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Simultaneous Schur Decomposition of Several
Nonsymmetric Matrices to Achieve Automatic

Pairing in Multidimensional Harmonic
Retrieval Problems
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Abstract—This paper presents a new Jacobi-type method to
calculate a simultaneous Schur decomposition (SSD) of several
real-valued, nonsymmetric matrices by minimizing an appro-
priate cost function. Thereby, the SSD reveals the “average
eigenstructure” of these nonsymmetric matrices. This enables an
R-dimensional extension of Unitary ESPRIT to estimate several
undampedR-dimensional modes or frequencies along with their
correct pairing in multidimensional harmonic retrieval problems.
Unitary ESPRIT is an ESPRIT-type high-resolution frequency
estimation technique that is formulated in terms of real-valued
computations throughout. For each of theR dimensions, the
corresponding frequency estimates are obtained from the real
eigenvalues of a real-valued matrix. The SSD jointly estimates
the eigenvalues of allRmatrices and, thereby, achieves automatic
pairing of the estimatedR-dimensional modes via a closed-form
procedure that neither requires any search nor any other heuris-
tic pairing strategy. Moreover, we describe howR-dimensional
harmonic retrieval problems (with R � 3) occur in array signal
processing and model-based object recognition applications.

Index Terms—Array signal processing, direction-of-arrival es-
timation, eigenvalues, frequency estimation, harmonic analysis,
linear algebra, multidimensional sequences, multidimensional sig-
nal processing, object recognition, planar arrays, radar, smooting
methods.

I. INTRODUCTION

DUE to its simplicity and high-resolution capability,ES-
PRIT has become one of the most popular subspace-

based direction of arrival or frequency estimation schemes. For
certain array geometries, namely centro-symmetric arrays, or
undamped modes in the frequency domain, the computational
complexity can be reduced significantly by formulating an
ESPRIT-type algorithm in terms of real-valued computations
throughout. The resulting algorithm is calledUnitary ESPRIT,
since the estimated phase factors are automatically constrained
to the unit circle [9]. Furthermore, Unitary ESPRIT has
recently been extended to the two-dimensional (2-D) case
to provide automatically paired azimuth and elevation angle
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estimates [6], [20]. If, however, the carrier frequencies of
the impinging wavefronts are no longer known (e.g., due to
Doppler shifts) and may differ, the 2-D arrival angles, az-
imuth and elevation, and the corresponding carrier frequencies
have to be estimated simultaneously. This model applies, for
instance, to the surveillance radar system discussed in [18]
and requires a three-dimensional (3-D) extension of Unitary
ESPRIT. Moreover,3-D Unitary ESPRIT for joint 2-D angle
and carrier estimationcan be used to determine the 2-D
arrival angles, frequency offsets, and damping factors of the
dominant multipaths in an SDMA (space division multiple
access) mobile radio system [11]. Here, 3-D Unitary ESPRIT
can provide precise 2-D arrival angle estimates even if only a
small number of antennas is available.

In [14] and [15] it was shown how the parameters of certain
statistical mobile radio channel models can be obtained from
the results of field propagation measurements. The author
described a measurement setup (channel sounder) where high-
resolution estimates of the propagation path delays were
determined in the frequency domain by solving the one-
dimensional (1-D) harmonic retrieval problem. Obviously,
1-D Unitary ESPRIT could also be used for this task. After
replacing the receiving antenna of this channel sounder by a
uniform rectangular array (URA) of identical antennas, 3-D
Unitary ESPRIT can provide automatically paired 2-D arrival
angle and delay estimates of the dominant propagation paths.
Such high-resolution directional measurements of the mobile
radio channel facilitate the development of realistic directional
channel models that include 2-D directions of arrival, namely
azimuth and elevation angles. In several field experiments
conducted by Deutsche Telekom AG, 2-D Unitary ESPRIT
has already been used successfully in conjunction with this
channel sounder and a uniform linear array (ULA) to provide
automatically paired 1-D arrival angle and delay estimates
of the dominant propagation paths. Preliminary measurement
results have been reported in [16].

