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Kurzfassung

Motivation

Die Erfassung von Vorgängen in der Fahrumgebung ist eine wesentliche Voraussetzung für
die Realisierbarkeit zukünftiger Fahrassistenzsysteme (FAS). Solche Vorgänge können anhand
verschiedener Sensoren ermittelt werden. Dabei müssen die Zuverlässigkeit dieser Information
und deren Verarbeitungsmethoden, abhängig von den FAS- Anforderungen, gewährleistet sein.
In diesem Zusammenhang entsteht eine wichtige Fragestellung: Wie kann die Information
von diversitären und teilweise redundanten Sensoren genutzt werden, um eine maximale
Leistungsfähigkeit zu erreichen? Die Sensoren müssen so kombiniert werden, dass sie kooperieren,
sich ergänzen und konkurrieren können. Durch Sensordaten-Fusion und Multiple Target Tracking
wird die Information unterschiedlicher Sensoren vereinigt, die Robustheit und Redundanz erhöht
und “neue” Information basierend auf Modellannahmen und Hypothesen abgeleitet.

Ein weiterer wichtiger Aspekt ist, die Zuverlässigkeit der Fahrumgebungsinformation trotz
Sensorfehlfunktionen zu garantieren. Sensorfehler müssen schnellstmöglich erkannt und iso-
liert werden. Fehlerdetektions- und Fehlerisolierungsmethoden (engl. Fault Detection and
Identification-FDI) bieten verschiedene wissensbasierte Verfahren, die auf analytischen oder
heuristischen Informationen beruhen. Sensordaten- Fusion und FDI- Methoden ermöglichen
u.a. die Evaluierung der Fahrumgebungsinformation. Beide Ansätze können sich ergänzen und
gegenseitig überwachen, da sie teilweise gemeinsame Ziele und Strategien aufweisen und sich
effizient miteinander integrieren lassen. Durch die Kombination und Weiterentwicklung beider
Methoden kann eine höhere Zuverlässigkeit von Fahrerassistenzsystemen erreicht werden.

Ansatz

Das Ziel dieser Arbeit ist es, eine neue Methode zu präsentieren, die die Eigenschaften von
Sensordaten- Fusion, Multiple Target Tracking und FDI- Strategien vorteilhaft nutzt. Dies
soll nicht nur die Erhöhung der Zuverlässigkeit der erfassten Fahrumgebungsinformation,
sondern auch die weitere Verbesserung spezifischer FAS (ACC, Bremsassistent, usw.) er-
möglichen. Der vorgeschlagene Ansatz basiert auf der Analyse der erfassten Sensordaten.
Aus diesen Messdaten werden relevante Merkmale extrahiert, die zu deren Klassifizierung
dienen. Merkmale auf der Messwertebene werden in drei Kategorien aufgeteilt: Merkmale aus
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Messdaten, Merkmale aus der Vergangenheitsbetrachtungen erkannter Objekte, Merkmale aus
der Vergangenheitsbetrachtungen von Sensoreigenschaften. Anhand der extrahierten Merkmale
und deren Kombination werden Messdaten unterschiedlichen Hypothesen zugeordnet. Diese
Zuordnung wird unterstützt durch mathematische Modelle, die bestimmte Erwartungen an das
Verhalten der Daten beschreiben.

Abhängig davon, ob die Merkmale auf das Modell zutreffen oder vom ihm abweichen, wird die
Information klassifiziert. Die Abweichung, auch Residuum genannt, dient als Indiz (Symptom)
für die Bestätigung von Hypothesen. Messdaten können vier Hypothesenzustände annehmen:
bestehende erkannte Objekte, neue erkannte Objekte, spezifische Messfehler, unbestimmte
Messfehler. Der Begriff Messfehler wird als “vorgetäuschte” Messgröße interpretiert, die z.B.
durch das Messprinzip bedingt (“Geisterobjekte”) und die von unterschiedlichem Ausmaß
(tolerierbar bis gravierend) sein können.

Ein zeitlich zusammenhängendes Set von Eigenschaften eines Objektes (z.B. Position, Ge-
schwindigkeit) wird als Track bezeichnet. Durch die Kombination von Messdatenhypothesen
unterschiedlicher Messdaten mit den extrahierten Track- Merkmalen kann die nächste Hypothe-
senebene (Information ist einem Track zuordenbar; Information ist keinem Track zuordenbar)
bestimmt werden. Analog zur Messdatenklassifizierung werden Symptome für Track-Hypothesen
anhand mathematischer Modelle berechnet. Auf den beschriebenen Ebenen werden Hypothesen
in jedem Zyklus klassifiziert, die den dynamischen Teil des vorgeschlagenen Ansatzes bilden.
Im quasistationären Teil werden die Sensorfehlerhypothesen bestimmt.

Als Sensorfehler wird ein partieller oder kompletter Ausfall z.B. Sensorhardware wie Dejustage,
Teil-Blindheit usw. bezeichnet. Auch in dieser Ebene werden die Symptome mit Hilfe mathema-
tischer Modelle bestimmt und die Ergebnisse von den vorherigen Ebenen mit den extrahierten
Sensorfehlermerkmalen kombiniert. Der Hauptunterschied liegt darin, dass die Klassifizierung
nicht in jedem Arbeitszyklus durchgeführt wird, sondern in vorgegebenen Zeitfenstern, die
abhängig vom untersuchten Sensorfehler sind. Sensorfehler werden in drei Hypothesenklassen
unterteilt: spezifische Sensorfehler, unbestimmte Sensorfehler, kein Sensorfehler. Die erste
Klasse beschreibt modellierte Sensorfehler, bei denen die extrahierten Merkmale zutreffen.
Der zweiten Hypothesenkategorie werden Sensorfehler zugeordnet, die nicht modelliert werden
konnten (z.B. aus Komplexitätsgründen) und deren Merkmale weder zur ersten noch zu dritten
Hypothesenklassen zugeordnet werden konnten. Als fehlerfrei werden Sensoren klassifiziert,
wenn die extrahierten Merkmale die erwartete Sensorfunktionalität beschreiben. Eine weitere
Eigenschaft des Ansatzes ist die Bestimmung von Hypothesen durch “weiche Entscheidungskri-
terien”. Dies ähnelt der menschlichen Vorgehensweise unter ungewissenen Umständen. Diese
Klassifizierung von Messdaten, Tracks und Sensoren kann für unterschiedliche Fahrassistenz-
funktionen bereitgestellt werden und bildet einen wesentlichen Beitrag zur Implementierung
sicherheitsrelevanter FAS.
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Abstract

Current trends in automotive industry focus on efforts to increase safety, efficiency, convenience
and comfort of driving making use of intelligent Advanced Driver Assistance Systems (ADAS).
An essential requirement for the implementation of such systems consists of acquiring and
identifying relevant events in the driving environment. This kind of events can be acquired by
sensor devices.

In order to assure required quality and availability levels for several ADAS and thus a safe driver
support, a sufficient reliability level of the acquired sensor information and of its processing
mechanisms and methods have to be achieved. In this sense an important aspect consists
of combining the information of dissimilar sensors in order to extract a maximum of their
potentialities. Sensor devices have to be combined in such a form that they can cooperate,
complement and supervise each other. Sensor data fusion and Multiple Target Tracking (MTT)
methods can connect different sources of information, increase robustness and redundancy and
derivate “new” information according to model assumptions and hypotheses.

A further relevant aspect consists of assuring a required reliability of driving environment
information even in the presence of sensor anomalies. Sensor failures and faults have to be
quickly identified and if possible isolated. Fault detection and identification methods (FDI) offer
different knowledge-based procedures that are based on analytical and heuristic information.

By means of the combination and further development of sensor data fusion and FDI strategies,
driving environment information can be evaluated regarding its relevancy as well as correctness.
In doing so a higher information reliability can be guaranteed for the implementation of ADAS.
Both methods can complement and supervise each other due to they exhibit similar strategies,
which will be explored along this thesis.

The main goal of this work consists of developing and validating a concept for improving quality,
integrity of the acquired driving environment information. A prerequisite is the detection and
to some extent the identification of sensor faults and failures that are relevant for the reliable
implementation of ADAS. For these purposes several sensor data fusion and multiple target
tracking methods along with fault detection and identification techniques will be investigated,
adapted and further developed.

The focus of this work consists of founding a solution on how to perform the tracking of
multiple targets acquired by dissimilar and to some extent redundant sensors while sensor faults
and failures can be detected and identified.
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Thus a synergy of MTT and FDI mechanisms will be determined. Relevant is also the level of
integration of both strategies and how they can cooperate in order to highlight their advantages
as well as attenuate their weaknesses.
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2D Two-dimensional
3D Three-dimensional
4D Four-dimensional
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
ANN Artificial Neural Networks
ARMA Auto Regressive-Moving Average
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EKF Extended Kalman Filter
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MTT Multiple Target Tracking
MTTF Mean Time To Failure
MTTR Mean Time To Repair
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PCA Principle Component Analysis
Radar Radio Detection and Ranging
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ROC Receiver Operating Characteristic
SF Sensor Failure
SIL Safety Integrity Levels
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1
Introduction

1.1 Motivation

Intelligent electronic systems have been recently introduced to vehicles in order to support the
driver. In the last years in the automotive industry efforts have been performed to increase
convenience, comfort and safety of driving. One of the main goals consists of relieving the
driver from stress situations, from some workload and also to complement his perception of
the environment. Besides the attempt to assure a tradeoff among convenience, comfort and
safety has been performed.

While passive vehicle safety (e.g. airbags, safety belts, etc.) has been made widely available,
active assistance systems became for some years one of the main point of interest in the
automotive field. Then experts claim that the current number of traffic accidents might be
reduced by employing this technology. Such techniques either might predict a critical situation
by warning the driver or they may start automatic procedures in order to reduce accident
severities. Thus the optimal combination of convenience, comfort and safety is the primary
aim of advanced driver assistance systems (ADAS). Figure 1.1 illustrates proposed ADAS in
the last years by a blurred delimitation between comfort and safety. ADAS categorization as a
comfort or safety function depends essentially on the quality of the acquired information in
the driving environment and on properties and definitions of these assistance functions. Some
relevant ADAS illustrated in figure 1.1 can be summarized as follows (see e.g. Naab [2004]
and Kopischke [2000]):

• Adaptive Cruise Control (ACC): system is able to track those vehicles travelling ahead
of it. It follows the vehicle in front, automatically slowing down if the vehicle in front
slows down and vice versa. Current ACCs only work in free-flowing traffic conditions or
on highways.

• ACC new generation: is also known as Stop and Go Cruise Control. It enables similar
functionalities as ACC does, but it is extended to lower speed ranges to full stop.

15



1 Introduction

Figure 1.1: Qualitative classification of ADAS regarding comfort and safety standards.

• Park Assistant: supports the driver by parking the vehicle. The parking gap can be
measured and under some circumstances the vehicle is able to park automatically.

• Lane Departure Warning (LDW): warns the driver if the vehicle cross traffic lanes
unintentionally.

• Blind Spot Detection: it monitors the blind spot on both sides of the vehicle. If a moving
obstacle such as another overtaking vehicle is present in the blind spot the driver is
warned.

• Collision Avoidance: it helps the driver to avoid a collision by predicting the probability
of dangerous situations. According to the functionï¿1

2s characteristics, an automatic
intervention is possible.

• Emergency Brake Assistant: corresponds to the brake action with a maximal deceleration
if a collision with a preceding vehicle can not be avoided by any kind of driving maneuver.

Thus an essential part for the implementation of such intelligent, safety related and to some
extent autonomous systems is the acquisition of the information about events in the driving
environment. By means of different sensor technologies the acquisition of the most relevant
events for ADAS is made possible. An example of sensor configuration for the implementation
of future ADAS is depicted in figure 1.2.

In order to assure the quality and availability of these assistance functions as well as the safe
driver support, a sufficient reliability of the acquired sensor information and of its processing
mechanisms and methods have to be achieved. In this context an important question is how
to combine the information of dissimilar sensors in order to extract the maximum of their
potentialities. These sensors have to be combined in such a form that they can cooperate,
complement and supervise each other. Sensor data fusion methods can connect different

16
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11.1 Motivation

Figure 1.2: Scheme illustrating the field of view of different sensor technologies performing the detection
of events in the driving environment in order to support the implementation of safety
related and to some extent autonomous ADAS.

sources of information, increase robustness and redundancy and derivate “new” information
according to model assumptions and hypotheses.

A further relevant aspect is how to assure the reliability of the driving environment information
in the presence of sensor anomalies. Sensor failures and faults have to be quickly identified
and if possible isolated. Fault detection and identification methods (FDI) offer different
knowledge-based procedures that are based on analytical and heuristic information. Figure
1.3 illustrates snapshots of the real driving environment. In figures 1.3(a) and 1.3(b) frontal
and rear snapshots from the point of view of the own vehicle illustrating typical valid as well
as inexistent targets are depicted. Inexistent targets may be generated by sensor failures and
faults. They will be explored in details in section 4.

By means of the combination and further development of sensor data fusion and FDI strategies,
driving environment information can be evaluated regarding its relevancy as well as correctness.
In doing so higher information reliability can be guaranteed for the implementation of ADAS
as well as the uncertainty by determining the boundary between safety and comfort can be
reduced. Both methods can complement and supervise each other because they exhibit similar
strategies, which will be explored along this thesis and specially in chapter 2.

17
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(a) Frontal driving environment snapshot illustrat-
ing some examples of valid and inexistent targets.
The latter are generated due to sensor anomalies.

(b) Rear driving environment snapshot illustrating
some examples of valid and inexistent targets. The
latter are generated due to sensor anomalies.

Figure 1.3: Snapshots of the real driving environment represented from own’s vehicle point of view in
a typical urban area.

1.2 Goals

The main goal of this thesis consists of developing and validating a concept for improving
quality, integrity of the acquired driving environment information. Prerequisite for it is the
detection and to some extent the identification of sensor faults and failures that are relevant
for the reliable implementation of ADAS. For these purposes several sensor data fusion and
multiple target tracking methods along with fault detection and identification techniques will
be investigated, adapted and further developed.

The focus of this work consists of founding a solution on how to perform the tracking of
multiple targets acquired by dissimilar and to some extent redundant sensors while sensor faults
and failures can be detected and identified. Thus a synergy of multiple target tracking (MTT)
and fault detection and identification (FDI) mechanisms will be determined. Relevant is also
the level of integration of both strategies and how they can cooperate in order to highlight
their advantages as well as attenuate their weaknesses.

Synergy and level of integration of both mechanisms are achieved by investigating how they
deal with acquired sensor data. Basically MTT consists of modeling the expected behavior of
objects acquired in the driving environment like pedestrians, vehicles and traffic signs. On the
other hand FDI takes into account the modeling of the correspondent unexpected or faulty
object behavior like vehicles assuming physically improbable trajectories (e.g. vehicle direction
changes in a very short period of time). That is why the terms “model” and “antimodel” are
applied to MTT and FDI respectively. Deviations from expected and unexpected behavior are
assigned to a grey zone, where none of the behaviors can be surely asserted.

18
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11.2 Goals

This uncertainty may be justified by insufficient information or knowledge about the object to
be modeled. Figure 1.4 illustrates schematically the synergy and level of integration of MTT
and FDI strategies determined in this thesis.

Figure 1.4: Scheme illustrating the synergy and level of integration of MTT and FDI strategies.

For the sake of completeness every model should have at least one correspondent antimodel.
But due to insufficient information or knowledge about determined objects or “anti objects”
could be available, only one of both types of models might be implemented. This kind of
uncertainty is reflect in the grey zone as well. The outcome of the proposed approach consists
of three types of different hypotheses shared as follows:

1. Object Hypotheses: describe the assumptions related to real objects in the driving
environment like pedestrian, vehicles, traffic signs, etc. They are related to relevant
objects that should be taken in to account by the operation of several ADAS (e.g. ACC,
emergency brake assistant, etc.).

2. Uncertain Object Hypotheses: describe the uncertainty related to real objects in the
driving environment. They could either describe a false alarm or a valid object.

3. Anti Object Hypotheses: are related to sensor fault or failures by performing the acquisition
of driving environment information like ghost targets, sensor misalignment and blindness.
In most of the cases ADAS should ignore this type of objects.

As a proof of concept the proposed approach will be online validated with aid of a vehicle
prototype equipped with a configuration of distance based sensor units (radar and lidar).

19
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1.3 Contents and Structure

Chapter 2 introduces the fundamental theory and state of the art that are applied throughout
this thesis. Thereby several sensor data fusion and MTT strategies will be explored. It
discusses the nature, odds and drawbacks by fusing sensor data. Furthermore different MTT
configurations, algorithms and architectures will be covered. Although MTT may be performed
with no fusion of sensor data, it will be considered here as a specific method of sensor data
fusion. Thus the impact and relevancy of these methods for increasing information reliability
will be investigated. Section 2.1.4 is devoted to the related theory and strategies for supervision
and fault management methods. It summarizes the most relevant techniques involving the
detection and identification of systems faults and failures. As a central part for the diagnosis
of systems anomalies classification methods will be explored. Hence a qualitative comparison
among three relevant methods namely decision trees, artificial and probabilistic networks is
performed.

In chapter 3 the proposed concept for improving quality, integrity and reliability of the driving
environment information will be derived. The proposed approach for performing sensor data
fusion, multiple target tracking and the detection and identification of sensor failures and faults
will be discussed in details. It covers the methods of extracting symptoms from measurements,
tracks and sensor units themselves in order to obtain evidences of anomalies in the acquired
data. The extraction of symptoms is based on a model based analysis varying from a white to
black box approach. Thus the influence of each of these extracted symptoms or features will
be determined by means of dependence models in a probabilistic network architecture following
the Bayes’s theorem principles.

The case study of this thesis will be covered in chapter 4 where the assembly of the vehicle
prototype will be presented. Furthermore the configuration of the applied sensor units will be
outlined. Section 4.2 is devoted to the measurement principles of the distance based sensor
(radar and lidar) employed in the vehicle prototype. There the most relevant characteristics of
these sensor units along with their weaknesses and possible anomalies will be discussed. The
last topic of this chapter consists of the investigated sensor failures relevant for ADAS.

The related experiments and obtained results are discussed in chapter 5. It shows the efficiency of
the proposed approach for performing the evaluation of actual driving environment information
and the sensors themselves regarding their quality and reliability. Finally chapter 6 summarizes
the proposed concept and discuss possible further steps within the scope of this thesis.

20
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2

2
Fundamental Theory and
State of the Art

This chapter deals with the theoretical basics and the state of the art of methods and algorithms
directly related to this work. It discusses sensor data fusion as a connection mechanism between
sensor units and applications, which supports the extraction and combination of most relevant
features of events in the driving environment. Thereby several strategies, their meaning,
relevancy, odds and improving potentialities will be explored. Additionally it investigates the
ability to integrate sensor data fusion with different techniques in order to increase the reliability
of information acquired by multiple and dissimilar sensor units. Specially MTT and FDI
techniques will be explored. For it the state of the art of algorithms and architectures will be
investigated. Main reason to achieve higher quality levels for the acquired driving environment
events is to enable the further development of safety critical ADAS. This may be performed
by testing the system against possible faults and failures. As central part for the diagnosis
of systems anomalies classification methods will be explored. Hence a qualitative comparison
among three relevant methods namely decision trees, artificial and probabilistic networks is
performed.

2.1 Sensor Data Fusion

Sensor data fusion has been associated to a variety of techniques that use data derived from
different information sources (sensors). The scope of its applications varies from real time
fusion for navigation to the off-line fusion of human or technical strategic intelligence data
[Rothman and Denton, 1991]. Therefore terms like:

• data fusion,

• information fusion,

21



2 Fundamental Theory and State of the Art

• multisensor fusion and

• multisensor integration

have been correlated and cause misinterpretation. In the technical literature several attempts
have been made to define fusion terms and techniques. Some authors propose the term data
fusion to be used as a general one. They define this term as

"a formal framework that comprises methods and tools for the association of data coming
from different sensory sources. It tries to win information of high quality, where the specific
definition of high quality varies also from one application to another" [Wald, 1998].

Although the data fusion concept is easy to understand, its meaning may strongly vary. In
some fusion models, data fusion is used to denote fusion of raw data. In some classic books on
fusion the extended definition "multisensor fusion" is proposed [Dasarathy, 1997]. This term is
defined for instance in DoD [1992] as

"the technology concerned with the combination of how to combine data from multiple
(and possible diverse) sensors in order to make inferences about a physical event, activity, or
situation".

In order to avoid misinterpretation the term data fusion will be assumed in this work as an
overall denomination for fusion procedures as in Wald [1998]. Additionally the term multisensor
fusion will be considered as in DoD [1992]. Another meaningful definition to be considered in
this thesis is the one proposed by Naab [2004]:

"Sensor Data Fusion connects dissimilar and partially redundant sensor data, so that it results
in a consistent representation of the environment".

In his approach he suggests the separation of sensor information acquisition and processing from
the actual functions. Although some sensor configurations are associated exclusively to specific
functions these procedures should be avoided. In doing so the modularity and re-usability of
some system components will be increased. This means that sensor hardware, data processing
and information management should be implemented independently. Figure 2.1 illustrates a
sketch of the sensor data fusion dealing as an instance of integration of sensors data and as an
interface to the applications.

By means of dissimilar and partially redundant sensors the events in the environment can be
acquired. The sensor data fusion block is in charge of combining and processing the incoming
environment information. The results are made available for different application software.
According to the application purposes their outcomes will have a direct influence over the
system hardware (actuators). Otherwise they will play a merely informative role (displays).

In the following sections the aim, odds, drawbacks and procedures for sensor data fusion will
be explored. Additionally their influence and support to improve the reliability of the driving
environment information will be discussed. This means how and what kind of features can be
extracted by sensor data fusion strategies.

22



C
ha

pt
er

2

2.1 Sensor Data Fusion

Figure 2.1: Sensor data fusion dealing as an integration platform between sensor hardware and appli-
cation software.

2.1.1 Odds and Potentialities

The term sensor data fusion has been vastly discussed, but sometimes its real sense is distorted
and even misinterpreted. But again, there is much more said than done in this field. Maybe this
is due to the fact how most of us are viewing sensor data fusion. By concentrating on fusion as
a mean of operating on data, we make the error of thinking in data fusion systems rather than
in systems with data fusion capability [Kokar and Kim, 1993]. That is why one of the most
important aspects is to consider the necessity of sensor data fusion systems. In the following
this point will be briefly covered. First improving potentialities of single sensor systems will be
enlightened focusing on the necessity of multiple sensor strategies. After that the benefits of
systems using multisensor fusion will be outlined. Finally their improving potentialities will be
discussed.

Potentialities of Single Sensor Systems

Improving potentialities of single sensor systems are rather a matter of application’s complexity
and requirements than weaknesses of sensor units themselves. Several applications have been
implemented successfully relying only on the information of single sensor systems. However
once applications have to meet demands of challenging constraints, single sensor systems reach
their limitations, which can be categorized as follows:

• Sensor drop outs: applications based on single sensors or isolated sensor configurations
are obviously more susceptible to sensor failures and faults. Single drop outs might affect
the functionality of the entirely system.
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• Limited spatial coverage: in some architectures, the design of a configuration with
sensor scanners is impracticable. On account of this the system will have one or more
sensors with a limited coverage area. This means that single sensors have finite field of
vision depending on its power emission (Radar and Lidar sensors).

• Limited temporal coverage: in general sensors have fixed sample time, which is
required for its own set-up, information preprocessing and transmission. If some breakdown
takes place sensor units may require more time to process the measured information,
which may imply the disregard of relevant measurements. The interlace of several sensors
with different sample times should reduce these risks.

• Limited information diversity: although single sensor systems may acquire environ-
ment events reliably, in most of the cases they are only able to detect a specific range of
object properties (position, velocity, dimensions, etc.). The type of information of single
sensor systems is restricted and may affect application’s performance.

Advantages of Multisensor Data Fusion Systems:

• Robustness and reliability: through dissimilar sensors acting out on a completing,
competitive or even in a redundant form (see fig. 2.2) the final information robustness
and reliability may increase. For instance this may compensate the sensor weaknesses
one another. Sensor units less susceptible to weather conditions or dark environments
may be applied along with units employed to detect more specific object properties
(eg. dimensions, countours, etc.), which are dependent on the opposite environment
conditions.

• Extended spatial and temporal coverage: using a consistent and well organized
sensor framework the information obtained may improve spatial and temporal coverage.
As mentioned before several coverage areas may be used to complement each other in
order to improve sensors field of view. Aside from this the temporal coverage can also be
refined by means of several sensors with different sample times.

• Reduced ambiguity: an intelligent environment modeling and trustable object hy-
potheses may help the system to reduce number of dubious information. In a multisensor
system several measurements may represent the same object. By means of multisensor
data fusion the measurements can be correctly associated to hypotheses representing
objects providing then a quality improvement of the acquired information.

• Increased information diversity: information fusion of several sensors with different
measuring principles may contribute to extract specific properties of acquired objects
(e.g. consistency, shape, etc.). These properties may be applied to an unambiguous
description of objects and thus reducing error sources by avoiding misinterpretation of
actions in the driving environment.
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Potentialities of Sensor Data Fusion Systems

Although the fusion of sensor data is extremely practical, most of the time straightforward and
generally implies a gain of information content and quality, it may also lead to a couple of
undesired effects. That is why it presents some improving potentialities aspects. In such a way
fusion can induce to a dubious and even erroneous modification of the acquired information.
This statement may become worse depending on the levels of fusion. Normally single sensor
units contain small fusion devices already, so an expected further fusion stage would intensify
this issue. The main cause for such alteration can be roughly shared as follows:

• Information uncertainty : the observability of reliable environment data is the ultimate
prerequisite for obtaining information gain while performing sensor data fusion. These
measurements are usually corrupted by noise or describe irrelevant or inexistent events in
the environment. Cause for these effects can be associated to environment conditions
(e.g. weather, extern interferences, etc.) or to sensor faults and failures. Once quality
and integrity of the data can not be assured the whole fusion process may be endangered.
This can induce to information loss or deterioration by fusing incoming data between
faulty and correct sensors.

• Modeling uncertainty: is associated with an incorrect or incomplete description of
the environment due to insufficient plant observability or knowledge. These aspects can
induce to erroneous assumptions and thus affect the quality of fused information.

In order to reduce the impact of information and modeling uncertainties while fusing sensor
data a storage pool configuration is generally implemented. A data pool stores the information
of several fusion levels and is able to share it with different applications. In doing so applications
themselves can chose what kind information is necessary in order to attend their execution
requirements. This information can assume several states varying from almost unprocessed
until strongly processed data. Details about different fusion levels and architecture will be
explored in the remain of this section (see figure 2.4).

Considering sensor data fusion architectures as part of a distributed system, in which execution
is shared again in tasks, special measures have to be taken in order to guarantee that the
system hold the real time constraints. Some alternatives are the implementation of a distributed
sensor data fusion system or even make use of time-triggered techniques.

Cost factors play also a very important role by planning fusion systems. First the costs for
different sensor units may increase the costs of a whole project. Then the necessity of more
power in order to supply the measurement units is also relevant. For instance the energy
consumption within a vehicle is also a critical factor.

Above all, limitations of sensor data fusion are rather a question of planing and strategies than
a matter of efficiency of the sensor data fusion method itself. Increasing the number of sensors
may lead thus to a performance gain or loss depending on the fusion concept.
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2.1.2 Fusion Techniques

In order to reinforce the correlation between fusion and reliability of the acquired information,
techniques for fusing sensor data will be investigated. In doing so the categorization of different
types of data fusion will be distinguished by outlining some procedures. Then some alternatives
for fusion of sensor data will be depicted.

How to fuse Sensor Data

Due to the environment information acquired by sensor units being under some circumstances
incomplete or uncertain, fusing redundant sensor data may help the system to accomplish such
weaknesses. Redundant means the detection of the same object by means of multiple sensor
units. This redundant information should also be combined with time varying information from
each single sensor. In general three types of sensor data fusion are distinguished [Durrant-Whyte,
1988]:

1. Competitive: means the fusion of uncertain sensor data obtained from several sources. An
example can be represented by a camera and a range sensor pointed at the same object
measuring the same parameters. Thus the distance to the object can be obtained more
accurately by means of sensor data fusion. It aims at reducing the effect of uncertain and
erroneous measurements. If, for example, a sensor is uncertain related to the angle to
certain obstacle it can give a rough estimate of this attribute. By means of competitive
sensor data fusion this estimates may be refined by other estimates of the same parameter.
Figure 2.2 shows S1 (e.g Radar) and S2 (e.g. Camera) in a competitive configuration
where both sensors observe redundantly properties of the same object in the environment.

2. Complementary: means the fusion of several disparate sensors that are only able to give
partial information of the environment. An example can be represented by several range
sensors or camera sensors pointed in different directions at distinguished obstacles. This
type of fusion tries to resolve the incompleteness of sensor data. In figure 2.2 S2 and
S3 represents a complementary fusion were each sensor observes different parts of the
environment.

3. Cooperative: means the fusion of distinguished sensors of which one sensor device rely
on the observations of another one to make its own observations. It makes use of the
information obtained from multiple sensors to describe the same obstacle. Usually sensors
with distinct measurement principles are applied and thus different attributes may be
acquired. In doing so not only information completeness may be increased but also sensor
weaknesses may be compensate one another. A simple example is the use of one range
radar to define the area of search of a camera system. Figure 2.2 depicts S4 and S5 in a
cooperative configuration. Both sensors observe the same object, but the measurements
are used to form an emerging view on object C.
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Figure 2.2: Competitive, complementary and cooperative fusion.

