
LEARNING FACTORIAL CODES BYPREDICTABILITY MINIMIZATION(Neural Computation, 4(6):863{879, 1992)J�urgen SchmidhuberDepartment of Computer ScienceUniversity of ColoradoCampus Box 430, Boulder, CO 80309, USAyirgan@cs.colorado.eduAbstractI propose a novel general principle for unsupervised learning of distributed non-redundant internalrepresentations of input patterns. The principle is based on two opposing forces. For each represen-tational unit there is an adaptive predictor which tries to predict the unit from the remaining units.In turn, each unit tries to react to the environment such that it minimizes its predictability. This en-courages each unit to �lter `abstract concepts' out of the environmental input such that these conceptsare statistically independent of those upon which the other units focus. I discuss various simple yetpotentially powerful implementations of the principle which aim at �nding binary factorial codes (Bar-low et al., 1989), i.e. codes where the probability of the occurrence of a particular input is simply theproduct of the probabilities of the corresponding code symbols. Such codes are potentially relevant for(1) segmentation tasks, (2) speeding up supervised learning, (3) novelty detection. Methods for �ndingfactorial codes automatically implement Occam's razor for �nding codes using a minimal number ofunits. Unlike previous methods the novel principle has a potential for removing not only linear but alsonon-linear output redundancy. Illustrative experiments show that algorithms based on the principle ofpredictability minimization are practically feasible. The �nal part of this paper describes an entirelylocal algorithm that has a potential for learning unique representations of extended input sequences.1 INTRODUCTIONConsider a perceptual system being exposed to an unknown environment. The system has some kindof internal `state' to represent external events. We consider the general case where the state is an n-dimensional distributed representation yp (a vector of real-valued or binary code symbols) created inresponse to the p-th input vector xp.An ambitious and potentially powerful objective of unsupervised learning is to represent the environmentsuch that the various parts of the representation are statistically independent of each other. In other words,we would like to have methods for decomposing the environment into entities that belong together and donot have much to do with other entities1 (`learning to divide and conquer'). This notion is captured bythe concept of `discovering factorial codes' (Barlow et al., 1989).The aim of `factorial coding' is the following: Given the statistical properties of the inputs from theenvironment, �nd invertible internal representations such that the occurrence of the i-th code symbol yi isindependent of any of the others. Such representations are called factorial because they have a remarkableand unique property: The probability of the occurrence of a particular input is simply the product of theprobabilities of the corresponding code symbols.1The G-Max algorithm (Pearlmutter and Hinton, 1986) aims at a related objective: It tries to discover features thataccount for input redundancy. G-Max, however, is designed for single output units only.1



Among the advantages of factorial codes are as follows:(1) `Optimal' input segmentation. An e�cient method for discovering mutually independent featureswould have consequences for many segmentation tasks. For instance, consider the case where the inputsare given by retinal images of various objects with mutually independent positions. At any given time, theactivations of nearby `pixels' caused by the same object are statistically correlated. Therefore a factorialcode would not represent them by di�erent parts of the internal storage. Instead, a factorial code couldbe created by �nding input transformations corresponding to the abstract concept of `object position':Positions of di�erent objects should be represented by di�erent code symbols.(2) Speeding up supervised learning. As Becker (1991) observes, if a representation with uncorrelatedcomponents is used as the input to a higher-level linear supervised learning network, then the Hessian ofthe supervised network's error function is diagonal, thus allowing e�cient methods for speeding up learning(note that statistical independence is a stronger criterion than the mere absence of statistical correlation).Non-linear networks ought to pro�t as well.(3) Occam's razor. Any method for �nding factorial codes automatically implements Occam's razorwhich prefers simpler models over more complex ones, where simplicity is de�ned as the number of storagecells necessary to represent the environment in a factorial fashion. If there are more storage cells thannecessary to implement a factorial code, then the independence criterion is met by letting all super
uousunits emit constant values in response to all inputs. This implies storage e�ciency, as well as a potentialfor better generalization capabilities.