amphiphilic, alpha-helical hairpins [267] which
repeatedly duplicated to form multi-helix bundle proteins. Indeed, helix interaction pat-
terns of present membrane protein suggest that helix hairpins and subsequently bundles
of four helices form important building blocks which are combined in various ways to
form more complex membrane protein structures.

Figure 6.4: Helix interaction graphs for all singleton proteins not classified to one of the derived
twenty helix architectures shown in Figure 6.3. In total 14 proteins remained unclustered
with the majority containing 12 transmembrane segments (TMS).

Finally, the analysis of all found helix architectures confirms the frequent occurrence
of internal symmetry in membrane protein structures noticed previously already from
individual structures such as the ones of lactose permease [268], chloride ion channel
[269] and the protein EmrD [270]. For proteins with six, eight, ten and twelve helices,
always at least one helix architecture is observed which is split into two subgraphs
which are mostly identical but are also highly connected to each other and are therefore
forming rather one helix bundle than two distinct structural domains. Again, this agrees
with a recently proposed mechanism of membrane protein evolution where so-called dual
topology proteins are duplicated and subsequently fused to give rise to proteins with a
doubled number of transmembrane helices [40].
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6.3.3 Classification of predicted helix architectures

After demonstrating that membrane proteins can be structurally classified based on the
similarity of their helix interaction patterns, a final analysis was conducted evaluating
whether this is also possible for proteins where no 3D structure is already available. In
this case, helix interactions need to be predicted from sequence as introduced in Chapter
5. Generally, these predictions are highly accurate but suffer from limited sensitivity
(see section 5.3.2) which might make the identification of similar structures difficult if
not impossible.
Therefore, the principal similarity of predicted helix interaction graphs and the possi-

bility of discriminating proteins with similar and different structures was first evaluated
using all protein pairs classified consistently in SCOP and CATH either to the same
fold or to different folds (Table 6.6). As four helix bundle proteins were earlier shown
to pose a problem to structural classification in general and helix interaction graph
based classification specifically (sections 6.3.1 and 6.3.2), only proteins with at least five
transmembrane helices were considered resulting in a test set of 211 protein pairs of
which 95 had the same fold assignment in SCOP/CATH while the remaining protein
pairs had the same number of transmembrane helices but different fold assignments.
Helix interactions were predicted for all proteins based on helix-helix contacts obtained
with TMHcon with different strategies (using either only the L/5 best predicted residue
contacts or the two step contact-based filtering procedure where a large set of residue
contacts is selected in the first step but only those helix pairs are predicted as interacting
with a minimal number of these residue contacts). Additionally, HISS similarity scores
were calculated once treating all predicted helix interactions equally and once where
helix interactions with few residue contacts were down weighted while interactions with
many predicted contacts were up weighted.
As can be seen from Table 6.6, proteins from the same fold in SCOP and CATH

have constantly higher HISS scores than proteins from different folds independent of the
prediction strategy used for obtaining interacting helices and from the HISS calculation
method applied. Accordingly, the classification of proteins into "same" or "different" fold
based on HISS scores results in a classification well above random as can be concluded
from the reported AUC ("area under the ROC curve") values which were found to
be as high as 0.86 (a random prediction would result in an AUC value of 0.5). Here,
contact-based helix predictions (C9/C10 and C9/C15) were superior to length-based
L/5 predictions which is not surprising as these predictions were also already observed
to predict individual helix interactions with higher accuracy (section 5.3.2, Table 5.2).
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Table 6.6: Classification of proteins in SCOP and CATH using predicted helix interactions. Helix
interactions were predicted using different strategies - length-based (L5) and contact-based
(C9/C10, C9/C15) - and HISS scores were calculated with and without weighting edges
differently. Proteins with similar structures can be recognized with good accuracy (up to
65% sensitivity at >90% specificity).

HISSa Avg(HISSsame)b Avg(HISSdiff)c AUCd Scoree Sensitivity Specificity
[%] [%]

L/5
unweighted 0.806 0.627 0.775 0.80 56.8 82.8

0.85 40.0 91.4

weighted 0.843 0.649 0.815 0.80 66.3 81.0
0.88 41.1 91.4

C9/C10f
unweighted 0.864 0.723 0.849 0.83 71.6 81.9

0.86 58.9 92.2

weighted 0.821 0.633 0.865 0.76 74.7 80.1
0.81 58.9 90.5

C9/C15f
unweighted 0.890 0.749 0.846 0.88 72.6 78.4

0.90 65.3 92.2

weighted 0.864 0.665 0.848 0.82 76.8 81.0
0.88 53.7 91.4

a HISS scores were calculated once without weighting helix interactions differently (unweighted) and
once down weighting helix interactions with <5 predicted residue contacts by a factor 0.5 and up
weighting interactions with >15 residue contacts by a factor 1.5 (weighted).

b Avg(HISSsame): average HISS score for proteins classified to the same fold in SCOP and CATH.
c Avg(HISSdiff): average HISS score for proteins classified to different folds in SCOP and CATH.
d AUC: area under the curve describing how well proteins of the same fold can be differentiated from
proteins from different folds (AUC=0.5 would correspond to a random prediction).

e Score: HISS score threshold used to identify proteins with the same helix architecture.
f Helix interactions were predicted from TMHcon residue contacts with every helix pair considered
interacting having nine predicted contacts from NN4 or 10 (C9/C10) respectively 15 (C9/C15)
contacts from NN4-D.

