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Abstract—Two types of noise-free relay cascades are investi-
gated. Networks where a source communicates with a distant
receiver via a cascade of half-duplex constrained relays, and
networks where not only the source but also a single relay node
intends to transmit information to the same destination. We
introduce two relay channel models, capturing the half-duplex
constraint, and within the framework of these models capacity is
determined for the first network type. It turns out that capacity
is significantly higher than the rates which are achievable with
a straightforward time-sharing approach. A capacity achieving
coding strategy is presented based on allocating the transmit
and receive time slots of a node in dependence of the node’s
previously received data. For the networks of the second type,
an upper bound to the rate region is derived from the cut-set
bound. Further, achievability of the cut-set bound in the single
relay case is shown given that the source rate exceeds a certain
minimum value.

I. INTRODUCTION

The focus of this paper is on half-duplex constrained
relay line networks, i. e. on multi-hopping networks where
the intermediate relay nodes are arranged in a cascade and,
further, are not able to transmit and receive simultaneously.
We consider networks with a single source-destination pair and
networks where in addition to the source a single relay node
intends to transmit own information. Since the main interest
is to gain a better understanding of half-duplex constrained
transmission, we assume noiseless network links in order to
avoid detraction from the actual topic.
The classical relay channel goes back to van der Meulen [1].

Further significant results concerning capacity and coding
schemes were obtained in [2]. More recently, the focus of
attention shifted towards relay networks and an achievable
rate formula for relay line networks with a single source-
destination pair together with a random coding scheme ap-
peared in [3]. A comprehensive literature survey as well as
a classification of random coding strategies is given in [4].
There has also been work on determining the capacity or rate
region of various half-duplex constrained relay channels [5],
[6] and networks [7], however, under the assumption that the
time-division schedule is determined a priori.
An obvious approach in order to handle the half-duplex

constraint in a line network is to use a transmission scheme
in which even numbered relays send in say even numbered
time slots and receive during odd numbered time slots while
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odd numbered relays behave vice versa. If the source uses
a binary alphabet, the rate becomes 0.5 bits per use while a
ternary alphabet yields a rate of 0.5 log23 bits per use. By
allowing randomly allocated transmit and receive time slots,
higher rates are possible as was pointed out in [8]. In [9],
the same author uses an entirely binary, noiseless model for
the single relay channel such that the half-duplex constraint is
included. It is shown there that capacity is equal to 0.7729 bits
per use what demonstrates that time-sharing falls considerably
short of the theoretical achievability. By the way, the same
channel model was used in [10] in a different context. Two
coding schemes for this particular model were outlined therein,
which, in hindsight, can be interpreted as half-duplex schemes.
We will introduce two further channel models for half-

duplex constrained relays. Within the framework of these mod-
els, it is shown that the capacity of a half-duplex constrained
single relay channel is equal to 0.8295 bits per use if the relay
is able to distinguish binary symbols and 1.1389 bits per use if,
in addition, the relay is capable of detecting time slots without
transmission. Furthermore, it is shown that the capacity of each
relay cascade with finite length is greater than one bit per use
assumed the latter relay model is utilized. The key idea of the
achievable scheme is to determine the slot allocation of each
relay node in dependence of the data received by the relay
before. With regard to half-duplex constrained line networks,
where not only the source but also a single relay node intends
to transmit own information to the same destination, an upper
bound to the rate region is derived. We finally show that in the
special case of a single relay channel (with source and relay
source), a slightly different version of the introduced coding
scheme is able to achieve a segment on the cut-set bound,
provided that the source rate exceeds a certain minimum value.
Notation: |S| denotes the cardinality of set S and P(S)

the power set of S. Further, Sī := S\{i} while {f(i) :
1 ≤ i ≤ m} means {f(1), f(2), . . . , f(m)}. The conditional
pmf pY |X(y, x) is indicated as p(y|x) whenever the random
variables can be figured out from the arguments. Further, the
vector x[0:m] := (x0, x1, . . . , xm) summarizes realizations of
the random variablesX0, X1, . . . , Xm. The entropy expression
H(Yi|X(k:k>1)) equals H(Yi|Xk) in case k > 1 and H(Yi)
in case k ≤ 1. We will abbreviate pXiXi+1(a, b) as pi

ab.

