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Abstract

Prediction problems are among the most common learning problems for neural networks (e.g. in the
context of time series prediction, control, etc.). With many such problems, however, perfect prediction
is inherently impossible. For such cases we present novel unsupervised systems that learn to classify
patterns such that the classifications are predictable while still being as specific as possible. The
approach can be related to the IMAX method of Hinton, Becker and Zemel (1989, 1991). Experiments
include Becker’s and Hinton’s stereo task, which can be solved more readily by our system.



1 MOTIVATION AND BASIC APPROACH

Many neural net systems (e.g. for control, time series prediction, etc.) rely on adaptive submodules for
learning to predict patterns from other patterns. Perfect prediction, however, is often inherently impossible.
In this paper we study the problem of finding pattern classifications such that the classes are predictable,
while still being as specific as possible.

To grasp the basic idea, let us discuss several examples.

Example 1: Hearing the first two words of a sentence “Henrietta eats ...” allows you to infer that the
third word probably indicates something to eat but you cannot tell what. The class of the third word is
predictable from the previous words — the particular instance of the class is not. The class “food” is not
only predictable but also non-trivial and specific in the sense that it does not include everything — “John”,
for instance, is not an instance of “food”.

The problem is to classify patterns from a set of training examples such that the classes are both
predictable and not too general. A general solution to this problem would be useful for discovering higher
level structure in sentences generated by unknown grammars, for instance. Another application would be
the unsupervised classification of different pattern instances belonging to the same class, as will be seen in
the next example.

Ezample 2 (stereo task; due to Becker and Hinton, 1989): There are two binary images called the ‘left’
image and the ‘right’ image. Each image consists of two ‘strips’ — each strip being a binary vector. The
right image is purely random. The left image is generated from the right image by choosing, at random,
a single global shift to be applied to each strip of the right image. An input pattern is generated by
concatenating a strip from the right image with the corresponding strip from the left image. “So the input
can be interpreted as a fronto-parallel surface at an integer depth. The only local property that is invariant
across space is the depth (i.e. shift).” (Becker and Hinton, 1989). With a given pair of different input
patterns, the task is to extract a non-trivial classification of whatever is common to both patterns — which
happens to be the stereoscopic shift.

Example 1 is an instance of the so-called asymmetric case: There we are interested in a predictable
non-trivial classification of one pattern (the third word), given some other patterns (the previous words).
Example 2 is an instance of the so-called symmeiric case: There we are interested in the non-trivial common
properties of two patterns from the same class.

In its simplest form, our basic approach to unsupervised discovery of predictable classifications is based
on two neural networks called 77 and 7>. Both can be implemented as standard back-prop networks
(Werbos, 1974)(LeCun, 1985)(Parker, 1985)(Rumelhart et al., 1986). With a given pair of input patterns,
T1 sees the first pattern, T, sees the second pattern. Let us first focus on the asymmetric case. For instance,
with the example 1 above 77 may see a representation of the words ”"Henrietta eats”, while 75 may see a
representation of the word ”vegetables”. T3’s task is to classify its input. 77’s task is not to predict T3’s
raw environmental input but to predict T3’s output instead.

Both networks have ¢ output units. Let p € {1,...,m} index the input patterns. T produces as an
output the classification 3% € [0,...,1]? in response to an input vector #”2. T}’s output in response to
its input vector P! is the prediction y?! € [0,...,1]? of the current classification y?2 emitted by Ts.

We have two conflicting goals which in general are not simultaneously satisfiable: (A) All predictions
y?! should match the corresponding classifications y?2. (B) The y?% should be discriminative — different
inputs 272 should lead to different classifications y?:2.

We express the trade-off between (A) and (B) by means of two opposing costs.

(A) is expressed by an error term M (for ‘Match’):
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Here ||v|| denotes the Euclidean norm.

(B) is enforced by an additional error term D, (for ¢ Discrimination’) to be minimized by 7> only. D, will
be designed to encourage significant Euclidean distance between classifications of different input patterns.
Dy can be defined in more than one reasonable way. The next section will list four alternative possibilities
with mutual advantages and disadvantages. These alternatives include (a) a novel method for constrained



variance maximization, (b) auto-encoders, and (c) a recent technique called ”predictability minimization”
(Schmidhuber, 1992).
The total error to be minimized by T3 is

eM + (1 — €) Dy, (2)

where 0 < € < 1 determines the relative weighting of the opposing error terms. In the asymmetric case,
the total error to be minimized by 77 is just

eM. (3)

The error functions are minimized by gradient descent. This forces the predictions and classifications to
be more like each other, while at the same time forcing the classifications not to be too general but to tell
something about the current input. The procedure is unsupervised in the sense that no teacher is required
to tell T, how to classify its inputs.