In most of the cases these three fusion techniques are applied in a combined form due to not
being mutually exclusive. An example of such a hybrid system is the combination of video
with radar and lidar sensors. In the common coverage area from all sensors, competitive fusion
could take place. Long range distance based units have a narrow beam and consequently a
narrow coverage area. Through complementary fusion video based units might support the
information obtained from distance based ones.

Smoothing, Filtering and Prediction

Sensors provide information that can be corrupted by noise or even, in some circumstances
for a period of time, provide no useful information. Therefore some procedures have to be
adopted in order to minimize the noise level, to smooth out the measured signal and also to
fulfill the gaps without useful measurements. That is why estimation approaches are usually
applied. Estimation can be essentially classified into three different problems, namely Filtering,
Smoothing and Prediction. These terms are defined based upon the time that the value output
is determined for, relative to the observed data that it has access to. Figure 2.3 illustrates the
estimation processes.

For instance an observation vector y
k
is given, where k corresponds to the elapsed time. The

goal is the estimation of the process state vector xk+m. Depending on the time k+m, the
following three cases can be distinguished:
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(a) Smoothing. (b) Filtering. (c) Prediction.

Figure 2.3: Estimation Processes.

1. Smoothing (m < 0): past values can be estimated after a series of measurements have
been performed. For each instant of interest several measurements from previous, actual
and following instants are used in order to estimate the value of a past process variable
(fig. 2.3(a)).

2. Filtering (m = 0): current values have to be estimated by using an current measurement
and information gained from previous measurements (fig. 2.3(b)).

3. Prediction (m > 0): future values are estimated based on a history of previous mea-
surements. Prediction tasks require an adequate system model in order to produce a
meaningful estimation (fig. 2.3(c)).

In general all three estimation cases contribute for an uncertainty reduction regarding acquired
data. This may be possibly achieved by checking the measured information against estimated
hypotheses in form of a standard deviation analysis. Assuming for example a Gaussian distribu-
tion, estimated values may be interpreted as an expectancy reference for the correspondent
evaluated measurements.

Levels of Fusion

Fusion can be performed in different levels. It varies from the fusion of unprocessed data (early
fusion) to a processed data level (late fusion) or even to a decision layer fusion (very late fusion).
Figure 2.4 illustrates the different levels of fusion along with the respective input/output modes.
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Figure 2.4: Different levels of fusion (based on Bak [2000]).

According to figure 2.4 fusion levels may be classified as follows (see e.g. [Dickmanns, 2005;
Bak, 2000]):

Early Fusion: corresponds to the method that integrates data without previous processing.
It comprises the following operation modes:

• Data In −→ Data Out (DIDO): DIDO modes are usually based on the information
fusion on the signal processing domain. One example can be represented by raw
measurements of different sensors that are fused competitively in order to certify the
presence of objects in the environment. Raw data means in the context information
without previous processing. It must be considered however that its definition is vague
because it depends on the point of view of analysis. This means sensor signals are
considered as raw data for the system, but as high level ones for sensors.

• Data In −→ Feature Out (DIFO): fusion strategies based on DIFO modes combine
the information of several sensors to extract features. These features support the system
to identify phenomena under observation.

Late Fusion: corresponds to the method that first extract features of the acquired data and
afterward integrates it in order to obtain higher level features or final decisions. In this sense it
is shared in the following modes:

• Feature In −→ Feature Out (FIFO): this mode combines different extracted features
in order to obtain new ones. For instance shape features extracted by means of video
based sensors may be combined with the ones measured by distance based sensors. It
provides more specific features for analyzed objects.
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• Feature In−→ Decision Out (FIDO): describes the method in which extracted
features from the acquired data are fused providing a basis for different system applications
to come to a decision. Based on the combination of different features application software
like several ADAS are able to perform their tasks.

Very Late Fusion: in this stage the abstraction level is very high. Fusion is performed here
with further processed data. It takes place over a decision based layer. Therefore this fusion
paradigm comprises a Decision In −→ Decision Out (DIDO) mode. DIDO mode is the
last operation in the hierarchy. Here decisions are processed in previous levels and combined.
For example results of different application software are combined in order to achieve more
complete decision procedures.

Another important aspect that can be observed (see fig. 2.4) is the utilization of already
fused data as an input for other remaining levels. This means information fusion can take
place in several stages, fusion can be performed "anywhere" [Naab, 2004]. Furthermore all the
presented fusion levels show odds and drawbacks. While early fusion presents positive aspects
like a low information lost1 at fusion time and properties of a data translator 2, it requires the
use of specific models for fusion data. It provides a weak reusability of the algorithms. On the
other hand late and very late fusion may suppress this reusability weakness, but data may be
lost due to previous processing layers.

As mentioned before the use of a data pool configuration may minimize information loss by
multiple processing stages. It stores the complete information of several fusion levels and
allows the access to it by different applications at different times. An overview about data
pool configuration will be covered in details in section 2.1.3 while exploring architectures for
multisensor systems.

After all the choice for a specific fusion strategy is rather a matter of application software
constraints than a deficiency of the fusion paradigm itself. Additionally a combination of the
presented strategies is also possible and thus extracting the advantages of all methods.

2.1.3 Multiple Target Tracking

The term target tracking is associated with the processing of measurements obtained from
a target in order to determine an estimate of its current or future state and thus building a
target’s trajectory. As mentioned previously a target state may consist for example of kinematic
components (position, velocity, acceleration, etc.), dimensions (length, width, height) and
consistency ones (color, structure, etc.). An important aspect is that target measurements are
usually corrupted by noise, what hinders the determination of its state. Relevant measurements
for multiple target tracking are usually the preprocessed ones obtained from sensor subsystems.

1The term low information lost refers to data that is fused without a strong previous processing.
2Fusion of information is only possible if data of different sensors have similar properties. A translator may
transform different information types to a common basis.
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It implies that measurements may already be fused before they are able to be tracked (see 2.1).
For these reasons a track is a state trajectory estimated from a set of measurements that have
been associated with the same target [Bar-Shalon and Fortmann, 1988].

One of the main challenges of multiple target tracking is how to deal with the data association
process for uncertain measurements. Origins for these uncertainties may be, among others,
random false alarms in the detection processes, disturbances due to material reflexion properties,
bad weather conditions and interfering targets. Data association challenges may be shared in
three groups:

1. Measurement-to-measurement: it describes the track initiation task. When one target is
detected for the first time, states of the associated measurement themselves describe
this new track.

2. Measurement-to-track: it describes the track maintenance or updating step. Existing
tracks are confirmed by the associated measurements.

3. Track-to-track: it describes track fusion. When more tracks are generated in order to
describe the same target (for example due to information incompleteness), the remaining
ones have to be removed.

Figure 2.5 illustrates schematically the target tracking task along with the information fusion
of two hypothetical sensors. It depicts target measurements and their uncertainties acquired in
different time slices (t). These measurements represent for example a group of attributes of
real targets in the driving environment. Furthermore the association process mentioned before
for both track initiation and maintenance is depicted as well. In a first step measurements are
associated to each other according to their properties similarity and thus initiating new tracks.
In further steps measurement are associated to tracks according to their similarities as well. A
certain association tolerance is determined due to both measurement and track uncertainty. The
trajectory of several objects being tracked is an additional source of information for identifying
events in the driving environment.

Strategies for data association in multiple target tracking process may be shared in two main
categories. The first one represents measurements associated to tracks which fall within the
uncertainty area or validation gate generated by existing tracks. This is the case when the
obtained measurement does not contain sufficient information to describe a target. The second
one is represented by tracks which are generated for every obtained measurement from a target.
This approach is chosen when measurements contain enough attributes to clearly describe real
targets [Bar-Shalon and Fortmann, 1988].

In this context two fundamental approaches for data association may be considered. The
standard state estimation considers the most likely associations as being unique alternative
to a track description. It implies that misassociations will be ignored or even considered as
correct ones. On the other hand a probabilistic approach deals with hypothesis testing. It will
consider by means of the analysis of different events the most suitable associations. Although
the second approach seems to be the most complete one its practicability depends strongly on
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Figure 2.5: Schematic representation of the target tracking mechanism in combination with the
information fusion of two hypothetical sensors. Real targets in the driving environment are
described by means of sensor measurements along with their uncertainties. Association
and estimation tasks of real target states and trajectories corrupted by noise (uncertainty)
describe the target tracking mechanism.

the type of the extracted measurement features and on the available resources (computation
efforts) as well.

These Tracks and their trajectories determined with aid of mathematical models deal as a
reference for evaluating both sensor information and sensor hardware units. They describe
relevant object hypotheses in the driving environment and thus supplying plausibility criteria for
testing sensor’s integrity. Essential premise for it is the use of dissimilar and partially redundant
sensors, which is adopted in the proposed approach.

Although multiple target tracking may be performed without sensor data fusion in a one sensor
system, it may be considered as a specific method for sensor data fusion as well. Following
sections will cover firstly different architectures for the fusion of sensor data and tracking of
multiple targets. Afterward relevant algorithms for these purposes will be explored.

Architecture for Multisensor Systems

An architecture, framework or process model for a generic sensor data fusion and multiple
target tracking systems has to be able to handle with different types of information. This data
may be obtained from several sensors with totally dissimilar working principles and types of
targets. Examples of considered sensors are distance based (Radar, Lidar, etc.) and vision based
(cameras) ones. Another important property of these architectures is their scalability. Such
systems have to be able to easily deal with their own reduction or expansion. This may happen
due to changes in the system configuration or by a breakdown (degradation). Frameworks that
try to achieve these constraints are vastly listed in technical literature. In the following some
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of the most relevant ones for this work will be briefly outlined.

JDL Model: was proposed by the US Joint Directors of Laboratories (JDL) group in 1985
and later updated in Waltz and Llinas [1990]. It is considered to be one of the precursors of
the fusion architectures and consists of five levels of abstraction as illustrated in figure 2.6.

Figure 2.6: JDL Process model consisting of five levels of abstraction for performing sensor data fusion.

Level 0 is related to the sensor hardware environment. It deals with the extraction of information
and is closely related to hardware signal processing. For these reasons it is generally performed
in the sensor units itself. Level 1 considers an "object quantification". The common purpose
of this level is to find a unique representation of all objects in the environment. Therefore real
objects within the observation area are described by so called tracks, which are built by data
association and state estimation techniques.

Process levels 3 and 4 treat different environment situations and decision consequences. Within
these two parts the relationship between different objects is investigated with applied hypotheses.
The process refinement executed in level 4 tries to optimize the process itself. This may be
obtained by an adaptive data acquisition and processing. Finally the interaction with an
information databases should result in the gain of information content and quality, which should
be more robust and more reliable than the data obtained from each single sensor. As mentioned
before some alterations have to be performed on this current architecture depending on the
application in order to get a feasible data sensor fusion.

System Architecture by Luo and Kay: consists of a schematic arrangement, where subsets
of sensors are connected to local fusion units while their information are preprocessed [Luo and
Kay, 1992] (figure 2.7).

According to figure 2.7 local units transmit their data to superior global fusion units, which
fuses the received data. For each sensor set a corresponding model is implemented. By means
of sensor and error models the quality from each measurement data is determined. The sensor
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Figure 2.7: System Architecture proposed by Luo and Kay.

registration block adjusts the sensor measurements according to their spatial and temporal
features before they are fused. In addition the world model block contains the description of
the system states and holds the databases for a priori knowledge of the environment. In the
sensor selection block the most adequate sensors for a specific application are interactively
chosen. This architecture foresees integration from independent sensors.

System Architecture by Naab: aims the design of an architecture, which is able to support
dynamically current and future requirements of driver assistance systems [Naab, 2004]. Thereby
an integration platform has to be easily expandable and extremely flexible for new alterations.
By means of a strong modularity and structuring not only an easy extension of the driving
environment coverage is possible, but also certain scalability in terms of the combination with
new driver assistance systems can be achieved. The flexibility of the proposed processing model
was proved by the extension and further development of its architecture by de Castro Bonfim
[2004].

Another important aspect covered is a system design that enables hardware independence as
good as needed. Application independence within the possible limitations is required as well.
Application specific parts must not affect one another and they must also be arranged as close
as possible to the corresponding general applications. Several applications may use datasets
from the same process level or they require it for consistence reasons. Therefore, such datasets
have to be considered and managed like common resources.

Naab [2004] defines also an axiom for data handling, where the superior process levels have
to have as much access as possible to the inferior ones, but not including the sensor units
themselves. The effect of higher process levels over the preceding ones have to be interpreted
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like an attention control. This means that information obtained in the prior levels should
support and also limit the area of work of the higher levels. That is why appropriated access
mechanisms have to be designed.

The proposed system architecture is depicted on the figure 2.8. Its concept is based on the
assumption that the obtained result can be considered like a "virtual sensor". This means that
a sensor at the input of the system could contain the same architecture inside. What recurs
to the point that data fusion can take place in several stages, fusion can happen "anywhere".
Thereby it originates the concept of high and low level information. Sensor output contents
are considered as high level from its own point of view. On the other hand sensor output is
interpreted as low level information if considering the point of view of a data fusion system.

Figure 2.8: Sensor data fusion and multiple target tracking framework by [Naab, 2004].

Sensor Proxy block operates like an interface between the sensors and system. It collects
and prepares the obtained information and transmits it to the next process level. Some sensors
support feedback adjustment, which is executed in this stage as well.

In the Data Alignment process unit the obtained information is adjusted according to a
global coordinate system. Usually sensors have their own coordinate system and measurements
are represented in that form. In addition sensor uncertainties are also assigned. At this point
hardware independence should be achieved.

Track definition and characterization take place in Data Association process unit. In this
context they can represent vehicles, traffic lanes, road signs and so on. If they represent similar
properties, they are described with the same set of attributes. Their association can be done by
means of models that describe their properties and behaviors. These identical and distinguished
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object types can be processed simultaneously in the way of multiple target tracking. This
unit performs track initiation and maintenance representing measurement-to-measurement and
measurement-to-track association respectively.

In the first fusion stage or Low Level Fusion block measurement attributes are combined.
For instance by calculating tracks center of gravity approach. In this unit the sensor view of
the objects are not drastically changed. The data is not filtered and thus is still independent of
the application.

The High Level Fusion block deals with the filtering of the measured attributes based on
filter models. Attributes that cannot be measured directly are estimated using again appropriate
prediction models. Required inputs, which cannot be obtained with the available sensor units,
could be generated artificially by means of hypotheses as well. The same is also valid for
attributes that cannot be predicted. Sometimes different applications make use of identical
filter, but just with distinguished parameters. For it filter sets can be implemented, which can
be application specific or for common use.

The Fusion Manager unit acts as a supervisor for the target tracking systems. Several
algorithms are applied to perform track-to-track association or fusion. This reflects the last
processing stage in the target tracking architecture.

In order to reduce the impact of information lost due to intensive data processing or even
modeling uncertainties while fusing sensor data a Data Pool configuration is implemented.
In doing so applications can access specific information, which is necessary to attend their
execution requirements. Data from all processing stages is made available.

Alternatives: some alternatives to the architectures mentioned before, which can be relevant
to ADAS are the 4D Approach from Dickmanns [1997], the Bayesian Network from Kawasaki
and Kiencke [2004] and feature level fusion using a Multi-layer Perceptron Neural Network
proposed by Bedworth [1999].

The approach from Dickmanns [1997] is divided in three spatial coordinates and time. It
foresees among others the utilization of: dynamic motion models considering time delays and
control outputs; 3D models for visual measurements; predicted error feedback in 4D state
coordinates.

A Bayesian Network, which is also called "belief net" or "causal network", is a visualized
technique for statistical dependencies between variables and also works as a probabilistic
estimation machine [Kawasaki and Kiencke, 2004]. Its architecture consists of many object-
detection algorithms that are called recognition IPs (Intellectual Properties). They output the
target object properties such as lateral center position or width. The outputs of the recognition
IPs are fused in the Total Decision IP block, where a Bayesian network is implemented. Bayesian
networks working in sensor fusion and target architecture form is covered in details in Kawasaki
and Kiencke [2004]
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In the architecture proposed by Bedworth [1999], sensor networks are formed and afterward
trained separately using the conjugate gradient optimization algorithm. Fusion occurs at the
feature level by combining these networks. Bedworth [1999] shows how a mixed error criterion,
which incorporates both local performance and fused performance leads to a selection of sources
that is both relevant (in a local sense) and complementary (in a global sense).

Algorithms

As mentioned earlier target tracking is a state estimation task. According to the origin of the
considered systems (linear or nonlinear) the type of estimation techniques may vary. Linear
static systems make use of basic estimation algorithms like maximum likelihood, maximum a
posteriori, least squares, minimum mean square error and so on. Linear dynamic ones apply
among others Kalman and α − β filters. On the other hand, nonlinear systems are related
with alternatives like the extended Kalman (EKF) or Particle filters. The later is applied not
only for nonlinear, but also for non-Gaussian tracking tasks. In this work dynamic linear and
nonlinear systems with Gaussian properties will be emphasized. Therefore inferences about the
environment have to be performed at least by means of two types of models: a model describing
the state evolution with time (system model) and one related with the noisy measurements to
the state (measurement model) [Arulampalam et al., 2002]. Based on these aspects Kalman
and α− β filters will be covered in details in the following sections.

Figure 2.9 situates the explored estimation algorithms for sensor fusion and multiple target
tracking using the architecture proposed by Naab [2004] as an example. These algorithms can
be applied in a isolated or in a combined form as well as allowing a multiple model approach.

Kalman Filter: is the state of the art of the model based dynamic filtering due to dealing with
nonlinear dynamics and nonlinear models [Naab, 2004]. It handles also well with asynchronous
drop outs of measured inputs and with state models with dynamic variable dimensions. The
main advantage is the consistent modeling of the environment by means of an a priori or
even dynamically model description of the error variances. Under some circumstances the
quality rate of the models and filtered information is automatically provided by the filter. The
integration of additional kinematic models can be easily performed in order to deduce other
states like absolute and relative object speed, yaw rate from objects and so on.

Basically Kalman filters are an extension of least square estimates to time-varying quantities.
Due to discrete Kalman filters being the basis for more complex alternatives it will be discussed
in more details. Other variations like the Extended or the Unscented Kalman Filter are explored
in details in Bar-Shalon [1990] and in Wan and Merwe [2000] respectively.
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Figure 2.9: Schematic illustration for situating the estimation algorithms for sensor fusion and multiple
target tracking.

The estimation problem in the discrete Kalman Filter is the attempt to estimate the state
x ∈ < of a discrete-time controlled process that is described by a the linear stochastic difference
equation 2.1:

xk = Axk−1 + Buk +wk−1 (2.1)

supported by a measurement y ∈ < that is described by equation 2.2:

y
k

= Cxk + vk (2.2)

The vector y
k
represents the fusion results to a determined discrete time k. In doing so

measurements are fused to the state variables. The measurement noise vk and the process noise
wk are represented by both random variables. These variables are assumed to be independent
from each other, white and with normal probability of distributions.

The square matrix A (A ∈ <), characterized as the system or transition matrix, represents the
mathematical modeling of the environment (system model). Consequently it describes the
transition of the model states from the instant of time k− 1 to the current instant k. Matrix B
(B ∈ <) is related to the control input u (u ∈ <) to the state vector x while the measurement
matrix C (C ∈ <) represents the relationship between the measured variable and the estimated
states (measurement model).
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The Kalman filter consists of an optimization problem. It aims at the minimization of
differences between the estimated states and the measured ones making use of the error
variance of measurements, estimations and processes. Its process works in a feedback control,
which can smooth, filter and predict the process states (see 2.1.2). The filter predicts the
process states at some time and then obtains feedback through measurements that are generally
noisy. These two stages are classified as time update and measurement update respectively.
They are represented by a group of equations, which govern the process. The equations for the
measurement update step are described as follows by equations 2.3, 2.4 and 2.5:

Kk = P
−

kC
T
(CP

−

kC
T

+ R)−1 (2.3)

x̂k = x̂
−
k + Kk(yk − Cx̂

−
k ) (2.4)

Pk = (I− KkC)P
−

k (2.5)

At first the Kalman gain Kk is calculated. It weights the residual (difference between measured
and predicted values or yk − Cx̂

−
k ) according to the measurement error covariance matrix R

and the a priori state estimate error covariance P−

k . Observing equation 2.3 one realizes that
the more R approaches to zero (limRk→0 Kk) the stronger the gain Kk weights the residual. On
the other hand the more P−

k approaches to zero (limP−
k→0 Kk) the weaker is the influence of

Kk over the residual. The a posteriori estimates x̂k are calculated by the weighted residual and
by the a priori estimates x̂−

k predicted at time update step. Finally the a-posteriori estimate
error covariance is projected as well.

The equations for the time update step are described by equation 2.6 and 2.7:

x̂
−
k = Ax̂k−1 + Buk (2.6)

P
−

k = APk−1A
T

+Q (2.7)

The previous a posteriori process state estimates x̂k−1 are used to project or predict the new
a priori process states estimates x̂−

k . The a-posteriori estimate error covariance matrix P−

k ,
which consists of the expectancy of the difference between the previous measured value and the
estimated value, is projected ahead by equation 2.7. P−

k describes the track uncertainty, which
is represented by ellipsoid or hyperellipsoid axes (depending on the number of hidden states)
and is used as membership area in the data association block in the architecture proposed by
Naab [2004]. On the other hand matrix Q represents the process noise covariance and can be
employed to compensate assumptions assumed by the modeling.

39



2 Fundamental Theory and State of the Art

The processing cycle begin again after each time and measurement update pair. This recursive
feature of the Kalman filter makes it implementation easy for some applications, because it
only requires the previous a posteriori value to perform the process states prediction and not a
sequence of prior values.

Beside prediction, filtering and smoothing of model parameters, a very important feature of the
Kalman Filter consists of its ability to fuse measurement attributes. The attributes obtained
from several sensor measurements can be combined by the relation y

k
= Cxk. Where y

k

represents the several measurement attributes, C the measurement matrix and xk the state
vector of the model parameters.

α− β Filter: is a very simple derived version of a specific Kalman filter. It is characterized
by a time-invariant system model the so-called steady-state filters. Their a priori calculated
parameters are not adjusted according to motion situations neither because of extern nor intern
information. Anyway they should be able to predict, filter, smooth the obtained information
of moving targets [Naab, 2004]. An advantage of such filters is that the elements of the
gain matrix K do not have to be calculated for every duty cycle. Instead of it, the elements
are calculated off-line (before the start of operation) and are valid for every identified object
obtained from the prior process level of the data sensor fusion. The calculation of the element
of the gain matrix considers however both the dynamic and static properties of the targets.

Both Kalman and α−β filters may imply a data error reduction or even elimination depending on
the accuracy of the applied models. While Kalman filters contain fusion properties by processing
simultaneously multiple measurements, α− β filters do not present fusion characteristics. The
model based estimation is applied only for one measurement.

The equations that govern the process are quite similar to them used by the Kalman filter.
Then the equation for the a-posteriori estimate in this case is achieved as follows (equations
2.8 and 2.9):

x̂k = x̂−
k + α(yk − Cx̂−

k ) (2.8)

̂̇xk = x̂−
k + β(yk − Cx̂−

k ) (2.9)

As mentioned before the elements of the gain matrix are not updated every cycle. For instance
the gain matrix for a process with two states x̂ and ̂̇x is described by equation 2.10.

K =

[
α
β
t

]
(2.10)

where α and β correspond the coefficients of α− β filter with a cycle time t.

Due to this filter consists of a time-invariant system model, it can result in important sim-
plification for practical applications. For example its markable feature is the low demand of
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calculation power as well as the low demand of memory space. The calculation of these two
coefficients is obtained by equations 2.11 and 2.12:

β =
1

4
(λ2 + 4λ− λ

√
λ2 + 8λ) and (2.11)

α =
1

8
(λ2 + 8λ− (λ+ 4)

√
λ2 + 8λ), (2.12)

where λ is called the target maneuvering index or target tracking index and obtained by equation
2.13:

λ
.
=
σvt

2

σw

(2.13)

The variance of the (scalar) measurement noise is denoted as σ2
w

.
= R, where R represents the

measurement error covariance. σ2
v

.
= Q denotes the variance of the (scalar) process noise.

Alternatives: for algorithms involving the fusion of sensor data and tracking of multiple target
are numerous. Besides the algorithms discussed here, others alternatives like Bayesian Networks
[Kawasaki and Kiencke, 2004; Duda et al., 2001; Jensen, 2001], the Extended Kalman Filter
(EKF) [Maybeck, 1979], approximate grid-base methods [Arulampalam et al., 2002], particle
filters [Doucet et al., 2001], fuzzy systems [Pacini and Kosko, 1992] and [Loebis et al., 2004],
neural networks [Yu et al., 2007] and [Lendaris et al., 1994] among others are applied. Due
to the high diversity of algorithms of sensor data fusion and target tracking available and
their indirect relevancy in this work, they will not be covered in detail. An overview of such
algorithms can be achieved in the references mentioned.

2.1.4 Information Reliability

This section intends to give an overview of different strategies in which sensor data fusion
supports an improvement of information reliability. As mentioned earlier sensor data fusion
itself is a straightforward method that enables the acquirement of reliable information. Relying
on different data fusion alternatives (competitive, complementary or cooperative) a desired
quality level may be already achieved (see section 2.1.2). However an important aspect is how
to evaluate it. A measure for the fused information has to be determined in order to supply
further processing levels with reliable data.

In technical literature the fusion of sensor data has been also applied to diagnostic purposes.
Wright and Kirkland [1995] propose the use of sensor data fusion not only to implement
instantaneous diagnosis procedures, but also to learn upon trends and patterns in order to
facilitate it in the future. In doing so a higher reliability of fused information may be achieved as
well. Their approach tries to retrieve previous unknown knowledge implicit within the acquired
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data (figure 2.10). Usually the extraction of such information is nontrivial and potentially
useful for diagnosis. The system semantic is presented as follows:

"given a set of facts (data) F, a language L, and some measure of certainty C, one may define
a pattern as a statement S in L that describes relationships among a subset Fs with a certainty
c. According to the user imposed interest measure, a pattern S that is interesting and has a
sufficiently high degree of certainty is called knowledge."

Figure 2.10: Sensor Fusion and Knowledge Discovery architecture according to Wright and Kirkland
[1995].

According to figure 2.10 the system core consists of different methods that compute and
evaluate patterns from fused sensor data to become knowledge to support test programs. The
systems input consists of measured data stored in a central database. This database is filled by
the acquired and fused information of different supervision sensors and a priori knowledge in
form of test programs (or previous knowledge). The system outcome consists of the discovered
knowledge that may be processed by different application software or returned to the domain
knowledge (systems cyclic influence). Although the approach of Wright and Kirkland [1995] is
suitable for several diagnosis applications, it shows some weaknesses in its raw format with
respect to automotive applications. For example the discovery process is computationally
expensive and the amount of stored data may grow drastically according to the failures to be
diagnosed.

Another valuable example on how sensor fusion supports the acquisition of reliable information
is the approach from Park and Lee [1993a] (figure 2.11). In their approach they propose the
Fusion-based Fault Detection and Diagnosis (FFDD) system where the sensory information is
modeled using Fuzzy numbers, F−numbers, and the Uncertainty Reductive Fusion Technique
(URTF) proposed by [Park and Lee, 1993b].

According to figure 2.11 the fault detection process is shared in three stages in order to
minimize fault propagation. This configuration may also support the fault diagnosis process by
providing detailed information about sensor data and the state of system. The outcomes of N
redundant sensors are fused by means of URTF. Once the approach deals with competitive
sensor information (see 2.1.2) the system is calibrated to provide fusible results. Any infusible
data, in any state, would provide an evidence of sensor failure specially by the sensor that
supplies this infusible information.
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Figure 2.11: Fault detection process according to [Park and Lee, 1993a].

Stage 2 consists of a temporal fusion process. It checks time consistency against the prior
information stored in the system database. This means, an extra validation is performed by
means of target tracking strategies (see 2.1.3). Fusion is achieved by combining the consensus
result of multisensor fusion process, FC, and the output of the FFDD for one prior time instance,
FCt−1.

Stage 3 is responsible for the Diagnostic fusion process. In this stage the results of each of the
fusible groups, F̃Gj (for j = 1, 2, · · · , r) are fused with the nominal state, F̃∗, which is provided
by the system database. Due to URTF is used for clustering three sources of fusible outputs
are possible: a) temporal fusion; b) diagnostic fusion; c) none of them. There will be at most
one fusible output from the diagnostic fusion process among the "r" fusible groups. The final
system output Ft is obtained by means of a multiplexer, which choose the output value out
of the temporal and diagnostic fusion processes. Finally the diagnose from sensor faults is
obtained by the combination of different conflict lists of infusible data in the Fault Diagnosis
block by means of F−numbers.

Another relevant method to mention is the work from Basir and Youan [2007]. They investigate
the use of Dempster-Shafer evidence theory as a tool for modeling and fusing multisensor data
and performing diagnosis. A detailed description of their method is given in Basir and Youan
[2007].

Although several approaches were proposed in technical literature, the necessity of methods
that easily handle sensor malfunctions and improve the reliability of information in a modular
and scalable form is still present.
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2.2 Supervision and Fault Management

Due to the necessity of improving safety, reliability and availability of technical processes,
different methods and strategies have been extensively explored. Supervision and Fault
Management involve several techniques which enable monitoring of automated systems and
automatic protection in cause of faults. Therefore this section intends to give an overview
about these techniques which are basis for the development of this work. First of all a survey
of basic tasks and definitions of supervision an fault management processes will be explored.
It also involves the aspects of systems reliability, availability and maintainability (RAM) as
well as safety, dependability and integrity. Then, fault detection methods will be covered.
Diverse strategies from signal models plausibility till the detection with state observers and
state estimation will be covered. Additionally fault diagnosis methods will be investigated.