(4) Novelty detection. As Barlow, Kaushal, and Mitchison (1989) point out , with factorial codes thedetection of dependence between two symbols indicates hitherto undiscovered associations.Barlow et al. do not present an e�cient general method for �nding factorial codes (but they propose afew sequential `non-neural' heuristic methods). Existing `neural' methods for decreasing output redundancy(e.g. Linsker (1988), Zemel and Hinton (1991), Oja (1989), Sanger (1989), F�oldi�ak (1990), Rubner andSchulten (1990), Silva and Almeida (1991)) are restricted to the linear case and do not aim at the ambitiousgeneral goal of statistical independence. In addition, some of these methods require Gaussian assumptionsabout the input and output signals, as well as the explicit calculation of the derivative of the determinantof the output covariance matrix (Shannon, 1948).The main contribution of this paper is a simple but general `neural' architecture (plus the appropriateobjective functions) for �nding factorial codes.I would not be surprised, however, if the general problem of �nding factorial codes turned out to beNP-hard. In that case, gradient-based procedures as described herein could not be expected to always �ndfactorial codes. The paper at hand focuses on the novel basic principle without trying to provide solutionsfor the old problem of local maxima. Also, the purpose of this report is not to compare the performanceof algorithms based on the novel principle to the performance of existing sequential `non-neural' heuristicmethods (Barlow et. al, 1989). The toy-experiments described below are merely for illustrative purposes.2 FORMULATING THE PROBLEMLet us assume n di�erent adaptive input processing representational modules which see a single input at atime. The output of each module can be implemented as a set of neuron-like units. Throughout this paperI focus on the simplest case: One output unit (also called a representational unit) per module. The i-thmodule (or unit) produces an output value ypi 2 [0; 1] in response to the current external input vector xp.In what follows, P (A) denotes the probability of event A, P (A j B) denotes the conditional probability ofevent A given B, �yi denotes the mean of the activations of unit i, and E denotes the expectation operator.The methods described in this paper are primarily devoted to �nding binary or at least quasi-binarycodes. Each code symbol participating in a quasi-binary code is either 0 or 1 in response to a given inputpattern or emits a constant value in response to every input pattern. Therefore, binary codes are a specialcase of quasi-binary codes. Most of our quasi-binary codes will be created by starting out from real-valuedcodes.Recall that there are three criteria that a binary factorial code must ful�ll:1. The binary criterion: Each code-symbol should be either 1 or 0 in response to a given input pattern.2. The invertibility criterion: It must be possible to reconstruct the input from the code. In cases where



the environment is too complex (or too noisy) to be fully coded into limited internal representations (i.e., inthe case of binary codes where there are more than 2dim(y) input patterns), we want to relax the invertibilitycriterion. In that case, we still want the internal representations to convey maximal information about theinputs. The focus of this paper, however, is on situations like the ones studied in (Barlow et. al, 1989):Noise-free environments and su�cient representational capacity in the representational units. In the lattercase, reversibility is equivalent to Infomax �a la Linsker (1988).3. The independence criterion: The occurrence of each code symbol ought to be independent of allother code symbols. If the binary criterion is ful�lled, then we may rewrite the independence criterion byrequiring that E(yi j fyk; k 6= ig) = P (yi = 1 j fyk; k 6= ig) = P (yi = 1) = E(yi):The latter condition implies that yi does not depend on fyk; k 6= ig. In other words, E(yi j fyk; k 6= ig)is computable from a constant. Note that with real-valued codes the criterion E(yi j fyk; k 6= ig) = E(yi)does not necessarily imply that the yk are independent.3 THE BASIC PRINCIPLE AND ARCHITECTUREFor each representational unit i there corresponds an adaptive predictor Pi, which, in general, is non-linear.With the p-th input pattern xp, Pi's input is the concatenation of the outputs ypk of all units k 6= i. Pi'sone-dimensional output P pi is trained to equal the expectation E(yi j fypk; k 6= ig). It is well-known thatthis can be achieved by letting Pi minimize2EPi = 12Xp (P pi � ypi )2: (1)With the help of the n predictors one can de�ne various objective functions for the representationalmodules to enforce the 3 criteria listed above (see section 4 and section 5). Common to these methods isthat all units are trained to take on values that minimize mutual predictability via the predictors: Each unittries to extract features from the environment such that no combination of n�1 units conveys informationabout the remaining unit. In other words, no combination of n� 1 units should allow better predictions ofthe remaining unit than a prediction based on a constant. I call this the principle of intra-representationalpredictability minimization or, somewhat shorter, the principle of predictability minimization.A major novel aspect of this principle which makes it di�erent from previous work is that it usesadaptive sub-modules (the predictors) to de�ne the objective functions for the subjects of interest, namely,the representational units themselves.Following the principle of predictability minimization, each representational module tries to use thestatistical properties of the environment to protect itself from being predictable. This forces each represen-tational module to focus on aspects of the environment that are independent of environmental propertiesupon which the other modules focus.4 OBJECTIVE FUNCTIONS FOR THE THREE CRITERIASections 4.1, 4.2, 4.3 provide objective functions for the three criteria. Sections 4.4, 4.5, 4.6 describevarious combinations of these objective functions. Section 4.7 hints at a parameter tuning problem. A wayto overcome it (my preferred method for implementing predictability minimization) is presented in section5.4.1 AN ERROR FUNCTION FOR THE INDEPENDENCE CRITERIONFor the sake of argument, let us assume that at all times each Pi is as good as it can be, meaning that Pialways predicts the expectation of yi conditioned on the outputs of the other modules, E(yi j fypk; k 6= ig).2Cross-entropy is another objective function for achieving the same goal. In the experiments, however, the conventionalmean squared error based function (1) led to satisfactory results.