With the symmetric case (see example 2 above), both Ti and T, are naturally treated in a symmetric
manner. They share the goal of uniquely representing as many of their input patterns as possible — under
the constraint of emitting equal (and therefore mutually predictable) classifications in response to a pair of
input patterns. Such classifications represent whatever abstract properties are common to both patterns of
a typical pair. For handling such symmetric tasks in a natural manner, we only slightly modify 73’s error
function for the asymmetric case, by introducing an extra ‘discriminating’ error term D; for 77. Now both
Ti,1 = 1,2 minimize

eM + (1 —e€)Dy, (4)

where alternative possibilities for defining the D; will be defined in the next section. Figure 1 shows a
system based on (4) and a particular implementation of D; (to be explained in section 2.4).

The assumption behind our basic approach is that a prediction that closely (in the Euclidean sense)
matches the corresponding classification is a nearly accurate prediction. Likewise, two very similar (in
the Euclidean sense) classifications emitted by a particular network are assumed to have very similar
‘meaning’. It should be mentioned that, in theory, even the slightest differences between classifications of
different patterns are sufficient to convey all (maximal) Shannon information about the patterns (assuming
noise-free data). But then close matches between predictions and classifications could not necessarily be
interpreted as accurate predictions. The alternative designs of D; (to be described below), however, will
have the tendency to emphasize differences between different classifications by increasing the Euclidean
distance between them (sometimes under certain constraints, see section 2). There is another reason why
this is a reasonable thing to do: In a typical application, a classifier will function as a pre-processor for some
higher-level network. We usually do not want higher-level input representations with different ‘meaning’
to be separated by tiny Euclidean distance.

Wezight sharing. If both T; and T are supposed to provide the same outputs in response to the same
inputs (this holds for the stereo task but does not hold in the general case) then we need only one set of
weights for both classifiers. This reduces the number of free parameters (this may improve generalization
performance).

Outline. The current section motivated and explained our basic approach. Section 2 presents various
instances of the basic approach (based on various possibilities for defining D;). Section 3 mentions previous
related work. Section 4 presents illustrative experiments and experimentally demonstrates advantages of
our approach.

2 ALTERNATIVE DEFINITIONS OF D,

This section lists four different approaches for defining D;, the term which enforces non-trivial discriminative
classifications. Section 2.1 presents a novel method that encourages locally represented classes (like with
winner-take-all networks). The advantage of this method is that the class representations are orthogonal
to each other and easy to understand, its disadvantage is the low representation capacity. In contrast, the
remaining methods can generate distributed class representations. Section 2.2 defines D; with the help of
auto-encoders. One advantage of this straight-forward method is that it is easy to implement. Section
2.3 mentions the Infomax approach for defining D; and explains why we do not pursue this approach.



Section 2.4 finally defines D; by the recent method for predictability minimization (Schmidhuber, 1992).
An advantage of this method is its potential for creating distributed class representations with statistically
independent components.

2.1 MAXIMIZING CONSTRAINED OUTPUT VARIANCE

With this alternative for defining D;, the goal is to obtain local class representations. One advantage of
local class representations is that they are orthogonal to each other a well as easy to understand. Their
disadvantage is the low representation capacity.

We write . \ .
Dy = —522(95”1 —?Jil)z+52[——§il]2 (5)
P [
and minimize D; subject to the constraint

Vp:Eyf’lzl. (6)

i

Here, as well as throughout the remainder of this paper, subscripts of symbols denoting vectors denote
vector components: v; denotes the i-th element of some vector v. A is a positive constant, and ¥’ denotes
the mean of the i-th output unit of 7;. It is possible to show that the first term on the right hand side of
(5) is maximized subject to (6) if each input pattern is locally represented (just like with winner-take-all
networks) by exactly one corner of the g-dimensional hypercube spanned by the possible output vectors,
if there are sufficient output units (Prelinger, 1992) 1. Maximizing the second negative term encourages
each local class representation to become active in response to only %—th of all possible input patterns.

