
LEARNING TO GENERATE SUBGOALS FOR ACTION SEQUENCES

(To appear in O. Simula, editor, Proceedings of the International Conference

on Arti�cial Neural Networks ICANN'91. Elsevier Science Publishers B. V.,

1991. Submitted in January 1991.)

J�urgen Schmidhuber

Institut f�ur Informatik

Technische Universit�at M�unchen

M�unchen, Germany

Abstract: None of the existing learning algorithms for neural networks in

time-varying environments addresses the problem of learning `to divide and

conquer'. It is argued that algorithms based on pure gradient descent or on

adaptive critic methods are not suitable for dynamic control problems with long

time lags between actions and consequences, and that there is a need for al-

gorithms that perform `compositional learning'. This paper �rst describes a

feed-forward system which solves at least one problem associated with composi-

tional learning. The system learns to generate sub-goals. This is done with the

help of `time-bridging' adaptive models that predict the e�ects of the system's

sub-programs. In addition, a recurrent adaptive sub-goal generator for generat-

ing sequences of sub-goals is described. An experiment (obstacle avoidance in a

two-dimensional environment) illustrates the approach.

1 Motivation

Most algorithms for reinforcement learning and adaptive control in non-stationary

environments can be classi�ed into two major categories.

First, there is the approach of `back-propagation through time and through a

frozen model network'. With di�erent degrees of generality it has been pursued

by [3], [5], [4], [7], and [13] in the case where there is external feedback through

a reactive environment.

Second, there is the `adaptive critic' approach, which, again with di�erent

degrees of generality, has been pursued by [6], [14], [2], [1], [9], and [7]. The

`Neural Bucket Brigade Algorithm' [8] also bears relationships to adaptive crit-

ics.

Both the algorithms based on pure gradient descent as well as the `adaptive

critic' algorithms have at least one thing in common: They show signi�cant

drawbacks when the credit assignment process has to bridge long time gaps

between past actions and later consequences.

Both approaches show awkward performance in the case where the learning

system already has learned a lot of action sequences in the past. With both

approaches, credit assignment proceeds `from time slice to time slice' instead

of allowing `jumps through time' on a higher, more abstract level. One could

say that both approaches tend to modify `sub-programs' instead of modifying

the trigger conditions for sub-programs. They do not have an explicit concept

of something like a sub-program. Pure gradient descent methods always con-

sider all past states for credit assignment. Adaptive critics based on `Temporal

Di�erences' (reinforcement comparison methods) or on `Heuristic Dynamic Pro-

gramming' consider only the most recent states for `handing expectations back

into time'. Both methods in general tend to consider the wrong states, they do

not selectively focus on relevant points in time. This is a major reason for slow

performance in large scale applications where there can be long delays between

actions and consequences.

If there is no prior knowledge about typical consequences of certain action

sequences, then a learning system cannot be expected to sensibly reduce the

number of past states that are `critical' for credit assignment. But if it is as-

sumed that the learning system has already learned to perform well on certain

sub-tasks, then an intelligent credit assignment process should make use of avail-

able sub-programs to ease the learning of new tasks.

In fact, the learning system incrementally should use information about the

starting conditions and the e�ects of sub-programs to compose more complicated

sub-programs in a hierarchical fashion.

Compositional learning [10] means �nding solutions for new tasks by se-

quentially combining solutions to older tasks. It means learning to `divide and

conquer'. It means dividing the task of �nding a sequence of actions leading

from a current state to a goal state by decomposing the problem into sub-tasks,

such that already existing sub-programs for the sub-tasks can be combined. It

means to ignore irrelevant details of sub-programs. It means to focus on the

interfaces between sub-programs. Compositions of sub-programs may serve as

sub-programs for even more complicated tasks.

In this paper it is assumed that the `divide and conquer problem' can be

divided and partly conquered by decomposing it into two problems, namely, the

`dividing-problem', and the `conquering-problem'.

