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Abstract

Our work concerns the effects of strong correlations of ultracold atoms in optical lat-
tices in three different scenarios. First, we analyze the influence of dissipative processes on
the superfluid–Mott insulator transition in the Bose–Hubbard model, observing a shift of
the well-known phase transition. In a second setup, atoms are trapped in state-dependent
lattices; we show that any asymmetry in the contact interaction produces a form of corre-
lated hopping, which results in a pair superfluid phase with interesting correlation prop-
erties that differentiate it from an ordinary atomic Bose–Einstein condensate. Finally,
we investigate a two-species Bose–Hubbard model including a conversion term, which
can be implemented experimentally through a Feshbach resonance. We are particularly
interested in the exotic incompressible, yet superfluid “super-Mott” phase.
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A short overview

Light controlling particles — to some, it could seem to be a magic trick in which
the thin strings cannot be seen. This interplay is certainly awe-inspiring but not magic.
Physics, and its ever-blooming and never-ending path of achievements and developments,
pulls the strings behind the veil. Today, our understanding of nature is used as a tool
to trap, then cool, store and manipulate neutral atoms in intensity patterns created via
laser arrangements [78].

As some particles are cooled to unimaginably low temperatures∗, their characteristic
thermal de Broglie wavelength† exceeds their mean interparticle separation, thus favoring
the particles to occupy a single ground state and form a Bose–Einstein condensate (BEC)
[15, 35]. A BEC is a “social” phenomenon in which the population of this ground state
becomes macroscopic, based on the quantum statistics of bosons (particles with zero or
integer spin). Since its prediction in the mid-twenties, other phenomena such as superflu-
idity in liquid helium [71, 106], high-temperature superconductivity in some materials [69]
and condensation of pions in neutron stars [52], have been considered as manifestations of
bosonic condensation. The capability of trapping and cooling atoms with light forms the
basis for the experimental observation of BEC, achieved for the first time in dilute alkali
atomic gases in 1995 [6, 25, 17]. Since then, the opportunity to produce these degenerate
bosonic (and fermionic) quantum gases, combined with the ability to trap them, has pro-
moted exciting developments in fields ranging from atom and condensed matter physics
[58, 14] to quantum information processing [22]. As of yet, we can use simple dipole traps
[95], microtraps [32], surface microtraps [21] and optical lattices [94, 5, 12], that is plenty
of choice of configurations to fulfill our wishes.

Ultracold neutral atoms trapped in optical lattices are a wonderful tool to study many-
body physics and strong correlation effects. One of the great advantages of these systems
is that generally, the physical behavior of the atoms is perfectly described by a simple
underlying lattice Hamiltonian, a description ultimately known as the Hubbard model
[58, 49]. The Hubbard model allows us to use these artificial crystals as analogues to
real systems in condensed matter physics. For instance, quantum magnetism can be
studied through the implementation of spin Hamiltonians [31, 44, 61], and the origin
of high-temperature superconductivity is believed to be explained by the physics within
the Hubbard Hamiltonian [69, 55] (an idea that has been experimentally pursued by the
cooling of fermionic atoms to study Cooper pairing and the BCS‡ to BEC transition

∗Temperatures going down to the nK regime (∼ −273◦C!).
†Wave-like property of matter appearing in the wave-particle duality.
‡Fermions forming loose pairs like Cooper pairs in BCS theory, the microscopic theory of supercon-
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[89, 125, 16]). Furthermore, these quantum simulators have enabled the prediction of
novel and exotic many-body quantum phases, as well as new physical phenomena (e.g.
quantum Hall effect with bosons [84], lattice gauge theories [60, 82]).

The present study uses these artificial crystals of light to create and investigate fun-
damental quantum phases of bosonic many-body systems. The focus is threefold: atoms
undergoing dissipation as an open quantum system, atoms with correlated hopping, and
atoms and molecules coupled through a Feshbach resonance.

Atoms in a noisy environment Cold atoms in an optical lattice are coupled to a large
reservoir (also described by the Bose–Hubbard model) to investigate how the occurrence
of dissipation modifies the system’s phase diagram. Our interest lies on the new features
arising in the quantum state of an otherwise conservative system when it undergoes a
superfluid–Mott insulator phase transition in the presence of dissipation. Related studies
have been carried out later by Diehl et al. [30], Kraus et al. [66] and Verstraete et al.
[110], where quantum reservoirs and system-reservoir couplings are specially designed with
two aims: to generate quantum phases and entangled states in the steady-state regime
of the system and to implement universal quantum computation [28]. An advantage of
this new method is that it makes possible to prepare states that correspond to excited
many-body states, allowing the study of increasingly complex systems. It is remarkable
that there is a master equation yielding any one multipartite pure state of the system
as unique stationary state — the relaxation occurs within a time scale that does not
depend on the number of subsystems [66]. Dissipative state engineering can be used to
prepare ground states of frustration-free Hamiltonians [110, 66]. Engineering a reservoir
is akin to choosing for jump operators cl in the master equation [47] those that have
the desired state |ψ〉 as a dark state cl |ψ〉 = 0, while the dissipation is kept quasi-local
[30]. Our study focuses on two kinds of decoherence processes: number dissipation and
phase dissipation. Number dissipation corresponds to an exchange of particles between
the system and the reservoir, while phase dissipation refers to collisions between both sets
of particles inducing the dephasing of the system. Controlling the level of noise, we can
access different regimes and learn more about dissipative phenomena. We observe that
dissipation shifts the phase transition in a direction related to the state of the reservoir,
agreeing with later findings [30].

Atoms with correlated hopping The second topic takes us to a different setup,
where atoms are trapped in state-dependent lattices [73] and a novel mechanism for
pairing based on transport-inducing collisions is introduced. As illustrated in figure 1,
when two atoms collide they can mutate their internal state (|+〉 , |−〉). If these atoms
are placed in one of two state-dependent optical lattices, a collision will force hopping
of atoms to a site associated to their new state. For deep enough lattices, as in the
Mott insulator experiments [49], this coordinated jump of pairs will be the dominant
hopping process and the atoms will become a superfluid of pairs. In the most general case,
deriving the effective lattice Hamiltonian for the atoms we show that any asymmetry in
the contact interaction (g↑↑ 6= g↓↓, g↑↓ 6= g↓↑) [75, 121] translates into a form of correlated

ductivity proposed by Bardeen, Cooper, and Schrieffer in 1957.
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Figure 1: (left) Two atoms in state
|+〉 collide and change of state in free
space. (right) When these atoms
are confined in overlapping state-
dependent optical lattices, shifted out-
of-phase from one another in space,
their change of state will be accompa-
nied by a tunneling event to a neigh-
boring site (solid). This leads to cor-
related hopping of atom pairs along
the x direction, as other tunneling
processes (dashed) are forbidden.

hopping: either environment-biased hopping nia
†
jak [34] or pair hopping a2

j
†
a2
k [33]. Our

most relevant finding is evidence of a pair superfluid, which exists for a wide range of
interaction asymmetries and has interesting correlation properties that differentiate it
from an ordinary atomic Bose–Einstein condensate. Other phases that this model presents
are ordinary Mott insulators, a double feature of a superfluid with a pair superfluid, and
charge-density waves.

Atoms in a Feshbach resonance The last investigated topic concerns a two-species
Bose–Hubbard model including a conversion term, by which two particles of a species
can be converted into one particle of a second species, and vice versa. This model can be
related to ultracold atom experiments where a Feshbach resonance [105, 29] is used to tune
the scattering length of the atoms in order to produce molecules (figure 2). The motivation
to investigate the phase diagram of this system lies in recent results using quantum Monte
Carlo simulations [91, 92], where the existence of an exotic, so-called “super-Mott” phase
has been proposed. They report an unusual combination of properties: the system has a
vanishing compressibility, simultaneously with the flow of individual species in opposite
directions. In their first work [91], they use the world line algorithm [11, 10]. The
compressibility of the system is determined through the slope of the particle density ρ
as a function of the chemical potential. The superfluidity of the mixture is evaluated
using the Pollock and Ceperley formula [87], which relates the superfluid density to the
fluctuations of the winding number W §. Given that atoms may turn into molecules and
vice versa, pseudowinding numbers are defined for each species. The authors have found
that certain regions are incompressible and have, at the same time, individual species
flowing — but without a net mass current. In a following study [92], they use the stochastic
Green function algorithm [90]. This method is useful to easily estimate the superfluid
fraction of atoms and of molecules, used to probe the quasi-condensation of individual
species. Using also the winding numbers, they draw the phase diagram for a system
with a fixed occupation number and find the “super-Mott” phase for strong interactions.
This “super-Mott” phase has not been observed in previous mean-field studies [98], due
to the incapability of the method to describe dynamical correlations. To deepen our

§A quantity defined for a given configuration in the algorithm as the difference between the number
of times that a world line crosses the boundaries of the system in one direction and in the other.
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Figure 2: Representation of a Feshbach-
resonant atomic collision: two atoms

collide and form a molecule in an-
other part of the Hilbert space, here

indicated by the spin arrangement.

knowledge about this intriguing phase and the details behind its mechanism, we use
a different approach based on quasi-exact diagonalizations. This method enables the
study of the spatial structure of correlations, which is completely missing within a mean-
field approach and gives additional information to the superfluid density. Moreover, we
consider parameter values comparable to those in experiments, thus constraining possible
scenarios in which this mixed phase may be observed in experiments.

Outline of this study

To this dissertation concerns the study of strong correlation effects with ultracold
atoms in optical lattices in three different scenarios: noise, correlated hopping and Fes-
hbach resonances. This leads naturally to structure this dissertation in 3 + 1 parts, as
described in the following.

In the introductory part Background: Atoms in an optical lattice, we want to acquaint
the reader with the concepts and techniques that are common to all subsequent studies.
In the first chapter we start explaining how optical lattices are created and the principles
behind their action on neutral atoms (section 1.1). Here we find the ideal occasion to
present the Bloch and Wannier states (section 1.2), which are going to be used in the
derivation of the Bose–Hubbard model (section 1.3). This last section finishes with a
discussion about the physics arising from this model and its phases.

In the second chapter we present the analytical and numerical techniques used to
study ultracold atoms in optical lattices and to predict the properties of the emerging
phases. Analytical methods like the quantum rotor model (section 2.1) and the strong
coupling expansion (section 2.2) are usually used to study regions of the parameter space
which cannot be solved exactly and require some approximations. On the other hand,
numerical methods like the Gutzwiller ansatz (section 2.3) and the Matrix Product State
algorithms (section 2.4) come into play in those regions that lie outside the possible an-
alytical approximations: typically near to transition points, where the complexity of the
system increases; or when the size of the system cannot be otherwise handled.
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In the study of Atoms in a noisy environment, we analyze the effects of dissipative
processes on the superfluid–Mott insulator transition in the Bose–Hubbard model, where
a shift of the phase transition is observed. The dynamics of a system coupled to an
environment can be described in two ways: following an exact treatment to solve the
composed system and tracing out the environment from the solution; or using an ap-
proximate model for the system where the environment is treated as noise. In the third
chapter we introduce the basics of the theory needed to elaborate this approximate model:
the master equation formalism (section 3.1). We continue presenting the system and the
environment in detail, their Hamiltonians, and the dissipative mechanisms that are going
to be considered (section 3.2).

In the fourth chapter we proceed with the application of the analytical and numerical
methods. We apply the quantum rotor model (section 4.1) for both, the complete and the
approximate model. These results show how dissipative processes may be used to change
the state of a system and drive it into a different phase. The strong coupling expansion
(section 4.2) and the Gutzwiller ansatz (section 4.3) agree on the observation of a shift
of the phase transition, which is equivalent to a renormalization of the parameters of the
Bose-Hubbard model.

In the study of Atoms with correlated hopping we move to a different setup, where
atoms are trapped in state-dependent lattices and transport-inducing collisions appear
naturally from the engineering of the system. In the fifth chapter we introduce a model
for correlated hopping (equation 5.1), qualitatively discussing its origin and the quantum
phases that are expected to appear in the different parameter regimes (section 5.2). We
present a possible way to implement this model, which is based on optical superlattices
and atoms with asymmetric interactions.

The sixth chapter presents the theoretical results obtained using analytical and numer-
ical methods, starting with exact diagonalizations for a small number of atoms and sites
(section 6.1). These calculations reveal the existence of insulating and coherent regimes,
as well as pairing; they will be the basis for later analysis. Further work is done on the
understanding of the pair-superfluid phase introducing a toy model inspired in the ordi-
nary superfluid (section 6.2). Having gained some insight into the basics of our system,
we continue studying the many-body physics of larger lattices with correlated hopping
using a variety of techniques: insulating regime (section 6.3), perturbation theory (section
6.4) and quantum rotor model (section 6.5). These methods suggest a number of possible
phases, including a Mott insulator, a pair superfluid, a normal superfluid and a charge-
density wave state; and give estimations of the parameters for which these phases appear.
We also develop two numerical methods to study our system: a Gutzwiller ansatz (section
6.6) and an infinite Matrix Product State method (section 6.7). With these simulations
we confirm the predicted phases and locate the quantum phase transitions, which are
found to be of second order. Finally, in section 6.8 we suggest some currently available
experimental methods to detect and characterize these phases.

Finally comes the study of Atoms in a Feshbach resonance, where we investigate a
Bose–Hubbard model that includes a mixture of atoms and molecules, and a conversion
term between these species. This model is interesting because it can be related to ultra-
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cold atom experiments where a Feshbach resonance produces molecules. In the seventh
chapter, we start introducing the theory of Feshbach resonances (section 7.1) and follow
presenting the Hamiltonian of our system (section 7.2).

In the eighth chapter we discuss the results. We apply an adiabatic elimination of the
molecular state (section 8.1), where the effect of this level is seen as a renormalization of
the Bose–Hubbard model. A strong coupling expansion (section 8.2) and the mean-field
theory (section 8.3) are used to give further insight into this model, observing already
with the latter the appearance of a hybrid phase. We close this chapter formulating a
Density Matrix Renormalization Group algorithm using Matrix Product States (section
8.4) to study the long-range correlations of the system, with special interest to verify the
existence of the exotic “super-Mott” phase, which has been recently reported.

This dissertation also includes four appendices, where some derivations used in this
study are explained in detail. In appendix A we explain how a Density Matrix Renormal-
ization Group algorithm using Matrix Product States can be numerically implemented,
as used in sections 6.7 and 8.4. In appendix B we derive the master equations for a
dissipative system that undergoes either exchange of particles or collisions with a reser-
voir, as considered in section 4.1. In appendix C we include the detailed derivation of
the model presented in section 5.2. At last, in appendix D we derive from microscopical
considerations the physical parameters used in section 7.2 and following sections.



Background: Atoms in an optical
lattice
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Chapter 1

Cold atoms in optical lattices

1.1 Optical Lattices

An optical lattice is a light structure used to capture, cool and manipulate neutral
atoms, which have been typically already precooled in a magneto-optical trap∗ (MOT)
and later further cooled down to the µK regime using other laser techniques.

The idea to confine atoms in wavelength-size regions of a standing wave by means of
the dipole force appears for the first time in 1968 [70]. But it was only 20 years later when
its earliest realization came to light, with the experimental observation of the channeling
of atoms from an atomic beam into paths between the peaks of a one-dimensional (1D)
standing wave [94]. Since then, optical lattices have played a very important role in
the development of cooling techniques [24, 88] and in the study of atoms confined to
a wavelength scale, with applications ranging from the simulation of condensed matter
systems [58, 13] to the processing of quantum information [18, 72], where in the latter
localized atoms can be seen as a natural quantum register. These realizations rely on the
fact that optical lattices allow to produce an artificial crystal for quantum matter which
is free of defects, has an exactly known structure and whose potential depth can be varied
through the laser parameters without changing the lattice vectors, while these latter may
be changed independently redirecting the laser beams. More sophisticated arrangements
than the 1D introduced here, may allow to move the confined particles around and attain
a large number of diverse configurations.

The simplest optical lattice that we can consider is the periodic intensity pattern
of light formed when a 1D† arrangement of two counterpropagating laser beams of the
same polarization interfere. The incoming laser passes through the atomic cloud in the
MOT and it is collimated and retro-reflected on a mirror (see figure 1.1 (up)). Then,
these two beams form a stationary distribution of light with a periodicity of half the laser
wavelength, a standing wave with its first node at the surface of the mirror. If the intensity
of these beams is large and their frequency is relatively close to the internal transition of
the atoms, we will have that when the MOT is turned off the AC Stark shift creates a

∗A MOT is a hybrid trap, it uses inhomogeneous magnetic fields and circularly polarized laser light,
able to cool down neutral atoms to temperatures below 1mK.
†For simplicity, we omit the description of the confinement in the other two dimensions.

9



10 Chapter 1. Cold atoms in optical lattices

Figure 1.1: (up) Stationary wave formed by a red detuned laser, where the atoms are trapped
in the intensity maxima. (down) Schematic representation of the underlying potential, the
optical lattice.

periodic potential

V (x) = V0 sin2(kx) (1.1)

that can be used to trap the atoms. Here, k = 2π/λ with λ being the wavelength of
the laser and V0 denotes the potential depth of the lattice, which is proportional to the
intensity of the laser beams and is easily controllable in the experiments. This kind of
setup will confine the atoms in pancake-like discs, as shown in figure 1.1 (up).

To keep the atoms from distributing over a long distance, this lattice is superimposed
with a trap Vtrap(x) generated by a red detuned laser beam focused at the position of the
atom cloud. This beam creates a Gaussian intensity profile, which is harmonic around
the trap center. This additional trap, resulting from the spatial variation of the laser
intensity, concentrates the atoms along a line which is typically of the order of 100µm,
the beam waist of the laser.

Most experiments in laser cooling and trapping are performed with alkali atoms, like
7Li, 23Na, 39,41K and 87Rb, because of their closed optical transitions lying in a convenient
spectral range. As an example, the experiments by Bloch [1] and Rempe [2] concentrate
on 87Rb atoms, using blue detuned lasers with λ = 830− 850nm (∆ ' 80− 60nm) which
results in a lattice spacing of 415− 425nm. The lattice depth can vary from a few recoil
energies‡ up to 30Er, having for this species Er/~ ∼ 20kHz. These potentials yield wave-
packet sizes that range from ∼ 90nm for the shallow lattices to ∼ 60nm for the deeper
ones. These values are small compared to the lattice spacing λ/2, allowing to consider
localized states. To obtain 1D confinement, lattices with V0⊥ ∼ 30Er in the orthogonal
directions are used. After the BEC has been created in a magnetic trap, the lattice
potential is ramped up, splitting the BEC in up to ∼ 105 lattice sites. The potential is
ramped up slowly, in about 80ms, ensuring the permanence of the atoms in the ground
state of the system.

‡The recoil energy is a natural measure of energy scales in optical lattice potentials, it is the recoil
energy of an atom after the absorption of a photon from the lattice.
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Theory of AC-Stark shift trapping

As already mentioned, this varying light intensity creates a periodic potential for the
atoms. This occurs because the oscillating electric field of the beams interacts with the
atoms, inducing an oscillating atomic dipole moment. This dipole moment oscillates at
the same frequency ω of the field, with an amplitude d = α(ω)E. Here, α(ω) is the
polarizability of the atoms, depending on the laser frequency, and E is the amplitude of
the electric field.

The potential arising from this interaction is the time average over ~d · ~E. Within a
two-level model for the atom and using standard approximations [51], one obtains the
dipole potential

Vdip(~r) = −1

2
〈dE(~r)〉 ∼ 3πc2

2ω3
0

Γ

∆
I(~r) (1.2)

where ∆ = ω−ω0 denotes the detuning of the laser with respect to the atomic transition
frequency ω0. The second equality comes from relating the dipole moment of the atom to
its decay rate Γ and considering a far detuned laser.

In equation 1.2, we see that the potential is proportional to the intensity of the field.
For an optical lattice, the intensity is space dependent I(~r) = I0 sin2(x). Thereof, for a
blue detuned laser (ω > ω0) the atoms will tend to the minima of intensity, and for a red
detuned laser (ω > ω0) to the maxima. As in the lattice both maxima and minima of
intensity are arranged periodically in space, the dipole interaction creates the egg-crate
potential we expect and that is usually represented as in figure 1.1 (down).

1.2 Single-particle states

The dynamics of atoms in these periodic potentials can be described in terms of Bloch
wavefunctions and energy bands, as it is done in solid state physics for electrons in a
crystal.

An atom moving in a 1D optical lattice is described by the single-atom Hamiltonian

H1 = −~2∇2

2m
+ V (x) + Vtrap(x). (1.3)

Here, V (x) is the periodic potential (1.1) and the slowly varying potential Vtrap(x) prevents
the atoms from escaping through the ends of the optical lattice. For simplicity, we neglect
this latter term throughout this work.

Following from equation 1.1, our potential V (x) has a periodicity of a = λ/2.According
to Bloch’s theorem [9], the eigenstates of the single-atom Hamiltonian (1.3) have the Bloch
form ψnk(x) = eikxunk(x), where unk(x) are the solutions of the eigenvalue problem[

(−i~∇+ ~k)2

2m
+ V (x)− Enk

]
unk(x) = 0, k ∈ [−π/a, π/a] (1.4)

with the boundary condition unk(x) = unk(x+ a). These Bloch functions have two labels:
the quasimomentum k and the band index n. The quantum number n identifies the
different independent eigenstates that exist for a given value of k. In this way, solutions
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labeled by the same n form energy bands with energies Enk, as it is pictured in figure 1.2
for different lattice depths. Observing figure 1.2 (center), we can see that for a potential
barrier V0 of already a few Er the bands located below V0 are rather flat and well separated
from other bands by a large energy gap. For deeper potentials (figure 1.2 (right)), these
features are reinforced and as we will see, the eigenstates of the particles become more
localized in each lattice site. This latter occurs because the atoms lack enough energy to
jump from one site to the other.

Localized states are usually described through the complete and orthogonal set of
Wannier functions [117]

wn(x− xi) ∼
∑

k∈[−π/a,π/a]

e−ikxiunk(x) (1.5)

where the i-th Wannier function describes a state localized in the i-th lattice site and in
some given band n. An advantage of using this base is that it allows to assign a mean
position to the particles, hence to account for interactions when the wavefunctions of two
or more particles overlap.

In the harmonic limit (V0 >> Er) each lattice minimum can be considered as a
harmonic oscillator

V (x) = V0 sin2(kx) ' V0k
2x2 ' 1

2
mωhox

2 = Vho(x), (1.6)

with a frequency ωho =
√

4V0Er/~2 that defines the separation to the first excited Bloch
band. In this limit, the Wannier states can be approximated by Gaussian functions and
the size of the Gaussian ground state wave-packet in each of these pows is given by
aho =

√
~/mωho.

We can assume that only the lowest band is going to be occupied as long as neither
thermal excitations nor the considered interactions are able to populate the excited bands.
Following from the harmonic approximation, this implies that ~ωho >> kBT, Un̄(n̄ −
1)/2. In the case of 87Rb, we have that for shallow lattices the separation to the first
band is ωho ∼ 90kHz, and 220kHz for deeper ones. Therefore, we need to go down to
temperatures in the nK regime and to have occupations of few atoms per lattice site

Figure 1.2: Energy bands for potential
depths V0 = Er (left), V0 = 5Er (center)
and V0 = 20Er (right). We use the recoil
energy of the atoms Er as unit of energy,

which is typically of the order of a few µK.

E
nk
/E

r
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(n̄ . 4), which coincides with current experiments [1, 2], to assume safely that only the
ground state is populated.

1.3 Many-body Hamiltonian: the Bose–Hubbard model

One of the great advantages of cold atoms in optical lattices is that the physical behav-
ior of the atoms is usually perfectly well described by a simple underlying Hamiltonian,
allowing us to use these systems as models for modern condensed matter theories. More
precisely, a system of interacting bosonic particles in an optical lattice is very well de-
scribed by the Bose–Hubbard Hamiltonian in second quantization [58]. In this section we
sketch the derivation of this model§ and although we specify it for bosons, the reasoning
for a fermionic system follows in the same way.

The Hamiltonian of a bosonic gas in an optical lattice with contact interactions is

H =

∫
dxψ(x)†

(
− ~2

2m
∇2 + V (x) + Vtrap(x)

)
ψ(x) +

1

2

4πas~2

m
ψ(x)†ψ(x)†ψ(x)ψ(x)

(1.7)
where ψ(x) (ψ(x)†) is the bosonic field operator that annihilates (creates) a particle at
position x, as the s-wave scattering length and 4πas~2/m the interaction strength between
two atomic particles. Assuming, as discussed in the previous section, that neither the
thermal excitations nor the interaction energy are able to take the atoms out of the
lowest Bloch band of the optical lattice (figure 1.2), we can expand the field operators in
terms of the Wannier functions (1.5) for the lowest energy band (n = 0)

ψ(x) ∼
L∑
i=1

aiw0(x− xi). (1.8)

Here, ai is the operator annihilating a particle in site i, and L the total number of sites
in the lattice. Then, expanding equation 1.7 in terms of equation 1.8, we can exploit the
localized nature of the Wannier states w0(x). This means that we can neglect the interac-
tion of particles at different sites and the tunneling to sites other than nearest neighbors,
which are indeed from one to several orders of magnitude smaller than the on-site inter-
action and the nearest-neighbor tunneling amplitude [57]. The resulting Hamiltonian is
the Bose–Hubbard model

H =
U

2

∑
i

ni(ni − 1)− j
∑
<i,j>

a†iaj. (1.9)

In this notation we have that < i, j > denotes the sum over nearest neighbors, including
double counting, and ni = a†iai the number operator corresponding to site i. For simplicity,
we have neglected the trapping potential Vtrap(x). Nevertheless, when working in the
grand canonical ensemble, the chemical potential µ plays a similar roll than this trapping
potential. Having this additional trap is equivalent to use a chemical potential that starts

§For similar detailed examples see section 5.2 and appendix D.2.
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Figure 1.3: Representation of the
parameters in the Bose–Hubbard
model. The local interaction U is
the energy required to add a par-

ticle to a site that is already occu-
pied. The hopping amplitude j is

the energy compensation for a par-
ticle tunneling to a neighboring site.

U

V0
j

x

with some given value in the middle of the trap and decreases until it has dropped to zero
towards the edges.

In the Hamiltonian (1.9), the first term corresponds to the potential energy of the
system. This term is characterized by the on-site interaction energy

U =
4πas~2

m

∫
dx|w0(x)|4 (1.10)

a parameter that tells us how much energy does it cost to put a second atom into a lattice
site which is already occupied by another atom (see figure 1.3).

The second term in the Hamiltonian refers to the kinetic energy. This term is specified
by the tunneling matrix element between adjacent sites

j = −
∫
dxw0(x− xi)

(
− ~2

2m
∇2 + V (x)

)
w0(x− xi+1). (1.11)

which is basically determined by the overlap between adjacent localized wavefunctions,
giving the probability of tunneling while decreasing exponentially with the lattice depth.

To gain some qualitative insight into these parameters and their relation to experi-
mental specifications, let us consider the limit where V0 >> Er. There, we can apply the
harmonic approximation around the potential minima and replace the Wannier wavefunc-
tions with Gaussians [124], obtaining

U =
√

8
π
askV

1/4
0 V

1/2
0⊥ E

1/4
r , (1.12a)

j = 4√
π
V

3/4
0 E

1/4
r e−2

√
V0/Er . (1.12b)

Going back to the case of 87Rb mentioned earlier, the interaction energy U may vary from
10kHz for shallow lattices to 16kHz for deeper ones. At the same time, the hopping
amplitude j may nearly reach values of 2kHz for shallow lattices, decreasing dramatically
to 10Hz for deeper ones.

Consequently, the properties of ultracold atoms in optical lattices depend only on the
ratio between these two competing energies U/j (equivalently j/U may also be consid-
ered). This parameter U/j characterizes the strength of the interactions in relation to the
tunnel coupling between neighboring sites, a quantity that is proportional to the potential
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MI
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MI
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Figure 1.4: Schematic zero-
temperature phase diagram of the Bose–
Hubbard model in the grand canonical
ensemble. Dashed lines in the SF region
correspond to constant-integer density.
For 〈n〉 = 1, 2, 3 these lines touch the
corresponding MI phases at the tips of
the lobes for some critical value of j/U.
This critical ratio decreases with in-
creasing the density n̄. For 〈n〉 = 1 + ε
the line of constant density stays outside
the MI region because a fraction ε of the
particles remains superfluid down to the
lowest values of j/U.

depth V0. This makes the system controllable just through one parameter, the intensity
of the laser used to create the lattice. The phenomenology is characterized by two limits.
For a shallow lattice, U/j is small (∼ 6 for 87Rb) and equation 1.9 will be dominated by
the kinetic energy term, yielding a superfluid ground state. Whereas for a deep lattice,
U/j becomes large (∼ 1600 for 87Rb) and the Hamiltonian will be dominated by the
interaction energy term, resulting in a Mott insulating ground state. These phases are
explained in more detail as follows.

