
Learning Algorithms for Networks with Internal andExternal FeedbackIn D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990Connectionist Models Summer School, pages 52-61. San Mateo, CA: Morgan Kaufmann, 1990.J�urgen Schmidhuber�Institut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 2, Germanyschmidhu@tumult.informatik.tu-muenchen.deAbstractThis paper gives an overview of some novel algorithms for reinforcement learning in non-stationary possibly reactive environments. I have decided to describe many ideas brie
y ratherthan going into great detail on any one idea. The paper is structured as follows: In the �rstsection some terminology is introduced. Then there follow �ve sections, each headed by a shortabstract. The second section describes the entirely local `neural bucket brigade algorithm'. Thethird section applies Sutton's TD-methods to fully recurrent continually running probabilisticnetworks. The fourth section describes an algorithm based on system identi�cation and ontwo interacting fully recurrent `self-supervised' learning networks. The �fth section describesan application of adaptive control techniques to adaptive attentive vision: It demonstrateshow `selective attention' can be learned. Finally, the sixth section critisizes methods based onsystem identi�cation and adaptive critics, and describes an adaptive subgoal generator.1 TerminologyExternal feedback. Consider a neural network receiving inputs from a non-stationary environmentand being able to produce actions that may have an in
uence on the environmental state. Sincethe new state may cause new inputs for the network we say that there is external feedback.Internal feedback. If the network topology is cyclic, then input activations from a given timemay alter the way that inputs from later times are processed. In this case there is a potential forthe `representation of state', or `short term memory', and we speak of internal feedback.Dynamic Learning Algorithms and Networks. A problem that requires credit assignment to pastactivation states is called a dynamic problem. Learning algorithms for handling dynamic problemsare called dynamic learning algorithms. Learning algorithms that are not dynamic algorithms arecalled static algorithms. For instance, all algorithms that require settling into equilibria whilethe inputs have to remain stationary are considered to be static algorithms, although the settlingprocess is a dynamic one based on internal feedback.If a given network type can be employed for dynamic problems, and if there exists a corre-sponding learning algorithm, then we sometimes speak of a dynamic network.The credit assignment problem. If a neural network is supposed to learn externally posed tasksthen it faces Minsky's fundamental credit assignment problem: If performance is not su�cient,then which component of the network at which time did in which way contribute to the failure?How should critical components change behavior to increase future performance?�This work was supported by a scholarship from SIEMENS AG1



Supervised Learning. A learning task is a supervised learning task if there are externally de�neddesired outputs at certain times, but the network never needs to discover output actions on its own.Supervised learners have to consider only the internal feedback for performing credit assignment.Reinforcement Learning. A learning task is a reinforcement learning task if the teacher onlyindicates once in a while whether the system is in a desirable state or not, without giving in-formation about how to reach desirable states. Usually an evaluative (non-instructive) teachingmechanism sometimes provides a scalar signal, the reinforcement, whose value indicates successor failure. During training the network is supposed to discover on its own outputs that eventuallylead to desirable states. In contrast to supervised learning, there can be something like undesiredinputs caused by former output actions. In general the external unknown dynamics have to betaken into consideration to perform credit assignment.Reinforcement learning is strongly related to control tasks. With many control tasks moreinformation is available about goal states than just a simple reinforcement signal. However, justas with reinforcement learning, the (sequential) outputs necessary to achieve the goal states ingeneral are not known.In the sequel we will concentrate on discrete time versions of dynamic learning algorithms forneural networks. We assume that there are `time steps', and that state changes only take placefrom one time step to the next one, not within a time step.A weak de�nition of `locality in space and time' (there also is a stronger de�nition). A learningalgorithm for dynamic neural networks is local in time if for given network sizes (measured innumber of connections) during on-line learning the peak computation complexity at every timestep is O(1), for arbitrary durations of sequences to be learned.A learning algorithm for dynamic neural networks is local in space if during on-line learningfor limited durations of sequences to be learned and for arbitrary network sizes (measured innumber of connections) and for arbitrary network topologies the peak computation complexityper connection at every time step is O(1).A learning algorithm for dynamic neural networks is local if during on-line learning for arbitrarydurations of sequences to be learned and for arbitrary network sizes (measured in number ofconnections) and arbitrary network topologies the peak computation complexity per connectionat every time step is O(1).These de�nitions do not imply that a local algorithm is unable to consider actions that havetaken place any time before.In the sequel some novel learning algorithms designed for networks with internal and externalfeedback will be described. Due to limited space I will describe many ideas brie
