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Abstract—We consider multi-input multi-output (MIMO)
Rayleigh-fading channels with coarsely quantized outputs,
where the channel is unknown to the transmitter and receiver.
This analysis is of interest in the context of sensor network
communication with low cost devices. The key point is that
the analog-to-digital converters (ADCs) for such applications
should be low-resolution, in order to reduce their cost and
power consumption. In this paper, we consider the extreme
case of only 1-bit ADC for each receive signal component. We
elaborate on some properties of the mutual information com-
pared to the unquantized case. For the SISO case, we show that
on-off QPSK signaling is the capacity achieving distribution.
To our knowledge, the block-wise Rayleigh-fading channel with
mono-bit detection was not studied in the literature.

I. INTRODUCTION

Several works studied MIMO channels operating in
Rayleigh fading environments [1], [2], especially in the limit
of low SNR [3], [4], [5] and high SNR [6]. Unfortunately,
most of these contributions assume that the receiver has
access to the channel data with infinite precision. In practice,
however, a quantizer (analog-to-digital converter) is applied
to the receive signal, so that the channel measurements
can be processed in the digital domain. The reliance on
high-resolution analog-to-digital converters (ADCs) easily
becomes unjustified as soon as we have to deal with high
speed MIMO channels [7]. In this case, the required high
resolution ADCs are expensive and even no longer feasible.
In fact, in order to reduce circuit complexity and save power
and area, low resolution ADCs have to be employed [8], [9].
In [7], [10], we study the effects of quantization from an
information theoretical point of view for MIMO systems,
where the channel is perfectly known at the receiver. It
turns out that the loss in channel capacity due to coarse
quantization is surprisingly small at low to moderate SNR.
Motivated by these works, we aim to study the communi-

cation performance of Rayleigh-fading channel taking into
account the coarse quantization. We consider the extreme
case of 1-bit quantized (hard-decision detection) MIMO
channel with no CSI at the transmitter and the receiver.
When a single bit is used, the implementation of the all
digital receiver is considerably simplified [11], [12], [13]. In
particular, automatic gain control (AGC) is not needed.
Our paper is organized as follows. Section II describes the

system model and notational issues. In Section III we give
the general expression of the mutual information between
the inputs and the quantized outputs of the MIMO system,
then we elaborate on some of its properties in Section IV.
In Section V, we derive the capacity for the SISO channel
case.

II. SYSTEM MODEL AND NOTATION
We consider a point-to-point quantized MIMO channel

where the transmitter employs M antennas and the receiver
has N antennas. We assume a block-Rayleigh fading model
[2], in which the channel propagation matrix H ∈ C

M×N

remains constant for a coherence interval of length T sym-
bols, and then changes to a new independent value. The
entries of the channel matrix are i.i.d. zero-mean complex
circular Gaussian with unit variance. The channel realiza-
tions are unknown to both the transmitter and receiver.
At each coherence interval, the transmitted T symbols are
denoted by the matrix X ∈ C

T×M , whose row vectors are
the transmitted signals at each time slot via the multiple
antennas. Furthermore, the total unquantized channel output
is denoted by R ∈ C

T×N . The transmitted and received
signal matrices are related as follows

R = XH + W , (1)

where W represents the additive noise, whose entries are
i.i.d. and distributed as CN (0, 1). The input matrix X

satisfies the average power constraint

E[tr(XXH)] = T · SNR, (2)

where SNR represents the average signal-to-noise ratio at
each receive antenna.
In our system, the real parts rt,i,R and the imaginary parts
rt,i,I of the receive signal components rt,i, 1 ≤ t ≤ T
and 1 ≤ i ≤ N , are each quantized by a 1-bit resolution
quantizer. Thus, the resulting quantized signals read as

yt,i,c = sign(rt,i,c) ∈ {−1, 1}, for c ∈ {R, I},
1 ≤ i ≤ N, and 1 ≤ t ≤ T.

(3)

Throughout our paper, ai denotes the i-th element of the
vector a and [a]i,c = ai,c with c ∈ {R, I} is the real
or imaginary part of ai. The operators (·)H and tr(·) stand
for Hermitian transpose and trace of a matrix, respectively.
Vectors and matrices are denoted by lower and upper case
italic bold letters.