(In practice, the predictors will have to be retrained continually.) In the case of quasi-binary codes thefollowing objective function H is zero if the independence criterion is met:H = 12Xi Xp [P pi � �yi]2 : (2)This term for mutual predictability minimization aims at making the outputs independent { similar tothe goal of a term for maximizing the determinant of the covariance matrix under Gaussian assumptions(Linsker, 1988). The latter method, however, tends to remove only linear predictability, while the formercan remove non-linear predictability as well (even without Gaussian assumptions), due to possible non-linearities learnable by non-linear predictors.4.2 AN OBJECTIVE FUNCTION FOR THE BINARY CRITERIONA well-known objective function V for enforcing binary codes is given byV = 12Xi Xp ( �yi � ypi )2:Maximizing this term encourages each unit to take on binary values. The contribution of each unit i ismaximized if E(yi) is as close to 0.5 as possible. This implies maximal entropy for unit i under the binaryconstraint, i.e., i wants to become a binary unit that conveys maximal information about its input.4.3 AN ERROR FUNCTION FOR THE INVERTIBILITY CRITERIONThe following is a simple, well-known method for enforcing invertibility: With pattern p, a reconstructormodule receives the concatenation of all ypi as an input and is trained to emit as an output the reconstructionzp of the external input xp. The basic structure is an auto encoder. The auto encoder's objective function,to be minimized, is de�ned as I = 12Xp (zp � xp)T (zp � xp): (3)4.4 COMBINING ERROR TERMSA straight forward way of combining V , I, and H is to maximize the total objective functionT = �V � �I � 
H; (4)where �; �; 
 are positive constants determining the relative weighting of the opposing error terms. Maxi-mization of (4) tends to force the representational units to take on binary values that maximize indepen-dence in addition to minimizing the reconstruction error3.4.5 REMOVING THE VARIANCE TERM: REAL-VALUED CODESIf with a speci�c application we want to make use of the representational capacity of real-valued codes andif we are satis�ed with decorrelated (instead of independent) representational units, then we might removethe V -Term from (4) by setting � = 0. In this case, we want to minimize�I + 
H:Note that with real-valued units the invertibility criterion theoretically can be achieved with a single unit.In that case, the independence criterion would force all other units to take on constant values in response toall input patterns. In noisy environments, however, it may turn out to be advantageous to code the inputinto more than one representational unit. This has already been noted by Linsker (1988) in the context ofhis Infomax principle.3One might think of using Lagrangian multipliers (instead of arbitrary �; �; 
) to rigidly enforce constraints such asindependence. However, in order to use them the constraints would have to be simultaneously satis�able. Except for specialinput distributions this seems to be unlikely (see also section 4.7).