Phases of the Bose–Hubbard model

The Bose–Hubbard model was first introduced in [39], showing that it exhibits a
quantum phase transition [93] from a superfluid (SF) to a Mott insulating (MI) phase at
a critical value of the ratio j/U. In this passage we introduce these two phases, which are
well described in the limiting cases of U = 0 and j = 0 at each side of the transition. We
will also consider variations depending on the density of the system.

Superfluid phase In the case of an ideal gas j/U → ∞, the interactions become
unimportant and the atoms behave like independent particles. Each atom is completely
delocalized over the entire lattice and, for periodic boundary conditions, the ground state
of the system can be written as

|ψSF 〉 =
1√
N !

(
L∑
i=1

1√
L
a†i

)N

|0〉 (1.13)

where N is the total number of particles in the lattice. Equation 1.13 is a coherent state
〈ai〉 6= 0 with a well defined phase for each lattice site. Its spectrum of excitations in
the density is gapless, which means that it is compressible: ∂n̄/∂µ 6= 0. This state is a
superposition of different number states with a binomial atom number distribution per
lattice site and thereof, nonzero number fluctuations ∆n 6= 0 are found.
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A superfluid in 1D is also characterized by algebraically decaying long-range off-
diagonal correlations 〈a†iai+∆〉 with the distance ∆. This does not happen for equation
1.13, as these two-body correlations turn out to be constant in ∆. This occurs because the
ansatz (1.13) is only well suited to model a superfluid in 3D or in 2D, though the latter
may only be a superfluid when the temperature is strictly zero. A true condensate at finite
temperature can only occur in 3D, as it can be rigorously proofed¶ that Bose–Einstein
condensation at T > 0 does not exist in 1D and 2D system, because thermal fluctuations
destroy the long-range order that characterizes this state. Nevertheless, given that the
decay of the correlations is power law, rather than exponential as in normal fluids, they
are usually termed quasi-condensates. Whenever we use the term “condensate”, whether
we refer to a real condensate or to a quasi-condensate can be said from the context, i.e.
the dimensionality of the system.

Mott phase In the opposite case j/U → 0, the interactions dominate the physics of the
system and the particles try to repel each other the best they can to minimize repulsion
(we need U > 0 to avoid the collapse of the system), becoming completely localized to
lattice sites. For commensurate filling the ground state of the system can be conveniently
written as

|ψMI(n̄)〉 =
L∏
i=1

1√
n̄!

(
a†i

)n̄
|0〉 (1.14)

where n̄ = N/L is an integer number and represents the particle occupation per site. This
strongly correlated phase can be described by a Fock state with a well defined number
of atoms per site and thereby, it has a vanishing number fluctuation ∆n = 0. If the
filling is not commensurate, the number of particles will vary from site to site, leading
to a series of degenerate ground states for equivalent distributions (position of defects
over a homogeneous background). In a Mott insulator there is no coherence 〈ai〉 = 0, as
with a minimized number-uncertainty the phase-uncertainty is maximized. Moreover, as
the system is now incompressible ∂n̄/∂µ = 0, an energy gap of order U appears in the
excitation spectrum. This means that in this case an energy has to be paid to introduce
another particle into the system.

Charge-density wave When next-neighbor interactions are added to the Hamiltonian
(1.9), i.e. a term like V

∑
i nini+1, a charge-density wave may appear in the system

in the limit of large interactions U, |V | >> j. This phase has similar properties to a
Mott insulator, only differing in the particle distribution. Depending on the value of the
interaction strength V, and for integer or half-integer filling, we would obtain either one
of two configurations: for V > 0 there could be alternating filled and unfilled lattice sites,
while for V < 0 we could have alternating filled sites with one particle difference (n2i = n∗

and n2i+1 = n∗ + 1, when n̄ = (2n∗ + 1)/2). Other non-integer fillings would give rise to
similar states introducing defects, as mentioned before for the Mott insulator.

¶The Mermin-Wagner-Hohenberg theorem [77, 56] shows that the mean number of excited quasi-

particles of momentum ~k in the gas at equilibrium at temperature T diverges in the infrared limit for
any dimensionality D ≤ 2 unless the condensate fraction vanishes.
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Figure 1.5: Visualization of a su-
perfluid (up), where particles are
delocalized over the whole lattice;
a Mott insulator (center), where
for commensurate filling the atoms
are pinned to sites; and a charge-
density wave (down), an insulator
with an alternating filling factor.
These phases are predicted by the
Bose–Hubbard model in the limits
j/U → ∞, j/U → 0 and, when con-
sidering nearest-neighbor interactions
V, j/U, j/|V | → 0 respectively.

In our analysis we indistinguishably refer to two pictures: a system where the total
number of particles is externally imposed; and the free energy or grand canonical picture,
where the total number of particles is not fixed and the chemical potential is used as
a lagrangian multiplier to fix it. Nevertheless, one should be aware that in the grand
canonical ensemble it is not always possible to reproduce some states with incommensurate
filling, precisely those which are insulating states (the Mott insulator and the charge-
density wave) presenting defects; but it does not mean that they would not appear in the
real physical system.
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Chapter 2

Description of theoretical methods

In this chapter we describe the methods used throughout this work to analyze the
behavior of cold atoms in optical lattices in different parameter regimes. In general, these
methods offer the possibility to calculate correlators and other expectation values, thereby
permitting the characterization of the states.

We start with the analytical methods which are specifically shown for the Bose–
Hubbard model (1.9), but their application to other cases will be presented eventually in
other parts of this work when judged to be required. In general, solving an eigenvalue
problem exactly is not possible: only for very few Hamiltonians we can find solutions
in an analytical form. However, there are some approximation methods that in certain
cases allow to obtain analytically approximate solutions of the eigenvalue equation. We
introduce some of the analytical methods used to study cold atoms in optical lattices
in regions of the parameter space where an exact solution cannot be found. Given the
complexity of the system when it undergoes a phase transition, the analytical methods
presented here are only reliable away from this point∗. For a better treatment of critical
points, numerical methods will be required. Here, we first present the quantum rotor or
phase model [76, 45], which becomes relevant in the case of systems with a high average
occupation per site, either in the limit of strong or weak interactions. Then, the Mott-
phase diagram is obtained from a strong coupling expansion [42, 43]. This approximation
to the phase boundaries is only valid in the limit of strong interactions U >> j, as it is a
perturbation theory expansion around the incompressible regions when j = 0.

Then later, we continue with the numerical methods which are presented in a general
framework and may be applied as well to other quantum lattice problems. We introduce
some variational methods which can be implemented numerically, to find a mathematical
description and a physical characterization of lattice systems in cases where an analytical
treatment is no longer possible. This may happen due to the complexity of the problem,
either in the presence of a phase transition or in the limit of a reasonably sized system.
We start with the simplest of the methods treated here, the Gutzwiller ansatz [67]. This
is a product state which gives a mean-field description of the system, being able to reveal
some characteristics of its physical phases. In the case of a homogeneous system, it may be
able to treat the limit of L→∞. Later on, we introduce an implementation of the more

∗There are other methods, as the renormalization group and the conformal field theory.

19
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elaborated Density Matrix Renormalization Group method (DMRG) [112, 109] which
is able to give us detailed information about phase transitions and correlations decay.
Finally, we introduce the infinite Time-Evolving Block Decimation algorithm (iTEBD)
[113] to study systems in the thermodynamic limit. Both DMRG and iTEBD are based
on a Matrix Product State ansatz [111], which is also shortly introduced in this section.

2.1 Quantum Rotor model: the phase approximation

In this section we move from the number occupation or Fock basis |~n〉 to the basis of

phase states |~φ〉
|~n〉 →

∣∣∣~φ〉〈
~n|~φ
〉

=
ei~n·

~φ

(2π)L/2
with ~φ ∈ [−π, π]⊗L. (2.1)

Here, the notation as vectors is used to collect the values of a variable at each site under
one symbol, as to each site of the lattice corresponds an element of the vector (e.g.

|~φ〉 = |φ1φ2 . . . φL〉). It is interesting to work in the phase basis when the relevant physical
states are concentrated around large occupation numbers, 〈ni〉 = n̄ >> 1, otherwise some
non-physical states, as Fock states with negative particle number, would be also included.
This is due to the symmetry of the phase interval in equation 4.1 with respect to zero.
Throughout this section we have ignored the constant terms in the Hamiltonians.

We start with the Bose–Hubbard Hamiltonian in equation 1.9. Expanding the config-
uration of the lattice in Fock states ψ =

∑
~n c~n |~n〉 and considering as said, a large average

number of particles per site, we may approximate the hopping term as

a†iaj |ψ〉 =
√
n̄(n̄+ 1)PA+

i A
−
j |ψ〉+ |∆ij〉 (2.2)

where A± are ladder operators, A± |n〉 = |n± 1〉 , and P is the projector onto the states
with non-negative occupation numbers, i.e. physical states. To the lowest order in the
Taylor expansion the error |∆ij〉 is

|∆ij〉 =
∑
~n

c~n
(n̄+ 1)(ni − n̄) + n̄(nj − n̄)

2
√
n̄(n̄+ 1)

|~n〉

and its norm is bounded by

||∆ij|| ≤

√
n̄2 + (n̄+ 1)2

2n̄(n̄+ 1)
σj

where σ2
i = 〈(ni − n̄)2〉 is the dispersion in the number of particles in the i-th site. We

observe that the validity of this approximation is restricted to the cases of lattices with a
high mean number of particles per site n̄ and a small uncertainty compared to this average
value, σi � n̄. Besides, when applied to equation 1.9, the interaction energy must exceed
the neglected terms in (2.2), Un̄(n̄− 1)� jσ.
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Following this procedure, we can rewrite our Hamiltonian (1.9) as

H = P
L∑
i=1

[
−%j(A+

i+1A
−
i + A+

i A
−
i+1) +

U

2
(Azi )

2

]
(2.3)

with % =
√
n̄(n̄+ 1) being approximately the density per site and Azi = a†iai − n̄ the

fluctuations of the number operator around the mean n̄, having
∑

iA
z
i |ψ〉 = 0 for states

with a fixed and commensurate filling.
Given that the physically interesting states are around large occupations, any contribu-

tion from negatively occupied states to the wavefunction of the system will be negligible.
This allows us to safely drop the projector P and move to the phase basis (4.1). To do
this, we have to translate the operators from the Fock to the phase basis using the relation
between these two

|~φ〉 =
∑
~n

ei~n·
~φ

(2π)M/2
|~n〉 (2.4)

which derives from equation 4.1. The operators we need to rewrite the Hamiltonian (2.3)
are the ladder operators

A±j |~φ〉 =
∑
~n

ei~n·
~φ

(2π)M/2
A±j |~n〉 =

∑
~n

ei~n·
~φ

(2π)M/2
|~n± 1j〉

=
∑
~n

ei~n∓1j ·~φ

(2π)M/2
|~n〉 = e∓iφj |~φ〉, (2.5a)

and the deviation of the mean from the number operator

Azj |~φ〉 =
∑
~n

ei~n·
~φ

(2π)M/2
Azj |~n〉 =

∑
~n

ei~n·
~φ

(2π)M/2
(nj − n̄) |~n〉

=

(
−i ∂
∂φj
− n̄

)
|~φ〉. (2.5b)

These equations lead us to the equivalent of Hamiltonian (2.3) in the phase basis

H =
L∑
i=1

[
−2%j cos(φi − φi+1)− U

2

∂2

∂φ2
i

]
. (2.6)

To minimize the energy in the limit of j � U, the wavefunction will concentrate around
the equilibrium configuration where the phase at each site has the same value φi ' φj. In
this range of parameters we are in the superfluid regime, where the phase fluctuations are
small. Therefore it becomes reasonable to apply the harmonic approximation, expanding
the cosine in equation 2.7 to first order in φi − φi+1

H =
L∑
i=1

[
%j(φi − φi+1)2 − U

2

∂2

∂φ2
i

]
. (2.7)
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In general, a state in this basis can be written as

|ψ〉 =
1

(2π)L/2

∫
ei~n·

~φΨ(~φ) |φ〉 d~φ (2.8)

where ~n · ~φ = n̄
∑

j φj and d~φ = dφ1dφ2 . . . dφL. The wavefunction Ψ(~φ) that is solution
of equation 2.7 can only depend on the phase difference between neighboring sites ξi =
φi−φi+1. In the limit of large lattices, we can assume that these differences are independent
from each other and write the wavefunction as

Ψ(~φ) =
L∏
i=1

f(φi − φi+1). (2.9)

In the Mott insulating regime, when j/U → 0 and the phases are independent from
each other, the appropriate solution is fMI(ξ) = 1 whereas in the superfluid limit, when
j/U →∞ and the phases tend to the same value, it is fSF (ξ) =

∑
n δ(ξ − 2πn), where n

are integer numbers. This can be checked by substitution in equation 2.8.
For other parameter values or variations from the simple Bose–Hubbard model, the

solution (2.8) is not exact and a variational method should be use to identify the best
fitting wavefunction. In the following chapters we will proceed differently. We will look
for the normal modes of equation 2.7, with the help of a real discrete Fourier transform
to decouple the variables, and use a Gaussian ansatz to find the optimal ground state of
the system.

2.2 Strong coupling expansion

In the limit of weak hopping j � U the boundaries to the superfluid phase can be
calculated using perturbation theory around the insulating phases [42, 43]. Degenerate
perturbation theory is a very standard approximation method in Quantum Mechanics,
which is extensively explained in several textbooks, e.g. [23]. Its ubiquity in the field relies
on the philosophy behind it: first solve the main part of the problem giving the dominating
features and then the corrections given by weaker terms, for which perturbation theory
is typically used.

Applied to our case, the boundary between the incompressible phase (MI) and the
compressible phase (SF) is then determined when the energy difference between the Mott
insulator and the defect state vanishes. With this, it is assumed that the compressibility
∂µn approaches zero continuously at the phase boundary. The defect state may be either
an additional hole or an additional particle in the system, giving the lower and upper
branches of the Mott lobe respectively. Here, we apply this approximation method up to
second order in the hopping amplitude j, computing the boundaries for the Mott insulator
of one and two particles per site.

Following from equation 1.9 and still considering the case of homogeneous trapping,
we separate H into two terms

H = H0 +W (2.10)
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L-1

L

L+1

Figure 2.1: Three of the subspaces
considered for the strong coupling ex-
pansion, those with a total of L − 1,
L and L + 1 particles in the sys-
tem, where L is the number of sites
in the lattice. They correspond to
the ground state configurations when
j = 0, and it is around them that the
perturbation is applied.

whereH0 corresponds to a part that we know how to solve exactly, andW is a perturbation
which together with H0 cannot be treated exactly. For the Bose–Hubbard Hamiltonian
(1.9) we consider

H0 =
∑
i

U

2
ni(ni − 1)− µ

∑
i

ni (2.11)

W = −
∑
i

j (c†ici+1 + cic
†
i+1) (2.12)

with the condition j � U. We want to study the modifications introduced by W in the
well-known discrete set of energies and stationary states of H0 — note that H0 is already
diagonal in the Fock basis. Furthermore, to emphasize the perturbation character of W,
we will write it in general as W =

∑
x fx(j)Ŵx where fx(j) are dimensionless parameters

much smaller than 1.
As the eigenvectors |ψiM〉 of H0 belong to the Fock basis, they have a fixed and well-

defined number of particles per site. Therefore, their corresponding eigenvalues Ei
M are

grouped into well differentiated manifolds E0
M , E0

M+1 . . . , where each of these manifolds
corresponds to M, M + 1 . . . particles in the lattice and the index i denotes a possible
degeneracy according to the configurations of the particles

H0

∣∣ψiM〉 = Ei
M

∣∣ψiM〉 . (2.13)

We define PM as the projector over the manifold E0
M

PM =
∑
i

∣∣ψiM〉 〈ψiM ∣∣ . (2.14)

Adding W to our initial Hamiltonian H0 will not mix these manifolds, they will remain
separate from each other because W does not contain terms connecting states with a
different total number of particles. Therefore, the energy levels of H will be clustered as
in H0. This is also reflected in the fact that for both Hamiltonians H and H0, the total
number of particles N is a good quantum number. The consequence of this coupling will
be an internal mixing of the states within the manifolds and a change in their energies.

Considering periodic boundary conditions, our problem acquires translational invari-
ance and we have that states within the same subspace are degenerate. Therefore, in
contrast to equation 2.13, for the unperturbed problem we have

H0

∣∣ψiM〉 = EM
∣∣ψiM〉 (2.15)
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and we are looking for the solutions of the full problem

H
∣∣ψiM(j)

〉
= EM(j)

∣∣ψiM(j)
〉
. (2.16)

To be able to draw the phase diagram of our system as j grows, given by vanishing energy
difference between the Mott insulators and the defect states, we will need to study the
perturbation of the levels EM for consecutive values of M.

We start assuming that the solutions for the energy of equation 2.16 can be expanded
in powers of the parameter j

EM(j) = E
(0)
M + jE

(1)
M + j2E

(2)
M + . . . (2.17)

At zero order EM(j) should approach EM when j goes to zero, therefore we have that

E
(0)
M = EM . The first energy correction comes from solving the eigenvalue equation

Ŵ (M)
x |0〉 = E1,x

M |0〉 (2.18)

for each term in W =
∑

x fx(j)Ŵx, and summing up all contributions E1,x
M . Here, Ŵ (M) is

the restriction of the operator Ŵ to the eigensubspace E0
M (corresponding to the eigenvalue

E
(0)
M ) and the vector |0〉 belongs to the space spanned by the unperturbed states |ψiM〉 . It is

important here to remember that all the degenerate states |ψiM〉 are equivalent due to the
translational invariance of system. The second energy correction has a more complicated
expression

E2,x
M =

∑
p,i′

〈ψiM | Ŵ
∣∣ψi′M,p

〉 〈
ψi
′
M,p

∣∣ Ŵ |ψiM〉
EM − Ep

M

(2.19)

where the summation over p corresponds to all those states that incorporate one excitation
created by Ŵ , and the possible indices i′ are the degeneracies of those.

Application to Bose–Hubbard model For the sake of illustration, and also to com-
pare with later results in this work, we will now sketch the strong coupling expansion for
the Bose–Hubbard model. Let us consider the subspaces L − 1, L and L + 1, where the
lowest energy states of H0 are those pictured in figure 2.1. Here, L is the total number
of sites and as said, we are considering periodic boundary conditions. These unperturbed
states are labeled as {

∣∣ψiL−1

〉
}i=1,...L, |ψL〉 and {

∣∣ψiL+1

〉
}i=1,...L, with respective energies

EL−1 = 0, EL = 0, EL+1 = U. (2.20)

The subspace E0
L+1 (E0

L−1) consists of the defect states: one particle per site except from
one that is doubly occupied (empty), as shown in figure 2.1, so it is L-degenerate.

We are going to treat explicitly the subspace E0
L+1, while the others can be treated

analogously. For the first energy correction, we have processes like the depicted in figure
4.2 (i), where the defect moves to a neighboring site and the resulting state is still in the
same subspace E0

L+1. Therefore E1,x
L+1 = −2j, for all x. On the other hand, the second

energy correction refers to processes of the type shown in figure 4.2 (ii). We proceed
to calculate the actual value of that precise process using equation 2.19. The energy of
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-j

(ii)

(i)

Figure 2.2: Possible processes in the perturbation of the subspace with L + 1 particles in
the system. Note that for systems with L − 1 and L particles, only virtual processes like the
pictured in (ii) are possible.

each configuration is calculated according to the Hamiltonian in the strong coupling limit
(2.11)

EL+1 = U, E1
L+1 = 2U (2.21)

where the superscript 1 denotes p = 1 in equation 2.19, one of the excited states upon
action of the hopping (2.12). The transition probability from the ground state to the
excited level is calculated using equation 2.12〈

ψi
′

L+1,p

∣∣∣W ∣∣∣ψiL+1

〉
= −
√

2j. (2.22)

Putting equations 2.21 and 2.22 together according to equation 2.19, we have that the
correction to this order is∑

x

E2,x
L+1 =

∑
p,i′

〈
ψiL+1

∣∣∣W ∣∣∣ψi′L+1,p

〉 〈
ψi
′
L+1,p

∣∣W ∣∣∣ψiL+1

〉
E0
L+1 − E

p
L+1

= −4j2

U
(L− 1)− 3j2

U
(2.23)

where the second term refers to the virtual process of a particle jumping to the doubly-
occupied site and back, as in figure 4.2 (ii).

In a similar way, all other energies can be calculated for L− 1, L and L+ 1 particles
in the lattice

EL−1 = −2j − 4j2

U
(L− 1), (2.24a)

EL = −4j2

U
L, (2.24b)

EL+1 = U − 4j − 4j2

U
(L− 1)− 3j2

U
, (2.24c)

and as well for 2L− 1, 2L and 2L+ 1 particles in the system

E2L−1 = U(L− 1)− 4j − 12j2

U
(L− 1)− 3j2

U
, (2.25a)

E2L = UL− 12j2

U
L, (2.25b)

E2L+1 = U(L+ 2)− 6j − 12j2

U
(L− 1)− 8j2

U
. (2.25c)
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Figure 2.3: Phase diagram of the Bose–Hubbard model using the strong coupling expansion.
The first two Mott regions are drawn from an expansion to second order in the perturbation.
The corresponding mathematical expressions are are shown on the right side. In the inset is
the phase diagram by Freericks and Monien [43] using a third order strong-coupling calculation
(solid). They compare their results with a fit to a Kosterlitz-Thouless form [43] (dotted) and
the result of the quantum Monte Carlo calculation of Scalettar et al. [10] (circles). The inset of
this figure is published with the kind permission of H. Monien.

We would like to remark that processes like the depicted in figure 4.2 (i) do not exist in
E0
L, as it does not return to the unperturbed initial configuration |ψiL〉 after an application

of any term of the perturbation Ŵx.

With equations 2.24 and 2.25 we can calculate the boundary of the insulating regions to
second order in the hopping strength j. For the insulator with M/L particles per site, the
system becomes compressible at the point where the energy of the Mott state is degenerate
with a defect state. Those points are the chemical potential at which a hole or a particle
can be introduced, µh(M) = EM − EM−1 and µp(M) = EM+1 − EM respectively. The
results for our case are shown in figure 2.3 and they are in agreement with the presented
by Freericks and Monien in [42, 43]. We observe that for high values of the interaction
strength, the system is a conductor wherever the compressibility becomes finite, as in the
defect state there is an additional particle/hole that moves coherently through the lattice.
As the hopping strength increases, the range of the chemical potential µ about which the
system is still incompressible decreases. Hence, for each value of µ, the Mott insulator
phase will completely disappear at some critical value of j and beyond this, the system
is a superfluid.

2.3 Mean-field approach: the Gutzwiller ansatz

The Gutzwiller ansatz [67] assumes that the state of a lattice system |ψ〉 can be written
as a product of possibly different functions |ψi〉 describing the state of each corresponding
site i

|ψ〉 = ⊗Li=1 |ψi〉 . (2.26)



2.4. DMRG and the Matrix Product State algorithms 27

Given its product nature, at T = 0 mean-field theory is operationally equivalent to a
Gutzwiller wavefunction calculation as the self-consistent condition is automatically ful-
filled at each step of the minimization [99]. This type of ansatz can be easily generalized
to higher dimensional systems and to inhomogeneous trapping potentials. Although its
simplicity, and despite this approach cannot capture the correct behavior of the spa-
tial quantum correlations, it provides a qualitatively satisfactory picture of the phases
of strongly correlated systems, and thereof it has been used in many different studies
[58, 59, 50, 37, 19].

Here we consider each of these |ψi〉 written in the Fock basis

|ψi〉 =
N∑
n=1

f (i)
n |n〉 (2.27)

where N is the cutoff of the local Hilbert space, typically taken to be the same in all
lattice sites, but not necessarily. Given a Hamiltonian H, the value of the ground state
energy may be calculated as

E({f (i)
n }) =

〈ψ|H |ψ〉
〈ψ|ψ〉

, (2.28)

using |ψ〉 from equation 2.26, and minimized as a function of the coefficients {f (i)
n }, using

the normalization constrain
∑

n |f
(i)
n |2 = 1 for all i. Normally, this optimization process

is done numerically.
As already mentioned, a drawback of this method is that, approximating the state of

the system by a product state cannot give us neither the decay of the correlations with
distance nor precise information about the location of phase transition. Nevertheless,
we are still able to calculate some correlation functions and this ansatz does give us a
qualitative idea of the overall behavior of the system.

2.4 DMRG and the Matrix Product State algorithms

In this section we start introducing what the Matrix Product State ansatz is and its
derivation through the Schmidt decomposition [111]. These states are the underlying
structure of the Density Matrix Renormalization Group method [83, 109] and the infinite
Time-Evolving Block Decimation algorithm [113], which will be also described in the
following. The first is a numerical technique used to classically simulate some quantum
many-body systems with unprecedented precision [86], based on the controlled truncation
of the Hilbert space. The latter is specially well suited to deal with systems in the
thermodynamic limit.

Matrix Product State ansatz

A general position-dependent Matrix Product State for a one-dimensional system of
size L is defined as

|ψ〉 =
d∑

s1,...sL=1

Tr (A[1]s1A[2]s2 ...A[L]sL) |s1, ...sL〉 (2.29)
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A[i]si :

Matrix associated to site i
and its state si, whose
dimension is bounded by
some fixed number Di×Di+1.
They parametrize the state.

d :
Dimension of the Hilbert
space corresponding to
the physical system.

They conform a class of states that yields local descriptions of multipartite quantum
states, giving a very good approximation with only a polynomial number of parameters
in some 1D problems [107]. In the special case of open boundary conditions we have
D1 = DL+1 = 1.

An ansatz for slightly entangled states The approach we introduce here to derive
MPS was proposed by Vidal in 2003 [111], and it was developed independently to other
contemporary works [36, 109]. We will introduce it here because it is a generalization of
[109] and it is the starting point for the infinite-size simulations [113] treated at the end
of this section.

This is a particular decomposition† for the coefficients cs1···sL of an arbitrary state
written in the product basis |s1〉 ⊗ · · · ⊗ |sL〉

|ψ〉 =
d∑

s1,...sL=1

cs1···sL |s1〉 ⊗ · · · ⊗ |sL〉

cs1s2···sL =
∑

α1,···αL

Γ[1]s1α1
λ[1]α1Γ[2]s2α1α2

λ[2]α2Γ[3]s3α2α3
· · ·Γ[L]sLαL−1

(2.30)

which employs L tensors {Γ[1], . . .Γ[L]} and L − 1 vectors {λ[1], . . . λ[L − 1]}, whose
indices si and αi take values in {1, . . . d} and {1, . . . Di}, respectively. Contracting Γ↔ λ
or λ↔ Γ together, the structure obtained can be readily identified with a Matrix Product
State as in equation (2.29).

The optimal size of the tensors Di is related to the von Neumann entropy Si [80] of the
partition 1 . . . i : i + 1 . . . L, as Si ≤ 2 logdDi. If this quantity is well-behaved, we would
be able to represent our state efficiently with a number of parameters that grows linearly
with the size of the system instead of exponentially, as when the full Hilbert space is used.
This is the idea behind [111], where they show that any quantum computation with pure
states can be efficiently simulated with a classical computer, provided that the amount
of entanglement involved (∼ Di) is sufficiently restricted. Here we restrict to sketch the
decomposition of the state.

In general, this decomposition can be found for all possible states. It consists of a
concatenation of L − 1 Schmidt decompositions, and depends on the particular way the
sites have been ordered from 1 to L. Here, we consider the systematic truncation of the
Hilbert space, taking the first Di Schmidt vectors in each partition‡ to achieve an efficient
description of the system in compromise with the computational resources. The procedure
can be described as follows:

†For simplicity, we describe it for open boundary conditions.
‡An exact decomposition would keep all Schmidt vectors.
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1. do the first Schmidt decomposition of |ψ〉 at the partition 1 : 2 . . . L, keeping the
D1 first Schmidt vectors with highest Schmidt value

|ψ〉 =

D1∑
α1=1

λ[1]α1|φ[1]α1〉 |φ[2 . . . L]α1〉

=
∑
s1,α1

Γ[1]s1α1
λ[1]α1|s1〉 |φ[2 . . . L]α1〉

where we have expanded each Schmidt vector for site 1 in terms of a local-space
basis.

2. expand each Schmidt vector |φ[2 . . . L]α1〉 in a local-space basis for site 2

|φ[2 . . . L]α1〉 =
∑
s2

|s2〉 |τ [3 . . . L]α1s2〉

3. write |τ [3 . . . L]α1s2〉 in terms of at most D2 Schmidt vectors corresponding to the
partition 1 2 : 3 . . . L for the second half§

|τ [3 . . . L]α1s2〉 =

D2∑
α2=1

Γ[2]s2α1α2
λ[2]α2 |φ[3 . . . L]α2〉

4. substitute this in the previous decomposition of |ψ〉 to obtain

|ψ〉 =
∑
s1,s2
α1,α2

Γ[1]s1α1
λ[1]α1Γ[2]s2α1α2

λ[2]α2 |s1s2〉 |φ[3 . . . L]α2〉 .