III. MUTUAL INFORMATION
The mutual information between the channel input and

the quantized output of the presented system reads as [14]

I(X,Y ) = H(Y )−H(Y |X)

= EX

[∑
Y

P (Y |X) log
P (Y |X)

P (Y )

]
,

(4)

with P (Y ) = EX [P (Y |X)] and EX [·] is the expectation
taken with respect to the distribution p(X). Herewith,

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

260978-1-4244-2571-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: T U MUENCHEN. Downloaded on December 2, 2008 at 04:08 from IEEE Xplore.  Restrictions apply.



H(·) and H(·|·) represent the entropy and the conditional
entropy, respectively. Given the input X , the unquantized
output R is zero-mean complex Gaussian with covariance
E[RRH|X] = N(IT + XXH), and thus we have [2]

p(R|X) =
exp(−tr(RH(IT + XXH)−1R))

πNT [det(IT + XXH)]N
. (5)

Afterwards, we can express the conditional probability of
the quantized output as

P (Y |X) =

∫ ∞

0

· · ·
∫ ∞

0

p(Y •R|X)dR =∫ ∞

0

· · ·
∫ ∞

0

exp(−tr((Y •R)H(IT + XXH)−1(Y •R)))

πNT [det(IT + XXH)]N
dR

=

N∏
i=1

∫ ∞

0

· · ·
∫ ∞

0

exp(−(yi • r)H(IT + XXH)−1(yi • r))

πT [det(IT + XXH)]
dr,

(6)
where the integration is performed over the positive orthant
of the complex hyperplane and Y •R denotes an element-
wise matrix product with [Y •R]i,j,c = yi,j,cri,j,c.
The conditional probability P (Y |X) have the following
properties

P (Y |XΨH) = P (Y |X) (7)
P (Y |PX) = P (P HY |X), (8)

whereΨ is a unitary matrix and P is a complex permutation
matrix 1. Property (7) is obvious, property (8) follows since,
for a permutation matrix, the following holds

P (Y •R) = (PY ) • (PR), (9)

and by changing the variables of integration from R to PR.
Note that (8) holds only for a complex permutation matrix
and not for a general unitary matrix, as in the unquantized
case (c.f. [2]).

IV. PROPERTIES OF THE MUTUAL INFORMATION
In this section, we derive some properties of the mutual

information based on the structure of the conditional
probabilities (6), where some similarities and differences to
the work [2] for the unquantized case can be observed.

Lemma 1: If the coherence time is equal 1, then the
mutual information is equal zero, independently of the input
density and the number of antennas.

Proof: For T = 1, we have from (6)

P (Y |X) =
∏
i,c

∫ ∞

0

exp(−y2
i,cr

2/(1 +
∑

i,c x2
i,c))√

π(1 +
∑

i,c x2
i,c)

dr

=
∏
i,c

1

2
=

1

22N
.

(10)
Obviously all outputs are equiprobable independently from
the input density and thus I(Y ,X) = 0. Intuitively, for
T = 1, all information is contained in the magnitude of the
signalR, and simple mono-bit conversion leads to no mutual
information between the input and the quantized output and

1A complex permutation-matrix P has all of its elements zero, except
for a single one in each row and column drawn from the set {-1, -j, j, 1}.

thus, to a zero capacity.

Lemma 2: The mutual information is invariant to a trans-
formation of the input probability density from p0(X) to
p1(X) = p0(PXΨ

H) with given complex permutation
matrix P and unitary matrix Ψ

H.
Proof: Let I0 and I1 denote the mutual information

corresponding to the input distribution p0(X) and p1(X)
respectively, by means of equalities (7) and (8), we have

I1 =

∫
p0(X)

[∑
Y

P (Y |P HXΨ)ln
P (Y |P HXΨ)

EX [P (Y |P HXΨ)]

]
dX

=

∫
p0(X)

[∑
Y

P (PY |X)ln
P (PY |X)

EX [P (PY |X)]

]
dX

=

∫
p0(X)

[∑
Y ′

P (Y ′|X)ln
P (Y ′|X)

EX [P (Y ′|X)]

]
dX

=I0,
(11)

where EX [·] is the expectation taken with respect to the
distribution p0(X), and we have substituted Y ′ = PY in
the third step.

Lemma 3: Let us consider the MISO case (N = 1).
Starting from any input distribution p0(X), we can find a
distribution p1(X) that generates as least as much mutual
information with symmetrical (equiprobable) outputs, i.e.,
H(y) = 2T .