To give another application, assume that the usual plane
wave approximation of the impinging wavefronts is no longer
accurate since a uniform rectangular array is located in the
Fresnel region or thenear-field of the sources. Then 3-D
Unitary ESPRIT can be applied to certain fourth-order cross-
cumulant matrices to estimate the 2-D arrival angles and
ranges of several near-field sources simultaneously. This task
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may be achieved via straightforward 3-D extensions of the 2-
D Unitary ESPRIT based algorithms for (passive) near-field
source localization presented in [8].

Furthermore, the model-based object recognition scheme
presented in [1], [4], and [19] provides another application
of the multidimensional harmonic retrieval problem. Here,
the generated measurements correspond to samples from an

-dimensional lattice of sensors. These synthetic waveform
samples are obtained from an image by applying certain
reciprocal basis functions, which were generated (off-line)
from a sequence of object views [4], [19]. In this application,
denotes the number of pose parameters that can easily exceed
three. These pose parameters may include six orientation pa-
rameters (the object’s location in space and the corresponding
three Euler angles of rotation) and also parameters describing
other variable characteristics, e.g., the relative position of
articulated components of the object [19]. Then the estimated

-dimensional undamped modes are the parameters that reveal
the object identities and their orientations. In this context,

-D Unitary ESPRIT provides an efficient way to find the
identities and poses ofseveral ( ) objects within a single
image simultaneously. Notice that theestimated parameters
per object will be automatically paired which facilitates an
efficient extension of the work presented in [4].1

This paper is organized as follows. After introducing the
data model of the multidimensional harmonic retrieval prob-
lem in Section II-A, we describe the multidimensional ex-
tension of Unitary ESPRIT in Section II-B. In Section II-
C, the 1-D smoothing concept known from array signal
processing is extended to the-dimensional case to be used
as a preprocessing step for-D Unitary ESPRIT. Then the
simultaneous Schur decomposition (SSD) of several real-
valued nonsymmetric matrices is introduced in Section III.
An efficient Jacobi-type algorithm to calculate the SSD is
presented in Section III-B. As a 3-D application, we consider
3-D Unitary ESPRIT for joint 2-D angle and carrier estimation
in Section IV. Simulation examples that illustrate the perfor-
mance of 3-D Unitary ESPRIT and the SSD are presented at
the end of the same section, before Section V concludes the
paper.

Notation: Let us begin by introducing our notation.
Throughout this paper, column vectors and matrices are
denoted by lower-case and upper-case boldfaced letters,
respectively. For any positive integer, denotes the
identity matrix and the exchange matrix with ones
on its antidiagonal and zeros elsewhere, as follows:

Furthermore, the superscripts and denote complex
conjugate transposition and transposition without complex
conjugation, respectively. Complex conjugation by itself is
denoted by an overbar , such that . Finally, a

1In [4], the authors propose an algorithm to identify the identity and
orientation of a single object, i.e.,d = 1.

diagonal matrix with the diagonal elements
may be written as

diag

C

II. M ULTIDIMENSIONAL HARMONIC RETRIEVAL

A. Data Model

Suppose we conduct trials or experiments to observe
noise-corrupted measurements on an -
dimensional lattice2 for . The index of the th
dimension is allowed to vary from 0 to for

. Thus, for fixed , we have

different measurements of the data. This-dimensional data
consists of undamped exponential modes in additive noise

(1)

where the additive noise process is assumed to be zero-mean,
i.i.d., with variance , and uncorrelated with the signals.
Here, we consider the task of estimating thefrequency
vectors

(2)

that correspond to the -dimensional modes and their correct
pairing from the noise-corrupted measurements in (1). Observe
that equation (1) represents a straightforward-dimensional
extension of the familiar 1-D and 2-D harmonic retrieval
problems.

B. Multidimensional Extension of Unitary ESPRIT

A very simple and efficient way to achieve this goal
would be an -dimensional extension ofUnitary ESPRIT.
As in the 1-D case [9], the algorithm is formulated in terms
of real-valued computations throughout due to a bijective
mapping between centro-Hermitian and real matrices [13],
which automatically achieves forward–backward averaging of
the data. Without loss of generality, we only describe the
element space implementationof -D Unitary ESPRIT. If one
desires to operate in a lower dimensional beamspace to focus
on a particular sector of interest, an-dimensional extension
of Unitary ESPRIT in DFT beamspace[20] can be obtained
in a similar fashion.