Iterating these steps for the Schmidt vectors |φ[3 . . . L]α2〉 , |φ[4 . . . L]α3〉 , . . .
∣∣φ[L]αL−1

〉
one can finally express |ψ〉 as

|ψ〉 =
∑

s1··· ,sL
α1··· ,αn−1

Γ[1]s1α1
λ[1]α1Γ[2]s2α1α2

λ[2]α2Γ[3]s3α2α3
· · ·Γ[L]sLαL−1

|s1 · · · sL〉

which corresponds exactly to the decomposition given in equation 2.30.

When such a decomposition uses D ∼ Di Schmidt vectors at each step such that
dLD2 << dL, this description results in a great improvement for classical simulations. In
that case, only poly(L) parameters are required to represent the state |ψ〉 , instead of the
dL coefficients cs1···sL needed for the full expansion in the computational basis.

§We can do this because {|τ [3 . . . L]α1s2〉} ∈ span{|φ[3 . . . L]α2〉}.
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Density Matrix Renormalization Group algorithm: optimization
of Matrix Product States

Density Matrix Renormalization Group [118, 119] (DMRG) is a numerical technique
for finding accurate approximations of the ground state and the low-lying excited states
of strongly interacting quantum lattice systems. It traces its roots to Wilson’s numerical
renormalization group (RG) treatment of the impurity problem [122] and it is weakly
related to real space renormalization groups [108]. The accuracy of this method, just
employing a modest amount of computational effort, is remarkable for 1D systems and
it is limited by the dimensionality or range of the interaction. This fact was already
noticed by Östlund et al. [83] who for White’s infinite algorithm [118, 119], established
DMRG’s mathematical foundations in terms of the MPS. The standard DMRG method
was originally introduced in a partially ad hoc manner, without fully understanding the
reasons of its success, but with MPS there exists now a coherent theoretical picture of it
which underlies Quantum Information Theory concepts [109].

DMRG is closely related to exact diagonalization methods and to Wilson’s numerical
Renormalization Group. They may be seen to form a chain of improvements on top of
each other, as described in the following:

Exact Diagonalization gives an exact solution, but the maximum system size that can
be treated is severely limited by the exponential growth of the Hilbert space with
the number of particles in the system. To circumvent this drawback, one would
require the formulation of a variational diagonalization scheme that also truncates
the Hilbert space used to represent the Hamiltonian in a controlled way.

Wilson’s Numerical Renormalization Group implements this idea progressively in-
tegrating out unimportant degrees of freedom, using a succession of renormalization
group (RG) transformations, where only the low-energy eigenstates obtained for a
system of size L will be important in making up the low-energy states of a system
of size L+ 1. The process could be described as:

a) we start with a block of length L and its m (some prefixed number) lowest energy
eigenstates, determined in some previous steps, as an approximate basis

L

L + 1

L

{|ψj〉}j=1...,m

In the initial step, L is small enough to exactly diagonalize the Hamiltonian.

b) we add a new site to the block

L

L + 1

L

Our basis is then {|ψj〉 |i〉}.
c) we project our enlarged basis onto a subspace of dimension m, keeping the low-

energy states of the system and recovering again a small basis

L

L + 1

L

{|ψ̃j〉}j=1...,m

The truncation scheme is iterated.
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How to treat the boundaries of the isolated block after its enlargement is crucial
in formulating an accurate RG procedure, and it has been the main problem for
Wilson’s method. In the case of interacting systems, this could be solved at best
by embedding the block of interest in a larger superblock. At this point a dilemma
arises, as one state of the superblock can, in general, project onto many states of
the system block.

Density Matrix Renormalization Group chooses an optimal way to do this projec-
tion. After the enlargement of the block (step b in Wilson’s method), it proceeds
introducing an environment block, which is the mirror image of the enlarged block,
as it is assumed to have reflection symmetry,

λB

L

L + 1

L

L L

ΓA ΓBλA λBΓA ΓBλA

λBΓA ΓBλA λBΓA ΓBλA

λB

λB

λBΓA ΓBλA λBΓA ΓBλA

λBΓA ΓBλA λBΓA ΓBλA

λBΓA ΓBλA λBΓA ΓBλAλB λBΓA ΓBλA λBΓA ΓBλA

UBA

UAB

UBA UBA

UAB UAB

~ ~ ~ ~ ~~ ~ ~ ~

~ ~ ~ ~ ~~ ~ ~ ~~~ ~ ~ ~~ ~ ~ ~

λBΓA ΓBλA λBΓA ΓBλA

λBΓA ΓBλA λBΓA ΓBλA

λB

λB

λBΓA ΓBλA λBΓA ΓBλAλB

UBA

UAB

UBA UBA

UAB

~ ~ ~ ~ ~~

~ ~ ~ ~ ~~~ ~ ~ ~~ ~ ~

The result is what is called the superblock. The reduced density matrix of the
enlarged system (not the whole superblock) is built and its most probable eigenstates
are kept as the new basis. This last step is the so-called density matrix projection.
The whole procedure is iterated until the quantities of interest, computed at every
step, have converged to the desired accuracy.

DMRG can be formulated as a variational method within the class of MPS [83, 109].
The calculation of the energy 〈ψ|H|ψ〉/〈ψ|ψ〉 for a Hamiltonian H with nearest-neighbor
interactions leads to a multiquadratic function of the matrices A[i] defining the MPS,
which can be solved using the standard technique of alternating least squares to do the
minimization. More in detail, this is done by first fixing all the matrices but the one for
site j and writing the effective Hamiltonian for that site H[j], which includes the rest of
the matrices A[i] with i 6= j (see equation A.9)

E(A[j]) =
~A[j]†H[j] ~A[j]

~A[j]† ~A[j]
. (2.31)

Then, the minimization is done at each of these sites, sweeping back and forth over all
lattice sites i until the desired convergence is achieved. At the end one obtains the set of
matrices A[i] defining the ground state of the system.

In practice, the convergence of this method is excellent [68, 107]. A detailed description
of the algorithm in terms of MPS can be found in appendix A.

Infinite Time-Evolving Block Decimation algorithm

The infinite Time-Evolving Block Decimation algorithm (iTEBD) [113] simulates 1D
quantum lattice systems in the thermodynamic limit. The attainment of this limit is
important to study bulk properties of matter, avoiding finite-size corrections and boundary
effects. To introduce iTEBD we will first describe the Time-Evolving Block Decimation
algorithm (TEBD) [112], as it gives the basis for the infinite-size extension.

Time-Evolving Block Decimation algorithm allows the simulation of quantum many-
body dynamics [112] using a MPS like equation 2.30.
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Figure 2.4: Schematic
representation of two

steps of the iTEDB al-
gorithm in a constrained
region of the lattice. Af-

ter each application of
the time evolution op-
erator UAB (UBA) the

matrices ΓA, ΓB and λA

(ΓA, ΓB and λB) have to
be updated, which is in-

dicated here with a tilde.
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For example, consider that we want to calculate the state |ψt〉 , obtained as the time
evolved state of |ψ0〉 according to the Hamiltonian H

|ψt〉 = e−iHt |ψ0〉 (2.32)

where H contains only local and nearest-neighbor interactions. The main idea of
TEBD is to separate the Hamiltonian describing the dynamics of the 1D system
H =

∑
i h

[i,i+1] into its even and odd terms H = F + G, where by even we mean
F =

∑
i h

[2i,2i+1] and by odd G =
∑

i h
[2i−1,2i]. Note that the terms within one

partition act on different sites and thus commute with each other [h[i,i+1], h[i′,i′+1]] =
[h[2i−1,2i], h[2i′−1,2i′]] = 0.

We approximate the time evolution operator in equation 2.32 using a Suzuki-Trotter
expansion of order p for small δ > 0 [102]

e−iHt = [e−i(F+G)δ]t/δ ' [fp(e
−iFδ, e−iGδ)]t/δ.

This approximates the time evolution operator by a product of O(t/δ) N -body
transformations, which can be expressed as a product of the two-sites operators
e−ih

[2i,2i+1]δ and e−ih
[2i−1,2i]δ.

The time evolution in equation 2.32 is then accomplished by iteratively applying the
operators e−iFδ and e−iGδ a number of O(t/δ) times to the initial state |ψ0〉 , which
has been previously decomposed in the form of equation 2.30. After the application
of each operator at sites i and i + 1 the decomposition (2.30) has to be updated,
involving at each step only the transformation of the tensors Γ[i], λ[i] and Γ[i + 1]
[111].

In the case of an infinite chain which is translational invariant, the state can be written
in the form of equation 2.30 with Γ[i] and λ[i] independent of i. Thus, given that the time
evolution is generated by two-sites operators

UAB =
⊗
i

e−iF [2i,2i+1]δ, UBA =
⊗
i

e−iG[2i−1,2i]δ (2.33)
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the representation is chosen to be of the form

Γ[2i] = ΓA, λ[2i] = λA (2.34)

Γ[2i+ 1] = ΓB, λ[2i+ 1] = λB (2.35)

taking only explicit invariance under shifts by two sites. For L → ∞, the action of UAB

and UBA preserves the invariance of the evolved state under these shifts. As a consequence,
only tensors ΓA,ΓB, λA and λB need to be updated, having a reduction in the cost of the
simulation by a factor of L in comparison to the simulation of finite systems.

The computation of the ground state is achieved by simulating an evolution in imagi-
nary time, where the two-sites unitary gates UAB and UBA are replaced by the non-unitary
gates

UAB =
⊗
i

e−F [2i,2i+1]δ, UBA =
⊗
i

e−G[2i−1,2i]δ (2.36)

using δt << 1 to minimize the errors introduced by a non-unitary evolution. The state
should also be normalized adequately.
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Chapter 3

The physical system for dissipation

3.1 A mathematical toolbox for dissipative systems

Master equation formalism

The master equation describes the time evolution of a system that is coupled to an
environment, while this coupling induces in the system a dynamic that is in general not
coherent [116, 47, 20]. The description is given in terms of the reduced density matrix of
the system and the master equation governs the time evolution of probabilities (diagonal
elements of the density matrix) and of variables containing information about quantum
coherence between the states of the system (non-diagonal elements of the density matrix).

Derivation of the master equation To derive this equation, we consider that the
system S we want to study is coupled to a reservoir R through a weak interaction V.
System and environment are modeled by the Hamiltonians HS and HR, respectively. The
full Hamiltonian describing the dynamics has the following form

H = HS +HR + V. (3.1)

If ω(t) is the density operator of the total system S + R, its evolution in the interaction
picture∗ with respect to the free Hamiltonian HS +HR is dictated by

dω(t)

dt
= − ı̇

~
[V (t), ω(t)] (3.2)

and we are interested in the evolution of the reduced density operator of the system

ρ(t) = TrR[ω(t)]. (3.3)

We consider that initially between the system and the reservoir there are no correlations,
as they had not been in contact before

ω(0) = ρ(0)⊗ ρR(0). (3.4)

∗We want to see the effect of the small perturbation on the state of the system.

37



38 Chapter 3. The physical system for dissipation

With this ingredients, we are going to derive the Markovian† non-unitary evolution of the
system.

Integrating the evolution equation for the total system (3.2), we obtain a formal solu-
tion for the density matrix

ω(t) = ω(0)− ı̇

~

∫ t

0

dt1[V (t1), ω(t1)]. (3.5)

This recurrent integral equation for ω(t) can be indefinitely iterated, inserting it as the
solution for the ω(t1), ω(t2), . . . appearing in the commutator of the integral. The
solution may now be written as

ω(t) = ω(0) +
∞∑
n=1

(
− ı̇
~

)n ∫ t

0

dt1

∫ t1

0

dt2 . . .∫ tn−1

0

dtn[V (t1), [V (t2), . . . [V (tn), ω(0)] . . . ]]. (3.6)

Then, to obtain the state of the system S, we trace out the modes of the bath as in (3.3)

ρ(t) = ρ(0) +
∞∑
n=1

(
− ı̇
~

)n ∫ t

0

dt1

∫ t1

0

dt2 . . .∫ tn−1

0

dtnTrR[V (t1), [V (t2), . . . [V (tn), ρ(0)⊗ ρR(0)] . . . ]]

= [1 + U1(t) + U2(t) + . . . ]ρ(0) = U(t)ρ(0) (3.7)

where in the last equality we have defined the operators giving the weak coupling expan-
sion of the master equation

Ui(t)[·] =

(
− ı̇
~

)i ∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ ti−1

0

dtiTrR[V (t1), [V (t2), . . . [V (ti), (·)⊗ρR(0)] . . . ]].

Using these operators, we can write the exact evolution of the density operator ρ(t) as

dρ(t)

dt
= [U̇1(t) + U̇2(t) + . . . ]U(t)−1[ρ(t)] = L(t)[ρ(t)] (3.8)

where L(t) is the generator of the temporal evolution, the so-called Liouvillian.
To be able to evaluate the trace of ω(t) (3.7) over the reservoir degrees of freedom, we

need to know how the reservoir evolves under the influence of the coupling. We are going
to assume that the bath relaxes much faster than the system. This is reasonable when the
reservoir is very big, much bigger than the system, having an immense number of degrees
of freedom. As a result, the correlation time of the reservoir tres is very small compared
with tdamp, the characteristic time scale of the system evolving under dissipation; meaning
that the system looses all memory of its past. This is known as the “first Markovian

†Local in time.
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approximation”. Considering that the reservoir is much bigger than the system, we can
assume that the changes in the reservoir are negligible (ρR(t) ' ρR(0)) and that it is
always in thermal equilibrium. This is the so-called “Born approximation”

ω(t) = ρ(t)⊗ ρR(0) + ρcorrel (3.9)

where, following from the Markov approximation, ρcorrel is negligible. Given that the
bath is at finite temperature, it does not have quantum fluctuations. As a result, it cannot
excite quantum fluctuations in the system. There are only thermal fluctuations, but these
are negligible at first order. Thereof, we assume that the coupling between the system
and the reservoir is such that

TrR[V (t), ρR(0)] = 0. (3.10)

This condition ensures that U1(t) vanishes. Moreover, if the perturbation to the system is
weak, we can neglect the terms of order greater than two in equation 3.8 and approximate
the Liouvillian as

L(t)[·] = U̇2(t)[·] = − 1

~2

∫ t

0

dt1TrR[V (t), [V (t1), (·)⊗ ρR(0)]] (3.11)

where the next correction is at least of fourth order in the coupling.
Hence, the evolution of our system under the effect of dissipation through a reservoir

can be described as

dρ(t)

dt
= − 1

~2

∫ t

0

dt1TrR[V (t), [V (t1), ρ(t)⊗ ρR(0)]] = L[ρ], (3.12)

that is the master equation for the system S. The assumptions taken to obtain this
expression are the standard ones taken in quantum optics [116, 47, 20].

Heisenberg equations of motion

The general equation of motion for a system operator; or in other words, the time
evolution of the mean value of some system observable A

〈A〉(t) = TrS[Aρ(t)], (3.13)

can be easily calculated applying the chain rule for derivation to 〈A〉(t) and using conve-
niently the master equation of the system.

Applying the derivative, we have

d

dt
〈A〉(t) = TrS

[
A
dρ(t)

dt

]
+ TrS

[
dA

dt
ρ(t)

]
(3.14)

where the second term denotes the possibility of an implicit time dependency of the
operator. In the first term of equation 3.14, we can substitute dρ(t)/dt by the master
equation

dρ(t)

dt
=

1

i~
[HS, ρ(t)] + L[ρ(t)]. (3.15)
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In equation 3.15 we have separated explicitly the coherent part of the evolution for a
closed system, the term with the commutator; and the incoherent evolution, typical of
an open system and described by the Liouvillian. Combing equations 3.14 and 3.15, we
obtain

d

dt
〈A〉(t) = TrS

[
A
dρ(t)

dt

]
+ TrS

[
dA

dt
ρ(t)

]
=

1

i~
TrS [TrS[HS, ρ(t)]A] + TrS [L[ρ(t)]A] + TrS

[
dA

dt
ρ(t)

]
=

1

i~
TrS [[A,HS] ρ(t)] + TrS [L[ρ(t)]A] + TrS

[
dA

dt
ρ(t)

]
. (3.16)

The first and last terms refer solely to the free evolution of the system, they form the
so-called “Ehrenfest’s theorem” for closed systems. Equation 3.16 is the generalization
of this theorem to open systems. This equation allow us to describe the dynamics of a
system undergoing dissipation, through the calculation of relevant correlators‡ to infer
their behavior.

3.2 A Hamiltonian with dissipation

Consider a set of repulsively interacting bosonic cold atoms sitting in a 1D lattice,
described by the Bose–Hubbard Hamiltonian (1.9)

HS =
L∑
i=1

[
−j
(
a†i+1ai + a†iai+1

)
+
U

2
ni (ni − 1)

]
. (3.17)

This system S is embedded in a larger reservoir R, as depicted in figure 3.1, and these two
interact in some way that will be specified later. We consider that the reservoir is a set
of 1D optical lattices, orthogonal to system S, and trapping atoms in a different internal
state, described as well by the Bose–Hubbard model

HR =
L∑
i=1

H
(i)
R =

L∑
i=1

L′∑
k=1

[
− j′

(
b†ik+1bik + b†ikbik+1

)
− j′′

(
b†i+1kbik + b†ikbi+1k

)
+
U ′

2
nbik
(
nbik − 1

) ]
. (3.18)

The operators used in equations 3.17 and 3.18 are the number operators for the system
ni = a†iai and the reservoir nbik = b†ikbik, where a†i (ai) is the creation (annihilation)

operator of atoms at the i-th site of the system, and b†ik (bik) the corresponding operators
at the k-th site of the reservoir associated with i-th site of the system. Here, j and U
represent the hopping and on-site interaction for the atoms in the system, j′ and U ′ are
the tunneling amplitude and interaction strength in the reservoir transverse tubes, while
j′′ is the hopping between these latter tubes. In our notation, L is the number of lattice

‡In the context of cold atoms in optical lattices, they could be 〈ni〉, 〈a†iai+∆〉, etc.
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Figure 3.1: Schematic drawing for a system with dissipation in three different configurations:
independent baths with number dissipation (left), independent baths with phase dissipation
(center), and shared baths with number dissipation (right). The lattice sites of the system are
shown in green and those of the reservoir in violet, where particles interact with a strength U
and U ′, respectively. Black and gray lines indicate the possibility of tunneling between sites
with an amplitude j (black), j′ (dark gray), and j′′ (light gray). At the crossing points, the
colored lines indicate that the system and reservoir interact with a strength V, either through
the exchange of particles (green) or collisions (orange).

sites in the system, and it is small compared to L′, the number of sites in the reservoir
in the orthogonal direction to the system axis. As usual, we consider periodic boundary
conditions for both parties.

The atoms from the system and reservoir interact locally at the intersecting points
of both chains according to an interaction Hamiltonian HSR. As shown in figure 3.1,
we will consider exchange of particles (left), collisions (center) and exchange of particles
with shared baths (right), which are further described in section 3.2. All these kind of
interactions are regarded to be the same for all lattice sites. In this way, the reservoir we
consider may introduce irreversibilities in the system, through the exchange of particles
or collisions. Nonetheless, whenever j′′ = 0 and independent reservoirs are considered,
coherences in the system cannot be established through the bath.

We want to focus our study on the properties of the main chain. Therefore, we will
either study the complete evolution of the system and the environment, tracing afterwards
the degrees of freedom of the latter, or describe directly our system using the master
equation formalism.

Decoherence mechanisms

Now, we introduce the interaction mechanisms considered in this work, which have
been already sketched in figure 3.1: collisions or phase dissipation, and the exchange of
particles or number dissipation. This latter is developed for individual and shared baths
between consecutive system sites.
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Phase dissipation Dissipation of the phase means that the particles of both parties, S
and R, collide against one another, and this contact interaction should presumably lead
to a loss of coherence

HSR = V
∑
i

nin
b
i0. (3.19)

This implies that the particles of the system (ni) meet the ones of the reservoir (nbi0) at the
points where these two systems overlap, interacting at a rate or strength V, as illustrated
in figure 3.1 (center). We derived the Liouvillian for this process, as shown in appendix
B, obtaining

Lφ =
γ

2

∑
i

{
−n2

i ρ− ρn2
i + 2niρni

}
. (3.20)

where γ is the damping rate (see equation B.17).

Number dissipation Dissipation in the number of particles means that there is an
exchange of particles between the system and the reservoir, taking place at the points
where they overlap at a rate or strength V. This is depicted in figure 3.1 (left) and it is
described by the interaction Hamiltonian

HSR = V
∑
i

(
a†ibi0 + b†i0ai

)
(3.21)

where the creation of a particle in the system (a†i ) implies the destruction of another in
the reservoir (bi0), and vice versa. Deriving the Liouvillian for this interaction, as shown
in appendix B, we obtain

Ln =
γ

2

∑
i

{
(N + 1)(2aiρa

†
i − a

†
iaiρ− ρa

†
iai) +N(2a†iρai − aia

†
iρ− ρaia

†
i )
}

(3.22)

where γ is the damping rate (see equation B.17).
If we consider shared baths between neighboring sites, as shown in figure 3.1 (right),

the operator ai must be substituted by ai + ai+1 in equation 3.21, as in this situation
each of the baths interacts with the two nearest sites of the system. This results in an
interaction Hamiltonian

HSR = V
∑
i

(
(ai + ai+1)†bi0 + b†i0(ai + ai+1)

)
. (3.23)

Consequently, this substitution should be also done in equation 3.22, leading to the Liou-
villian

Ln,shared =
γ

2

∑
i,i′

{
(N + 1)(2(ai + ai+1)ρ(ai′ + ai′+1)† − (ai + ai+1)†(ai′ + ai′+1)ρ−

ρ(ai + ai+1)†(ai′ + ai′+1)) +N(2(ai + ai+1)†ρ(ai′ + ai′+1)−

(ai + ai+1)(ai′ + ai′+1)†ρ− ρ(ai + ai+1)(ai′ + ai′+1)†)
}

(3.24)

where γ is the damping rate (see equation B.17).
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Description of theoretical results

We already know the behavior of ultracold atoms in optical lattices when there is
no dissipation in the system (HSR = 0), as it corresponds to the Bose–Hubbard model
presented in section 1.3. In this chapter we are now going to study the influence of
dissipation on this model, or more precisely the effect of some dissipative processes on its
phase diagram.

Let us recall that the Bose–Hubbard model presents mainly two phases, the superfluid
in the limit j/U >> 1 and the Mott insulator when j/U << 1. The first methods of
this chapter focus on distinct regimes. To study the superfluid region, in section 4.1 we
introduce the phase and harmonic approximations, for contact (3.19) and exchange (3.21)
interactions. After using these approximations, the problem can be solved applying a
real Fourier transform to the variables and the state of the system is finally characterized
through its reduced density matrix. To study the effect of the contact interaction (3.19)
on the Mott-phase diagram, in section 4.2 we implement a strong coupling expansion
to second order in the dissipation strength and the hopping amplitudes. For a general
overview, in section 4.3 we consider a mean-field approach to study the complete phase
diagram in the case of contact interaction (3.19), using a Gutzwiller ansatz.

4.1 Applying the Quantum Rotor model to a dissi-

pative system

In this section we use the approximations introduced in section 2.1 for the Bose–
Hubbard model, to describe our system in the limit of large hopping amplitudes j, j′

and j′′. Similarly as done there, we move from the Fock basis of the system |~n〉 and the

reservoir
∣∣~nb〉 to their basis of phase states |~φ〉 and |~ξ〉, respectively,

|~n〉 →
∣∣∣~φ〉 , ∣∣~nb〉→ ∣∣∣~ξ〉

where
〈
~n|~φ
〉

= ei~n·
~φ

(2π)L/2
, with ~φ ∈ [−π, π]⊗L (4.1a)

and
〈
~nb|~ξ

〉
= ei~n

b·~ξ

(2π)L
′/2 , with ~ξ ∈ [−π, π]⊗L

′
. (4.1b)

43
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In this notation, as in section 2.1, to each site of the lattice corresponds an element of
a given vector. For example, φk is the phase corresponding to the k-th site of the main
chain, and ξkj is the phase variable corresponding to the j-th site at the k-th chain of the
bath.

Also as in section 2.1, throughout this section we ignore the constant terms in the
Hamiltonians. We would also like to emphasize that it is interesting to work in the phase
basis when the relevant physical states are concentrated around large occupation numbers
(n̄, n̄b >> 1). Otherwise, some non-physical states, as Fock states with negative particle
number, could be also included due to the symmetry of the phase intervals (equations
4.1) with respect to zero.

Hamiltonian for the full model

Our full Hamiltonian H = HS + HR + HSR is composed by the free evolution of the
system HS (3.17), that of the reservoir HR (3.18), and either the contact or the exchange
interaction between them HSR (3.19, 3.21). In the limit of large densities and weak
interactions, as introduced in section 2.1, replacing the operators ai (bij) by the phases√
n̄eiφi (

√
n̄beiξij), and the number operators a†iai (b†ijbij) by the derivatives −i∂/∂φi − n̄

(−i∂/∂ξij − n̄b), we obtain H expressed in the basis of phase states for the case of a
contact interaction

H(φ) = −2j%
∑
i

cos(φi − φi+1)− 2j′%b
∑
i,j

cos(ξij − ξij+1)− 2j′′%b
∑
i,j

cos(ξij − ξi+1j)

−U
2

∑
i

∂2

∂φ2
i

− U ′

2

∑
i,j

∂2

∂ξ2
ij

− V
∑
i

∂2

∂φi∂ξi0
(4.2a)

and for an exchange interaction

H(n) = −2j%
∑
i

cos(φi − φi+1)− 2j′%b
∑
i,j

cos(ξij − ξij+1)− 2j′′%b
∑
i,j

cos(ξij − ξi+1j)

−U
2

∑
i

∂2

∂φ2
i

− U ′

2

∑
i,j

∂2

∂ξ2
ij

+ 2V
√
%%b
∑
i

cos(φi − ξi0) (4.2b)

where indices i and j run from 1 to L and from −(L′ − 1)/2 to (L′ − 1)/2, respectively.
The constants % =

√
n̄(n̄− 1) and %b =

√
n̄b(n̄b − 1) are approximately the density in

the system and the chains of the reservoir. Given the high density in both systems, we
have also approximated

√
n̄n̄b '

√
%%b.