Proof: This lemma is simply justified by symmetry
considerations. Let p1(X) be a mixture involving the trans-
formations of the p0(X) by all possible diagonal complex
permutation matrices namely

p1(X) =
1

4T

4T∑
k=1

p0(P kX). (12)

Obviously, this transformation does not change the average
power of the transmit signal. Besides, due to lemma 2 and
the concavity of the mutual information with respect to the
input distribution, it can be easily shown that higher mutual
information is achieved by p1(X) than by p0(X). On the
other hand, we have the output distribution under p1(X) as

P (y) =

∫
P (y|X)

1

4T

4T∑
k=1

p0(P kX)dX

=
1

4T

4T∑
k=1

∫
P (y|X)p0(P kX)dX

=
1

4T

∫ 4T∑
k=1

P (y|P H
k X ′)p0(X

′)dX ′

=
1

4T

∫ 4T∑
k=1

P (P ky|X ′)p0(X
′)dX ′

=
1

4T

∫ ∑
y

P (y|X ′)p0(X
′)dX ′

=
1

4T

∫
p0(X

′)dX ′ =
1

4T
,

(13)
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where we substituted X ′ = PX . This completes the proof.

This lemma means that, for the MISO case, there exists a
capacity achieving distribution that generates equiprobable
outputs. Thus, the MISO capacity can be found by perform-
ing the following optimization

C = 2T − min
p(X)

H(y|X), (14)

over permutation invariant distributions. This result holds
not necessarily for the general MIMO case, and we expect
that the 4NT possible outputs are not equally likely when
achieving the capacity.
In the rest of the paper, we will treat the SISO (M = N = 1)
case in more details.

V. CAPACITY AND OPTIMAL INPUT FOR THE SISO CASE

In this section we consider the SISO case, N = M = 1.
Since the covariance matrix E[rrH|x] = (IT + xxH) is
the sum of a diagonal matrix (unit matrix) and a rank one
matrix, we can use a general form of the Dunnett-Sobel
decomposition [15] to replace the multidimensional integral
in (6) by a double integral. That is

P (y|x) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
e−

u
2+v

2

2

T∏
t=1

Φ((xt,Ru− xt,Iv)yt,R)·

Φ((xt,Rv + xt,Iu)yt,I)dudv,
(15)

with Φ(x) = 1√
2π

∫ x

−∞ e−
t
2

2 dt is the cumulative normal
distribution function. For T = 2 and T = 3, closed form
solutions for this integral are found in [16], which will be
used later.
Now, we state a theorem on the capacity achieving distribu-
tion of this mono-bit quantized SISO channel. For this, we
define

RQPSK(A) =
1

4T

4T −1∑
l=0

∑
y

P (y|xl) log(4T P (y|xl))

=
∑

y

P (y|x0) log(4T P (y|x0)),

(16)

as the achievable rate with QPSK symbols of power A.
Here, xl, 0 ≤ l ≤ 4T − 1, are all possible sequences
of T equally likely QPSK data symbols, i.e., xl

t ∈
{√A,−√A, j

√
A,−j

√
A}, 1 ≤ t ≤ T . x0 denotes the

sequence with x0
t =

√
A,∀t. The second equality in (17)

follows due using symmetry of QPSK and expression (15).
Furthermore, we use (15) to get a simpler expression for
P (y|x0) as

P (y|x0) =

1

2π

∫ +∞

−∞
e−

u
2

2

T∏
t=1

Φ(
√

Ayt,Ru)du

∫ +∞

−∞
e−

v
2

2

T∏
t=1

Φ(
√

Ayt,Iv)dv

= P (Re{y}|x0) · P (Im{y}|x0).
(17)

Then (17) simplifies to

RQPSK(A) = 2
∑

t,yt=±1

(∫ +∞

−∞

e−
u
2

2√
2π

T∏
t=1

Φ(
√

Aytu)du

)
·

log

(
2T

∫ +∞

−∞

e−
u
2

2√
2π

T∏
t=1

Φ(
√

Aytu)du

)

= 2

T∑
k=0

(
T
k

) (∫ +∞

−∞

e−
u
2

2√
2π

Φ(−
√

Au)kΦ(
√

Au)T−kdu

)
·

log

(
2T

∫ +∞

−∞

e−
u
2

2√
2π

Φ(−
√

Au)kΦ(
√

Au)T−kdu

)
.