2In this paper, we developR-D Unitary ESPRIT for measurements taken on
the Cartesian product ofR uniform linear grids (arrays). The same algorithm,
however, can also be applied to more general lattice geometries, namely to
all lattices that are centro-symmetric and exhibit anR-dimensional invariance
structure, cf., [6] for a discussion of the corresponding 2-D case.
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First of all, measurement vectors

...

...

C (3)

are formed from the scalar measurements in (1). These mea-
surement vectors , , are placed as columns
of a data matrix C . If only a single vector
is available ( ), -dimensional smoothing as described
at the end of this section should be used to “create” more
snapshots artificially. It is straightforward to show that the
data matrix satisfies the linear model

(4)

where the vectors C and C contain
the corresponding signal and noise samples. Furthermore, the
columns of the steering matrix C can be written as
Kronecker products of the Vandermonde vectors

C

namely

(5)

Then we define pairs of selection matrices of size ,
, that are centro-symmetric with respect to one

another, i.e.,

with (6)

and cause the multidimensional steering vectors (5) to satisfy
the following invariance properties:

In matrix notation, these invariance properties may be sum-
marized as

(7)

where the diagonal matrices

diag

contain the phase factors. To give an explicit formula for the
multidimensional selection matrices, define

as a 1-D selection matrix corresponding to maximum overlap
in the th direction. Here, denotes the zero matrix
of size . Taking into account the described-
dimensional stacking procedure, we can construct the desired

dimensional selection matrices as

As a simple example, consider the case . According to
the previous discussion, we have

If desired, the selection matrices , can
be obtained from (6). In fact, to be able to compute the

transformed selection matrices required for-D
Unitary ESPRIT as summarized in Table I, it is sufficient to
specify , , and , cf., (10).

Real-Valued Invariance Equations:Let left -real matri-
ces be defined as matrices C satisfying
[9], [13]. The unitary matrix

j

j
(8)

for example, is left -real of odd order. A unitary left -real
matrix of size is obtained from (8) by dropping its
center row and center column. More left-real matrices can
be constructed by postmultiplying a left -real matrix by
an arbitrary real matrix , i.e., every matrix is left -real.

As in the 2-D case [20], let us define the transformed
steering matrix as Based on the invariance
properties of the multidimensional steering matrixin (7), it
is a straightforward -D extension of the derivation of 1-D
and 2-D Unitary ESPRIT to show that the transformed array
steering matrix satisfies

(9)

where the corresponding pairs of transformed selection
matrices are given by

Re

and

Im (10)

and the real-valued diagonal matrices

diag (11)

contain the desired frequency information.
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In the first step of Unitary ESPRIT [6], [20], for-
ward–backward averaging is achieved by transforming the
complex-valued data matrix into the real-valued matrix3

Its dominant left singular vectors are de-
termined through a real-valued SVD of (square-root
approach). Alternatively, they can be computed through a
real-valued eigendecomposition of
(covariance approach). Asymptotically or without additive
noise, and span the same -dimensional subspace,
i.e., there is a nonsingular matrix of size such that

Substituting this relationship into (9) yields
real-valued invariance equations

where

(12)

Thus, the real-valued matrices are related with the
diagonal matrices via eigenvalue preserving similarity
transformations. Moreover, they share thesame set of eigen-
vectors . As in the 2-D case, the invariance equations (12)
can be solved independently via least squares (LS), total least
squares (TLS), or structured least squares (SLS) [7] or jointly
via an -dimensional extension of SLS (-D SLS), yielding

real-valued matrices , . Note that
these matrices are not necessarily symmetric.