2.2.1 Tasks and Definitions

Classical supervision and fault management methods are mainly concerned with monitoring
and automatic protecting technical processes. Monitoring means the verification of measured
variables considering tolerance thresholds. In case of these signals exceeding the established
limits, alarms have to be interpreted by an operator in order to let him take appropriate
counteractions. Automatic protections usually drive the process to fail safe states, which are
normally described by an emergency shut down [Isermann, 2005].

Although classical methods are straightforward and work well if the evaluated technical process
works in steady-state, it becomes more complex if the process operating point changes rapidly
[Patton et al., 2000]. In some situations a graceful degradation of the system is more desirable
than an emergency shut down. In this sense and among other weaknesses a more general
scheme for supervision and fault management is required (figure 2.12).

According to the scheme described in figure 2.12 the implementation of advanced methods of
supervision, fault detection and diagnosis is made possible. This approach is necessary in order
to fulfill the following requirements [Isermann, 2005]:

• early fault detection: has to be achieved even for small faults with abrupt or incipient
behavior. This should outperform the weak efficiency of simple threshold based supervision
methods. Thereby effective counteractions like a graceful system degradation may be
performed.

• overall fault detection: is a requirement to be achieved specially in processes closed
loops. What is performed in contrast to some classical supervision methods, which allow
particularly the detection of faults in output signals.

• overall fault diagnosis: is a premise, which involves considerably development efforts.
The diagnosis of faults in the processes or part of it and other mechanisms like sensors
and actuator is essential for the feasibility of safety critical systems.
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• process supervision in multiple states: have to be assured in complex process plants.
Due to operating points changing in such systems rapidly, supervision approaches have
to be able to adapt themselves in the same frequency.

Figure 2.12: General scheme of different supervision methods with fault management (supervisory
loop).

This general scheme extend the classical methods by interpreting the system deviations not
only in the outputs, but also by considering input signals and intern process states. It is shared
into the supervision with fault diagnosis and actions also considered as fault managements.

Supervision with fault diagnosis consists of several approaches which involve signal processing till
the operator decision level. Signal processing is related with the extraction of features that are
relevant for fault detection and diagnosis. Its major task is to obtain the observable and relevant
features out of the acquired data, which consists of multiple redundant and, in some cases,
meaningless information. Feature extraction may be achieved by means of different methods
like state estimation, identification and parameter estimation or parity relations [Gertler, 1991].
The next step is the processing of these extracted features in order to extract "symptoms" or
indicators for faults. Again the achievement of these symptoms may be performed by plausibility
criteria by human observations (heuristic) and by modeling expected or unexpected behavior of
data or actions in the environment (analytical). Symptoms are characterized by the deviation
of the expected or the assertion of the unexpected behavior of the analyzed data. Therefore
they are also considered as residuals.

Once symptoms are extracted from data, fault diagnosis may be performed. These analytical
and heuristic fault indicators may be evaluated in order to determine the kind, size and location
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of faults. This task may be performed by means of classification or reasoning methods [Gertler,
1991]. After faults are identified, a classification regarding the hazards that this faults could
cause to the whole system is required. According to the level of the hazards the degree of
danger counter actions will be taken by the operator. This information will supply the the
automatic protection mechanisms.

Another important aspect in the general scheme illustrated in figure 2.12 is the supervision
of actions and fault management. Depending on the hazards level several actions may be
performed:

• safe or reliable operation: corresponds to the avoidance of a further fault expansion
by changing the operation state. Sometimes it must be driven to a system shutdown.

• reconfiguration: drives the system to a state in which it is activated by alternative
sensors, actuators or by redundant (standby) components in order to keep the process in
operation or under control.

• inspection: allows a detailed diagnosis by operators if the systems is not able to be
driven to a safe state or reconfigured.

• maintenance: corresponds to all actions which have as as objective to retain an item
in or restore it to a state in which it can perform the required function [EFNMS, 1998].

• repair: is the process to remove a fault instantaneously or at next possibility by, for
instance, exchanging damaged parts.

Although supervision and fault management methods have been extensively explored and
discussed in technical literature, the terminology is still ambiguous. One of the main causes for
the lack of clearness is due to these methods have been applied for different areas. Fundamental
terminology in this context will be presented in the remain of this section. These definition are
extracted from Isermann and Balle [1997], Leonhardt and Ayoubi [1997] and Isermann [2005].
The presented terminology will be the basis adopted in this work.

"Fault is an impermissible deviation of at least one characteristic property (feature) of the
system from the acceptable, usual standard condition."

"Failure is a permanent interruption of a system’s ability to perform a required function under
specified operating conditions."

"Malfunction is an intermittent irregularity in the fulfillment of a system’s desired function."

Other important terms to be considered here in order increase the quality of technical process
are reliability, availability and maintainability, the so called RAM measurements [Duma and
Krieg, 2005].

"Reliability is the probability of an item to perform a required function under stated conditions
for a specified period of time."
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The amount of reliability of a specific system can be obtained by the reliability function
(equation 2.14):

R(t) =
n(t)

N
=

failure free elements

number of all elements at the begin of operation
(2.14)

which may be also expressed by an exponential failure law (equation 2.15):

R(t) = e−λt (2.15)

where λ describes the failure rate (equation 2.16):

λ =
1

number of all elements

number of failures

time interval
(2.16)

Figure 2.13 illustrates a typical failure rate based on empirical evidences in dependence of a
component lifetime.

Figure 2.13: Bathtub curve (based on empirical evidences) for describing typical failure rates λ(t) for
components.

Another important measure for system reliability is the Mean Time To Failure factor (MTTF).
It describes an estimate of the average operating time until a designs’s or component’s failure
take place. This can be only considered by constant failure rates. Equations 2.17 and 2.18
describe ways of determination for the MTTF.

MTTF =
n(t)
dnf(t)

dt

= number of operating elements
number of failures

time interval

(2.17)

MTTF = 1
λ

(2.18)

where the MTTF is determined as the reciprocal of a constant failure rate. In order to determine
the whole system reliability the disposition of the evaluated components has to be considered.
The reliability of serial connected components (m), which fail statistically independent from
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one another, is determined by the multiplication of the reliability of each component (equation
2.19).

Rtot(t) =

m∏
i=1

Ri(t) (2.19)

On the other hand parallel connected components, which are statistically independent as well,
are calculated by the product of each component unreliability Qi(t) = 1 − Ri(t) (equation
2.20).

Qtot(t) =

m∏
i=1

Qi(t) =

m∏
i=1

(1 − Ri(t)) (2.20)

"Availability is the measure of the degree to which an item is in a operable state and can
be committed at the start of a task when it is called for at an unknown (random) point in
time. It is a function of how often failures occur and corrective maintenance is required, how
often preventative maintenance is performed, how quickly indicated failures can be isolated and
repaired, how quickly preventive maintenance tasks can be performed, and how long logistics
support delays contribute to down time."

By means of equation 2.21 the availability function is described:

Availability =
time in operation

total time
=

MTTF

MTTF+MTTR
(2.21)

where the Mean Time To Repair (MTTR) describes through equation 2.22 the average time
over N failures needed to return a failed device or system to service.

MTTR = E{TR} = lim
N→∞

1

N

N∑
i=1

TRi (2.22)

"Maintainability is the ability of an item to be retained in, or restored to, a specified condition
when maintenance is performed by personnel having specified skill levels, using prescribed
procedures and resources, at each prescribed level of maintenance and repair."

There are several ways to achieve the maintainability of a system even before its activation.
They consist of designing the system accurately, using standardized tools and components,
achieving an appropriate modularity. A manner to determine the average maintainability of a
system is by means of the MTTR factor described in equation 2.22.

Assuring reliability, availability and maintainability of a system implies a direct impact on its
safety. As the term safety is also applied for different areas its definition and from its related
topics is still ambiguous. Safety will be interpreted in this work like in [IECTR61508-0, 2005]:
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"Safety is freedom from unacceptable risk of physical injury or of damage to health of people,
either directly, or indirectly as a result of damage to property or to the environment."

Another important safety requirement for safety-related systems is the level of integrity, which
is defined as follows [IEC61508, 1997]:

"Safety Integrity is the probability of a safety-related system satisfactorily performing the
required safety functions under all the stated conditions within a stated period of time."

Common methods for achieving system safety are listed in technical literature like: fault
avoidance, removal, tolerance, detection and diagnosis and additionally automatic supervision
and protection. Fault avoidance and fault removal are measures that may be achieved at the
system design phase. Useful techniques for their determination are among others: hazard and
risk analysis, failure mode and effect analysis (FMEA) and fault tree analysis (FTA). Next
a brief overview about these design techniques will be given. Online techniques like fault
detection (section 2.2.2) and diagnosis (section 2.2.3) and will be covered later on.

Hazard and risk analysis are basic procedures to determine the safety integrity of a system.
This kind of analysis provide the first insight in the technical process behavior that could lead
to situations of potential danger causing accidents, injury, death, environmental or material
damage. According to the level of hazards, depending on its frequency and consequence, risks
can be determined. There are several qualitative and quantitative methods to determine the
risk factor in a system. One example of a quantitative risk classification is showed in table 2.1.

Frequency Consequence
castastrophic critical marginal negligible

frequent I I I II

probable I I II III

occasional I II III III

remote II III III IV

improbable III III IV IV

incredible IV IV IV IV

Table 2.1: Risk Classification of Hazards or Accidents [IEC61508, 1997].

A detailed description of different methods to assign the frequency and consequence of hazards
and risks can be found in [IEC61508, 1997] and in its revisions through the following years
by the International Electrotechnical Commission (IEC). The interpretation of risk classes are
described as follows in table 2.2:

The assertion of the frequency and consequence of hazards or accidents is performed in different
areas like automotive, aircraft and nuclear. Thus specific standards were developed. The
standard IEC 61508 ([IECTR61508-0, 2005]) defines four levels of safety performance for a
safety function called Safety Integrity Levels (SIL). SIL1 describes the lowest level and SIL4 the
highest one. These levels describe a measure of likelihood for the system safety and comprise,
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Risk Class Interpretation
Class I intolerable risk

Class II

undesirable risk, and tolerable only if risk reduction is im-
practical or if the costs are grately disproportional to the
improvement gained

Class III
tolerable risk if the cost of the reduction would exceed the
improvement gained

Class IV negligible risk

Table 2.2: Interpretation of risk classes [IEC61508, 1997].

for example, the failure probability per hour, operating hours per failure and operating years
per failure. As mentioned earlier safety requirements vary according to the evaluated area.
Therefore specific areas adopt SIL standard respecting their demands.

In order to support the hazard and risk analysis FMEA is usually performed. FMEA is a analysis
method that evaluate components, their functions, failure modes and the cause of system
failures. It performs the following tasks:

• it evaluates effects and sequences of events caused by each identified failure mode.

• it determines the significance or criticality of each failure mode as well as the correct
performance of the system and the impact on the availability and safety of the related
process.

• it classifies the identified failure modes according to their ability to be among others,
detected, diagnosed, testable.

• it estimates the measure of the significance and probability of failures.

FMEA allows the identification of weaknesses on the system in both early and late development
stages. Its analysis structure results in tree-like format, where failure modes with regard to
components and the respective effects on the system. Figure 2.14 shows a basic structure for
FMEA procedures.

Basically FMEA procedures can be shared in four steps [Eschermann, 2004], which are described
as follows:

1. Break down the system into components.

2. Identify the functional structure of the system and how the components contribute to
functions.

3. Define failure modes of each component:

• new components: refer to similar already used components

• commonly used components: base on experience and measurements
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Figure 2.14: An example of a Tree-like structure for FMEA procedures.

• complex components: break down in subcomponents and derive failure mode of
component by FMEA on known subcomponents

• other: use common sense, deduce possible failures from functions and physical
parameters typical of the component operation

4. Perform analysis for each failure mode of each component and record results in a table
worksheet. One possible form to describe the results of a FMEA of a whole system is
outlined in table 2.3.

Component
Failure
mode

Failure
causes

Failure effect
on unit

Failure effect
on system Counteraction

· · · ...
...

...
...

...

Table 2.3: An example of a FMEA result’s table [Isermann, 2005].

Once the formalized failure mode and effect analysis for the whole system is performed, the
most critical components can be systematic evaluated. One established technique to execute
such a task is the so called Fault Tree Analysis (FTA). FTA is a top-down approach that starts
with a potential undesirable event at the top of its structure and determines all the paths in
which it can take place. It consists of a graphical representation of the logical structure showing
the relationship between a top event an all its probable causes. By means of this technique
countermeasures can be developed in order to reduce the probability of the undesired event.
Figure 2.15 illustrates an example of a generic FTA.

Based on figure 2.15 the probability of failure from subsystems and the whole system can be
calculated. This is performed according to the occurrence probability of faults in the specific
components combined to one another. The type of connection specifies if one component fault
is enough to generate a subsystem or a system fault (OR gate) or a group of components have
to fail simultaneously (AND gate).
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Figure 2.15: An example of a generic FTA.

Several methods has been supporting the achievement of system safety in its design phase.
Although the ones covered in this section are the most common applied techniques, there are
a lot of alternatives to and extension of these methods. For instance instead of achieving a
qualitative statement with FMEA the Failure Modes, Effects and Critically Analysis (FMECA)
enables a quantitative statement. Thereby, a risk of operation can be determined by calculating
a Failure Risk Priority Number (FRPN) [Sharma et al., 2005]. Among several combination
and extensions, different risk classification of hazards and accidents may be adopt (see table
2.1). A detailed explanation of the methods briefly covered in this section and variations and
extensions of them for system safety can be found in IEC61508 [1997], Sharma et al. [2005],
etc.

2.2.2 Fault Detection

In the previous section strategies for avoiding and removing faults in the design phase were
presented. Another important task is how to detect it during system online operation. This
challenge is what the following section is about. The scope from fault detection methods
involves several techniques. It enfolds among others the detection of faults by means of signal
models, process identification, state observers and state estimation methods. Depending on
system requirements simple or complex fault detection with limit checking is satisfactory.

First of all this section will consider the basic aspects for fault detection. Focusing on the
expected and abnormal behavior of systems and components techniques for modeling processes
will be briefly covered. Afterward an overview of some relevant fault detection methods for
this work and alternatives will be given. Finally a comparison among these relevant strategies
exploring their assets and drawbacks will be discussed.
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Basic Aspects

The most basic assumption by detecting faults is that the operation of a system and its
components should not drastically drift from the expected behavior. According to system
requirements a simple allowed range definition for signal and variables may be sufficient. As
soon as such faults are detected the most common countermeasure is to drive the system to
a shut down state. Although the system reliability will be increased, its availability will be
drastically affected. In order to handle with these aspects, more elaborated techniques have
been applied. Such techniques consist of a combination of knowledge-based with limit checking
strategies. Key for this "intelligent" systems is the use of redundancy (figure 2.16).

Figure 2.16: Redundancy scheme.

Redundancy is defined as the availability of more than one instrument or resource in a unit in
order to perform a determined operation [EDINIEC50-191-15, 1994]. Redundant instruments
or resources provide the system with reference criteria for plausibility or even for recovery
procedures. This can be performed by means of residuals. In fact residuals consist of the
comparison of the information calculated by redundant systems. Deviation between the results
of two or more redundant devices will determine the amount of the residual and consequently
the intensity of a fault.

A general structure for redundancy and how it may be achieved is illustrated in figure 2.16.
Physical redundancy consists of the use of multiple and independent instruments (hardware)
with dissimilar infrastructure in different places. Residual generated by means of physical
redundancy are usually obtained by the difference of measured or preprocessed signals, easy to
be implemented and the level of reliability regarding fault detections is considerably high. On
the other hand costs involved in this approach are relatively high in order to achieve a reliable
statement about fault occurrences. Common methods used for generating "physical residuals"
are among others statistical approaches or the fusion of the hardware information [Betta and
Pietrosanto, 2000].

Another way to generate residuals through redundancy methods is the analytical approach. It
allows an explicit derivation of the maximum possible number of linearly independent model-
based systems for consistency check [Leuschen et al., 2005]. Analytical redundancy exploits the
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system observability to allow the creation of a set of test residuals [Chow and Willsky, 1984].
These residuals enable the detection of any deviation from the static or dynamic behaviors of
the model in real time. They are always defined as differences between measured and expected
variables. Their complexity and reliability depend on modeling techniques and on comparison
strategies adopted [Betta and Pietrosanto, 2000]. In figure 2.16 some examples of methods
for implementing analytical redundancy are depicted. Common practice approaches to the
analytical generation of residuals are described as follows:

• value checks: is performed by comparing acquired data with its expectations, which
are calculated by a system model.

• signal comparison: consists of matching measured output signals with signals estimated
by a nominal model of the system in case of the real system and its nominal model are
supplied with the same input.

• parameters comparison: is performed by comparing parameters of the nominal system
model with the ones of a continuously estimated actual model.

Although analytical redundancy is a straightforward method, the detection of faults in real time
is mostly performed by means of a combination with physical redundancy. Additionally to both
methods, the use of heuristic information to the residual generation is applied as well. This
consists of qualitative data obtained by human expertise in the form of special noises, smells,
vibration, etc, which may be used to determine among others threshold values. Furthermore
statistical data achieved from experience with similar processes can be added [Isermann, 1997].

As mentioned before redundancy is the key for the generation of residuals, the so-called fault
symptoms. Requirement for the implementation of redundant systems is the utilization of
models that describe all types of physical, analytical and heuristic redundancy. Figure 2.17
gives an overview about modeling strategies, which may be implemented for the generation of
residuals as well as for the estimation of process states and parameters.

According to the information available about the environment to be described, two strategies
may be applied: theoretical and experimental modeling. Theoretical approach is based on
fact that physical laws are known. In some circumstances model structure and parameters
are known as well. On the other hand, an experimental approach focuses on the measurable
input signals and assumptions of a model structure. These input signals are used as a source
of information to build new and to validate assumed model structures. Model parameters may
be determined in the same way. Outcome of these modeling approaches can be shared in four
main classes:

1. White-box: is characterized by its "transparency". In this sense the relationships between
physical laws and parameters in this type of models are completely traceable. All necessary
information to build a model is available. White-box models are often described by linear
and nonlinear differential equations. Although this type of models is easy to understand
and implement, it is sometimes only able to describe the environment partially.

2. Light-grey-box: is considered as a "diffuse transparency", where most of the necessary
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Figure 2.17: Modeling Strategies.

information is available, but parameters and physical laws relationships are still traceable.
For instance physical laws are well-known, but model parameters are extracted from
the input signals. Light-grey-Box models are usually described by differential equations
with parameter estimation techniques. Here theoretical and experimental modeling are
combined.

3. Dark-grey-box: is related with the models where most of the information is unavailable.
Basically only the physical laws which describe the evaluated environment are familiar.
The entirely model structure and parameters have to be deduced from input signals.
Dark-grey-boxes may be described by fuzzy models with parameter estimation. Here
both theoretical and experimental modeling techniques are combined as well.

4. Black box: is characterized by the lack of a priori information about the evaluated
environment. Physical laws are barely known and assumptions for model structures have
to be done based basically on input signals. Furthermore the relationship between model
parameters and physical laws are no longer traceable. Although this type of models is
complicated to comprehend and the amount of input signals to discover relationships and
model structures are huge, it may drive to a more complete description of the evaluated
environment. It can, in some cases, describe strong nonlinear events that are hardly
modeled with mathematical equations. It may also approximate the system to the human
form of figuring out the actions in the ambient. Black-box models may be achieved by
impulse response analysis or neural networks.
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These four model classes can be applied to different layers on the system. For example, it can
vary from low level signal models to the high decision layers. The following section will cover
some technique for achieving fault detection by means of this different model classes.

Techniques

Over the years several techniques for detecting faults have been investigated and developed.
Figure 2.18 gives an overview about it. According to the system requirements regarding its
reliability and availability and the type of on-hand information, different procedures have been
applied. In this section some relevant techniques for the development of this work will be
discussed. Other valuable techniques will be either commented or referenced to literary sources
where they are described in detail.

Figure 2.18: Fault Detection Techniques.

Fault detection techniques are basically shared into the categories of detection with single
signals and the one with multiple signal and models. The decision for the implementation
depends strongly on the type of information available. In case of fault detection mechanisms
being implemented in a low level layer, single signals or multiple signals approach is applied.
On the other hand if physical laws, model structures and parameters are well-known, different
type of models are used (see figure 2.17).

Detection with single signals consists of limit or trend checking and signal models. The first
two methods are the most basic approaches. They involve the investigation of signals by
means of fixed or adaptive thresholds and by monitoring behavior changes. The determination
of fixed thresholds is usually based on the a priori knowledge of the operator or by means
of statistical analysis. In case of the component operating point changing rapidly, adaptive
decision thresholds may be applied. Different procedures for calculating threshold values like
the detection of jumps in the mean, fuzzy strategies and likelihood ratio test are treated in
Hiifling and Isermann [1996] and Basseville [1988].

The model based method is enfolded in the approach with single signals as well. Considering the
cyclic behavior of many processes and their resulting periodic signals along with their external
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random perturbances, signal models may be designed. These models act as a form of analytical
redundancy in order to generate fault symptoms. In technical literature several methods to
build signal models has been applied. Examples are bandpass filtering ([Potocnik et al., 2005]),
short-time Fourier analysis ([Satish, 1998]), ARMA3 parameter estimation ([Rougee et al.,
1987]), etc. Figure 2.19 illustrates the principles of fault detection with signal models. It shows
the signal flow of a common system along with the scheme for fault detection with signal
models. It also depicts that all system components including detection mechanisms themselves
are susceptible to faults. The impact of process and signal model faults may be reduced if they
can be modeled in the form of uncertainties. Thus the remaining faults (actuators, sensors and
non-modeled process faults) can be determined by comparing the features extracted from a
modeled signal with reference values. These references also called normal (accepted) behavior
can be obtained among others by operator’s a priori knowledge and reference (redundant)
sensors. Depending on the intensity of the discrepancies between extracted features and
reference values, these fault symptoms can give evidences to locate and isolate the faults. The
same principle applies to the analysis of multiple signals.

Figure 2.19: Fault Detection with Signal Models.

Strategies for model-based fault detection of processes have been also explored extensively in
technical literature. The main goal is to detect unacceptable behaviors in sensor, actuators
and processes by means of correlations among the acquired measurements. These correlations
are described by applying modeling strategies varying from white-box to black-box models (see
figure 2.17). The general scheme for model-based fault detection proposed by [Isermann, 1997]
is depicted in figure 2.20.

Analog to the detection of faults with signal models, symptoms will be obtained by comparing
features extracted from variables determined by models. Features are considered as residuals r
(estimates deviation), model parameter estimates Θ or state estimates x̂. Thus the key for
detecting faults by process models is the choice of modeling and feature extraction. Modeling

3Auto Regressive-Moving Average (for details see Krishnaiah and Rao [1988])
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Figure 2.20: Fault Detection with Process Models.

depends on the type of the information available and the feature extraction may be performed by
means of parameter and state estimators, state observers, neural networks and parity equations.

Parameter estimators belong to light-grey-box model classes and it is applied if process
parameters are completely or partially unknown. They can be achieved by means of equation
errors or output error methods [Isermann, 1992]. Figure 2.21(a) shows the scheme for the
parameter estimation based on equation errors.

(a) Equation error. (b) Output error.

Figure 2.21: Model structures for parameter estimation [Isermann, 1992].

Basis for the parameter estimation by means of equation errors is the model description through
difference equation (see equation 2.1). It may be rearranged as follows:
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y(t) = ψT (t)Θ (2.23)

ΘT = [a1 · · ·an b0 · · ·bm] (2.24)
ψT (t) = [−y1(t) · · ·− yn(t) u(t) · · ·um(t)] (2.25)

Thus the definition of equation error (2.26) for parameter estimation is performed by rearranging
equation 2.23. It is based on the difference between input and output signals by means of the
estimated parameters (see figure 2.21(a)).

e(t) = y(t) −ψT (t)Θ (2.26)

A key point for estimating the modeled parameter is minimizing equation 2.26 such as in error
free case e(t) = 0. There are several methods like least square estimate, α-β and Kalman
filters that can be applied to calculate the desired parameters, the error intensity as well as the
minimization of e(t).

Output error methods will compare the signal outputs obtained from the processes with the
ones calculated by means of the process model and estimation of parameters (figure 2.21(b)).
It enables the extraction of residuals for fault detection. The main drawback of this approach is
no possible direct calculation of the parameters Θ due to the nonlinearities of calculated residual
e (error) in these parameters. Parameters have to be determined by extensive computational
efforts in calculating numerical optimization algorithms.

Fault detection with state estimation and observers is performed by extracting the residuals
between the hidden process states and the modeled ones. By analyzing linear processes they
can be described in state-space form as follows (see also equations 2.1 and 2.2):

xk = Axk−1 + Buk +wk−1 (2.27)

y
k

= Cxk + vk (2.28)

Prerequisite for detecting faults with state estimation and observers is that both model structure
and all process parameters A, B and C are known (White-Box properties). Hidden state variables
can be reconstructed based on the measured inputs and outputs (see also equation 2.4):

x̂k = x̂
−
k + Kk(yk − Cx̂

−
k ) (2.29)

ek = yk − Cx̂
−
k (2.30)
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where ek means the residual (error) between the hidden process states and the modeled ones
at time k and Kk describes the weighting residual matrix. Based on the previous relationships
faults can be detected basically by means of three main approaches [Isermann, 1997]:

1. Dedicated observers for multi-output processes:

• Observer excited by one output: one single input supplies one single observer,
while the remaining outputs are reconstructed and measured and compared with
the measured outputs [Clark, 1978b].

• Kalman filter excited by all outputs: if a fault occurs the residual changes its
property of zero mean white noise with known covariance. By means of hypotheses
tests these kind of faults can be detected [Mehra and Peschon, 1971] and [Willsky,
1976].

• Bank of observers excited by all outputs: faults are also detected by means
of hypotheses tests if observers are designed for a determined fault signal [Willsky,
1976].

• Bank of observers excited by single outputs: multiple sensor faults can be
detected if multiple observers are applied to single inputs (Dedicated Observer
Scheme - DOS) [Clark, 1978a].

• Bank of observers excited by all outputs excepted one: one sensor output
is supervised while the remaining ones drive each observer [Frank, 1987].

2. Fault detection filters for multi-output processes: are implemented by designing the
weighting matrix K in a way that it becomes sensitive to a set of specific faults ([Beard,
1971] and [Jones, 1973]).

3. Output observers: are an alternative if the determination of the hidden states is not of
primary interest. Analog to the parameter estimation by means of output errors, output
observers performs the residual calculation through linear transformations [Patton et al.,
2000] and [Tsui, 1993].

Another alternative to detect faults is the approach with parity equations. As performed with
state estimation and observers a model of the process will be built. The determination of
process hidden states is not of primary interest, but its outputs. These will be compared
with the sensor outputs in order to determine the residuals and so extracting potentially fault
symptoms. Different variants for their implementation are covered in Omana and Taylor [2007],
Isermann [1997] and Isermann [2006]. Although parity equations are a straightforward method,
it requires that process parameters are known, its behavior time-invariant and not susceptible
to strong disturbances.

Principal Component Analysis (PCA) offers an interesting alternative for fault detection when
the obtained measurements are highly correlated but only a small number of events (faults)
drive the system to an unexpected behavior. PCA is a method of identifying patterns in data,
and so highlighting their similarities and discrepancies [Dunia et al., 1997]. Usually PCA models
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are linear, static and based on processes normal operations. Several alternatives have been
explored in technical literature like in [Smith, 2002], [Isermann, 2005], [Liang and Wang, 2003],
etc.

2.2.3 Fault Diagnosis

Once fault symptoms are detected, the next step consists of determining fault properties like
type, intensity, location and detection time. These are the tasks of fault diagnosis methods.
The main challenge by diagnosing faults is how the knowledge obtained through fault detection
techniques can be described. In technical literature several techniques for fault diagnosis have
been explored. A survey of these techniques were proposed by Isermann [2005] and is illustrated
in figure 2.22.

Figure 2.22: Survey of Fault Diagnosis Techniques.

According to the type of technical processes being evaluated and the fault symptoms available,
fault diagnosis can be performed by means of classification or inference methods. Classification
methods are applied if the relations between symptoms and faults are not completely clear or
complex structured. These relationships may be determined by a priori knowledge, training
data or a combination of both. Figure 2.23 illustrates the diagnosis of faults by means of
classification methods.

Figure 2.23 makes an allusion to the relationship between the vector of symptoms S and
the vector of faults F. Although a two dimensional symptom combination is represented, a
multidimensional association of symptoms and multiple occurrence of faults is the common
case. Basically the goal of a classifier is to assign features (symptoms) to a hypothesis
category (fault). The level of difficulty in a classification problem depends on the separability
(specific determination) of hypotheses by means of the extracted features. The main classes
of classification methods for diagnosing faults is depicted in figure 2.22. A more detailed
explanation of relevant classification method will be explored in sections 2.3.1, 2.3.2 and 2.3.3.
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Figure 2.23: Fault Diagnosis by means of classification methods.

Inference methods are applied if the relationships between symptoms and faults are known
more precisely. This prior knowledge can be represented in causal relations. Figure 2.24 shows
the fault-symptom relationship assumed by inference methods.

(a) physical systems: from faults to symptoms. (b) diagnosis systems: from symptoms to faults.

Figure 2.24: Fault-symptom relationship.