Constraint (6) is enforced by setting
) uPd
P =
(3 - J?
>iup’

where uP is the activation vector (in response to zP7) of a g-dimensional layer of hidden units of T; which
can be considered as its unnormalized output layer.

This novel method is easy to implement — it achieves an effect similar to the one of the recent entropy-
based method by Bridle and MacKay (1992).

2.2 AUTO-ENCODERS

Another simple alternative for defining Dj is based on auto-encoders. Auto-encoders are easy to implement
and allow us to obtain distributed class representations (as opposed to local representations, see section
2.1). With pattern p and classifier 7} a reconstructor module A; (another back-prop network) receives y?'!
as an input. The combination of 7; and A; functions as an auto-encoder. The auto-encoder is trained to
emit the reconstruction h?! of Tj’s external input #!, thus forcing y®' to tell something about P!, D is

defined as 1
D= g Mt e )

2.3 INFOMAX

Following Linsker’s Infomax approach (Linsker, 1988), we might think of defining —D; explicitly as the
mutual information between the inputs and the outputs of ;.
We did not use Infomax methods in our experiments for the following reasons:

1Simply maximizing the variance of the output units without obeying constraint (6) will not necessarily maximize the
number of different classifications. Example: Consider a set of four different four-dimensional input patterns 1000, 0100,
0010, 0001. Suppose the classifier maps the first two input patterns to the four-dimensional output pattern 1100 and the
other two to 0011. This will yield a variance of 4. A ‘more discriminative’ response would map each pattern to itself, but this
will yield a lower variance of 3.



(a) There is no efficient and general method for maximizing mutual information. (b) With our basic
approach from section 1, Infomax makes sense only in situations where it automatically enforces high vari-
ance of the outputs of the T} (possibly under certain constraints). This holds for the simplifying Gaussian
noise models studied by Linsker, but it does not hold for the general case. (c) Even under appropriate
Gaussian assumptions, with more than one-dimensional representations, Infomax implies maximization of
functions of the determinant DET of the covariance matrix of the output activations (Shannon, 1948). In
a small application, Linsker explicitly calculated DET’s derivatives. In general, however, this is clumsy.

2.4 PREDICTABILITY MINIMIZATION

Schmidhuber (1992) shows how D; can be defined with the help of intra-representational adaptive predictors
that try to predict each output unit of some 7} from its remaining output units, while each output unit in
turn tries to extract properties of the environment that allow it to escape predictability. This was called
the principle of predictability minimization. This principle encourages each output unit of 7; to represent
environmental properties that are statistically independent from environmental properties represented by
the remaining output units. The procedure aims at generating binary ‘factorial codes’ (Barlow et al., 1989).
It is our preferred method, because (unlike the methods used by Linsker (1988), Becker and Hinton (1989),
and Zemel and Hinton (1991) ) it has a potential for removing even non-linear statistical dependencies?
among the output units of some classifier.

Let us define
Dy=—3 3 (8" =), (8)

where the sf’l are the outputs of S¢, the i-th additional so-called intra-representational predictor network
of T; (one such additional predictor network is required for each output unit of 73). Sli is trained to predict
¥ from {42, k # i}

To encourage even distributions in output space, we slightly modify D; by introducing a term similar
to the one in equation (5), subsection 2.1 and obtain

D= =3 Y -+ 5 Y (05— ai) ©)

3 PREVIOUS WORK

Becker and Hinton (1989) solve symmetric problems (like the one of example 2, see section 1) by maximizing
the mutual information between the outputs of 71 and T3 (IMAX). This corresponds to the notion of finding
mutually predictable yet informative input transformations.

Note that our approach does not only enforce mutual predictability but also equality of y®! and y*:2.
This does not at all affect the generality of the approach. Note that one could introduce additional
‘predictor networks’ — one for learning to predict y*? from y®! and another one for learning to predict
y?! from y?2. Then one could design error functions enforcing mutual predictability (instead of using the
essentially equivalent error function M used in this paper). However, this would not increase the power
of the approach but would only introduce unnecessary additional complexity. In fact, one advantage of
our simple approach is that it makes it trivial to decide whether the outputs of both networks essentially
represent the same thing.