y rather thangoing into great detail on any one idea.2 The Neural Bucket Brigade AlgorithmAbstract. Competitive Learning `shifts weight substance' from certain incoming connections of awinner-take-all-unit to other incoming connections. A novel algorithm for goal directed learn-ing with hidden units shifts weight substance from outgoing connections to incoming connections.An evaluative critic sometimes provides weight-substance for connections leading to output units.The algorithm's most signi�cant advantage over other goal directed learning algorithms like back-propagation (Werbos, 1974)(Parker, 1985)(LeCun, 1985)(Rumelhart et al., 1986) is: It is biolog-ically more plausible, because it solely depends on computations which are entirely local in spaceand time. It has been successfully applied to some classical non-linear problems involving bothfeedforward and recurrent networks.Competitive Learning (heavily employed in work on unsupervised learning (Kohonen, 1988)(Grossberg, 1976)) may be interpreted as `shifting weight substance' from certain incoming con-nections of a winner-take-all-unit to other incoming connections (Rumelhart and Zipser, 1986). Anovel algorithm for goal directed learning with hidden units emerges if weight substance is shiftedfrom outgoing connections to incoming connections in a certain fashion.2



Consider the general reinforcement learning situation where an evaluative critic in the envi-ronment sometimes provides `payo�' in response to successful behavior of a learning feedforwardor recurrent network. We translate reinforcement or payo� into weight-substance for connectionsleading to output units that were active in the moment of payo�. All such connections are imme-diately strengthened proportional to their last contributions. (A contribution is the product of aweight and an activation.)However, even in the absence of payo� there are weight changes for all weights, including theweights of connections leading to hidden units: Any connection transporting activation informationfrom an active unit i to another active unit j has to give up a part of its weight substance, whichis shifted to those weights that were setting the stage by contributing to the activation of unit i atthe last time step. Thus recursive dependencies `through time' are established between strengthsof connections transporting contributions during successive time steps. The environmental criticterminates the recursion. The algorithm shares certain conceptual similarities with the `bucketbrigade learning algorithm' for rule-based systems (Holland, 1985) and is called the `Neural BucketBrigade Algorithm'. One of the many di�erences is that competition works locally instead ofglobally.The algorithm's most signi�cant advantage over other goal directed learning algorithms likeback-propagation is: It solely depends on computations which are entirely local in space and time.This means that during on-line learning the peak computation per connection is not a�ected bynetwork size or by network topology or by the length of input sequences. It is always O(1). Thismakes it biologically more plausible than other algorithms (Schmidhuber, 1989a) (Schmidhuber,1989b).The basic network structure is an arbitrary (possibly cyclic) graph which is partitioned intoinput units and small prede�ned winner-take-all-subsets, each having at least two members.Notation: xj(t) is the activation of the jth unit at time t, wij(t) is the weight on the directedconnection from unit i to unit j at time t. cij(t) = xi(t � 1)wij(t � 1) denotes the `contribution'of some connection between i and j at time t.In the beginning weights are initialized with a positive value. The system is continuouslyreceiving inputs, and continuously producing outputs, which again may have an in
uence onsubsequent inputs (external feedback). Activations spread according to the following rules: Attime t the input-units are clamped to values determined by the environment. Each non-inputunit computes netj(t) =Pi cij(t). The winner-take-all-subsets ensure that only a fraction of thenon-input units can be active simultaneously: xj(t) equals 1 if the non-input unit j is active, and0 otherwise.If unit j is active then its positive modi�able weights change according to�wij(t) = ��cij(t) + cij(t� 1)netj(t� 1) Xk active �cjk(t) + �cij(t)where 0 < � < 1 determines how much of its weight some particular connection has to pay tothose connections that were responsible for setting the stage at the previous time step. � is a smallconstant if unit j is an output unit and if there is external payo�, and � is 0 otherwise. We geta dissipative system: `Weight substance' enters the system in the case of payo�, 