Once faults are assumed to be known as well as their relationships to symptoms, the corre-
spondence between them can be determined by a causal system analysis (figure 2.24(a)). This
description can be obtained by means of a Fault Tree Analysis (FTA - see figure 2.15). An
alternative consists of proceeding from the symptoms to faults, obtained by means of Event
Tree Analysis (ETA) building the diagnostic forward-chaining causalities (figure 2.24(b)). After
determining the fault-symptom relationship, diagnosis can be performed by means of different
rule like the IF - THEN ones. The most straightforward methods for diagnosing with inference
methods are related to approximate reasoning strategies covered in details in Isermann and
Ulieru [1993] and Ayoubi [1996].
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2.3 Classification Methods

This section intends to discuss classification methods that are relevant for the implementation
of this work. As mentioned in section 2.2.3, classification plays a very important role by
performing fault diagnosis. That is why some examples of these techniques will be discussed.

2.3.1 Decision Trees

Decision trees are applied to select the best course of action in situations where the evaluated
task is faced with uncertainty. They are represented in a graphic attempt in order to compare
competing alternatives and evaluate them by combining uncertainties, efforts and pay off into
specific numerical values. Figure 2.25 illustrate a decision tree for classifying two hypothetical
faults F1 and F2 from two symptoms s1 and s2.

(a) decision Tree (b) Symptom space.

Figure 2.25: Decision tree for two hypothetical faults.

In the decision tree approach information (circles) are split until they reach a single class of
data represented (squares). According to figure 2.25(a) data (symptoms) are evaluated from
the top until they reach a leaf (faults). This means that symptoms are associated to the leaf’s
class membership with the aid of a symptom space segmentation (figure 2.25(b)). The main
challenge in implementing decision trees for fault detection and diagnosis is dealing with the
kind of symptoms, a multidimensional symptom space as well as defining the threshold levels
among different classes. Typical approaches for performing it are based on expertise knowledge
or learn based techniques using training data.

The goal with learn based techniques is to implement decisions which results in subsets with
maximum "purity". Only the most significant information will be selected in order to perform
the decision in favor of a determined class. Instead of calculating the "purity" of a decision
subset its impurity is determined based on a statistical definition of an entropy index. Usually
an adapted alternative function called Gini-index is applied for faster calculations results. The
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decision tree is built by choosing the decisions that minimize the entropy or the Gini-index of
the sets.

Although the classification with decision trees is extremely straightforward, the decision structure
can be easily followed and the computational efforts may be minimized according to the tree
dimensions, they present some decisive weaknesses. In case of dynamic decision trees, where
several growing and pruning approaches are applied, the algorithms complexity will increase
drastically. Major challenges are the modeling of nonlinear decision processes and in same cases
the considerably amount of training data for determining the symptom spaces and threshold
levels.

2.3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) have been extensively explored in pattern recognition and
data classification through a learning or training process. Their ability to learn and generalize
complex behaviors of training data has been used in connection with fault detection and
diagnosis strategies [Silva et al., 1998]. It has been possible particularly due to the need of a
little a priori knowledge about the process structure.

Core pieces from ANNs are their representations by the mathematical description of neurons.
Analogue to the topology in the biological field, neurons interconnection in ANNs also enables
the description of systems’ input and output signals. This property can support the identification
of unknown system parameters. On the other hand, in case of these signals being associated
to determined groups or categories, ANNs will be applied to perform classification tasks. An
illustration of a general neuron model is depicted in figure 2.26.

Figure 2.26: General neuron Model.

This mathematically mapped structure of a neuron consist of three main parts: learning rules,
input operators and the final activity function. Learning rules consist of adapting the network in
such a way that weight vectors w will be changed by an amount proportional to the difference
between the desired output and the actual one. Thus this difference is minimized. Desired
outputs are usually obtained by means of reference data while network adaptation is mostly
performed by the minimization of the quadratic loss function:
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J(w) =
1

2

N−1∑
n=1

e2(n)

e(n) = y(n) − ŷ(n)

(2.31)

where e(n) represents the model error and y(n) and ŷ(n) describe the measured output signal
and network output respectively. The goal is to find a minimum for the quadratic loss function:

dJ(w)

dw
= 0 (2.32)

Because of the nonlinearities between measured and calculated outputs, some numerical
optimization methods are applied for solving equation 2.32. A direct solution is hard to be
achieved. A detailed overview of different techniques for learning rules is given in [Mehrotra
et al., 1996].

The input operator (figure 2.26) is concerned with the similarity measure between the input
vector u and the weight vector w resulting the neuron activation vector x. Forms for the
determination of the activation vector are among others the scalar product (equation 2.33),
Euclidian Measure (equation 2.34), feedback model and Sigma-Pi units [Mehrotra et al., 1996].

x = wTu =

#inputs∑
i=1

wiui (2.33)

x = ||u−w||2 =

#inputs∑
i=1

(ui −wi)
2 (2.34)

The last part of a mathematical neuron (figure 2.26) concerns with its activity function. It
weights how powerful should be the output signal of a neuron in case of an output available.
Examples of activity functions are among others hyperbolic tangent (equation 2.35), Sigmoidal
(equation 2.36), binary and and Gauss functions.

y = 1 −
2

1 + e2(x−c)
(2.35)

y =
1

1 + e−(x−c)
(2.36)

Another important aspect is the configuration of ANNs. Here several neurons like those
illustrated in figure 2.26 will be put together in order to perform different tasks like classi-
fication and system identification. Figure 2.27 gives an overview about a generic network

65



2 Fundamental Theory and State of the Art

architecture. It describes different alternatives on how neuron models (circles) may build a
network. Mathematical neurons are disposed in different layers like an input, an output and
user-defined hidden layers. Their topology is characterized by different types of connections
described in figure 2.27: feedforward, feedback, recurrent and cross-layer links. Concerning the
data output type, they can assume a binary, discrete or continuous behavior. Usually binary
and discrete signals are applied to classification issues, while continuous ones are related to
system identification tasks [Isermann, 2005].

Figure 2.27: Generic ANN Structure.

Unlike other methods for performing diagnosis that rely on a specific function (e.g. Gaussian),
ANNs approaches are designed to match any arbitrary function by minimizing an error function
e(n). This property makes the diagnosis of faults that are based on strong nonlinear relationships
between symptoms and faults feasible. Examples of ANNs topologies for performing fault
detection and diagnosis are the Multi-layer Perceptron and Radial-basis function approaches
[Bishop, 1995]. Symptoms will be applied to the network inputs (u1 · · ·un), which will be
weighted by the neurons and activate the faults associated with the network outputs (y1 · · ·yp).
These approaches are covered in details by [Sorsa and Koivo, 1991] and [Schramm, 1991].

Though ANNs are a very powerful method to perform classification and pattern recognitions
tasks, their black-box characteristics and extensive required training phases make them difficult
to comprehend and to upgrade.

2.3.3 Probabilistic Networks

Probabilistic networks (or probabilistic graphical models) represent variables in a problem
and the probabilistic relationships among them. They are treated as a high-level language
for structuring these mathematical relations, which may be applied to build complex models
for different type of system components. It describes the dependencies between variables by
ignoring numerical or functional details. They have been applied to several inference tasks like
diagnosis and general classification issues [Buntine, 1996].

The most popular kind of probabilistic networks are the ones based on the Bayes’ theorem
(Bayesian networks). Bayesian networks are represented by directed acyclic graphs (DAGs)
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in which nodes represent variables, the arcs describe the existence of direct causal influences
between linked variables. The strengths of these influences are expressed by forward conditional
probabilities (see figure 2.28). A description of the basic principles of Bayesian networks is
explored in details in [Kawasaki and Kiencke, 2004], [Duda et al., 2001], [Jensen, 2001] and
[Pearl, 1988].

Figure 2.28: A bayesian network model for hypothesis classification represented by a Directed Acyclic
Graphic (DAG).

An important aspect for general classification tasks and fault diagnosis are the fusion and
propagation of new evidences4 and beliefs trough Bayesian networks. Each node (variable) can
be assigned with a certainty measure according to the axioms of the probability theory [Pearl,
1988]. Figure 2.29 shows the fusion and propagation scheme for evidences in a fragment of a
causal tree representing an extract of a Bayesian network.

Figure 2.29: Fragments of a causal tree, showing incoming (solid arrows) and outgoing (broken arrows)
messages at node X [Pearl, 1988].

As mentioned before each node represents a multi-valued variable, which comprises several
mutual exclusive hypotheses (e.g. fault states). The probabilities that these hypotheses may

4 Evidence refers to the probability assertion of hypotheses due to extern factors (e.g. prior knowledge) which
are propagated trough the network. Evidenced nodes are also denominated instantiated.
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assume is denoted by the overall belief (BEL) of a specific node determined by means of all
evidence so far received. Thus,

BEL(X)
∆
= P(x|e) (2.37)

where e represents the fusion of all evidences contained in the tree rooted (e+) and in the
rest of the network (e−) at a specific node (e.g. X). Assuming the determination of the belief
induced on node X by means of the fusion of the overall incoming evidence e = e−

X ∪ e−
X, the

BEL(X) can be determined with the aid of the Bayes’Rule as:

BEL(X) = P(X|e−
X, e+

X) = αP(e−
X |X)P(X|e+

X) (2.38)

where α means the normalizing constant to fulfill the basic axiom of the probability theory:∑
x BEL(x) = 1. The terms P(e−

X |X) and P(X|e+
X) represent respectively the likelihood model

and prior probability term in analogy to the Bayes’Rule.

According to equation 2.38 the probability distribution of every node in a network (e.g. figure
2.29) may be calculated if the corresponding propagation vectors can be determined.

λ(X) = P(e−
X |X) (2.39)

π(X) = P(X|e+
X) (2.40)

While vector π(X) represents the causal or predictive evidence support of the parent nodes of
X, vector λ(X) describes the diagnostic or retrospective evidence support of its children. In
case of X being the root node, vector π(X) will be denoted by a prior evidence and interpreted
as background knowledge [Pearl, 1988]. Thus, the belief of node X can be obtained by means
of the fusion this two types of support as follows:

BEL(X) = αλ(X)π(X). (2.41)

According to figure 2.29 the calculation of complete children evidence for node X, if X itself is
not instantiated, can be determined by:

λ(X) = P(e−
X |X)

= P(e−
Y , e−

Z |X)

= P(e−
Y |X)P(e−

Z |X)

= λY(X)λZ(X)

(2.42)
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where λY(X) and λZ(X) describes the diagnostic support and are calculated by:

λY(X) = MY|Xλ(Y)

λZ(X) = MZ|Xλ(Z).
(2.43)

Here the terms λ(Y) and λ(Z) describe the evidence in the instantiated Y and Z nodes
respectively. These evidences represents the probability of assertion to the hypotheses referred
to the nodes and can be determined by extern factors like prior knowledge or other inference
methods. For instance Y and Z may correspond to different fault symptoms caused by fault
states associated to X. Evidences λ(Y) and λ(Z) could describe the probability of occurrence of
the specific symptoms. The influence of these evidences on the hypothesis states are assigned
by means of the conditional probability matrix (dependency model) M:

λ(Y)s1 · · · λ(Y)s1

λY(X)s1 p(Y|X)s1,1 · · · p(Y|X)s1,n
...

... · · ·
...

λY(X)sm p(Y|X)sm,1 · · · p(Y|X)sm,n

Table 2.4: An example of a dependence model between the nodes X and Y assuming discrete hypothesis
states.

Thus the calculation of the total belief of node X is complete if the evidence available from its
parent (Node U) is evaluated as well:

π(X) = πu(X) = MX|Uπ(U). (2.44)

Analogue to the incoming diagnostic support, the incoming causal support in equation 2.44 is
achieved by means of the evidence π(U) in the instantiated U node and of the corresponding
dependence model MX|U. An adapted model of the example described in table 2.4 is used to
represent the influence of the parent node evidences on the hypotheses states of node X.

Once the belief in node X is updated, the belief of both descendants and ascendants of it may
be updated as well. The outgoing message λX(U) of X to its parent U is determined similarly
to the incoming children messages themselves. On the other hand the outgoing messages
(causal support) to X’s children have to be extracted of the own child information in order to
avoid evidence double-counting. Equation 2.45 formalizes the diagnostic support transmission
from nodes X → Y.

πY(X) =
BEL(X)

λY(X)
(2.45)
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A summary of the calculations in a network node (e.g. X), called processor, is illustrated in
figure 2.30. In this structure each node receives the causal support (π) from its parent and
the causal support (λ) from its children. According to the design requirements each node
can calculate its own π (to be delivered to its children) and the own λ (to be delivered to its
parent). Each processor node comprises his own dependence model M, what improves the
scalability of the whole network.

Figure 2.30: The internal structure of a single processor performing belief updating for node X [Pearl,
1988].

Depending on the dimensions of the Bayesian network (number of nodes) the computational
efforts for updating the belief of every single node may be very high. That is why network
message propagation is usually restricted to a minimum, where only the necessary information
to update the belief of relevant nodes is propagated. Relevant nodes are determined by the
network designer and are usually placed on the top of the tree. This means that messages are
mostly transmitted from the bottom (leaf nodes) to the top (root nodes).

Bayesian network provides a transparent instrument for the general classification of hypotheses
which is comprehensible. It enables the integration of different techniques for the extraction
of features for classification and the determination of dependence between nodes and deals
well with uncertainty. These techniques vary from White-box till Black-box modeling methods.
Both network structure and dependence models may be built by means of background (prior)
knowledge and learning strategies [Pearl, 1988].

2.3.4 Comparison

The choice of one out of several classification methods is rather due to a matter of application
complexity and requirements than weaknesses of the methods themselves. According to the
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type of information available related to patterns to be recognized or the hypotheses to be
classified the excellences of one or other method may be preferred. Tables 2.5 and 2.6 give a
quantitative comparison of the properties of the classification methods covered earlier: Decision
Tree, Neural and Probabilistic networks [Zhang and Bivens, 2007], [Zheng et al., 1999] and
[Chen et al., 2007].

Properties Decision Tree Neural
Network

Probabilistic
Network

Transparency /
Interpretability

high (white-box) low (black-box) high
(white-box)

Classification
type

mostly hard
decision criteria

hard/soft
decision
criteria

hard/soft
decision
criteria

Network
architecture
definition

mainly training
data

training data prior
knowledge /
training data

Modularity and
Scalability

low low high

Integrability with
different
techniques

low medium high

Accuracy depending on
training data

depending
extremely on
training data

depending on
prior

knowledge /
training data

Training speed high high medium

Table 2.5: Qualitative comparison of properties of three different classification methods: Decision
Trees, Neural and Probabilistic Networks (Part I).
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Properties Decision Tree Neural
Network

Probabilistic
Network

Model evaluation
speed

high very high high

Ability to
knowledge

incorporation

low very high high

Handling with
nonlinear
relations

low very high medium

Computational
efforts

medium low low

Table 2.6: Qualitative comparison of properties of three different classification methods: Decision
Trees, Neural and Probabilistic Networks (Part II).

According to Zhang and Bivens [2007] if model performance is concerned, Bayesian networks
(BN) offers better accuracy, are more suited for environments that change rapidly, while Neural
networks (NNs) can achieve faster model evaluation time and support management routines
that require intensive response time predictions. Decision Trees (DT) are also very accurate, but
the response time depends on tree dimensions. BNs and DTs can be more easily comprehended
by human, while NNs provide more flexible response time representation. Another important
advantage of BNs is a multi-direct evaluation support, which may be decisive for several
applications depending on a forward and backward analysis. For instance in case of fault
diagnosis BNs allow both classification from symptoms to faults and reciprocally.

2.4 Summary

This chapter gave an overview about the fundamental theory and state of the art applied to
this thesis. Relevancy, excellence and weaknesses of sensor data fusion methods were discussed.
Afterward different principles of fusion techniques were explored in details.

As a specific method for sensor data fusion, the Multiple Target Tracking (MTT) approach
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was covered. It processes measurements of different targets to determine estimates of target’s
current states. In section 2.1.3 the different ways or stages for implementing MTT along with
its architectures and algorithms were covered. Several proposed architectures for the fusion of
sensor data and tracking of multiple target like [Waltz and Llinas, 1990], [Bedworth, 1992],
[Luo and Kay, 1992] and [Naab, 2004] were presented.

Naab [2004] proposed a flexible and universal approach to share the actual fusion of sensor data
into two stages. It consists of the low and high level fusion parts. The first part is concerned
with the combination of measurement attributes without modifying it strongly and so providing
an alternative to further and even application dependent fusion algorithms. The later consists
of the filtering of the the attributes obtained by the low level fusion based on filter models.
The most relevant algorithms for sensor data fusion and target tracking were covered in this
section as well.

Finally in section 2.1.4 an overview of different strategies in which sensor data fusion supports
an improvement of information reliability were presented. Sensor data fusion itself provides the
first steps to increase the reliability of the acquired information. However sensor and system
malfunctions are not detected. Therefore information integrity can not be assured.

In section 2.2 supervision and fault Management techniques which enable monitoring of
automated systems and automatic protection in cause of faults were discussed. A survey of
basic tasks and definitions of supervision a fault management processes were explored. Then,
different strategies for the detection of faults varying from signal models till the detection with
state observers and state estimation ([Willsky, 1976], [Clark, 1978b], [Clark, 1978a] and [Frank,
1987]) were outlined. Finally the basic principles of fault diagnosis were explored. Techniques
for fault diagnosis are basically shared in classification and inference methods and support the
determination of fault properties like type, intensity, location and detection time [Isermann,
2005].

This chapter ends with an overview of three examples of classification methods: Decision Tree
(DT), Artificial Neural Network (ANN) and Bayesian Network (BN). Classification methods
play a very important role for fault diagnosis and therefore they were covered in more detail.
The choice of these three out of several methods is due to they ability to classify data rapidly,
be reliable and straightforward. A qualitative comparison of this three methods were covered
in section 2.3.4. By comparing these techniques it was ascertained that BNs can be easily
comprehended by human, deal well with data uncertainty and deliver good results regarding
classification performance.
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Multiple Fault and Target Tracking

This chapter describes the proposed concept for improving quality, integrity and reliability
of the driving environment information called Multiple Fault and Target Tracking (MFTT).
It further develops sensor data fusion algorithms in order to combine and integrate target
tracking and fault detection strategies into a consistent methodological framework. By means
of this proposed concept a novell probabilistic model based approach is developed not only
for validating acquired information, but also for detecting and identifying component (sensor)
faults and failures.

Basis for the theory to be introduced here were discussed in chapter 2. Based on those aspects
the new approach to evaluate the acquired data will be presented. First the design concept
will be explored. Then a framework architecture that allow efficient implementation of the
proposed concept will be introduced and discussed in details.

3.1 Approach

As mentioned previously measuring and interpreting events in the driving environment are
essential parts for the feasibility of future and safety-related ADAS. In this sense the acquisition
of these events can be performed by means of several sensor systems, which may be faulty or
not working properly. That is why the reliability of sensor data and its processing methods
have to be assured. Sensor faults and failures should not evocate additional critical situations.

Another important aspect consists of the interpretation of the environment information. In-
terpreting these events requires mostly the evaluation of redundant and dissimilar sensor
information regarding their common properties in order to describe same objects or actions in
the environment.

For these reasons a method that deals with:

• the fusion of sensor data (section 2.1),
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• the tracking of multiple targets (section 2.1.3) in the driving environment

• the evaluation of sensor information with regard to its integrity, reliability and correctness
and

• the supervision and diagnosis of sensor hardware (section 2.2)

is required. MFTT is a technique that extends and combines reasonably the functionality of
sensor data fusion (section 2.1), multiple target tracking (section 2.1.3) and fault detection
and identification (FDI - section 2.2) methods. It favorably exploits structures and algorithms
of these classical approaches.

The first step of this proposed technique consists of interpreting driving environment information
regarding its integrity and reliability. Figure 3.1 represents the information flow from the sensor
measurements through the three processing layers:

Figure 3.1: Scheme for classifying driving environment information.

1. measurement layer: extracts and processes all relevant and observable features acquired
from events in the environment. The belief or level of confidence of measurements
regarding specific hypotheses are determined and made available for the following layers.
These hypotheses are related with the relevancy, integrity and reliability of the acquired
measurements from the point of view of different ADAS.
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2. track layer: extracts and processes all relevant features from calculated tracks1 in order
to determine their relevancy. Measurement features in form of believes determined in the
measurement layer will be combined with the correspondent tracks’ own features and
thus contribute for track relevancy calculations as well. The results obtained here will be
also made available to the following layer

3. sensor failure layer: extracts and processes all relevant features from the available sensors
regarding their malfunctions. Again all previously obtained information in the preceding
layers is taken into account along with the own sensor features.

The scheme in figure 3.1 is depicted in form of a filter in order to denote the information
reduction not in a sense of lost but in a sense of extraction and processing of the most
relevant features for the environment classification. At the output of the system an information
evaluation regarding measurements, tracks and sensors is made available. This information
represents the believes in a specific hypothesis that such a measurement, track and sensor may
assume. Examples of these hypotheses and further details of their processing in the introduced
concept will be covered in the following sections.

Essentially the proposed MFTT concept consists of tracking relevant and faulty events in
the driving environment. Mathematical models explore properties like redundant field of
views of dissimilar sensors as well as the behavior of both relevant and irrelevant targets.
These models enable not only validating acquired information, but also the detection and
identification of eventual faulty components. The categorization of the acquired events consists
of a classification task performed in the three layers discussed previously.

3.2 Design Concept

Design phase starts considering the available system information and the scheme depicted
in figure 3.1. The concept for classifying the driving environment information regarding its
reliability is illustrated in figure 3.2. Its fundamental premise consists of comparing measured
events with assumed expectations. These expectations are settled in mathematical models.
First aspect to be considered is what a single or a group of sensor measurements can describe
in the environment. According to the sensor fusion and multiple target tracking theory covered
in section 2.1, measurements hypotheses may be considered as follows:

• existent tracks: it describes the temporal interrelation of object attributes that have
been traced by the system during a determined period of time. Examples of attributes are
the object position, velocity, acceleration, dimensions and so on. Some of the different
types of attributes that compose a object track may be observable (measurable) or

1 The term Track is related with the state trajectory from events or object hypotheses estimated from a set of
measurements that have been associated to the same target [Bar-Shalon and Fortmann, 1988] (see section
2.1.3).
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not. One part may be obtained through sensors observations and the other one can be
obtained through different sensor fusion and target tracking strategies (section 2.1).

• new tracks: it describes the temporal interrelation of object attributes that had not
been seen before. Probably they were covered by another valid object track or they were
outside the sensors coverage area. Measurements associated to this hypotheses initiates
these new tracks. As well as existent tracks, new tracks can describe diverse attributes
from different objects like vehicles, pedestrian and other relevant targets in the driving
environment.

Figure 3.2: Concept for classifying the driving environment information.

• unspecific sensor faults: it describes sensor faults when the expected actions in the
environment are modeled. This means that a vehicle cannot simply appear in the middle
of a highway or between two other vehicles. Thus, this measurement assumptions can
be verified against such premises. Basis for these type of hypotheses will be described
in section 5.1.2 in the topic sensor faults. As mentioned before, most of these sensor
faults are difficult, expensive and not essential to model. Therefore it is more relevant to
detect these anomalies than trying to discover their origin.

• specific sensor faults: it describes sensor faults when a specific not expected ac-
tion in the environment is modeled. Even though the modeling of such faults is not
straightforward and in some cases expensive (computational efforts), their identification
is sometimes necessary. An example of a specific sensor fault is the modeling of ground
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clutters. Ground clutters occur if sensor signal emissions reflect at the ground. Cause for
these erroneous measurements is the abrupt alterations of the pitch or roll angles due to
braking maneuver or a steep descent or ascent. The steps for identifying, processing and
classifying ground reflexions will be covered in details in the section 5.1.1.

The classification of these hypotheses is performed by means of extracted features obtained
from sensor measurements. These features are combined with the ones extracted from past
tracks and from the former sensor hypotheses. These measurements hypotheses have to be
mutually exclusive. They cannot be all true. After calculating the hypotheses for every sensor
measurement available, the information processed in this layer is made available for the next
stage, the track layer.

In the track layer features which are extracted from the measurement hypotheses will be used in
order to achieve track classification. According to the belief of these hypotheses, measurements
will be associated to the corresponding tracks. This means that the driving environment
information being cyclically updated by the sensors the association between measurements and
tracks is performed dynamically. In every cycle existent or new tracks may receive updates that
combined with different extracted track features contribute for the calculation of the track
belief. In this sense the belief of a track is shared here in two hypotheses states:

• tracks: are related to several measurement attributes that correspond to relevant objects
for different ADAS like vehicles, pedestrians, etc. The assertion of this hypothesis is
directly supported by the states “existent tracks” and “new tracks” in the measurement
layer.

• no tracks: are related to several measurement attributes that correspond irrelevant or
erroneous objects for different ADAS like “ghost” objects generated by clutters. The
assertion of this hypothesis is directly supported by the states “unspecific sensor faults”
and “specific sensor faults” in the measurement layer.

Although the hypotheses in this layer are described only by means of these two states: tracks or
no tracks, tracks may assume more specifically states according to the observed measurement
attributes. Instead of classifying a object just as relevant or irrelevant, one may be able to
classify it for instance as car, trucks, motorcycles, pedestrian, etc. depending on the features
available.

Similar to the procedures described before, the classification in the sensor failure layer will be
performed by means of the hypotheses calculated in the preceding layers combined with the
extraction of the own sensor features. The states for this layer are shared as follows:

• specific sensor failures: it describes sensor failures if these are modeled and the
obtained features correspond to it. In this case failures can be detected and diagnosed.
According to the correspondence between data and model, failure intensity can be
achieved as well.
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Achieving the classification of specific sensor failures will support the system to assume
effective countermeasures in order to minimize or even solve the problem. Example of
attempts in this case could be fixing or ignoring the measurements originated from a
faulty sensor.

• no sensor failures: it describes the failure free case if the extracted features correspond
to the expected sensor functionality modeled.

• unspecific sensor failures: it describes sensor failures if the expected sensor func-
tionality is modeled and the obtained features drift to an unexpected and unmodeled
behavior. Due to missing features and attributes failures can not be diagnosed, but at
least detected. This type of approach may be very useful for systems, where the specific
modeling of sensor failures is not straightforward or the execution time of these models
exceeds their time constraints.

In section 5.1.1 examples of specific sensor failures will be covered in details. Other than the
hypotheses from the measurement and track layers, the hypotheses here are not mutually
exclusive. One sensor can be affected by multiple failures simultaneously (e.g. misalignment
and partial blindness).

At the end of the processing chain the hypotheses believes for the analyzed measurements,
tracks and sensors are made available. Different ADAS can access the corresponding information
that fulfill their implementation requirements. The main goal of achieving a high reliability
of the driving environment information and its evaluation can be reached depending on the
availability and quality of the computed features. Figure 3.3 summarizes the processing chain
in the three explored layers. In the following sections the methods for the extraction of features
for all layers and and their correlation with the corresponding hypotheses will be covered in
details.

Figure 3.3: Schematic illustration of the data flow in the three processing layers.

According to the concept covered in the preceding sections, a method to perform the clas-
sification of the driving environment information regarding its reliability was designed and
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implemented. The new method consists of a probabilistic track oriented fault detection and
classification. This means that relevant and erroneous (e.g. due to sensor failures or faults)
are tracked simultaneously within a probabilistic approach (Fig. 3.4).

Figure 3.4: Probabilistic network for the classification of the driving environment information regarding
its reliability.

The proposed method is a derivation, adaptation and further development of the well-known
probabilistic or belief networks (section 2.3.3). The architecture depicted in the figure 3.4
reflects the concept illustrated in the figure 3.2 regarding its feasibility and adaptation in a
probabilistic concept. This means that the classification of measurement tracks and sensors
hypotheses is achieved by means of a soft decision (probabilistic). The proposed method makes
an allusion to the human decision principle, if this decision has to be made under uncertain
circumstances.

In order to fulfill the requirements of the proposed concept, the original theory of probabilistic
networks has to be adapted and further developed. The new implemented design builds a
modified architecture of dynamic probabilistic networks. This architecture consist of two main
states (Fig. 3.4): dynamic and quasi-static states.
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3.2.1 Dynamic Track Oriented Fault Detection and Classification

Dynamic states are the ones, which the calculated hypotheses states can and must be determined
in the current duty cycle. This is a prerequisite for most assistance functions. In order to
enable the reliable implementation of such functions, it is necessary to give at least an a priori
evaluation of the acquired information. In the dynamic states the required information to assert
these hypotheses are usually available for a prior classification until a stable one is possible.
These states are more susceptible to changes. This means that the calculated hypotheses may
vary stronger from one duty cycle to another than in a quasi-static state configuration. For
theses reasons the calculations from the measurement and track layer are made available in
every duty cycle.

As described in section 2.1 new sensor measurements may be acquired in every duty cycle.
But only the current ones will be considered for calculation. Past sensor data is not stored.
That is why a dynamic classification according to the hypotheses described in 3.2 takes place.
On the other hand track hypotheses are considered as long as measurements are associated
to it or during a specific period of time without measurement members (section 2.1). This
means that the connections between measurement and track layers must be renewed in every
cycle. Beyond it the influences between the calculated past hypotheses for tracks are taken into
account for their current hypothesis state determination. A tradeoff between feature extracted
from the current measurements and the ones extracted from the past tracks is determined.

Figure 3.5 illustrates the class hierarchy for classifying the information in the dynamic state
level. According to it the class hierarchy can be interpreted as the data classification in the
depicted classes.

An important fact to consider is that the more meaningful the features are, the higher is the
separation level among the classes. Figure 3.5(a) shows the class hierarchy for the measurement
layer. It consists of a multidimensional classification task. By means of the combination of
different features the measurement membership may be determined. The goal is to extract
several meaningful features that enables the unambiguous association from the information to
the classes by means of a decision threshold assertion. As mentioned before the measurement
information is transitory and is available during a duty cycle. Therefore this classification is
treated as an instantaneous one. The history information is not used directly from the past
measurements, but rather from past sensor and track information.