The `dividing-problem' is the problem of structuring all kinds of sequences

of events and/or actions into `parts that belong together'. It is the problem of

deciding what a good sub-program is, which its initial conditions are, and when

it ends. The `dividing-problem' has to do with unsupervised learning. It has

been adressed in [10], [11], and [12].

The `conquering-problem' is to select from many available sub-programs and

to combine them in a way that allows to reach a given goal state.

In the sequel the `conquering-problem' will be isolated and studied under the

assumption that the `dividing-problem' is already solved. In contrast to previous

approaches for credit assignment `from time slice to time slice' the approach

described in the next section allows extensive `credit assignment jumps through

time'.

2 Learning to Generate Sub-Goals

2.1 The basic approach

Figure 1 shows the basic components of a system consisting of a number of

interacting neural networks. The heart of the system is a neural network with

internal and external feedback, called the control network C. C serves as a

program executer. While producing a sequence of outputs o

p

(t) during execution

of program p, it receives as input a stationary vector s

p

representing the start

state, a stationary vector g

p

representing a desired goal state, and time-varying

input vectors i

p

(t) from the environment. The concatenation of s

p

and g

p

serves

as a `program name'. We assume that C already has learned to solve a number of

tasks. This means that there already are various working programs that actually

lead from the start states to the goal states by which the programs are indexed.

These programs may have been learned by an algorithm for dynamic networks

(as described by the authors mentioned above), or by a recursive application of

the principle outlined below.

Figure 1 shows a second important module: an adaptive evaluator network

E which receives as input a start state s and a goal state g, and is trained to

produce an output e(s; g) 2 [0:::1] that indicates whether C knows a program

that leads from the start state to or `close' to the goal state. An output of 0

means that there is an appropriate sub-program, an output of 1 means that

there is no such sub-program. An output between 0 and 1 means that there

is a sub-program that leads from the start state to a state that comes close to

the goal in a certain sense. This measure of closeness has to be given by some

evaluative process that may be adaptive or not (it might be an adaptive critic

based on TD-methods, for instance). E represents the system's current model

of its own capabilities. We assume that E has learned to correctly predict that

each of the already existing sub-programs works. We also assume that E is

able to predict the closeness of an end state of a sub-program to a goal state,

given a start state. In the simplest case, E can be trained in an exploratory

phase during which various combinations of start and goal states are given to

the program executer.

Finally, the system contains an adaptive network S which serves as a sub-goal

generator. With a given task p speci�ed by a start/goal pair (s

0

p

; g

p

= s

n+1

p

),

the sub-goal generator receives as input the concatenation of s

0

p

and s

n+1

p

.

The output of the sub-goal generator is a list of n sub-goals s

1

p

; s

2

p

; : : : ; s

n

p

.

Like the goal, a sub-goal s

i

p

is an activation patterns describing the desired

external input at the end of some sub-program, which also is the start input for

the next sub-program. After training the subgoal generator, the list of sub-goals

should satisfy the following condition:

e(s

0

p

; s

1

p

) = e(s

1

p

; s

2

p

) = : : : = e(s

n

p

; s

n+1

p

) = 0:

This means that there exists a sub-program leading from the start state to the

�rst sub-goal, and another subprogram program leading from the �rst sub-goal

to the second sub-goal etc. until the �nal goal is reached.

How does the sub-goal generator, which initially is a tabula rasa, learn to

generate appropriate sub-goals? We take n+ 1 copies of E, and connect them

to the sub-goal generator as shown in �gure 2. The desired output of each

of the copies is 0. For all positive outputs of some copies, error gradients are

propagated through E's copies down into the sub-goal generator. E (as well

as its copies, of course) remains unchanged during this procedure. Only the

weights of the sub-goal generator change according to

4W

T

S

= �

S

@

P

n

i=0

1

2

e(s

i

p

; s

i+1

p

)

2

@W

S

= �

S

n

X

i=0

@s

i

p

@W

S

T

@e(s

i

p

; s

i+1

p

)

@s

i

p

T

e(s

i

p

; s

i+1

p

)

where �

S

is the learning rate of the sub-goal generator, W

S

is its weight

vector, and 4W

S

its increment. For a given problem the procedure is iterated

until the complete error is zero (corresponding to a solution obtained by com-

bining the two sub-programs), or until a local minimum is reached (no solution

found). The gradient descent procedure is used for a search in sub-goal space.