One variation of the IMAX approach assumes that 77 and T3 have single binary probabilistic output
units. In another variation, 77 and T, have single real-valued output units. The latter case, however,
requires certain (not always realistic) Gaussian assumptions about the input and output signals (see also
section 2.3 on Infomax).

In the case of vector-valued output representations, Zemel and Hinton (1991) again make simplifying
Gaussian assumptions and maximize functions of the determinant D of the ¢ X g-covariance matrices
(DETMAX) of the output activations (Shannon, 1948) (see again section 2.3). In addition, DETMAX

2Steve Nowlan has described an alternative non-predictor based approach for finding non-redundant codes (Nowlan, 1988).



can remove only linear redundancy among the output units. (It should be mentioned, however, that with
Zemel’s and Hinton’s approach the outputs may be non-linear functions of the inputs).
The following section includes an experiment that compares IMAX to our approach.

4 ILLUSTRATIVE EXPERIMENTS

All networks used below were trained by back-propagation (Werbos, 1974) (LeCun, 1985) (Parker, 1985)
(Rumelhart et al., 1986) — in all cases we used the activation dynamics of (Rumelhart et al., 1986), as well
as ‘on-line’ learning: Weight changes took place immediately after each presentation of some randomly
chosen input pattern. Approximations of mean values 3 were updated by the formula

i — 0.95¢ + 0.054},

where 9 is the approximation of g, after observing the current input pattern y'. In the case of local output
representations (section 2.1) §} was initially set to %, otherwise ¢! was initially set to 0.5.

4.1 FINDING PREDICTABLE LOCAL CLASS REPRESENTATIONS

Motivated by example 1, section 1, a simple ‘language generator’ emitting ‘sentences’ consisting of two
symbols was defined. Each alternative in the following grammar occurred with equal probability. S is
the start symbol, A, B, C, D are non-terminals, and a, a', a?, b, b%, b2, ¢, ¢!, ¢?, d, d*, d?, are terminal
symbols.

S — A|B|C|D, A — aa'|aa®, B — bb'|bb%:, C — cctlec?, D — dd*|dd>.

During training, 7} saw the first symbol of some randomly chosen sentence (out of 8 possible equally
probable sentences), while T saw the second symbol. 7) needed 2 input units for its 4 possible input
symbols represented as 2-dimensional binary vectors. T3 needed 3 input units for its 8 possible input
symbols represented as 3-dimensional binary vectors.

Both T and 73 had 4 hidden units and 6 output units, two more than necessary to locally represent
the 4 predictable classes

{a17a2}7 {bl,b2}7 {c17c2}7 {dl,dz}'

10 test runs with ¢ = 0.25, A = 1, predictability maximization according to equations (2) and (3),
constrained variance maximization according to (5) and (6), a learning rate of 1.0, and 15000 pattern
presentations were conducted. No attempt was made to optimize learning speed. All experiments were
successful — in the end T, emitted 4 different localized representations in response to members of the 4
predictable classes, while the two superfluous output units always remained switched off.

4.2 FINDING PREDICTABLE DISTRIBUTED REPRESENTATIONS

The following task is meant to test the system’s capability for extracting a distributed representation of
more than one non-trivial binary feature from patterns belonging to the same class.

The task. Two properties of a 4-dimensional binary input vector are the truth values of the following
expressions:

1) There are more ‘ones’ on the ‘right’ side of the input vector than on the ‘left’ side.

2) The input vector consists of more ‘ones’ than ‘zeros’.

Input vectors with equal numbers of ones and zeros as well as input vectors with equal numbers of ones
on both sides are excluded. This leaves 2 input vectors for each possible feature combination.

During one learning cycle, a randomly chosen legal input vector was presented to 77, another input
vector randomly chosen among those with the feature combination of the first one was presented to Ty. T3
and T» were constrained to have the same weights (see section 1) — both had 4 input units, 4 hidden units
and 2 output units.

With predictability maximization according to (4), D; defined by an auto-encoder (equation (7)), the
reconstructor modules (see section 2.2) having 4 hidden units, and € = 0.1, ten test runs involving 15,000
pattern presentations were conducted. The learning rates of all networks were 0.5. The classifiers always



came up with a distributed representation of the 4 possible feature combinations — the final output responses
were near-binary with an error margin of 0.1.