On the other hand the class hierarchy for the track layer (Fig. 3.5(b)) assumes a more time
dependent classification. A belief gradient per track is determined according to the elapsed
time. This gradient behaves as a high frequent signal around the track generation time. As
soon as tracks reach a stable "age", this belief signal is attenuated adopting a low pass filter
behavior. Influences of the past track believes combined with features extracted from the
measurements induce to a time dependent classification. Similar to the classes hierarchy in
the measurement layer, the class separability depends on the extraction of meaningful features.
This results in a multidimensional classification task as well.
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(a) Class hierarchy for the measurement layer. (b) Class hierarchy for the track layer.

Figure 3.5: Class hierarchy in the dynamic state level.

Measurement Layer

Figure 3.6 depicts the architecture of the measurement layer within the whole dynamic
probabilistic network (Fig. 3.4). It represents only the configuration for one measurement
(other measurements can be similarly interpreted). For the sake of simplicity the measurement
hypotheses in figure 3.6 are abbreviated as follows:

• ET1 · · · ETl: stand for existent tracks.

• NT : stands for new tracks.

• USFt: stands for unspecific sensor faults.

Figure 3.6: Probabilistic network for one measurement in the measurement layer architecture.
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This network fragment consists of two main stages: feature extraction and final hypothesis. At
this level the extraction of features for the measurement layer are based on the past information
of:

• tracks: attributes and believes of formerly calculated tracks provide evidences for the
assertion of hypotheses in the measurement layer.

• sensors: the level of confidence in a specific sensor also provide evidences for the
assertion of hypotheses in the measurement layer. These confidence levels are obtained
by means of the evaluation of sensor failures described in section 3.2.2.

Figure 3.7 illustrates the feature extraction of sensor data for the measurement layer. According
to it feature extraction is achieved by firstly combining sensor data, past tracks and past sensor
information. Depending on the type of information available, different kinds of models can be
built for evaluating sensor data. These models may vary from White-Boxes to Black-Boxes
(see figure 2.17) and support feature extraction (symptom generation) via plausibility criteria
checks.

Figure 3.7: Scheme illustrating the feature extraction of sensor data for the measurement layer.

Both track and sensor based features extractions assume the probabilistic principle as well.
This means, the feature characteristics are not binary determined (e.g. available/not available),
but in a "soft" decision sense by means of membership functions (e.g. cold, warm, hot,
very hot, etc.). These functions try to approximate the human decision way under uncertain
circumstances. Equation 3.1 gives an example of a membership function, which are applied
to the membership determination of different features. In case of features that may assume
more than two membership states, the proposed function can be extrapolated (Fig. 3.8). The
presented equation consists of an exponential function where: f(x) is the membership state
or evidence of a determined feature; the parameter a describes the measure of the analyzed
feature in which the membership stays at a maximum or a minimum; α describe the boundaries
between two feature state where the membership value assumes 50% of a state.
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f(x)i = 1 −
1

1 + e
a− xa

αi

∀ αi−1 6 x 6 αi(1 +
1

2
) (3.1)

Analogue to the class hierarchy in the dynamic state level (Fig. 3.5), the determination of
feature states will be performed. The main difference here is that feature states are a one
dimensional pre-classification task. This is performed by means of the feature measure itself
with the parameters in equation 3.1. One relevant aspect of the presented concept is the
way in which the constant a and the parameters α are determined. The concept enables the
implementation of two strategies:

1. prior knowledge: it is adopted if enough prior knowledge about the states of a specific
parameter is available. The main advantage of this approach is that the time for an
extensive training phase can be saved.

2. training data: it is adopted if none or incomplete prior knowledge about certain features
are available. According to section 2.3 the weaknesses of this approach are among others
a extensive training phase and the dangerous of training based on suspicious data. Usually
this approach is used to complement the one before. The main idea is that through prior
knowledge the constraints for the training phase may be determined.

Figure 3.8: Membership functions for the analyzed features.

After calculating the membership state for the features their relevancy is checked according to
their extraction principle. For instance track or sensor based features will be proved against
their past belief information. This means that if the extraction of a certain feature is based on
the information of a determined track or sensor their past belief must be taken into account.
This is initially performed by means of weighting models. Their basic structure is illustrated in
table 3.1.

85



3 Multiple Fault and Target Tracking

evidence ↘ reference Refstate 1 Refstate 2 · · · Refstate n

f(x)state 1 w11 w12 · · · w1n

f(x)state 2 w21 w22 · · · w2n

... . . . . . . . . . . . .
f(x)state n wn1 wn2 · · · wnn

Table 3.1: Weighting Model

The weighting models describe the relationship or influence (wij) of a determined reference
(Ref) state on the specific evidence (f(x)) state:

wii = p(Refstate i|xstate i) (3.2)

If reference state (Refj) assumes a probability of 80% the influence value (wij) of 30% will
affect the evidence value (f(x)i) calculated with equation 3.1. Equation 3.3 describes the
general principle of influence calculation.

f(x)
norm

=
1

max states∑
i=1

f(x)i

WM Ref (3.3)

The terms in equation 3.3 are interpreted as follows:

• f(x)
norm

: is the normalized vector of feature states after the influence calculation.

• 1
max states∑

i=1

f(x)i

: is the normalization factor.

• WM: it describes the weighting matrix model illustrated in table 3.1. Similar to the
parameters for the membership determination, the influence values may be determined
by means of a priori knowledge or training data.

• Ref: it describes the vector of reference states.

Once measurement features are extracted and weighted, they may be treated as symptoms for
specific hypothesis states. As mentioned before both expected and not expected behavior of the
acquired information can be modeled. Thus the deviation between the modeled behavior and
the acquired information (residual) is treated as a symptom for the classification of hypotheses.
The integration of several model approaches is assured here. For instance several White-Box
and Black-Box models may be applied (see section 2.2.2).

The next and final step for the assertion of measurement hypotheses is the combination of all
extracted features with their correspondent influence calculation. Based on the probabilistic

86



C
ha

pt
er

3

3.2 Design Concept

network approach (2.3.3) the classification of measurement state hypotheses are performed.
For each extracted feature a dependence model is built. As mentioned before these model
may be determined by means of a priori knowledge or training data. Table 3.2 illustrates an
example of a dependence model.

hypotheses ↘ evidences evstate 1 evstate 2 · · · evstate n

Existent Track1 d11 d12 · · · d1n

... . . . . . . . . . . . .
Existent Trackn dn1 dn2 · · · dnn

New Track dn1 dn2 · · · dnn

Sensor Fault dn1 dn2 · · · dnn

Table 3.2: Dependence Model

By means of the combination of all extracted features through the correspondent dependence
models the hypotheses assertion is assured according to equation 3.4.

belk(t)meas = η λk(t)meas πk(t)meas (3.4)

According to equation 3.4 the term belk(t)meas corresponds the vector of believes by means
of probability values of the possible hypothesis states for one measurement k in a time stamp
t. The term η describes the normalization factor that limits the probability values between 0
and 1. Its calculation is performed through equation 3.5.

η =
1

max states∑
i=1

belk(t)meas(i)

(3.5)

Adopted from the probabilistic network approach (2.3.3) the term λk(t)meas corresponds
the so-called diagnostic support from one measurement in a time stamp. It corresponds the
combination from the information calculated in the feature level (children nodes) and sent
to the measurement level (parent node). The diagnostic support is calculated through the
product of all children nodes (equation 3.6). According to the Bayes’s theorem, the product of
the information between two children nodes is only possible if their features are independent.
Pearl [1988] shows that this assumption may be assumed in many dependent cases without
influencing the correctness of the results. For the case in which one or more features are not
available in the current duty cycle, this missing data does not influence the whole calculation
(see 2.3.3).

λk(t)meas =

#features∏
i=1

λk,i(t)feat (3.6)
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In this sense the diagnostic support from the extracted features (λk,i(t)feat) is determined as
follows (3.7):

λk(t)feat = DM f(x)
norm

(3.7)

where DM corresponds to the dependence model matrix illustrated in table 3.2 and f(x)
norm

(equation 3.3) denotes the normalized vector of feature states after the influence calculation
(evidence states). This product describes how much a feature affects the classification of a
specific hypotheses set. The last term for the hypotheses assertion on equation 3.4 is the
so-called causal support πk(t)meas. According to section 2.3.3 the causal support corresponds
to the incoming information from the track layer (parent nodes). It also describes the a priori
knowledge about a specific set of hypotheses. In case of no information coming from the
parent nodes the uncertainty about the set of hypotheses will be equally shared among them.
Thus the assertion of measurement hypotheses can be illustrated by means of equation 3.8.
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πk(t)meas

(3.8)

Track Layer

Measurement believes are interpreted as children nodes for the determination of track hypotheses.
They supply one of the main source of information to classify the track states. The association
between one measurement node and a track one depends on the probability asserted to
the different states of the hypotheses in the measurement layer. Because of only current
measurements are considered for calculation, probabilistic links between tracks and layers will
be rebuilt in every duty cycle. This characterizes the dynamic states in the proposed concept.
Figure 3.9 shows the probabilistic network for the assertion of the track hypotheses.

Analogue to the classification of measurement hypotheses the information flow assumes a
bottom-up characteristic. Several measurement hypotheses may be associated to a track in
order to determine its current state. Assuming that a track may not correspond unconditionally
single or a whole object (car, truck, pedestrian, etc.), one measurement may contribute for the
hypotheses assertion of several tracks. One or more tracks may concur for the measurement
membership. This may happen because of the lack of track attributes to build a model for
a complete object description. In this sense a measurement can contribute proportionally to
one track and to another. Additionally, different features that may be extracted from the
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Figure 3.9: Probabilistic Network for the determination of track believes.

correspondent track contributes to its hypotheses assertion. Thus, the incoming children (track
features and measurement hypotheses) information are processed in order to classify the current
track states:

• Tx: describes the probability that the current track (x) represents one or part of a relevant
object 2.

• Tx: describes the probability that the current track (x) represents an artifact.

The first step for the classification of track hypotheses consists of its feature extraction. It
corresponds the acquisition of the most important and observable features which supports the
determination of track states. As described in the measurement layer, the whole system is
based on a "soft" decision concept. Thats why the feature extraction here is performed by
means of "soft" membership functions as well. Figure 3.10 illustrates the feature extraction of
track data for the track layer.

Analogue to the feature extraction in the measurement layer, features are extracted in this
layer by means of different type of models depending on the track information available via
plausibility check. In this sense equation 3.1 can be also applied for membership determination.
In order to determine the amount of influence of a certain feature in the classification of tracks,
dependence models are used. Table 3.3 illustrates an example of a dependence model for track
features.

After determining the influence of different track features, the contribution of the associated
measurement hypotheses has to be calculated. This step is also performed by means of
dependence models. According to whole concept philosophy, the weighting factors (wxx) are

2The term relevant object (car, truck, pedestrian, etc.) depends on the ADAS requirements.
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Figure 3.10: Scheme illustrating the feature extraction of track data for the track layer.

hypotheses ↘ evidences evstate 1 evstate 2 · · · evstate n

Track w11 w12 · · · w1n

No Track w21 w22 · · · w2n

Table 3.3: Dependence Model for Track Features.

here also determined through a priori knowledge or training data. Table 3.4 illustrates an
example of a dependence model for measurement hypotheses. The acronyms for the evidences
in table 3.4 corresponds the the hypothesis states for the measurements (see figure 3.6).

hypotheses ↘ evidences ET1 · · · ETn NT RSf

Track we1 · · · wen wnt wsf

No Track we1 · · · wen wnt wsf

Table 3.4: Dependence Model for Measurement Hypotheses.

By means of the combination of all extracted features and all associated measurement hypotheses
with their correspondent dependence models, the track hypotheses assertion is assured (eq.
3.9).

belk(t)track = δ λk(t)track πk(t)track (3.9)

The term belk(t)track in equation 3.9 describes the vector of believes by means of probability
values of the possible hypothesis states for one track k in a time stamp t. Analogue to equation
3.5 the term δ corresponds to the normalization factor. It limits the track probability range
between the values 0 and 1. The diagnostic support vector λk(t)track is composed of the
combination of the incoming information of all "children" nodes (see section 2.3.3). Equation
3.10 illustrates the calculation of the track diagnostic support.
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λk(t)track =

#children∏
i=1

λk,i(t)children (3.10)

In this sense the diagnostic support transmitted by the children nodes λk,i(t)children is
determined as follows (3.11):

λk(t)child = DMfeat|meas evfeat|meas (3.11)

where the term DMfeat|meas corresponds either the dependence model for track features (see
table 3.3) or the one for measurement hypotheses (see table 3.4). Finally evfeat|meas describes
either the evidence of track features or the measurement evidences (hypotheses). It may be
obtained for instance by means of equation 3.1.

Analogue to equation 3.4 the term πk(t)track on equation 3.9 corresponds to the causal
support. It describes the incoming information from the parent nodes. In case of no parent
nodes this information is replaced by the a priori knowledge about the evaluated track. Thus
the assertion of track hypotheses can be illustrated by means of equation 3.12

[
Tx (Track)

Tx (No Track)

]
︸ ︷︷ ︸

belk(t)track

= δ

[
Tx (Track)

Tx (No Track)

]
︸ ︷︷ ︸

λk(t)track

¯
[

Tx (Track)

Tx (No Track)

]
︸ ︷︷ ︸

πk(t)track

(3.12)

Another important aspect is the relevancy of the past track believes for existent tracks in the
calculation of the current ones. As mentioned before and depicted in figure 3.5(b) the belief
gradient assumes a low pass filter behavior dependent on the track life time. This means that
the calculated belief by means of the associated measurements is timely weighted against the
past track belief. As long as the evaluated track is "young", the measurements will influence
strongly in its belief determination. As soon as this track reaches a specific "age", track history
will be strongly considered. A specific threshold value for specific track ages depends directly
on the implemented ADAS. Figure 3.11 depicts the influence of past tracks believes on the
calculation of current ones. Here the influence of the past time slice (t− 1) is weighted against
the current acquired measurements at time t.

According to figure 3.11, the final belief for a track considering its past information can be
calculated by means of equation 3.13.

belk(t)track,filter = belk(t− 1)track +G (belk(t)track − belk(t− 1)track) (3.13)

The term belk(t)track,filter corresponds to the filtered vector of asserted hypotheses for the
kth track in the time t. The main advantage of this type of filter is that the influence of
previous time slices (t − 2 · · · t − n) are also taken into account without being stored. It
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Figure 3.11: Influence of past track believes in the calculation of the current ones.

enables a reduction in the computation time and storage space. This is possible due to the
current track enfolds the characteristics of the previous ones through this calculation (eq. 3.13).
The term belk(t − 1)track describes the hypotheses course since the track generation until
the immediately past time slice. The current assertion of track hypotheses is described by
the vector belk(t)track. As mentioned before it takes all associated measurements and track
features into account. Finally the variable G corresponds to the weighting factor between the
current and past time slices. It determines the proportion of current and past information will
affect the final calculation. There are several forms to determine the behavior of the weighting
factor (G). An example already mentioned is weight past and present according to the track
"maturity". Thus the factor G assumes low pass filter characteristics and can be calculated as
follows (eq. 3.14):

G =
∆t

τ
(3.14)

where ∆t corresponds the sample time or duty cycle. The factor τ describes the time (track
life cycles) in which the past track believes will have a stronger influence than the current ones
in the final results. According to equation 3.14 the range for the τ time has to be within the
scope of: τ > 0. Figure 3.12 shows an example of determination of the factor τ. The value
maxτ can be again determined by means of training data of prior knowledge.

The whole process for the classification of tracks tries to reproduce the human decision method
under uncertain circumstances. As long as a track is "young" its believe may strongly vary
according to the quality of the associated measurements and of its features. As soon as a track
reaches the expected "maturity" its quality will not vary so strong as at in its generation time.
The process reflects the desired low pass filter characteristic.
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Figure 3.12: An example for the determination of the delay time.

3.2.2 Quasi-Static Track Oriented Failure Detection and
Classification

Quasi-static approach concerns with the detection and classification of sensor failures, which
usually can not be performed within a single duty cycle. Features are extracted cyclically indeed,
but the final hypothesis classification depends on a steady observation and evaluation of the
whole environment. According to the intensity of these anomalies, failures may be detected
and diagnosed within a short period of time. For most ADAS, these type of sensor failures are
usually perceived by means of gradually system degradation. They are detected by means of
longer periods of observations compared with the dynamic states (section 3.2.1). For these
reasons the sensor failure layer is implemented at this stage. Figure 3.13 illustrates the class
hierarchy for classifying the information in the quasi-static state level.

Analogue to the classification performed in the dynamic state, the class hierarchy illustrated
in figure 3.13 describe the hypothesis states that a sensor may assume. It also consists of a
multidimensional classification task depending on the number of features available. The goal
here is also to extract several meaningful sensor failure symptoms that assure an unambiguous
classification. Obviously the more meaningful these symptoms are, the higher is the separation
level among the classes. In contrast to the classification performed in the dynamic state, the
hypotheses here are not complete mutually exclusive. Several failures may occur simultaneously
and one symptom may also be associated to different failures. Figure 3.13 shows the class
hierarchy for a hypothetical sensor 1 that may assume m different specific and one unspecific
failure states. The only case of exclusivity (either one or another class) is characterized by
classes overlapping with “No Sensor Failure”. A sensor can not be simultaneously in a failure
free and faulty state. Although figure 3.13 illustrates the class hierarchy for only one sensor, it
can be generalized for multiple sensor systems.
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Figure 3.13: Class hierarchy for sensor failure layer.

Sensor Failure Layer

Sensor failure layer is characterized by its processing mechanism of previous data. The
information obtained in the previous layers provide a basis for symptoms extraction that
corresponds to sensor failures. As mentioned earlier track and measurement hypotheses will
be cyclically propagated to this quasi-static state, where sensors may be classified regarding
quality, reliability and integrity. Figure 3.14 shows a fragment of the probabilistic network for
classifying sensor failures. For the sake of simplicity sensor failure hypotheses are abbreviated
as follows:

• SF1 · · · SFm: stand for specific sensor failures.

• SF1 · · · SFm: stand for the failure free case of each specific failure.

• USF: stands for unspecific sensor failures.

• RSF: stands for the failure free case of remaining sensor failure.

Another relevant aspect of this layer is related to the information propagation mechanism
between dynamic and quasi-static layers. The connection between them is not performed by
means of a probabilistic network approach. This means that the whole system consist basically
of the mentioned two types of network.
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Figure 3.14: Probabilistic network for classifying sensor failures.

Similar to the assertion of hypotheses in the previous layers, the first step here consists of
extracting different features. These features corresponds to failure symptoms described earlier.
As decisions concerning sensor failures have to be made considering the acquisition environment
as a whole, symptoms are periodically extracted indeed, but their contribution for hypothesis
assertion are considered in form of occurrence events. Figure 3.15 illustrates the scheme for
extracting and processing features in the sensor failure layer.

Figure 3.15: Scheme illustrating the feature extraction for the sensor failure layer.

According to figure 3.15 the cyclic information obtained from measurement and track hypotheses
is the source for symptoms extraction in this layer. However they are not directly associated to
sensor failure hypotheses, but firstly processed by a feature (symptom) occurrence mechanism. In
order to achieve a more reliable statement about sensor failures and to save computation efforts,
symptoms occurrence are first proved against threshold levels. Again threshold determination
may be performed by prior knowledge, training data or a combination of both. Once feature
occurrences reaches the corresponding threshold levels, hypothesis assertion can take place.
As the assignment between symptoms and failures is also performed following probabilistic
premises, symptoms are first evaluated according to membership functions. Equation 3.15
describes an example of a membership function. It recovers to equation 3.1 on section 3.2.1,
which is an adaptation of the well-known sigmoidal function:
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f(x)i = 1 −
1

1 + e
a− xa

αi

∀ αi−1 6 x 6 αi(1 +
1

2
) (3.15)

Figure 3.16 illustrates the extrapolation of equation 3.15 in order to perform symptom evaluation
in a soft (fuzzy) way. According to the symptom intensity it may assume one of the determined
states or even something in between. In doing so the influence of these extracted features
may be taken into account in a similar way as humans deals with decision under uncertain
circumstances.

Figure 3.16: A example of a membership function for different symptom states based on the sigmoidal
function.

Analogue to the symptom membership determination in the previous layers, parameters a
and α for the corresponding symptoms in equation 3.15 may be achieved by means of prior
knowledge, training data or a combination of both. As soon as the membership of analyzed
symptoms is achieved the next processing step may be performed. In order to determine the
amount of influence of a certain symptom in the classification of sensor failures dependence
models are used. Table 3.5 illustrates an example of a dependence model for sensor failure
symptoms.

hypotheses ↘ symptoms sstate 1 sstate 2 · · · sstate n

Sensor Failure 1 w11 w12 · · · w1n

No Sensor Failure 1 w21 w22 · · · w2n

Table 3.5: An Example of a dependence model between symptoms and one sensor failure.

According to table 3.5 the weighting factors wxx determine the amount of influence of a
symptom state for classifying sensor failures hypothesis. wxx may assume values between 0
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and 1 describing respectively no or total dependency. As symptom states are mutually exclusive
the sum of the row values in table 3.5 can not exceed 1 (100%).

Once symptoms influence are calculated, sensor failure hypotheses may be asserted. This is
performed by the combination of all available symptoms related to a specific failure (equation
3.16).

belk(t)SFx = δ λk(t)SFx πk(t)SFx, (3.16)

where term belk(t)SFx describes the vector of believes by means of probability values of possible
hypothesis states of a sensor failure x for one sensor k in a time stamp t. Based on the Bayesian
theorem and analogue to the previous layers (equation 3.5) δ represents the normalization
factor. Diagnostic supports are outlined here by the vector λk(t)SFx. It describes the weighted
combination of all symptoms obtained from the correspondent children “nodes” and is calculated
as:

λk(t)SFx =

#children∏
i=1

λk,i(t)children (3.17)

In this context the quasi-static influence of children nodes is determined as follows:

λk(t)child = DM failure | symptoms ev symptoms (3.18)

The term DM failure | symptoms describes in equation 3.18 the dependence model between
sensor failure and symptoms (see table 3.5). Finally ev symptoms corresponds to the symptom
evidences extracted from track and measurements data and evaluated against membership
functions characterized by figure 3.16. In order to determine the amount of belief in a certain
sensor failures hypothesis the last term to be calculated consists of the causal support πk(t)SFx.
As mentioned earlier it corresponds to the incoming information from parent nodes. In case of
the absence of parents the causal support is treated as the prior knowledge about this specific
node. Therefore the assertion of sensor failure hypotheses can be achieved as follows:

[
SFx

SFx

]
︸ ︷︷ ︸
belk(t)SFx

= δ

[
SFx

SFx

]
︸ ︷︷ ︸
λk(t)SFx

¯
[
SFx

SFx

]
︸ ︷︷ ︸
πk(t)SFx

(3.19)

3.3 Architecture Concept

This section gives an overview of the framework architecture for the proposed approach. It
describes how methods for tracking multiple targets, detecting and identifying malfunctions
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introduced in the previous sections can be implemented. The proposed architecture explores
the reciprocity of sensor data fusion, target tracking, fault detection and identification methods.
Figure 3.17 illustrates the overall scheme for the proposed framework and how it acts as an
integration platform between sensor hardware and several ADAS.

Figure 3.17: Overall scheme for the Multiple Fault and Target Tracking approach (MFTT) acting as a
reliable integration platform between sensor hardware and several ADAS.

Sensor data fusion strategies offer one of the most suitable forms of dealing with data of
different and dissimilar sensors by processing events in the environment (see section 2.1). It
facilitates among others the implementation of different methods like MTT (see section 2.1.3)
and FDI (see section 2.2) and supplies an abstraction layer between sensor hardware and
different applications.

Both MTT and FDI methods are primary tasks that may be already implemented in the sensor
units. However their implementation according to sensor data fusion principles enables mutual
sensor supervision and thus reducing the weaknesses of single sensor systems (see section
2.1.1). Additionally an independence level between software and hardware is achieved as well.
Sensor information can be delivered in a standardized format to several ADAS after their
evaluation. Following sections explore the advantages of sensor data fusion, MTT and FDI
for accurately acquiring and describing the driving environment information by proposing a
framework approach. This framework enables the implementation of these three techniques
under the theory proposed in 3.2.

3.3.1 Framework

As mentioned in the previous section sensor data fusion offers a convenient platform for
implementing MTT and FDI methods. That is why the purpose of this section is to present
a framework, which explores advantages and further develops both methods. This results in
a practical, scalable and reusable architecture that permits the implementation the Multiple
Fault and Target Tracking approach (MFTT).
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This architecture design was achieved by means of an extensive evaluation of MTT and FDI
methods. Table 3.6 illustrates a parallel of both techniques according to some relevant aspects.
Through this comparison relevant criteria are evaluated, which allow the determination of shared
properties between these two techniques. In doing so the application field of MTT and FDI
can be determined for supporting this work. This means the point where these two methods
can mutually complement and supervise themselves and thus allow a reliable acquisition and
processing of the driving environment information.

By comparing the criteria in table 3.6 the compatibility of these methods can be perceived. They
aim to increase the processed information’s quality by means of complementary approaches.
Thus the main goal of this proposed architecture is to explore and further develop these similar
and to some extent overlapping characteristics in order to increase information quality as well
as evaluating it along with the sensor hardware.

Criteria MTT FDI

Goal

description of object
trajectories by means of

measurements (if available)
and predicted states

detection of faults for
reconfiguration, maintenance

or repair of processes

Hardware Usage
sensors cooperate with and
complement each other

sensors compete against and
supervise each other

Model Usage

uses the residual information
to determine an optimum
between measurements and

predicted values

uses the residual information
for the extraction of failure

symptoms

Environment
Information
Usage

determination of object
trajectories

explicit fault isolation

Information
Quality

implicit used in the
determination of the object

trajectory

explicit use for fault
detection and isolation

Table 3.6: Parallel between MTT and FDI exploring the points where they can mutually complement
and supervise each other and thus allow a reliable acquisition and processing of the driving
information environment.
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Thus based on the premises showed in table 3.6 the proposed architecture explores and further
develops fundamental principles elaborated in Naab [2004] and de Castro Bonfim [2004]. Figure
3.18 shows a schematic illustration of the MFTT approach along with a data pool concept.
The main advantage of this data pool is to allow several applications to have access to the data
processed on every MFTT unit. According to ADAS requirements suitable information may
be chosen. This type of information can be obtained directly from sensor units, from simple
processed data or by means of model based approaches. In doing so eventual information lost
due to several processing steps is attenuated.

Figure 3.18: Framework architecture for performing the information fusion, tracking of multiple targets,
data evaluation and sensor hardware diagnosis.

The processing flow starts with the acquired sensor information being prepared in the Sensor
Data Converter unit. These results are simultaneously stored in the data pool and made
available to the Data Classification unit by the Data Manager . References for this
classification are extracted by combining new acquired data with the fused information processed
in the previous processing cycles. The final processing step is performed in the Data Fusion
unit. Environment information that was interpreted and classified is fused according to a model
based approach based on the methods covered previously in section 2.1. At the end of a
processing cycle all interpreted, classified and fused information are made available for several
ADAS.
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In the remaining of this chapter the processing units illustrated in figure 3.18 along with their
peculiarities will be covered in details. The procedures for the implementation of the MFTT
theory introduced in section 3.1 and 3.3 will be explored.

3.3.2 Sensor Data Converter Unit

Sensor Data Converter unit consists of mechanisms that deals as a gateway between hardware
and data abstraction layer. This means that sensor configurations may vary, but classification
and fusion algorithms remain unchanged as long as the information contents are unaltered.
Main task of this processing unit involves the data manipulation of dissimilar sensors in such
a form that it can be processed meaningfully. Different sensor hardware may work under
distinguished time constraints and coordinate systems. Therefore this sensor information must
be transformed to a unified description system and thus enabling its processing.

Another relevant task consists of interpreting and forwarding requirements of different ADAS or
of the remaining processing units to the sensor hardware. Depending on the field of interest of
several applications sensor units can be online configured or even part of their information may
be evaluated. A typical example consists of combining radar and video based sensors. Radars
may indicate the field of interest for image processing and thus reducing computational efforts.

In case of identifying sensor faults or failures unambiguously, complete or part of the incoming
information of the respective sensor unit may be ignored. This would increase systems reliability
due to a faulty sensor not being taken into account or being repaired for the fusion and target
tracking processes. A typical example can be illustrated by the detection of a misaligned sensor.
Once this failure could be clearly identified the acquired data may be ignored or even aligned if
the shift angle is known.

3.3.3 Data Classification Unit

Although sensor hardware units already perform a certain level of data classification themselves,
most of them are not designed to implement enhanced (high level) classification tasks. Reasons
for that are the limitations due to measurement principles or computational efforts. For instance
the assertion of exclusive radar measurements to cars or small trucks is hard to be correctly
achieved. Additionally the detection of malfunction with a single sensor is difficult as well.
Therefore the combination of dissimilar sensors is a straightforward method to perform the
tasks mentioned before.

In this unit measurements will be assigned to several hypotheses. The specificity of these
assumptions depend obviously on the level of observability supplied from the applied sensor
units. This means that this specificity is directly related to type of attributes obtained from
sensor measurements. The main goal here is thus to cyclically describe sensor data according
to the information available. In doing so multiple targets can be tracked as well as sensor
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malfunctions can be detected. Basis for it is the consistence check or redundancy described in
section 2.2.2. Figure 3.19 illustrates schematically the data classification unit. It represents
the three main classification layers namely measurements, track and sensor failures within the
correspondent dynamic and quasi-static states.