Generally, weighted HISS scores result in slightly better predictions than unweighted
HISS scores confirming again that helix interactions with many residue contacts tend to
cumulate also higher numbers of predicted contacts (see also Figure 5.2 on page 91).

Using specific HISS score thresholds to predict proteins as belonging to the same fold,
the sensitivity and specificity of such a prediction can be calculated by testing how
many of all proteins that actually belong to the same fold satisfy this threshold and
how many proteins that are classified to separate folds in SCOP and CATH have HISS
scores below this threshold. The lower this score threshold is chosen, the more sensitive
is such a prediction at the cost of reduced specificity. Aiming at a specificity of 80%,
the best prediction is obtained with C9/C15 helix interaction predictions and weighted
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HISS scores with a sensitivity of nearly 77%. Similarly, the best prediction with 90%
specificity (again C9/C15 helix predictions but unweighted HISS scores) resulted in a
sensitivity of 65%.

In summary, these results are highly encouraging with respect to the structural clas-
sification of membrane proteins. Of course, similar structures can not be identified with
equal quality as based on known structures (for comparison see Table 6.4), but still a
large fraction of all proteins having the same helix architecture can be recognized with
high specificity. Importantly, this similarity can also be determined using predicted helix
interactions in case the sequence similarity of two analyzed proteins is to low to confi-
dently assign a common fold. For example, bovine rhodopsin (PDB 1GZM, chain A) was
found to have HISS scores ≥ 0.9 with several other rhodopsins such as halorhodopsin
(PDB 1E12, chain A) or sensory rhodopsin (PDB 1XIO, chain A) although the sequence
similarity among these proteins is too low to obtain a proper sequence alignment. While
existing classification approaches specifically addressing membrane protein always use
sequence similarity as major criterion for a common classification [36, 35], the combina-
tion of predicted helix interactions and HISS scores offers the completely new possibility
of deriving structural similarity originating for example from convergent evolution that
is not approachable by these other classification systems.

Finally, these promising results can also be repeated on the full set of PDB proteins.
Using HISS scores incorporating edge weights in combination with the MCL clustering
algorithm, the original helix architecture based clustering obtained based on known
3D structures could be reproduced with predicted helix interactions with a sensitivity of
68.2% and a specificity of 82%. Thereby, both values were again calculated on the basis of
protein pairs, i.e. sensitivity for example describes the fraction of protein pairs classified
to the same fold in the prediction based classification out of all protein pairs classified
together in the original structure based classification. On the cluster level, eleven of
the original twenty helix architecture clusters were also found in the classification using
predicted helix interactions albeit usually with reduced size. Notably, classification
errors (missing helix architectures as well as wrongly co-classified proteins) appeared
especially for proteins with six or less transmembrane helices where wrongly predicted
helix interactions have a stronger impact simply because of the reduced number of
possible interactions. For proteins with six transmembrane helices for example, only
helix architectures HA3 and HA5 were correctly identified resulting in four missing helix
architectures, which equals the number of missing helix architecture for all proteins with
seven or more transmembrane helices combined.
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Nevertheless, these results again confirm that structural similarities and even more so
common helix architectures can be deduced also from predicted helix interaction patterns
opening new perspectives for the large-scale analysis and classification of alpha-helical
membrane proteins.
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7
Conclusions

Overall, this thesis aims at a better understanding of helix interactions occurring in
alpha-helical membrane proteins. It intends to provide new algorithms specifically de-
veloped for membrane proteins that can be used to predict contacts and interactions
both on a residue level and on the full helix level. Furthermore, the field of structural
classification is presented as one possible area of application where patterns of helix
interactions (either obtained from known structures or predicted with the introduced
methods) can be successfully used for identifying proteins with common helix architec-
tures and accordingly highly similar folds.

Based on the obtained results presented in preceding chapters, several major conclu-
sions can be drawn.