II. NETWORK MODEL
We consider a discrete, memoryless line network composed

ofm+2 nodes whereas each node is characterized by a unique

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2385978-1-4244-2571-6/08/$25.00 ©2008 IEEE



X0

Xi

Xi

Xi−1

Xi−1

Yi

YiYi−1

Yi−1

Ym+1

RelayRelay
ii− 1

1

2

Fig. 1. The considered multiple relay cascade (top) and an excerpt. If relay i

is transmitting, the switch is in position 1 otherwise in position 2.

number from the integer set {0, . . . , m + 1}. The integers 0
andm+1 are allocated to source and destination, respectively.
The remaining nodes 1 to m represent half-duplex constrained
relays (abbreviated as HD relays). A graphical representation
is given in Fig. 1. The output of the ith node, which is the
input to the channel between node i and i + 1, is denoted
as Xi, i ∈ {0, . . . , m}, and takes values on the alphabet
Xi = {0, 1,N}, where N is meant to signify a channel use in
which node i is not transmitting. Correspondingly, the input
of the ith node, which is the output of the channel between
node i− 1 and node i, is Yi, i ∈ {1, . . . , m + 1}, with values
from the alphabet Yi. Each message w0, sent via multiple hops
from source node 0 to sink node m + 1, is uniformly drawn
from the index set W0 = {1, . . . , 2nR0}, where n is the block
length of the encoding scheme and R0 the transmission rate.
Apart from the source node, there is possibly a single relay
node r ∈ {1, · · · , m}, which intends to transmit independent
indices taken from Wr = {1, . . . , 2nRr} to the destination.
Again, the transmission scheme is multi-hopping since the
information flow associated with message wr has to pass all
nodes with indices greater than r. We assume noiseless links
what results in a deterministic network, i. e. the entries in
p(y[1:m+1]|x[0:m]) are either 0 or 1. In order to introduce the
half-duplex constraint, we impose following channel model
onto each relay node i ∈ {1, . . . , m}

Yi =

{
Xi−1, if Xi = N
Xi, if Xi ∈ {0, 1},

(1)

where Ym+1 = Xm. Relay model (1) is denoted as ternary
since the reception alphabet of each relay node is Yi =
{0, 1,N}. It can easily be verified that Yi = {0, 1} when (N,N)
is excluded from the Cartesian product Xi−1 ×Xi, and in this
case the model is referred to as binary. The interpretation of
both models is as follows: in case relay i sends binary data,
i. e. xi ∈ {0, 1}, it only hears itself and, thus, cannot listen
to relay i − 1 or, equivalently, relay i and relay i − 1 are
disconnected. Conversely, if relay i is quiet, i. e. xi = N, it
is sensitive for the channel input of relay i− 1. The feedback
interpretation of the relay nodes as shown in Fig. 1 results
from these considerations. As a consequence of the underlying
model, the conditional channel pmf can be factored as

p
(
y[1:m+1]|x[0:m]

)
= p

(
y1|x[0:1]

)
· · · p

(
ym|x[m−1:m]

)
p (ym+1|xm) . (2)

Moreover, we will assume that the channel inputs
X0, X1, . . . , Xm form a Markov chain what seems to
be unmotivated at first glance but turns out to be without loss
of optimality as explained in Remark 3.

III. CODING THEOREMS
Theorem 1: The zero-error capacity of the relay network

defined above, where only the source but no relay transmits
own information, is given by

C = max
p(x[0:m])

min {H(Y1|X1), . . . , H(Ym|Xm), H(Ym+1)} .

(3)
Proof: The proof is given in the Appendix. Achievability

is shown in the next section.
Example 1 (Single HD Relay Channel, m = 1): The con-

sidered channel with a ternary relay falls into the class of
degraded relay channels [2]. At each time instance, the relay
is either listening or transmitting. When the relay transmits,
i. e. x1 ∈ {0, 1}, the source input cannot be detected by the
relay and, consequently, the source should not transmit. Thus,
it can be assumed w.l.o.g. that p0

00 = p0
01 = p0

10 = p0
11 = 0.