Figure 3.19: Schematic illustration of the data classification processing unit representing the dynamic
and quasi-static classification of sensor data. The three layers for detecting and identifying
faults and failures are represented as well.

First step for performing the classification of environment information consists of the extraction
of symptoms or features from current acquired sensor data. Hereby several plausibility models
are built with aid of reference tracks determined in previous cycles along with current information
about sensor hardware status and configuration. Examples of plausibility models will be discussed
in details on section 4. According to the symptoms or features extracted sensor data will be
evaluated regarding their integrity, quality and reliability. This is performed by means of the
previously described probabilistic approach. As mentioned earlier sensor data may assume
following mutual exclusive states:

• existent tracks

• new tracks

• specific sensor faults

• unspecific sensor faults

After this first classification both measurement attributes and hypotheses are made available to
several applications by means of the data manager in the common data pool (see figure 3.18).
Concurrently this processed information deals as input for the next processing step namely the
track layer.
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In the track layer two types of association take place according to the multiple target tracking
approach discussed in section 2.1.3. In case of non existent track hypothesis dealing as
reference for the measurement association, measurements will be associated one another.
This measurement-to-measurement association describes the track initiation task. Associated
measurement attributes themselves describe this new track. The second type of association
consists of the measurement-to-track one. In this case existent reference tracks will be
maintained in an update step and associated measurements will contribute to track trajectory
determination.

Previous sensor data classification in the measurement layer plays a crucial role in the asso-
ciation task. According to the probability associated to a measurement hypothesis state the
correspondent measurement will contribute to the asserted track level of belief. Assuming a
measurement m1 with following state probability distribution p(m1) = {0.7, 0.2, 0.1, 0.0, 0.0}

for the respective state vector s:

1. s1: existent track 1

2. s2: existent track 2

3. s3: new track

4. s4: specific sensor fault

5. s5: unspecific sensor fault

the measurement m1 will contribute with 70%, 20% and 10% certainty for the level of belief
of respectively existent track 1, existent track 2 and new track. The membership calculation of
every single measurement along with the feature extraction of past reference tracks characterize
the feature evaluation unit within the track layer. According to the symptoms or features
evaluated tracks will be classified regarding their integrity, quality and reliability as well. This is
performed by means of the previously described probabilistic approach. As discussed previously
tracks may assume following mutual exclusive states:

• track

• no track

Another relevant aspect for the assertion of track hypotheses is the extraction of track symptoms
and the calculation of their influences. Examples of track symptoms may be considered as
plausibility criteria in order to validate tracks. The specifity of a track state (cars, trucks,
cyclist, guard rail, etc) depends strongly on the nature of the sensor data. Similar to the results
obtained in the measurement layer track attributes and hypotheses are made available to further
processing steps by means of a data manager in the common data pool. The evaluation of
measurement and tracks characterizes the dynamic state classification due to the association
between measurement and tracks being performed in every single cycle.

By classifying measurements and tracks cyclically evidences for the quasi-static layer (sensor
failures) can be attained. As mentioned before in section 3.2.2 the information obtained from
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the previous layers is processed by a symptom occurrence mechanism. This is necessary because
sensor failures have to consider the occurrences in the environment as a whole and not only
based on isolated situations. For each sensor incorporated to the system the following classes
will characterize this layer:

• specific sensor failures

• absence specific sensor failures

• unspecific sensor failures

• absence of unspecific sensor failures

Based on the probabilistic approach for the assertion of sensor failure hypotheses described
in section 3.2.2 sensor classification is performed. Also in this layer symptoms are extracted
cyclically. However only after thresholds levels for symptom occurrences are exceeded their
influences on the hypothesis states are calculated. As mentioned earlier the determination of
the specific threshold level for each symptom has to be determined by means of prior knowledge,
learning data or a combination of both.

3.3.4 Data Fusion Unit

As discussed in section 2.1 Sensor Data fusion supports a meaningful combination of incoming
data of several dissimilar and partially redundant sensors. Therefore the main goal of a Data
Fusion unit in the MFTT context is to provide a mechanism to explore, adapt and enhance
this data combination. In doing so the tracking of multiple targets in the driving environment
as well as the generation of evidences for the detection and identification of faults can be
implemented.

Early Fusion

Early or low level fusion unit represents in the MFTT context the processing stage that
summarizes the information obtained from the association algorithms. Its main goal consists of
fusing sensor information by avoiding strong data manipulation. It is a mechanism to formalize
the previous data classification by exploring the redundancy as well as the most relevant features
of several sources of information. In doing so superfluous information may be reduced and
further applications may perform their own specific fusion algorithms according to their needs.

This stage builds a kind of memoryless fusion processing. This means that results obtained at
this processing level do not take the observation history of objects in the driving environment
into account. Thus only current measurement attributes are considered. It describes the
building process of low level tracks. These low level tracks are considered by the remaining
processing stages like Late Fusion or several ADAS as a virtual sensor. Information will be
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summarized into an essential description format building a sort of segmentation mechanism. In
doing so computational efforts in the following processing level may be reduced.

Example of this early fusion mechanism may be described by the generation of low level tracks
by means of a Center of Gravity (CoG) approach. CoG consists of building low level tracks by
calculating an absolute mean value based on the associated measurement attributes. Figure
3.20 illustrates the early fusion principle according to the CoG approach. Radar measurement
attributes like position and velocity are merged and generate a new virtual measurement namely
a correspondent low level track.

Figure 3.20: Schematic illustration of an example of the early fusion mechanism applying the Center
of Gravity (CoG) approach. The mean of radar measurement attributes like position and
velocity are calculated and generate a new virtual measurement namely a correspondent
low level track.

According to the type of information provided by different several units like object edges or
consistency the approaches for early fusion may increase in complexity. Several strategies and
algorithms may be applied here in order to reduce the entropy of the acquired sensor data.

Late Fusion

Once the essential driving environment information could be processed and extracted by means
of previous processing units, the model based approach for tracking multiple targets may be
accomplished. This preprocessed data is considered as the input of several virtual sensors and
as basis for performing the late fusion in the MFTT context.

Late Fusion unit represents the meaningful combination of this virtual sensor information taking
the observation history of objects in the driving environment into account. In this sense a
model based approach for tracking these multiple targets as well as for generating references
for the detection and identification of faults is achieved.

In this unit white-box models are applied to perform the estimation of modeled object state
variables like position, velocity, acceleration, shape and so on. These estimation results are
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denominated high level tracks, which deal as reference for the data classification and posteriorly
for the early fusion units. According to the estimation process described in section 2.1.2 high
level tracks are filtered and predicted in this processing layer. Filtered high level tracks deal
as reference for current actions and reactions of several ADAS as well as evidences for the
detection and identification of sensor faults. On the other hand predicted high level tracks
serve as basis for measurement to track association performed in the data classification unit.

Algorithms applied for the estimation of high level tracks may be based on Kalman, α − β,
Bayesian and particle filter approaches. An overview about this type of filters along with the
the references for a detailed description were given in section 2.1.3.

Fusion Manager

Fusion manager is concerned with pruning track hypotheses as well as performing track-to-track
associations. As mentioned before Tracks are employed to describe the motion of the targets
dynamically. Criteria to exclude a track can be chose according to the following assumptions in
an isolated or combined form:

• oldest survey: to each track is a life time counter associated. Therefore it can be
assumed that the track with greater “experience” should inherit the measurements of the
younger track in the next cycle.

• strongest survey: a track that contains fewer target measurements associated can be
excluded. This tactic enables the chose of more robust track.

• track fusion survey: the attributes of both tracks are fused using again a model based
approach.

3.4 Summary

This chapter described the proposed concept for improving quality, integrity and reliability of
the driving environment information by Multiple Fault and Target Tracking. It enables the
fusion of sensor data, tracking of multiple targets, the track oriented evaluation of sensor
information and the supervision and diagnosis of sensor hardware.

Premise for the developed concept is the classification of the acquired information of sensor
hardware acquired in the driving environment. For this purpose probabilistic networks were
adapted and further developed. In doing so a new network configuration for handling with
sensor measurements, track and sensor data was developed. It consists of two main states:
dynamic and quasi static. The dynamic state network implements not only a cyclically assertion
of hypotheses, but also a dynamic connection between sensor measurements and tracks. This
describes and fits the dynamic relationship between measurements and tracks. On the other
hand the evaluation of sensor hardware is performed by a quasi-static probabilistic network
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implementation. Similar the detection of sensor hardware failures the occurrences on the
driving environment have to considered as a whole, the assertion of hypotheses here has to be
performed in longer period of times.

According to the premises of the proposed concept a framework architecture for its imple-
mentation was developed as well. It explores the advantages and to some extent overlapping
characteristics of both multiple target tracking and fault detection and identification methods.
By comparing, adapting and further developing algorithms of both strategies a robust approach
for improving the quality of information acquired in the driving environment was accomplished.
One important goal is to allow today’s considered comfort driver assistance functions to make
a further step toward safety related and to some extent autonomous applications.
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4
Case Study

In this chapter the particularities of the development and validation platform for the presented
approach are discussed. It gives an overview about the conditions and constraints of the
environment used to proof the proposed concept covered in section 3. The configuration of the
applied sensor network implemented in the experimental vehicle will be described. Furthermore
the measurement principles of the applied sensors will be summarily outlined.

4.1 Experimental Vehicle

The test vehicle used to perform the experimental test runs in the driving environment consists
of a vehicle prototype equipped with a decentralized sensor network and a central processing
unit for the execution of the implemented algorithms. Figure 4.1 gives a schematic overview
about the complete coverage area of the applied sensor network.

Figure 4.1: Schematic overview of the achieved coverage area with the applied sensor network.

This sensor network distribution was proposed in Rasshoffer and Gresser [2004] in order to
attend the requirements of the future generation ADAS, which will have to some extent
increased requirements regarding safety and reliability. It consists of a lidar (LIght Detection
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And Ranging) sensor network composed of six units and of an additional radar (RAdio Detection
And Raging) sensor network composed of three units. Furthermore a video based network
consisting of two camera units is available as well. However camera systems were not applied
for feature extraction, but only for visualization and validation purposes.

The applied lidar sensor network consists of a long and mid range configuration assembly for
the front and rear field, while the lateral fields are covered by two specific lidar scanner sensors,
which mechanically rotates in order to scan the driving environment. The beam geometries of
lidar’s front and rear configuration are illustrated in figure 4.2.

Figure 4.2: Beam geometry of lidar’s front and rear configuration.

The front and rear sensor geometry field are shared in a mid and a long range part. Mid
range amounts 60 meters and is shared again in two small sectors with an aperture angle of
56 degrees. Both sectors are characterized by 16 channels each with a aperture angle of 2
degrees. The gap between each channels amounts 1.6 degrees. The long range area covers a
maximum distance of 150 meters with an aperture angle of 14.2 degrees. It also consists of 16
beams with an aperture angle of 0.7 degrees and a gap of 0.2 degrees between them. Specific
properties of the applied lidar sensor units will be discussed in details later on in section 4.2.2.

Both lidar scanner units are characterized by the beam geometry illustrated in figure 4.3. The
range for the applied sensor unit reaches a maximum of 20 meters with an aperture angle of
160 degrees. The field of view is shared in 16 beams with aperture angle of 5 degrees each.
The gap between the channel amounts 5.4 degrees.
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Figure 4.3: Emission geometry of lidar’s lateral configuration.

The assembly position for rear and front lidar sensors is the front and rear bumpers respectively,
while the lateral sensor are assembled in the vicinity of the rear view mirror. Figure 4.4 shows
the actual assembly position of the applied lidar sensors.

(a) Assembly position of rear lidar sen-
sor units

(b) Assembly position of lateral lidar
sensor units

Figure 4.4: Assembly position of lidar sensor units in the experimental vehicle.

radar sensor units applied to the actual vehicle prototype are based on 77 GHz and 24 GHz
technologies. They consist of one long range radar operating at 77 GHZ with a maximum
range of 200 meters and an aperture angle of approximately 20 degrees. Two short range radar
units operating at 24 GHz cover a maximum range of 50 meters with an aperture angle of 45
degrees. These three radar sensor units are also positioned in the front of the vehicle prototype.
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They provide an extra redundancy source to the lidar sensor units with dissimilar measurement
principles. Technical details of the applied radar units will be discussed later on in section 4.2.1.
The beam geometry of radar’s front configuration is illustrated in figure 4.5.

Figure 4.5: Beam geometry of radar’s front configuration.

A complete overview of the assembly position of all sensor units is represented in table 4.1.

Position x0 y0 z0 Azimuth Angle
lidar Front 0.1m 0.0m -0.4m 0◦

lidar Front Left 0.1m 0.0m -0.3m 35.1◦

lidar Front Right 0.1m 0.0m -0.3m -35.1◦

lidar Rear -4.7m 0.0m -0.3m 180.1◦

lidar Rear Left -4.7m 0.0m -0.3m 144.9◦

lidar Rear Right -4.7m 0.0m -0.3m -144.9◦

lidar Left -1.3 0.92 0.025 90◦

lidar Right -1.3 -0.92 0.025 -90◦

radar (77GHz) 0.1 -0.28 0.3 0◦

radar (24GHz) Left 0.1 0.5 -0.3 0◦

radar (24GHz) Right 0.1 -0.5 -0.3 0◦

Table 4.1: A complete overview of the assembly position of all applied sensor units.

Thus the origin of the common coordinate system for the sensor network is located at x = −0.1m,
y = 0m and z = −0.6 relative to the ground and to outermost front part of the vehicle (see
figure 4.6).
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Figure 4.6: Common reference coordinate system for the vehicle prototype relative to the ground and
the outermost front part of the vehicle.

4.2 Measurement Principles

4.2.1 Radar

The acronym radar stands for RAdio Detection And Ranging. It has been employed in the
automotive field for the determination of the position and velocity of reflective objects in the
driving environment. As mentioned previously the most established techniques for long and
short range radars in the automotive industry are based on 77 GHz and 24 GHz technologies
respectively. Driver assistance functions, which do not require a broad field of view of the
environment (e.g. ACC), for instance within highways, employ long range radar. On the other
hand assistance functions for urban applications require additional short range ones. Due to
their wide aperture angle they enable an enhanced field of view in dense traffic situations. The
advantage of radar sensors is that they are not strongly susceptible to the weather conditions,
like rain, fog or snow.

Essentially radar function is based on the principle of transmitting and receiving electromagnetic
waves in the respective frequencies. The determination of the target parameters like distance,
relative velocity, position angles are achieved through the combination of several physical
effects, which will be briefly outlined. A detailed description of radar measurement principles
can be found in Barton and Leonov [1998].

Object reflectivity is the basic and necessary effect for the determination of target measurements.
Electromagnetic waves are transmitted by means of antennas in the frequency range mentioned
before. These waves are reflected when they achieve conductive materials and transmitted
again as echoes. The angles of incidence are determined using this echoes as well. Most of the
time they detect the edge of the objects and jump all the time over the complete coverage area.
Obviously reflection effect induces also to a time difference between receiving and transmitting
of the signal. This difference is called wave runtime and enables the calculation of the distance
to the detected target.

By means of wave runtime the distance d between the emitter and targets can be determined.
It can be peformed by emitting a short radar impulse, which the duration amounts ∆τ. After a
determined interval of time τ, the observation time of the receiver is set to the interval of time
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of the transmitted impulse (∆τ). Then the distance d between target and sensor unit for a
direct reflection way can be determined by:

d = τ
c

2
(4.1)

where c means the speed of light. In this case the complete energy of the impulse falls into the
centred measurement cell of the emitter. In the case that the measured target is placed between
[(−∆τ+ τ)

c

2
, (+∆τ+ τ)

c

2
], the energy would be shared among the nearest cells. Making use of

these properties, the so-called distance profile can be created. It can be built by repeating the
process outlined before, but increasing the observation time of the receiver until the time step
τstep. After scanning the environment, the actual target distance can be determined by means
of the biggest signal amplitude registered in the distance profile (figure 4.7). This method is
also called simple pulse radar.

Figure 4.7: Example of a distance profile of a radar sensor.

The main weakness of this method consists on the absence of information about the frequency
shift of the received signals and consequently the relative velocity cannot be determined.
Furthermore the resolution’s quality and the received energy is limited, because of the short
receiver’s observation time. However a short impulse in time implies a broad spectral expansion
in frequency. This means, the resolution’s quality depends on the signal bandwidth [Barton and
Leonov, 1998]. For these reasons a direct wave runtime measurement is expensive and hard to
be achieved. The difficulties and weaknesses from this method can be reduced by employing the
Doppler effect on frequency shifts and suppressed by several frequency modulation procedures.

By means of the Doppler effect frequency shifts can be achieved and consequently the relative
velocity can be determined. This effect occurs if the transmitter and receiver are moving
relatively from each other. In the case that both are mounted in the same device and also
moving against a conductive target, the frequency fD of the transmitted signal is displaced.

114



C
ha

pt
er

4

4.2 Measurement Principles

This happens due to alterations of the relative velocity of the reflecting signal and can be
calculated by:

fD = −2fC
vrel

c
(4.2)

where fC represents the carrier frequency. However by this method the receiving signals have
to be tracked during a considerable period of time in order to obtain enough measurement
points for a spectral analysis. Optimized methods can be achieved by combining the Doppler
effect with frequency modulation procedures.

Frequency Modulation Continuous Wave method (FMCW) pursuits the determination of the
target parameter and also reduces the issues mentioned before. Instead of transmitting single
impulses, the transmitter sends continuous signals for a couple of milliseconds, so that enough
signal energy, during a sufficient interval of time, can be detected. Thereby the target’s relative
velocity and distance can be determined.

The time-lag between sent and received signal is no longer compared. Instead the signal
frequencies are compared by means of the modulation of the frequency transmitted. This
modulation allows the expansion of the bandwidth in order to increase the resolution’s quality.
The signal can be modulated using ramp or triangle functions as illustrated in figure 4.8.
Thereby the frequency transmitted is described by the flank lead coefficient m = df

dt
. During

the interval between transmission and reception (runtime: τ = 2d
f
), the transmitted signal is

shifted by an amount of ∆f = τm. This frequency deviation is then filtered by a mixer and
subsequently by a low-pass filter. The spectral peak of ∆f corresponds then the distance to
the measured target:

d = ∆f
c

2m
(4.3)

Figure 4.8: Schematic illustration of the FMCW detection method with vrel < 0, one target approxi-
mating to the sensor.
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Thus the frequency deviation can be determined because of the Doppler shift. If a measured
target approximates to the transmitter, the frequency of the reflecting signal increases. On the
other hand if a target is getting away from the transmitter this frequency decreases. So the
frequency deviation is determined by:

df = f+ ∆f− (f+ fD) = ∆f− fD (4.4)

where f describes the frequency of the original (transmitted) signal while ∆f the frequency
deviation due to the modulation and fD the frequency shift due to the Doppler effect. Therefore
the frequency shift depends on the target’s relative velocity and distance:

vrel

d
= df (4.5)

According to equation 4.5 no definite solution for the determination of the relative velocity
and distance. That is why these values are determined by means of a linear combination
of each other. This combination is obtained making use of the so-called “plain of distance
versus relative velocity” (DV) [Barton and Leonov, 1998]. It results in a straight line with
negative flank lead represented over this plain. By applying another FMCW modulation with a
negative ramp function the outcome is another straight line, but with positive flank lead. The
intersection of both lines determines the distance and relative velocity values (figure 4.9).

Figure 4.9: Schematic illustration of an example of a distance versus relative velocity diagram.

In order to detect multiple targets several ramp functions with different frequency modulations
are employed [Barton and Leonov, 1998]. However the explicit determination of position and
relative velocity have to be performed with at least three ramps.

The determination of the angle of a acquired target in the driving environment consists of
emitting multiple radar beams (at least three), which overlap each other. This radar beam will
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be then acquired by one receiving antenna. An alternative for it is based on the emission of
one beam, but its intensity is measured making use of multiple antennas. In both cases the
more beams or antennas employed, the greater is the measurement resolution. Thus with aid
of an antenna diagram the received signal amplitudes can be illustrated and consequently the
target angle can be calculated. Figure 4.10 illustrates an example using three radar beams for
the target angle determination. This is possible, because each antenna coverage area is shared
in two possible angular sectors. For instance if an object can be observed by antennas 1 and
2, the measured angle should fall within their field of vision and should assume an average
value according to the amplitude of the reflected signals. Then the intersection point of the
amplitudes T1 and T2 with their respective beams determines the target angle. Figure 4.10
depicts the angle calculation of a hypothetical object.

(a) Example illustrating a radar sensor unit
with three emission beams and a hypothetical
target being acquired between the first and
second radar beam.

(b) Example illustrating the target angle de-
termination by means of an antenna diagram.

Figure 4.10: Hypothetical intern angle calculation of an object measured in the driving environment
by a radar sensor unit.

Radar Peculiarities and Typical Faults

Radar units applied for validating the proposed concept discussed in section 3 show some
peculiarities and induce some typical faults that will be briefly covered on this section.

The detection of targets in the driving environment is directly dependent on the signal to noise
ratio of the correspondent signal received. Receiving power PR depends essentially on the
distance d between radar unit and object and on the radar cross section (RCS) ζ of this target
[Barton and Leonov, 1998]. It can be represented in a simplified form as follows:

PR =
ζ

d4
(4.6)
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The RCS value depends directly on target’s geometry and surface structure and additionally
on the angle of incidence and reflexion of the radar beam. Table 4.2 shows the typical RCS
values obtained from the most relevant target in the driving environment for ADAS [Barton
and Leonov, 1998].

Target Objects RCS
Pedestrian ≈ 0 dB m2

Motorcycle ≈ 10 dB m2

Cars ≈ 20 - 30 dB m2

Trucks ≈ 30 - 40 dB m2

Table 4.2: Typical RCS values obtained from the most relevant target in the driving environment for
ADAS [Barton and Leonov, 1998].

Although the weather influence on radar technology is not so strong if comparing with lidar
systems, strong rain and snow along with the distance between radar unit and target may
attenuate the receiving signal [Barton and Leonov, 1998].

Typical sensor faults for radar systems consist essentially of the loss from valid target objects
and of the generation of inexistent ones (ghost targets). These kind of faults are associated to
the measurement principles and their causes can be categorized in the three main topics as
follows [Barton and Leonov, 1998]:

1. target loss or generation of ghost targets due to signal interference (multipath fading).

2. target loss and inexistent target generation because of the angle determination method
with the multiple beam approach.

3. inexistent target generation due to the multiple ramp approach with the FMCW method.

By means of the interference generated by the multiple paths that a radar signal may travel in
the driving environment (topic 1), valid object targets may be lost or even inexistent targets
may be generated. A constructive signal interference in the radar unit antenna may generate
inexistent targets while a destructive interference may extinguish valid measurements from the
driving environment. Figure schematically illustrates the generation of inexistent targets due to
multipath fading. It illustrates a hypothetical constructive interference when radar antenna
receives a direct signal reflection from the target vehicle and simultaneously from the guard rail.

The simultaneous loss of valid targets along with the generation of inexistent measurements
due to the poor angle resolution of static radar units (topic 2) is one of the most crucial
weakness of this kind of radar systems. Typically this type of fault occurs when two objects are
travelling in the driving environment side by side with similar velocities. By determining the
angle position of these two target objects with the multiple beam approach (figure 4.11) their
amplitude will interfere mutually, so that their signal will be extinguished and an inexistent
target will be generated between them. A detailed description of this effect is covered in Sauer
[2001].
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(a) Scheme illustrating the generation
of inexistent targets due to multipath
fading. It shows a hypothetical con-
structive interference when radar an-
tenna receives a direct signal reflection
from the target vehicle and simultane-
ously from the guard rail.

(b) Scheme illustrating the simultane-
ous generation of inexistent targets and
the loss of valid ones due to poor angle
resolution of static radar units. It shows
two vehicles travelling side by side while
a ghost target between them is gener-
ated and their correspondent targets are
extinguished.

Figure 4.11: Typical radar fault for static units (no scanner properties).

This discussed information about the peculiarities and typical sensor faults deals as a source of
information for validating sensor measurements and posterior tracks and sensor failures. As
mentioned before from the point of view of several ADAS than detection of these faults is rather
important then their identification. Therefore an exact model describing these undesired effects
can be substitute by models covering plausibility criteria for detecting these faults (see section
5.1). Furthermore an exact model of these undesired effects is sometimes not practicable due
to most of the necessary information to extract the correspondent features not being available.

4.2.2 Lidar

The acronym lidar stands for LIght Detection And Ranging. It has been recently employed in
the automotive field for determining the position of target objects in the driving environment.
The applied technology consists essentially of a laser device with emission wavelength typically
at 900 nm. Its main advantage compared radar systems consists of a higher measurement
resolution due to shorter wavelength properties. On the one hand shorter wavelengths in the
radio spectrum make possible a more precise detection of small objects, but on the other hand
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the necessary emission power for detecting very small objects is hard to be implemented to
match automotive requirements. Therefore the emission wavelength at 900 nm offers a suitable
tradeoff between power emission (eye safety) and the automotive requirements by detecting
objects like pedestrian and vehicles in the drive environment.

The detection of objects by means of lidar systems is performed by determining the time of
flight (TOF) from a transmitted infrared pulse between sensor unit and target object. As soon
as a transmitted lidar beam hits a target object, this pulse is reflected in different directions.
As only a small part of the transmitted signal is received again by the sensor unit, the object
detection depends strongly on the signal to noise ratio. Thus the distance d between lidar
sensor unit and target object can be achieved analogue to the pulse radar approach showed in
figure 4.7 and characterized as follows:

d = τ
c

2
(4.7)

where d represents the radial distance between sensor and target while τ describes the measured
TOF and c represents the speed of light. The angle position of target objects may be obtained
by applying lidar systems with multiple beams (see figure 4.2) or by a scanning configuration.

Lidar Peculiarities and Typical Faults

A relevant characteristic of the lidar sensors applied to this work consists of the form of
its emission beam. Their beam geometry is used as a source for investigation for specific
sensor faults (e.g. ground clutters) discussed in details in section 5.1.1. Figure 4.12 shows a
snapshot performed with a infrared camera of the long range lidar sensor assembled in the
vehicle prototype. It illustrates an actual lidar emission pulse with an aperture angle of 14.2
degrees and 16 channel beams. By means of this practical investigation the assumption of
approximating a lidar emission pulse as elliptical cone could be confirmed. This is one of the
prerequisite assumptions for build the ground clutter model discussed in detail in section 5.1.1.

Figure 4.12: A snapshot performed with a infrared camera of the long range lidar sensor assembled in
the vehicle prototype. It illustrates an actual lidar emission pulse with an aperture angle
of 14.2 degrees and 16 channel beams.

Another matter of special interest is the unfavorable weather performance of lidar sensors. The
applied sensors operate in the near infrared region with a wavelength of 900 nm, which is
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sensitive to atmospheric particles due to precipitations (e.g. rain and snow) and fog. This
particles may attenuate light and can be interpreted by lidar sensor units as valid target objects.
An extensive investigation of unfavorable weather influence on lidar sensor is described by
Senega [2006]. He investigated the behavior of lidar sensor under several rain, snow, fog and
dirt conditions in the real environment. Figure 4.13 illustrates a space distribution of irrelevant
targets from ADAS point of view by strong snow precipitation.

Figure 4.13: Space distribution of irrelevant targets from ADAS point of view by strong snow precipi-
tation [Senega, 2006].

As expected figure 4.13 shows that the obtained measurements are highly concentrated in
front of the sensor. Especially for this strong snow precipitation the main concentration of
measurements is found around 5 meters in the longitudinal axis direct in front of the vehicle.
Senega [2006] confirmed similar target distributions under strong rain and fog conditions. Thus
these effects may be used as evidences for the evaluation of sensor measurements and tracks. A
further matter of interest related to unfavorable weather conditions is the occurrence of a sort
of spray cloud generated by preceding vehicles on wet road surfaces. A schematic illustration
of this effect is illustrated in figure 4.14.

Analogue to radar faults the discussed information about the peculiarities and typical lidar
sensor faults represent a source of information for validating sensor measurements and posterior
tracks and sensor failures. Also the detection of lidar sensor fault play a more important role
for most ADAS the their identification. That is why models covering plausibility criteria for
detecting theses faults will be implemented as well (see section 5.1).
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Figure 4.14: Scheme illustrating the generation of inexistent targets due to the occurrence of a spray
cloud generated by preceding vehicles by wet driving surface.

4.3 Sensor Failures

This section covers possible specific failures related to the sensors applied for the validation of
this work. As mentioned previously sensor failures correspond to a permanent interruption of a
system’s ability to perform a required function under specified operating conditions. Typical
failures that may influence the performance of distance based sensor like radar and lidar are
sensor blindness and misalignment.

Sensor complete or partial blindness is categorized by the absence of expected target object
measurements in the driving environment. While complete blindness might be easily and
already detected by the sensor unit, partial blindness may represent a critical failure state for
ADAS. Partial sensor blindness is categorized by the absence of sensor measurements only in
determined sections of the correspondent sensor coverage area. Figure 4.15(a) shows a scheme
representing sensor partial blindness in the driving environment.

Sensor misalignment represents the situation generated by alteration in the assembly position
of a sensor relative to its pitch and yaw angles. Due to pitch angle misalignment being more
straightforward to be recognized, sensor yaw angle misalignment will be investigated in detail
in order to validate the proposed concept. Figure 4.15(b) illustrates a schematic representation
of a sensor yaw angle misalignment.
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(a) Scheme illustrating partial blindness
failure. It shows a typical traffic situa-
tion in which sensor measurement of a
valid object are missing.

