
LEARNING TEMPORARY VARIABLE BINDINGWITH DYNAMIC LINKSIn Proc. International Joint Conference on Neural Networks, Singapore, volume 3, pages 2075-2079. IEEE, 1991.J�urgen Schmidhuber �Department of Computer ScienceUniversity of ColoradoCampus Box 430, Boulder, CO 80309, USAAbstractWhen connectionism was young some people have claimed that neural nets are not capable ofvariable binding. Others, however, have argued for the potential usefulness of `dynamic links' (e.g. [8])for variable binding. With the novel method described in this paper it is possible to train a systemwith time-varying inputs and outputs to use its dynamic links for temporarily binding variable contentsto variable names (or `�llers' to `slots') as long as it is necessary for solving a particular task. Variouslearning methods for non-stationary environments are derived. Two experiments with unknown timedelays illustrate the approach. A by-product of this work is the demonstration that a system consistingof two feed-forward networks can solve tasks that only dynamic recurrent networks were supposed tosolve.
1 INTRODUCTIONThis paper describes a novel gradient-based system for processing sequential time-varying inputs andoutputs. The system consists of two feed-forward nets which learn to deal with temporal sequences byusing dynamic links: The �rst net learns to produce context dependent weight changes for the second netwhose weights may vary very quickly. The second net serves as a short term memory: Its purpose is totemporarily bind values to variables as long as necessary for solving particular tasks.A training sequence p with np discrete time steps (called an episode) consists of np ordered pairs(xp(t); dp(t)) 2 Rn � Rm, 0 < t � np. At time t of episode p a learning system receives xp(t) as an inputand produces the output yp(t). The goal of the learning system is to minimizeÊ = 12Xp Xt Xi (dpi (t)� ypi (t))2;where dpi (t) is the ith of the m components of dp(t), and ypi (t) is the ith of the m components of yp(t).In general this task requires to memorize input events in short term memory. Previous approaches tosolving this problem employed gradient-based dynamic recurrent nets (e.g. [3], [2], [10]). One potentialadvantage of the alternative gradient-based approach described in the next section over the recurrentnet algorithms is the following: It does not necessarily occupy full-
edged units (experiencing some sortof feedback) for storing information over time. A simple weight may be su�cient for storing temporal�This work has been done at Technische Universit�at M�unchen, Germany1

information. Since with most networks there are many more weights than units, this property representsa potential for storage e�ciency.For convenience, in what follows we will drop the indices p which stand for various episodes: Thegradient of the error sum over all episodes is equal to the sum of the corresponding gradients. Thus we areinterested in a method for minimizing the error observed during one particular episode�E =Xt E(t);where E(t) = 12Pi(di(t)�yi(t))2. (In the practical on-line version of the algorithm below we will not haveany episode boundaries at all; all episodes will `blend into each other' [10].)2 THE ALGORITHMThe basic idea is to use a slowly learning feed-forward network S (with a set of randomly initialized weightsWS) whose input at time t is the vector x(t) and whose output is transformed into immediate (potentiallyvery signi�cant) weight changes for a second network F with dynamic links. F 's input at time t is x(t),its m-dimensional output is y(t), and the set of its weight variables is WF . F serves as a short termmemory: At di�erent time steps, the same input event may be processed in di�erent ways depending onthe time-varying state of WF .At a given time, WF may be interpreted as a temporary binding pattern: F 's current input pattern maybe interpreted as the (distributed) name of a variable or of a set of variables; F 's corresponding outputpattern may be interpreted as the current value(s) of this variable (or set of variables). How new inputs areprocessed depends on the current binding pattern which may have been caused by previous input events.For initialization reasons we introduce an additional time step 0 at the beginning of an episode. Attime step 0 each weight variable wab 2WF of a directed connection from unit a to unit b is set to 2wab(0)(to be computed by S' outputs as described below). At time step t > 0, the wab(t�1) are used to computethe output of F according to the usual activation spreading rules for back-propagation networks (e.g. [9]).After this, each weight variable wab 2WF is altered according towab(t) = �(wab(t� 1);2wab(t)); (1)where � (e.g. a sum-and-squash function) is di�erentiable with respect to all its parameters and where theactivations of S' output units (again computed according to the usual activation spreading rules for back-propagation networks) serve to compute 2wab(t) by a mechanism to be speci�ed below (we will considertwo alternatives). 2wab(t) is S' contribution to the modi�cation of wab at time step t.Equation (1) is essentially identical to M�oller and Thrun's equation (1) in [1]. Unlike [1], however, thecurrent paper derives an exact gradient descent algorithm for time-varying inputs and outputs for this kindof architecture.For all weights wij 2 WS (from unit i to unit j) we are interested in the increment4wij = �� @ �E@wij = ��Xt>0 @E(t)@wij = ��Xt>0 Xwab2WF @E(t)@wab(t� 1) @wab(t� 1)@wij : (2)At each time step t > 0, the factor �ab(t) = @E(t)@wab(t� 1)can be computed by conventional back-propagation (e.g. [9]). For t > 0 we obtain the recursion@wab(t)@wij = @�(wab(t� 1);2wab(t))@wab(t� 1) @wab(t� 1)@wij + @�(wab(t� 1);2wab(t))@2wab(t) @2wab(t)@wij :