With D; being defined by modified predictability minimization (equation (9)), simultaneous training
of both predictors and classifiers, 2 hidden units per predictor, 4 hidden units per classifier, and with
A =1, e = 0.5, ten test runs involving 10,000 pattern presentations were conducted. The classifier
learning rates were 0.5, the predictor learning rates were 1.0. Again, the system always extracted the two
features.

4.3 STEREO TASK

The stereo experiment described in (Becker and Hinton, 1989) was used to compare IMAX to our approach.

Details of the task. There are two binary images called the ‘left’ image and the ‘right’ image. Each
image consists of 2 ‘strips’ — each strip being a binary input vector with 4 components. There are two
classifiers with single output units and non-overlapping inputs: Each classifier has 8 input units and ‘sees’
an 8-dimensional input vector consisting of a strip from the right image and a corresponding strip from
the left image generated as follows: The right image is purely random. The left image is generated from
the right image by choosing, at random, a single global shift to be applied to each strip of the right image.
The shift can be either one bit to the right or one bit to the left — ‘overflow bits’ generated by shifting
some bit of a strip taken from the right image beyond the strip boundaries reappear on the opposite side
of the corresponding ‘shifted’ strip of the left image (‘wraparound’). Ambiguous shifts are excluded. The
input may be interpreted as a fronto-parallel surface at an integer depth. The only common non-trivial
property of both classifier inputs is the depth (i.e. the shift) (Becker and Hinton, 1989).

To implement D;, we used predictability minimezation according to section 2.4. Since the feature to be
extracted is one-dimensional, only one predictor per classifier was necessary to predict the single output
unit from a bias unit with constant activation.

The intra-representational predictors and the classifiers learned simultaneously. Each of the two classi-
fiers 77 and 73 had 12 hidden units — the predictors had none. The learning rate of the predictors was 1.0,
the classifier’s learning rate was 0.5. Parameter settings were € = 0.5, A = 1.0. The task was considered
to be solved (the shift was considered to be extracted) if (1) the outputs of both classifiers were always
equal (with an error margin of 0.1) and (2) each classifier emitted different binary outputs (again with an
error margin of 0.1) in response to input patterns with different shifts. This corresponds to 1 bit of mutual
information between the outputs and the shift.

With a first experiment, we employed a separate set of weights for each classifier. With ten test
runs involving 100,000 training patterns and predictability maximization according to (4), D; defined by
modified intra-representational predictability minimization (equation (9)), the classifiers always learned to
extract the shift.

Becker and Hinton report that their system (based on binary probabilistic units) was able to extract the
shift only if IMAX was applied in successive layer by layer ‘bootstrap’ stages. In addition, they heuristically
tuned the learning rate during learning. Finally they introduced a maximal weight change for each weight
during gradient ascent.

In contrast, our method (based on continuous-valued units) does not rely on successive training stages,
bootstrap learning, or learning rate adjustments. Once the learning phase is started, no external mechanism
influences the behavior of the system. The performance of our system, however, is comparable to the
performance of Becker’s and Hinton’s bootstrapped system.

With a second experiment, we used only one set of classifier weights shared by both classifiers (this
leads to a reduction of free parameters, as mentioned at the end of section 1). The result was a significant
decrease of learning time — with ten test runs the system needed between 20,000 and 50,000 training
patterns to learn to extract the shift.

Again, no systematic attempt was made to optimize learning speed.

5 CONCLUSION

In contrast to IMAX, our methods (1) tend to be simpler (e.g., do not require sequential layer by layer
‘bootstrapping’ or learning rate adjustments — the stereo task can be solved more readily by our system),



(2) do not require Gaussian assumptions about the input or output signals, (3) do not require something
like DETMAZX, (4) partly have (unlike DETMAX) a potential for creating classifications with statistically
independent components (this holds for D; defined according to section 2.4).

The experiments above show that the alternative methods of section 2 can be useful techniques for im-
plementing the Dj terms in (4) to obtain predictable informative input transformations. More experiments
are needed, however, to become clear about their mutual advantages and disadvantages. It also remains
to be seen how well the methods of this paper scale to larger problems.
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Figure 1: Two networks try to transform their different inputs to obtain the same representation. Each
network is encouraged to tell something about its input by means of the recent technique for ‘predictability
minimization’. This technique requires additional intra-representational predictors (8 of them shown above)
for detecting redundancies among the output units of the networks. Alternatives are provided in the text.