In the limit of strong tunneling, the full system has an equilibrium configuration where
the phases of adjacent sites couple and tend to become equal, φi ∼ φ0, ξij ∼ ξ00 and
φi ∼ ξi0. In this limit we can apply the harmonic approximation, expanding the cosines in
equations 4.2 around this equilibrium configuration and keeping up to the second order
of the phase differences, to study the effect of the quantum fluctuations induced by the
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interactions U, U ′ and V. The Hamiltonian (4.2a) is then approximated by

H(φ) = 2j%
∑
i

(φ2
i − φiφi+1) + 2j′%b

∑
i,j

(ξ2
ij − ξijξij+1) + 2j′′%b

∑
i,j

(ξ2
ij − ξijξi+1j)

−U
2

∑
i

∂2

∂φ2
i

− U ′

2

∑
i,j

∂2

∂ξ2
ij

− V
∑
i

∂2

∂φi∂ξi0
(4.3a)

and equation 4.2b by

H(n) = 2j%
∑
i

(φ2
i − φiφi+1) + 2j′%b

∑
i,j

(ξ2
ij − ξijξij+1) + 2j′′%b

∑
i,j

(ξ2
ij − ξijξi+1j)

−U
2

∑
i

∂2

∂φ2
i

− U ′

2

∑
i,j

∂2

∂ξ2
ij

− V
√
%%b
∑
i

(φ2
i + ξ2

i0 − 2φiξi0). (4.3b)

In equations 4.3 some of the variables are coupled by a circulant matrix, which is of
the form Q(i, j) = −δij−1 +2δij− δij+1. Thus, both cases can be diagonalized by the same
orthogonal transformation ωpi, a real discrete Fourier transformation dependent on the
lattice size. Introducing the new variables

φ̃p =
∑
i

ωpi(L)φi (4.4a)

ξ̃pq =
∑
ij

ωpi(L)ωqj(L
′)ξij (4.4b)

and using the orthogonality relations
∑

i ωpiωqi = δpq and
∑

p ωpiωpj = δij, we arrive to

a simpler model H(·) =
∑

pH
(·)
p , where the Hamiltonian is made of different components

for each momentum p

H(φ)
p = j%εp(L)φ̃2

p +
∑
q

%b[j′εq(L
′) + j′′εp(L)]ξ̃2

pq −
U

2

∂2

∂φ̃2
p

−
∑
q

U ′

2

∂2

∂ξ̃2
pq

−V
∑
q

∂2

∂φp∂ξ̃pq
ωq0(L′) (4.5a)

H(n)
p = j%εp(L)φ̃2

p +
∑
q

%b[j′εq(L
′) + j′′εp(L)]ξ̃2

pq −
U

2

∂2

∂φ̃2
p

−
∑
q

U ′

2

∂2

∂ξ̃2
pq

−V
√
%%b

(
φ̃2
p +

∑
q,q′

ξ̃pq ξ̃pq′ωq0(L′)ωq′0(L′)− 2
∑
q

φ̃pξ̃pqωq0(L′)

)
(4.5b)

corresponding to equations 4.3a and 4.3b, respectively. Here, εp(L) are the eigenvalues of
the tridiagonal matrix that couples φi with φi±1 and ξij with ξi±1j, and εq(L

′) those of the
tridiagonal matrix coupling ξij with ξij±1. For each value of p, equations 4.5 are Gaussian

Hamiltonians. This allows us to write these H
(·)
p in matrix form as

H(·)
p = ~θTpDp

~θp − ~∇T
θpBp

~∇θp , (4.6)
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where we have defined the vector of variables ~θTp = (φ̃p, ξ̃p1, . . . , ξ̃pL) = (φ̃p, {ξ̃pq}) and the
matrices

Dp =


(j%+ j′′%b)εp 0 0 0 0

0 j′%bε1 + j′′%bεp 0 0 0
0 0 j′%bε2 + j′′%bεp 0 0

0 0 0
. . . 0

0 0 0 0 j′%bεL′ + j′′%bεp

+ Vn

Bp =


U/2 0 0 · · · 0

0 U ′/2 0 0 0
0 0 U ′/2 0 0
... 0 0

. . . 0
0 0 0 0 U ′/2

+ Vφ

where the matrices Vn and Vφ should be added depending on the type of dissipation
present in the system, being either number dissipation or phase dissipation respectively.
The expressions of these matrices are

Vn =


−V
√
%%b V

√
%%b/
√
L′ V

√
%%b/
√
L′ · · · V

√
%%b/
√
L′

V
√
%%b/
√
L′ −V

√
%%b/L′ −V

√
%%b/L′ −V

√
%%b/L′ −V

√
%%b/L′

V
√
%%b/
√
L′ −V

√
%%b/L′ −V

√
%%b/L′ −V

√
%%b/L′ −V

√
%%b/L′

... −V
√
%%b/L′ −V

√
%%b/L′

. . . −V
√
%%b/L′

V
√
%%b/
√
L′ −V

√
%%b/L′ −V

√
%%b/L′ −V

√
%%b/L′ −V

√
%%b/L′



Vφ =


0 V/

√
L′ V/

√
L′ · · · V/

√
L′

V/
√
L′ 0 0 0 0

V/
√
L′ 0 0 0 0

... 0 0
. . . 0

V/
√
L′ 0 0 0 0

 .

Given that H is a sum over L quadratic Hamiltonians Hp, it is possible to write its
ground state as a product of the individual Gaussian solutions for each Hp

ψ =
∏
p

ψp(~θp) with ψp(~θp) =

(
detAp
πL′+1

)1/4

exp

[
−
~θTp Ap

~θp

2

]
, (4.7)

where the matrix Ap must satisfy the condition

Dp = ATpBpAp (4.8)

for equation 4.7 to be a solution of H =
∑

pHp. A possible solution to this problem is
thus

Ap = B−1/2
p

√
B

1/2
p DpB

1/2
p B−1/2

p (4.9)

and it is the one we will consider in the following calculations.
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Reduced density matrix of the system

To study the properties of the system S, we construct the S + R full density matrix
using equation 4.7 and trace out the reservoir degrees of freedom to obtain the reduced
density matrix of the system

ρ(~̃φ, ~̃φ′) =

∫ ∏
ij

dξ̃ijψ(~̃φ, {ξ̃ij})ψ?(~̃φ′, {ξ̃ij}). (4.10)

Given that we have the state (4.7) decomposed into momentum states, it results more
convenient to compute first the reduced density matrix for each of these and then consider
their product

ρ(~̃φ, ~̃φ′) =
∏
p

∫
dξ̃p1 · · · dξ̃pLψp(φ̃p, ξ̃p1, . . . , ξ̃pL)ψ?p(φ̃

′
p, ξ̃p1, . . . , ξ̃pL). (4.11)

To proceed with this calculation, we start decomposing symbolically the matrix Ap into
four blocks

Ap =

(
A

(p)
φφ A

(p)

φ~ξ

A
(p)
~ξφ

A
(p)
~ξ~ξ

)
(4.12)

referring to the elements of the matrix in the Gaussian state (4.7) coupling the variables
of the system and/or the reservoir. Considering that the matrix Ap is Hermitian and
positive definite∗, the previous integral becomes

ρ(~̃φ, ~̃φ′) ∼
∏
p

∫
d~̃ξp exp

[
−A(p)

φφ(φ̃2
p + φ̃′2p )/2− ~̃ξTp A

(p)
~ξ~ξ

~̃ξp − (φ̃p + φ̃′p)A
(p)

φ~ξ

~̃ξp

]
(4.13)

up to a normalization factor, and where we have defined the vector ~̃ξTp = (ξ̃p1, . . . , ξ̃pL).

Applying the change of variables χp = φ̃p + φ̃′p, we can express the integral in equation
4.13 as

exp
[
−A(p)

φφ(φ̃2
p + φ̃′2p )/2

] ∫
d~̃ξp exp

[
−~̃ξTp A

(p)
~ξ~ξ

~̃ξp − χpA(p)

φ~ξ

~̃ξp

]
which can also be written with a constant displacement in the variables of integration

exp
[
−A(p)

φφ(φ̃2
p + φ̃′2p )/2

] ∫
d~̃ξp exp

[
−(~̃ξp − ~vp)TA(p)

~ξ~ξ
(~̃ξp − ~vp) + ~vTp A

(p)
~ξ~ξ
~vp

]
by defining a constant vector ~vp = −A(p)

~ξ~ξ

−1
A

(p)
~ξφ
χp/2, that can be reabsorbed by the inte-

gration variables. This integral can now be written more clearly as

exp
[
−A(p)

φφ(φ̃2
p + φ̃′2p )/2 + ~vTA

(p)
~ξ~ξ
~v
] ∫

d~̃ξp exp
[
−(~̃ξp − ~v)TA

(p)
~ξ~ξ

(~̃ξp − ~v)
]
.

∗Actually, for periodic boundary conditions it is not the case, but we can neglect the degrees of freedom
associated to zero eigenvalues since they are associated to the “center of mass” of the system and to the
translational symmetry.
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The integration over constants and degrees of freedom of the reservoir may be neglected,
considering it part of the normalization of the state. Finally, the integral in equation 4.13
can be expressed as

exp
[
−A(p)

φφ(φ̃2
p + φ̃′2p )/2 + A

(p)

φ~ξ
A

(p)
~ξ~ξ

−1
A

(p)
~ξφ

(φ̃p + φ̃′p)
2/4
]

upon normalization of the state. Therefore, the reduced density matrix of the system
takes the form

ρ(~̃φ, ~̃φ′) =
1

N
∏
p

exp
[
−B(p)(φ̃2

p + φ̃′2p )/2 + C(p)φ̃pφ̃
′
p

]
, (4.14)

where the diagonal and off-diagonal elements are given, respectively, by

B(p) = A
(p)
φφ −

1

2
A

(p)

φ~ξ
A

(p)
~ξ~ξ

−1
A

(p)
~ξφ
, C(p) =

1

2
A

(p)

φ~ξ
A

(p)
~ξ~ξ

−1
A

(p)
~ξφ
. (4.15)

To give sense to the probability distribution that the density matrix describes, its trace
should be one. This constrain defines the value of the normalization factor N

N =
∏
p

∫
dφ̃p exp

[
−φ̃2

p(B
(p) − C(p))

]
=
∏
p

√
π

A
(p)
φφ − A

(p)

φ~ξ
A

(p)
~ξ~ξ

−1
A

(p)
~ξφ

. (4.16)

Furthermore, the state (4.14) can be more conveniently written as

ρ(~̃φ, ~̃φ′) =
1

N
exp

[
−
~̃φTB~̃φ

2
−
~̃φ′TB~̃φ′

2
+ ~̃φTC~̃φ′

]
, (4.17)

where B and C are diagonal matrices with the ordered elements B(p) and C(p), respectively.
Using the discrete Fourier transform introduced in equation 4.4, we can return to the real
space and obtain the reduced density matrix of the system

ρ(~φ, ~φ′) =
1

N
exp

[
−
~φT B̄~φ

2
−
~φ′T B̄~φ′

2
+ ~φT C̄~φ′

]
, (4.18)

where the matrices B̄ and C̄ are the corresponding Fourier transformed matrices B and
C.

Having determined the state of our system (4.18), we can now continue calculating the
expectation values that characterize its physical state and tell us more about its phases
and properties.

Characterizing the state of the system: correlation functions

Number fluctuation The variance in the number of particles per site ∆n2
i tells us

whether the particles in the system are pinned to the lattice sites ∆n2
i = 0 or are able to

move the lattice ∆n2
i 6= 0. In the phase model, this quantity may be calculated as

∆n2
i = 〈(a†iai − n̄)2〉 '

〈
− ∂2

∂φ2
i

〉
. (4.19)
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For the reduced density matrix (4.14), we compute this expected value as follows

∆n2
i =

∫
d~φd~φ′δ(~φ− ~φ′)

(
− ∂2

∂φ2
i

)
ρ(~φ, ~φ′). (4.20)

We start taking explicitly the first and second derivatives with respect to the phase φi

∂φiρ(~φ, ~φ′) =
[
−
∑

j B̄ijφj +
∑

j C̄ijφ
′
j

]
ρ(~φ, ~φ′), (4.21a)

∂2
φi
ρ(~φ, ~φ′) =

{
−B̄ii +

[
−
∑

j B̄ijφj +
∑

j C̄ijφ
′
j

]2
}
ρ(~φ, ~φ′) (4.21b)

and then consider the trace of the second derivative of the state∫
d~φ′δ(~φ− ~φ′)∂2

φi
ρ(~φ, ~φ′) =

−B̄ii +

[∑
j

(B̄ij − C̄ij)φj

]2
 ρ(~φ, ~φ). (4.22)

This allows us to write the problem as

∆n2
i =

1

N

∫
d~φ

B̄ii −

[∑
j

(B̄ij − C̄ij)φj

]2
 exp

[
−~φT (B̄ − C̄)~φ

]
. (4.23)

From this point, we proceed changing the variable of integration ~φ to ~ψ = V −1~φ, where
V is the unitary transformation that diagonalizes B̄ − C̄†, while to simplify the notation
we introduce X = B̄ − C̄. This reduces the problem to

∆n2
i = B̄ii −

1

N

∫
d~ψ

[∑
j

(XV )ijψj ·
∑
k

(XV )ikψk

]
exp

[
−
∑
l

XD
llψ

2
l

]
. (4.24)

Finally, using the Gaussian integrals
∫
dφ exp(−αφ2) =

√
π
α

and
∫
dφ exp(−αφ2)φ2 =

− d
dα

√
π
α

= 1
2α

√
π
α
, the fluctuations become

∆n2
i = B̄ii −

1

2
C̄ii (4.25)

expressed as a function of the Gaussian solution (4.7) and its parameters.

Second-order correlation function We can also calculate the decay with the distance
∆ of the two-body correlations in our system. In the phase approximation it can be
calculated as

〈a†iaj〉 = 〈e(i ~xT ~φ)〉 (4.26)

where the only non-zero components of ~x correspond to the i-th and j-th element (|i−j| =
∆), which are xi = −1, xj = 1. For the reduced density matrix (4.14), this expected value
can be computed as follows

〈e(i ~xT ~φ)〉 =

∫
d~φd~φ′δ(~φ− ~φ′) exp(i ~xT ~φ)ρ(~φ, ~φ′). (4.27)

†This means B̄ − C̄ = V (B̄ − C̄)DV −1, where (B̄ − C̄)D is a diagonal matrix.
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Considering first the trace of the product of the state and the exponential∫
d~φ′δ(~φ− ~φ′) exp(i ~xT ~φ)ρ(~φ, ~φ′) = exp(i ~xT ~φ)ρ(~φ, ~φ) (4.28)

the problem becomes very simple

〈e(i ~xT ~φ)〉 =
1

N

∫
d~φ exp

[
i ~xT ~φ− ~φT (B̄ − C̄)~φ

]
(4.29)

and it can be solved defining the constant vector ~v = i(B̄ − C̄)−1~x/2, which can be
reabsorbed in the variable of integration

〈e(i ~xT ~φ)〉 =
1

N

∫
d~φ exp

[
−(~φ− ~v)T (B̄ − C̄)(~φ− ~v) + ~vT (B̄ − C̄)~v

]
. (4.30)

Finally, the correlator becomes

〈e(i ~xT ~φ)〉 = exp

[
−1

4
~xT
(
(B̄ − C̄)−1

)T
~x

]
(4.31)

expressed as a function of the Gaussian solution (4.7), its parameters and the vector ~x
that determines between which sites the two-body correlator is taken.

In figure 4.1 we have the correlations in the system for two different sizes of the
reservoir (in the upper plots L′ = 101 and in the lower ones L′ = 121), considering either
number dissipation or phase dissipation through independent baths (left and right plots,
respectively). All results coincide for V = 0, and we observe as expected that for a fixed
value of the dissipation strength V, the hopping of the system j increases the number
fluctuations and the second-order correlations in the system.

In the case of number dissipation (3.19), as the value of V increases, we observe that
this kind of dissipation pushes the system to a state with characteristics more of a Mott
kind, where the particles tend to be more localized, and loose the strong correlations. The
size of the reservoir L′ does not appear to affect the physics of the system.

In the presence of phase dissipation (3.21), for a small value of the dissipation strength
V we observe that both correlators increase until the dissipation strength reaches a critical
value (V ∼ 0.06 − 0.07 in figure 4.1 (right)), whereon the behavior is reverted. At this
value there is a resonance where higher number fluctuations take place. The position of
this resonance changes with the size of the environment L′, happening at lower values
of V for bigger reservoirs. A systematical study of this effect for longer values of L′ is
hindered by the computational resources.

A common feature of both dissipative mechanisms is that, for a strong dissipation
strength V the second-order correlations decay, indicating a lost of coherence between
neighbors. The systems is not a condensate anymore and tends to fragment, which can
be understood as the emergence of a Mott-phase.

Interpreting these results for certain parameter values as a reinforcement of the phases,
unveils a property of dissipation that is normally not seen in classical systems: it helps
to create a desired quantum phase, with either strong or weak correlations. This idea has
been later better developed by other authors [30, 66, 110].
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Figure 4.1: All plots show the number fluctuations ∆n (color gradient) and the second-order

correlation function 〈a†iai+1〉 (solid). The systems we consider have lengths L = 50, L′ = 101
(up) and L = 50, L′ = 121 (down), undergoing either number dissipation (left) or phase
dissipation (right). The reservoir is considered to be in a superfluid state, with %b = % = 5,
j′/U ′ = 1 and U ′ = U.

A generalized ansatz for the master equation

Instead of solving the Hamiltonian for the full system and tracing out the environment
from its solution, another approach to deal with systems that present open quantum
dynamics is to solve the master equation for their evolution, as it has been mentioned
in section 3.1. To do this within the phase approximation, we will have to extend the
description we have been using to density matrices.

A general mixed state in the phase model can be written as

ρ =
1

(2π)L

∫
dLφdLφ′ei~n·(

~φ−~φ′)ρ(~φ, ~φ′)
∣∣∣~φ〉〈~φ′∣∣∣ . (4.32)

Proceeding similarly as in the pure case, when equations 2.5 were derived, we find that
the relevant operators acting over a density matrix in the phase basis (4.32) transform
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like

Azjρ = i∂φjρ, ρA
z
j = −i∂φ′jρ (4.33a)

A±j ρ = e∓iφjρ, ρA±j = e±iφ
′
jρ (4.33b)

depending on whether the operator acts from the left or from the right of the density
matrix ρ.

Then, the master equation for phase dissipation (3.20) can be written as

∂tρ = i
U

2

∑
j

[
∂2
φj
− ∂2

φ′j

]
ρ+ i%j

∑
j

[
(φj − φj+1)2 − (φ′j − φ′j+1)2

]
ρ

+γ
∑
j

[
∂2
φj

+ ∂2
φ′j
− 2∂φj∂φ′j

]
ρ (4.34)

and we shall consider the following ansatz

ρ(~φ, ~φ′) = N exp
[
−~φTA~φ− ~φ′TB~φ′ − ~φTC~φ′ + ~wT ~φ+ ~vT ~φ′

]
(4.35)

where N is a suitable normalization constant, and the constants A, B, C, ~w and ~v can
be found solving the system of equations obtained for the stationary solution of equation
4.34. Moreover, in the presence of phase dissipation we have an extra condition, namely
the conservation of the number of particles in the system [

∑
i ni, ρ] = 0, which translates

into ∑
i

(
∂φj + ∂φ′j

)
ρ(φ, φ′) = 0 (4.36)

where ρ(φ, φ′) is the function defining the state in equation 4.32.
In the case of dissipation (γ 6= 0), it is not possible to find a consistent solution for

arbitrary values of the rest of the parameters.

Heisenberg equations of motion Another way of tackling this problem is to use
equation 3.16 to derive the Heisenberg equations of motion for the correlation functions,
which can be also used to characterize the state of the system.

For number dissipation in a system with shared baths between neighboring sites (3.24),
using the expansion of ai in terms of phase operators ai =

∑
n(iφi)

n/n!, we can calculate
the equations for the second-order correlation functions in the phase-number representa-
tion

˙〈ninj〉 = 2γ [〈ninj〉 −N〈ni〉 −N〈nj〉+ 2N〈ni〉δij] + γ
[
〈a†injai〉+ 〈a†jniaj〉

]
+

γN
[
〈a†i+1ai〉+ 〈a†iai+1〉

]
δij+1 + γN

[
〈a†i+1ai〉+ 〈a†iai+1〉

]
δij−1 +

γ

2

[
〈nia†jaj+1〉+ 〈nia†jaj−1〉+ 〈a†i+1ainj〉+ 〈a†i−1ainj〉

]
+

γ

2

[
〈a†injai+1〉+ 〈a†injai−1〉+ 〈a†j+1niaj〉+ 〈a†j−1niaj〉

]
˙〈φiφj〉 = 0

˙〈φinj〉 =
γ

2

[
〈a†iai−1φj〉+ 〈a†i−1aiφj〉+ 〈a†iai+1φj〉+ 〈a†i+1aiφj〉

]
+

2γ [〈niφj〉 −N〈φj〉] (4.37)



4.1. Applying the Quantum Rotor model to a dissipative system 53

where for simplicity we show only the dissipative part (i.e. as if U, j = 0), corresponding
respectively to the number-number, the phase-phase and the phase-number correlations
across the lattice, between sites i and j. The system of differential equations 4.37 is not
closed, it mixes correlators of three different, consecutive orders. We encounter the same
situation when considering shared baths with a phase in the interaction (ai−ai+1 instead
of ai + ai+1 in equation 3.24).

For phase dissipation (3.20), using the commutation relation [φi, nj] = iδij, we can
calculate the same second-order correlation functions

˙〈ninj〉 = 2j% [〈niφj−1〉 − 2〈niφj〉+ 〈niφj+1〉+ 〈φi−1nj〉 − 2〈φinj〉+ 〈φi+1nj〉]
˙〈φiφj〉 = −U [〈niφj〉+ 〈φinj〉]− γδij
˙〈φinj〉 = 2j% [〈φiφj−1〉 − 2〈φiφj〉+ 〈φiφj+1〉]− U〈ninj〉. (4.38)

If the system of equations 4.38 would be homogeneous, it could possibly have an inter-
esting solution. On this basis, we introduce a toy model in which the phase dissipation
(3.20) is modified, replacing ni by n2

i in the Liouvillian. This change ensures a system of
homogeneous differential equations,

˙〈ninj〉 = 2j% [〈niφj−1〉 − 2〈niφj〉+ 〈niφj+1〉+ 〈φi−1nj〉 − 2〈φinj〉+ 〈φi+1nj〉]
˙〈φiφj〉 = −U [〈niφj〉+ 〈φinj〉] + 4γ〈ninj〉δij
˙〈φinj〉 = 2j% [〈φiφj−1〉 − 2〈φiφj〉+ 〈φiφj+1〉]− U〈ninj〉. (4.39)

The number of equations needed to solve this problem, can be reduced from 4L2 to
4L considering periodic boundary conditions, such that 〈XiYj〉 = 〈X1Y|i−j|〉 for any local
operators Xi and Yi. Defining the relative distance ∆ = |i−j|, the 4L equations correspond
to 〈n1n∆〉, 〈φ1φ∆〉, 〈φ1n∆〉 and 〈n1φ∆〉. Using a vector to collect the operators at all

relative distances ∆ under one symbol (e.g. ~X = (X1X2 . . . XL)), we can write the
system of equations 4.39 as

˙
〈n1~n〉
〈n1

~φ〉
〈φ1~n〉
〈φ1

~φ〉

=


0 −2%jB −2%jB 0
U 0 0 −2%jB
U 0 0 −2%jB

4γδ0∆ U U 0



〈n1~n〉
〈n1

~φ〉
〈φ1~n〉
〈φ1

~φ〉

 (4.40)

where B is a circulant matrix, with Bii = −2 and Bii±1 = 1. For j = 0, the equations
4.40 acquire simplified expression

˙〈n1n∆〉 = 0
˙〈φ1φ∆〉 = −U [〈n1φ∆〉+ 〈φ1n∆〉] + 4γ〈n1n∆〉δ0∆

˙〈φ1n∆〉 = −U〈n1n∆〉

yielding as solution a constant value of 〈n1n∆〉 in time, linearly growing correlators 〈φ1n∆〉
and 〈n1φ∆〉, and a quadratically growing 〈φ1φ∆〉 that also grows with the dissipation.

Implementing in the master equation ρ(φ, φ′) = ρ0e
−i(~φ−~φ′)·~n as trial function, we find a
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constant ρ0 as stationary state of the system, corresponding to a Mott insulating state.
We calculate the initial values of the second moments 〈n1n∆〉, 〈φ1n∆〉, 〈n1φ∆〉 and 〈φ1φ∆〉
using this state. Then, proceed with an adiabatic evolution of the system as j increases,
but the resulting equations are not stationary. Considering j 6= 0 and initially that γ = 0,
the stationary state condition on (4.40) gives 〈n1n∆〉 = 2j%

U
B〈φ1φ∆〉 and 〈φ1n∆〉, 〈n1φ∆〉 =

0. Then, the correlation length

ξ2 =

∑
∆ ∆2〈φ1φ∆〉∑

∆〈φ1φ∆〉
decreases as the interaction strength γ grows.

4.2 Strong coupling expansion around the interact-

ing Mott

Proceeding as explained in section 2.2, we are going to calculate the Mott-phase dia-
gram for an optical lattice undergoing phase dissipation (3.19) in a reservoir of independent
baths (j′′ = 0). We focus on the behavior of the first Mott lobe (one particle per site)
drawn in figure 2.3, considering that the reservoir has also one particle per site.

The expansion to second order for weak coupling j, j′′ << U,U ′, V yields for the lower
boundary of the lobe (chemical potential required to add a hole to the system)

µh(L) = V + 2j − 4j2

U
+

8j′2

U ′
− 8j′2U ′

U ′2 − V 2

' V + 2j − 4j2

U
− 8j′2V 2

U ′3
(4.41a)

and for the upper one (chemical potential required to add a particle to the system)

µp(L) = U + V − 4j +
j2

U
− 8j′2U ′

U ′2 − 4V 2

(
3V 2

U ′2 − V 2

)
' U + V − 4j +

j2

U
− 24j′2V 2

U ′3
. (4.41b)

Here, we see that the lobe shifts upwards proportionally to the strength of the on-site
interaction V. The crossing point of these lines will give us an approximate behavior of
the lobe tip under the influence of the dissipative process

5j2

U
− 6j + U − 16V 2j′2

U ′3
= 0 (4.42)

which has as root the critical value of the hopping amplitude

j
(2)
c

U
=

6±
√

16 + 320 j
′2V 2

UU ′3

10
(4.43)

taking the solution with the negative sign (figure 4.2 (inset)), as we are in the perturbative
regime. Therefore, we observe that the size of the lobe starts decreasing as the interaction
is turned on, but also when the kinetic energy of the environment is increased.
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environment for a constant interaction
strength V/U = 0.2.

4.3 A Gutzwiller ansatz for the system and reservoir

In this section we generalize the description introduced in section 2.3 to our many-
chains system. Namely, the state is modeled as a product of functions describing the state
of each site

|ψ〉 = ⊗Li=1

∣∣∣ψ(s)
i

〉
⊗L,L

′

i,j=1

∣∣∣ψ(r)
i,j

〉
(4.44)

where
∣∣∣ψ(s)

i

〉
denotes the state of the i-th site of the system and

∣∣∣ψ(r)
i,j

〉
the state of the

j-th site of the i-th chain in the reservoir

∣∣∣ψ(s)
i

〉
=

N∑
n=1

fn |n〉 ,
∣∣∣ψ(r)

i,j

〉
=

N∑
n=1

g(j)
n |n〉 (4.45)

and fn and g
(j)
n are the coefficients of these states when expanded in the Fock basis,

considering translational invariance along the main chain as the index i is omitted. These
coefficients are found by minimizing the free energy of whole system in the grand canonical
ensemble, under the constrain of normalized states.

In figure 4.3 we have the phase diagrams calculated using a Gutzwiller ansatz. Each
plot corresponds to a different value of the dissipation strength V in the case of phase
dissipation (3.19). The lower plot will be our reference, displaying the results for the Bose–
Hubbard model (i.e. V = 0). We identify the Mott insulating phases as those having
vanishing number fluctuations (∆n = 0) and vanishing coherence (〈a〉 = 0). On the
contrary, the superfluid regions show that these numbers acquire finite values (∆n, 〈a〉 6=
0).

A Gutzwiller ansatz does not reveal any variations in the size of the Mott lobes when
the dissipation strength V increases, as the strong coupling results had suggested (see
inset figure 4.2). For V 6= 0, the lobes conserve the same size as in the Bose–Hubbard
model (figure 4.3 (down)). This disagreement may come from the truncation of the
strong coupling expansion to second order in V, neglecting changes that take place at
higher values of V.
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Figure 4.3: Phase diagram using a
Gutzwiller ansatz for different dissipation

strengths V. The plots show the system’s par-
ticle fluctuation per site ∆n (color gradient)

and its single-particle coherence 〈a〉 (solid) for
V = 0.05U (top left), V = 0.1U (top right),

and V = 0. In all simulations the reservoir
had U ′ = U , j′ = 0.1U , and µ′ = 0.8U.
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However, the results in figure 4.3 agree with the occurrence of a shift along the y-
axis (chemical potential) that is linear in the dissipation strength V. In our mean-field
simulations, the shift takes a magnitude of ∼ 3.3V. This effect means that for the same
value of the chemical potential, we have less particles per site as V increases. In other
words, the phase dissipation induces a renormalization of the chemical potential, adding
an effective repulsive potential at each site.

Less evident in the plots in figure 4.3 is an increase in the particle fluctuations and
coherence in the superfluid area. The difference is significantly more pronounced around
the Mott lobes (on top and near to the tips). For V = 0.05U we observe changes of up to
∼ 20% in the coherence 〈a〉, and ∼ 12−15% in the particle fluctuation ∆n. For V = 0.1U
both correlators grow as high as to a ∼ 50% more. This changes are not noticeable in the
plots due to the small value that these quantities per se have in those locations.
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Chapter 5

The physical system for correlated
hopping

5.1 Correlated hopping model

Correlated hopping is not a new idea. It appears naturally in fermionic tight-binding
models, where it has been used to describe systems as mixed valence solids [40] and,
given that they are able to mimic the attractive interactions between electrons, high-Tc
superconductors [63, 64, 8, 7, 26, 114]. In most of these works, the correlated hopping
appears also in the form nia

†
jak, indicating that the environment can influence the hopping

of a particle and may not seem to be related with the correlated motion of fermions.
Nevertheless, even in this more elaborate form of correlated hopping, it has been shown
to lead to the formation of bound electron pairs [7, 8] and it has been put forward as an
explanation for high Tc superconductivity [54, 74].

It has been already shown in references [33, 34] that combining atomic collisions with
optical superlattices can be used to induce correlated hopping. The basic idea is shown
in figure 5.1 (right), where atoms are trapped in two orthogonal states called (+) and
(−). The interaction terms change the state of the atoms, forcing them to hop to a
different superlattice every time they collide. In this sense, interactions are responsible for
transport. We would like to remark that the ideas presented here are not restricted to one
dimension and could be implemented using other kinds of spin-dependent interactions.
Also, we would like to point out that correlated hopping appears naturally in state-
dependent lattices loaded with spinor atoms, because their interactions can change the
hyperfine state of the atoms while preserving total angular momentum [120].