Hence, the source input is not random when x1 ∈ {0, 1} and
together with (1), equation (3) reduces to

C = max
p(x[0:1])

min {H(X0|X1 = N)pX1(N), H(X1)} . (4)

However, when the relay is listening, i. e. x1 = N, the source
should make optimum use of the channel by encoding with
uniformly distributed input symbols, i. e. p0

0N = p0
1N = p0

NN.
Furthermore, in order to achieve the maximum information
flow H(X1) from the relay to the sink or, likewise, from
a symmetry argument, we can choose p0

N0 = p0
N1. These

considerations yield a single degree of freedom in (4). Since
the maximum does not occur in the maximum of one of the
two concave functions, (4) is solved by H(X0|X1) = H(X1).
The resulting assignment is p0

0N = p0
1N = p0

NN = 0.2395 and
p0
N0 = p0

N1 = 0.1407, which yields C = 1.1389 bits per
channel use.
Remark 1: Evaluation of capacity for the binary HD model

is almost along the same lines as in Example 1. However, the
channel input x0x1 = NN is not allowed in the binary model
and, thus, we a priori have p0

NN = 0, which yields C = 0.8295
bits per channel use.
Example 2 (Infinite HD Relay Channel, m → ∞): All re-

lays in the cascade behave according to the ternary model. Due
to the Markov property of the channel inputs, the joint pmf
p(x[0:m]) is completely characterized by p(x[0:1]), p(x[1:2]),
. . . , p(x[m−1:m]). Further, H(Yi|Xi) = H(Xi−1|Xi), which
follows from (1). The idea is now to find a probability
assignment such that the p(x[i−1:i]) are equal for all i ∈
{1, 2, . . . , m} without violating any optimality requirements.
If we can find such a probability assignment, capacity simply
follows by maximizing a single H(Xi−1|Xi) for that partic-
ular assignment. We now pick an arbitrary positive integer i

and try to make pi−1
kl and pi

kl equal for all combinations k, l ∈
{0, 1,N}. By the same arguments as in Example 1, we can
choose w.l.o.g. pi−1

00 = pi−1
01 = pi−1

10 = pi−1
11 = 0, and the same

is valid for p(x[i:i+1]). As a simple consequence, pi−1
N0 = pi

0N

and pi−1
N1 = pi

1N and, from a symmetry argument, p
i−1
N0 = pi−1

N1

and pi
0N = pi

1N . Further regarding our objective, we have to
require that pi−1

kN = pi
kN for k ∈ {0, 1}. Since index i has
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been picked arbitrarily at the beginning, the procedure is valid
for each p(x[i−1:i]) and p(x[i:i+1]), 1 ≤ i ≤ m − 1, what
is sufficient in order to achieve equal pmfs with a common,
single degree of freedom (e. g. pi

0N). Hence, H(Xi−1|Xi),
1 ≤ i ≤ m, is easy to optimize yielding H(Xi−1|Xi) = 1 bit
achieved at pi

0N = 1
6 . The capacity C is, therefore, equal to

1 bit per channel use.
Remark 2: Application of the binary HD relay model yields

C = 0.5 bits per channel use for all relay cascades composed
of two or more binary HD relays. Therefore, the optimum
transmission strategy is just a straightforward time-sharing
approach. The reason lies simply in the fact that the relays
cannot encode parts of their information by means of the slot
allocation since the subsequent relay is not able to recognize
when nothing (i. e. symbol N) was sent.
Theorem 2: The rate region of the relay network defined

above with two sources, namely source node 0 and relay
node r, is characterized by

R0 ≤ max
p(x[0:m])

min {H(Yi|Xi) : 1 ≤ i ≤ m} (5)

Rr ≤ max
p(x[0:m])

min
{
H

(
Yi|Xr−1, X(i:i≤m)

)
:

r + 1 ≤ i ≤ m + 1
}

(6)

and (7) shown at the bottom of the page. The maximization
of the equations is performed jointly regarding p(x[0:m]).

Proof: The proof is given in the Appendix.
Example 3 (HD Single Relay Network with Two Sources):

The ternary relay network considered here is characterized by
m = 1 and r = 1 and together with (1), Theorem 2 becomes

R0 ≤ H(X0|X1) (8)
R1 ≤ H(X1|X0) (9)

R0 + R1 ≤ H(X1). (10)

An outer bound on the rate region of the considered line
network is obviously given by R0 + R1 ≤ log23 bits (Fig. 2,
graph (a)) since the sum-rate can never be larger than the
maximum of H(X1). We first try to determine whether points
on this outer bound, besides (R0, R1) = (0, log23) bits, are
delivered by equations (8) to (10) what inevitably requires
a uniform pX1(x1). Since H(X0|X1) has to be smaller or
equal to H(X1), we are allowed to assume equality in (8)
what follows from Theorem 1. By making the same optimality
assumptions regarding p(x[0:1]) as in Example 1, we get
R0 = 1

3 log23 bits and, consequently, R1 ≤ 2
3 log23 bits.

