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ABSTRACT 

Several well known learning algorithms for feedforward 
two-layer neural nets and an improved version of Mada- 
line I have been investigated and compared with respect 
to learning effort and classification capacity. These results, 
based on random training patterns, and their significance 
for generalization have been verified with real life data  for 
ICR/OCR. 

1. INTRODUCTION 
The  ability of nmral  network to generalize, i.e. to  extract a 
rule from a given set of training data,  is probably the most 
interesting feature of them in terms of real applications. If 
the paradigm of supervised learning is adopted, the gene- 
ralization ability is determined by the architecture and the 
learning algorithm used to adapt the weights. Certainly 
the overall performance of the system is also influenced by 
other parameters such as the pre- and postprocessing [I, 21 
and the significance of the training da ta  [3], still a superior 
learning algorithm should improve the overall performance. 

In our investigation we focused on two-layer feedforward 
neural networks and compared several well known learning 
algorithms for this architecture based on their classification 
capacity on random data  [4, 21. Our investigation shows 
that  the Madaline I algorithm of Widrow and Hoff [ 5 ,  61 
gives the best performance in this setting. By suitably in- 
terpreting the principle of “minimal weight disturbance” 
we were able to generalize the Madaline I algorithm to  the 
extent that  in each iteration several training pattern are 
considered. This leads to an improvement of approxima- 
tely 20% as compared to the original version, which is also 
confirmed by a comparison based on the classification of 
handwritten digits. 

2. COMPARISON 

When comparing learning algorithms basically three diffe- 
rent approaches are utilized: artificial benchmark problems 
such as the XOR or encoder-decoder problem [7, 81, selected 
applications or the ability to learn random data  [4]. Surely 
a statement based on a real application is significant, but i t  
is virtually impossible to compare results of different aut- 
hors. We preferred random data  over benchmark-problems, 
mainly because the rule to  be extracted is very “artificial” 
as compared to real applications, since very simple solutions 
do exist. In this sense the random data  can be interpreted 

as a worst case scenario. Moreover it seems harder to  opti- 
mize an algorithm for the task of learning random patterns, 
than for some simple benchmark problem. The  disadvan- 
tage is that  the generalization ability of the network cannot 
be measured directly. 

2.1. The classification c a p a c i t y  
One theoretical framework for classification and generaliza- 
tion of parameterized classifiers is the Vapnik-Chervonkis 
theory (VC-theory) [9, 81. The  central result of the VC- 
theory is intuitively clear: the generalization ability is pro- 
portional to the number of correctly learned training pat- 
terns and inversely proportional to the “complexity” of the 
architecture. More precisely 

where g is the fra.ctional error of the Boolean function B 
with respect to the perfect rule B ,  and g p  the est.imate the- 
reof on a arbitrary test pattern sample of size p .  The  com- 
plexity of the architecture is grasped by the growth function 
m : IN-Et. In the case of neural networks it is useful to 
define the classification capacity [4]. 

Defini t ion 1 (Classif icat ion capac i ty )  Let N be the to- 
tal number of adjustable weights in a neural network F .  
Further let M be the training pattern set of size p consisting 
of independent adentically dastributed Gaussian random va- 
riables, assigned randomly and wath equal probability to the 
classes +I and -1. The  classification capacity i s  defined as 

Pcr 
N ’  

a=- 

where p c r  i s  the size of the learning set M ,  which can be 
learned without error, with a probabality of 0.5. 

I t  was shown for feedforward multilayer perceptrons, that  
the generalization ability is bounded by a constant times the 
classification capacity. Further there is strong experimental 
evidence [ lo ,  21 that  the generalization ability is directly 
proportional to the classification capacity. 

2.2. E x p e r i m e n t a l  results 
In our investigation we considered several versions of the 
standard Backpropagation algorithm [ll, 7, 121, the Tiling 
algorithm [13, 81 as a representative for the family of con- 
structive learning algorithms and various versions of the 
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Madaline I algorithm [lo]. In order to fix the terminology 
let us firstly define a Madaline algorithm for a ‘commit- 
tee machine” (Fig. l).Since the majority logic is a self dual 
boolean function, we assume without loss of generality that 
there are no thresholds in the input layer and that the de- 
sired output rw for each training (@ is equal to  $1, for 
p = l ,  . . . , p .  

were well within the saturated region. Moreover some algo- 
rithms exhibit a slight increase in the classification capacity 
as a function of the number of hidden neurons, though not 
qualitatively influencing, the results. First of all we could 

Classification cap. 
x 2.0 
z 1.1 

Input 
1 2  n 

Outp11t p 

F i g u r e  1. C o m m i t t e e - m a c h i n e  architecture (MAJ - 
majority logic) 

Defini t ion 2 A Madaline algorithm for the “committee 
machine” with k = 21 + 1,  1 E N adapts the weights Wi 
of the hidden neuron i according to  (assuming r” = $1) 

1 Choose a pattern (’. 

2 If the network output p ( ( @ )  = $1 go back to 1 .  

3 Else find 1 5 m 5 [b/21 - b+ neurons il,. . . , i, with 
local fields minimally below zero (k+ # of positive local 
fields hr  = W,!(”). 