In this chapter we will introduce the most general model of correlated hopping that can
be produced by means of state changing collisions. This model is presented in the following
section, where we explain qualitatively the role of each Hamiltonian term. Later on, we
will establish the connection between the parameters of this model and the underlying
atomic model. This will be the foundation for the subsequent analytical and numerical
studies.
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Figure 5.1: (upper left) Atoms in two internal states ↑ and ↓ are trapped in an optical lattice
and coupled by a Raman laser with Rabi frequency Ω. (right) That setup is equivalent to two
displaced superlattices for the dressed states |±〉 ∼ |↑〉 ± |↓〉. (lower left) When asymmetric
contact interactions are considered and the hopping between superlattice cells neglected, the
whole system behaves effectively as a 1D array of alternating |+〉 and |−〉 sites, with transitions
of tunneling amplitude t between them.

5.2 A family of correlated hopping Hamiltonians

In this work we will study the ground state properties of a very general Hamiltonian
that contains different kinds of correlated hopping. More precisely, the model will be

H =
∑
i

{
U

4
: (ni + ni+1)2 : + V nini+1 − t (c†2i c

2
i+1 + H.c.)

−j [(ni − 1)c†i (ci−1 + ci+1) + H.c.]

}
. (5.1)

Here, c†i and ci are bosonic operators for creation and annihilation of atoms according
to the site numbering in figure 5.1 (lower left and right) and the colons : AiBj : denote
normal ordering of operators Ai and Bj.

Let us qualitatively explain the roles of the different terms in equation 5.1. The first
and second terms, with U and V, are related to on-site and next-neighbor interactions.
When these terms are dominant, we expect the atoms in the lattice form an insulator.
Such a phase is characterized by atoms being completely localized to lattice sites, having
well-defined occupation numbers, the absence of macroscopic coherence and a gapped
energy spectrum. Whether this insulating state is itself dominated by strong on-site in-
teractions U or by nearest neighbor repulsion/attraction V will decide whether it presents
a uniform density, a Mott insulator (MI), or a periodic density pattern with integer oc-
cupations, a charge density wave (CDW), respectively.

The third term is the key feature of our model. It describes the tunneling of pairs be-
tween neighboring lattice sites, with amplitude t. Given U, V, j = 0, we expect the atoms
to travel along the lattice in pairs forming what we call a pair superfluid (PSF). The pairs
in this phase will be completely delocalized, establishing long-range coherence along the
lattice. The observable 〈a2〉 would be the figure of merit describing this kind of delo-
calization, while a vanishing 〈a〉 indicates the absence of the single-particle correlations
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appearing in a normal superfluid. Furthermore, this phase should have a critical velocity,
similar to that of an atomic condensate, and the energy spectrum should be gapless.

When one considers the most general kind of atomic interaction, a second kind of
correlated hopping will appear, described by the last term in equation 5.1 [34]. Here,
individual atoms will hop only if there is already a particle in the site they go to (c†icj(ni−
1)) or leave at least a particle where they were ((ni − 1)cjc

†
i ). One might be induced to

think that this term is equivalent to an ordinary hopping term with a strength that
depends on the average density, thus giving rise to a superfluid (SF) phase. However,
this does not seem to be the case. We show that the correlated hopping j generates a
mixed phase which contains features of both the ordinary BEC and the PSF created by
t, a feature reflected by a non-zero value of ∆a2.

Relation to atomic parameters

We now establish the relation between the model in equation 5.1 and the dynamics
of atoms in an optical superlattice. The actual setup, shown in figure 5.1 (upper left and
right), is described in detail in appendix C.1. Roughly speaking, we have an optical su-
perlattice that traps atoms in the dressed states |+〉 and |−〉 , while the atomic interaction
is diagonal in the basis of the bare states |↑〉 and |↓〉 . The interaction will be described
by a contact potential and, as we said, it is diagonal in the bare basis and parametrized
by some real constants gαβ

Hint =
∑

α,β=↑,↓

gαβ
2

∫
d3xψ†α(x)ψ†β(x)ψβ(x)ψα(x)

=
∑

α,β=↑,↓

gαβ
2

∫
d3x : ρα(x)ρβ(x) : (5.2)

These interaction constants are functions of the s-wave scattering lengths between different
species gαβ = 4π~2aαβ/m. In general, these scattering lengths are different for distinct
atomic components, a situation that can be enhanced using optical or magnetic Feshbach
resonances. Without loss of generality, we will use the parametrization

g↑↑ = g0 + g2, g↓↓ = g0 − g2, g↑↓ = g0 + g1 = g↓↑ (5.3)

making these asymmetries more evident. Using this splitting we arrive to

Hint =
g0

2

∫
d3x : (ρ↑(x) + ρ↓(x))2 : + g1

∫
d3x : ρ↑(x)ρ↓(x) :

+
g2

2

∫
d3x : ρ↑(x)2 − ρ↓(x)2 : (5.4)

The total Hamiltonian combines this interaction Hamiltonian with the kinetic energy
and the trapping potential for one particle

H1 =
∑
s=±

∫
dxψ†s(x)

[
− ~2

2m
∇2 + Vs(x)

]
ψs(x) (5.5)
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which is written in a different basis

ψ↑(x) =
1√
2

(ψ+ + ψ−), ψ↓(x) =
1√
2

(ψ+ − ψ−). (5.6)

Since the superlattice potential V±(x) is the dominant term, we may approximate the
bosonic fields as linear combinations of the Wannier modes in this superlattice and in the
dressed state basis, a process detailed in appendix C. Note that out of all the terms in the
interaction Hamiltonian (5.4), only the first one is insensitive to the state of the atoms.
This is important because the asymmetries g1 and g2, when expressed in the dressed basis,
produce terms that change the state of the atoms during a collision. Once we introduce
the effective interaction constants in the lattice

Ui = gi

∫
d3x |w(x)|4 for i = 0, 1, 2 (5.7)

where, w(x) is a Wannier wavefunction, we arrive to the effective Hamiltonian in equation
5.1 with the parameters U, V, t and j that relate to the microscopic model as follows

U =
2U0 + U1

4
, V = −U1

8
, t =

U1

16
and j =

U2

8
. (5.8)



Chapter 6

Description of theoretical results

In this chapter we start studying the eigenstates of Hamiltonian (5.1) for systems
that we can diagonalize exactly. The goals are to characterize the effect of the different
interaction and hopping terms, as well as to understand the structure of the ground state
wavefunction. Although we are limited to a small number of particles, the following
examples provide enough evidence of the roles of correlated hopping, nearest neighbor
repulsion and the utility of different correlators to characterize the state. Later on we
study the many-body physics of our model for a much larger number of particles using
exact analytical methods. We begin with the regime in which the interaction terms U
and V dominate, obtaining the different insulator phases on the j = t = 0 plane. Then,
using perturbation theory, we compute the phase boundaries of these insulating regions
for growing j and t. Afterwards, we study the properties of the ground state and its
excitations in the superfluid phase, with j = 0 and dominating t, proving indeed that this
region describes a superfluid of pairs. Having drawn with these methods a rather complete
picture of the possible ground states in our model, we close it with the application of some
numerical methods. In the limit of strong interactions we find both uniform insulators
and a breakdown of translational invariance forming a CDW, while for dominant hopping
we expect both single-particle superfluidity and a new phase, a pair superfluid. We now
confirm these predictions using two different many-body variational methods.

6.1 A two-sites example

Let us take the simplest interesting case, four particles in two sites. We write the
Hamiltonian in the basis {|40〉 , |22〉 , |04〉 , |31〉 , |13〉}, where the notation |n1n2〉 stands
for n1 particles in the first site and n2 in the second restricting to n1 + n2 = 4,

H4/2 =


0 −4

√
6t 0 −12j 0

−4
√

6t 8V −4
√

6t −6
√

6j −6
√

6j

0 −4
√

6t 0 0 −12j

−12j −6
√

6j 0 6V −12t

0 −6
√

6j −12j −12t 6V

+ 6U. (6.1)
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Notice that in this particular case, U gives rise to a global energy shift and does not
affect the different eigenstates. This is consistent with later studies where we will see
that on-site interactions just add a global contribution to the energy that depends on the
average density. To better understand the role of the remaining terms, we will consider
separately three limiting cases, two of superfluid nature and an insulating one.

Limit j 6= 0, t = V = 0, single-particle delocalization

In this case we take for simplicity V = 0 and diagonalize equation 6.1, finding as
normalized ground state

|ψ0,t=0〉 =
1

4
|40〉+

1

2

√
3

2
|22〉+

1

4
|04〉+

1

2
|31〉+

1

2
|13〉 . (6.2)

Note that this state coincides with the state describing a BEC of 4 particles spread over
two sites

|ψBEC(4)〉 =
1√
4!

(
1√
2

2∑
i=1

c†i

)4

|00〉 . (6.3)

This suggests that, at least in this small example, the correlated hopping proportional to
j is equivalent to the single-particle hopping in the ordinary Bose–Hubbard model, giving
rise to the delocalization of individual particles. However, as it will become evident later
on, for larger systems and more particles this interpretation is wrong.

Limit j = 0, t� |V |, pair delocalization

In the presence of two particle hopping, the lowest energy state has the form

|ψ0,j=0〉 = c40(t, V ) |40〉+ c22(t, V ) |22〉+ c04(t, V ) |04〉 (6.4)

with coefficients

c22(t, V ) ∝ −V +
√

12t2 + V 2

c40(t, V ) = c04(t, V ) ∝
√

6t.

In particular, for dominant pair hopping t� |V | this is a state of delocalized pairs

|ψ〉 =
1

2
|40〉+

1√
2
|22〉+

1

2
|04〉 . (6.5)

Observe that this wavefunction is not equivalent to what one would näıvely understand
as a “pair condensate” from analogy with the single-particle case

|ψ〉 6=

(
2∑
i=1

c†2i

)2

|vac〉 ∼
√

3

8
|40〉+

1

2
|22〉+

√
3

8
|04〉 .

Instead, the previous wavefunction is isomorphic to the BEC of two bosons

|ψBEC(2)〉 =
1

2
|20〉+

1√
2
|11〉+

1

2
|02〉 (6.6)

under the replacement of each boson with two atoms. It is also interesting to remark that
ψBEC(2) has larger pair-correlations than ψ.
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Limit |V | → ∞, an insulator

Reusing the previous wavefunction (6.4) and taking the limit of dominant nearest-
neighbor interaction V, we obtain two possible states. For strong repulsion V → +∞,
states |40〉 and |04〉 are favored, forming a charge density wave (CDW) with partial
filling |ψCDW 〉 ∝ |40〉 + |04〉 . On the other hand, for strong nearest-neighbor attractions
V → −∞, the particles are evenly distributed forming a Mott insulator |22〉 .

6.2 Toy model for pair-superfluidity

We have seen that a setup of four particles in a two-sites lattice with t 6= 0, V, U, j = 0
recreates the exact wavefunction of an ordinary BEC under the replacement of single
bosons with pairs. We can test this idea for slightly bigger lattices with either 2 or 4 par-
ticles, diagonalizing numerically the Hamiltonian (5.1) containing only the pair hopping
term. The resulting wavefunctions are compared side by side with the BEC-like ansatz we
mentioned, that is a normal superfluid state for 1 or 2 particles considering each particle
as a pair (1 → 2 and 2 → 4). In the case of two particles we get indeed the expected
result

|ψg.s.2 〉 =
∣∣ψideal2

〉
=

L∑
i=1

1√
2L
a†2i |vac〉

whereas for 4 particles in 5 sites

|ψg.s.4 〉 = c1

(
|40000〉+ |04000〉+ |00400〉+ |00040〉+ |00004〉

)
+

c2

(
|22000〉+ |02200〉+ |00220〉+ |00022〉+ |20002〉

)
+

c3

(
|20200〉+ |20020〉+ |02020〉+ |02002〉+ |00202〉

)
we find a disagreement between the ideal case of a BEC-like state with coefficients c1 =
1/5, c2 = c3 =

√
2/5, and the exact diagonalization with c1 ∼ 0.2735, c2 ∼ 0.3073 and

c3 ∼ 0.1754. We observe that when compared to the ideal BEC, our paired state breaks
the translational symmetry, revealing an effective attraction between different pairs, that
favors their clustering.

In figure 6.1 we plot the projection between these states, namely the solution of equa-
tion 5.1 with only t 6= 0 and the ideal superfluid of pairs. In the nearby plot we also
analyze two relevant correlators that will be used later on in the manuscript, namely, the
single-particle coherence

C1
∆ =

1

L

∑
i

〈
a†i+∆ai

〉
(6.7)

and the pair correlator

C2
∆ =

1

L

∑
i

〈
a†2i+∆a

2
i

〉
. (6.8)

As it is evident from the wavefunction and from the plots, there is no single-particle
coherence or delocalization because particles move in pairs. Hence, C1

∆ ∼ δ∆0. The other
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Figure 6.1: (left) Fidelity between the ground state of the Hamiltonian and the ideal PSF for
the case of 2 particles (circle) and 4 (none). (right) Particle fluctuation (none), one-body
correlator (dot-dashed) and two-body correlator (dashed) for the case of 2 particles (circle) and
4 (none) using the ground state of the Hamiltonian.

correlator, C2
∆, which we identify with the delocalization of pairs, is rather large and

it only decreases with increasing the lattice size because the total pair density becomes
smaller.

6.3 No hopping limit: insulating phases

To analyze the phase diagram it is more convenient to work in the grand canonical
picture, in which the occupation is determined by the chemical potential µ. In this picture
the ground state is determined by minimizing the free energy

F = H − µN, (6.9)

where N =
∑

n nk is the total number of particles, including both states |+〉 and |−〉 .
The free energy has a very simple form in the absence of tunneling

F =
∑
k

[
U

4
: (nk + nk+1)2 : +V nknk+1 − µnk

]
=

∑
k

[
U

4
(nk + nk+1)2 + V nknk+1 −

(
2µ+ U

4

)
(nk + nk+1)

]
. (6.10)

This function is defined over positive occupation numbers nk ∈ {0, 1, 2, . . .}. A discrete
minimization will determine the different insulating phases and the regions where the
system is stable against collapse.

For a translational invariant system with periodic boundary conditions, all solutions
can be characterized as a function of two integers ~xt = (n,m), representing the occupations
of even n2k = n and odd sites n2k+1 = m. The optimization begins by noticing that the
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Figure 6.2: Phase diagram for U, V :
different regions of stability and insu-
lating phases for t, j = 0.

bond energy of two sites has a quadratic form

ε(~x) = ~xt
(

U/4 (U + 2V )/4
(U + 2V )/4 U/4

)
~x− ~xt

(
(U + 2µ)/4
(U + 2µ)/4

)
= ~xtA~x− ~xt~v (6.11)

where physical solutions are in the sector with n,m ≥ 0. For these occupation numbers to
remain bounded, the bond energy ε(~x) has to increase as n,m or both grow. This gives
us two conditions that need to be fulfilled to prevent collapse.

The first condition appears studying ε(~x) along the boundaries of our domain (n ≥
0,m ≥ 0). Take for instance m = 0, this gives a total energy εB = (U/4)n2−[(U+2µ)/4]n.
For this function to have a local minimum at finite n, we must impose

U > 0. (6.12)

The second condition comes from analyzing the interior of the domain. For this, we
take the only eigenvector of A that lies in the region of positive occupation numbers,
n = m = x/2. This line has an energy ε+ = [(U + V )/4]x2 − [(U + 2µ)/4]x and, to have
again a finite local minimum, we require

V > −U. (6.13)

Given that equations 6.12 and 6.13 are satisfied, the system is stable and we have two
possibilities to attain the minimum energy: either at the boundaries, n = 0 or m = 0,
or right on the eigenvector of A. Inspecting εB and ε+ we conclude that a positive value
of V will lead to the formation of charge density waves (CDW) of filled sites alternating
with empty sites

V > 0 ⇒ n2k = 0 or n2k+1 = 0. (6.14)

If V ≤ 0 our energy functional will be convex and the minimum energy state will be a
Mott insulator with n = m, when n+m is even, or a charge density wave with n = m±1,
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when n+m is odd. The actual choice between these two insulating phases is obtained by
computing the energy of both states

ε(2n+ 1) = U(2n+ 1)2/4 + V n(n+ 1)− (U + 2µ)(2n+ 1)/4 (6.15)

ε(2n) = U(2n)2/4 + V n2 − (U + 2µ)2n/4. (6.16)

Having ε(2n + 1) − ε(2n) = 0 defines the value of µ at which the state with 2n particles
every two sites, a Mott with n particles, stops being the ground state and becomes more
favorable to acquire an extra particle to form a CDW. The boundaries of these insulating
phases for t, j = 0 are given by

µ(2n→ 2n+ 1) = (U + V )2n (6.17)

µ(2n− 1→ 2n) = (U + V )2n− U. (6.18)

Thus summing up, for µ(2n−1→ 2n) ≤ µ ≤ µ(2n→ 2n+1) the optimal occupation is n
particles per site, forming a Mott, while for µ(2n→ 2n+1) ≤ µ ≤ µ(2n+1→ 2n+2) the
occupation number is 2n + 1 particles spread over every two sites, and we have a CDW.
The results of this section are summarized in figure 6.2.

6.4 Perturbation theory around the Mott phase

The previous calculation can be improved using perturbation theory for t, j � U, V
around the insulating phases, obtaining the phase boundaries around the insulators as t
and j increase. This is done applying standard perturbation theory up to second order
on both variables [42, 43], using as unperturbed Hamiltonian the operator (6.10) and as
perturbation the kinetic energy term

W =
∑
i

{
−
[
t c†2i c

2
i+1 + j (ni − 1)c†i (ci−1 + ci+1)

]
+ H.c.

}
. (6.19)

We start calculating analytically the ground state energies of the first four insulating
phases according to (6.10), considering the perturbation W up to second order in j, t (see
section 2.2). For the CDW with ni = 1 and ni+1 = 0 this energy is obviously zero

E(L/2) = 0. (6.20)

For the MI with one particle per site we have virtual processes of the correlated hopping
j, as environment-assisted hopping starts being allowed in a uniformly filled lattice

E(L) = (U + 2V )L/2− 8j2

U − 2V
L. (6.21)

For the CDW with ni = 2 and ni+1 = 1, we find some doubly occupied sites and contri-
butions from the pair hopping t appear

E(L+ L/2) = (3U + 4V )L/2−
(

6t2

U
+

24j2

U − 6V
+

32j2

U + 2V

)
L. (6.22)
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Finally, for the MI with two particles per site the ground state energy is

E(2L) = (3U + 4V )L− 24t2 + 216j2

U − 2V
L. (6.23)

Here L is the total number of sites and the results presented in this section are all for
the case V < 0. The derivation of these formulas is very similar to the example treated
in section 2.2.

At each value of j, t, the boundary of an insulating phase having an average density
of n̄ particles per site is given by the degeneracy condition with a compressible state
E(n̄L) = E(n̄L ± 1), which are the defect states with either an extra particle or an
extra hole. Those points correspond to the chemical potential at which a hole can be
introduced µh(n̄L) = E(n̄L) − E(n̄L − 1) and the one to introduce a particle µp(n̄L) =
E(n̄L+ 1)−E(n̄L). We show here the lower and upper limits of the first four insulating
regions, corresponding to the CDW with ni = 1, ni+1 = 0

µh(L/2) = 0

µp(L/2) = U + 2V + j2(
2

V
− 4

U
) (6.24)

the Mott-phase with one particle per site

µh(L) = U + 2V + j2

(
4

U
− 2

V
− 16

U − 2V

)
(6.25)

µp(L) = E(L+ 1)− E(L)

= 2U + 2V − 8j − 4j2

U
+

2j2

V
+

8(j2 − 6jt− 3t2)

U − 2V
(6.26)

the CDW with ni = 2, ni+1 = 1

µh(L+ L/2) = 2U + 2V +
48t2V

U2 − 2UV

+j2

(
4

U
− 2

V
+

96

U − 6V
+

24

U − 2V
+

128

U + 2V

)
(6.27)

µp(L+ L/2) = E(L+ L/2 + 1)− E(L+ L/2)

= 3U + 4V + j2

(
−108

U
+

54

V
+

96

U − 6V
+

64

U + 2V

)
+6t2

(
4

U
− 8

3U − 2V
− 4

U − 2V
− 8

U − 6V

)
(6.28)

and the MI with two particles per site

µh(2L) = 3U + 4V + 8j +
108j2

U
+ 24t2

(
2

U − 6V
+

2

3U − 2V

)
−54j2

V
− 24(35j2 − 3

√
2jt+ 3t2)

U − 2V
(6.29)

µp(2L) = 4U + 4V − 6
√

6j − 108j2

U
− 48t2

U − 6V
− 48t2

3U − 2V

+
54j2

V
+

32(57j2 − 12
√

6jt− 7t2)

3U − 6V
. (6.30)
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Figure 6.3: Phase diagrams for µ, j, t � |U | and V = −0.05. (left) Varying j for t = 0.
(right) Varying t for j = 0. In both cases the lowest region is a CDW with alternating 0 and 1
particle occupation, followed upwards by a Mott of one particle per site, a CDW with 1 and 2
particles and the highest area a Mott of two particles.

The corresponding boundaries are plotted in figure 6.3. For small hopping amplitude,
they match the values that are found later on with numerical methods. But even for
larger values, this approximation anticipates that the insulating lobes are significantly
larger for the correlated hopping j than for the pair hopping t.

6.5 Analysis of the pair-superfluid with the phase

model

So far we have studied the many-body physics around the limit of strong interactions.
However, the main goal of this work is to study the effect of correlated hopping and the
creation of a pair superfluid. In absence of a mean field theory, but still in the limit
of dominant two-body hopping U, V � t, we can use the number-phase representation,
introduced in [45] for an ordinary BEC. Note, however, that the model in [45] cannot
be directly applied here. Following that reference, one would assume a large number of
particles per site, ni > 1, and introduce the basis of phase states |~φ〉

〈~n|~φ〉 = (2π)−L/2ei~n·
~φ. (6.31)

Using these states, one would then develop approximate representations for the operators
a2
i , a

†2
i and ni, and diagonalize the resulting Hamiltonian in the limit of weak interactions.

However, after a few considerations one finds that the resulting phase model does not
preserve an important symmetry of our system: if j = 0 particles can only hop around in
pairs and therefore the parity of each site, (−1)ni , is a conserved quantity.

To describe correlated hopping we need to use a basis of states with fixed parity ν

〈2~n+ ν ′|~φ〉ν = (2π)−L/2ei~n·
~φδνν′ , ν ∈ {0, 1} (6.32)
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which has to be ν = 0 for the ground state we are interested in. As mentioned before,
we now have to find expressions for the different operators, a2

i , a
†2
i and ni. We use the

fact that our states will have a density close to the average value n̄ and approximate the
action of the operators over an arbitrary state as

ni

∣∣∣~φ〉 = (−i2∂ψi − n̄)
∣∣∣~φ〉 (6.33)

a2
i

∣∣∣~φ〉 =
√
n̄(n̄− 1)e−iφi

∣∣∣~φ〉 (6.34)

a†2i

∣∣∣~φ〉 =
√

(n̄+ 1)(n̄+ 2)eiφi
∣∣∣~φ〉 . (6.35)

Introducing the constant ρ2 = n̄(n̄ − 1)(n̄ + 1)(n̄ + 2) our Hamiltonian becomes similar
to the quantum rotor model [45]

H =
L∑
i=1

[
2U∂2

φi
+ (2U + 4V )∂φi∂φi+1

+ 2ρ2t cos (φi − φi+1)
]

−(U + V )Ln̄2. (6.36)

For small U and V, the ground state of this model is concentrated around φi − φi+1 = 0.
Expanding the Hamiltonian up to second order in the phase fluctuations around this
equilibrium point, we obtain a model of coupled harmonic oscillators. This new problem
can be diagonalized using normal modes that are characterized by a quasimomentum
k = 2πn/L, n ∈ [−(L− 1)/2, (L− 1)/2]. The result is

H =
∑

~ωk
(
b†kbk +

1

2

)
+ E0 (6.37)

with normal frequencies

ωk = 4ρ
√

2Ut |sin(k/2)|

√
1 +

(
1 +

2V

U

)
cos (k) (6.38)

and a global energy shift E0 = 4(U + V )N2 − 4Ln̄2(U + V )− 2ρ2tL.
It is evident from equation 6.38 that our derivation is only self-consistent for negative

values of V. Otherwise, when V > 0 some of the frequencies become imaginary signalling
the existence of an unbounded spectrum of modes with |k| ≥ π/4 and that our ansatz
becomes a bad approximation of the ground state. This strictly means that our choice
φi = φi+1 only applies in the case of attractive nearest neighbor interactions, −U ≤ V ≤ 0,
as we know that this interaction can not destabilize a translational invariant solution such
as the uniform Mott insulator. However, it does not mean by itself that the whole system
becomes unstable for V > 0 — indeed, we will show numerically that it remains essentially
in a similar phase for all values of V, but in the case of V > 0 the insulating phases are
stable until values of the hopping slightly higher as in the V < 0 case.

If we focus on the regime of validity, we will find that the spectrum is very similar to
that of a condensate. At small momenta we find the dispersion relation becomes linear,
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Figure 6.4: Phase diagram with a Gutzwiller ansatz for U = 1, V = −0.5. We focus on
(left) j = 0 and (right) t = 0, separately. Upper plots show average site occupation 〈n〉 (color
gradient), and number variance ∆n (contour). Lower plots show single-particle coherence 〈a〉
(color gradient) together with ∆a2 (contour).

ωk ∝ vgk, with sound velocity vg = 4ρ
√

2Ut/~, while at larger energies the spectrum
becomes quadratic, corresponding to “free” excitations with some mass. This is a conse-
quence of the similarity between our approximate model for the pairs (6.36) and the phase
model for a one-dimensional condensate. However, we can go a step further and conclude
that the similarity extends also to the wavefunctions themselves, so that the state of a pair
superfluid can be obtained from that of an ordinary BEC by the transformation n→ 2n.
This is indeed consistent with what we obtained for the diagonalization of a two-particle
state in the limit j, U, V = 0 (see equation 6.6), which was in contradiction with the
results in section 6.2 but shows to recover validity when higher densities are considered.
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6.6 Phase diagram using a Gutzwiller ansatz

The first numerical method that we use to study correlated hopping is a variational
estimate of ground state properties based on a product state [67]

|ψGW〉 =
∏
i

∑
ni

f (i)
n

1√
ni!
c†nii |0〉. (6.39)

Minimizing the expectation value of the free energy F = H − µN , with respect to the
variables fn, under the constrain of fixed norm

∑
n |fn|2 = 1, we will obtain the phase

diagram in the phase space of interactions and chemical potential, (U, V, j, t, µ).
In our study we have made several simplifications. First of all, we assumed period-two

translational invariance in the wavefunction, using only two different sets of variational
parameters, f

(2i+1)
n = f 1

n and f
(2i)
n = f 0

n. In our experience this is enough to reproduce
effects such as the CDW. Next, since U ≥ 0 is required for the stability of the system,
we have taken U = 1 as unit of energy. The limit U = 0 is approximated by the limits
j, t� 1 in our plots. Finally, in order to determine the roles of j and t, we have studied
the cases j = 0 and t = 0 separately. The results are shown in figures 6.4 and 6.5 for
V < 0 and V > 0, respectively.

The first interesting feature is that, as predicted by perturbation theory, we have large
lobes both with integer (1, 2, . . .) and with fractional (1/0, 2/1, . . .) occupation numbers,
forming uniform Mott insulators and CDW, respectively. The insulators are characterized
by having a well defined number of particles per site, and thus no number fluctuations
∆n2 = 〈n2〉 − 〈n〉2 = 0. While the size of the lobes does not depend dramatically on
the sign of V, these are significantly larger for the correlated hopping j than for the pair
hopping t, as already seen with perturbation theory.

The boundary of the insulating areas marks a second order phase transition to a
superfluid regime, where we find number fluctuations ∆n 6= 0, and the transition to this
gapless regime happens for smaller values of j than for t. In order to characterize these
phases we have computed the order parameter of a single-particle condensate 〈a〉, and
two quantities that we use to detect pairing. The first one is a two-particle correlation
that generalizes the order parameter of a BEC to the case of a pair-BEC 〈a2〉. The
second quantity ∆a2 =

√
|〈a2〉 − 〈a〉2| is used to correct the previous value eliminating

the contribution that may come from a single-particle coexisting with the pair-BEC.
When j = 0 we always find that 〈a〉 = 0, even outside the insulating lobes. This

marks the absence of a single-particle BEC, which is expected since we do not have single-
particle hopping. On the other hand, we now find long range coherence of the pairs and
thus 〈a2〉 6= 0 all over the non-insulating area, which we identify with the pair-superfluid
regime.

