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Abstract—This paper presents a new Jacobi-type method to

estimates [6], [20]. If, however, the carrier frequencies of

calculate a simultaneous Schur decomposition (SSD) of severalthe impinging wavefronts are no longer known (e.g., due to

real-valued, nonsymmetric matrices by minimizing an appro-
priate cost function. Thereby, the SSD reveals the “average
eigenstructure” of these nonsymmetric matrices. This enables an
R-dimensional extension of Unitary ESPRIT to estimate several
undamped R-dimensional modes or frequencies along with their
correct pairing in multidimensional harmonic retrieval problems.
Unitary ESPRIT is an ESPRIT-type high-resolution frequency
estimation technique that is formulated in terms of real-valued
computations throughout. For each of the R dimensions, the
corresponding frequency estimates are obtained from the real
eigenvalues of a real-valued matrix. The SSD jointly estimates
the eigenvalues of allR matrices and, thereby, achieves automatic
pairing of the estimated R-dimensional modes via a closed-form
procedure that neither requires any search nor any other heuris-
tic pairing strategy. Moreover, we describe howR-dimensional
harmonic retrieval problems (with R > 3) occur in array signal
processing and model-based object recognition applications.

Index Terms—Array signal processing, direction-of-arrival es-
timation, eigenvalues, frequency estimation, harmonic analysis,
linear algebra, multidimensional sequences, multidimensional sig-
nal processing, object recognition, planar arrays, radar, smooting
methods.

[. INTRODUCTION
UE to its simplicity and high-resolution capabilit{£,S-

PRIT has become one of the most popular subspacté

based direction of arrival or frequency estimation schemes.

certain array geometries, namely centro-symmetric arrays,
undamped modes in the frequency domain, the computatio
complexity can be reduced significantly by formulating afi
ESPRIT-type algorithm in terms of real-valued computatiorfasZ

throughout. The resulting algorithm is callethitary ESPRIT

Doppler shifts) and may differ, the 2-D arrival angles, az-
imuth and elevation, and the corresponding carrier frequencies
have to be estimated simultaneously. This model applies, for
instance, to the surveillance radar system discussed in [18]
and requires a three-dimensional (3-D) extension of Unitary
ESPRIT. Moreover3-D Unitary ESPRIT for joint 2-D angle
and carrier estimationcan be used to determine the 2-D
arrival angles, frequency offsets, and damping factors of the
dominant multipaths in an SDMA (space division multiple
access) mobile radio system [11]. Here, 3-D Unitary ESPRIT
can provide precise 2-D arrival angle estimates even if only a
small number of antennas is available.

In [14] and [15] it was shown how the parameters of certain
statistical mobile radio channel models can be obtained from
the results of field propagation measurements. The author
described a measurement setup (channel sounder) where high-
resolution estimates of the propagation path delays were
determined in the frequency domain by solving the one-
dimensional (1-D) harmonic retrieval problem. Obviously,
1-D Unitary ESPRIT could also be used for this task. After
replacing the receiving antenna of this channel sounder by a
uniform rectangular array (URA) of identical antennas, 3-D
nitary ESPRIT can provide automatically paired 2-D arrival
gle and delay estimates of the dominant propagation paths.
lilCh high-resolution directional measurements of the mobile
Fiaﬁqﬁo channel facilitate the development of realistic directional

annel models that include 2-D directions of arrival, namely
imuth and elevation angles. In several field experiments
conducted by Deutsche Telekom AG, 2-D Unitary ESPRIT

since the estimated phase factors are automatically constraingﬁ already been used successfully in conjunction with this

to the unit circle [9]. Furthermore, Unitary ESPRIT ha& . . : .
a%ftomatlcally paired 1-D arrival angle and delay estimates

recently been extended to the two-dimensional (2-D) c

to provide automatically paired azimuth and elevation ang

hannel sounder and a uniform linear array (ULA) to provide

the dominant propagation paths. Preliminary measurement
results have been reported in [16].
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may be achieved via straightforward 3-D extensions of the @agonal matrix® with the diagonal elements;, ¢s, - -+, ¢q4
D Unitary ESPRIT based algorithms for (passive) near-fielday be written as
source localization presented in [8]. o d
Furthermore, the model-based object recognition scheme @ =diag{¢: }iy
presented in [1], [4], and [19] provides another application b1
of the multidimensional harmonic retrieval problem. Here, _ b2 e Céxd,
the generated measurements correspond to samples from an )
R-dimensional lattice of sensors. These synthetic waveform Pd
samples are obtained from an image by applying certain
reciprocal basis functions, which were generated (off-line) Il. MULTIDIMENSIONAL HARMONIC RETRIEVAL
from a sequence of object views [4], [19]. In this applicatifin,
denotes the number of pose parameters that can easily excde®ata Model