4 Adapt each weight W;, according to (I Hebbian rule 

5 Go back to one. 

The definition is purposely quite general and several choices 
have to  be made in order to really specify an algorithm. 
One specification concerns step 3. We will call a Madaline 
algorithm with m = 1 a Least Action algorithm and with 
m = [k/21 - k+ a Madaline I algorithm, respectively. The 
experimental setting for random patterns was as follows: 
10, 20 and 30 input neurons; 3, 5 and 7 hidden neurons and 
1 output neuron. In all experiments p C r  was determined by 
using at least 30 different training sets or when recognizing 
handwritten digits 30 independent runs on the training set 
for each size p. 

The results of our experiments are summarized in Table 
1 in the case of 30 inputs. It was experimentally shown [4], 
that the classification capacity shows a saturation charac- 
teristic as a function of the number of inputs. We could 
confirm these results and and with a value of 30 inputs we 

Adaptive-Least-Action [4] 2.1 
Madaline I 2.8 

Table 1. Classif icat ion c a p a c i t y  

confirm the poor performance of the standard Backpropa- 
gation algorithm and an improvement by a factor of 2 by 
the Quickpropagation algorithm [14]. We found that  i t  has 
about the same quality as the tiling algorithm. This is fur- 
ther increased by the modified Backpropagation algorithm, 
where the weights of the second layer were fixed and imple- 
mented the “committee machine”. Hence the BP-algorithm 
can take no advantage of the additional degrees of freedom 
offered by the adaptatilon of the output weights, and even 
worse the performance deteriorates dramatically. Compa- 
ring the various Madaline algorithms, one can conclude that 
a random choice of patterns is by far the best and there is 
no real difference between the Least-Action and the Mada- 
line I version. We would like to  note that  our values for the 
classification capacity atre in accordance with other publis- 
hed results [4, 61. As fitr as the learning rule is concerned, 
we only investigated the Perceptron rule (Az = 1) and the 
Adaline rule, which proved to  be superior. Another merit 
of the Madaline I algorithm is its simplicity and speed. 

3. THE MAIDATRON ALGORITHM 
In order to  further improve on the results of the Mada- 
line I algorithm, we were looking for a formulation of the 
Madaline algorithm applicable not only to  the “committee 
machine” and using t h k  as a starting point for the definition 
of an algorithm, which uses more than one training pattern 
in each iteration, hence: taking into account the correlation 
between the patterns. 

3.1. The principle of m i n i m a l  weight disturbance 
Already Widrow [5, 6:l pointed out, that the Madaline I 
algorithm is based on the principal of minimal weight di- 
sturbance: minamize the weaght change necessary for fulfil- 
ling a task OT f O T  equal weight changes choose the one with 
the greatest yield. Thi,s is a rather vague and flexible for- 
mulation and there are certainly different possibilities for a 
concrete definition of “task” and ”yield”, respectively. We 
propose to  interpret “taskn as “classifying the pattern cor- 
rectly with a given minimum robustness [15, 21” and to  use 
the euclidean norm to measure the “weight change”, since 
this immediately yields the Madaline I algorithm where the 
Hebbian rule is given by the Adaline algorithm, as will be 
shown. Applying the minimal weight disturbance principal 
to  T 2 1 patterns ( p  = 1,.  . . , r), yields the following 
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convex optimization program with linear inequality cons- 
trains for the weight update AW, of the i-th hidden neuron 
( 2 =  1, ..., I C ) :  

min IlAW,ll subject to (Wt + AW,)tt’”P 2 llt’’@Il . 
A W ,  

(1)  

This defines the minimal AW,, such that  the distance of 
the patterns E”@ to  the hyperplane W, + AW, is at least 
equal to one. 

In order to classify a training pattern [” correctly by the 
“committee machine” with k hidden neurons, it is necessary 
that  at least [IC/21 hidden neurons have a positive local 
field h,  = W:tp > 0. Replacing the majority function of 
the “committee machine” machine by an arbitrary Boolean 
function B : {-I, I)k--{-l, l}, this can be rephrased as 
the internal representation p” of the pattern [’’ has to be 
in the set B-’(+I). Note that  since we do not longer use 
the majority logic, we have to consider +I and -1 outputs. 
Hencefore we will denote the desired output of the pattern 
c w  by r”. 