4.6 REMOVING THE GLOBAL INVERTIBILITY TERMTheoretically it is su�cient to do without the auto encoder and set � = 0 in (4). In this case, we simplywant to maximize T = �V � 
H:The H-Term counteracts the possibility that di�erent (near-) binary units convey the same informationabout the input. Setting � = 0 means to maximize information locally for each unit while at the sametime trying to force each unit to focus on di�erent pieces of information from the environment. Unlikewith auto-associators, there is no global invertibility term.Note that this method seemingly works diametrically opposite to the sequential, heuristic, non-neuralmethods described by Barlow et al. (1989), where the sum of bit entropies is minimized instead of beingmaximized. How can both methods pursue the same goal? One may put it this way: Among all invertiblecodes, Barlow et. al. try to �nd those closest to something similar to the independence criterion. Incontrast, among all codes ful�lling the independence criterion (ensured by su�ciently strong 
), the abovemethods try to �nd the invertible ones.4.7 A DISADVANTAGE OF THE ABOVE METHODSNote that a factorial code causes non-maximal V and therefore non-maximal T for all methods with � > 0except for rare cases (such as if there are 2n equally probable di�erent input patterns). This means thatwith a given problem there is some need for parameter tuning of the relative weighting factors, due to thepossibility that the various constraints may not be satis�able simultaneously (see the footnote of section4.4). The method in the next section avoids this necessity for parameter tuning by replacing the term forvariance maximization by a predictor-based term for conditioned variance maximization.5 LOCAL CONDITIONED VARIANCE MAXIMIZATIONThis is the author's preferred method for implementing the principle of predictability minimization. It doesnot su�er from the parameter tuning problems involved with the V -term above. It is extremely straightforward and reveals a striking symmetry between opposing forces.Let us de�ne VC = 12Xi Xp (P pi � ypi )2: (5)Recall that P pi is supposed to be equal to E(yi j fypk; k 6= ig), and note that (5) is formally equivalent tothe sum of the objective functions EPi of the predictors (equation (1)).Like in section 4.6 we drop the global invertibility term and rede�ne the total objective function T tobe maximized by the representational modules asT = VC � 
H: (6)Conjecture. I conjecture that if there exists a quasi-binary factorial code for a given pattern ensemble,then among all possible (real-valued or binary) codes T is maximized with a quasi-binary factorial code,even if 
 = 0.If this conjecture is true, then we may forget about the H-term in (9) and simply write T = VC . Inthis case, all representational units simply try to maximize the same function that the predictors try tominimize, namely, VC . In other words, this generates a symmetry between two forces that �ght each other{ one trying to predict, the other one trying to escape the predictions.The conjecture remains unproven for the general case. The long version of this paper, however, math-ematically justi�es the conjecture for certain special cases and provides some intuitive justi�cation for thegeneral case (Schmidhuber, 1991). In addition, algorithms based solely on VC-maximization performedwell in the experiments to be described below.



6 `NEURAL' IMPLEMENTATIONIn a realistic application, of course, it is implausible to assume that the errors of all Pi are minimal at alltimes. After having modi�ed the functions computing the internal representations, the Pi must be trainedfor some time to assure that they can adapt to the new situation.Each of the n predictors, the n representational modules, and the potentially available auto-associatorcan be implemented as a feed-forward back-propagation network (e.g. Werbos, 1974). There are twoalternating passes { one for minimizing prediction errors, the other one for maximizing T . Here is ano�-line version based on successive `epochs' (presentations of the whole ensemble of training patterns):PASS 1 (minimizing prediction errors):Repeat for a `su�cient' number of training epochs:1. For all p:1.1. For all i: Compute ypi .1.2. For all i: Compute P pi .2. Change each weight w of each Pi according to4w = ��P @EPi@w ;where �P is a positive constant learning rate.PASS 2 (minimizing predictability):2. For all p:2.1. For all i: Compute ypi .2.2. For all i: Compute P pi .2.3. If an auto-associator is involved, compute zp.2. Change each weight v of each representational module according to4v = ��R @@v T;where �R is a positive constant learning rate. The weights of the Pi donot change during this pass, but all other weights do change. Note thatPASS 2 requires back-propagation of error signals through the predictors(without changing their weights) and then through their n�1 input units(which are the output units of the representational modules) down to theweights of the representational modules.The o�-line version above is perhaps not as appealing as a more local procedure where computing timeis distributed evenly between PASS 2 and PASS 1:An on-line version. An extreme on-line version does not sweep through the whole training ensemblebefore changing weights. Instead it processes the same single input pattern xp (randomly chosen accordingto the input distribution) in both PASS 1 and PASS 2 and immediately changes the weights of all involvednetworks simultaneously, according to the contribution of xp to the respective objective functions.Simultaneous updating of the representations and the predictors, however, introduces a potential forinstabilities. Both the predictors and the representational modules perform gradient descent (or gradientascent) in changing functions. Given a particular implementation of the basic principle, experiments areneeded to �nd out how much on-line interaction is permittable. With the toy-experiments reported below,on-line learning did not cause major problems.It should be noted that if T = VC =PiEPi (section 5), then with a given input pattern we may computethe gradient of VC with respect to both the predictor weights and the weights of the representation modulesin a single pass. After this we may simply perform gradient descent in the predictor weights and gradientascent in the remaining weights (it is just a matter of 
ipping signs). This was actually done in theexperiments.