ows through`bucket brigade chains', and leaves the system through connections coming from input units.Note again that the algorithm is entirely local. This makes a parallel implementation trivial.No teacher has to de�ne something like beginnings and ends of back-propagation phases. Nostorage is required for past activations or contributions except for the most recent ones. The unitsdo not care whether they are part of a feedforward or of a recurrent network. They do not care forconcepts like `layer structure' or network topology. Each unit and each connection is performingthe same simple operation at every time step.The algorithm has been successfully applied to some classical non-linear problems involv-ing both feedforward and recurrent networks. Networks employing that algorithm learned tosolve XOR-problems, encoding-problems, and sequence recognition (motion on a one-dimensional`retina') as well as sequence generation (an oscillation task). To address the question of learning3



speed: The number of training cycles necessary to �nd some (not necessarily stable) solution forthe XOR-problem is of the same order of magnitude as with conventional back-propagation. How-ever, with the more complex encoding problems back-propagation seems to be faster by about anorder of magnitude.3 A Reinforcement Comparison Algorithm for ContinuallyRunning Fully Recurrent Probabilistic NetworksAbstract. The principle of reinforcement comparison (employed for learning to play checkers(Samuel, 1959) and learning to balance a pole (Barto et al., 1983)) says: Let the temporal deriva-tive of the expectation of future reinforcement be the e�ective reinforcement. This principle isapplied to fully recurrent continually running networks of probabilistic binary units. A main ad-vantage of the resulting novel algorithm is its applicability to networks with internal (and possiblyexternal) feedback and its locality in both space and time (the absence of back-propagation-likeoperations makes it biologically more plausible than other algorithms).In addition to a fully recurrent continually running network with probabilistic binary outputunits the algorithm described in this section employs a second linear static network, called thecritic, which learns to judge successive states of the recurrent network by learning to predict the�nal reinforcement to be received at the end of the current `episode'. Di�erences of successivepredictions serve to adjust both the critic and the recurrent network. Hereby the weights of thecritic are updated according to the principles of Temporal Di�erence Methods (Sutton, 1988):First all weights are randomly initialized with real values.For all episodes:In the beginning of each episode, at the �rst time step, the activations of input units of therecurrent network are initialized with values determined by sensory perceptions from the environ-ment, and the activations of hidden and output units are initialized with 0. For all following timesteps, until there is external real-valued reinforcement R indicating failure or success:At any given time step t:1. The critic's output r = xT (t�1)v(t) is interpreted as a prediction of the �nal reinforcementto be received in the future. (v(t) is the the critics current weight vector, x(t) is the activationvector of all units of the recurrent network).2. Each probabilistic non-input unit i of the recurrent net sums its weighted inputs, this sumis passed to the logistic function l(x) = 11+e�x which gives the probability that the activation xi(t)becomes 1, or 0, respectively. Each unit i also stores its last activation xi(t � 1). Output unitsmay cause an action in the environment, and this may lead to new activations for the input units.So besides the internal feedback there may exist external feedback through the environment.3. If there is external reinforcement R (this means the end of the current episode) then thevariable r0 is de�ned to be equal to R.Otherwise r0 is de�ned to be a new estimation of �nal discounted reinforcement: r0 = 
xT (t)v(t).(0 < 
 < 1 is the discount rate).The critic associates the last activation vector x(t � 1) of the recurrent network with r0, thus`transporting expectation back in time' for one time step. So the critic's error is given by r0 � r.Its weight vector is immediately updated according to the Widrow-Ho� rule; the result is a newweight vector v(t+ 1).4. Each directed weight wij(t) from unit i to unit j of the recurrent network is immediatelyaltered according to �wij(t) = �(r0�r)xi(t�1)(xj(t)�P (xj = 1 j x(t�1); w(t�1)) , where w(t�1)is the last weight vector, and � is a positive constant. Thus the last transition gets encouraged (ordiscouraged, respectively).The algorithm applies the principle of reinforcement comparison to dynamic recurrent neural4