three. These pose parameters may include six orientation pasuppose we conduchV trials or experiments to observe
rameters (the object’s location in space and the correspondifigise-corrupted measurements,, x,. ... xx(n) on an R-
three Euler angles of rotation) and also parameters describifighensional latticefor 1 < n < N. The index of therth

other variable characteristics, e.g., the relative position @fmensionk, is allowed to vary from 0 to(M, — 1) for
articulated components of the object [19]. Then the estimatgds , < R. Thus, for fixedn, we have

R-dimensional undamped modes are the parameters that reveal R

the object identities and their orientations. In this context, M= H M

R-D Unitary ESPRIT provides an efficient way to find the e} T

identities and poses ofeveral (d) objects within a single -

image simultaneously. Notice that teestimated parametersdifferent measurements of the data. Tiisdimensional data
per object will be automatically paired which facilitates agonsists ofd undamped exponential modes in additive noise

efficient extension of the work presented in {4]. d R
This paper is organized as follows. After introducing the Thy oo kg (R) = Z lsi(”) H Gjugﬂm]
data model of the multidimensional harmonic retrieval prob- im1 el
lem in Section II-A, we describe the multidimensional ex- Ny kg o e (72) (1)

tension of Unitary ESPRIT in Section II-B. In Section II-

C, the 1-D smoothing concept known from array signavhere the additive noise process is assumed to be zero-mean,
processing is extended to tie-dimensional case to be used.i.d., with variancec?;, and uncorrelated with the signals.

as a preprocessing step f&-D Unitary ESPRIT. Then the Here, we consider the task of estimating thefrequency
simultaneous Schur decomposition (SSD) of several res&kctors

valued nonsymmetric matrices is introduced in Section Ill. 1 2 )

An efficient Jacobi-type algorithm to calculate the SSD is wo=l? p? o WP 1gi<d @

presented in Section II-B. As a 3-D application, we considgfat correspond to thé R-dimensional modes and their correct
3-D Unitary ESPRIT for joint 2-D angle and carrier estimatiopajring from the noise-corrupted measurements in (1). Observe
in Section IV. Slmulatlon examples that illustrate the perfogat equation (1) represents a straightforw&diimensional
mance of 3-D Unitary ESPRIT and the SSD are presentedegtension of the familiar 1-D and 2-D harmonic retrieval
the end of the same section, before Section V concludes H}%blems.

paper.
Notation: LeF us begin by introducing our no_tation.B' Multidimensional Extension of Unitary ESPRIT
Throughout this paper, column vectors and matrices are _ o ) )
denoted by lower-case and upper-case boldfaced letters® Very simple and efficient way to achieve this goal
respectively. For any positive integgr I,, denotes the x p wogld be anR-dimensional exte_nS|on. obnitary ESI_DRIT
identity matrix andII,, the p x p exchange matrix with ones As in the 1-D case [9], the algorithm is formulated in terms

on its antidiagonal and zeros elsewhere, as follows: of real-valued computations throughout due to a bijective
mapping between centro-Hermitian and real matrices [13],

1 which automatically achieves forward—backward averaging of

1 the data. Without loss of generality, we only describe the

Hp = c RP*P, . h .
. element space implementatiohR-D Unitary ESPRIT. If one
1 desires to operate in a lower dimensional beamspace to focus
on a particular sector of interest, ddimensional extension
Furthermore, the superscriptg*’ and (-)*" denote complex of Unitary ESPRIT in DFT beamspadg0] can be obtained
conjugate transposition and transposition without complex 5 similar fashion.