7.1 Helix interactions im membrane proteins are pro-
moted by a diverse range of amino acids and inter-
action motifs

The amino acid composition of transmembrane protein domains is strongly biased to-
wards hydrophobic residues in order to adjust to the lipophilic environment of the mem-
brane. Nevertheless, a large number of experimental studies and sequence analyses of
membrane protein structures have detected a surprising variety regarding the amino
acids promoting strong helix interactions that were suggested to be even more diverse
than found in soluble proteins [60, 61]. Even the currently best analyzed recurrent se-
quence pattern GxxxG, frequently reported to be a potent helix interaction motif, has
lately been shown to be dependent on local sequence context for strong helix interaction
[59, 77, 131].
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Here, results of experimental and computational analyses of bitopic membrane pro-
teins further demonstrated that again a diverse range of amino acids can lead in com-
bination with the GxxxG motif to high-affine helix interactions. Several potent helix
interaction motifs were identified consisting of a GxxxG portion and one or more other
residues including the aromatic phenylalanine, the polar histidine and combinations of
oppositely charged amino acids. As histidine and charged amino acids alone were not
found to promote strong helix interactions, the GxxxG motif seems to be especially
important for positioning these additional residues appropriately which are then able to
contribute to high-affine helix interactions by forming aromatic π-π interactions, hydro-
gen bonds or ionic interactions.
Although all experimentally found motifs could be detected also in natural bitopic

membrane proteins, the frequency with which they occurred varied significantly with
the FxxGxxxG motif being found significantly more often than expected in several
hundred proteins while motifs containing histidine or charged amino acids were found
only in a limited number of sequences. Considering the hydrophobicity of phenylalanine,
the formation of strong helix interactions by combining this residue with two glycines
naturally seems to be evolutionary much easier approachable than the inclusion of amino
acids occurring rarely in transmembrane domains such as histidine or charged residues.
However, as the latter residues often may be functionally relevant as well, their additional
structural importance shown here further highlights that membrane proteins are diverse
to an extent often not fully appreciated yet.

7.2 Residue co-evolution affects the sequence neighbour-
hood of helix-helix contacts

Within Chapter 3, the first analysis of residue co-evolution in alpha-helical membrane
proteins was presented. In agreement with studies conducted on soluble proteins, it could
be observed that only a small fraction of predicted correlations actually involved pairs of
residues in physical contact. However, up to 50% of all strongly correlated residue pairs
with individual prediction methods were found be in close vicinity to interhelical con-
tacts. Combining the outcome of several prediction methods into a consensus prediction
this fraction could even be further increased to more than 55%. While recent publica-
tions analyzing co-evolving residues have already highlighted that residue co-evolution
may have also other than structural reasons [174, 198, 200], these results additionally
indicate that also on a structural level co-evolution not only occurs to maintain specific
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amino acids required for a structural contact but also influences the correct formation
of a helix-helix contact by affecting the sequence context of this contact. Accordingly,
residue co-evolution appears to be a comprehensive manifestation of the complex task
evolution has to cope with when balancing the test of new sequence variants with the
need of maintaining the functionality of an organism’s proteome.

With respect to the successful and valuable prediction of helix-helix contact, the
analysis of co-evolving residues in membrane proteins demonstrated both limits and
potentials. On the one hand, obtained prediction accuracies were clearly too low to
make co-evolving residues alone a useful prediction method for helix-helix contacts. On
the other hand, their frequent occurrence in close sequence neighbourhood to real helix-
helix contacts suggested that they might be an important source to derive helix pairs
that are likely to be in direct contact, possibly along with the approximate region of
interaction. Furthermore, given that prediction accuracies were largely consistent with
those reported for soluble proteins, the combination of residue co-evolution with other
sequence features promised further gain in prediction accuracy as already demonstrated
also for soluble proteins. Both aspects were further evaluated with subsequent analyses
(see below).

7.3 Helix-helix contacts in membrane proteins can be
predicted with equal accuracy than soluble residue
contacts

While a large number of algorithms were already available for the prediction of membrane
protein topology or the prediction of lipid-exposed surfaces (for reviews see [43, 96]),
here the first method for the prediction of helix-helix contacts using neural networks
was introduced. This method is specific for alpha-helical membrane proteins due to two
reasons. First, the neural network was trained on a data set of 62 membrane proteins
with solved structure. Secondly, sequence features were included that can only be derived
for membrane proteins with alpha-helix bundle fold. With a final prediction accuracy of
close to 26%, the newly developed method called TMHcon not only performs with equal
accuracy as reported for current contact predictors on soluble proteins, but also easily
outperforms these methods when using them on membrane proteins. Interestingly, from
all proteins in the dataset consistently best results were obtained for the important class
of proteins with seven transmembrane helices indicating that the helix architecture of
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these proteins is specifically approachable to the implemented neural network.
While the experimental determination of membrane protein structures remains to be

a difficult and time-consuming process, computational methods for the prediction of
structural features of membrane proteins are required to close the gap between available
sequence and structure data of membrane proteins. The contact predictor TMHcon will
hopefully contribute to this task by providing on the one hand potential constraints
for ab initio structure prediction experiments of membrane proteins and on the other
hand enough structural information for distinguishing different helix architectures (see
below).