networks (Schmidhuber, 1990c). Informally, this principle also can be formulated as follows:If a system is in a state which it assumes to be a bad state, but there is a transition which leadsto a state assumed to be a good state, then this transition should be encouraged. Furthermore,from now on the `bad' state also can be considered to be a good state. Transitions from goodstates to bad states have to be treated in an analogue fashion.Note again that unlike with back-propagation-like algorithms for recurrent networks the algo-rithm above is local in both space and time. This means that during on-line learning the peakcomputation per connection is not a�ected by network size or input duration. It is always O(1).It is worth mentioning a counterintuitive fact: The critic may be linear, however, the taskof the recurrent network may be of the non-linearily separable type. This has been shown bysuccessfully applying the algorithm to a `delayed XOR-problem': A reinforcement signal givenin the end of each training episode (involving a small number of time steps) indicated whetherthe recurrent network correctly computed the delayed response to one of the four XOR patterns.The critic may be linear, because the �nal mapping to be implemented by the critic in general issimpler than the �nal mapping to be implemented by the main network.The algorithm shares certain conceptual similarities with the `neural bucket brigade algorithm'(Schmidhuber, 1990e). In (Schmidhuber, 1990c) it also has been described how a recurrent criticcan interact with the recurrent primary network.4 Two Interacting Fully Recurrent Self-Supervised Learn-ing Networks for Reinforcement LearningAbstract. An extension of system identi�cation approaches for adaptive control by Werbos, Jordan,Munro, Widrow, and Robinson and Fallside is described. The algorithm is based on two interactingfully recurrent continually running networks which may learn in parallel. The algorithm has apotential for on-line learning and locality in time, it does not care for `epoch-boundaries', it needsonly reinforcement information for learning, it allows di�erent kinds of reinforcement (or pain),it allows both internal and external feedback with theoretically arbitrary time lags, and it includesa full environmental model thus providing complete `credit assignment paths' into the past.An extension of system identi�cation approaches for adaptive control ((Werbos, 1977), (Jordan,1988), (Munro, 1987), (Nguyen and Widrow, 1989), (Robinson and Fallside, 1989)) is described.The algorithm attempts to be a very general one. It attacks the fundamental spatio-temporalcredit assignment problem as far as it is attackable at all by pure gradient descent methods(Schmidhuber, 1990b).The output units of a dynamic recurrent control network may in
uence the state of a reactivenon-stationary environment, thus in
uencing subsequent inputs of the control network. The inputof a dynamic fully recurrent model network at every time is given by the input and the output ofthe control network. The model network is trained to predict future activations of the input unitsof the control network. Among the control network's input units there are `reinforcement units'whose desired activations are �xed for all times. For instance, the desired activations of so-called`pain-units' are zero for all times. At a given time the quantity to be minimized by the controlleris Pt;i(ci � yi(t))2, where yi(t) is the activation of the ith reinforcement input unit at time t andci is its desired activation for all times. (t ranges over all (discrete) time steps that are still tocome.)Following the approach of system identi�cation, the model network helps to de�ne desiredoutput activations for the control network. Errors for the controller's weights are computedby measuring the partial derivatives of cumulative pain predictions of the model network withrespect to controller weights. Hereby the frozen model network is taken to be an emulator of theenvironmental dynamics.The algorithm can be run in two di�erent modes: There is the sequential version and theparallel version. With the sequential version, �rst the model network is trained by providing it5



with randomly chosen examples of sequences of interactions between controller and environment.Then the model weights are �xed to their current values, and the controller begins to learn.With the parallel version both the controller and the model learn concurrently. The advantageof the parallel version is that the model network focusses only on those parts of the environ-mental dynamics which the controller typically is confronted with. Particularily with complexenvironments this represents an enormous potential for gaining e�ciency. The disadvantage ofthe parallel version is that the controller sometimes receives wrong error gradients caused by aninperfect model. This should not be serious, as long as the model continues to improve. However,the controller might enter a local minimum relative to the current state of the model network'sweights. This in turn may cause the controller to perform the same silly actions all the time, thuspreventing the model network from improving (learning about the e�ects of alternative actions).Then the whole system might be caught in a state from which it cannot escape any more. Thesequential version represents a safer way, but it lacks the 