(18)
Theorem 1: For N = M = 1, on-off QPSK is optimal2,

where the sender transmits, during each coherence time
block T , either a zero sequence with probability 1 − p, or
QPSK symbols with probability p and power SNR/p. Here,
the duty cycle p is given by

p =

{ SNR
SNRcrit

SNR < SNRcrit

1 otherwise.
(19)

The critical SNR, SNRcrit, is the threshold below which a
higher capacity can be achieved by signaling with a duty
cycle less than unity. SNRcrit results from the following
optimization

SNRcrit = argmax
A

1

A
RQPSK(A) st. A ≥ 0. (20)

The capacity per block is then given by

C =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SNR
SNRcrit

Ccrit︷ ︸︸ ︷
RQPSK(SNRcrit) SNR ≤ SNRcrit

RQPSK(SNR) otherwise.

(21)

Proof: First, as it can be shown that the function
RQPSK(A)/A is concave in A (see later for the special cases
T = 2 and T = 3), the maximizing value given in (22) is
unique and can be obtained by differentiating with respect to
A. Therefore, SNRcrit that solves (21) is the unique solution
of

RQPSK(SNRcrit)

SNRcrit
=

dRQPSK(A)

dA

∣∣∣∣
A=SNRcrit

. (22)

The proof is based on solving the Kuhn-Tucker condition.
Since we have to do with a convex optimization problem in
(14)3, a sufficient condition for an input distribution p∗(x)
to achieve the capacity C claimed in (22) is to be invariant
to any complex permutation (see lemma 3) and ∃γ ≥ 0 such
that

γ(||x||2 − TSNR) + C −
∑

y

P (y|x) log(4T P (y|x)) ≥ 0,

(23)

2Actually, when the transmitter is on, any rotated version of QPSK is
optimal due to property (7). Besides the first symbol x1 of x can be fixed
to

p
SNR/p, which gives the well-known differential QPSK.

3Note that H(y|x) =
R

p(x)
P

y

P (y|x) log(P (y|x))dx is a linear

functional of p(x).
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for all x, with equality if x is in the support of p∗(x).
Let us define the function f(x) as

f(x) = γ(||x||2−TSNR)+C−
∑

y

P (y|x) log(4T P (y|x))

(24)
for fixed γ. Now, choosing

γ =

⎧⎪⎪⎨
⎪⎪⎩

Ccrit

TSNRcrit
SNR < SNRcrit

1

2
√

SNR
dRQPSK(A)

dA

∣∣∣
A=SNR

otherwise,
(25)

we can then verify that the point x̂ with x̂t =
√

SNR/p, ∀t,
satisfies

f(x̂) = 0, (26)

and is a stationary point of the function f(x), i.e.,

∇xf(x)|x=x̂ = 0. (27)

It can be further shown that x̂ is a global minimizer of
f(x) and the corresponding minimum value is 0, and thus
the KKT condition (24) is verified. The details of the proof
is omitted due to lake of space and since the result seems
quite intuitive.4

Actually, it is well known that in the absence of CSI
at both the transmitter and the receiver, and for vanishing
SNR, the capacity can be achieved by on-off (peaky)
signaling schemes. In the unquantized increasingly peaky
signals are needed, i.e., the peak level goes to infinity as the
SNR goes to 0 [3]. In the quantized case, however, the peak
level is fixed to

√
SNRcrit as long as SNR ≤ SNRcrit, and

the capacity grows linearly up to Ccrit. In this regime, the
normalized energy per bit can be obtained from (22) as

Eb

N0
= T

SNR
C

∣∣∣∣
SNR≤SNRcrit

= T
SNRcrit

Ccrit
. (28)

For the special case T = 2, we found in [16] the following
closed form solution for the integral in (19)

1√
2π

∫ +∞

−∞
e−

u
2

2

2∏
t=1

Φ(
√

Ayt,cu)du =

1

4

[
1 +

2

π
arcsin(

A

1 + A
)y1,cy2,c

]
.

(29)

Thus (19) becomes

RQPSK(A)|T=2 =

=

(
1 +

2

π
arcsin(

A

1 + A
)

)
log

(
1 +

2

π
arcsin(

A

1 + A
)

)
+

(
1− 2

π
arcsin(

A

1 + A
)

)
log

(
1− 2

π
arcsin(

A

1 + A
)

)
.