(b) Scheme illustrating sensor yaw mis-
alignment. It shows a typical driving
situation in which the vehicle’s position
is misinterpreted due to misadjustment
of sensor yaw angle assembly position.

Figure 4.15: Typical radar failures for static units (no scanner properties).

As mentioned previously not only the detection, but also the identification of sensor failures are
prerequisites for the implementation of safety relevant and to some extent autonomous ADAS.
That is why explicit models describing these kind of failures are built in order to extract an
evaluate symptoms that may lead back to these anomalies. The extraction of symptoms and
the specific detection and identification of sensor misalignment and blindness will be discussed
in detail in section 5.3.
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5
Experiments and Results

The aim of this chapter is to give an overview on the experiments performed for the proof of
concept explored in chapter 3. For this purpose a test vehicle equipped with several radar, lidar
and video based sensor units were adopted. A brief survey of these sensor technologies along
with their peculiarities were covered in chapter 4.

In the following sections some examples for exploring the potentialities of this proposed approach
for evaluating driving environment information will be discussed. As the application field of
this concept can be applied to several scenarios other than driver assistance systems and this is
beyond the scope of this thesis, only some possible examples will be explored here. In doing so
important aspects for evaluation the acquired information regarding quality and integrity as
well as sensor hardware regarding their reliability will be discussed.

5.1 Sensor Fault Evaluation

Considering the definition assumed in section 2.2.1 that:

“a fault is an impermissible deviation of at least one characteristic property (feature) of the
system from the acceptable, usual standard condition” ,

the premises for evaluating sensor faults can be determined. Sensor faults are anomalies
direct related to sensor measurement principles and can be influenced by several constraints
like weather or measuring constellations, which can not be considered as a permanent sensor
error. Due to these kind of faults may occur promptly their detection have to be performed
dynamically. They are associated to the dynamic detection and classification of faults in the
measurement layer (section 3.2.1).

According to some types of typical radar and lidar faults covered in section 4.2 the first step
for performing their evaluation is the analysis of cause-consequence effects. Essentially sensor
faults are characterized by the generation of “ghost” measurements (targets). The occurrence
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of “ghost” targets can lead several ADAS to erroneous counteractions and thus downgrading
drivers safety instead of enhancing it. For instance the detection of an inexistent object in
front of the own vehicle could hypothetically activate the emergency brake function causing
accident involving other vehicles. That is why the detection of sensor faults is, in most of the
cases, rather important than the determination of their cause (fault identification). However
the identification of specific faults is under some circumstances necessary due to several ADAS
deal differently with it. Figure 5.1 shows a cause-consequence scheme for the evaluation of
“ghost” targets.

Figure 5.1: Scheme for the evaluation of “ghost” targets.

Depending on the availability of the extracted symptoms and on the relevancy of the evaluated
faults the cause for “ghost” targets is shared in specific and unspecific sensor faults. Figure
5.1 illustrates from its bottom to top an example of causes (sensor faults) to the consequence
(“ghost” target).

An example of specific sensor faults is characterized by ground clutters due to their relevancy for
specific ADAS as well as the possibility to extract symptoms that supply evidences to explicitly
classify it. Ground clutters are measurements generated essentially by the pitch and roll vehicle
motion and will be explored in details in section 5.1.1. On the other hand unspecific sensor
faults are the most probable cause of inexistent targets, but their explicit classification is either
hard to be achieved due to the lack of symptoms or their relevancy are very low comparing
with computational efforts. That is why a local analysis of acquired data is performed in order
to determine the occurrence of unspecific sensor faults. Examples for typical sensor fault which
are difficult to be determined by means of distance based sensors are due to bad weather
conditions and multipath signal fading.

Once measurements could be classified as “ghost” targets their further classification can be
performed. Measurements that are not associated to inexistent or irrelevant targets may be
assigned to tracks. This is the complementary classification of “ghost” targets. As mentioned
earlier a track is a state trajectory estimated from a set of measurements that have been
associated with the same target and works as reference for decisions made by ADAS. Figure
5.2 shows the overall scheme for the evaluation of track hypotheses. Prerequisites for asserting
measurement to a specific track is that they are not generated by sensor faults and fall within
the membership area of this track. The membership area is built by track attributes similarities,
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which will be discussed in section 5.1.3.

Figure 5.2: Scheme for the evaluation of tracks hypotheses.

Based on the exemplified evidences used to determine sensor fault and respectively the origin
of a acquired measurement (“ghost” targets or tracks) the architecture for the probabilistic
network is accomplished (figure 5.3).

Figure 5.3: Probabilistic network architecture for evaluating sensor faults and the origin of acquired
measurements.

Figure 5.3 describe the hierarchy for classifying sensor measurements according to their integrity
and reliability. As described in section 3.3 every single measurement is tested against the
hypotheses represented in figure 5.3 by nodes. At the top of this probabilistic tree the final
hypotheses states, which a measurement may assume are described as follows:

• T1-T2: corresponds to the maximum number of existent track hypotheses, which one
measurement can be asserted to. Depending on the system characteristics like sensor
type and configuration the number of hypotheses may be increased. For the hardware
configuration used in this work (chapter 4) however two hypotheses offered the best
tradeoff between computational efforts and classification reliability. Actually the number
of possible tracks associated to a measurement depends directly on how precise a track
hypothesis corresponds to an object in the driving environment. Tracks consisting of

127



5 Experiments and Results

several and meaningful attributes do not need to share measurements with the others.
This desired track precision depends also on the type of acquired sensor information.

• NT: represents a new track hypothesis generated specifically for this measurement. It
usually occurs when a new object in the driving environment emerges in the coverage
area of one or more sensors. This means the point in time when objects are “seen” for
the first time by the sensors.

• SF: describes the global sensor fault state without making a reference to either specific or
unspecific faults. If a determined measurement assumes this hypothesis states it should
not influence ADAS in its performance. This means that an application should not react
to it.

All these states are mutual exclusive and assume probabilistic values. This implies that a
measurement hypothesis must be shared among these states and the total states sum has to
be 1.

This measurement classification is supported by evidences obtained from specific, unspecific
faults and the attributes similarities. The specific fault node is described only by the assumption
of availability or absence. Example of symptoms for the determination of specific faults are the
occurrence of ground clutters and the information obtained directly from sensor hardware units.
Typical sensor information are related to misalignment, total and partial blindness.

Unspecific sensor fault classification is mostly performed by a local analysis of measurements and
is characterized by availability or absence assumptions as well. Example of applied symptoms are
related to shadowing effects generated by reliable object hypotheses in the driving environment
as well as by the appearance position of measurements within the sensor coverage area. The
extraction of these symptoms along with the determination of their influence in the whole
system will be explored in details in section 5.1.2.

Final aspects for classifying sensor measurements are represented by the attributes deviation
node. It consists of the membership evaluation (section 5.1.3). In this node residuals between
measurements and the mathematical modeling of object hypotheses are evaluated. Instead of
only checking the availability or absence of residuals their magnitude is considered. According
to the correspondent residuals intensity their contribution for asserting measurement hypotheses
is appointed. Residual generation is supported here by a Kalman filter and are used for filtering
tracks trajectory as well. Obviously filtering and generating residual may be also performed
by means of several filter types like α-β and particle filters. However Kalman filters are
adopted here due to their straightforward properties for fusion and filtering sensor data. A
detailed evaluation among different filters is not within the focus of this work and therefore
not performed.
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Classifying measurements according to the probabilistic network architecture illustrated in figure
5.3 enables both the determination of sensor faults as well as the further evaluation of tracks.
In the following sections examples for the assertion of specific and unspecific faults will be
covered in details.

5.1.1 Specific Sensor Faults

As previously mentioned the detection of specific sensor faults is extremely necessary for
determining the quality of data acquired in the driving environment. However their identification
usually implies high computational efforts. On the other hand if this phenomenon can be
modeled, the extractable symptoms are meaningful and their identification is relevant, its
classification can be performed. A valuable example of a specific sensor fault to be detected
and identified with aid of distance based sensor is ground clutters. In the following section an
example of a ground clutter filter and how it can support the measurement classification in
the context of this work will be covered. Main source for developing this filter is the approach
covered in Issa [2007] within the scope of a diploma thesis.

Ground Clutters

Ground clutters consist in an ADAS context of reflexion points, which are generated by the
pitch and roll motion of a vehicle due to both vehicle dynamics or by driving over a road with
an abrupt inclination change. Figure illustrates 5.4 ground clutters acquired with lidar sensors
due to an abrupt change in the road inclination.

Figure 5.4: Scheme illustrating ground clutters acquired with lidar sensors due to an abrupt change in
the road inclination.

According to the measurement principles of the applied lidar sensors discussed in section 4.2.2
evidences for the assertion of ground clutter hypotheses were investigated. By means of several
simulations and real tests a mathematical model for describing ground clutter could be built.
Main features for building this model are elliptical characteristics of the lidar beam as well as
the assumption of roads being modeled as a plane geometric surface. Based on these evidences
and on the premises of vehicle pitch and roll motion for forming ground clutters conic sections
were investigated as basis for this model implementation.
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Conic sections consist of curves obtained by the intersection of a plane with one or two napes
of a cone. Considering a plane intersecting the axis of the cone perpendicularly, the resulting
curve is a circle. Assuming no perpendicular intersection with a single nape, the resulting
curve is either an ellipse or a parabola. While a non perpendicular intersection with two napes
describes a hyperbola. Figure 5.5 illustrates the generated curves due to conic sections [Hilbert
and Cohn-Vossen, 1999].

Figure 5.5: Scheme illustrating conic section for the basic analysis of ground clutters [Hilbert and
Cohn-Vossen, 1999].

Due to lidar beams can be approximated to elliptical cones (see section 4.2.2) and according
to the allowed degrees of freedom of a vehicle, the curve under consideration for representing
ground clutter may be approximated to a parabola. This means that a parabola assumption is
the most suitable one for describing a lidar beam intersecting the ground. The first step for
proving this assumption as well as for extracting further evidences of it is a reliable simulation
of this phenomenon. Therefore a mathematical model that describes a lidar beam according to
the specification covered in section 4.2.2 and its intersection with the road surface were built
and validated.

Figure 5.6 illustrates the simulated lidar beam with a lateral and vertical aperture angle α = 14◦

and β = 2◦ while the longitudinal range amounts 150 meters. These aperture angles correspond
thus a elliptical cone with a vertical and lateral axis a ∼= 3 meters and b ∼= 18 meters respectively
by a maximum longitudinal range of 150 meters.
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Figure 5.6: Simulated lidar beam with a lateral and vertical aperture angle α = 14◦ and β = 2◦.
Longitudinal range amounts 150 meters.

An example of this resulting intersection by a pitch angle of ∆φ = 2◦ and a roll angle of
∆ξ = 0◦ is shown in figure 5.7.

Figure 5.7: Resulting intersection between simulated lidar beam and simulated road surface.

By simulating a hypothetical ground clutter first knowledge about its properties like geometry
and emerging position could be acquired. The assumption of a parabolic form could be
confirmed as well as a emerging position range between 10 and 20 meters could be extracted.
The main purpose of simulating a lidar beam and a road surface was not for obtaining all
characteristics of ground clutters, but only for figuring out their primary properties.

Based on a experimental analysis executed in a real driving environment, geometry and emerging
position of ground clutters could be confirmed. This analysis was performed using the vehicle
prototype configuration described previously in section 4.1 considering exclusively the front
far lidar sensor unit. As covered earlier this sensor unit consists of multiple lidar beams with
a longitudinal coverage range of approximately 150 meters and lateral and vertical aperture
angles of respectively 14.2 and 2 degrees. Figure 5.8 illustrates the 3-D and 2-D amplitude
power diagram of a ground clutter generated by an intentionally abrupt break in a real driving
environment without the presence of other objects like cars, trucks, motorcycles, etc. An
approximation of a parabolic form can be identified by the amplitude power reaching values of
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approximately 300×10−12 Watt. Furthermore the emerging range of this ground clutter fall
within the longitudinal range between 10 and 20 meters while the vertical range could be found
around ± 3 meters.

Figure 5.8: Amplitude power diagram of a ground clutter generated by an intentionally abrupt break
in a real driving environment without the presence of other objects like cars, trucks,
motorcycles, etc.

Based on the analysis of several experimental results the parabola dynamics dependence upon
vehicle’s pitch and roll motion could be confirmed as well. According to the changes of pitch
and roll angles, parabola’s position and aperture can be identified. For example a big pitch
angle implies small aperture values and according to the conic sections it induces parabola’s
vertex to appear near to the vehicle.

Confirming the evidences that pitch and roll vehicle’s motion influence ground clutter geometry
gives basis knowledge for building a state space model for estimating the parabola’s behavior. A
valuable approach for this would be a ground clutter estimator based on Kalman filters. However
the main goal of this specific fault detection is an approach based only on the information of
the distance based sensors themselves. Additionally computational efforts caused by Kalman
filters processing can not be justified by the frequency of occurrence and duration of ground
clutters. According to the experimental results this specific fault lasts approximately 4 duty
cycles of the used sensor unit. For these reasons an exclusive geometric fitting for the detection
and identification of ground clutter could be confirmed as the best approach.

The algorithm for performing the detection of this specific faults consist thus of a parameter
estimation task for nonlinear static processes. The process equation is then described by a
parabola as follows:
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xp = Ay2 + By+ C+ n (5.1)

where the parameters A, B and C are determined with the aid of sensor measurements describing
the position of the ground reflexions with the attributes x and y. The variable n describes the
random noise involved in the process. The scheme illustrated in figure 5.9 shows a bird view
perspective of a parabola representing a ground clutter in the driving environment along with
the parameters to be estimated.

Figure 5.9: Scheme illustrating the bird view perspective of a parabola representing a ground clutter
in the driving environment.

According to the experimental results the parameter B of the ground clutter parabola can be
neglected. This means that the parabola geometry generated by ground clutters is essentially
determined directly in front of the measuring sensor unit. Then the process equation for
performing the estimation of these parable parameters considering the sensor measurements
involved can be summarized as follows:

xp = Up+ n (5.2)

where xp represents the vector of longitudinal position measurements of ground clutters while
matrix U describes the process model with the parabola equations and p consists of the
parameter vector. The additional term n symbolizes the random noise vector associated with
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each parabola equation. Thus the vectorized terms of this process model assuming the absence
of parameter B are formalized in equation 5.3.

 xp(0)
...

xp(i− 1)

 =

 1 y2(0)
...

...
1 y2(i− 1)

 [
C

A

]
+

 n(0)
...

n(i− 1)

 (5.3)

A generic scheme for parameter estimation applied for detecting ground clutters is depicted
in figure 5.10. It illustrates the comparison of measured and calculated signals by building a
residual vector e symbolizing the discrepancy between these two signals.

Figure 5.10: A generic scheme for parameter estimation applied for detecting ground clutters.

Once the process model is built the estimation of the parabola parameters can be achieved
by minimizing the system quadratic loss function. This function is determined by rearranging,
adapting and simplifying equation 5.2 as follows:

L = eTe = [xT
p −U

T
pT ][xp −Up]

= xT
pxp −U

T
pTxp − (U

T
xp)Tp+ pTU

T
Up.

(5.4)

Thus minimizing loss function L results in:

dL

dp
= −2U

T
xp + 2U

T
Up = 0

dL

dp
= −2U

T
[xp −Up] = 0

(5.5)

and the estimating equation is obtained from equation 5.5 as follows:

p̂ = [U
T
U]−1U

T
xp, for det[U

T
U] 6= 0. (5.6)

134



C
ha

pt
er

5

5.1 Sensor Fault Evaluation

According to the estimating equation 5.6 sensor measurements membership to the ground
clutter hypothesis can be checked. Decision criterion consists of comparing the longitudinal and
lateral deviation between obtained measurements and the predicted parabola. A relevant aspect
for this decision is the preselection of sensor measurements for assuring the right hypothesis
assertion as well as saving computational efforts. The following measurement properties are
examples of preselection criteria applied to ground clutters:

• Emerging Position: is related to the selection of measurements acquired in front of the
own vehicle within a delimited field with x and y varying between 10 and 40 meters and
±5 meters respectively.

• Measurements Segmentation: corresponds to the attempt of only selecting measurements
related to ground clutters. Sometimes measurements describing relevant objects like
vehicles may be associated erroneously to the searching parabola due to their parabolic
shape. One method to minimize these wrong assertions is selecting measurements, which
are within a fixed standard deviation of the parabola’s vertex and can not be associated
to valid objects.

In order to validate the algorithm for detecting and classifying ground clutters a statistical
approach under several circumstances like weather conditions and traffic density were investigate.
This validation was performed within the scope of a diploma thesis in Issa [2007] and the
results are represented by means of the so called confusion matrix [Kohavi and Provost, 2004].
Confusion matrices provide an evaluation mechanism for classification systems by quantifying
the relation between actual and predicted states. It describes numerically for a two-class
classification example following terms:

• True Positive (tp): represents the number of positive classifications in case of the actual
state being positive.

• False Negative (fn): represents the number of negative classifications in case of the
actual state being positive.

• True Negative (tn): represents the number of negative classifications in case of the actual
state being negative.

• False Positive (fp): represents the number of positive classifications in case of the actual
state being negative.

Figure 5.11 shows the evaluation of the ground clutter filter according to the confusion matrix
approaches with a distinct the number of object members. This validation was performed
for three different categories: 6, 8 and 10 lidar measurements associated to the parabola
respectively. The algorithm is executed in every duty cycle.

According to the diagram illustrated in figure 5.11 results are interpreted as follows:

• sensitivity: means the true positive rate and corresponds the percentage of right classifi-
cations of ground clutters. Sensitivity reached a maximum value of 71% of all analyzed
situations. Furthermore the algorithm shown no big difference when varying the minimum
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Figure 5.11: Evaluation of the ground clutter algorithms according to the confusion matrix approach.

amount of sensor measurement associated to the parabola. According to simulation and
experimental tests an extension of this ground clutter model by considering pitch and
roll angle measurements might increase the true positive rate.

• specificity: describes the true negative rate and means the percentage of classification
where the absence of ground clutters is correct identified. In this case valid objects
were considered, which should be theoretically classified as ground clutters due to their
emerging position or parabolic form.

• precision: describes the probability that positive identified ground clutters is actually
positive. It calculates the proportion of correct identified ground clutters against the
total positive assumptions. Here a significant improvement by associating 10 sensor
measurements results approximately 90%.

• negative predictive value: describes the probability that negative identified or non classified
ground clutters is actually negative. It calculates the proportion of potential ground
clutters (valid objects due to they emerging position or parabolic form) against the total
negative assumptions.
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5.1.2 Unspecific Sensor Faults

As mentioned previously unspecific sensor faults are related to sensor anomalies usually generated
due to measuring principles. To these kind of faults all types of anomalies that can be detected
but are not able to be identified will be associated. That is why a local analysis over the sensor
measurements is performed. According to experimental tests, most of these faults can be
associated to bad weather conditions, signal multipath fading or poor angle resolution (see
section 4.2). In the following sections two examples of local analysis will be covered. They
consist of the effects called shadowing area and measurement appearance in coverage area.

Shadowing Area

The term shadowing area corresponds to the effect generated when confirmed object hypotheses,
with high believes, are determined in the driving environment. It consists of assuming a
shadowing area behind and in front of a possible vehicle hypothesis. Once a sensor measurement
is acquired within this virtual area, this measurement may assume three hypothesis states
describing a new valid object, the object generating this shadowing area or a ghost target.
Figure 5.12 represents schematically the shadowing effect.

Based on experimental tests the premise assumed consists of treating measurements appearing
between the own vehicle and confirmed objects within this shadowing area as improbable ones
(ghost targets). According to its appearance, in the middle or on the edge of this correspondent
shadowing area, measurement confidence will decrease or increase respectively. This means if a
sensor measurement is acquired direct in the middle of a shadowing area it will be considered by
this analysis as a ghost target, otherwise its confidence will increase. In doing so cut-in situation
can be considered. Delimiters for measurement appearance position are the α and β angles.
These angles describe a sort of shadow intensity. This kind of position confidence assertion
is not determined binary, but by means of a fuzzy approach characterized by membership
functions (figure 3.8) and thus following the concept proposed in section 3.

On the other hand the premise assumed for treating measurements appearing in the shadowing
area far away from the own vehicle depends on the type of sensor unit being analyzed. According
to experimental tests radar sensors are able to acquire measurements of vehicles driving ahead
in a sort of column traffic due to their reflexive properties (section 4.2.1). Therefore the
shadowing effect has a stronger influence in validating measurements from lidar sensor units.

Beside the measurement position within the shadowing area regarding the angles α and β, the
proximity relative to the confirmed object hypothesis will be taken into account. This also
means that measurements appearing far away from the object responsible for this shadowing
area will be asserted with a low confidence level. Again this is performed according to the
concept proposed in section 3 referring to a soft decision process with membership functions.
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Figure 5.12: Schematically representation of the shadowing effect illustrating the correspondent shad-
owing areas along with probable valid and ghost targets.

Reference basis for this object hypothesis generating shadowing areas are past calculated tracks.
According to the belief associated to these tracks in the past, the shadowing areas influence in
the measurement validation will play a more or less important role. That is why this part of the
track based feature extraction approach. This approach follows the theory proposed in chapter
3 and will be calculated according to the algorithms presented in the section measurement
layer (3.2.1).

Appearance in Coverage Area

Analyzing the appearance position of measurements in their correspondent coverage area
belongs to the category of sensor based feature extraction described earlier in section 3.2.1.
By means of this approach the evidences for determining the confidence values of sensor
measurements can be extracted as well.

The premises assumed are based on the sensor units functionality covered in section 4.2 as well
as on experimental tests. For it the coverage area of the different sensor units are delimited
and the appearance position of sensor measurement are evaluated according to sensor intern
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properties. Main aspects are related to the emission power of sensor units and plausibility
criteria for the entrance of objects into sensor’s coverage area. A knowing fact based on sensor
specifications (section 4.2) is that emission power decays on the edge of sensors coverage area.
This means, objects can be acquired with a higher level of confidence if they are measured
in the center of the correspondent coverage area. With regard to the measurement position
this assumption might be reverted. Isolated measurements acquired in the center of a sensor
coverage area may assume a lower level of confidence than the one acquired on its edge. This
can be interpreted by the fact that except for very seldom circumstances objects are not able
to land abruptly in the middle of a traffic road. They should come from the edge of a sensor
coverage area and then possibly move to the center.

Due to this two assumptions being contradictory a tradeoff between them has to be established.
By means of experimental investigations following the categories and procedures could be
confirmed:

• isolated appearance in the center of a coverage area: decreases measurements confidence
due to the their probability of representing a ghost target by landing in the middle of the
driving environment.

• joint appearance in the center of a coverage area: increases measurements confidence
based on the assumption that the same object has been “seen” by other measurements.
Additionally they are located on the most favorable position regarding sensors emission
power characteristics.

• isolated appearance on the edge of a coverage area: does not influences measurement
confidence due to the lack of certainty associated to this measurement. It can either
describe an object entering in the sensor coverage area or a ghost target due to sensor
power emission

• joint appearance on the edge of a coverage area: increases measurements confidence
based on the assumption of a new object entering in the sensor coverage area and of
also being “seen” by another measurements.

A scheme illustrating a virtual coverage area for evaluating sensor measurements is shown in
figure 5.13.

Again the measurement position relative to the center or edge of a coverage area will be
determined by means of “soft” decision principles based on membership functions according to
the algorithms presented in the section measurement layer (3.2.1).

5.1.3 Attributes Similarity

Attributes similarity feature is related to the deviation between sensor measurements and
modeled objects trajectory. The main aspect is to make use of filter structure and mathematical
model already applied for target tracking in the driving environment.
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Figure 5.13: A scheme illustrating a virtual coverage area for evaluating sensor measurements.

The same residual for correcting the trajectory of object hypothesis is applied for extracting
symptoms and thus allowing the evaluation of sensor measurements. The implemented model
example consists of 6-D kinematic state model illustrated in figure 5.14.

Figure 5.14: Object model depicting own vehicle, sensor, and target (object) coordinate systems.

In figure 5.14 the upmost coordinate system (xt, yt) represents the measured target, while
the below ones depict the sensor (xs, ys) and vehicle (xv,yv) coordinate systems respectively.
The aim is to obtain target attributes in their own coordinate system and represent them over
the sensor and vehicle coordinate system respectively. The parameters illustrated in figure 5.14
are outlined in table 5.1. These attributes represent the 6-D state model for tracking multiple
targets in the driving environment with the aid of distance based sensors like radar and lidar.
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According to the sensor functionality described in section 4.2 the measurements for supporting
the observability of this presented model are depicted in table 5.2.

x target longitudinal position [m]

vx target longitudinal velocity [m/s]

ax target longitudinal acceleration [m/s2]

y target lateral position [m]

vy target lateral velocity [m/s]

ay target lateral acceleration [m/s2]

Table 5.1: Parameters of 6-D kinematic state model used for tracking targets as well as extracting
symptoms for the detection of sensor faults.

r radial position [m]

φ position angle [rad]

ṙ relative radial velocity [m/s]

Table 5.2: Measurement obtained from distance based sensors in polar coordinates. Lidar sensor are
just able to measure position attributes (e.g. r and φ) while radar units support additionally
the measuring of the velocity component.

By means of this description of the environment the mathematical modeling can be accomplished
by the linear differential equation outlined in this case in a continuous time representation:
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and the nonlinear measurements are described by:
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The vector x represents the state variables (table 5.1), which are, after discretized, updated in
each operation cycle (10 - 50 Hz). The system matrix A represents the system by describing
the relationship between the state variables and their variation in time in a continuous form.
Via system matrix it is assumed that the jerk (i.e. the rate of change of the acceleration, j)
of the analyzed targets is near to zero and therefore can be neglected. That is why these
parameters are represented by ȧx = 0 and ȧy = 0.

The input matrix B acts as an interface between the state variables and the input parameters:
the vehicle’s own velocity v and yaw rate ψ̇. By means of equation 5.8 the target measurements
(table 5.2) are related with the state variables, where C represents the system measurement
matrix.

Once the plant is build in a process model the residual between associated measurements
and tracks determined by this model can be calculated. As mentioned before this residual
is used for both filtering track trajectory and extracting symptoms for sensor faults. Due to
measurements and model can be well represented by Gaussian properties the Kalman filter is
applied for it. The correspondent association of measurement hypotheses and consequently
filtering will be performed according to the approach proposed and discussed in section 3.3.
Figure 5.15 shows a simplified scheme illustrating the extraction of fault symptoms by means
of residual generation (i.e. attributes similarity).

Figure 5.15: Simplified scheme illustrating the extraction of fault symptoms by means of residual
generation (i.e. attributes similarity).

Thus the figurative representation of the attribute deviation feature can be performed by a
hyperellipsoid, whose dimensions are determined by track attributes calculated with aid of the
process model and the Kalman filter approach. These dimensions vary according to the number
of attributes associated to a sensor measurement. In the case study covered here (section 4)
radar and lidar sensor units supply two till three attributes illustrated in table 5.2. Then the
evaluation is performed by sharing this ellipse or ellipsoid in membership areas that vary from
the center to their edge representing respectively maximum to minimum confidence according
to this feature. Again the measurement position relative to the center or edge of a coverage
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area will be determined by means of “soft” decision principles based on membership functions
according to the algorithms presented in the section measurement layer (3.2.1). Figure 5.16
shows a exemplified scheme with two attributes for determining the attribute deviation feature.
According to the deviation intensity between measurements and tracks attributes the complete
level of confidence according to the this feature can be determined. Basis for this evaluation is
the reliability of the correspondent track validated in the past cycles.

Figure 5.16: A exemplified scheme with two attributes for determining the attribute similarity feature

5.1.4 Measurement Evaluation

The final evaluation of measurements consists of determining the influences of the extracted
features covered before like ground clutters, local analysis and the attributes deviation feature.
This final evaluation is performed for every single measurement. Then it will be categorized
as one of mutual hypotheses states described previously and illustrated in figure 5.3, namely
existent track, a new track or a sensor fault. Main premise for evaluating sensor measurements
is shared in two assumptions. First they cannot be described by features associated to sensor
faults and second they are associated to valid objects in form of existent tracks with high
degree of belief or plausible new tracks.

Thus the main challenge after extracting measurement features is to determine the amount of
influence that this correspondent feature have in the assertion of the four hypothesis states. As
described in section 3 the proposed approach foresees the usage of prior knowledge or learning
strategies. If prior knowledge is available it is the best choice. Learning or training strategies are
usually involved with high time efforts. Furthermore the chosen training field may be incomplete
and thus inducing to partial correct or even wrong results. For the sake of complexity and
considering the difficulty of reaching the complete training field for learning features relevancy,
the influence for the described features is exclusively based on prior knowledge.

In order to facilitate measurement hypotheses assertion the influence of these different features
are built and represented in a dependence model matrix discussed already in the chapter 3
where the proposed approach was introduced. An example of a dependence model for the
feature shadowing area is shown in table 5.3.
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hypotheses ↘ evidences INNEAR INFAR OUT
Existent Track1 0.8 0.2 0.0
Existent Track2 0.1 0.3 0.6
New Track 0.1 0.3 0.6
Sensor Fault 0.1 0.7 0.2

Table 5.3: An example of a dependence model for shadowing area.

Table 5.3 reflects the influence of the evidences states of the feature shadowing area in the
measurements hypothesis states assertion. Then the evidences states are interpreted as follows:

• INNEAR: represents the state of a measurement if it is positioned inside the shadowing
area of the correspondent track 1 and also in the immediately vicinity of this track.

• INFAR: represents the state of a measurement if it is positioned inside the shadowing
area of the correspondent track 1 but far away from it.