7.4 Helix interaction patterns can be obtained with high
reliability from predicted helix-helix contacts

Membrane protein structures can differ from each other in a number of structural fea-
tures, including their number of transmembrane helices in the first place as well as length
and folding of extramembranous loops or helix abnormalities such as kinks. Additionally,
proteins with the same number of transmembrane helices can be further characterized
by their specific patterns of helix interactions defining the helix bundle architecture of
each protein. Within this thesis, a novel graph visualization for these helix architec-
tures is introduced depicting individual helices as graph nodes that are connected in
case of observed helix-helix contacts. These so-called helix interaction graphs promise
easy access to the detection of structural similarities and differences as they constitute
a high-level representation of membrane protein structures.
However, as membrane protein structures are rarely available, it was furthermore

necessary to test, how well such helix interaction graphs can be predicted from sequence.
While other prediction approaches are imaginable (a machine-learning algorithm for
example might deduce possible interactions from helix properties directly), here a two-
step approach was evaluated where helix interactions are derived from prior predicted
helix-helix contacts (either using co-evolving residues or with the more complex neural
network approach TMHcon). Importantly, such a prediction could be shown to reach
accuracies of close to 80% even though the accuracies of used residue contact predictions
are not exceeding 26%. Thereby, the prediction of interacting helices benefits from
the fact that also wrongly predicted contacts still have a strong tendency to be in
close sequence neighbourhood to observed helix-helix contacts and therefore cluster on
actually interacting helices. While this characteristic has so far not found any major
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application in the analysis of soluble proteins, the helix bundle structures of membrane
proteins is offering the perfect environment for actually exploiting this information.

While co-evolving residues alone were already found to predict interacting helices with
good specificity yet limited sensitivity, two main ways of further improving the prediction
could be demonstrated. First, an increase in prediction accuracy during the initial
prediction of helix-helix contacts resulted also in better helix interaction predictions
as could be seen from using contacts predicted with TMHcon instead of co-evolving
residues alone. Secondly, helix-helix contacts predicted not for the test sequence itself
but for structurally related proteins can further contribute to an increased prediction
sensitivity without reducing specificity significantly. Combining all tested improvement
strategies, helix interactions could be predicted with a sensitivity of 63% at a specificity
of 80%. Whether these values will be further improved in the future or constitute
already the theoretically reachable optimum is hard to tell in general, although the idea
of using predicted residue contacts seems to be largely exhausted given that contact
prediction methods in the field of soluble proteins were not found to significantly increase
in their prediction performance over the last years. Nevertheless, the prediction of
helix interactions and accordingly helix architectures constitutes a completely new and
valuable field in structural bioinformatics of membrane proteins, hopefully motivating
other researchers to contribute to this problem.

7.5 Structural classification of membrane proteins is pos-
sible - with limitations

Comparing the structural classification of membrane proteins within SCOP and CATH,
both databases were found to agree to a large extent when it comes to the classification of
domains with five or more transmembrane helices. Discrepancies previously described for
soluble proteins (differing domain assignments and fold overlap problems) were detected
mostly for proteins with two or four transmembrane helices. A comparison to soluble
four helix bundle proteins revealed that this observation is not automatically tied to a
possibly limited structural variability of four helix bundles per se, but rather is specific
for membrane proteins. Since structure comparisons additionally indicate that four
helix bundle membrane domains in fact display a generally higher similarity among
each other than comparable soluble helix bundles, their structure space seems to be
highly continuous making their classification intrinsically more difficult.

Obviously, membrane proteins with more transmembrane helices are also structurally
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restricted and hence likely to be more similar between each other than soluble helix
bundles. However, with an increasing number of transmembrane segments the spectrum
of possible structural variations (especially the number of complex helix interaction
patterns) grows as well. Given the current status of membrane proteins in structural
databases such as SCOP and CATH but also considering the helix architecture based
classification presented in this work, the identification of distinct folds for membrane
proteins having at least five transmembrane helices seems to possible and accordingly a
classification similar to that for soluble proteins can be executed for these proteins.

7.6 Membrane proteins can be classified according to re-
current helix interaction patterns

Combining the analysis and prediction of helix interactions with the structural clas-
sification of membrane proteins, a new classification approach was proposed trying to
cluster proteins based on similar helix interaction graphs. Thereby, nearly all known
membrane protein structures with five or more transmembrane helices could be assigned
to twenty recurrent helix architectures confirming the principal possibility of obtaining
distinct membrane protein folds even though membrane proteins are structurally more
restricted than soluble proteins. Furthermore, the obtained classification of helix ar-
chitectures was largely consistent with general structural classification approaches such
as SCOP and CATH demonstrating that helix interactions constitute maybe the most
distinctive characteristic of membrane protein structures.
Importantly, common helix interaction patterns can not only be derived from known

structures but also using predicted helix interactions. While this was shown here only us-
ing a small subset of all available membrane protein sequences (namely those having also
an experimentally determined structure), the development of such a classification system
incorporating membrane proteins from all currently sequenced organisms promises ex-
citing insights into the structural diversity but also the evolution of membrane proteins
in general.
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Appendix

Table 9.1: High-affinity transmembrane domains identified with the ToxR/POSSYCAT system
from a combinatorial sequence library of transmembrane domains containing alanine residues
at all non-interface positions. Reported is the relative β-gal activity of each sequence with
respect to a canonical leucine zipper. All sequences with a relative β-gal activity >1.5 were
classified as high-affine.