We can employ a method similar to the one described in [3] and [10]: For each wab 2 WF and eachwij 2 WS we introduce a variable pabij (initialized to zero at the beginning of an episode) which can beupdated at each time step t > 0:pabij (t) = @�(wab(t� 1);2wab(t))@wab(t� 1) pabij (t� 1) + @�(wab(t� 1);2wab(t))@2wab(t) @2wab(t)@wij : (3)@2wab(t)@wij depends on the interface between S and F . With a given interface (two possibilities are givenbelow) an appropriate back-propagation procedure for each wab 2 WF gives us @2wab(t)@wij for all wij 2 WS .After having updated the pabij -variables, for solving (2) we compute@E(t)@wij = Xwab2WF �ab(t)pabij (t� 1):A simple interface between S and F would provide one output unit sab 2 S for each weight variablewab 2WF , where the output unit's activation sab(t) at time t � 0 would de�ne2wab(t) = sab(t): (4)A disadvantage of (4) is that the number of output units in S grows in proportion to the number ofweights in F . An alternative is the following: Provide an output unit in S for each unit in F from whichat least one `dynamic link' is originating. Call the set of these output units FROM . Provide an outputunit in S for each unit in F to which at least one `dynamic link' is leading. Call the set of these outputunits TO. For each weight variable wab 2 WF we now have a unit sa 2 FROM and a unit sb 2 TO. Attime t, de�ne 2wab(t) = g(sa(t); sb(t)), where g is di�erentiable with respect to all its parameters. As arepresentative example we will focus on the special case of g being the multiplication operator:2wab(t) = sa(t)sb(t): (5)Here the dynamic links in F are manipulated by the outputs of S in a Hebb-like manner, assuming that �is just a sum-and-squash function as employed in the experiments described below.(4) and (5) di�er in the way that error signals are obtained at S' output units: If (4) is employed, thenwe use conventional back-propagation to compute @sab(t)@wij in (3). If (5) is employed, note that@2wab(t)@wij = sb(t)@sa(t)@wij + sa(t)@sb(t)@wij : (6)Conventional back-propagation can be used to compute @sa(t)@wij for each output unit a and for all wij .The results can be kept in j WS j �c variables (here c is the number of units in FROM [TO). This makesit easy to solve (6) in a second pass.The algorithm is local in time, its update-complexity per time step is O(j WF jj WS j). But, it is notlocal in space (see [6] for a de�nition of locality in space and time).2.1 On-Line Versus O�-Line LearningThe o�-line version of the algorithm would wait for the end of an episode to compute the �nal change ofWS as the sum of all changes computed at each time step. The on-line version changes WS at every timestep, assuming that � is small enough to avoid instabilities [10]. An interesting property of the on-lineversion is that we do not have to specify episode boundaries (`all episodes blend into each other' [10]).

2.2 Unfolding in timeAn alternative of the method above would be to employ a method similar to the `unfolding in time'-algorithm for recurrent nets (e.g. [4]). It is convenient to keep an activation stack for each unit in S. Ateach time step of an episode, some unit's new activation should be pushed onto its stack. S' output unitsshould have an additional stack for storing sums of error signals received over time. With both (4) and (5),at each time step we essentially propagate the error signals obtained at S' output units down to the inputunits. The �nal weight change of WS is proportional to the sum of all contributions of all errors observedduring one episode. The complete gradient for S is computed at the end of each episode by successivelypopping of the stacks of error signals and activations analogously to the `unfolding in time'-algorithm forrecurrent networks. A disadvantage of the method is that it is not local in space.3 EXPERIMENTSThe following experiments were conducted by Klaus Bergner, a student at TUM.1. F had to learn to behave like a
ip-
op as described in [10]. F saw a continuous stream of inputevents. The task was to switch on the single output unit whenever an event `B' occurred for the �rst timeafter the last event `A' had happened. In all other cases the output unit had to be switched o�.One di�culty with the problem was that there could be arbitrary time lags between relevant events. Anadditional di�culty was that no information about `episode boundaries' was given (the on-line method wasemployed). The activations of the networks were never reset. Thus, activations caused by events from past`episodes' could have a disturbing in
uence on activations and weights appearing during later episodes.Both F and S had the topology of standard feedforward perceptrons. F had 3 input units for 3 possibleevents `A', `B', and `C'. Events were represented in a local manner: At a given time, a randomly chosennormal input unit was activated with a value of 1.0, the others were de-activated. F 's output was one-dimensional. S also had 3 input units for the possible events `A', `B', and `C', as well as 3 output units, onefor each dynaimc link of F . None of the networks needed any hidden units for this task. The activationfunction of all output units was the identity function. The weight-modi�cation function (1) for the dynamiclinks was given by �(wab(t� 1);2wab(t)) = (1 + e�T (wab(t�1)+2wab(t)�0:5))�1: (7)Here T determines the maximal steepness of the logistic function used to bound the dynamic links between0 and 1.The weights of S were randomly initialized between -0.1 and 0.1. The task was considered to be solvedif for 100 time steps in a row F 's error did not exceed 0.05. With dynamic link changes based on (4),T = 10 and � = 1:0 the system learned to solve the task within 300 time steps. With dynamic link changesbased on the FROM=TO-architecture and (5), T = 10 and � = 0:5 the system learned to solve the taskwithin 800 time steps.After learning, at a given time step the current activation of F 's output unit could be interpreted asthe current value of a variable which memorized whether there has been an A since the last occurrenceof B. One could say that the input unit for B-events evolved to become the address of this variable: Byactivating the B-input unit and watching the result at F 's output it was possible to tell whether there hasbeen an A since the last occurrence of B or not.2. In the simple experiment described next the system learned to bind a variable for storing the positionof a car to time-varying parking slots.Neither F nor S needed any hidden units for this task. The activation function of all output unitswas the identity function. All inputs to the system were binary, and so were F 's desired outputs. Fhad one input unit which stood for the name of the variable WHERE-IS-MY-CAR?. In addition, F hadthree output units for the names of three possible parking slots P1, P2, and P3 (the possible contents ofWHERE-IS-MY-CAR?). S had three output units, one for each dynamic link, and six input units (here we