conjugation, respectively. Complex conjugation by itself is
— H i . 2In this paper, we develof-D Unitary ESPRIT for measurements taken on
denoted by an overbaf), such thatX™ = X" . Finally, @ he cartesian product gt uniform linear grids (arrays). The same algorithm,
however, can also be applied to more general lattice geometries, namely to
lin [4], the authors propose an algorithm to identify the identity andll lattices that are centro-symmetric and exhibitRuimensional invariance
orientation of a single object, i.eZ,= 1. structure, cf., [6] for a discussion of the corresponding 2-D case.
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First of all, measurement vectors as a 1-D selection matrix corresponding to maximum overlap
20,0, ... o(n) q in the rth direction. HereQ,;, _1),; denotes the zero matrix
210 0(n) of size (M, — 1) x 1. Taking into account the describeg-
T dimensional stacking procedure, we can construct the desired
. m, X M dimensional selection matrices as
I(TL) _ i]\fl—lyo, 708:3 c c]\l (3) )
M{—1,1,.+,0 J(T)2 = (IMR ®IMR_1 Qe ®IJ\L+1) ® J2
: ®(IA4T_1®"'®I]\41)
-77]\41—1,1\42—1,~~~,A4R—2(n) I J(J\L) I
= r— 1<r< R
Jj]\ll—l,l\lz—l,~~~,A4R—1(71)- H?:(r«f»l) M, ® 2 @ szi My =T

are formed from the scalar measurements in (1). These m
surement vectorg(n), 1 < n < N, are placed as columns
of a data matrixX € CY*V. If only a single vectorz(n)

is available (Vv = 1), R-dimensional smoothing as described B (M) (M1)
at the end of this section should be used to “create” more ~ J(2 =1y @In, @ J5 " = Tnsan, @ J3
snapshots artificially. It is straightforward to show that the — J (), =Ty, © J5 © Iy,

data matrixX satisfies the linear model

a- . . :
xs a simple example, consider the cdge= 3. According to
the previous discussion, we have

J(3)2 IJéMS) @Iy, @1y, = JéMS) S BV

X=[(1) =2) - =z=(N)]
=A[s(1) s(2) -+ s(N)] If desired, the selection matrice$,), » = 1,2,3, can
() n@) - n(N)] 4) be obtained from (6). In fact, to be able to compute the

2R = 6 transformed selection matrices required fBrD
where the vectorss(n) € C% and n(n) € C“ contain Unitary ESPRIT as summarized in Table 1, it is sufficient to
the corresponding signal and noise samples. Furthermore, specify J(1y2, J(2)2, and J(s),, cf., (10).

columns of the steering matrid € C¥*¢ can be written as  Real-Valued Invariance Equationd:et left II-real matri-

Kronecker products of the Vandermonde vectors ces be defined as matric€se C*** satisfyingIT,;Q = Q
a(ugr)) i R R VAR 7 ¢ g [9], [13]. The unitary matrix
I, 0 I
namely 1 g g
Q2q+1 =—=|0" \/5 o 8)
a(p” i ™) =a(u™) @ a(u ) @ @ al?) V2 lm, o m,
€3] ; . .
@a(p; ), l<i<d (®)  for example, is leflI-real of odd order. A unitary leffI-real

Then we defingR pairs of selection matrices of size, x M, Matrix of size2q x 2¢ is obtained from (8) by dropping its
1 < r < R, that are centro-symmetric with respect to ongenter row and center column. More |di-real matrices can

another, i.e., be constructed by postmultiplying a Iefi-real matrix} by
] an arbitrary real matriR, i.e., every matrbQR is left II-real.
S = I, J (211 with (6) As in the 2-D case [20], let us define the transformed
R steering matrix ad) = QﬁA. Based on theR invariance
_ MM, -1) i properties of the multidimensional steering matdxn (7), it
e = (M- —1) H My = M, lsrsh o igq straightforwardR-D extension of the derivation of 1-D
1}:;3{ and 2-D Unitary ESPRIT to show that the transformed array
and cause the multidimensional steering vectors (5) to satiShering matrixD satisfies
the following invariance properties: KD - Q. = K(,),D, 1<r<R (9)
@ @ By e
Jyralp; 71/1Z 72 s Hg ) e = where the R corresponding pairs of transformed selection
J(,,)Qa(uﬁ ), ug ), AR MER)), 1<i<d, 1<r< R matrices are given by
In matrix notation, these invariance properties may be sum- Ky =2- Re{Qr{{lr'](r)QQj\l}
marized as
and
J(,,)lA o e J(,,)QA, 1<r<R @) K(r)2 —92. Im{QgTJ(r)QQM} (10)