In the noiseless case or with an infinite number of ex-
periments , the real-valued eigenvalues of the solutions

to the invariance equations above are given
by If these eigenvalues were calculated inde-
pendently, it would be quite difficult to pair the resulting
distinct sets of frequency estimates. Notice that one can choose
a real-valued eigenvector matrix such that all matrices that
appear in the spectral decompositions of are
real-valued. If the matrix of eigenvectors is the
same for all , , the diagonal elements of the
matrices and, therefore, also the corresponding frequencies
are automatically paired. These observations are critical to
achieve automatic pairing of the estimated frequencies,

, .
In practice, though, only a finite number of noise-

corrupted experiments (or measurements) is available. There-
fore, the matrices do not exactly share the same set
of eigenvectors. To determine an approximation of the set of
common eigenvectors only from one of the is, obviously,
not the best solution, since this strategy would rely on an
arbitrary choice and would also discard information contained
in the other matrices. Moreover, each of the might
have some degenerate (multiple) eigenvalues, while the whole
set , , has well-determined common eigenvectors

(for or ). Thus, from a statistical point of
view, it is desirable, for the sake of accuracy and robustness,

3If the left�-real matricesQQQ
M

andQQQ
2N

are chosen according to (8) and
M is even, an efficient computation of the transformationT (XXX) 2 IRM�2N

from the complex-valued data matrixXXX only requiresM � 2N real additions
and no multiplication [9].

to compute the “average eigenstructure” of these matrices [3].
In the 2-D case, this problem was solved by calculating the
eigenvalues of the “complexified” matrix C
as discussed in [6] and [20]. Thereby, automatic pairing of the
eigenvalues can be achieved. If, however, , this “trick”
has to be extended to the-dimensional case. To this end, we
develop a Jacobi-type method to calculate an SSD of several
nonsymmetric matrices.

C. -Dimensional Smoothing as a Preprocessing
Step for -D Unitary ESPRIT

Before presenting the SSD in Section III, let us briefly ex-
tend the 2-D smoothing concept of [10] to the-dimensional
case. If only one trial or experiment is available (
), -dimensional smoothing should, for instance, be used

as a preprocessing step for the multidimensional extension
of Unitary ESPRIT summarized in Table I. Note that 1-D
smoothing could be applied to each of the dimensions
independently by dividing the measurements of theth
dimension into groups (or subarrays), each containing

measurements. The corresponding 1-D
selection matrices are given by

for (13)

As a straightforward -dimensional extension of the 2-D
smoothing procedure presented in [10], we define the follow-
ing multidimensional selection matrices

(14)

where Then the smoothed data matrix

which is of size , replaces the original data matrix
C in step 1 of the summary of -D Unitary ESPRIT

(Table I), and the dimensions , , and are replaced by
, , and , , respectively.

III. SIMULTANEOUS SCHUR DECOMPOSITION(SSD)

A. Minimization Task

Recall that the real eigenvalues of real-valued nonsymmetric
matrices can efficiently be computed through an eigenvalue-
revealing real Schur decomposition [5]. In the noiseless
case or with an infinite number of experiments, the
new simultaneous Schur decomposition (SSD) of the
matrices , , yields (real-valued) upper
triangular matrices that exhibit the automatically paired
(real-valued) eigenvalues on their main diagonals. Under
the assumption of additive noise and a finite number of
experiments , an orthogonal similarity transformation
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TABLE I
SUMMARY OF R-D UNITARY ESPRITIN ELEMENT SPACE

might not be able to produce upper triangular matrices
simultaneously, since the “noisy” matrices do not share
a common set of eigenvectors. In this case, the resulting
matrices should be “almost” upper triangular in a least
squares sense, i.e., an approximate simultaneous upper
triangularization that reveals the “average eigenstructure”
should be calculated.

To derive an appropriate algorithm, let denote an
operator that extracts the strictly lower triangular part of its
matrix-valued argument by setting the upper triangular part
and the elements on the main diagonal to zero. Then we want
to minimize the cost function

(15)

over the set of orthogonal matrices that can
be written as products of elementary Jacobi rotations. As
usual, denotes the Frobenius-norm. The element space
implementation of the resulting -dimensional extension of
Unitary ESPRIT is summarized in Table I. If all the were
symmetric, the minimization of (15) would achieve an ap-
proximate simultaneousdiagonalizationof these matrices. An
efficient Jacobi-type technique to achieve such an approximate
simultaneous diagonalization has been presented in [2] and
[3]. This algorithm, however, is not applicable in our case,
since the are not symmetric. Therefore, the minimization
of the sum of the off-diagonal norms of these matrices
via a sequence of simultaneous orthogonal transformations as
discussed in [2] and [3] would not reveal the desired “average
eigenstructure” of these nonsymmetric matrices.