Local maxima. Like all gradient ascent procedures, the method is subject to the problem of localmaxima. A standard method for dealing with local maxima is to repeat the above algorithm with di�erentweight initializations (using a �xed number nE of training epochs for each repetition) until a (near-)factorial code is found. Each repetition corresponds to a local search around the point in weight spacede�ned by the current weight initialization.Shared hidden units. It should be mentioned that some or all of the representational modules may sharehidden units. The same holds for the predictors. Predictors sharing hidden units, however, will have to beupdated sequentially: No representational unit may be used to predict its own activity.7 EXPERIMENTSAll the illustrative experiments described below are based on T as de�ned in section 5, with 
 = 0. In otherwords, the representational units try to maximize the same objective function VC that the predictors tryto minimize. All representational modules and predictors were implemented as 3-layer back-propagationnetworks. All hidden and output units used logistic activation functions and were connected to a bias-unitwith constant activation. Parameters such as learning rates and number of hidden units were not chosento optimize performance { there was no systematic attempt to improve learning speed.Daniel Prelinger and Je� Rink implemented on-line and o�-line systems based on section 6 (see detailsin (Schmidhuber, 1991) and (Prelinger, 1992)). The purpose of this section, however, is not to compareon-line and o�-line versions but to demonstrate that both can lead to satisfactory results.With the o�-line version, the su�cient number of consecutive epochs in PASS 1 was taken to be 5.With the on-line system, at any given time, the same single input pattern was used in both PASS 1and PASS 2. The learning rates of all predictors were 10 times higher than the learning rates of the repre-sentational modules. An additional modi�cation for escaping certain cases of local minima was introduced(see Schmidhuber (1991) and Prelinger (1992) ).The signi�cance of non-linearities. With many experiments it turned out that the inclusion of hiddenunits led to better performance. Assume that dim(y) = 3 and that there is an XOR-like relationshipbetween the activations of the �rst two representational units and the third one. A linear predictor couldnot possibly detect this relationship. Therefore the representational modules could not be encouraged toremove the redundancy.The next subsections list some selected experiments with both the on-line and the o�-line method. Inwhat follows, the term `local input representation' means that there are dim(x) di�erent binary inputs,each with only one non-zero bit. The term `distributed input representation' means that there are 2dim(x)di�erent binary inputs. With all experiments, a representational unit was considered to be binary ifthe absolute di�erence between its possible activations and either the maximal or the minimal activationpermitted by its activation function never exceeded 0.05.Local maxima. With some of the experiments, multiples of 10,000 training epochs were employed. Inmany cases, however, the representational units settled into a stable code long before the training phasewas over (even if the code corresponded to a sub-optimal solution). The repetitive method based on varyingweight initializations (section 6) sometimes allowed shorter overall learning times (using values nE of theorder of a few 1000). A high number of repetitions increases the probability that a factorial code is found.Again it should be emphasized, however, that learning speed and methods for dealing with local maximaare not the main objective of this paper.7.1 UNIFORMLY DISTRIBUTED INPUTSWith the experiments described in this subsection there are 2dim(y) di�erent uniformly distributed inputpatterns. This means that the desired factorial codes are the full binary codes. In the case of a factorialcode all predictors emit 0.5 in response to every input pattern (this makes all conditioned expectationsequal to the unconditioned expectations).Experiment 1: o�-line, dim(y) = 2, dim(x) = 4, local input representation, 3 hidden units per predictor,4 hidden units shared among the representational modules. 10 test runs with 20,000 epochs for therepresentational modules were conducted. In 8 cases this was su�cient to �nd a binary (factorial) code.