where theR diagonal matrices . .
g and theR real-valued diagonal matrices

@, = diag{ej”fﬂ e 1Y
contain the phase factors. To give an explicit formula for the €, = diag{tan [u; ] } , 1<r<R (12)
multidimensional selection matrices, define i=1
ng) = [0, —1yx1 dar—1] contain the desired frequency information.
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In the first step of Unitary ESPRIT [6], [20], for-to compute the “average eigenstructure” of these matrices [3].
ward-backward averaging is achieved by transforming the the 2-D case, this problem was solved by calculating the
complex-valued data matriX into the real-valued matr’x  eigenvalues of the “complexified” matriX; + ;Y5 € C¥*¢,

as discussed in [6] and [20]. Thereby, automatic pairing of the

T(X)=Qi[X HyXIy]Q,y € RMAN, eigenvalues can be achieved. If, howew@r;> 2, this “trick”

has to be extended to thHé-dimensional case. To this end, we
Its d dominant left singular vectords, € R**? are de- develop a Jacobi-type method to calculate an SSD of several
termined through a real-valued SVD @f(X) (square-root nonsymmetric matrices.
approach). Alternatively, they can be computed through a
real-valued eigendecomposition @f(X)7(X)” € R**™ . R-Dimensional Smoothing as a Preprocessing
(covariance approach). Asymptotically or without additivetep forR-D Unitary ESPRIT
noise, E; and D span the samel-dimensional subspace,
i.e., there is a nonsingular matrik of size d x d such that
D =~ E/T. Substituting this relationship into (9) yieldg®
real-valuedinvariance equations

Before presenting the SSD in Section Ill, let us briefly ex-
tend the 2-D smoothing concept of [10] to thedimensional
case. If only one trial or experiment is availabl&V (=
1), R-dimensional smoothing should, for instance, be used
m _ as a preprocessing step for the multidimensional extension

K EX, ~ KB, € R™¢, whereX, =TQ,T7" ¢ Unitary ESPRIT summarized in Table I. Note that 1-D
1<r<R (12)  smoothing could be applied to each of th& dimensions
independently by dividing thé/,., measurements of theth

Thus, the R real-valued matricesy,. are related with the dimension into L, groups (Or Subarrays), each Containing

diagonal matricest2, via eigenvalue preserving similarity A7, , = M, — L,.+ 1 measurements. The corresponding 1-D
transformations. Moreover, they share t@me set of eigen- selection matrices are given by

vectorsT’. As in the 2-D case, th& invariance equations (12)

can be solved independently via least squares (LS), total least j(M.) =
squares (TLS), or structured least squares (SLS) [7] or jointly i

via an R-dimensional extension of SLR(D SLS), yielding

_ H dxd .
R real-valued matriced(’, € R™, 1 < r < R. Note that As a straightforwardR-dimensional extension of the 2-D

h matri re not n ril mmetric. : . .
these mat ces are ot ecessarily symn ?t ¢ smoothing procedure presented in [10], we define the follow-
In the noiseless case or with an infinite number of ex- R . . . .
L =TJ,_, L, multidimensional selection matrices

perimentfjd\f, the real-valued eigenvalues of the solution®'9
Y, € R**“ to the R invariance equations above are given M Mo M

by tan[u{/2]. If these eigenvalues were calculated indelfi: 2. tror.tx =Jp el e el o,
pendently, it would be quite difficult to pair the resultiy € RMsur XM 1<¢.<L, (14)
distinct sets of frequency estimates. Notice that one can choose

a real-valued eigenvector matrik such that all matrices thatwhere Ay,;, = Hf"':l Mgy, .- Then the smoothed data matrix
appear in the spectral decompositions¥f = 7TQ, 7! are

real-valued. If the matrix of eigenvecto® € R**? is the  Xss=[J1.1, .. 11X Ji1,.10X o Ji1 10X
same for allr, 1 < r < R, the diagonal elements of the Ji 1
matrices(?,. and, therefore, also the corresponding frequencies o

are automatically paired. These observations are critical \ighich is of sizeMu, X NL, replaces the original data matrix

achieve automatic pairing of the estimated frequenpjgé%, X e €™ in step 1 of the summary dt-D Unitary ESPRIT

1<i<d 1<r <R (Table 1), and the dimension®, N, andM,. are replaced by
In practice, though, only a finite numbe¥W of noise- A4, NL, and M,y,., 1 < r < R, respectively.