B. Jacobi-Type Algorithm

In Jacobi-type algorithms, the orthogonal matrix is de-
composed into a product of elementary Jacobi rotations

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

(16)

such that

(17)

Jacobi rotations are defined as orthogonal matrices where
all diagonal elements are one except for the two elements
in rows (and columns) and . Likewise, all off-diagonal
elements of are zero except for the two elementsand

, cf., (16). The real numbers and are
the cosine and sine of a rotation anglesuch that .
In the sequel, we describe a procedure to choose the rotation
angle at a particular iteration such that the cost function

is decreased as much as possible. To this end, observe
that, at each iteration, the real-valued matrices are
transformed according to

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

(18)

Here, and denote the -entries of the ma-
trices and , respectively. Notice that the orthogonal
transformation changes only rows and of ,
while changes only columns and of . Thus,
the orthogonal similarity transformation (18) changes only
elements of that appear in rows and columnsand as
indicated in (18). More specifically, the entries of changed
on its strictly lower triangular part are given by
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Recall that only contributes to the cost function (15).
Therefore, the change of this cost function can be expressed as

(19)

where we have used the fact that

and

Differentiating (19) with respect to , using the abbreviation
which implies ,

, and multiplying the result by
yields the fourth order polynomial

(20)

with

and

The critical points of in (19) are the roots of the
polynomial in (20). Observe that only the real-valued
roots of yield valid options for the desired orthogonal
rotation . A real-valued critical point of is a
minimum if

Straightforward calculations show that this condition is met if

(21)

where

Fig. 1. Definitions of azimuth (�180� < �i � 180�) and elevation
(0� � �i � 90�). The direction cosinesui and vi are the rectangular
coordinates of the projection of the corresponding point on the unit ball onto
the equatorial plane.

Fig. 2. 3-D Unitary ESPRIT for joint 2-D angle and carrier estimation
using a URA of 2 � 2 elements andM3 = 10 (temporal) snapshots.
Temporal smoothing withL = L3 = 8 subarrays, each containing
Msub = M3 � L3 + 1 = 3 snapshots, is performed along the third
(temporal) dimension.

and . Notice that there are at most two real-valued
roots that satisfy (21). From these possibilities, we choose
the value of (or the corresponding rotation angle) that
minimizes (19). However, we only use the corresponding
elementary Jacobi rotation if

i.e., the chosen rotation reduces the cost function. Otherwise,
no rotation is applied at this particular iteration step. Such
a strategy is closely related to the 1-D Jacobi-type methods
discussed in [12].

If , the coefficient of in (20), i.e., the last component of
the coefficient vector equals zero, reduces to
a third order polynomial. Then is also a critical point4

of . It corresponds to a valid option for the rotation
angle , i.e., a minimum of , if .

IV. 3-D UNITARY ESPRITFOR JOINT

2-D ANGLE AND CARRIER ESTIMATION

As a 3-D application of the new SSD, consider a URA con-
sisting of identical antennas lying on a rectangular
grid in the – plane. The interelement spacing in- and -

4Obviously, t = 1 corresponds to the rotation angle# = �=2. Alterna-
tively, one could considert = �1. Notice thatt =1 andt = �1 lead to
the same change of the cost function (19).
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Fig. 3. 3-D Unitary ESPRIT for joint 2-D angle and carrier estimation:
Maximum number of frequency vectorsdmax as a function of the number of
snapshotsM3 for different array sizesM1 �M2 if the number of temporal
subarraysL = L3 is chosen such thatdmax is maximized.

direction will be called and , respectively. Incident on
the array are narrowband planar wavefronts with speed of
propagation , azimuth , elevation , and carrier frequency

, . Let and
denote the direction cosines of theth source relative to the-
and -axes as illustrated in Fig. 1. For each source, the 2-D
angular position and the corresponding carrier frequency have
to be estimated simultaneously. If snapshots are observed
at each sensor, 3-D Unitary ESPRIT used in conjunction with
the SSD can handle this task. In this case, , and the