This works because the e�ects of programs are made di�erentiable with respect

to program names (= start/goal combinations). This contrasts the approach

of `back-propagation through time' which makes the e�ects of programs di�er-

entiable with respect to whole action sequences (instead of selectively focussing

on more abstract short representations of action sequences).

2.2 Cascaded sub-goaling with a recurrent sub-goal gen-

erator

Instead of using di�erent sub-goal generators for di�erent numbers of sub-goals,

we can change our basic architecture such that only one sub-goal generator is

necessary for generating arbitrary numbers of sub-goals.

The idea is to take a recurrent sub-goal generator which at a given time step

produces only one sub-goal. At the next time step this sub-goal is fed back to

the start input of the same sub-goal generator (while the goal input remains

constant). To adjust the weights of the sub-goal generator, we can use an

algorithm inspired by the `back-propagation through time'-method: Successive

sub-goals have to be fed into copies of E as shown in �gure 3 (�gure 3 shows

the special case of three sub-goals). Gradient descent requires to change W

S

according to the sum of all gradients computed for the various copies of S. (Of

course, E's weight vector has to remain constant during S' credit assignment

phase.)

While unfolding the S=E system in time, it is not necessary to build real

copies of E and S. It su�ces if during activation spreading each unit in E and

C stores its time-varying activations on a stack, from which they are popped

during back-propagation phase.

2.2.1 How Many Sub-Goals for which Task?

Perhaps the simplest answer to this question is: With a given task, �rst make

a try without any sub-goal. If this does not work, try one sub-goal, then two,

etc.

An extension of the trial-and-error approach would be to train a fourth

network to map start/goal combinations to numbers of sub-goals. The training

signals could be obtained by the trial-and-error-method: For a given problem,

the desired output of the fourth network should be a representation of the

minimal number of necessary sub-goals.

2.3 An Experiment: Learning to Generate Sub-Goals for

Simple Obstacle Avoidance

A simple experiment was conducted in order to demonstrate sub-goal learning.

The programming was done by Rudolf Huber, a student of computer science at

TUM.

A two-dimensional arti�cial `world' covering the unit square was constructed.

An arti�cial `animal' controlled by the program executer was able to move

around in the world. The program executer's output was four-dimensional (one

output unit for each of the directions `north', `south', `east', `west'). At a given

time step, the activation of each output unit (ranging from 0 to 1) was divided by

20, the animal's move was calculated by adding the four corresponding vectors

(thus the maximal stepsize in each direction was 0.05).

In the center of the world there was an obstacle (indicated by the black

square in �gure 4). If the animal hit the obstacle, it had to stop.

Conventional back-propagation (3-layer feedforward nets with logistic acti-

vation functions were employed, no recurrent connections were necessary) was

used to train the program executer to move the animal in a straight line from

randomly chosen points (starts) to other randomly chosen points (goals), until

it hit the obstacle or until the number of time steps exceeded 20. The training

procedure was as follows: At each time step of an action sequence the straight

line leading from the current position to the goal was computed, and the corre-

sponding desired output of the executer served as a training signal. Both start

and goal states were indicated by pairs of coordinates of corresponding points.

The executer had 20 hidden units and experienced 100000 action sequences

during the training phase.

The evaluator was trained by randomly selecting start/goal combinations,

executing them with the program executer, and watching the result. The output

of the evaluator (20 hidden units) was trained to be 1.0 in cases with the �nal

position of the animal being more than 0.1 away from the goal. It was trained

to be 0.0 in cases with the �nal position matching the goal. In between linear

interpolation was used. The evaluator experienced 1000000 examples during

the training phase. Both the executer and the evaluator were trained with a

learning rate of 0.05.