corrupted experiments (or measurements) is available. There-

fore, the R matricesY,. do not exactly share the same set M

of eigenvectors. To determine an approximation of the set of

common eigenvect.ors oply from one of tA&. is, obviously, A. Minimization Task

not the best solution, since this strategy would rely on an

arbitrary choice and would also discard information contained Recall that the real eigenvalues of real-valued nonsymmetric

in the otherR — 1 matrices. Moreover, each of the, might matrices can efficiently be computed through an eigenvalue-

have some degenerate (multiple) eigenvalues, while the whif¥€aling real Schur decomposition [5]. In the noiseless

setY,, 1 < r < R, has well-determined common eigenvectorg@se or with an infinite number of experimenfg, the

T (for N — oo or o2, — 0). Thus, from a statistical point of N€W simultaneous Schur decomposition (SSD) of the

view, it is desirable, for the sake of accuracy and robustne83trices Y, 1 < r < R, yields K (real-valued) upper
triangular matrices that exhibit the automatically paired

°If the left IT-real matrices,; andQ, y are chosen according to (8) and (yeg|-valued) eigenvalues on their main diagonals. Under
M is even, an efficient computation of the transformatiofX ) € IR 2N

from the complex-valued data matrX only requiresi - 2N real additions the a;sumptlon of additive n0|se_ a_nd _a finite numb?r of
and no multiplication [9]. experiments N, an orthogonal similarity transformation

O0rt o, x(t—1) A, O, x (Lo )]
1<¢ <L.for1<r<R (13)

M)
1

"'7271X JL17L2:"'7LR—17LRX]

. SIMULTANEOUS SCHUR DECOMPOSITION (SSD)
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TABLE | B. Jacobi-Type Algorithm
SuMMARY OF R-D UNITARY ESPRITIN ELEMENT SPACE

In Jacobi-type algorithms, the orthogonal matéxis de-

L. Sivnal Sub Estimation: Comoute . ¢ RM<4 composed into a product of elementary Jacobi rotations
. OIgn upspace rstimation: ompute £,

_ ' o 1 -« 0 - 0 --- 07
e as the d dominant left singular vectors of 7{X) € R™* .. K K K
(square-root approach)
0 c - 8 0
the d dominant ci tors of 7(X)T(X )" € RM*M _|: : . : :
e or the d dominant eigenvectors of 7(X)7T(X) ®qp =|: : .o : (16)
(covariance approach). 0O .+« =5 «++ ¢ .- 0
2. Solution of the Invariance Equations: Then solve :
L0 0 0 1]
KB Yo = KppE,, 1<r <R,
— — such that
RmTXd Rm’Xd
d g—1
by means of LS, TLS, SLS, or R-D SLS.
o= II I[Ilew @)
3. Joint Frequency Estimation: Compute the SSD of the R real- # of sweeps ¢g=1 p=1
valued d X d matrices T, as . . . .
Jacobi rotation®, are defined as orthogonal matrices where
U,—0™,0, 1<r<R, _aII diagonal elements are one ex_cept_for the two _elements
in rows (and columnsy and ¢. Likewise, all off-diagonal
where u(]), 1 < i < d, are the diagonal elements of U, elements of®,, are zero except for the two elementsind
—s, cf., (16). The real numbers= cos ¥ and s = sin ¢ are
o p{) =2arctan (u’), 1<i<d, 1<7<H the cosine and sine of a rotation angleuch that? + s2 = 1.

In the sequel, we describe a procedure to choose the rotation
angle¢ at a particular iteration such that the cost function

iaht not be able t duc® i | i (@) is decreased as much as possible. To this end, observe
mig it no el aie to tphrg{ ?C ) uPpert _”angg ar n:a rr:ces that, at each iteration, th& real-valued matricesY, are
simultaneously, since noisy” matrices do not share , ¢ .4 according to

a common set of eigenvectors. In this case, the resulting
matrices should be “almost” upper triangular in a least + _gTy @
squares sense, i.e., an approximate simultaneous upper w it
triangularization that reveals the “average eigenstructure”
should be calculated. : . : : :
To derive an appropriate algorithm, 1€{Y,.) denote an v(’i)' N Ug(})/ I
operator that extracts the strictly lower triangular part of its r
matrix-valued argument by setting the upper triangular part - -
and the elements on the main diagonal to zero. Then we want “;71)/ Tt Ugp U(gzz)/ o Vg
to minimize the cost function

ol vﬁ’,)’ qu’)’ Uﬂ?'