3-D frequency vectors (2) have the components

and

where denotes the sampling interval. Since only one
experiment ( ) is available, 3-D smoothing as discussed
at the end of Section II-B should be used as a preprocessing
step. In most applications, it fairly easy to collect a large
number of temporal snapshots , whereas increasing the
number of sensors in either the- or the -direction (
or ) would be significantly more expensive. We, therefore,
suggest to use smoothing only along the third (the temporal)
dimension as illustrated in Fig. 2. Accordingly, is replaced
by , and we can estimate up to

(22)

frequency vectors , where

and is the number of temporal subarrays. In Fig. 3,
the maximum number of frequency vectors is plotted

as a function of the number of snapshots if the number
of temporal subarrays is chosen such that in
(22) is maximized. The curves for five different array sizes

are shown. Even with a URA of size 2 2, the 2-D
arrival angles and carriers of an arbitrary number of wavefronts
can be estimated if the window length (number of used
snapshots) is chosen sufficiently large.

Simulations: Simulations were conducted with wave-
fronts and the following parameters: , ,

, , = 1, 2, 3, 4.

Temporal smoothing with eight subarrays, each containing
three snapshots, was performed along the third (the temporal)
dimension, as illustrated in Fig. 2. Therefore, the maximum
number of frequency vectors is given by

In this example, LS was used to solve the real-valued invari-
ance equations (12). As anad hocalternative to the SSD, we
have also computed the eigendecomposition ofand applied
the resulting eigenvectors to and . Let denote
the estimated frequency vector of theth source obtained at the
th run. Sample performance statistics were computed from

independent trials as

RMSE

The resulting RMS errors for sources 1, 2, 3, and 4 are depicted
in Fig. 4, which clearly shows that the SSD outperforms thead
hocapproach (3-D Unitary ESPRIT without SSD). To illustrate
the accuracy of the proposed closed-form algorithm, we have
also plotted the conditional (or deterministic) Cramér–Rao
lower bound (solid lines). It was calculated via a straightfor-
ward 3-D extension of the results presented in [17]. Note that
the frequencies of sources 2 and 3 cannot be identified through
thead hocapproach (dotted lines), whereas the performance of
3-D Unitary ESPRIT with the SSD(dashed lines) is very close
to the Craḿer–Rao bound, except for very low signal-to-noise
ratios (SNR’s).

Using the same parameters as before, we have also plotted
the evolution of the cost function , defined in (15),
for different SNR’s (Fig. 5). As expected, the value of the
cost function at convergence indicates the strength of the
additive noise. Only without additive noise, the three matri-
ces , share precisely the same eigenvectors,
and the cost function can, therefore, be driven to
zero.

V. CONCLUDING REMARKS

In this paper, we have extended Unitary ESPRIT to the
multidimensional case to solve the multidimensional harmonic
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Fig. 4. Comparison of 3-D Unitary ESPRIT with and without the SSD with the Cramér–Rao lower bound (solid lines). Temporal smoothing withL = L3 = 8
subarrays was performed along the third (temporal) dimension (d = 4, R = 3, M1 = 2, M2 = 2, M3 = 10, N = 1, K = 1000 trials).

Fig. 5. Evolution of the cost function (�) for different SNR’s (d = 4,
R = 3, M1 = 2, M2 = 2, M3 = 10, N = 1).

retrieval problem. -D Unitary ESPRIT is a new closed-
form algorithm to estimate several undamped-dimensional

modes (or frequencies) along with their correct pairing from
noise-corrupted measurements taken on an-dimensional
grid. Here, the SSD of several real-valued, nonsymmetric
matrices reveals their “average eigenstructure” and, thereby,
achieves automatic pairing of the estimated-dimensional
modes via a closed-form procedure that neither requires any
search nor any other heuristic pairing strategy. Like its 1-D
and 2-D counterparts, -D Unitary ESPRIT inherently in-
cludes forward–backward averaging and is efficiently formu-
lated in terms of real-valued computations throughout. In
the array processing context, a 3-D extension of Unitary
ESPRIT can be used to estimate the 2-D arrival angles and
carrier frequencies of several impinging wavefronts simulta-
neously.
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