The situation is slightly different for t = 0. The single-particle order parameter 〈a〉 no
longer vanishes in the superfluid area, denoting the existence of single-particle coherence,
but at the same time we find that the two-particle correlations exceed the contribution
from the pure superfluid as ∆a2 6= 0, which we attribute to a coexistence of both a
single-particle and a pair-superfluid, or a state with both features.

This picture does not change substantially when V is positive or negative. The only
differences are in the insulating region, where the CDW is either due to the incommensu-
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Figure 6.5: Phase diagram with a GW ansatz for U = 1, V = 0.5. We focus on (left) j = 0
and (right) t = 0, separately. Upper plots show average site occupation 〈n〉 (color gradient) and
number variance ∆n (contour). Lower plots show single-particle coherence 〈a〉 (color gradient)
together with ∆a2 (contour).

rability of the particle number (V < 0) or really gives rise to the separation of particles
alternating holes and filled sites (V > 0). However, in the superfluid regime we find no
significant changes and in particular we see no breaking of the translational invariance or
modulation of the coherent phase.

6.7 Quasi-exact diagonalizations and long-range pair

correlations

The previous numerical simulations are very simple and cannot fully capture the single
particle and two-particle correlators. To complete and verify the full picture we have
searched the ground states of the full Hamiltonian using the so-called iTEBD algorithm
introduced at the end of section 2.4, which uses an infinite Matrix Product State ansatz
together with imaginary time evolution [113].

Roughly, this ansatz is based on an infinite contraction of tensors that approximates
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Figure 6.6: Numerical simulations with the iTEBD algorithm. On the left we plot the results
for j = 0, U = 1, V = −0.05 and on the right for V = 0.05, as a function of two-particle tunneling
t. The upper row shows the density (dashed) and particle number fluctuations (solid), while the
lower row shows (∆a)2 (solid) and two-particle coherence (dashed), which overlap indicating
〈a〉 = 0. For each set of operators we show three lines, for µ/U = 0.5, 1.5 and 2.5 corresponding
to plain line, circle and star, respectively.

the wavefunction of a translational invariant system in the limit of infinite size. Adapting
the ansatz to our problem we write it as

|ψ〉 ∼
∏
k∈Z

Γoα2k+1α2k+2
(n2k+1)λoα2k+2

Γe(n2k+2)α2k+2α2k+3
λeα2k+3

×

× 1√
n2k+1!n2k+2!

a
†n2k+1

2k+1 a
†n2k+2

2k+2 |vac〉 . (6.40)

Here the Γo and Γe are matrices that depend on the state of the odd and even sites they
represent, a dependence which is signaled by the n2k+1 and n2k+2 in the previous equation.
These matrices are contracted with one-dimensional vectors of positive weights λe,oα ≥ 0,
which contract the tensors together and are related to the Schmidt coefficients of the
equally named decomposition. This variational ansatz is known to work well for states
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Figure 6.7: Correlator C2
∆ = 〈a†2i+∆a

2
i 〉

vs. site separation, for (t, µ) = (0.1, 1.5),
(0.3, 0.5), (0.2, 1.5), (0.1, 2.5), from top

to bottom. The line with t = 0.1, µ =
1.5 (solid, circles) corresponds to a MI
state and correlations decay to zero on

the third site. The remaining lines have
been rescaled and plotted in log-log scale

in the inset, which shows that the two-
particle correlator decays approximately

as ∆−(1−α) with a power α ∼ 0.4 − 0.5.
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with fast decaying correlations, but even in the critical phases it gives a good qualitative
description of the states.

In order to optimize the iTEBD wavefunction we performed an approximate imaginary
time evolution using a Trotter decomposition and local updates of the associated tensors,
as described in [81]. Using the canonical forms for these tensors it is also straightforward
to compute expectation values for different operators acting either on neighboring or
separated sites.

In figure 6.6 we plot the most relevant results for three cuts across the phase diagram,
namely for µ = 0.5, 1.5 and 2.5, so that they cross both an insulating plateau and the
superfluid region. We have used small tensor sizes from D = 16 up to 64, a value limited
by the need of using large cutoffs for the site populations (nmax = 8). As shown in these
plots, when j = 0 the single-particle correlator is zero for distinct sites, and we are left only
with two-particle correlations. In the MI case the pair correlations between neighboring
sites decrease very quickly, while in the superfluid regime we see a critical behavior

C2
∆ ∼ ∆−(1−α) (6.41)

with an exponent that varies between α = 0.4 and 0.5, depending on the simulation
parameters.

6.8 Some experimental considerations: detection of

the phases

All the phases that this model presents are connected by second order quantum phase
transitions and can be produced and identified using variations of current experiments
[4, 97, 41]. The non-perturbative nature of the effect should help in that respect. The
detection method required to discern the phases that our setup may present, depends
directly on their characteristics and the particularities we want to observe.

The distinctive features of both the MI and the CDW is a well defined number of par-
ticles at each lattice site and the lack coherence. Therefore, their time-of-flight pictures
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will not reveal interference fringes [49] whereas the noise correlation will show peaks at
certain momenta [3, 41]. To discern between this two phases either an adapted scanning
electron microscopy [48], a fluorescence imaging [79, 65] of the system combined with
pairwise light-assisted collisions [27], or a stimulated-emission-depletion fluorescence mi-
croscopy [53] would be adequate to recreate the density distribution along the lattice and
determine whether the lattice is homogeneously filled or not. The energy gap in these
insulators may be proved either by static [49] or spectroscopic means [100].

When the system enters a superfluid phase, it becomes a perfect “conductor” with a
gapless excitation spectrum. The pair superfluid, lacking single-particle order C1

∆ ∼ 0 a.e.,
will also lack interference fringes in the time-of-flight images [49]. In order to measure C2

∆

and confirm the pairing of the particles, we suggest to use Raman photoassociation to build
molecules out of pairs of atoms [62, 123]. Since the molecules will be built coherently on-
site, the nonzero correlator C2

∆ will translate into long-range order for the molecules. This
order should reveal as an interference pattern in time-of-flight images, slightly blurred by
the phase fluctuations which are inherent to 1D. When the normal superfluid component
appears, this can be probed in a time-of-flight experiment observing interference fringes
[49] which intensity will depend on the normal superfluid fraction present in the system.
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Chapter 7

The physical system for
atom-molecule resonances

7.1 Feshbach resonances

A Feshbach resonance [38] is the resonance between an unbound state of particles
and a bound molecular state. The bound state is formed when the coupling between
the internal degrees of freedom leads to a vanishing dissociation energy, i.e. when the
atomic and molecular states are degenerate. This means that the scattering properties of
the particles strongly depend on the energy difference to the bound state, the so-called
detuning.

This type of resonances were introduced in nuclear physics to describe the narrow
resonances observed in the total cross section in the neutron scattering of a nucleus, which
indicated the formation of long-lived compound nucleus with a binding energy close to
that of the incoming neutron. The defining feature of a Feshbach resonance is that the
states of the incoming particles and the bound state exist in different parts of the Hilbert
space of the system, which are called respectively the open and closed channel, as shown
in figure 7.1.

Fifteen years later these ideas started to be considered in the realm of ultracold atoms
[101]. Due to the low temperature of these gases, their effective interatomic interactions
can be considered to be completely determined by the s-wave scattering length. Similarly
to the situation of neutron scattering, two atoms can form a diatomic molecule during
an s-wave collision. As illustrated in figure 7.1, the two incoming atoms have a different
hyperfine state than the formed bound state. The coupling between these is given by the
exchange interaction. Due to this difference, the Zeeman shift of these two channels is not
the same and their energy difference, the so-called detuning δ, can be adjusted tuning the
magnetic field. As a consequence, the s-wave scattering length, implying the magnitude
and sign of the interatomic interactions, can be tuned.
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Figure 7.1: When the atoms in the
open channel undergo a low-energy

collision, they can get coupled to the
closed channel depending on the detun-
ing δ, occurring a scattering resonance.
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7.2 A Hamiltonian for atom-molecule mixtures

We consider a mixture of atoms and molecules in a one-dimensional optical lattice,
including the possibility of converting one species into the other, like in a Feshbach res-
onance where long-lived bound states can be produced. The Hamiltonian of this system
can be written as

H = −ja
∑
i

(
a†iai+1 + h.c.

)
+
Ua
2

∑
i

nai (n
a
i − 1)

−jm
∑
i

(
m†imi+1 + h.c.

)
+
Um
2

∑
i

nmi (nmi − 1)

−Γ
∑
i

(
m†ia

2
i + h.c.

)
+ Uamn

a
i n

m
i

+(Ua + δ)
∑
i

nmi (7.1)

where a†i (ai) are the atom creation (annihilation) operators at the i-th site of a one-
dimensional lattice with L sites, and m†i (mi) are the molecule creation (annihilation)
operators at the i-th site of the same lattice. For these operators, na,mi are the associated
number operators. The atom and molecule hopping amplitudes are given by ja and jm,
and the on-site atom-atom, molecule-molecule and atom-molecule interactions by Ua, Um
and Uam respectively. Finally, the conversion rate between atoms and molecules is denoted
by Γ, while the detuning in the Feshbach resonance by δ (see section 7.1).

To make our study as close as possible to the experiments, the parameters of the
Hamiltonian (7.1), ja, Ua, jm, Um, Uam and Γ, are going to be derived from microscopic
considerations (appendix D). The most relevant are shown in figure 7.2. Apart from any
intrinsic characteristic of the chosen system (mass of the atoms, wavelength of the light,
etc.) which are fixed, the value of these parameters will only depend on the lattice depth
V0, which is easily adjustable in the experiments through the intensity of the trapping
lasers.
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0 = 35Er).

Following this motivation of experimental suitability, we notice that experiments with
Feshbach resonances are done fixing a value of the magnetic field which determines the
detuning δ, and the coherence of the system is explored only changing the potential depth
V0 [104, 115]. However, normalizing the detuning δ with the on-site interaction Ua (which
increases with V0) would lead to a changing value of δ while δ/Ua is kept fixed. To avoid
that, the detuning will be normalized by a reference value Uref which is obtained as the

on-site interaction for a given lattice depth V ref
0 .

Hence, the control parameters in our problem, corresponding to those of the experi-
ment, are the lattice depth V0 (fixing the Hamiltonian parameters ja, Ua, jm, Um, Uam and
Γ); the detuning δ; and the total number of particles N =

∑
i n

a
i + 2nmi (in the canonical

ensemble) or equivalently the chemical potential µ (in the grand canonical ensemble).
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Chapter 8

Description of theoretical results

In this chapter we investigate how the physics of the Bose–Hubbard model (1.9) is
enriched by the introduction of the coherent conversion between atom pairs and molecules.
When the molecular state is far off-resonant from the atomic one, it can be treated as a
virtual state and adiabatically eliminated, resulting in an effective Hamiltonian for the
atoms only, as shown in section 8.1. Later on in section 8.2, we will consider a strong
coupling expansion, drawing the first phase diagram of the system in the limit of strong
interactions. A complete phase diagram will be then drawn using the mean-field approach
in section 8.3. Finally, to go beyond the results found with these methods, and inspired
by the recent results from Rousseau et al. [91, 92], in section 2.4 we will apply a DMRG
method to study the spatial structure of the hybrid correlation functions and thereby the
recently reported “super-Mott”; an incompressible, yet superfluid phase without atomic
or molecular quasi-condensation [91, 92].

8.1 Adiabatic elimination of the molecular state

As first step in our study, we would like to understand the effect of a molecular state
on the conventional Bose–Hubbard model (1.9). We do this by keeping the molecular
level in equation 7.1 far detuned from the atomic one (i.e. δ � Γ), so that it can only
take part in virtual processes of second order in the conversion rate appearing in the new
effective Hamiltonian.

In the following we assume that the atomic gas is strongly interacting Ua � ja, so that
the double occupancy of a site is strongly suppressed and higher order occupancies are
essentially negligible. This allows us to neglect both atom-molecule and molecule-molecule
interactions in equation 7.1, which require respectively atom-molecule conversion in triply
and in fourfold occupied sites. Deriving the Heisenberg equation of motion (3.15) for the
molecular occupation number operator we have

i~
dnmi
dt

= −jm (mi−1 +mm+1) + δmi − Γa2
j (8.1)

and upon adiabatic elimination of the molecular level (ṅmi = 0), we can write

− jm (mi−1 +mi+1) + δmi − Γa2
i = 0. (8.2)
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We want the molecules to be constantly in equilibrium with the atoms, to be able to
describe any state of the system exclusively in terms of the atoms. To decouple all the
modes, we use the following Fourier transformation

mj = 1√
N

∑
q e

iqjmq, mq = 1√
N

∑
j e
−iqjmj (8.3a)

a2
j = 1√

N

∑
q e

iqj[a2
j ]q,

[
a2
j

]
q

= 1√
N

∑
j e
−iqja2

j (8.3b)

obtaining for equation 8.2 that

(−2jm cos k + δ)mk = Γ[a2
i ]k. (8.4)

Now we can express the molecular operators in terms of the atomic ones, in order to find
an effective Hamiltonian where the virtual molecular level is eliminated but its effect still
to be seen on the atoms. After substitution of this relation between operators into the
atom-molecule coupling term in the Hamiltonian (7.1), we obtain as effective term

− Γ
∑
i

(
m†ia

2
i

)
= −

∑
ij

Vi−j

(
a†i

)2

a2
j (8.5)

where the amplitude for correlated hopping has been defined as

Vd =
1

N

∑
k

Γ2eikd

δ − 2jm cos k
(8.6)

with d = i− j as the distance between the sites involved.

We are first interested in the correction to the on-site interaction (d = 0) in the off-
resonant case δ � Γ. Taking these considerations into equation 8.6, we obtain that the
conversion term may be approximated as

− Γ
∑
i

(
m†ia

2
i

)
= −Γ2

δ

∑
i

nai (n
a
i − 1) (8.7)

where we have neglected the molecular hopping amplitude jm, given the off-resonant
condition. This means that in the far detuned case, our system is equivalent to the
Bose–Hubbard model (1.9) with a renormalized interaction strength U

U → U − 2Γ2

δ
(8.8)

which reduces its effective value.

Let us now examine the behavior of Vd in the opposite limit of large separation d. In
a very big lattice, we can approximate the series in equation 8.6 to an integral over the
first Brillouin zone

Vd =
1

2π

∫ π

−π
dk

Γ2eikd

δ − 2jm cos k
. (8.9)
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Considering the case of d→∞, only the small k part contributes

Vd ≈
1

2π

∫ π

−π
dk

Γ2eikd

δ − 2jm(1− k2

2
)

=
Γ2

2πjm

∫ π

−π
dk

eikd

z2 + k2
(8.10)

where we have defined z =
√

(1− 2α)/α and α = jm/δ. As the integrand goes to zero for
large k, the limits of the integral can be extended to ∞

Vd ≈
Γ2

2πjm

∫ ∞
−∞

dk
eikd

z2 + k2

=
Γ2

jm

√
d

2πz
K1/2(zd) (8.11)

where K1/2(x) is the modified Bessel function, and the imaginary part of the integral
vanishes∗. The asymptotic behavior of K1/2(x) for large values of x

K1/2(x)→
√

π

2x
e−x (8.12)

allows us to safely neglect corrections to the interactions at long-range, because they
decrease exponentially with the distance.

8.2 Strong coupling expansion around the atomic so-

lution

In this section we explore the phase diagram of the Hamiltonian (7.1) applying degen-
erate perturbation theory for ja,Γ << Ua, δ around the insulating phases. We consider a
three-dimensional system. According to appendix D.2, the molecular parameters obey the
inequalities jm < ja and Um, Uam > Ua, so that the molecular hopping is also perturbative.

To apply standard perturbation theory up to second order in ja and Γ, we use as
unperturbed Hamiltonian the interaction terms of equation 7.1

H0 =
Ua
2

∑
i

nai (n
a
i − 1) +

Um
2

∑
i

nmi (nmi − 1)

+ Uamn
a
i n

m
i + (Ua + δ)

∑
i

nmi (8.13)

and as perturbation its kinetic energy and conversion terms

W = −ja
∑
i

(
a†iai+1 + h.c.

)
− jm

∑
i

(
m†imi+1 + h.c.

)
− Γ

∑
i

(
m†ia

2
i + h.c.

)
. (8.14)

∗It is an odd function over an even interval.
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Proceeding as in other sections (e.g. for atoms with correlated hopping in section 6.4), we
calculate the ground state energies of the first two insulating phases according to equation
8.13 and apply the perturbation (8.14) up to second order in ja and Γ. Here, we are going
to directly present the results to second order in the perturbationW , i.e. the values of the
chemical potential defining the lower µh(N) and upper µh(N) boundaries of the insulating
lobe with n = N/L particles per site, where N is the total number of particles and L is the
lattice length. These boundaries are given by the degeneracy condition of the insulating
phase with a compressible state, where these compressible states are defect states with
either an extra particle or an extra hole in the system (compared to the insulator). For
the introduction of a hole we obtain the lower boundaries of the insulating states with
one particle per site

µh(L) = 6ja −
12j2

a

Ua
(8.15a)

and two particles per site

µh(2L) = Ua + 12

[
1− 2Γ2

δ2

]
ja −

27j2
a

Ua
− 2Γ2

δ
. (8.15b)

For the introduction of a particle we obtain the upper boundaries of the insulating states
with one particle per site

µp(L) = Ua − 12

[
1− 2Γ2

δ2

]
ja +

3j2
a

Ua
− 2Γ2

δ
(8.15c)

and two particles per site

µp(2L) = 2Ua − 18

[
1− 6Γ2

(Uam − 2Ua + δ)2

]
ja +

12j2
a

Ua
+

2Γ2

δ
− 6Γ2

Uam − 2Ua + δ
. (8.15d)

We have also included terms of third order taΓ
2 to see the effect of the perturbation when

taken as a renormalization of the Bose–Hubbard model, what has already been studied in
the adiabatic elimination (section 8.1) and what will be further compared with the results
in the mean-field approximation in section 8.3.

In figure 8.1 we plot the insulating boundaries obtained using the strong coupling
expansion (8.15). Note that the lowest boundary µh(L) for a finite value of the detuning
(solid line) does not change with respect to the results for the Bose–Hubbard model
(dashed line). This occurs because µh(L) is located in a region of very low density,
where the number of atoms is not enough for molecules to be formed and therefore, for
conversion to take place. We can also observe in this figure that the tendency of the lobes
is to shrink and get shifted downwards in the chemical potential scale. As seen in the
adiabatic elimination of the molecular state in equation 8.8, this can be understood as the
reduction of the effective on-site repulsion felt by the atoms, due to the energy correction
introduced by the atom-molecule conversion Γ.
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Figure 8.1: Phase diagram for ja,Γ � Ua, δ
using a strong coupling expansion to sec-
ond order. Considering a very large detuning
δ →∞ gives back the well known results of the
Bose–Hubbard model (dashed). Considering a
lower value of this variable modifies the bound-
aries of the insulating region, as seen here for
δ = 15Uref (solid). The lattice depth V0 in this
plot goes from 35Er to 10Er, and the Hamil-
tonian parameters are calculated accordingly,
with exception of the detuning that is given in
units of the potential V ref

0 = 35Er.

8.3 Phase diagram using a mean-field approach

As introduced for the Bose–Hubbard model [99], the mean-field approach to a lattice
Hamiltonian relies on the approximation

aia
†
j ∼ 〈ai〉a

†
j + ai〈a†j〉 − 〈ai〉〈a

†
j〉 (8.16)

where αi = 〈ai〉 = 〈a†i〉 is the so-called superfluid parameter, which is determined by
self-consistency in the resulting one-site problem. In the particular case of homogeneous
lattices, translational invariance yields αi = α. This equation allows us to rewrite the
Hamiltonian (7.1) as a sum of on-site operators Hi

H =
∑
i

Hi (8.17a)

Hi = −jaα
(
a†i + a†i+1 + ai + ai+1

)
+
Ua
2
nai (n

a
i − 1)

−jmℵ
(
m†i +m†i+1 +mi +mi+1

)
+
Um
2
nmi (nmi − 1)

−Γ
(
m†ia

2
i + h.c.

)
+ Uamn

a
i n

m
i + (Ua + δ)nmi (8.17b)

where we have omitted the constant terms. It turns out that, considering a translational
invariant system, one is left with (L identical copies of) a single-site problem; where
α = 〈ai〉 is the superfluid parameter of the atoms and ℵ = 〈mi〉 the one of the molecules.
Reducing in this way the problem to the minimization of an one-site Hamiltonian, this pro-
cedure is equivalent to using a Gutzwiller ansatz (2.26), as we are solving self-consistently
the problem for a single site and taking the full solution as a product of solutions for
individual sites.

Defining the total number of particles operator N =
∑

i n
a
i + 2nmi , and minimizing

the expectation value of the free energy F = H − µN for the Hamiltonian 8.17 in the
grand canonical formalism, we obtain the ground state of the system and use it to draw
the phase diagram of the system, which is shown in figure 8.2 for different values of the
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Figure 8.2: Phase diagram following the mean-field approach, drawn for different values of the
detuning: δ →∞ (upper left), δ = 5Uref (upper right), δ = Uref (lower left), and δ = 0 (lower
right). The variable plotted as color gradient is the atomic number fluctuations per site ∆nai ,
and the lines correspond to the normalized atomic one-body correlator 〈ai〉/〈nai 〉. While the
dashed lines hold a label with their value, the solid lines surround the areas where the coherence
〈ai〉 is negligible.

detuning. Such minimization procedure must be performed self-consistently, since the
ground state of H itself depends on the set of superfluid parameters α and ℵ.

In comparison to the previous methods, with this approach we are not only able to
study the off-resonant limit δ >> Γ, but also the resonant regime. As mentioned in
section 7.2, the parameter values are going to be chosen close to the experimental ones.
The detuning takes a constant value, set in experiments by the magnetic field, and it is
fixed as a multiple of a reference value of the on-site interaction Uref , which is defined

by a lattice depth V ref
0 = 35Er. The rest of parameters, Ua, Um, Uam, ja, jm and Γ, are

calculated from the varying lattice depth V0 as in appendix D.2.
Our first results take us to figure 8.2, where we see that the phase diagram of the system

presents incoherent lobes 〈ai〉 = 0, like the Mott lobes appearing for strong interactions
in the Bose–Hubbard model. However, the atom fluctuations ∆nai do not vanish as would
occur in a mean-field treatment. It is in figure 8.3 that we observe that these lobes do
not correspond to a purely atomic incompressible phase. They indicate the presence of
a hybrid incompressible phase, as the vanishing dispersion condition belongs to the total
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Figure 8.3: Phase diagram following the mean-field approach, drawn for different values of the
detuning: δ →∞ (upper left), δ = 5Uref (upper right), δ = Uref (lower left), and δ = 0 (lower
right). The variable plotted as color gradient is the total number of particles per site Ni =
nai + 2nmi , and the lines correspond to the associated number fluctuations ∆Ni = ∆(nai + 2nmi ).
While the dotted lines hold a label with their value, the solid lines surround the areas with
negligible particle number fluctuations ∆Ni.

number of particles per site Ni = nai +2nmi . Only the lowest lobe, corresponding to Ni = 1,
remains purely atomic and disappears when the system is fully at resonance δ = 0.

The disappearance of the Ni = 1 lobe can be explained as follows. As the detuning
decreases and the lattice depth increases (i.e. ja/Ua decreases), the Hamiltonian favors
the localization of the atoms in each well, compensating for their localization energy with
an increasingly efficient conversion mechanism of atom pairs into molecules, which can
only happen in sites with at least two particles. Besides, the molecules have a lower
localization energy, as their hopping amplitude jm is significantly lower than that of the
atoms. In sites with more than two particles, this effect is magnified by the presence
of spectator atoms, which remain localized without participating in the atom-molecule
conversion but introducing a boson-enhancement factor to this term. However, we should
also consider that these sites suffer from additional energy penalties — the atom-molecule
interaction, which is higher than the interaction between three atoms (see appendix D.2).

The dynamic of the other lobes can be explained as follows. When the lattice depth
increases, Γ grows slower than Uam, which leads to a dominating repulsion for a sufficiently
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small detuning. As a consequence, very few molecules appear in sites with two or more
particles, having that these lobes remain approximately of the same size and the atomic
density becomes slightly smaller (due to the few appearing molecules). This shifts the
lobes to smaller values of the chemical potential, as seen in the adiabatic elimination
and perturbation theory. But when the detuning grows, the conversion takes the main
role. For a growing potential depth, the interaction strength Uam dominates over Γ in
sites with particle occupation bigger than two. In this case, sites with three particles
may find convenient to get rid of a particle to be able to convert atoms into molecules
without paying an additional Uam. As a result, the lobe corresponding to Ni = 2 is greatly
magnified by lowering the detuning, taking over part of location of the Ni = 3 lobe and
displacing completely the singly occupied lobe at δ = 0. Lobes with a higher occupation
number are displaced along the µ axis and their sizes are not affected to such a great
extend.

Given that the density which is mostly affected by the atom-molecule conversion is
that of two particles per site, in the following we proceed fixing the occupancy to Ni =
nai + 2nmi = 2. This is attained varying systematically the chemical potential µ until
finding the value yielding nai + 2nmi = 2. In figure 8.4 we see that the hybrid three-
body coherence 〈m†ia2

i 〉 (in color) grows significantly when the molecules start forming
in the system (i.e. when lowering the detuning δ), modifying the physics of the Bose–
Hubbard model. Looking at the normalized one-body correlator 〈ai〉/〈nai 〉 (in black),
we notice that the superfluid-insulator boundary is not very sensitive to the detuning
δ for values of δ ≥ 20Uref . Below this value the boundary first moves to bigger values
of the potential depth V0, as expected from the reduction of the effective atom-atom
interaction coming from the off-resonant atom-molecule conversion (see section 8.1). In
this far off-resonant regime we observe a simple renormalization of the Bose–Hubbard
physics by the virtual atom-molecule conversions. By decreasing δ even further, the
superfluid-insulator boundary occurs at a maximum potential depth for a critical value
of the detuning δc ' 8Uref , and then it starts to move to lower values of V0. This strong
crossover in the behavior of the boundary reveals the onset of the nearly resonant regime.
In this regime, a significant fraction of particles appearing in the ground state of the
system are molecules because the atom-molecule conversion becomes increasingly efficient.

Figure 8.4: Mixed three-body correla-

tor 〈m†ia2
i 〉 (color) and normalized atomic

one-body correlator 〈ai〉/〈nai 〉 (black) as
a function of the lattice depth V0 and
the detuning δ, keeping total number

of particles per site fixed to Ni = 2.
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This crossover is captured by the behavior of the atom-molecule coherence 〈m†ia2
i 〉, which

remains very small and weakly dependent on the detuning δ for δ > δc, while it starts
growing significantly with decreasing δ below this critical value δc.

To be able to compare directly our mean-field results with the strong coupling expan-
sion in section 8.2, we are going to keep the conversion rate Γ locked to a value such that
Γ� Ua and we will keep constraining our mean-field problem to systems with an average
of two particles per site, as it is the simplest case where conversion between atoms and
molecules can take place. In figure 8.5 we compare the results from these two methods.
On the one hand, we consider the renormalization introduced by Γ to the atomic hopping
amplitude in the perturbation theory when compared to the Bose–Hubbard model, taken
from both the lower (dashed) and upper (dash-dotted) boundaries of the Mott insulating
region of two particles (equations 8.15b and 8.15d respectively)

jdownc
PT

(δ) = jc(∞) · [1− 2Γ2

δ2
] (8.18)

jupc
PT (δ) = jc(∞) · [1− 6Γ2/(Uam − 2Ua + δ)2] (8.19)

where jc(∞) is the critical value of the atomic hopping for the Bose–Hubbard model (δ →
∞) using mean-field. On the other hand, jMF

c (δ) (dotted) corresponds to the superfluid-
insulator boundary taken from the mean-field results and defined by the appearance of
the one-particle coherence 〈a〉 (see figure 8.4).

For δ > 20Uref the results from both methods have a very good agreement, presenting
just slight differences for smaller values of the detuning until δ ∼ 5Uref . At this point

the perturbation theory results jdown,upc
PT

(δ) clearly break down and mean-field shows a
crossover from the off-resonant to the resonant behavior. At this crossover, the critical
hopping jMF

c (δ) signaling the superfluid-insulator transition starts to increase upon lower-
ing the detuning. This occurs because for a small detuning, the Hamiltonian energetically
favors the atom localization and the local atom-molecule conversion, over a minimization
of the kinetic energy through the atomic hopping.