The reason for chosing a comparatively simple environment was to isolate the

sub-goal generation process from e�ects that could be introduced by an adaptive

on-line evaluation function (an adaptive critic, say). For our simple environment

it was easy to de�ne a prewired evaluation function. (Future research will focus

on parallel on-line learning of all components of the system, but, as always, it

is preferable to proceed incrementally from small problems to bigger ones.)

Figure 4 shows the `world' and traces of the animal for some of the many

programs successfully executed by the program executer. (Due to the imperfect

executer, not all of these traces correspond to perfect straight lines.)

In the �nal phase the sub-goal generator (20 hidden units) was trained:

Combinations of start and goals states that did not have a working program

associated with them were given to the sub-goal generation process described

in the last section. With �

S

= 1:0, within about 10 iterations the sub-goal

generator actually found appropriate sub-goals for given start/goal combinations.

See �gure 5 for one out of many examples.

By using more examples and smaller learning rates for training the subgoal

generator, it soon learned to generate appropriate subgoals for a whole variety

of situations.

3 Conclusion

By giving a constructive example it has been demonstrated that so-called `higher-

level symbolic processes' (in our case sub-goal generation) and so-called `sub-

symbolic' neural networks can be made compatible. This may be viewed as one

�rst step towards neural network architectures that bridge the gap between `sub-

symbolic' and `symbolic' computation. A quite di�erent approach to adaptive

sub-goaling has been described recently [12].

References

[1] C. W. Anderson. Learning and Problem Solving with Multilayer Connec-

tionist Systems. PhD thesis, University of Massachusetts, Dept. of Comp.

and Inf. Sci., 1986.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive ele-

ments that can solve di�cult learning control problems. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-13:834{846, 1983.

[3] M. I. Jordan. Supervised learning and systems with excess degrees of free-

dom. Technical Report COINS TR 88-27, Massachusetts Institute of Tech-

nology, 1988.

[4] Nguyen and B. Widrow. The truck backer-upper: An example of self learn-

ing in neural networks. In IEEE/INNS International Joint Conference on

Neural Networks, Washington, D.C., volume 1, pages 357{364, 1989.

[5] T. Robinson and F. Fallside. Dynamic reinforcement driven error propaga-

tion networks with application to game playing. In Proceedings of the 11th

Conference of the Cognitive Science Society, Ann Arbor, pages 836{843,

1989.

[6] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal on Research and Development, 3:210{229, 1959.

[7] J. H. Schmidhuber. Learning algorithms for networks with internal and

external feedback. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and

G. E. Hinton, editors, Proc. of the 1990 Connectionist Models Summer

School, pages 52{61. San Mateo, CA: Morgan Kaufmann, 1990.

[8] J. H. Schmidhuber. A local learning algorithm for dynamic feedforward

and recurrent networks. Connection Science, 1(4):403{412, 1990.

[9] J. H. Schmidhuber. Recurrent networks adjusted by adaptive critics. In

Proc. IEEE/INNS International Joint Conference on Neural Networks,

Washington, D. C., volume 1, pages 719{722, 1990.

[10] J. H. Schmidhuber. Towards compositional learning with dynamic neural

networks. Technical Report FKI-129-90, Institut f�ur Informatik, Technische

Universit�at M�unchen, 1990.

[11] J. H. Schmidhuber. Adaptive decomposition of time. In O. Simula, editor,

Proceedings of the International Conference on Arti�cial Neural Networks

ICANN 91. Elsevier Science Publishers B.V., 1991.

[12] J. H. Schmidhuber. A neural sequence chunker. Technical Report FKI,

Institut f�ur Informatik, Technische Universit�at M�unchen, 1991.

[13] J. H. Schmidhuber. Reinforcement learning in markovian and non-

markovian environments. In D. Touretzky and D. S. Lippman, editors,

Advances in Neural Information Processing Systems 3, in press. San Ma-

teo, CA: Morgan Kaufmann, 1991.

[14] P. J. Werbos. Consistency of HDP applied to a simple reinforcement learn-

ing problem. Neural Networks, 2:179{189, 1990.