avor of real on-line learning and localityin time.Below we describe the parallel version. The sequential version can be obtained in a straight-forward manner. An on-line version of the In�nite Input Duration (IID) learning algorithm forfully recurrent networks (Robinson and Fallside, 1987) is employed for training both the modelnetwork and the control network. (The IID algorithm was �rst experimentally tested by (Williamsand Zipser, 1989).)At every time step, the parallel version of the algorithm is performing essentially the sameoperations.In step 1 of the main loop of the algorithm actions in the external world are computed. Dueto the internal feedback, these actions are based on previous inputs and outputs. For all newactivations, the corresponding derivatives with respect to all controller weights are updated.In step 2 actions are executed in the external world, and the e�ects of the current action and/orprevious actions may become visible.In step 3 the model network tries to predict these e�ects without seeing the new input. Againthe relevant gradient information is computed.In step 4 the model network is updated in order to better predict the input (including rein-forcement and pain) for the controller. Finally, the weights of the control network are updated inorder to minimize the cumulative di�erences between desired and actual activations of the painand reinforcement units. Since the control network continues activation spreading based on theactual inputs instead of using the predictions of the model network, `teacher forcing' (Williams andZipser, 1989) is used in the model network (although there is no teacher besides the environment).One can �nd various improvements of the systems described in (Schmidhuber, 1990b) and(Schmidhuber, 1990d). For instance, the partial derivatives of the controller's inputs with respectto the controller's weights are approximated by the partial derivatives of the corresponding pre-dictions generated by the model network. Furthermore, the model sees the last input and currentoutput of the controller at the same time.Notation (the reader may �nd it convenient to compare with (Williams and Zipser, 1989)):C is the set of all non-input units of the control network, A is the set of its output units, I isthe set of its `normal' input units, P is the set of its pain and reinforcement units, M is the set ofall units of the model network, O is the set of its output units, OP � O is the set of all units thatpredict pain or reinforcement, WM is the set of variables for the weights of the model network, WCis the set of variables for the weights of the control network, yknew is the variable for the updatedactivation of the kth unit from M [C [ I [ P , ykold is the variable for the last value of yknew , wijis the variable for the weight of the directed connection from unit j to unit i, pkijnew is the variablewhich gives the current (approximated) value of @yknew@wij , pkijold is the variable which gives the lastvalue of pkijnew , if k 2 P then ck is k's desired activation for all times, �C is the learning rate forthe control network, �M is the learning rate for the model network.j I [ P j=j O j, j OP j=j P j. If k 2 I [ P , then kpred is the unit from O which predicts k.Each unit from I [ P [ A has one forward connection to each unit from M [ C. Each unit from6



M is connected to each other unit from M . Each unit from C is connected to each other unit fromC. Each weight of a connection leading to a unit in M is said to belong to WM . Each weight of aconnection leading to a unit in C is said to belong to WC . Each weight wij 2WM needs pkij-valuesfor all k 2M . Each weight wij 2WC needs pkij-values for all k 2M [ C [ I [ P .The parallel version of the algorithm works as follows:
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INITIALIZATION:For all wij 2 WM [WC :begin wij  random,for all possible k: pkijold  0; pkijnew  0 end.For all k 2M [ C : ykold  0; yknew  0:For all k 2 I [ P :Set ykold by environmental perception, yknew  0:FOREVER REPEAT:1. For all i 2 C : yinew  11+e�Pj wijyjold .For all wij 2WC ; k 2 C:pkijnew  yknew(1� yknew)(Pl wklplijold + �ikyjold):For all k 2 C:begin ykold  yknew ,for all wij 2 WC : pkijold  pkijnew end .2. Execute all motoric actions based on activations ofunits in A. Update the environment.For all i 2 I [ P :Set yinew by environmental perception.3. For all i 2M : yinew  11+e�Pj wijyjold .For all wij 2WM [WC ; k 2M :pkijnew  yknew(1� yknew)(Pl wklplijold + �ikyjold):For all k 2M :begin ykold  yknew ,for all wij 2 WC [WM : pkijold  pkijnew end.4. For all wij 2 WM :wij  wij + �MPk2I[P (yknew � ykpredold)pkpredijold :For all wij 2WC :wij  wij + �CPk2P (ck � yknew)pkpredijold :For all k 2 I [ P :begin ykold  yknew , ykpredold  yknew ,for all wij 2 WM : pkpredijold  0,for all wij 2 WC : pkijold  pkpredijold end.To attack the above-mentioned problem with the parallel version of the algorithm we canintroduce a probabilistic element for the controller actions. By employing probabilistic outputunits for C and by using `gradient descent through random number generators' (Williams, 1988)we can introduce explicit explorative random search capabilities into the otherwise deterministicalgorithm. In the context of the IID algorithm, this works as follows: A probabilistic output unitk consists of a conventional unit k� which acts as a mean generator and a conventional unit k�which acts as a variance generator. At a given time, the probabilistic output yknew is computedby yknew = yk�new + zyk�new ;where z is distributed e.g. according to the normal distribution. The corresponding pkijnew haveto be updated according to the following rule:pkijnew  pk�ijnew + yknew � yk�newyk�new pk�ijnew :By performing more than one iteration of step 1 and step 3 at each time tick, one can adjustthe algorithm to environments that change in a manner which is not predictable by semilinearoperations (theoretically three additional iterations are su�cient for any environment).8