• OUT: represents the state of a measurement if it is positioned completely outside of the
shadowing area of the correspondent track 1.

This means that if a measurement position relative to a certain track is determined in the
INNEAR field this measurement will related to this track by an amount of 80% and 10% to
the other hypothesis states. By evaluating the shadowing area of track 2 the rows in the
dependence model will be alternated. The row of existent track 1 will be described by existent
track 2 and vice versa. The preselection of tracks 1 and 2 is performed according to the two
smallest aperture angles relative to the investigated measurement.

The influence calculation will be performed for every extracted feature for the assertion of these
measurement hypotheses according to the respective evidence states. Additionally extra features
can be easily and independently included in the whole system by determining their influence
on the measurements assumptions. Once the whole influence is computed the correspondent
measurement is evaluated according to the Bayesian approach covered in section 3.

For the sake of complexity a systematic validation by means of confusion matrix or Receiver
Operating Characteristic curve (ROC) was not performed. This validation will be performed
along with the track evaluation methods in the next section.

5.2 Track Evaluation

Track evaluation consists of a probabilistic network which comprises dynamic and static nodes.
Dynamic nodes are represented by measurements that can be associated to this track according
to the previous measurement evaluation. The static part are own track features which does
not change their connection with the correspondent tracks. Referring the static part the node
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connections described by the measurements associated to tracks according the hypotheses
asserted in the measurement layer will vary from one duty cycle to another. Figure 5.17
illustrate the probabilistic network for evaluating tracks.

Figure 5.17: An example of a probabilistic network for determining the track evaluation

In figure 5.17 the dashed lines illustrate the dynamic connections between measurement and
tracks symbolizing that this measurements just contribute for the evaluation in the current
duty cycle. The connection with a solid line describes an example of a static property that will
be taken into account during the whole period in which the related track exists. Measurements
are associated to tracks according to their probability to belong to the track calculated on the
measurement layer and discussed in the previous section.

In order to determine the amount of influence of a specific measurement in a determined track
a influence model between them is built as well. Again the use of prior knowledge was privileged.
Table 5.4 shows an example of a dependence model between measurements and a track.

hypotheses ↘ evidences Track 1 Track 2 New Track Sensor Fault
Track 0.8 0.067 0.067 0.067

No Track 0.067 0.067 0.067 0.8

Table 5.4: An example of a dependence model between measurement and track.

This table means if a measurement was previously classified as track 1 it will contribute with
80% for the hypothesis state track and with 2.5% for the remaining state no track. As
illustrated in table 5.4 this measurement could also be partially associated to a neighbour, or
to a complete new track of even to a sensor fault, what will reduce the contribution of this
specific measurement for the current track confidence or belief. For every single measurement
associated to a specific track in the sensor measurement evaluation its contribution will be
accomplished.

Another important fact contributing for the determination of track’s belief are the own track
features that can be extracted from its own characteristics. One valuable example is the
sensor redundancy feature. It consists of analyzing sensor overlapping areas and validating
these regions. Figure 5.18 depicts an example of this overlapping field by means of two sensor
coverage areas.
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Figure 5.18: Scheme illustrating the overlapping area of two sensor’s coverage areas

The premise assumed consists of investigating the origin of the measurements associated to
tracks within different coverage areas. In the example illustrated in figure 5.18 tracks generated
inside the delimited area are expected to be updated by both of the two sensors. Once only
one sensor can confirm this evaluated track the cause for it has to be investigated in more
details and can be shared as follows:

• open view: represents the situation in which there is no obstacle between sensor and the
evaluated track. The effect of a track in the overlapping area not receiving an update of
the correspondent sensor in a open view situation can lead back to a sensor failure like
blindness, misalignment or to a wrong sensor update time.

• blocked view: represents the situation in which there is a obstacle between sensor and
the evaluated track and therefore this missing measurement in the common overlapping
area is justified.

• sensor time update: represents the situation in which a sensor can not deliver an update
of the object in the common overlapping area due to a drift in a sensor duty cycle. The
system is expecting updates for this sensor under a determined rate, but because of
sensor unit intern exceptions it could not update the analyzed track.

For track evaluation just the absence of sensor redundancy under open view circumstances will
influence its confidence or belief. This feature will be shared in three main evidence states:
high, low and no redundancy. The evidence states high and low are direct related to the
number of measurements from the expected sensors associated to the evaluated track and are
determined based on fuzzy membership functions following the proposed approach (see section
3). Another important consideration for this open view situation consists of its relevancy for
the identification of sensor failures like blindness or misalignment explored in the following
sections.

Once the occurrence of this three redundancy states can be determined, the influence of
this feature can be taken into account for evaluating the correspondent track. Again this
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influence model is accomplished by means of prior knowledge through observations of real
driving situations. Table 5.5 gives an example of the dependence model between track’s
confidence or belief and the sensor redundancy feature. The terms high, low and no redundancy
are related to the number of associated measurements acquired by the expected sensors within
an overlapping area.

hypotheses ↘ evidences High
Redundancy

Low
Redundancy

No
Redundancy

Track 0.7 0.3 0.0

No Track 0.0 0.3 0.7

Table 5.5: An example of a dependence model between sensor redundancy feature and track.

Thus calculating the influence of all available features in the evaluated tracks enables the
determination of its confidence or belief and so supplying several ADAS with the relevancy of
the identified objects in the driving environment. The belief of track will be performed with
aid of the probabilistic network approach discussed in section 3.2.1. In order to finalize the
track belief calculations the track history information is taken into account as well. This will
be performed according to the approach proposed in section 3.2.1 by means of a filter strategy.
The usage of a low-pass filter enables a fair track evaluation by considering the influence of
the extracted features more strongly if this track is very “young”. As soon as this determined
track reaches its maturity, its history will play a more strong role than the extracted features
themselves.

In order to validate track evaluation several experimental tests were performed in the real
driving environment under different traffic conditions. Figure 5.19 illustrates examples of typical
scenes in the driving environment with different traffic densities. It shows different objects
which are acquired by means of reflexions points obtained from sensor measurement units.
These measurements will generate new or be associated to existent object hypotheses in form of
tracks. To each of these tracks a belief value will be associated according to process described
previously.
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Figure 5.19: Examples of typical scenes in the driving environment with different traffic densities where
object will be measured by means of different sensor units, tracked and validated by the
MFTT approach.

An illustrative example of the belief distribution of two tracks is shown in figure 5.20.

(a) Belief distribution of a track representing a
ground clutter in the driving environment.

(b) Belief distribution of a track representing a
vehicle in the driving environment.

Figure 5.20: An illustrative example of the belief distribution of two tracks in the driving environment
represent for tracks describing a ground clutter and a vehicle.

The intention of these two examples of track belief distribution is not to substitute the complete
concept validation, but indeed to give an idea on how belief distributions for valid and irrelevant
tracks elapse. Figure 5.20(a) represents the belief distribution of a track originated by a ground
clutter. During the whole track lifetime the belief distribution do not cross the 50% barrier
for this irrelevant object. This can deal as reference for different ADAS to not react to this
kind of false alarms. Although a 50% certainty level can be considered by most applications
as insufficient to be taken into account, this decision may vary according to the requirements
applied to each specific ADAS.
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Figure 5.20(b) depicts an example of track belief distribution originated by a vehicle in the
driving environment. It shows the initial belief of this vehicle track starting from 30% and
reaching rapidly the mark of 90% until almost 100% due to the positive features associated to
it. The oscillations on the distribution curve are related to measurement misses because of
obstruction of the sensor field of view by valid objects.

In order to perform the concept validation as a whole 20 test runs with 2 minutes under
different conditions where the most relevant valid and irrelevant objects were labelled and
compared with the results obtained with the proposed approach. The results are represented by
means of a Receiver Operating Characteristic (ROC) curve by a track life time of 10 seconds
in figure 5.21. The ROC curve consists of a two dimensional measure for the performance of
classification algorithms. It depicts the relation between benefits (true positives) and costs
(false positives). Essentially a ROC curve is built by calculating several confusion matrices for
distinguished threshold levels. A detailed overview on ROC curves is given in Fawcett [2005].

Figure 5.21: ROC curve for track evaluation by a lifetime of 10 seconds.

Due to tracks in the driving environment have different lifetimes it is difficult to achieve a fair
evaluation method to verify the results of the proposed approach. In order to give an idea
of how effective this approach works a ROC curve for a track life time with ten seconds was
depicted in figure 5.21. It represents the performance of good classification tool by comparing
the obtained results with the labelled ones and calculating true and false positive rates.

A more strength method for verifying the results of this approach is proposed by performing a
multidimensional ROC analysis. It consists of building multiple ROC curves for different track
lifetime and so achieving a fairly evaluation mechanism for this approach. For it figure 5.22
illustrates a multidimensional ROC curve for track evaluation varying 0 till 100 seconds lifetime.
As expected it show that time play a very important role in this classification task. While
ground clutter and other ghost targets can be precisely classified in a short period of time
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most of valid object like car, trucks and cyclist require more time for a precise identification.
The time for a stable classification depends of course on the features available and may vary
strongly from one object to another. Furthermore the good classification performance could be
confirmed by comparing the obtained results with the labelled ones and calculating true and
false positive rates as well.

Figure 5.22: Multidimensional ROC curve for track evaluation by a varying lifetime between 0 and 100
seconds.

5.3 Sensor Failure Evaluation

Considering the definition assumed in section 2.2.1 that:

“a failure is a permanent interruption of a system’s ability to perform a required function under
specified operating conditions” ,

the premises for evaluating sensor failures can be achieved. Sensor failures consist of anomalies
that usually require the evaluation of the driving environment as a whole and depends strongly
on a constant observation of the extracted features. Due to this kind of failures assume such
a quasi-static behavior the cyclic results obtained from the evaluation of measurements and
tracks are used here as inputs.

Similar to the detection of sensor faults the first step for performing the detection and
identification of typical radar and lidar failures covered in section 4.2 is the analysis of cause-
consequence effects. The essence of sensor failures are led back to anomalies that can be also
noticed in the driving environment in form of ghost targets (artefacts). However artefacts
generated by sensor failures are usually permanent and therefore a more deeply data analysis is
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required and also possible than by sensor faults. Besides the appearance of ghost targets the
absence of expected measurements is an essential evidence characterizing sensor failures. Figure
5.23 shows a scheme for evaluating sensor failures in form of a case consequence analysis.

Figure 5.23: Scheme for evaluating sensor failures in form of a case consequence analysis.

Another relevant aspect is that both detection and identification of these anomalies are
necessary. Detecting sensor failures may avoid ADAS to perform erroneous decisions in the
driving environment by not reacting to these artefacts. While identifying these anomalies
may deliver means for system counteractions. For instance the detection and identification
of a misalignment failures may be used for correcting measurements position. However the
unambiguous identification of failures depends directly on the availability and significance of
the extracted symptoms. Then failures that can be detected and identified will be characterized
as specific ones while unknown anomalies belong to the category of unspecific sensor failures.
This basic type of failures is the cause for a permanent existence of ghost targets and absence
of expected measurements in the driving environment (figure 5.23). Because of sensor failures
are not mutually exclusive, multiple failures can take place, specific probabilistic networks are
designed for each failure (section 3.2.2).

Due to the relevancy of detecting and identifying sensor failures only specific ones will be
discussed in details in this work. Examples of typical specific radar and lidar failures are
blindness and sensor misalignment. A detailed overview about these two specific anomalies will
be given in the remain of this chapter.
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5.3.1 Blindness Failure

As previously discussed in section 4.2 complete or partial sensor blindness consists of the
absence of expected measurements and consequently object hypotheses in form of tracks in
the driving environment. By evaluating the causes for this effect some relevant evidences can
be extracted and thereby a probabilistic model for performing this failure check can be built.
The main approach consists of investigating tracks density distribution over specific sensors
coverage area in the driving environment. For it the coverage area of the applied sensors will
be shared in different blindness sectors. In doing so not only a complete, but also a partial
blindness identification is possible. Figure 5.24 gives an overview about the scheme illustrating
this blindness sectors feature.

Figure 5.24: Scheme illustrating the blindness sector feature. The coverage area from the applied
sensors is shared in multiple sectors for investigating tracks density.

Tracks density in the specific coverage area sectors consists of analyzing the overall number of
tracks updated or eliminated within this hypothetical sectors. The assumptions for evaluating
these tracks are shared as follows:

• track update: consists of investigating the generation and update of tracks with sensor
measurements from specific blindness sectors. The miss rate per sector is calculated over
a determined period of time and tested against a threshold value. In case of threshold
transgression this evidence will be taken into account according to proposed approach in
section 3.2.2.

• track elimination: consists of investigating the elimination of tracks within the specified
blindness sectors. Only reliable tracks with high belief values are taken into account.
The miss rate per sector is also calculated over a determined period of time and tested
against a correspondent threshold value. In case of threshold transgression this evidence
will be also treated according to proposed approach in section 3.2.2.

An important aspect to be considered is that according to specific sensor properties the
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generation, update and elimination of tracks can strongly vary among the blindness sectors.
That is why correspondent cost or penalty factors for the different sector are applied depending
on sensor characteristics. For instance sectors describing the inner part of coverage areas will
be subject to stronger penalties for miss rates than the ones in the edge. This is because of
decaying power emissions in the border of sensor coverage areas as well as due to valid objects
being almost outside of the field of view from the correspondent sensor.

A further possible evidence contributing for the detection and identification of sensor partial
and total blindness is recurring to the sensor redundancy effect discussed by the topic track
evaluation (section 5.2). For it the overlapping field between multiple sensor coverage areas
will be investigated. The assumption mentioned earlier is based on the fact that a track within
this determined overlapping field should be updated by the correspondent sensor measurements.
In case of missing measurements an extra verification is performed to determine the cause of it.
If the described open view situation (see section 5.2) occurs and the measurement are still not
available a measurement miss is assigned to the correspondent blindness sectors. Again the
miss rate per sector by tracks with high believes is calculated over a determined period of time
and tested against a correspondent threshold. If threshold values are exceeded the influence of
this feature for blindness identification is taken into account. The amount of influence is first
obtained by fuzzy membership functions (figure 3.16) and then assembled in a dependence
model. An example of a dependence model for the sensor redundancy feature is illustrated as
follows:

hypotheses ↘ evidences Redundancy No Redundancy
Sensor Blindness 0.4 0.6

No Sensor Blindness 0.6 0.4

Table 5.6: An example of a dependence model between sensor redundancy feature and sensor blindness
hypothesis states.

Similar to dependence models covered previously it will be also determined by prior knowledge
methods. The specific blindness from each sector will not be distinguished for the sensor
failure determination. However this information is available for detailed diagnosis procedures.
Furthermore the uncertainty about this feature is expressed by the influence values in table 5.6.
They amount 60% and 40% due to the uncertainty of this missing redundacy being originated
by a possible sensor misaglignment failure.

A valuable feature to be considered is the sensor status information itself. In most of the
current sensor units intern fault detection and diagnosis mechanisms are still available. Instead
of investigating features occurrence over a period of time, sensor status information will
be automatically taken into account as soon as available. For this feature an example of
dependence model may be illustrated as in table 5.7.

The dependence values in table 5.7 express the relevancy of this feature for the identification
of sensor blindness. The prompt indication of failure by the sensor status information will
influence the failure hypothesis state to 100%.
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hypotheses ↘ evidences Blindness Status No Blindness
Sensor Blindness 0.9 0.1

No Sensor Blindness 0.1 0.9

Table 5.7: An example of a dependence model between sensor status information and sensor blindness
hypothesis states.

Once the dependence of all available feature is calculated, the final belief for this failure
hypothesis states can be accomplished. This is performed according to the Bayesian principles
discussed along with the proposed approach section in section 3.2.2. Figure 5.25 shows the
proposed probabilistic network for classifying sensor blindness.

Figure 5.25: Scheme illustrating the proposed probability network for classifying sensor blindness from
one specific sensor. The abbreviations SB and SB represent the states sensor blindness
and no sensor blindness respectively.

By means of experimental tests the proposed concept along with the extracted features could be
verified. For it several test runs were performed in the driving environment and sensor blindness
was simulated by masking incoming sensor measurements from different blindness sectors in
the sensor coverage area. Figure 5.26 shows a diagram illustrating the belief distribution from
a example of blindness failure for a test run.
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Figure 5.26: Diagram illustrating the belief distribution from a specific sensor failure, blindness, for a
test run.

Figure 5.27: Diagram illustrating the belief distribution from a specific sensor failure, blindness, for a
test run.

According to figure 5.26 an ascent of the belief value could be confirmed by masking incoming
sensor measurements from three distinguished blindness sectors. The presented snapshot from
a time slice of this test run shows a maximum belief value between 60% and 70%. So an
explicit identification of blindness could be achieved. In order to improve the certainty of this
classification a tradeoff has to be determined between the completeness and complexity of
dependence models and probabilistic network structure.

A further belief distribution of another test run is depicted in figure 5.27. Here an explicit
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identification of sensor blindness could be achieved. A belief value between 60% and 70% could
be confirmed as well. The main challenge by classifying sensor blindness as well as other failures
consists on reducing the influence of false alarms that corresponds to blindness symptoms even
in the absence of failures.

5.3.2 Misalignment Failure

Sensor misalignment consists of detuning effects in the alignment position of a sensor relative
to its assembly pitch and yaw angles. Although the proposed concept can be applied to detect
and identify misalignments in both degrees of freedom, this investigation focuses only on
disturbances caused by a lateral (sensor azimuth angle) misadjustment. Essentially the method
for extracting features or symptoms in order to detect and identify sensor misalignments is
shared in two approaches. The first one consists of extracting features of the analyzed sensor
independently from others while the second one is based on the information obtained from
partially redundant and sometimes dissimilar sensor units.

A possible effect based on the analysis of at least one sensor is based on the geometric analysis
of object hypothesis in form of tracks. This assumption consists of investigating the behavior
of standing tracks by the straight approximation of the own vehicle respectively the analyzed
sensor (figure 5.28).

Figure 5.28: Scheme illustrating the geometric effect by a vehicle approaching straight to standing
object a hypotheses represented by a track. In case of no lateral misalignment the
temporal changes of the parameters will follow: yk = yk+1, xk+1 < xk and φk < φk+1.

Figure 5.28 illustrates the geometric effect by a vehicle approaching straight to a standing
object hypotheses represented by a track from time interval t = k to t = k + 1. Then the
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expected behavior of a not misadjusted sensor with respect to its own yaw angle should respect
the following physical principles:

ψvehicle
∼= 0 (5.9)

yk
∼= yk+1 (5.10)

xk+1 < xk (5.11)
φk < φk+1 (5.12)

This means that by a straight motion of the evaluated sensor, in this case also of the own
vehicle, the vehicle yaw angle will follow ψvehicle

∼= 0. According to this the lateral offset yk+1

should remain constant as well as the longitudinal and angle offsets, xk+1 and φk+1, should
decrease by standing tracks. Based on the deviation between this premise and the parameters
obtained in the driving environment a soft membership determination to two evidence states
like geometry and no geometry may be performed with aid of a sigmoidal function discussed
in section 3.2.2. As soon as the membership can be accomplished the influence of this feature
on the identification can be represented by a dependence model exemplified in table 5.8.

hypotheses ↘ evidences Geometry No Geometry
Sensor Misalignment 0.0 1.0

No Sensor Misalignment 1.0 0.0

Table 5.8: An example of a dependence model between the geometry effect for standing tracks and
sensor misalignment hypothesis states.

Again the dependence values in table 5.8 are composed with aid of prior knowledge by the
analysis of experimental tests. According to the approach proposed to detect and identify
sensor failures, features influence are just taken into account when their occurrence exceed
determined threshold values.

Analog to the detection and identification of sensor blindness the sensor status information
about its own misalignment is a valuable information and is taken into account. As soon as
this feature is available it will contribute for the identification of the correspondent sensor
misalignment following the probabilistic principles and the proposed architecture.

Investigating the information of dissimilar and partially redundant sensors provides a further
source for the extraction of sensor misalignment symptoms. In doing so the behavior of object
hypotheses in form of tracks evaluated in the previous track layer are analyzed and tested
against plausibility models. A relevant effect observed in the driving environment in case of
sensor misalignment is illustrated in figure 5.29. It exemplifies the appearance of inexistent
object hypotheses due to sensor misalignments. Figure 5.29 shows the original coverage area of
two hypothetical sensors as expected and configured for the complete system. Additionally it
illustrates the actual sensor coverage area if sensor 1 is misadjusted. Due to this misalignment
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failure a object hypotheses that should only be acquired by sensor 2 will be wrongly reproduced
in the coverage area of sensor 1.

Figure 5.29: Scheme exemplifying the appearance of ghost tracks due to misalignment failures.

The misaligned track illustrated in figure 5.29 will be generated wrongly by the sensor fusion
mechanism due to the original sensor assembly position do not match with the current one.
Thus this misalignment failure will induce the generation of parallel tracks, which will be
acquired in the driving environment within a relative separation angle between each track. This
angle corresponds the amount of misalignment of the involved sensors.

Once the occurrence of parallel tracks within a constant separation angle exceeds a specific
threshold value, sensor misalignment failure can be detected for the whole system. However
the explicit assignment of this failure to a specific sensor is not feasible with this extracted
symptoms. A further evidence that is used to support this explicit assignment is based on
considering tracks confidence in the overlapping coverage area of several sensors. According
to the symptoms discussed by evaluating tracks, a low belief level will be assigned to it in
case of the absence of sensor redundancy (section 5.2). This means that tracks generated
in this overlapping coverage have to be updated by the correspondent sensors in order to be
considered reliable. Then parallel tracks with low confidence level may support the explicit
identification of sensor misalignment failure. Although the effectiveness of this symptom can
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just be confirmed within overlapping coverage areas, it contributes significantly for the sensor
configuration implemented in the case study for this thesis (see section 4.1).

According to the deviation between the premise of parallel tracks with low confidence and
the parameters obtained in the driving environment, a soft membership determination per
sensor can be performed. Again this membership is achieved with aid of a sigmoidal function
discussed in section 3.2.2 for the two evidence states: parallelism and no parallelism. As soon
as the membership can be accomplished the influence of this feature on the identification can
be represented by a dependence model exemplified in table 5.9. Here the uncertainty of this
symptoms by influencing the failure hypothesis states are represented by the influence value of
70%.

hypotheses ↘ evidences Parallelism No Parallelism
Sensor Misalignment 0.7 0.3

No Sensor Misalignment 0.3 0.7

Table 5.9: An example of a dependence model between the parallelism effect for unreliable tracks and
sensor misalignment hypothesis states.

After calculating the dependence of all available features, the final belief for this failure
hypothesis states can be accomplished. This is performed according to the Bayesian principles
discussed along with the proposed approach section in section 3.2.2. Figure 5.30 shows the
proposed probabilistic network for classifying sensor misalignment.

Figure 5.30: Scheme illustrating the proposed probability network for classifying sensor misalignment
from one specific sensor. The abbreviations SM and SM represent the states sensor
misalignment and no sensor misalignment respectively.

Based on experimental tests the proposed concept along with the extracted features could be
verified. For it several test runs were also performed in the driving environment and sensor
misalignment was simulated by misaligning incoming sensor measurements. This is achieved
by modifying the actual acquired lateral angles. Figure 5.31 shows a diagram illustrating the
belief distribution from a example of misalignment failure for a test run.

By means of the diagram in figure 5.31 an explicit identification of a simulated misalignment
failure could be achieved. This snapshot from a test run shows in the belief distribution that
even before misalignment simulation has started, the uncertainty by identifying this failure is
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reflected by a belief value up to 40%. This can lead back to the occurrence of misalignment
symptoms even by the absence of this failure. Again in order to improve the certainty of this
classification a tradeoff has to be determined between the completeness and complexity of
dependence models and probabilistic network

Figure 5.31: Diagram illustrating the belief distribution from a specific sensor failure, misalignment,
for a test run.

A further belief distribution of another test run is illustrated in figure 5.32. As in the diagram
shown in figure 5.31 the explicit detection an identification of sensor misalignment from
a specific sensor could be achieved by a belief value exceeding 80%. Also here the main
challenge by classifying sensor misalignment consists of reducing the influence of false alarms
that corresponds to misalignment symptoms even in the absence of failures. Furthermore
the extraction of further relevant symptoms, which allow the undubious classification of
misalignment could stabilize even more the belief distribution.

Figure 5.32: Diagram illustrating the belief distribution from a specific sensor failure, misalignment,
for a test run.
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5.4 Summary

This chapter presented some examples of experiments for the validation of the proposed
MFTT concept. It covered the whole approach from the investigation of sensor faults and
the evaluation of sensor measurement through the validation of tracks until the detection and
identification of sensor failures.

The evaluation of sensor faults was performed primarily with the intention to achieve a quality
measure to sensor measurements. In most of the cases the detection, but not the identification
of sensor faults is relevant from the point of view of ADAS. In other cases available features or
symptoms from these kind of faults are not sufficient to identify sensor faults unequivocally. In
case of sensor faults being relevant for determined ADAS implementation and the symptoms
for an explicit identification can be extracted, this is performed. A valuable example of a
specific sensor fault, especially for lidar sensors, is represented by ground clutters. In section
5.1.1 the nature of ground clutters were investigated by means of simulations and experimental
tests. The approach validation was performed by several test runs under different weather and
traffic conditions. The algorithms expected performance was confirmed by the experimental
test in the real driving environment. Thus combining the evidences obtained by the specific
and unspecific sensor faults contribute for the evaluation of the measurement regarding its
reliability. For the sake of feasibility a extensive validation of this measurement evaluation with
labelled data was not performed.

As inputs for the evaluation of tracks in correspondent layer, the results obtained in the
measurement layer were applied. Along with the evidences obtained from measurement specific
track evidences like the sensor redundancy symptom were extracted. Again the validation of
this proposed approach were performed by several test runs in the real driving environment.
A good performance of the algorithms could be confirmed and the obtained track confidence
values of belief worked as basis for the detection and identification of sensor failures.

The final step of the evaluation mechanisms consists of detecting and identifying sensor failures.
Thus the examples of sensor blindness and misalignment were investigated. By an extensive
analysis of the evidences that can originate this kind of failures experimental test runs in
the real driving environment were performed as well. For most of the investigated situations
the symptoms delivered a good performance. However the robustness of the identification
mechanisms could be strongly increased by means of a further dissimilar sensor like a camera
system.
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The main goal of future advanced driver assistance systems consists of increasing convenience,
comfort and safety of driving. They might either predict a critical situation by warning the
driver, or they may start automatic procedures in order to reduce accident severities. By
means of dissimilar and to some extent redundant sensors a description of the events in the
environment around the vehicle can be performed. Therefore the reliability of this information
and of its processing mechanisms and methods have to be assured. An important aspect
consists on how to combine the information of dissimilar sensors in order to obtain a reliable
view of the events in the driving environment. Sensor data fusion mechanisms can connect
several sources of information so that sensors can act in a cooperation, complementation
and supervision form. Another crucial point is how the system should deal by the occurrence
of sensor faults and failures, which might affect the system performance drastically. Fault
detection and identification strategies offer different knowledge-based procedures that are based
on analytical and heuristic information in order to quickly detect the occurrence and identify
sensor faults and failures.

According to these premises the proposed approach in this work consists of further developing
and combining of sensor data fusion, multiple target tracking (MTT) and fault detection and
identification (FDI) methods. The developed and validated concept describes a new technique
on how to extract the maximum potentialities of the three mentioned strategies. It aims at the
evaluation of the driving environment information regarding its reliability by performing the
detection and to some extent the identification of sensor faults and failures. The proposed
MFTT approach is based on the extraction of symptoms that enable the evaluation of sensor
measurements, tracks and sensor units themselves. These symptoms are extracted with the
aid of mathematical models, which may assume white, grey or black box characteristics. Here
a parallel between MTT and FDI could be performed. The residual between process and
observer used to execute the target tracking might deal as a symptom for sensor fault and
failures. Once specific fault or failures symptoms could be extracted their influence amount
can be determined. These influence calculations are based on soft decision criteria based
on human decision process under uncertain circumstances. In a first step fault and failure
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symptoms are categorized by fuzzy membership functions. Afterward their influence on the
final or intermediary hypothesis assumption is determined by means of dependence models.
The final hypothesis assertion is performed by means of probabilistic networks. It enables
a graphic visualization of the dependence between symptoms and hypotheses as well as the
calculation of hypothesis probabilities with aid of the Bayes’ theory.

Evaluations with experimental test runs in a real driving environment show that the proposed
concept deliver precise results by the evaluation of object hypotheses in form of tracks.
Furthermore the detection and identification of ground clutters as an example of specific sensor
faults could be accurately detected as well. With regard to sensor failures, blindness and
misalignment could be precisely detected and identified with the available symptoms. The
proposed architecture along with the probabilistic network approach offer a tradeoff between
the complexity of symptoms as well as dependence models and the precision and correctness
of the results. Additionally the proposed concept architecture enable a flexible extension of
symptoms, faults and failure hypotheses. This can be performed by adding new nodes to the
probabilistic network and build new symptom and dependence models.

Possible further application might consist of the integration of sensors with different measure-
ment principles in order to enable the extraction of features related to object dimensions or
consistency. In doing so not only a more specific classification of object hypotheses in form of
track can be achieved, but also a more precise tracking approach might be performed. Moreover
the achieved sensor failure identification might be applied to correct or ignore sensor measure-
ments an thus improving results reliability. Additional tests with different sensor configurations
might prove the stability and scalability of the algorithms. A further considerable alternative
for the extension of the proposed approach is to develop suitable models and antimodels for
objects in order to fit the MFTT method into different application areas (e.g. engine control).
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