-Ufﬁ) Ufi;)' vqu’)’ Ufi’(‘i)_

R
$(©)=> L@, 0|} (15) 1<r< R (18)
r=1
Here, v{;) and v{;" denote the(k, £)-entries of the ma-
over the set of orthogonal matric® € R**¢ that can trices T, and Y., respectively. Notice that the orthogonal
be written as products of elementary Jacobi rotations. A@nsformation®Z Y. changes only rowg and ¢ of Y,
usual,|| - || denotes the Frobenius-norm. The element spatile Y, ©,, changes only columng and ¢ of Y. Thus,
implementation of the resulting-dimensional extension of the orthogonal similarity transformation (18) changes only
Unitary ESPRIT is summarized in Table I. If all the, were €lements ofY,. that appear in rows and columpsand q as
symmetric, the minimization of (15) would achieve an aghdicated in (18). More specifically, the entries¥f. changed
proximate simultaneousiagonalizationof these matrices. An ©ON its strictly lower triangular par£(X;,) are given by
efficient Jacobi-type technique to achieve such an approximate

)/ ™ ™
simultaneous diagonalization has been presented in [2] and U;;k) :Cvék) - SU((]k)v 1<k<p
[3]. This algorithm, however, is not applicable in our case, U;;;)/ :SU;;’;) +cv(§v};)7 1<k<gq, k#p

since theY,. are not symmetric. Therefore, the minimization
of the sum of the off-diagonal norms of thedge matrices
via a sequence of simultaneous orthogonal transformations as Ul(c;)/ - cv,(;) _ 3“1(;;)7 p<k<d k#gq
discussed in [2] and [3] would not reveal the desired “average
eigenstructure” of these nonsymmetric matrices.

Ué;)/ = s[cvl()’];) - SU]()Z)] + c[cv(g}) - svgg)]
U’(:)/ = sv,(;) + v g<k<d.

q kq >’
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Recall that only£(Y’) contributes to the cost function (15).
Therefore, the change of this cost function can be expressed as

R
Ap(®gp) = D IIL(LDIE ~ I£(L)F]

r=1

R q—1

r )12 )12

=D Ut Y b e
r=1 k=(p+1)

Unit Ball

q—1
- Ué;)Q - Z [U;Z)Q + U,g)p] (29)
k=(p+1)
where we have used the fact that

)2 )2 )2 )2
ng)/ +U§7k)/ zvgk) +U§7k) ) 1<k<p Fig. 1. Definitions of azimuth £180° < ¢; < 180°) and elevation
(0° < 8; < 90°). The direction cosines; and v; are the rectangular
coordinates of the projection of the corresponding point on the unit ball onto

)12 )12 )2 )2 i
Ul(c;)) + Ul(;q) :UI(JP) + Ul(;q) , g<k<d. the equatorial plane.

and

Differentiating (19) with respect t@#, using the abbreviation
t = tan ¥ which impliesc = cos ¥ = 1/V1+1¢2, s =
sin ¥ = t/+/1 + 2, and multiplying the result byl + ¢2)2/2
yields the fourth order polynomial

x (1st dimension)

¢ {3rd dimension)

y (2nd dimension)

R /
pt)y=[1 t £ £ ]3¢ (20)
r=1
with
=) ") q—1 ") Fig. 2. 3-D Unitary ESPRIT for joint 2-D angle and carrier estimation
) — a7 r r using a URA of2 x 2 elements andM3; = 10 (temporal) snapshots.
¢ Cap + Z {Cadd[Upk ’ U‘Ik] Temporal smoothing with. = L3z = 8 subarrays, each containing
k=(p+1) M., = Mz — Ly +1 = 3 snapshots, is performed along the third
_ Cadd[U;(;), U’g])]} c IR:’, (temporal) dimension.
- (), )
Uy’ [Upp — Vqq ] .
[U(r) _ U(r)]Q EPNON [U(r) T r)] andt = tan 9. Notice that there are at most two real-valued
o ”’3 [ 4 (,,)](”’[ ,,p:_ (,f’]p roots that satisfy (21). From these possibilities, we choose
w _(,,)' Up{’,,); Yag (,)U P (,,)qu () the value oft (or the corresponding rotation angl® that
= [vpp _“(1;{] +2vpg 'L“P(I +vgp | minimizes (19). However, we only use the corresponding
L Upq * [Upp = Vaq ] elementary Jacobi rotatio®,,, if
and
afibz;z AY(Ogp) <0
Cada(a, b) = ) 0 .| i.e., the chosen rotation reduces the cost function. Otherwise,
a”=b no rotation is applied at this particular iteration step. Such
L—a-b a strategy is closely related to the 1-D Jacobi-type methods