The parallel version of the algorithm is local in time, but not in space. See (Schmidhuber,1990b) for a justi�cation of certain deviations from `pure gradient descent through time', and fora description of how the algorithm can be used for planning action sequences.Variants of the algorithm are currently tested on certain non-Markovian reinforcement learningtasks. For instance, a controller was able to learn to be a 
ip-
op similar to the one describedin (Williams and Zipser, 1989). Of course, the important di�erence was that no teacher providedthe desired outputs!Other experiments are currently conducted with a non-Markovian pole balancing task. Unlikewith tasks described in (Barto et al., 1983) and (Anderson, 1986), no information about temporalderivatives of the system's state variables (cart position, pole angle with the vertical) is provided.The recurrency of the model network provides a potential for extracting this kind of information,and to represent the state of the environment in a form that allows credit assignment for thecontroller.In (Schmidhuber, 1990b) it is described how the algorithm can be employed for planningaction sequences. It should be noted that the algorithm also could be used as a submodule inan adaptive critic system consisting of three networks (Schmidhuber, 1990a), where the adaptivecritic computes vector-valued predictions of future events. This contrasts previous adaptive critics,whose output is just a scalar evaluation of the current state.The parallel version of the algorithm described above has properties which allow to implementsomething like the desire to improve the model network's knowledge about the world. This isrelated to curiosity. In (Schmidhuber, 1991) it is described how the algorithm can be augmentedby dynamic curiosity and boredom in a natural manner. This can be done by introducing (delayed)reinforcement for actions that increase the model network's knowledge about the world. This inturn requires the model network to model its own ignorance, thus showing a rudimentary form ofself-introspective behavior.5 An Example for Learning Dynamic Selective Attention:Adaptive Focus Trajectories for Attentive VisionAbstract. It is shown how certain cases of selective attention can be learned: `Static' neural ap-proaches to certain pattern recognition tasks can be replaced by a more e�cient sequential approach.A system is described which learns to generate focus trajectories such that the �nal position of amoving focus corresponds to a target in a visual scene. No teacher provides the desired activationsof `eye-muscles' at various times. The only goal information is the desired �nal input correspond-ing to the target. The task involves a complex temporal credit assignment problem and an attentionshifting problem. The system also learns to track moving targets.There is little doubt that selective attention is essential for large scale dynamic control systems.In this section we study the problem of learning selective attention in the context of attentivevision with dynamic neural networks. The problem, which in its general form has not beenexplored before, is the control of sequential physical focus-movements. Hereby we concentrateon the question: How can an attentive vision system learn without a teacher to generate focustrajectories such that the �nal visual input always looks like a desireable input corresponding toa target?A visual scene is given by an object (with internal details) placed on a 512 x 512 pixel �eld.The object covers only a small part of the scene and may be rotated or translated in an arbitrarymanner. Instead of using tenthousands of input units (as in a straight-forward static approach)only about 40 input units are employed. However, these units are sitting on a focus (a two-dimensional arti�cial retina) which can be moved across the pixel plane. The focus has highresolution in its center and low resolution in its periphery.In our approach there is a neural control network C that controls sequential focus movements.Motoric actions like `move focus left', `rotate focus' are based on the activations of the C's output9



units at a given time. Thus output actions may cause new activations for the input units, andwe say that there is external feedback (through the environment). The �nal desired input is anactivation pattern corresponding to the target in a static visual scene. The task is to sequentiallygenerate a focus trajectory such that the �nal input matches the target input. C's error at theend of a sequential recognition process is given by the di�erence between the desired �nal inputand the actual �nal input. (Control theory calls this a `terminal control problem'.)Pure supervised learning techniques for neural networks work only if there is a teacher whoprovides target outputs at every time step of a trajectory (which in our case usually involves about30 time steps). In our case, however, there never are externally given desired outputs. There onlyis one �nal desired input.In order to allow credit assignment to past output actions of C, we employ a supervisedlearningmodel networkM which separately learns to represent a model of the visible environmentaldynamics. This is done by trainingM at a given time to predict C's next input. This prediction isbased on previous inputs and outputs of the controller. M serves to `make the world di�erentiable'.It serves to bridge the gap between output units and input units of the controller.A learning algorithm for dynamic recurrent networks is employed to propagate gradient in-formation for C's weights