(30)

4Note that any point equal to Px̂ejϕ, for given complex permutation
matrix P and real number ϕ, is a global minimizer of f(x) . The origin
x = 0 is also a stationary point and is a global minimizer if SNR ≤
SNRcrit. These are the only stationary point of the function f(x) due to
special structure of the conditional probability given in (15), and thus the
only potential global minimizers, with a minimal value of 0.

And for the case T = 3, we substitute

1√
2π

∫ +∞

−∞
e−

u
2

2

3∏
t=1

Φ(
√

Ayt,cu)du =

1

8

[
1 +

2

π

(
arcsin(

A

1 + A
)y1,cy2,c+

+ arcsin(
A

1 + A
)y1,cy3,c + arcsin(

A

1 + A
)y2,cy3,c

)]
(31)

(see also [16]) in (19) and we obtain

RQPSK(A)|T=3 =

=

(
1

2
+

3

π
arcsin(

A

1 + A
)

)
log

(
1 +

6

π
arcsin(

A

1 + A
)

)
+

(
3

2
− 3

π
arcsin(

A

1 + A
)

)
log

(
1− 2

π
arcsin(

A

1 + A
)

)
.

(32)
In both case, RQPSK(A)/A is a concave function of A .
Solving the optimization (21) numerically, we found the
following values for SNRcrit and Ccrit at T = 2

SNRcrit,T=2 = 1.361648,

Ccrit,T=2 = 0.226813.
(33)

And for T = 3, we obtained
SNRcrit,T=3 = 1.139946,

Ccrit,T=3 = 0.474754.
(34)

Obviously the critical SNR, SNRcrit decreases as the
coherence block length T increases and goes to zero as
T → ∞. A closed form solution for the integral in (18)
is for T > 3 unknown and only approximations are found
in the literature [16]. Finally, formula (22) can be used to
obtain the capacity.

In Fig. 1, we plotted the capacity of the mono-bit SISO
Rayleigh-fading channel per channel use over the SNR
for the two cases where the coherence time T = 2 and
T = 3, both normalized by T . The squares indicates the
threshold (SNRcrit, Ccrit), up to which the capacity grows
linearly with the SNR. The coherent capacity achieved by
quantized QPSK, which is an upper bound on our non-
coherent capacity, is also shown. It is obtained assuming
that the receiver knows the channel coefficient h. That is
the average capacity achieved by QPSK over the quantized
coherent Rayleigh-fading channel

Ccoh = Eh[H(x, y|h)]

= Eh

[
2−

∑
x

∑
y

P (y|x, h) log P (y|x, h)

]
,
(35)

where we substituted H(y) = 2, since all four possible
outputs are equiprobable, and

P (y|x, h) = Φ

(
Re[y]Re[hx]√

1/2

)
Φ

(
Im[y]Im[hx]√

1/2

)
.

(36)
In the coherent case, the ratio of bit-energy to noise density
at vanishing SNR is given by [3], [10]

Eb,coh

N0

∣∣∣∣
SNR→0

=
π

2
ln2 ≥ T

SNRcrit

Ccrit
, from (29). (37)
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In Fig. 2, the normalized capacity of the mono-bit Rayleigh-
fading SISO channel versus coherence interval T for
SNR=10dB. The coherent upper-bound is also plotted.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

SNR (linear)

C
/T

 (
bi

ts
/c

ha
nn

el
 u

se
)

Coherent Capacity
Capacity for T=2
Capacity for T=3

Fig. 1. Capacity of the mono-bit Rayleigh-fading SISO channel for T = 2,
T = 3, T = ∞.
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Fig. 2. Capacity of the mono-bit Rayleigh-fading SISO channel versus
coherence interval T for SNR=10dB.

VI. CONCLUSION

We studied the mutual information of the Rayleigh-fading
MIMO channels with one-bit ADC, in the absence of chan-
nel knowledge at the transmitter, and some of its properties
compared to the unquantized case [2]. Then, we analysed the
SISO case in details. Contrary to the unquantized channel,
the non-coherent SISO capacity is achieved by on-off QPSK
for the whole SNR range, where the optimal duty cycle
depends only on the coherence time. We developed expres-
sions for the achievable rates, with closed form for T = 2
and T = 3. Deriving the structure of the capacity for the
general MIMO case is a more difficult task and could be a
research topic for the future, especially, asymptotic analysis

(at low SNR) could be investigated. Comparison to pilot-
aided schemes and extension to general correlated fading
channels, under such coarse quantization, are also interesting
issues.
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