As can be seen in the case of the majority logic, it is 
necessary to use “do-not-care” symbols to represent the set 
B-’(+l), since one has to  express the fact, that  for the 
internal representation (+I, +l, -1) the +I are vital for 
the correct classification, whereas the -1 could be replaced 
by a +l .  Therefore a proper representation of this internal 
representation is (+I. $1, *). 
Definition 3 Let M {-I, I ) k  be a set  of Boolean vectors 
and L ( M )  := { + E  : 4 M } .  A boolean vector 
$ E L ( M )  as przme, a.# f r o m  tj C q4 follows that 4 = tj for 
any  4 E L ( M ) .  The  set of alZprinae vectors of M is P ( M ) .  
Using this definition the proper description of the internal 
representations, which lead to a correct classification of the 
pattern t’’ is P (B-’(T’’)) and for T patterns [,” therefore 

One last precaution has to be taken, in order to com- 
ply with the principle of minimal weight disturbance and 
avoid “unnecessaryn weight changes. Consider the internal 
representation (+I, -1 ,  -1) and the desired internal repre- 
sentation (+I,+],*) of the pattern 6”. If the distance of 
the pattern to the plane defined by W1 is less than one, then 
(1) would still lead to  a weight change, although the pat- 
tern already is “correctly” classified at the first neuron. In 
order to circumvent this, we define an embedding function 
d : lF-IR: 

P (B-yT;)) x . . . x P (B-l(r;))  := P”‘(”“’’@)) 

1 i f z < O o r z > l  
z otherwise d ( z )  := 

Putting the pieces together, the MadaTron algorithm is 
defined as follows. 

Definition 4 Let Q, E P X r ~ B ~ ’ ( r p @ ) )  be U T tupel o fpr ime  
vectors and Q,c E ( -1 ,  *, 1)  ats 1-th component. The Ma- 
daTron algorithm is defined by: 
1 Choose r > 1 patterns [ ” f l  (randomly). 
2 Let AW,(@,,F1, ...,[’) be the solution of 

min IlAW,II subject t o  

3 Let AW(cj*,[”l, .. . , tpT)  := (AW1(&,[pl, .  . . , E b r ) ,  
. . . , Awk(4E, tp1 , .  . . , tpr))  be the solution of 

5 Increment W byAW(q4*, [p1 , . . . , tp r )  
6 Go back to 1 .  

Hence for each combination of desired internal representa- 
tions, the minimal necessary weight changes a t  each neuron 
are computed. Each weight change is measured by the eu- 
clidean norm and summed up using the q-th power. This is 
minimized over all combinations tP. By choosing T = 1 one 
recovers the Madaline I algorithm. 

3.2. Experimental results 
Computer simulations within the same setting as initially 
described showed an 20% improved performance. Fig.2 
shows the classification capacity as a function of r,  and 
shows that a value of a z 3.3 is reached as compared to  the 
best value of 2.8 of Table 1. 

a 
3.3 1 

3.21 

2.8 2.9 t 1 
Figure 2. Class. capacity as a function of r (a = m) 

One might suspect that  the minimization over the inter- 
nal representations is very costly, which is true but by using 
a depth-first-search together with a branch-and-bound me- 
thod, the computer time can be cut efficiently. As can be 
seen in Fig.3, using r = 5 instead of one pattern does not 
increase the computing time at  d. This result applies to  
IC = 3 hidden neurons and since the number of possible 
combinations grows exponentially with k, it further was ne- 
cessary to bound the branch-width to a value of 10 - 20, 
since in rare situation the branch-bound method is not ef- 
ficient enough. This happens especially in the beginning 
when all weights are initialized with zero or are close to 
zero. 

4. THE CLASSIFICATION OF 
HANDWRITTEN DIGITS 

For our experiments we used with 18468 handwritten di- 
gits from the CEDAR CD-ROM. The preprocessing of the 
bitmaps was either a grey scale approximation with fixed 
resolution or a Hough transformation with respect to  lines 
and circles. We classified the digits according to  the least 
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Figure 3. C P U - t i m e  in seconds on a Sparc-10 for 
successful runs as a function of the number of pat- 
terns p 

significant bit and the results for the classification capa- 
city confirm the improvement of 20% as can be seen in the 
following table. 

1 Gray scale 1 1  Hough transf. 1 

simple architecture using, hard thresholds, it is still very 
competitive and a serious alternative to networks based on 
sigmoid non-linearities. This also implies that  the principle 
of minimal weight disturbance is an alternative to  the error 
function approach and gradient descent techniques many 
learning algorithms rely on. 
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