Sequence Signal Sequence Signal

.L..GI.VG..GT..V 1.6 .A..AI.GL..GI..G 2.5

.V..CA.CG..GW..T 1.6 .V..FF.GI..SC..T 2.5

.C..WC.CG..FM..G 1.6 .V..FI.GM..GG..V 2.5

.C..CG.VT..WF..A 1.7 .W..FA.GW..GI..A 2.6

.C..FC.GW..GS..M 1.7 .A..FV.GV..GC..I 2.6

.I..AA.GG..FG..I 1.7 .V..FS.GF..AS..F 2.7

.G..CF.GW..GM..S 1.8 .A..FM.GF..GS..W 2.7

.C..CS.VG..WM..C 1.8 .G..FA.GL..GM..A 2.7

.V..FS.MF..AG..T 1.8 .F..GT.FG..TV..L 2.7

.M..TW.SG..WG..V 1.8 .C..VA.LS..VG..T 2.7

.S..WF.FG..TF..A 1.8 .A..FI.GC..GF..S 2.7

.I..CM.GA..GA..S 1.9 .T..IV.SF..GM..G 2.9

.I..FC.GA..AG..W 1.9 .A..FW.GF..GA..T 2.9

.I..GI.CG..IS..I 1.9 .V..CM.AS..VS..M 3.0

.V..VS.TA..IF..T 2.0 .I..FV.GV..GV..G 3.0

.W..AA.MF..GF..R 2.0 .V..FV.GV..GM..T 3.0

.W..GF.CG..WS..S 2.0 .M..CV.MS..VS..T 3.1

.V..LA.VF..GV..G 2.1 .I..FC.GF..GT..F 3.1

.A..FV.GC..GG..F 2.1 .G..FG.VF..GV..G 3.1

.F..SL.GC..GC..T 2.1 .V..FA.GL..GF..C 3.1

.A..CF.GG..CG..F 2.1 .I..FF.GM..GV..G 3.1

.S..AS.VG..FG..M 2.2 .C..FS.GF..GM..M 3.2

.I..CI.VG..GG..S 2.2 .G..FL.GA..GA..F 3.3

.F..GI.CG..MG..T 2.2 .W..VV.VS..TS..T 3.3

.A..AF.LG..IT..W 2.3 .W..MG.WS..IS..T 3.4

.F..GC.CG..MC..A 2.3 .I..CF.VG..GG..S 3.4

.L..WA.GT..GG..I 2.3 .V..WW.AT..SS..C 3.4

.L..MG.WA..WG..G 2.4 .V..WW.ST..TS..V 3.5

.G..FL.GC..GC..A 2.4 .I..CI.VS..TS..T 3.7

.M..IW.SG..WG..V 2.4 .V..WW.AT..TS..C 3.8
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Table 9.2: High-affinity transmembrane domains identified with the ToxR/POSSYCAT system
from a combinatorial sequence library of transmembrane domains containing leucine residues
at all non-interface positions. Reported is the relative β-gal activity of each sequence with
respect to a canonical leucine zipper. All sequences with a relative β-gal activity >1.0 were
classified as high-affine.

Sequence Signal Sequence Signal

.I..GY.LY..VA..A 1.0 .A..QY.VV..ET..L 2.5

.T..FH.VL..TW..G 1.2 .G..DR.DM..LG..L 2.5

.T..AH.SL..WA..A 1.3 .I..NS.TS..TG..L 2.5

.I..GW.AY..NA..W 1.3 .R..ER.TI..TG..G 2.5

.S..GN.YT..TG..I 1.6 .R..VN.TM..VG..L 2.6

.T..GH.VA..TH..V 1.6 .G..ST.AS..KA..V 2.7

.V..AH.TY..CW..W 1.6 .C..GH.SS..AG..L 2.8

.G..GH.IL..IH..V 1.7 .R..TR.EA..GG..I 2.8

.T..GH.AI..EF..I 1.7 .D..DK.DW..AG..L 2.9

.A..AG.AG..VG..S 1.8 .L..TH.LV..SG..C 3.0

.S..GH.SF..WG..T 1.8 .G..TH.SA..IG..T 3.0

.V..ER.AW..NG..M 2.0 .W..CY.VG..SG..T 3.3

.W..CH.TG..LG..A 2.1 .K..YF.TG..AG..S 3.3

.G..AN.GT..TG..L 2.1 .G..SV.SG..GA..M 3.5

.C..KD.ML..GG..I 2.1 .F..VT.AD..AN..S 3.6

.F..NH.SG..FG..L 2.1 .G..SH.SS..GG..L 3.6

.V..TN.GC..FG..I 2.1 .R..HT.DG..LG..I 3.6

.V..LH.AL..CN..T 2.2 .R..DR.YD..LG..I 3.6

.T..GF.GG..GE..G 2.3 .V..NF.AG..GG..G 3.7

.V..LR.AL..CY..S 2.3 .G..DR.CY..VG..G 3.7

.T..LH.CY..IM..I 2.3 .S..IY.GG..CG..L 3.7

.R..TH.VA..GG..S 2.3 .I..PC.GS..GG..Q 3.8

.I..GH.AI..LN..T 2.3 .T..TH.SC..GG..T 3.8

.Q..GH.VS..AG..W 2.3 .Y..AT.SL..NC..M 4.0

.V..SG.GS..GN..P 2.4 .N..LF.SG..TG..G 4.1

.R..ED.EI..AG..A 2.5 .A..SR.EG..HG..L 4.2
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Table 9.3: PDBTM non-redundant dataset of membrane protein structures (MP_62) used for
the prediction of co-evolving residues and the development of TMHcon.