back through M down into C and back through M etc... M 's weightsremain �xed during this procedure. In di�erent contexts and with di�erent degrees of generality,this basic principle for credit assignment based on system identi�cation has been previously de-scribed in (Werbos, 1977), (Jordan, 1988), (Munro, 1987), (Robinson and Fallside, 1989), (Nguyenand Widrow, 1989), and (Schmidhuber, 1990b).Note that in most cases the model network will not be perfect. For instance, if objects ina visual scene may occupy random positions then it will be impossible for M to exactly predictfuture focus inputs from previous ones. However, it is not intended to make the model a perfectpredictor whose output could replace the input from the environment (in that case not much wouldbe gained compared to the static approach: There would be no need for dynamic attention). Itsu�ces if the inner products of the approximated gradients (based on an inaccurate model) forthe control network and the true gradients (according to a perfect model) tend to be positive.M 's main task is to help the controller to move the focus into regions of the plane which allowto continue with more informed moves. (Although one can not exactly predict what one will seeafter moving one's eyes to the door, one is setting the stage for additional eye-movements thathelp to recognize an entering person.)One goal of this work is to demonstrate that imperfect models can contribute to perfect solu-tions. Our experiments show that the system described above is able to learn (without a teacher)correct sequences of focus movements involving translations and rotations, althoughM often makeserroneous predictions. At the end of a trajectory, the focus has moved towards a certain target partof the object and is rotated such that the �nal input corresponds to the desired input (Schmidhuberand Huber, 1990) (Huber, 1990).Further experiments showed that the system is well-suited for target tracking. The desireddetail of the moving object soon is focussed and tracked, as long as the objects velocity does notexcess the maximal focus velocity.Further experiments were conducted where C and M learned concurrently. It was found thattwo interacting conventional deterministic networks were not appropriate. So each of C's outputunits was replaced by a little network consisting of two units, one giving the mean and the otherone giving the variance for a random number generator which produced random numbers accordingto a continuous distribution. (We approximated a Gauss distribution by a Bernoulli distribution.)Weight gradients were computed by applying William's concept of `back-propagation throughrandom number generators' (Williams, 1988).It was found that such an on-line learning system can be able to learn appropriate focustrajectories. As it was expected, after training M was a good predictor only for those situationswhich the controller typically was confronted with.
10



6 An Adaptive Subgoal Generator for Planning Action Se-quencesAbstract. None of the existing learning algorithms for sequentially working neural networks withinternal and/or external feedback addresses the problem of learning `to divide and conquer'. It isargued that algorithms based on pure gradient descent or on adaptive critic methods are not suitablefor large scale dynamic control problems, and that there is a need for algorithms that perform`compositional learning'. A system is described which solves at least one problem associated withcompositional learning. The system learns to generate sub-goals. This is done with the help of`time-bridging' adaptive models that predict the e�ects of the system's sub-programs.The algorithms for attacking the fundamental credit assignment problem with dynamic learningalgorithms in non-stationary environments can be classi�ed into two major categories.First, there is the approach of `back-propagation through time'. This approach has beenpursued by (Robinson and Fallside, 1987), (Werbos, 1988), (Pearlmutter, 1989), (Rumelhart et al.,1986), (Williams and Zipser, 1989), (Gherrity, 1989) and others in the case where there is onlyinternal feedback. It has been pursued by (Nguyen and Widrow, 1989), (Robinson and Fallside,1989), (Werbos, 1977), (Jordan, 1988), and (Schmidhuber, 1990b) in the case where there also isexternal feedback through a reactive environment.Second, there is the `Adaptive Critic' approach, which is of primary interest in the case ofexternal feedback. This approach has been pursued by (Samuel, 1959), (Barto et al., 1983),(Werbos, 1990), and (Schmidhuber, 1990c).Both the algorithms based on pure gradient descent as well as the `Adaptive Critic' algorithmshave at least one thing in common: They show signi�cant drawbacks when the credit assignmentprocess has to bridge long time gaps between past actions and later consequences.Both approaches show awkward performance in the case where the learning system alreadyhas learned a lot of action sequences in the past. Both approaches tend to modify `sub-programs',instead of modifying the trigger conditions for sub-programs. They do not have an explicit conceptof something like a sub-program. Pure gradient descent methods always consider all past statesfor credit assignment. Adaptive critics based on Sutton's `Temporal Di�erences' (reinforcementcomparison methods) or on Werbos' `Heuristic Dynamic Programming' consider