Experiment 2: on-line, dim(y) = 2, dim(x) = 2, distributed input representation, 2 hidden units perpredictor, 4 hidden units shared among the representational modules. 10 test runs were conducted. Lessthan 3,000 pattern presentations (equivalent to ca. 700 epochs) were always su�cient to �nd a binaryfactorial code.Experiment 3: o�-line, dim(y) = 4, dim(x) = 16, local input representation (16 patterns), 3 hiddenunits per predictor, 16 hidden units shared among the representational modules. 10 test runs with 20,000epochs for the representational modules were conducted. In 1 case the system found an invertible factorialcode. In 4 cases it created a near-factorial code with only 15 di�erent output patterns in response to the16 input patterns. In 3 cases it created only 13 di�erent ouput patterns. In 2 cases it created only 12di�erent ouput patterns.Experiment 4: on-line, dim(y) = 4, dim(x) = 4, distributed input representation (16 patterns), 6hidden units per predictor, 8 hidden units shared among the representational modules. 10 test runswere conducted. In all cases but one the system found a factorial code within less than 4,000 patternpresentations (corresponding to less than 300 epochs).7.2 OCCAM'S RAZOR AT WORKThe experiments in this section are meant to verify the e�ectiveness of Occam's razor, mentioned in theintroduction. It is interesting to note that with non-factorial codes predictability minimization prefers toreduce the number of used units instead of minimizing the sum of bit-entropies �a la Barlow et al. (1989).This can be seen by looking at an example described by Mitchison in the appendix of Barlow et al.'s paper.This example shows a case where the minimal sum of bit-entropies can be achieved with an expansivelocal coding of the input. Local representations, however, maximize mutual predictability: With localrepresentations, each unit can always be predicted from all the others. Predictability minimization tries toavoid this by creating non-local, non-expansive codings.Experiment 1: o�-line, dim(y) = 3, dim(x) = 4, local input representation, 3 hidden units per predictor,4 hidden units shared among the representational modules. 10 test runs with 10,000 epochs for therepresentational modules were conducted. In 7 cases the system found a binary factorial code: In the end,one of the output units always emitted a constant value. In the remaining 3 cases, the code was at leastbinary and invertible.Experiment 2: o�-line, dim(y) = 4, dim(x) = 4, local input representation, 3 hidden units per predictor,4 hidden units shared among the representational modules. 10 test runs with 10,000 epochs for therepresentational modules were conducted. In 5 cases the system found a binary factorial code: In the end,two of the output units always emitted a constant value. In the remaining cases, the code did not use theminimal number of output units but was at least binary and invertible.Experiment 3: on-line, dim(y) = 4, dim(x) = 2, distributed input representation, 2 hidden units perpredictor, 4 hidden units shared among the representational modules. 10 test runs with 250,000 patternpresentations were conducted. This was su�cient to always �nd a quasi-binary factorial code: In the end,two of the output units always emitted a constant value. In 7 out of 10 cases, less than 100,000 patternpresentations (corresponding to 25,000 epochs) were necessary.7.3 NON-UNIFORMLY DISTRIBUTED INPUTSThe input ensemble considered in this subsection consists of four di�erent patterns denoted by xa, xb, xc,and xd, respectively. The probabilities of the patterns wereP (xa) = 19 ; P (xb) = 29 ; P (xc) = 29 ; P (xd) = 49 :This ensemble allows for binary factorial codes, one of which is denoted by the followingcode F : ya = (1; 1)T , yb = (0; 1)T , yc = (1; 0)T , yd = (0; 0)T .With code F , the total objective function VC becomes V FC = 2. A non-factorial but invertible(information-preserving) code is given bycode B: ya = (0; 1)T , yb = (0; 0)T , yc = (1; 0)T , yd = (1; 1)T .With code B, VC = 1910 , which is only 110 below V FC . This already indicates that certain local maximaof the internal state's objective function may be very close to the global maxima.