PDB Chains Description TMSa Res [Å]b Species

1AIG L Photosynthetic reaction center 5 2.6 Rhodobacter sphaeroides
1BCC C Cytochrome bc1 complex 8 3.2 Gallus gallus
1EYS M Photosynthetic reaction center 5 2.2 Thermochromatium tepidum
1FFT A; C Ubiquinol oxidase 12; 5 3.5 Escherichia coli
1FX8 A Glycerol facilitator (Glpf) 6 2.2 Escherichia coli
1JB0 A; L Photosystem I 11; 3 2.5 Synechococcus elongatus
1KQF C Formate dehydrogenase 4 1.6 Escherichia coli
1L7V A BtuCD vitamin B12 transporter 10 3.2 Escherichia coli
1M0K A Bacteriorhodopsin 7 1.4 Halobacterium salinarium
1NEK C;D Succinate dehydrogenase 3; 3 2.6 Escherichia coli
1ORQ C Potassium channel 4 3.2 Mus muculus
1PW4 A Glycerol-3-phosphate transporter 12 3.3 Escherichia coli
1Q16 C Nitrate reductase A (NarGHI) 5 1.9 Escherichia coli
1QLE C Cytochrome c oxidase 7 3.0 Paracoccus denitrificans
1RH5 A Protein conducting channel 10 3.2 Methanococcus jannaschii
1U19 A Rhodopsin 7 2.2 Bos taurus
1VF5 A;B Cytochrome b6f complex 4; 3 3.0 Mastigocladus laminosus
1XIO A Sensory rhodopsin 7 2.0 Anabaena sp.
1XME A Cytochrome ba3 oxidase 13 2.3 Thermus thermophilus
1YEW B,C Methane monooxygenase 7; 4 2.8 Methylococcus capsulatus
1ZCD A Na(+)/H(+) antiporter NhaA 12 3.5 Escherichia coli
2A65 A Na(+):neurotransmitter symporter 12 1.7 Aquifex aeolicus vf5
2A79 B Shaker Kv1.2 potassium channel 4 2.9 Rattus norvegicus
2AGV A Calcium ATPase 1 10 2.4 Oryctolagus cuniculus
2AXT A;B;C;D Photosystem II 5; 6; 6; 5 3.0 Thermosynechococcus elongatus
2B2F A Ammonium transporter Amt-1 11 1.7 Archaeoglobus fulgidus
2B76 C;D Quinol fumarate reductase FrdA 3; 3 3.3 Escherichia coli
2BG9 A Nicotinic Acetylcholine Receptor 4 4.0 Torpedo marmorata
2BHW A Light-harvesting complex II 3 2.5 Pisum sativum
2BL2 A V-type ATPase 4 2.2 Enterococcus hirae
2BS2 C Quinol-fumarate reductase 5 1.8 Wolinella succinogenes
2C3E A Mitochondrial ADP-ATP carrier 6 2.8 Bos taurus
2CFP A Lactose permease 12 3.3 Escherichia coli
2EVU A Aquaporin aqpM 6 2.3 Methanobacterium thermoautotrophicum
2EXW A H(+)/Cl(-) exchange transporter 10 3.2 Escherichia coli
2F93 A Sensory rhodopsin II 7 2.0 Natronomonas pharaonis
2FBW C; D Succinate dehydrogenase 3; 3 2.1 Gallus gallus
2FYN A Cytochrome bc1 complex 8 3.2 Rhodobacter sphaeroides
2GFP A Multidrug transporter EmrD 12 3.5 Escherichia coli
2GIF A Acriflavine resistance protein B 12 2.9 Escherichia coli
2GSM A Cytochrome c oxidase 12 2.0 Rhodobacter sphaeroides
2HI7 B DsbB-DsbA-ubiquinone complex 4 3.7 Escherichia coli
2HYD A Multidrug ABC transporter SAV1866 6 3.0 Staphylococcus aureus
2IC8 A GlpG 6 2.1 Escherichia coli
2JAF A Halorhodopsin 7 1.7 Halobacterium salinarium
2NMR A Ammonia channel 11 2.1 Escherichia coli
2NR9 A Rhomboid peptidase GlpG 6 2.2 Haemophilus influenzae
2NWL A Aspartate transporter GltPh 8 3.0 Pyrococcus horikoshii
2O9D A Aquaporin Z 6 2.3 Escherichia coli
2OAU A Mechanosensitive channel MscS 3 3.7 Escherichia coli
2ONK C ABC transporter ModBC 6 3.1 Archaeoglobus fulgidus
2UUH A Leukotriene C4 Synthase 4 2.2 Homo sapiens

a TMS: number of transmembrane segments experimentally determined from the PDB structure.
b Res: resolution of 3D structure.
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Table 9.4: CAMPS non-redundant dataset of membrane protein structures (MP_CAMPS) used
for the prediction of consensus helix interaction graphs.