note that S need not always have the same input as F). Three of the 6 input units were called the parking-slot-detectors I1, I2, I3, the remaining three were randomly activated with binary values at each time step.These random activations were interpreted as distracting time varying inputs from the environment of acar owner whose life looks like this: He drives his car around for zero or more time steps (at each timestep the probability that he stops driving is 0.25). Then he parks his car in one of three possible slots. Henotices the name Ii of the parking slot (this takes him one time step, during which input unit Ii is brie
yactivated, while the other slot-detectors remain switched o�). Then he makes business outside the car forzero or more time steps during which all parking-slot-detectors are switched o� again (at each time stepthe probability that he �nishes business is 0.25). Then he remembers where he has parked his car, goes tothe corresponding slot, enters his car and starts driving again etc.Our system focussed on the problem of memorizing the position of the car. It was trained by activatingthe WHERE-IS-MY-CAR?-unit at randomly chosen time steps in the life of the car owner and by providingthe desired output for F (which was the activation of the unit corresponding to the current slot Pi, as longas the car stood in one of the three slots).The weights of S were randomly initialized between -0.1 and 0.1. The task was considered to be solved iffor 100 time steps in a row F 's error did not exceed 0.05. The on-line version (without episode boundaries)was employed. With the weight-modi�cation function (7), dynamic link changes based on (4), T = 10 and� = 0:02 the system learned to solve the task within 6000 time steps. As it was expected, S learned to`bind' parking slot units to the WHERE-IS-MY-CAR?-unit by means of strong temporary dynamic links.4 CONCLUDING REMARKSThe system described above is a special case of a more general class of adaptive systems (which alsoincludes conventional recurrent nets) which employ some parameterized memory function (di�erentiablewith respect to all its parameters) for changing a vector-valued memory structure and which employ someparameterized retrieval function (again di�erentiable with respect to all its parameters) for processing thecontent of the memory structure and the current input.Such systems can work because of the existence of the chain rule. Results as above (as well as other novelapplications of the chain rule [7][5]) indicate that there may be additional interesting (yet undiscovered)ways of applying the chain rule for temporal credit assignment in adaptive systems.5 ACKNOWLEDGEMENTSThanks to Klaus Bergner for conducting the experiments.References[1] K. M�oller and S. Thrun. Task modularization by network modulation. In J. Rault, editor, Proceedingsof Neuro-Nimes '90, pages 419{432, November 1990.[2] B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Computation,1(2):263{269, 1989.[3] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. TechnicalReport CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by errorpropagation. In Parallel Distributed Processing, volume 1, pages 318{362. MIT Press, 1986.[5] J. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem.Dissertation, Institut f�ur Informatik, Technische Universit�at M�unchen, 1990.

[6] J. Schmidhuber. Learning algorithms for networks with internal and external feedback. In D. S.Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990 ConnectionistModels Summer School, pages 52{61. San Mateo, CA: Morgan Kaufmann, 1990.[7] J. Schmidhuber. Learning to generate sub-goals for action sequences. In T. Kohonen, K. M�akisara,O. Simula, and J. Kangas, editors, Arti�cial Neural Networks, pages 967{972. Elsevier Science Pub-lishers B.V., North-Holland, 1991.[8] C. v.d. Malsburg. Technical Report 81-2, Abteilung f�ur Neurobiologie, Max-Planck Institut f�ur Bio-physik und Chemie, G�ottingen, 1981.[9] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.PhD thesis, Harvard University, 1974.[10] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learning algorithm.Connection Science, 1(1):87{111, 1989.