Experiment 1: o�-line, dim(y) = 2, dim(x) = 2, distributed input representation with xa = (0; 0)T ,xb = (0; 1)T , xc = (1; 0)T , xd = (1; 1)T , 1 hidden unit per predictor, 2 hidden units shared among therepresentational modules. 10 test runs with 2,000 epochs for the representational modules were conducted.Here one epoch consisted of the presentation of 9 patterns { xa was presented once, xb was presented twice,xc was presented twice, xd was presented four times.In 7 cases, the system found a global maximum corresponding to a factorial code. In the remainingcases the code was not invertible.Experiment 2 (Occam's Razor): Like experiment 1, but with dim(y) = 3. In all but one of the 10 testruns the system developed a factorial code (including one unused unit). In the remaining test run the codewas at least invertible.With local input representation and dim(x) = 4, dim(y) = 2, the success rate dropped below 50 percent.With dim(y) = 3, the system usually found invertible but rarely factorial codes. This re
ects the fact thatwith certain input ensembles there is a trade-o� between redundancy and invertibility: Super
uous degreesof freedom among the representational units may increase the probability that an information-preservingcode is found, while at the same time decreasing the probability of �nding an optimal factorial code.8 PREDICTABILITY MINIMIZATION AND TIMELet us now consider the case of input sequences. This section describes an entirely local method designedto �nd unambiguous, non-redundant, reduced sequence descriptions.The initial state vector yp(0) is the same for all sequences p. The input at time t > 0 of sequence p isthe concatenation xp(t) � yp(t � 1) of the input xp(t) and the last internal state yp(t � 1). The output isyp(t) itself.We minimize and maximize essentially the same objective functions as described above. That is, forthe i-th module which now needs recurrent connections to itself and the other modules, there is again anadaptive predictor Pi which need not be recurrent. Pi's input at time t is the concatenation of the outputsypk(t) of all units k 6= i. Pi's one-dimensional output P pi (t) is trained to equal the expectation of the outputyi, given the outputs of the other units, E(yi j fyk(t); k 6= ig), by de�ning Pi's error function as12Xp Xt (P pi (t)� ypi (t))2:In addition, all units are trained to take on values that maximize�E =Xt T (t);where T (t) is de�ned analogously to the respective stationary cases.The only way a unit can protect itself from being predictable from the other units is to store propertiesof the input sequences that are independent of aspects stored by the other units. In other words, thismethod will tend to throw away redundant temporal information much as the systems in (Schmidhuber,1992a) and (Schmidhuber, 1992b) . For computing weight changes, each module looks back only to thelast time step. In the on-line case, this implies an entirely local learning algorithm. Still, even when thereare long time lags, the algorithm theoretically may learn unique representations of extended sequences { ascan be seen by induction over the length of the longest training sequence:1. y can learn unique representations of the beginnings of all sequences.2. Suppose all sequences and sub-sequences with length < k are uniquely represented in y. Then, bylooking back only one time step at a time, y can learn unique representations of all sub-sequences withlength k.The argument neglects all on-line e�ects and possible cross-talk.On-line variants of the system described above were implemented by Daniel Prelinger. Preliminaryexperiments were conducted with the resulting recurrent systems. These experiments demonstrated thatthere are entirely local sequence learning methods that allow for learning unique representations of allsubsequences of non-trivial sequences (like a sequence consisting of 8 consecutive presentations of the same



input pattern represented by the activation of a single input unit). Best results were obtained by introduc-ing additional modi�cations (like other error functions than mean squared error for the representationalmodules). A future paper will elaborate on sequence learning by predictability minimization.9 CONCLUDING REMARKS, OUTLOOKAlthough gradient methods based on predictability minimization can not always be expected to �nd fac-torial codes { due to local minima and the possibility that the problem of �nding factorial codes may beNP-hard { they have a potential for removing kinds of redundancy that previous linear methods were notable to remove. This holds even if the conjecture in section 5 ultimately proves to be false.In many realistic cases, however, approximations of non-redundant codes should be satisfactory. Itremains to be seen whether predictability minimization can be useful to �nd nearly non-redundant repre-sentations of real-world inputs. In ongoing research it is intended to apply the methods described herein toproblems of unsupervised image segmentation (in the case of multiple objects), as well as to unsupervisedsequence segmentation.There is a relationship of predictability minimization