PDB Chain Description Res [Å]a TMSpred
b TMSexp

c HomSeqd

1FFT A Ubiquinol oxidase 3.5 14 12 40
1FFT C Ubiquinol oxidase 3.5 5 5 40
1J4N A Aquaporin 1 2.2 6 6 40
1JB0 A Photosystem I P700 Apoprotein A1 2.5 11 11 15
1M0K A Bacteriorhodopsin 1.4 7 7 39
1NEN C Succinate dehydrogenase cytochrome b-556 subunit 2.9 3 3 40
1OKC A ADP/ATP carrier protein 2.2 3 6 1
1ORQ C Potassium channel 3.2 4 4 20
1PW4 A Glycerol-3-phosphate transporter 3.3 12 12 40
1Q16 C Nitrate reductase A gamma chain 1.9 5 5 40
1SQX C Cytochrome b 2.6 9 8 3
1U19 A Rhodopsin 2.2 7 7 40
1VF5 A Cytochrome b6 3.0 4 4 19
1ZCD A Na(+)/H(+) antiporter 1 3.5 11 12 16
2A65 A Na(+):neurotransmitter symporter 1.7 12 12 40
2AKI C Preprotein translocase secE subunit 4.0 3 3 44
2AXT A Photosystem Q(B) protein 3.0 7 5 14
2AXT C Photosystem II CP43 protein 3.0 7 6 11
2EXW A H(+)/Cl(-) exchange transporter clcA 3.2 10 10 40
2GFP A Multidrug transporter EmrD 3.5 11 12 40
2GIF A Acriflavine resistance protein B 2.9 12 12 40
2HI7 B Disulfide bond formation protein B 3.7 4 4 40
2IC8 A GlpG 2.1 6 6 40
2NQ2 B ABC transporter permease protein HI1471 2.4 8 10 40
2NWL A Aspartate transporter GltPh 3.0 8 8 40
2Q7R C Arachidonate 5-lipoxygenase-activating protein 4.0 3 4 2
2QFI A Ferrous-iron efflux pump fieF 3.8 6 6 40
2R6G F Maltose transport system permease protein malF 2.8 8 8 40
2R6G G Maltose transport system permease protein malG 2.8 6 6 40
2YVX B Mg2+ transporter MgtE 3.5 5 5 40
2ZBG A Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 2.6 8 10 40
3B8E C Sodium/potassium-transporting ATPase subunit alpha-1 3.5 8 10 40
3B9W A Ammonium transporter 1.3 11 11 40
3BEH D Mll3241 protein 3.1 6 6 40

a Res: resolution of 3D structure.
b TMSpred: number of transmembrane segments predicted with Phobius.
c TMSexp: number of transmembrane segments determined from the PDB structure.
d HomSeq: number of homologous sequences used for the construction of consensus helix interaction graphs.
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Table 9.5: SCOP folds containing membrane proteins with at least two transmembrane helices.

Fold Description Domainsa Superfamilies Families Min (TMS)b Max (TMS)b

f.13 Family A G protein-coupled receptor-like 6 1 2 2 7
f.14 Voltage-gated potassium channels 5 1 1 1 4
f.16 Gated mechanosensitive channel 1 1 1 2 2
f.17 Transmembrane helix hairpin 5 3 3 2 2
f.19 Aquaporin-like 4 1 1 6 6
f.20 Clc chloride channel 1 1 1 10 10
f.21 Heme-binding four-helical bundle 9 3 5 3 5
f.22 ABC transporter involved in vitamin B12 uptake 1 1 1 10 10
f.24 Cytochrome c oxidase subunit I-like 4 1 1 12 13
f.25 Cytochrome c oxidase subunit III-like 3 1 1 5 7
f.26 Bacterial photosystem II reaction centre 2 1 1 5 5

L and M subunits
f.29 Photosystem I subunits PsaA/PsaB 2 1 1 11 11
f.30 Photosystem I reaction center subunit X, PsaK 1 1 1 2 2
f.31 Photosystem I reaction center subunit XI, PsaL 1 1 1 3 3
f.32 Domain/subunit of cytochrome bc1 complex 2 1 1 3 3

(Ubiquinol-cytochrome c reductase)
f.33 Calcium ATPase, transmembrane domain M 1 1 1 10 10
f.34 Mechanosensitive channel protein MscS (YggB) 1 1 1 3 3

transmembrane region
f.35 Multidrug efflux transporter AcrB 1 1 1 6 6

transmembrane domain
f.36 Neurotransmitter-gated ion-channel 4 1 1 4 4

transmembrane pore
f.37 ABC transporter transmembrane region 1 1 1 6 6
f.38 MFS general substrate transporter 2 1 2 12 12
f.41 Preprotein translocase SecY subunit 1 1 1 10 10
f.42 Mitochondrial carrier 1 1 1 6 6
f.43 Chlorophyll a-b binding protein 1 1 1 3 3
f.44 Ammonium transporter 1 1 1 11 11
f.49 Proton glutamate symport protein 1 1 1 8 8
f.51 Rhomboid-like 2 1 1 6 6

a Domains: number of distinct domains according to SCOP unique identifiers (sunid) for protein domains.
b TMS: number of transmembrane segments as defined by PDBTM.
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Table 9.6: CATH folds containing membrane proteins with at least two transmembrane helices.