The critical points ofAw(®,,) in (19) are the roots of the discussed in [12]. . .

polynomial p(t) in (20). Observe that only the real-valued If c4, the coefficient of* in (20), i.e., the last component of
roots of p(t) yield valid options for the desired orthogonathe coefficient vectop_[, ¢, equals zerop(t) reduces to
rotation ®,,,. A real-valued critical point ofA+(®,,) is a @ third order polynomial. Theh= cc is also a critical poirft

minimum if of Ay (®,,). It corresponds to a valid option for the rotation
d { p(tan ) } . angle?, i.e., a minimum ofAy(®,,), if c3 > 0.
d9 | (1 + tan? 9)?
(1 + tan®9) IV. 3-D UNITARY ESPRITFOR JOINT
Straightforward calculations show that this condition is met if 2-D ANGLE AND CARRIER ESTIMATION
dp(t) 9 3 As a 3-D application of the new SSD, consider a URA con-
—2 = 2 3 4 0 21 L ) : i,
dt CL 2ept + Seat” 4 degt” > (21) sisting of M7 x M, identical antennas lying on a rectangular
grid in the z—y plane. The interelement spacingin and y-
R
T . 4Obviously,t = co corresponds to the rotation angle= = /2. Alterna-
wherefcocy ¢z 3 ]’ = Z e tively, one could consider = —oc. Notice thatt = oo andt = —oo lead to
r=1 the same change of the cost function (19).
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200 , , T 7 : , . : — soxs0  as a function of the number of snapshdt if the number

: ' L " ls.s  of temporal subarrayd = Ls is chosen such thaf,,.. in
T axa (22) is maximized. The curves for five different array sizes
M x M5 are shown. Even with a URA of size2 2, the 2-D
arrival angles and carriers of an arbitrary number of wavefronts
can be estimated if the window lengi; (number of used
shapshots) is chosen sufficiently large.

1 2x2 Simulations: Simulations were conducted with= 4 wave-
fronts and the following parametersd; = 2, M> = 2,

Mz =10, 5; = JF/40) =1, 2,3, 4.

P [=2] @
(= = =]
T T T

n
(=]
T

@
o
T

Maximum number of frequency vectors
3 8
T 7

PN
=]
T

p, =7[0.05 —0.5 08]F, py,=n[05 05 08]"
ps =7n[0.5 0.5 02]%, p, =700 02 02]".

20+

[oja L 3 L A 1 1 I L i

o 10 20 30 40 50 60 70 80 90 100 Temporal smoothing with eight subarrays, each containing
Number of snapshots H
three snapshots, was performed along the third (the temporal)

Fig._3. 3-D Unitary ESPRIT for joint 2-D angle and carrier estimationdimension, as illustrated in Fig. 2. Therefore, the maximum
Maximum number of frequency vectods,.x as a function of the number of b ff t . . b

snapshots\is for different array sizedf; x M, if the number of temporal numper or frequency vectors Is given by
subarraysL = L3 is chosen such thatm,a.x is maximized.

Dmax = min{my, ma, ma, 2N L} = min{6, 6, 8, 16} = 6.