to more conventional `competitive' learningschemes: In a certain sense, units compete for representing certain `abstract' transformations of the en-vironmental input. The competition is not based on a physical `neighbourhood' criterion but on mutualpredictability. Unlike with most previous schemes based on `winner-take-all' networks, output represen-tations formed by predictability minimization may have multiple `winners', as long as they stand forindependent features extracted from the environment.One might speculate about whether the brain uses a similar principle based on `representational neurons'trying to escape the predictions of `predictor neurons'. Since the principle allows for entirely local sequencelearning algorithms (in space and time), it might be biologically more plausible than methods such as`back-propagation through time' etc.Predictability minimization also might be useful in cases where di�erent representational modules seedi�erent inputs. For instance, if a binary feature of one input `patch' is predictable from features extractedfrom neighbouring `patches', then representations formed by predictability minimization would tend to notuse additional storage cells for representing the feature.The paper at hand adopts a general viewpoint on predictability minimization by focussing on the generalcase of non-linear nets. In some cases, however, it might be desireable to restrict the computational powerof the representational modules and/or the predictors by making them linear or semi-linear. For instance,a hierarchical system with successive stages of computationally limited modules may be useful for re
ectingthe hierarchical structure of certain environments.Among the additional topics covered by the longer version of this report (Schmidhuber, 1991) are:General remarks on unsupervised learning and information-theoretic aspects, a `neural' approach to �ndingbinary factorial codes without using predictors, implementations of predictability minimization using binarystochastic units, the relationship of predictability minimization to recent sequence chunking methods, andcombinations of goal-directed learning and unsupervised predictability minimization.10 ACKNOWLEDGEMENTSThanks to Daniel Prelinger and Je� Rink for implementing and testing the algorithms. Thanks to MikeMozer, Daniel Prelinger, Radford Neal, Luis Almeida, Peter Dayan, Sue Becker, Rich Zemel, and ClaytonMcMillan for valuable comments and suggestions which helped to improve the paper. This research wassupported by NSF PYI award IRI{9058450, grant 90{21 from the James S. McDonnell Foundation, andDEC external research grant 1250 to Michael C. Mozer.References[1] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison. Finding minimum entropy codes. Neural Compu-tation, 1:412{423, 1989.



[2] S. Becker. Unsupervised learning procedures for neural networks. International Journal of NeuralSystems, 2(1 & 2):17{33, 1991.[3] F. F�oldi�ak. Forming sparse representations by local anti-hebbian learning. Biological Cybernetics,64:165{170, 1990.[4] R. Linsker. Self-organization in a perceptual network. IEEE Computer, 21:105{117, 1988.[5] E. Oja. Neural networks, principal components, and subspaces. International Journal of NeuralSystems, 1(1):61{68, 1989.[6] B. A. Pearlmutter and G. E. Hinton. G-maximization: An unsupervised learning procedure fordiscovering regularities. In J. S. Denker, editor, Neural Networks for Computing: American Instituteof Physics Conference Proceedings 151, volume 2, pages 333{338, 1986.[7] D. Prelinger. Diploma thesis, in preparation, 1992. Institut f�ur Informatik, Technische Universit�atM�unchen.[8] J. Rubner and K. Schulten. Development of feature detectors by self-organization: A network model.Biological Cybernetics, 62:193{199, 1990.[9] T. D. Sanger. An optimality principle for unsupervised learning. In D. S. Touretzky, editor, Advancesin Neural Information Processing Systems 1, pages 11{19. San Mateo, CA: Morgan Kaufmann, 1989.[10] J. H. Schmidhuber. Learning factorial codes by predictability minimization. Technical Report CU-CS-565-91, Dept. of Comp. Sci., University of Colorado at Boulder, December 1991.[11] J. H. Schmidhuber. Learning complex, extended sequences using the principle of history compression.Neural Computation, 4(2): 1992.[12] J. H. Schmidhuber. Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J.Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing Systems 4, to appear.San Mateo, CA: Morgan Kaufmann, 1992.[13] C. E. Shannon. A mathematical theory of communication (part III). Bell System Technical Journal,XXVII:623{656, 1948.[14] F. M. Silva and L. B. Almeida. A distributed decorrelation algorithm. In Erol Gelenbe, editor, NeuralNetworks, Advances and Applications. North-Holland, 1991. To appear.[15] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.PhD thesis, Harvard University, 1974.[16] R. S. Zemel and G. E. Hinton. Discovering viewpoint-invariant relationships that characterize ob-jects. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural InformationProcessing Systems 3, pages 299{305. San Mateo, CA: Morgan Kaufmann, 1991.