Mean-field studies are not able to point out correlations between different sites. How-
ever, inspired by recent results [91, 92] where it is shown the appearance of an “insu-
lating” phase with a “hybrid superfluid fraction” in this model, we would like to study
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Figure 8.6: Phase diagram according to the DMRG method. In the left column we have the
fluctuations in the number of atoms per site ∆nai (color gradient) and the number of atoms per
site 〈nai (lines). In the right column we show the fluctuations in the number of particles per
site ∆Ni (color gradient), where Ni = nai + 2nmi , while the lines frame the areas with integer
particle occupation 〈Ni〉. The upper plots correspond to a detuning δ = 0 and the lower ones to

δ = Uref , where V ref
0 = 35Er.

the long-range correlations of this mixed exotic phase to learn more about its nature.
With mean-field we cannot access long-range order indicators, and therefore we cannot
discriminate between an insulating phase with local conversion and a phase with hybrid
counterpropagating currents. This should be decided using a Density Matrix Renormal-
ization Group method (see section 2.4), looking at the spatial structure of long-range
correlators.

8.4 Quasi-exact diagonalizations and study of long-

range correlations

In this section, we study a one-dimensional version of our system (7.1), implementing
a Density Matrix Renormalization Group method based on Matrix Product States (see
section 2.4). Our motivation originates from recent results [91, 92], where an incompress-
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Figure 8.7: Density of particles per site 〈Ni〉 = 〈nai + 2nmi 〉 (left) and fluctuations in this
number ∆Ni, according to the DMRG method for Ua = 8ja, Uam = 12ja, Um →∞, Γ = 0.5ja,
jm = 0.5ja, and different values of the detuning δ and the chemical potential µ. Upper plots
correspond to a lattice of 20 sites, and the more detailed lower ones to 40 sites.

ible yet superfluid “super-Mott” phase is observed for this system using quantum Monte
Carlo methods. Our goal in this section is to study the spatial structure of correlations,
to learn more about the intriguing properties of this phase.

In this first part, the Hamiltonian parameters are calculated from microscopical prin-
ciples as done in previous sections (see appendix D.2), but taking d = 1 as it is for a
one-dimensional lattice. The conversion rate Γ will be kept constant, according to the
following reasoning. As Γ depends on the lattice depth V0 (it depends on the overlap
between the atomic and molecular states in each site), it will grow when V0 increases,
as the states in each well become narrower in a deeper potential. But in a 1D lattice
this dependence is much weaker than in 3D, because in one-dimensional systems the size
of the wavefunction in the transversal direction is fixed and it may only change in the
longitudinal direction of the lattice. Therefore, taking the conversion rate Γ independent
of V0 is an acceptable approximation that for the sake of simplicity we will make. We
are going to lock the value of this rate to Γ(V ∗0 ), for V ∗0 = 10Er. Due to the dimensional
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Figure 8.8: Atomic (color) and molecular
(black) site occupation in the µ − δ plane.

mismatch, the results obtained in this section cannot be compared directly with previous
ones. However, the nature of the phases remains unaffected.

A “super-Mott” phase has been defined as an incompressible phase, like a Mott insu-
lator, containing a “supercurrent” for each species, but without a global flow [91]. These
“supercurrents” propagate in opposite directions, as seen from the correlated and anti-
correlated windings [91, 92] of Monte Carlo simulations. With DMRG we cannot observe
these superfluid fractions, but we can study how the many-body correlations change be-
tween different lattice sites in distinct points of the phase diagram. For instance, given
a certain Hamiltonian where atoms are involved, we can find its ground state and cal-
culate the two-body atomic correlator Ca

∆ = 〈a†iai+∆〉. This quantity shows the atomic
correlations present between two sites separated by a distance ∆, and we would like to
distinguish their form. If we find that the correlator decays exponentially, the system is
then in an insulating state. On the contrary, if the decay is algebraic, there is a finite
superfluid fraction in the system and fitting the correlator using

Ca
∆ ∼ ∆−(1−α), (8.20)

gives us three possibilities: if α = 1 we have a condensate (only possible in 3D or in 2D a
zero temperature); if 0 < α < 1 we have a quasi-condensate; or if α < 0 we do not have
any condensation.

For our problem we study three such correlators:

Ca
∆ = 〈a†iai+∆〉 (8.21a)

Cm
∆ = 〈m†imi+∆〉 (8.21b)

Cam
∆ = 〈mia

†
i

2
m†i+∆a

2
i+∆〉 (8.21c)

the atomic, the molecular and the hybrid, respectively. The latter should tell us if there
are strong phase correlations of composite objects: two atoms and a molecular hole (or
two atomic holes and a molecule), what could be understood as a counterpropagating flow
of the species without a net mass current.

Using these correlators we are going to study the phase coherence of atoms and
molecules, and the phase coherence between atoms and molecules. Moreover, to probe
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VI. SUMMARY AND DISCUSSION

We have studied a two-species Bose-Hubbard model
including a conversion term between the two species.
Our model can be of interest for ultracold atom experi-
ments using Feshbach resonances. The competition be-
tween the kinetic, potential, and conversion terms leads
to rich phase diagrams. We have shown that increasing

the number of particles of the first species can lead to
an inversion of population, resulting in the number of
molecules greater than the number of atoms. In addi-
tion to the usual superfluid and Mott phases occuring in
boson models, we have identified an exotic ”Super-Mott”
phase, characterized by a vanishing compressibility and a
superflow of both species but with anticorrelations such
that there is no global supercurrent. Finally, we have
produced two phase diagrams as a potential guide to
detect the exotic Super-Mott phase. Since the Super-
Mott phase occupies a big part of the phase diagrams,
we expect it to be observable in experiments. We are
currently investigating the model using a newly devel-
oped algorithm [18] that provides access to Green func-
tions and momentum distribution functions, which can
be measured in experiments. This will allow a direct
comparison between theory and experiments.
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Figure 8.9: Phase diagram in the µ − D
plane (D relates to the detuning as D =
δ − Ua) presented by Rousseau et al. [91] for
parameter values Ua = 8ja, Uam = 12ja,
Um → ∞, and Γ = 0.5ja. This figure is
published with the kind permission of V. G.
Rousseau.

the nature of the spectrum of the system for particle-hole excitations, we are going to
investigate the fluctuations in the total number of particles ∆Ni and the compressibility
of the system ∂ρ/∂µ, where Ni = nai + 2nmi is the number of particles per site operator
and ρ is the particle density, which coincides with 〈Ni〉 in the thermodynamical limit.
These quantities give us information about the compressibility of the system at a local
and global level, respectively.

In figure 8.6 we have the phase diagram for different values of the detuning. These
diagrams do not introduce any new features when compared to the mean-field diagrams
already drawn in figures 8.2 and 8.3. Indeed a study of the decay of Cam

∆ in the insulating
lobes, where the compressibility ∂ρ/∂µ vanishes, does not indicate algebraic hybrid cor-
relations. We find that the decays of Cam

∆ , Ca
∆ and Cm

∆ are exponential with the distance.
This indicates the existence of an insulator, where atom-molecule conversion takes place
independently in each well. In retrospect, this suggests that current experiments may not
be able to observe the “super-Mott” phase, due to the experimental constraints imposed
on the Hamiltonian parameters.

Instead, we are going to employ the Hamiltonian parameters proposed by [91] to as-
certain that our indicators can identify a “super-Mott” phase. Although these parameters
are not experimentally feasible, they turn out to be fine-tuned in order to demonstrate
the existence of the “super-Mott” phase [91, 92]. Their molecular hopping amplitude
jm = ja/2 is considerably bigger than ours, which makes their molecules comparatively
much lighter, having a lower effective mass. Their interactions are very strong, Ua = 8ja,
Uam = 12ja, and they consider hard-core molecules, Um → ∞. Their conversion rate
between atoms and molecules is very low, Γ = 0.5ja.

Using these parameters, we carry out the same study to look for a phase diagram
similar to that in figure 8.9 [91]. In the upper left part of figure 8.7 we have the total
number of particles per site 〈Ni〉. In this plot, the lower area framed in white corresponds
to a phase with one particle per site, and the upper area framed in black corresponds to
a phase with two particles per site. Calculating the fluctuations in the number of atoms
suggests that the lower area is an atomic Mott insulator. The upper area framed in black
is the candidate region for a “super-Mott” phase. In the upper right plot, we have the
fluctuations in the number of particles per site. The local minima of these fluctuations
coincide with the integer-filled regions of 〈Ni〉 = 1 and 2. The incompressible nature
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of these regions is confirmed with the study of the global compressibility of the system
∂ρ/∂µ. This is shown in the upper left plot of figure 8.10 for a zoomed area of the phase
diagram. The lower plots of figure 8.7 correspond to this same area. It is important to
remark that for very large detuning, we recover the physics of the Bose–Hubbard model in
one dimension, observing the cut of the first lobe and the tip of the second corresponding
to ja = 0.125Ua in the inset of figure 2.3 [43].

To study the spatial structure of correlators, we move to figure 8.10. As mentioned
before, in the upper left plot we have the global compressibility ∂ρ/∂µ for a lattice of
40 sites. The black area corresponds to an incompressible phase with two particles per
site. The marked points in the (µ, δ) plane are in correspondence with the following plots,
where the hybrid correlation decay Cam

∆ is shown†, with insets displaying the atomic
correlation decay Ca

∆ (upper right) and the molecular correlation decay Cm
∆ (lower left).

We describe this results following an order from left to right while going downwards. The
first plot corresponds to the yellow dot (µ/ja, δ/ja = 10.6, 5), the second to the gray square
(9.4, 3.5), the third to the red diamond (9.6,−1), the fourth to the gray dot (10.8,−1)
and the fifth to the yellow square (8.6,−5).

Plots corresponding to the incompressible area (yellow and red markers) show expo-
nentially decaying Ca

∆ and Cm
∆ , as atomic and molecular insulators would do. But in the

central point (red diamond) we observe that Cam
∆ has an algebraic decay, with a coeffi-

cient α < 0 (see equation 8.20). This evidences the emergence of strong phase correlations
of composite objects. We will identify this phenomena with the predicted “super-Mott”
phase. These plots suggest that reducing the detuning between the species, we have a
transition from an atomic Mott insulator (δ � ja), to a “super-Mott” phase (|δ| ∼ ja),
and finally to a molecular Mott insulator (δ � ja). This idea is supported by an analysis
of figure 8.8, where the occupation of each species is displayed. We observe a “super-Mott”
phase values of the detuning ranging approximately from δ ∼ −2ja to 2ja. Plots corre-
sponding to the compressible area (gray markers) display algebraically decaying Ca

∆ and
Cm

∆ , as would occur in a superfluid. However, this study needs to be extended to larger
systems. To this end, an accurate finite-size scaling analysis of our results is currently in
progress.

In our simulations, a “super-Mott” phase seems to be realized under two conditions:
on the one hand the global compressibility has to vanish; and on the other hand, atomic
and molecular occupancies should be comparable, 〈nai 〉 ∼ 2〈nmi 〉, which occurs close to
the Feshbach resonance, |δ| ∼ ja. Indeed this second condition appears fundamental to
guarantee that atomic currents can be compensated by opposite molecular currents, in
order to keep the system insulating to independent atomic and molecular currents, and
conducting to correlated counterpropagating currents.

We have not been able to observe this “super-Mott” phase using a realistic parameter
range that would be feasible in experiments. Whether it is possible to attain experimen-
tally the regime proposed by Rousseau et al. and observe the “super-Mott” phase remains
to be discussed. However, we present quantities to discriminate this phase that can be
measured in experiments: density fluctuations and long-range correlations. How these

†All correlations have their asymptotic part taken away, i.e. Cx∆ = 〈x†ixi+†〉 − 〈x
†
i 〉〈xi+†〉, although it

may not be explicitly indicated.



8.4. Quasi-exact diagonalizations and study of long-range correlations 99

−5 0 5

8.5

9

9.5

10

10.5

11

11.5

δ/j
a

µ/
j a

 

 

∂ρ
= 0

∂µ

0

0.05

0.1

1 5 10 19

10
−5

10
−4

10
−3

Cam
∆

∆

1 5 10 19
10

−0.9

10
0.1

Ca
∆

1 5 10 19
10

−5

10
−4

10
−3

Cm
∆

1 5 10 19

10
−4

10
−3

Cam
∆

∆

1 5 10 19
10

−0.4

10
0.1

Ca
∆

1 5 10 19

10
−4

10
−3

Cm
∆

1 5 10 19

10
−5

10
−4

10
−3

10
−2

Cam
∆

∆

1 5 10 19

10
−1

Ca
∆

1 5 10 19

10
−4

10
−3

10
−2

Cm
∆

1 5 10 19

10
−4

10
−3

10
−2

Cam
∆

∆

1 5 10 19
10

−0.6

10
−0.1

Ca
∆

1 5 10 19
10

−3

10
−2

Cm
∆

1 5 10 19

10
−15

10
−10

10
−5

Cam
∆

∆

1 5 10 19
10

−15

10
−5

Ca
∆

1 5 10 19

10
−20

10
−10

Cm
∆

Figure 8.10: Counting graphs from left to right and downwards, the first shows the incompress-
ibility ∂ρ/∂µ in the (µ, δ) plane for a lattice of 40 sites. Other plots show the hybrid correlation
decay Cam∆ for the points marked the first figure: the second plot corresponds to the yellow dot
(10.6, 5), the third to the gray square (9.4, 3.5), the fourth to the red diamond (9.6,−1), the fifth
to the gray dot (10.8,−1) and the sixth to the yellow square (8.6,−5); in brackets we show the
(µ, δ) values in units of ja. The plotted lines show the decay of the respective correlators with
the distance ∆. Insets show the atomic correlation decay Ca∆ (upper right) and the molecular
correlation decay Cm∆ (lower left). These results have been obtained using a DMRG algorithm
for parameter values Ua = 8ja, Uam = 12ja, Um →∞, Γ = 0.5ja, and jm = 0.5ja.
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quantities relate to the ones presented in [91, 92] remains to be seen. These details could
shed some light on the differences presented between both works, e.g. our 〈Ni〉 = 2 phase
appears to be significantly smaller when compared to figure 8.9 by Rousseau et al.. It
would be interesting also to study how and exactly under which conditions the transition
between the “super-Mott” phase and the Mott insulator with two atoms per site takes
place.
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Appendix A

Writing a DMRG algorithm with
MPS

DMRG can be seen as an iterative method based on matrix product states (2.29),
that for a fixed dimension D determines the matrices A[i] whose state |ψ〉 minimizes the
energy of the problem in a variational sense. In this appendix we describe in detail how
this is done; explaining in section A.1 how to normalize a state, and introducing in section
A.2 the effective Hamiltonian used at every step of the algorithm when the minimization
problem is formulated at each site of the lattice.

The initial ansatz is set with all A[i] containing random entries. Let us recall from
section 2.4 that in general these A[i] are tensors with three indices: i.e. A[i]→ A[i]α,si,β
where α and β run from 1 to D, and the physical index si from 1 to d.

Observing equation 2.29, it should be evident to the reader that the choice of the
matrices A[i] is not unique, as making the following change

A[i]→ Ã[i] = XiA[i]X−1
i+1 such that Xi ∈MD×D

does not alter the state |ψ〉 , for any set of non-singular matrices X. Thus, we can choose
a gauge condition at each site of the lattice to fix this mathematical freedom. These
conditions constitute the so-called normal form [85]. They arise in a natural way when
MPS are introduced as explained in section 2.4. If we begin this procedure at some
location k, and run the algorithm to the right of k, we will be looking for a matrix Ã[k]
such that the following condition is fulfilled∑

α,sk

Ã[k](α,sk),β
¯̃A[k](α,sk),β′ = δβ,β′ (A.1)

which is the normalization condition written component-wise. When moving to the left,
equation A.1 should be replaced by∑

sk,β

Ã[k]α,(sk,β)
¯̃A[k]α′,(sk,β) = δα,α′ . (A.2)

Conditions (A.1) and (A.2) can be thought to ensure A[k] being a “unitary” matrix∗ or

∗Though they are not proper unitary matrices because they are rectangular, we take the freedom to
call them so.
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that it is “normalized”, because matrices fulfilling the normal form lead to a normalized
state.

This initial normalization routine is explained in section A.1, it allows us to find a
unitary A[k]. We repeat this sequentially to each matrix until we reach one end of the
chain and then backwards, until we have normalized all the matrices and be back to the
initial one.

Then we construct the effective Hamiltonian at site k, that is the Hamiltonian written
only as a function of the matrix A[k] at the site we are considering. This Hamiltonian
will be used for the minimization of the energy in terms of the current A[k]. How to write
this Hamiltonian and solve the associated local problem is elaborated in detail in section
A.2. From this procedure we obtain an optimal A[k] that minimizes the energy of the
state at this step.

We normalize the state again and move to the next site to proceed in the same way,
until the total energy of the system converges. In other words, the procedure is contin-
ued until a fixed point is reached, something which always occurs since the energy is a
monotonically decreasing function of the step number [109]. Thereof, this is a variational
method which always converges.

We have at the end of the optimization procedure all the A[i] that describe the ground
state of our Hamiltonian. All expectation values can then easily be evaluated [85].

For the sake of readability, we restrict our description to open boundary conditions
(OBC), but there is also a generalization to periodic boundary conditions (PBC). The
main idea is to assume that the particles are in a ring configuration, so all of them are
treated on the same footing. The matrices A[i] are determined in clockwise order, then
improve following a counterclockwise ordering, and then clockwise again, until a fixed
point is reached.

As a reminder, the A[i] in a MPS (2.29) are matrices whose dimension is bounded by
some fixed number D, which is the number of states kept by the DMRG method, and d
is the dimension of the Hilbert space corresponding to the physical systems. For OBC we
have DL = D1 = 1, so that A[1]s1 = ( ~A[1]s1)T and A[L]sL = ~A[L]sL are vectors.

A.1 Normalization of the state

Given equation 2.29, if the matrix A[k] is the only one in the state that is not normal-
ized, using Eqs. A.1 and A.2 we have that

〈ψ|ψ〉 =
d∑

sk=1

D∑
κ,η=1

Tr
(
A[k]κ,sk,ηĀ[k]κ,sk,η

)
=

d∑
sk=1

Tr
(
A[k]skA[k]†sk

)
(A.3)

Then, we proceed to the singular value decomposition (SVD) of this not “unitary”
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A[k]

A[k](α,sk),β = U [k](α,sk),(α,sk)′D[k](α,sk)′,β′V [k]β′,β (A.4a)

A[k]α,(sk,β) = U [k]α,α′D[k]α′,(sk,β)′V [k](sk,β)′,(sk,β). (A.4b)

Depending on which condition we ask to A[k], either equation A.1 when going from i = 1
to L, or equation A.2 when going from i = L to 1; we choose a determinate partition for
the indices in the SVD. These choices correspond to equation A.4a and equation A.4b,
respectively. Given the similarity of these conditions, we are going to work only with one
of them, let us say equation A.4b. For equation A.4a everything can be develop similarly.

In equation A.4b, U [k]α,α′ and V [k](sk,β)′,(sk,β) are unitary matrices, and D[k]α′,(sk,β)′

is diagonal but rectangular (
Diag 0

0 Om×n

)
α′,(sk,β)′

.

This means that α′ < (sk, β)′ and that we can take away some of the zero-columns, to have
a square matrix D[k]α′,α′′ . Now, the resulting V [k](sk,β)′,(sk,β) is of the same dimensions as
A[k]α,(sk,β)

V [k](sk,β)′,(sk,β) → V [k]α′′,(sk,β)

and we can make the following identification

A[k]α,(sk,β) = U [k]α,α′D[k]α′,α′′︸ ︷︷ ︸ V [k]α′′,(sk,β)︸ ︷︷ ︸
X[k]−1 Ã[k]α,(sk,β).

Therefore, we are able to rewrite the state using the new matrices

Ã[k] = X[k]A[k]

A[k − 1] = A[k − 1]X[k]−1

without changing its physical meaning. To continue the procedure, now A[k − 1] has to
be normalized.

A.2 Effective Hamiltonian

Fixing our attention on site k, the Hamiltonian H of a system with next-neighbor
interactions can be decomposed in the following way

H = HL +HLk +Hk +HkR +HR (A.6)

where:

1. HL refers to all the interactions between the sites to the left of k,

2. HLk refers to all the interactions between site k and those to its left,
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3. Hk refers to all the local interactions in the site k,

4. HkR refers to all the interactions between site k and those to its right,

5. HR refers to all the interactions between the sites to the right of k.

If we consider a Hamiltonian with nearest-neighbor interactions

H =
L−1∑
i=1

hihi+1 +
L∑
i=1

gi

the energy can be written as

〈ψ|H |ψ〉 = (Eh1Eh2EI · · · ) + (EIEh2Eh3 · · · ) + · · · (A.7)

where EX is the transfer matrix of operator X, as defined in [85], and I the identity
matrix in a site. We can decompose this expectation value with respect to the site k of
our interest

〈ψ|H |ψ〉 = AkEI[k]Bk + FkEh[k]Bk + CkEI[k]Dk + CkEh[k]Gk

+A′kEI[k]Bk + CkEg[k]Bk + CkEI[k]D′k (A.8)

where we have defined the following matrices, which refer only to the other sites but k,

Ak = Eh[1]Eh[2]EI[3] · · ·EI[k − 1] +

+EI[1]Eh[2]Eh[3] · · ·EI[k − 1] + · · ·
· · ·+ EI[1] · · ·EI[k − 3]Eh[k− 2]Eh[k− 1]

Bk = EI[k + 1] · · ·EI[N ]

Ck = EI[1] · · ·EI[k − 1]

Dk = Eh[k + 1]Eh[k + 2]EI[k + 3] · · ·EI[N ] +

+EI[k + 1]Eh[k + 2]Eh[k + 3] · · ·EI[N ] + · · ·
· · ·+ EI[k + 1] · · ·EI[N − 2]Eh[N− 1]Eh[N]

Fk = EI[1] · · ·EI[k − 2]Eh[k− 1]

Gk = Eh[k + 1]EI[k + 2] · · ·EI[N ]

A′k = Eg[1]EI[2] · · ·EI[k − 1] +

+EI[1]Eg[2] · · ·EI[k − 1] + · · ·
· · ·+ EI[1] · · ·EI[k − 2]Eg[k− 1]

D′k = Eg[k + 1]EI[k + 2] · · ·EI[N ] +

+EI[k + 1]Eg[k + 2] · · ·EI[N ] + · · ·
· · ·+ EI[k + 1] · · ·EI[N − 1]Eg[N].

Having written this matrices, it is very important to realize that
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1. the energy is a quadratic form of our unknown variable at site k

〈ψ|H |ψ〉 = ~A[k]†H ′ ~A[k]

where ~A[k] = A[k](α,sk,β). This will lead us to a simple eigenvalue equation to find
this A[k],

2. recursive forms for the matrices Ai, Bi, Ci . . . between the different sites i can be
found, which will be very convenient to write the program.

If all the matrices A[i] are given, except for the one with i = k, then

E =
〈ψ|H |ψ〉
〈ψ|ψ〉

=
Tr [AkEI[k]Bk]

Tr [A[k]A[k]†]
+
Tr [FkEh[k]Bk]

Tr [A[k]A[k]†]
+

Tr [CkEI[k]Dk]

Tr [A[k]A[k]†]
+
Tr [CkEh[k]Gk]

Tr [A[k]A[k]†]
+
Tr [A′kEI[k]Bk]

Tr [A[k]A[k]†]
+

Tr [CkEg[k]Bk]

Tr [A[k]A[k]†]
+
Tr [CkEI[k]D′k]

Tr [A[k]A[k]†]
.

The dependence of E on A[k] is contained in the bold letters. Playing a little bit around

with the indices, it is possible to put all the numerators in the form ~A[k]†M [k] ~A[k]. Adding
up all these contributions (M [k], . . .), we find an effective Hamiltonian for site k which
we call H[k].

For the minimization of E in function of A[k], we have the following expression

E =
~A[k]†H[k] ~A[k]

~A[k]† ~A[k]
. (A.9)

But minimizing this E with respect to A[k] is equivalent to solving the eigenvalue equation

H[k] ~A[k] = E ~A[k] (A.10)

where ~A[k] corresponds to the minimal E of the spectrum.
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Appendix B

Derivation of the master equation

B.1 Number dissipation

We present the derivation of the master equation for a system of bosonic atoms in a
lattice that is coupled to a reservoir through an exchange of particles (3.22). This type
of dissipation, where particles are exchanged, is equivalent to the well-known damped
harmonic oscillator treated in the literature [116, 47, 20]. This model is briefly introduced
in section B.1.1, as it has been used in the second part of this dissertation. Later in section
B.1.2, we describe the system considering the Mott insulating limit in the Bose–Hubbard
model and making a detailed derivation of the master equation.

B.1.1 The system as a damped harmonic oscillator

The system is modeled by a harmonic oscillator with frequency ε/~, and the reservoir
by a collection of harmonic oscillators with frequencies εk/~. Thereof the interaction at
each site of the system is

HSR =
∑
k

~gk
(
a†bk + b†ka

)
(B.1)

where a† (a) is the creation (annihilation) operator of an excitation in the system, b†k (bk)
is the creation (annihilation) operator of the k-th mode of the bath, and gk is the coupling
constant of the system with the k-th mode of the bath. Using these notation, the free
evolution Hamiltonian for a single site can be written as

H0 = εa†a+
∑
k

εkb
†
kbk, (B.2)

recalling that ε is the energy of an excitation in the system, and εk the energy of the k-th
mode in the bath. We assume that the reservoir is in thermal equilibrium.

The detailed derivation of the master equation for this system is the typical textbook
example [116, 47, 20] and it is analogous to the derivation presented in section B.1.2,
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thereof we just present the final result

dρ(t)

dt
=

γ

2
{N [−aa†ρ(t)− ρ(t)aa† + 2a†ρ(t)a]

+(N + 1)[2aρ(t)a† − a†aρ(t)− ρ(t)a†a]}. (B.3)

In this equation, γ is the damping rate of the dissipative process (see equation B.17), and
N is the mean number of excitations in the reservoir.

B.1.2 The system as a Mott insulator

The system is modeled by a Mott insulator, described by the Bose–Hubbard model
with j = 0; and the reservoir by a large number of harmonic oscillators, exchanging
“excitations” (particles) with the system. As a consequence, we can see our system as a
collection of individual sites interacting with local identical baths. Then, the interaction
at each intersecting point in second quantization is given by

HSR =
∑
k

~gk
(
a†bk + b†ka

)
(B.4)

where a† (a) is the creation (annihilation) operator of the atoms, and b†k (bk) is the
creation (annihilation) operator of the k-th mode of the bath. The coupling constant
gk of the atoms with the k-th mode of the bath comes from the overlap of the Wannier
functions describing the “particles” in both system and reservoir (expanded in modes).
This treatment is convenient to simplify the reservoir spectrum.

For a single site, we can write the free evolution Hamiltonian as

H0 =
U

2
a†a†aa+

∑
k

~εkb†kbk, (B.5)

where U is the local interaction energy of the atoms, and ~εk the energy of the k-th mode
of the bath.