direction will be calledA, and Ay, respectively. Incident on
the array ared narrowband planar wavefronts with speed
propagatiore, azimuthe;,, elevationd;, and carrier frequency h
fir 1 <4< d. Letu; = cos ¢; sin 8; andv; = sin ¢; sin 6;

olf this example, LS was used to solve the real-valued invari-
nce equations (12). As a hocalternative to the SSD, we
ave also computed the eigendecompositioil pfand applied
s : ) X the resulting eigenvectors 5, andX;. Letji; € IR? denote
denote the direction cosines of tith source relative to the- e estimated frequency vector of thk source obtained at the

andy-axes as llustrated in Fig. 1. Eor each source, the 2, h run. Sample performance statistics were computed from
angular position and the corresponding carrier frequency hgxe: 1000 independent trials as
to be estimated simultaneously. M5 snapshots are observe

at each sensor, 3-D Unitary ESPRIT used in conjunction with

K 2

the SSD can handle this task. In this cade,= 1, and the 1 1. ,
; ) RMSE — .| — (. — . 1=1, 2 3 4.
R =3-D frequency vectors (2) have the components E kz::l T (i = ma)|) Th e
ugl) = 27r_fiAwui7 1%(2) = 27r_fiAyvi The resulting RMS errors for sources 1, 2, 3, and 4 are depicted
q ¢ ¢ in Fig. 4, which clearly shows that the SSD outperformsatie
an ®) hocapproach (3-D Unitary ESPRIT without SSD). To illustrate
pi =2w fiTs the accuracy of the proposed closed-form algorithm, we have

also plotted the conditional (or deterministic) CramaRao
where 7, denotes the sampling interval. Since only ongwer bound (solid lines). It was calculated via a straightfor-
experiment {V = 1) is available, 3-D smoothing as discusseqiard 3-D extension of the results presented in [17]. Note that
at the end of Section II-B should be used as a preprocessing frequencies of sources 2 and 3 cannot be identified through
step. In most applications, it fairly easy to collect a largghe ad hocapproach (dotted lines), whereas the performance of
number of temporal snapshofz, whereas increasing the3-D Unitary ESPRIT with the SS(@ashed lines) is very close
number of sensors in either the or the y-direction (M; to the Crankr—Rao bound, except for very low signal-to-noise
or M>) would be significantly more expensive. We, thereforgatios (SNR’s).
suggest to use smoothing only along the third (the temporal)Using the same parameters as before, we have also plotted
dimension as illustrated in Fig. 2. Accordingly// is replaced the evolution of the cost function)(®), defined in (15),

by M., = M3 — L3 + 1, and we can estimate up to for different SNR’s (Fig. 5). As expected, the value of the
cost function at convergence indicates the strength of the
max = min{my, mo, ms, 2NL} (22) additive noise. Only without additive noise, the three matri-
cesY,, r = 1,2,3, share precisely the same eigenvectors,
frequency vectorgs,;, where and the cost functiory)(®) can, therefore, be driven to
zero.

my = (My—1) - My - Myyp,, ma =M - (My—1) - Mgy,

m :M M . Msu _1
s ! 2 b ) V. CONCLUDING REMARKS

and L = L3 is the number of temporal subarrays. In Fig. 3, In this paper, we have extended Unitary ESPRIT to the
the maximum number of frequency vectals., is plotted multidimensional case to solve the multidimensional harmonic
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Fig. 4. Comparison of 3-D Unitary ESPRIT with and without the SSD with the @rafRao lower bound (solid lines). Temporal smoothing Vith- L3 = 8
subarrays was performed along the third (temporal) dimensios ¢, R = 3, M| = 2, M2 = 2, M3z = 10, N = 1, K = 1000 trials).

SSD of R = 3 matrices

10° -
IR
N SNR =20 dB
-5

107 | - SNR=40dB
o
8
g “ SNR =80 dB
3 —10 N . ie e e —e—a—a—a—
=10 B
%
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Fig. 5. Evolution of the cost function®) for different SNR's {§ = 4,

4

3
# of sweeps

R=3 M =2, My =2, M3 =10, N =1).

retrieval problem.R-D Unitary ESPRIT is a new closed-
form algorithm to estimate several undamp&eimensional

modes (or frequencies) along with their correct pairing from
noise-corrupted measurements taken on fadimensional
grid. Here, the SSD of several real-valued, nonsymmetric
matrices reveals their “average eigenstructure” and, thereby,
achieves automatic pairing of the estimat&ddimensional
modes via a closed-form procedure that neither requires any
search nor any other heuristic pairing strategy. Like its 1-D
and 2-D counterpartsR-D Unitary ESPRIT inherently in-
cludes forward—backward averaging and is efficiently formu-
lated in terms of real-valued computations throughout. In
the array processing context, a 3-D extension of Unitary
ESPRIT can be used to estimate the 2-D arrival angles and
carrier frequencies of several impinging wavefronts simulta-
neously.
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