only the mostrecent states for `handing expectations back into time'. Both methods in general tend to considerthe wrong states. This is a major reason for their slow performance.In the next section we will isolate one problem associated with `compositional learning', namely,the problem of learning to generate sub-goals when there already exist a number of working sub-programs (Schmidhuber, 1990f).6.1 Learning to Generate Sub-GoalsThe sub-goal generating system to be described in this section consists of three modules. Theheart of the system is a neural network with internal and external feedback, called the controlnetwork C. C serves as a program executer. It receives as input a start state, a desired goalstate, and time-varying inputs from the environment. The start and goal states serve as `programnames'. We assume that C already has learned to solve a number of tasks. This means that therealready are various working programs that actually lead from the start states to the goal statesby which the programs are indexed. These programs may have been learned by an algorithm fordynamic networks (as described by the authors mentioned above), or by a recursive application ofthe principle outlined below.A second important module is a static evaluator network E which receives as input a startstate and a goal state, and produces an output that indicates whether there is a program thatleads from the start state to or `close' to the goal state. An output of 1 means that there is anappropriate sub-program, an output of 0 means that there is no appropriate sub-program. Anoutput between 0 and 1 means that there is a sub-program that leads from the start state to a11



state that comes close to the goal, in a certain sense. This measure of closeness has to be givenby some evaluative process that may be adaptive or not, and which will not be speci�ed in detailin this paper. ( It may be based on TD-methods, for instance.) E represents the system's currentmodel of its own capabilities. We assume that E has learned to correctly predict that each ofthe already existing sub-programs works. We also assume that E is able to predict the closenessof an end state of a sub-program to a goal state, given a start state. E can be trained in anexploratory phase during which various combinations of start and goal states are given to theprogram executer.Finally, the system contains a static network which serves as a sub-goal generator. The sub-goal generator receives as input the external start-input to C, and the desired input (the goal) forC at the end of the task.The output of the sub-goal generator is a sub-goal, of course. Like the goal, the sub-goal is anactivation pattern describing the desired external input at the end of some sub-program, whichalso is the start input for another sub-program. We concentrate on the most simple case, namely,the case where solutions for given tasks can be found by generating only one sub-goal. The sub-goal generator should output a sub-goal for which there exists a sub-program leading from thestart state to the sub-goal, and furthermore a sub-program leading from the sub-goal to the goalstate.How does the sub-goal generator, which initially is a tabula rasa, learn to generate appropriatesub-goals? We take two copies of E. The �rst copy sees the description of a start state andthe description of the sub-goal generated by the sub-goal generator. The second copy sees thedescription of the same sub-goal and the description of the goal. The desired output of each of thecopies is 1. Whenever one of the outputs of the copies is below 1, an error gradient is propagatedthrough E's copies down into the sub-goal generator. E (as well as its copies, of course) remainunchanged during this procedure. Only the weights of the sub-goal generator change. For a givenproblem the procedure is iterated until the complete error is zero (corresponding to a solutionobtained by combining the two sub-programs), or until a local minimum is reached (no solutionfound). The gradient descent procedure is used for a search in sub-goal space.In some experiments with a simple environment a robot was taught to solve certain sequentialtasks, like moving from one point to another one. Then more complicated tasks were posed thatdid not have an associated sub-program.The sub-goal generator soon learned to generate appropriate sub-goals for the robot.It should be noted that there also is a di�erent slightly more complex architecture which allowsvector-valued evaluations of the expected e�ects of sub-programs.ReferencesAnderson, C. W. (1986). Learning and Problem Solving with Multilayer Connectionist Systems.PhD thesis, University of Massachusetts, Dept. of Comp. and Inf. Sci.Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Transactions on Systems, Man, andCybernetics, SMC-13:834{846.Gherrity, M. (1989). A learning algorithm for analog fully recurrent neural networks. InIEEE/INNS International Joint Conference on Neural Networks, San Diego, volume 1, pages643{644.Grossberg, S. (1976). Adaptive pattern classi�cation and universal recoding, 1: Parallel develop-ment and coding of neural feature detectors. Biological Cybernetics, 23:187{202.Holland, J. H. (1985). Properties of the bucket brigade. In Proceedings of an InternationalConference on Genetic Algorithms. Hillsdale, NJ.12
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