Fold Description Domainsa Superfamilies Min (TMS)b Max (TMS)b

1.10.287 Helix hairpins 14 6 2 3
1.10.3080 Clc chloride channel 2 1 10 10
1.20.20 F1F0 ATP synthase 3 1 2 2
1.20.85 Photosynthetic reaction center, subunit M; 13 1 2 3

domain 1
1.20.120 Four helix bundle (hemerythrin (Met), subunit A) 9 3 4 5
1.20.210 Cytochrome C oxidase; chain A 5 1 12 13
1.20.810 Cytochrome Bc1 complex; chain C 7 1 4 8
1.20.860 Alpha-t-alpha 1 1 2 2
1.20.950 Fumarate reductase cytochrome B subunit 2 2 4 5
1.20.1050 Glutathione S-transferase Yfyf (class pi); chain A, 1 1 4 4

domain 2
1.20.1070 Rhodopsin 7-helix transmembrane proteins 9 1 7 7
1.20.1080 Glycerol uptake facilitator protein 8 1 6 6
1.20.1110 Calcium-transporting ATPase 1 1 9 10

transmembrane domain
1.20.1130 Photosystem I p700 chlorophyll A apoprotein A1 2 1 11 11
1.20.1240 Photosystem 1 reaction centre subunit Xi; chain L 1 1 3 3
1.20.1300 Three helical TM bundles of succinate and 3 1 3 3

fumarate reductases
1.20.1450 Particulate methane monooxygenase; chain B 1 1 7 7

a Domains: number of distinct domains according to a representative set of CATH domains at 95% sequence identity.
b TMS: number of transmembrane segments as defined by PDBTM.
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Table 9.7: Non-redundant dataset MP_SCOP_CATH of membrane protein structures present in
both SCOP and CATH.

PDB Chain CATH SCOP

1AIG L 1.20.85.10, 1.20.85.10 f.26.1.1
1AR1 B 1.10.287.90 f.17.2.1
1C0V A 1.20.20.10 f.17.1.1
1E12 A 1.20.1070.10 f.13.1.1
1EHK A 1.20.210.10 f.24.1.1
1EYS M 1.20.85.10, 1.20.85.10 f.26.1.1
1EZV C 1.20.810.10 f.21.1.2, f.32.1.1
1FFT A 1.20.210.10 f.24.1.1
1FFT B 1.10.287.90 f.17.2.1
1FFT C 1.20.120.80 f.25.1.1
1FX8 A 1.20.1080.10 f.19.1.1
1GZM A 1.20.1070.10 f.13.1.2
1IWO A 1.20.1110.10 f.33.1.1
1J4N A 1.20.1080.10 f.19.1.1
1JB0 A 1.20.1130.10 f.29.1.1
1JB0 B 1.20.1130.10 f.29.1.1
1JB0 K 1.20.860.20 f.30.1.1
1JB0 L 1.20.1240.10 f.31.1.1
1KQF C 1.20.950.20 f.21.1.1
1M0K A 1.20.1070.10 f.13.1.1
1M56 A 1.20.210.10 f.24.1.1
1OED A 1.20.120.370 f.36.1.1
1OED B 1.20.120.370 f.36.1.1
1OED C 1.20.120.370 f.36.1.1
1OED E 1.20.120.370 f.36.1.1
1ORS C 1.20.120.350 f.14.1.1
1QLE C 1.10.287.70, 1.20.120.80 f.25.1.1
1UAZ A 1.20.1070.10 f.13.1.1
1XIO A 1.20.1070.10 f.13.1.1
2ABM A 1.20.1080.10 f.19.1.1
2ACZ C 1.20.1300.10 f.21.2.2
2ATK C 1.10.287.70 f.14.1.1
2B6O A 1.20.1080.10 f.19.1.1
2B76 C 1.20.1300.10 f.21.2.2
2B76 D 1.20.1300.10 f.21.2.2
2BS2 C 1.20.950.10 f.21.2.1
2D2C A 1.20.810.10 f.21.1.2
2DYR A 1.20.210.10 f.24.1.1
2DYR B 1.10.287.90 f.17.2.1
2DYR C 1.10.287.70, 1.20.120.80 f.25.1.1
2EXW A 1.10.3080.10 f.20.1.1
2F93 A 1.20.1070.10 f.13.1.1
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