Let ρ(t) be the reduced density matrix of the system and ρR(0) the initial state of
the reservoir, which will remain unaltered by the presence of the system due to its own
characteristics (section 3.1). We proceed to derive the master equation equation 3.12 in
this case, namely

dρ(t)

dt
= − 1

~2

∫ t

0

dt1TrR[HI
SR(t), [HI

SR(t1), ρ(t)⊗ ρR(0)]], (B.6)

where HI
SR refers to coupling between the system and the environment HSR in the inter-

action picture. In this picture, the bath operators bk and b†k are replaced by the operators

bkI and b†kI

bkI = e−iH0t/~bke
iH0t/~ = e−iεknktbke

iεknkt

= e−iεknkt+iεk(nk+1)tbk

= eiεktbk (B.7a)

b†kI = e−iH0t/~b†ke
iH0t/~ = e−iεktb†k, (B.7b)
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and the system operators a and a† by the operators aI and a†I

aI = e−iH0t/~aeiH0t/~ = e−iUn(n−1)t/2~aeiUn(n−1)t/2~

= e−iUn(n−1)t/2~+iU(n+1)nt/2~a

= eiUnt/~a (B.8a)

a†I = e−iH0t/~a†eiH0t/~ = e−iU(n−1)t/~a†, (B.8b)

according to the free evolution H0 of each of these parts. Then, in this picture the
interaction is

HI
SR(t) = ~B(t)a†e−iUnt/~ + ~B†(t)eiUnt/~a (B.9)

where we have defined the bath operators B(t) =
∑

k gke
iεktbk. The master equation

equation B.6 turns into

dρ(t)

dt
= −

∫ t

0

dt1TrR[B(t)a†e−iUnt/~ +B†(t)eiUnt/~a,

[B(t1)a†e−iUnt1/~ +B†(t1)eiUnt1/~a, ρ(t)⊗ ρR(0)]]. (B.10)

To simplify the notation and save some space in the following calculations, we will use
the following shortcuts for some of the variables Bt = B(t), B1 = B(t1), φt = Unt/~ and
φ1 = Unt1/~. Then, the commutator in the integral equation B.10 can be expanded as

[·, [·, ·]]equationB.10 = B†t e
iφtaB†1e

iφ1a (ρ(t)⊗ ρR(0)) +B†t e
iφtaa†e−iφ1B1 (ρ(t)⊗ ρR(0))

+a†e−iφtBtB
†
1e
iφ1a (ρ(t)⊗ ρR(0)) + a†e−iφtBta

†e−iφ1B1 (ρ(t)⊗ ρR(0))

−B†t eiφta (ρ(t)⊗ ρR(0))B†1e
iφ1a−B†t eiφta (ρ(t)⊗ ρR(0)) a†e−iφ1B1

−a†e−iφtBt (ρ(t)⊗ ρR(0))B†1e
iφ1a− a†e−iφtBt (ρ(t)⊗ ρR(0)) a†e−iφ1B1

−B†1eiφ1a (ρ(t)⊗ ρR(0))B†t e
iφta−B†1eiφ1a (ρ(t)⊗ ρR(0)) a†e−iφtBt

−a†e−iφ1B1 (ρ(t)⊗ ρR(0))B†t e
iφta− a†e−iφ1B1 (ρ(t)⊗ ρR(0)) a†e−iφtBt

+ (ρ(t)⊗ ρR(0))B†1e
iφ1aB†t e

iφta+ (ρ(t)⊗ ρR(0))B†1e
iφ1aa†e−iφtBt

+ (ρ(t)⊗ ρR(0)) a†e−iφ1B1B
†
t e
iφta+ (ρ(t)⊗ ρR(0)) a†e−φ1B1a

†e−iφtBt

If we assume that we work with a thermal bath, it does not have phase dependent
correlations 〈bkbk′〉 = 〈b†kb

†
k′〉 = 0. This simplifies the expression above, as we will only have

to consider terms where B†1 and Bt, or their Hermitian conjugates, appear. Taking the
trace over the reservoir variables TrR[·] and the integral over t1, as indicated in equation
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B.10, these terms become∫
dt1TrR

[
B†t e

iφtaa†e−iφ1B1 (ρ(t)⊗ ρR(0))
]

= aa†ρ(t)

∫
dt1e

iUn(t−t1)/~
〈
B†tB1

〉
∫
dt1TrR

[
a†e−iφtBtB

†
1e
iφ1a (ρ(t)⊗ ρR(0))

]
= a†aρ(t)

∫
dt1e

−iU(n−1)(t−t1)/~
〈
BtB

†
1

〉
∫
dt1TrR

[
(ρ(t)⊗ ρR(0))B†1e

iφ1aa†e−iφtBt

]
= ρ(t)aa†

∫
dt1e

−iUn(t−t1)/~
〈
B†1Bt

〉
∫
dt1TrR

[
(ρ(t)⊗ ρR(0)) a†e−iφ1B1B

†
t e
iφta
]

= ρ(t)a†a

∫
dt1e

iU(n−1)(t−t1)/~
〈
B1B

†
t

〉
∫
dt1TrR

[
B†t e

iφta (ρ(t)⊗ ρR(0)) a†e−iφ1B1

]
= aρ(t)a†

∫
dt1e

iUn(t−t1)/~
〈
B1B

†
t

〉
∫
dt1TrR

[
a†e−iφtBt (ρ(t)⊗ ρR(0))B†1e

iφ1a
]

= a†ρ(t)a

∫
dt1e

−iU(n−1)(t−t1)/~
〈
B†1Bt

〉
∫
dt1TrR

[
B†1e

iφ1a (ρ(t)⊗ ρR(0)) a†e−iφtBt

]
= aρ(t)a†

∫
dt1e

−iUn(t−t1)/~
〈
BtB

†
1

〉
∫
dt1TrR

[
a†e−iφ1B1 (ρ(t)⊗ ρR(0))B†t e

iφta
]

= a†ρ(t)a

∫
dt1e

iU(n−1)(t−t1)/~
〈
B†tB1

〉
where we have used the identities aeiφt = eiφteiUt/~a and a†eiφt = eiφte−iUt/~a†, as well
as noted that TrR(B†tB1ρR(0)) = 〈B†tB1〉. This expressions show us that there are four
integrals to be solved, namely

I1 =
∫ t

0
dt1e

−iω0(t−t1)
〈
BtB

†
1

〉
(B.11)

I2 =
∫ t

0
dt1e

iω0(t−t1)
〈
B†tB1

〉
(B.12)

I3 =
∫ t

0
dt1e

−iω0(t−t1)
〈
B†1Bt

〉
(B.13)

I4 =
∫ t

0
dt1e

iω0(t−t1)
〈
B1B

†
t

〉
(B.14)

where ω0 refers to the frequency associated to the energy of the system, either Un/~ or
U(n− 1)/~.

Recalling the definition of the bath operators B(t) =
∑

k gke
iεktbk, the equation B.11

can be written as

I1 =

∫ t

0

dt1
∑
k,k′

gkg
′
ke
−iω0(t−t1)ei(εkt−εk′ t1)

〈
bkb
†
k′

〉
For a thermal environment, it can be shown that its correlations are [96]〈

b†kbk′
〉

= Nkδkk′ (B.15a)〈
bkb
†
k′

〉
= (Nk + 1)δkk′ (B.15b)

where Nk is the thermal average number of “excitations” (particles) in the reservoir cor-
responding to the k-th mode. Thus, adding over k′

I1 =

∫ t

0

dt1
∑
k

g2
k(Nk + 1)e−i(ω0−εk)(t−t1).
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Considering that the bath is very large and that it has many degrees of freedom, we can
replace the sum over modes by an integral over frequencies∑

k

→
∫ ∞

0

dω
%(ω)

2π
(B.16)

where %(ω) is the density of states at frequency ω. Using the approximation B.16 and the
change of variable τ = t− t1

I1 =

∫ t

0

dτ

∫ ∞
0

dω1

2π
%(ω1)g(ω1)2(N(ω1) + 1)e−i(ω0−ω1)τ .

We make the first Markov approximation assuming that %(ω), g(ω) and N(ω) are slowly
varying functions around ω = ω1, where ω1 is very large. Introducing the change ε =
ω0 − ω1 and assuming symmetry around ω0

I1 '
∫ t

0

dτ

∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2(N(ω0 − ε) + 1)e−iετ .

The upper limit of the time integration may be extended to infinity, considering that
the system losses all the memory of its past on a scale much smaller than the time of
observation. Then we obtain

I1 '
∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2(N(ω0 − ε) + 1)

[
πδ(ε)− iPV

(
1

ε

)]
where we have used∫ ∞
−∞

dεf(ε)

∫ ∞
0

dτe±iετ =

∫ ∞
−∞

dε

[
πδ(ε)± PV

(
i

ε

)]
f(ε) = πf(0)± iPV

∫ ∞
−∞

dε
f(ε)

ε

being PV the Cauchy principal value of an integral

PV

∫ b

a

f(ω)dω = lim
ε→0

(∫ ω0−ε

a

f(ω)dω +

∫ b

ω0+ε

f(ω)dω

)
.

Defining the damping rate γ as
γ = %(ω0)g(ω0)2 (B.17)

we can finally write equation B.11 in its final form

I1 '
γ

2
(N(ω0) + 1)− i∆ (B.18)

where

∆ = PV

∫ ∞
−∞

dε

2π

1

ε
%(ω0 − ε)2g(ω0 − ε)2(N(ω0 − ε) + 1). (B.19)

The second integral equation B.12 can be similarly expressed in terms of the bath
operators

I2 =

∫ t

0

dt1
∑
k,k′

gkgk′e
iω0(t−t1)e−i(εkt−εk′ t1)

〈
b†kbk′

〉
.
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Adding over k′ for a thermal environment (B.15a)

I2 =

∫ t

0

dt1
∑
k

g2
kNke

i(ω0−εk)(t−t1)

and using the approximation B.16, followed by the change of variable τ = t− t1

I2 =

∫ t

0

dτ

∫ ∞
0

dω1

2π
%(ω1)g(ω1)2N(ω1)ei(ω0−ω1)τ .

Making again the first Markov approximation and introducing the change of variable
ε = ω0 − ω1, assuming symmetry around ω0

I2 '
∫ t

0

dτ

∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2N(ω0 − ε)eiετ .

Applying the second Markov approximation, we obtain

I2 '
∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2N(ω0 − ε)

[
πδ(ε) + iPV

(
1

ε

)]
using the Cauchy principal value PV of the integral. We finally can write the integral
equation B.12 as

I2 '
γ

2
N(ω0) + i∆′ (B.20)

where we have used the definition

∆′ = PV

∫ ∞
−∞

dε

2π

1

ε
%(ω0 − ε)g(ω0 − ε)2N(ω0 − ε). (B.21)

The third integral equation B.13 can be also expressed in terms of the bath operators

I3 =

∫ t

0

dt1
∑
k,k′

gkgk′e
−iω0(t−t1)ei(εkt−εk′ t1)

〈
b′†k bk

〉
.

Adding over k′ for a thermal environment (equation B.15a)

I3 =

∫ t

0

dt1
∑
k

g2
kNke

−i(ω0−εk)(t−t1)

and using the approximation B.16, followed by the change of variable τ = t− t1

I3 =

∫ t

0

dτ

∫ ∞
0

dω1

2π
%(ω1)g(ω1)2N(ω1)e−i(ω0−ω1)τ .

Making again the first Markov approximation and introducing the change of variable
ε = ω0 − ω1, assuming symmetry around ω0

I3 '
∫ t

0

dτ

∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2N(ω0 − ε)e−iετ .
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After applying the second Markov approximation, we obtain

I3 '
∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2N(ω0 − ε)

[
πδ(ε)− iPV

(
1

ε

)]
using the Cauchy principal value PV of the integral. We finally obtain for equation B.13
the expression

I3 '
γ

2
N(ω0)− i∆′ (B.22)

where ∆′ is given by equation B.21.
The fourth integral equation B.14 can be similarly expressed in terms of the bath

operators

I4 =

∫ t

0

dt1
∑
k,k′

gkgk′e
iω0(t−t1)e−i(εkt−εk′ t1)

〈
bk′b

†
k

〉
.

Adding over k′ for a thermal environment (equation B.15b)

I4 =

∫ t

0

dt1
∑
k

g2
k(Nk + 1)ei(ω0−εk)(t−t1)

and using the approximation B.16, followed by the change of variable τ = t− t1

I4 =

∫ t

0

dτ

∫ ∞
0

dω1

2π
%(ω1)g(ω1)2(N(ω1) + 1)ei(ω0−ω1)τ .

Making again the first Markov approximation and introducing the change ε = ω0 − ω1,
assuming symmetry around ω0

I4 '
∫ t

0

dτ

∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2(N(ω0 − ε) + 1)eiετ .

Applying the second Markov approximation, we obtain

I4 '
∫ ∞
−∞

dε

2π
%(ω0 − ε)g(ω0 − ε)2(N(ω0 − ε) + 1)

[
πδ(ε) + iPV

(
1

ε

)]
using the Cauchy principal value PV of the integral. We finally can write equation B.14
as

I4 '
γ

2
(N(ω0) + 1) + i∆ (B.23)

where ∆ is given by equation B.19.
The effect of the terms ∆ and ∆′ is to add a small perturbing Hamiltonian term, a

small frequency (Lamb) shift, and are usually neglected [20, 116, 47]. We can use I1, I2,
I3 and I4 to write the master equation B.10 as

dρ(t)

dt
= −γ

2
N(Un)aa†ρ(t)− γ

2
(N(U(n− 1)) + 1)a†aρ(t)

−γ
2
N(Un)ρ(t)aa† − γ

2
(N(U(n− 1)) + 1)ρ(t)a†a

+γ(N(Un) + 1)aρ(t)a† + γN(U(n− 1))a†ρ(t)a.

As a reminder, following from equations B.15, N(ω0) stands for the number of excita-
tions (particles to exchange) in the bath at energy ω0, and γ is the damping rate of the
dissipative process (B.17).
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B.2 Phase dissipation

Following a similar treatment as in section B.1, we can also derive the master equation
for a system with collisions. We consider a coupling between the system and the reservoir
such that

HSR = V
∑
i

nin
b
i0. (B.24)

This interaction describes phase-changing collisions between the system and the reservoir.
Here ni refers to the number of particles in the system at site i, and nbi0 to the number of
particles in the bath at the intersection with the i-th site of the system.

A detailed derivation of the master equation will be omitted, it is analogous to the
presented in section B.1.2. The final result we use is

dρ(t)

dt
=
γ

2

∑
i

{
−n2

i ρ(t)− ρ(t)n2
i + 2niρ(t)ni

}
(B.25)

where the constant γ is the damping rate of the dissipative process (see equation B.17),
including the parameters of the interaction and the reservoir.



Appendix C

Derivation of the model in
superlattices

As discussed in chapter 5.1, the main idea behind atomic correlated hopping is to trap
atoms whose interaction allows them to change their state. In this appendix we provide
one possible implementation of this idea, using state dependent superlattices that trap
dressed states.

C.1 Dressed states trapping

Our starting point is the setup in figure 5.1 (upper left). It consists of an optical lattice
trapping atoms in states |↑〉 and |↓〉 , together with a Raman coupling between these states.
Mathematically, this configuration is described by the single-particle Hamiltonian

Htrap = V0 sin(kx)2 (|↑〉 〈↑|+ |↓〉 〈↓|)
+Ω sin(kx) (|↑〉 〈↓|+ |↓〉 〈↑|) . (C.1)

By moving to the basis of dressed states |±〉 = 1√
2

(|↑〉 ± |↓〉) , we find that the trapping
is effectively equivalent to two superlattices with a relative displacement, as in figure 5.1
(right),

Htrap =
(
V0 sin(kx)2 + Ω sin(kx)

)
|+〉 〈+|

+
(
V0 sin(kx)2 − Ω sin(kx)

)
|−〉 〈−| . (C.2)

Under appropriate circumstances [46], we find that each superlattice site has a unique
ground state, energetically well differentiated from the next excited state, and which
consists of a symmetric wavefunction spanning both lattice wells. If this is the case, and
if all energy scales (such as the interaction and the hopping) are small compared to the
separation between Bloch bands, we can expand the bosonic field operators describing
the atoms in terms of these localized wavefunctions

ψ+(x) =
∑

i c2i W (x− 2il) (C.3)

ψ−(x) =
∑

i c2i+1 W (x− (2i+ 1)l)

117
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where 2l = 2π/k is the superlattice period; cj are bosonic operators

c2i = 1√
2
(a2i,+ + a2i+1,+) (C.4)

c2i+1 = 1√
2
(a2i+1,− + a2i+2,−)

that for j even (odd) annihilate an atom in state |+〉 (|−〉) in the j-th superlattice cell;
and the localized wavefunctions W (x) are a superposition of the Wannier functions w(x′)
of the underlying lattice

W (x− 2il) =
1√
2

[w(x− 2il) + w(x− (2i+ 1)l)] . (C.5)

C.2 State-changing collisions

Now we will express the interaction (5.4) in the basis of dressed states. We proceed
using the change of variables in equation 5.6 to find the expression of the densities

ρ↑(x) =
1

2
(ρ+ + ρ− + ψ†+ψ− + ψ†−ψ+) (C.6)

ρ↓(x) =
1

2
(ρ+ + ρ− − ψ†+ψ− − ψ

†
−ψ+). (C.7)

The first obvious conclusion is that the total density is independent of the basis on which
it is written

ρ(x) = ρ↑(x) + ρ↓(x) = ρ+(x) + ρ−(x). (C.8)

Hence, the term of g0 is insensitive to the state of the atoms. However, the asymmetric
terms are not so simple. The g1 interaction, which is proportional to the product of
densities

: ρ↑ρ↓ : =
1

4
: (ρ+ + ρ−)2 : −1

4
: (ψ†+ψ− + ψ†−ψ+)2 :

=
1

4
: (ρ+ + ρ−)2 : −1

2
ρ+ρ− −

1

4
(ψ†2+ ψ

2
− +H.c)

=
1

4
: ρ2

+ + ρ2
− : −1

4
(ψ†2+ ψ

2
− +H.c), (C.9)

gives rise to a scattering that changes the state of interacting atoms from |−〉 to |+〉 and
viceversa, as in figure 1 (left). The term of g2 has a lightly different effect

: ρ↑(x)2 − ρ↓(x)2 :=: ρ(x)
[
ψ†+(x)ψ−(x) + ψ†−(x)ψ+(x)

]
: (C.10)

it gives rise to processes where one atom changes its state influenced by the surrounding
environment. In the following, we will see what happens to the interaction terms (C.8),
(C.9) and (C.10), when the atoms are confined in a lattice.
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C.3 Final model

In this section we will put together the results of this appendix. We will take the
tight-binding expansion of the field operators (C.3) and use it in combination with equa-
tions C.8, C.9 and C.10 to expand the interaction Hamiltonian (5.4). For convenience,
we will rename the bosonic operators as

c2k = ak+ and c2k+1 = ak− (C.11)

according to the position at which their Wannier functions are centered, as illustrated
in figure 5.1 (right). Along the derivation, one obtains many integrals of ground state
wavefunctions

Ck,m =

∫
|W (x− kl)|2|W (x−ml)|2dx. (C.12)

We will only keep those integrals with a separation smaller than a superlattice period.
Taking the expression for the superlattice localized states (C.5), one obtains

Ck,k =
∫
|W (x)|4dx ' 1

2

∫
|w(x)|4dx (C.13)

Ck,k±1 =
∫
|W (x)|2|W (x− l)|2dx ' 1

4

∫
|w(x)|4dx (C.14)

where w(x) are the Wannier wavefunctions of the underlying sublattice. Using these tools,
the symmetric interaction term becomes

g0

2

∫
d3x : (ρ↑(x) + ρ↓(x))2 :=

=
g0

2

N/2∑
k

: n2
2kC2k,2k + n2

2k+1C2k+1,2k+1 + 2n2kn2k+1C2k,2k+1 :

=
g0

4

∫
dx |w(x)|4

N∑
k

: n2
k + nknk+1 : (C.15)

For the asymmetric terms we start from equation C.9, obtaining

g1

∫
d3x : ρ↑(x)ρ↓(x) :=

g1

8

∫
dx |w(x)|4

N∑
k

[
: n2

k : − 1

2

(
c†2k+1c

2
k + c†2k c

2
k+1

)]
(C.16)

and then finally the more complicated one, equation C.10

g2

2

∫
d3x : ρ↑(x)2 − ρ↓(x)2 :=

g2

8

∫
dx |w(x)|4

N∑
k

: nk(c
†
kck−1 + c†k−1ck + c†kck+1 + c†k+1ck) : (C.17)
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Introducing constants that parameterize the on-site interactions and the strength of the
underlying lattice (equation 5.7), our final Hamiltonian looks as follows

H =
2U0 + U1

8

∑
k

: n2
k : −U0

8

∑
k

: nknk+1 : −U1

16

∑
k

(c†2k+1c
2
k + H.c.)

−U2

8

∑
k

[
(nk − 1)c†k(ck−1 + ck+1) + H.c.

]
. (C.18)

Completing terms and replacing the sum over k with a sum over nearest neighbors, we
arrive at the desired model (5.1) with the parametrization given already in equation 5.8.



Appendix D

Atom-molecule resonances:
calculation of physical parameters

The physical parameters (Ua, ja, . . .) used in the last part of this dissertation, about
atoms in a Feshbach resonance, have been calculated from microscopical considerations
and their derivations are shown in section D.2. The system we consider consists of 87Rb
atoms trapped in an optical lattice and in resonance to a bound state. The corresponding
physical constants are displayed in section D.1.

D.1 Table of physical constants

Quantity Symbol Value Unit
Reduced Planck constant ~ 1.054571628× 10−34 J s

Bohr radius a0 0.52917720859× 10−10 m
Mass of Rb atom m 87 · 1.660538782× 10−27 kg

Momentum of the lattice k 2π/(830.44× 10−9) m−1

Recoil energy (atoms) Er ~2k2/(2m) J
Recoil energy (molecules) Em

r ~2k2/(4m) J
Lattice depth seen by an atom V0 α · Er, typically α ∈ [10, 30] J

Lattice depth seen by a molecule Vm
0 2V0 J

Transversal confinement (d < 3) V0t 30Er J

Angular frequency associated to each site ωho k
√

2V0/m s−1

Harmonic oscillator length aho

√
~/(mωho) m

Background scattering length ∗ abg 100.8 · a0 m
Width of the Feshbach resonance ∗ ∆B 18× 10−7 T
Difference of magnetic moments † ∆µ 2π~ · 111× 107 J/T

∗From a coupled-channels calculation
†From Breit-Rabi formula
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D.2 Derivation of the physical parameters

To calculate the parameters of our system, we have used and calculated several for-
mulae that are presented in this section. For the matrix element Ham = 〈ψa|H |ψm〉 of
the Hamiltonian (7.1), which is the conversion rate between atoms and molecules Γ, we
have [103]

Ham =

√
4π~2abg∆µ∆B

m
(√

2πaho

)3

(
1 + 0.490

abg

aho

)
, (D.1)

resulting in an angular frequency Ωres = 2Ham/~ for the Rabi oscillations between these
states. For the single-atom tunneling amplitude ja, in the case of a deep lattice V0 >> Er

we have [124]

ja =
4√
π

Er

(
V0

Er

)3/4

e−2
√

V0/Er (D.2)

while for the molecules, in the case Vm
0 >> Em

r we have similarly [124]

jm =
2√
π

Em
r

(
Vm

0

Em
r

)3/4

e−2
√

Vm0 /E
m
r . (D.3)

The atomic interaction strength will depend on the dimensionality d of the trapping
lattice, and the lattice depth V0t perpendicular to the trapping directions

Ua =

√
8

π
kabgEr

V
d/4
0 (V0t)

(3−d)/4

E
3/4
r

. (D.4)

We take Ua as the energy unit of the problem, and calculate Um and Uam as a function
of this. We start from the expression for the interaction term of the Hamiltonian

Hint =
∑

α,β=a,m

∫
d3x d3x′ Ψα(~x)†Ψβ(~x′)†Vα,β(~x− ~x′)Ψβ(~x′)Ψα(~x) (D.5)

= Ua
∑
i

ni(ni − 1) + Uam
∑
i

nimi + Um
∑
i

mi(mi − 1).

The field operators describing the atoms Ψa and molecules Ψm can be expanded in terms
of localized wavefunctions

Ψa(~x) =
∑
i

aiwa(~x− i~v) (D.6a)

Ψm(~x) =
∑
i

biwm(~x− i~v) (D.6b)

where ~v is the lattice period and w(~x) are Wannier functions. We assume that the
interactions in equation D.5 are described by contact potentials

Vaa(~x− ~x′) = g · δ(~x− ~x′) (D.7a)

Vam(~x− ~x′) = 2g · δ(~x− ~x′) (D.7b)

Vmm(~x− ~x′) = 4g · δ(~x− ~x′), (D.7c)
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ignoring the internal structure of the interacting particles and adding the single interac-
tions for compound objects: between two atoms gaa = g, between an atom and a molecule
gam = 2g, and between two molecules gmm = 4g. For deep lattices, the Wannier functions
w(~x) are going to be approximated by Gaussians along each direction

wa(~x) = Na e−x
2/(2σ2

x) e−y
2/(2σ2

y) e−z
2/(2σ2

z) (D.8a)

wm(~x) = Nm e−x
2/σ2

x e−y
2/σ2

y e−z
2/σ2

z (D.8b)

with normalization constants

Na =

(
1

π3σ2
xσ

2
yσ

2
z

)1/4

, Nm =

(
8

π3σ2
xσ

2
yσ

2
z

)1/4

(D.9)

and the width of the Gaussian packet σi given by the confinement along the direction
i. To find the constants we have used the Gaussian integral

∫
d3xe−x

2/a =
√
πa. If the

confinement along direction j is transversal (i.e. the particle cannot move along that
direction), in the ideal case we would have that the probability distribution goes to a
delta (σj → 0). Finally, we obtain the following on-site interactions

Ua =
1

π3σ2
xσ

2
yσ

2
z

∫∫∫
d3x g e−2x2/σ2

xe−2y2/σ2
ye−2z2/σ2

z

=
g

2
√

2π3/2σxσyσz
(D.10a)

Uam =

√
8

π3σ2
xσ

2
yσ

2
z

∫∫∫
d3x 2g e−3x2/σ2

xe−3y2/σ2
ye−3z2/σ2

z

=
4
√

2g

3
√

3π3/2σxσyσz
(D.10b)

Um =
8

π3σ2
xσ

2
yσ

2
z

∫∫∫
d3x 4g e−4x2/σ2

xe−4y2/σ2
ye−4z2/σ2

z

=
4g

π3/2σxσyσz
(D.10c)

which lead to Uam = 16Ua/(3
√

3) ∼ 3.1Ua, and Um = 8
√

2Ua ∼ 11.3Ua. To calculate the
widths of the confinement, we can approximate our standing wave to a harmonic oscillator
taking up to the first non-zero order

V0 sin(kx) ∼ V0(kx)2 =
1

2
mω2

hox
2 (D.11)

leading to

ω2
ho =

4V0Er

~2
(D.12)

that together with the width from a gaussian describing the solution of harmonic oscillator

σ2 = ~/(mωho) (D.13)
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gives us

σ2 =
~2

2m
√
V0Er

. (D.14)

Now, working Ua a bit further, and using also g = 4π~2abg/m

Ua =

√
8

π

~2abg
2mσxσyσz

=

√
8

π

kabgEr

k3σxσyσz

=

√
8

π
kabgEr

V
1/4

0x V
1/4

0y V
1/4

0z

E
3/4
r

(D.15)

completing the list of parameters that we wanted to calculate.
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[44] Garćıa-Ripoll, J. J., and Cirac, J. I. Spin dynamics for bosons in an optical
lattice. New Journal of Physics 5 (2003), 76.
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[83] Östlund, S., and Rommer, S. Thermodynamic limit of Density Matrix
Renormalization. Physical Review Letters 75, 19 (1995), 3537.

[84] Paredes, B., Fedichev, P., Cirac, J. I., and Zoller, P. 1/2-Anyons in small
atomic Bose-Einstein condensates. Physical Review Letters 87, 1 (2001), 010402.

[85] Perez-Garcia, D., Verstraete, F., Wolf, M. M., and Cirac, J. I. Matrix
Product State representations. Quantum Information and Computation 7 (2007),
401.

[86] Peschel, I., Wang, X., Kaulke, M., and Hallberg, K., Eds. Density-
Matrix Renormalization - a new numerical method in Physics, vol. 528 of Lecture
Notes in Physics. Springer. Lectures of a Seminar and Workshop held at the Max-
Planck-Institut für Physik komplexer Systeme, Dresden, Germany, August 24th to
September 18th, 1998.

[87] Pollock, E. L., and Ceperley, D. M. Path-integral computation of superfluid
densities. Physical Review B 36 (1987), 8343.

[88] Popp, M. Entanglement and correlations in cold atomic systems. PhD thesis,
Technische Universität München, 2006.

[89] Regal, C. A., Greiner, M., and Jin, D. S. Observation of resonance conden-
sation of fermionic atom pairs. Physical Review Letters 92, 4 (2004), 040403.

[90] Rousseau, V. G. Stochastic green function algorithm. Physical Review E 77, 5
(2008), 056705.

[91] Rousseau, V. G., and Denteneer, P. J. H. Quantum phases of mixtures of
atoms and molecules on optical lattices. Physical Review A 77 (2008), 013609.

[92] Rousseau, V. G., and Denteneer, P. J. H. Feshbach-Einstein condensates.
Physical Review Letters 102, 1 (2009), 015301.

[93] Sachdev, S. Quantum Phase Transitions. Cambridge University Press, 2001.

[94] Salomon, C., Dalibard, J., Aspect, A., Metcalf, H., and Cohen-
Tannoudji, C. Channeling atoms in a laser standing wave. Physical Review
Letters 59, 15 (1987), 1659.

[95] Schlosser, N., Reymond, G., Protsenko, I., and Grangier, P. Sub-
poissonian loading of single atoms in a microscopic dipole trap. Physical Review
Letters 411 (2001), 1024.

[96] Scully, M. O., and Zubairy, M. S. Quantum Optics. Cambridge University
Press, 1997.

[97] Sebby-Strabley, J., Anderlini, M., Jessen, P. S., and Porto, J. V. Lat-
tice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 73, 3 (2006),
033605.



132 BIBLIOGRAPHY

[98] Sengupta, K., and Dupuis, N. Mott insulator to superfluid transition of ultra-
cold bosons in an optical lattice near a feshbach resonance. Europhysics Letters 70
(2005), 586.

[99] Sheshadri, K., Krishnamurthy, H. R., Pandit, R., and Ramakrishnan,
T. V. Superfluid and insulating phases in an interacting-boson model: mean-field
theory and the RPA. Europhysics Letters 22, 4 (1993), 257.

[100] Stöferle, T., Moritz, H., Schori, C., Köhl, M., and Esslinger, T.
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