Note that this value for R1 does not contradict with (9), i. e.
it is smaller than H(X1|X0) concerning the assumed input
distribution. The obtained point lies on the outer bound and
it follows from a time-sharing argument that all points on the
line between (0, log23) bits and (1

3 log23, 2
3 log23) bits are part

of the rate region bound characterized by (8) to (10).

In the sequel, we maintain the optimality assumptions re-
garding p(x[0:1]) and focus on the remaining interval 1

3 log23 <

R0 ≤ 1.1389 bits, where 1.1389 bits is the capacity of a
single ternary HD relay channel (Example 1). Again, R0 =
H(X0|X1) but now pX1(x1) is not uniform anymore (due to
R0 > 1

3 log23) yielding a sum-rate strictly smaller than log23
bits. An upper bound on R1 is given by H(X1) − R0. It
remains to check whether this expression is smaller or equal
to the right hand side of (9) in the considered interval for R0

for the assumed input distribution. However, this is satisfied
and, therefore, the complete upper bound on the rate region
according to (8)-(10) is characterized by

R1 ≤

{
log23 − R0, 0 ≤ R0 ≤ 1

3 log23
Hb

(
R0

log23

)
+

(
1 − R0

log23

)
− R0,

1
3 log23 < R0 ≤ C,

where Hb(·) denotes the binary entropy function and C =
1.1389 bits per channel use. A graphical representation is given
in Fig. 2, graph (b).

IV. CODING STRATEGIES
A. Achievability of C in Theorem 1

A coding strategy is presented capable of achieving C in
Theorem 1. As it is standard in achievability proofs, blocks of
transmissions are used such that in B blocks a sequence of B−
m indices w0 ∈ W0 is sent from the source to the destination.
As B → ∞, the rate R0(B−m)

B
→ R0. The idea behind the

coding strategy is the following. Based on the feedforward
property of the considered line network and due to the fact
that each node is aware of the encoding strategy used by nodes
with larger indices, node i, 0 ≤ i ≤ m, knows at each time
instance the codeword, which will be sent by nodes l > i in
the upcoming transmission block. Thus, each node is able to
adapt its transmission to the codeword chosen by the next node
what can be exploited in order to prevent that concurrently sent
codewords of adjacent nodes occupy the same time slots with
binary symbols {0, 1}.
Different techniques for encoding are used by the source and

the ternary relays. While the source utilizes a ternary alphabet
{0, 1,N} for encoding, the relays represent their messages by
a combination of binary symbols {0, 1} and the allocation of
binary symbols to the slots of a transmission block. Let ni

denote the number of binary symbols used by relay i during
a single transmission block. Then, at most 2nm

(
n

nm

)
indices

can be encoded by relay m where 2nm denotes the number
of distinctive indices when the binary symbols are located at
fixed slots while

(
n

nm

)
denotes the number of possible slot

allocations. Due to the half-duplex constraint, the effective
codeword length of relaym−1 reduces to n−nm. This results
from the fact that relay m cannot pay attention to relay m−1
when relaym sends binary symbols and, therefore, the number
of indices, encodable by relaym−1, is at most 2nm−1

(
n−nm

nm−1

)
.

R0 + Rr ≤ max
p(x[0:m])

min
{
min{H(Yi|Xi) : 1 ≤ i ≤ r − 1}+ min{H(Yk|X(r−1:r−1≥1), X(k:k≤m)) : r + 1 ≤ k ≤ m + 1}, H(Ym+1)

}
(7)
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The same argumentation holds for each relay in the chain, i. e.
relay i, 1 ≤ i ≤ m, is able to encode at most 2ni

(
n−ni+1

ni

)
indices per transmission block where nm+1 = 0 since the sink
node listens all the time. Finally, the effective length of the
source codeword is n−n1 what enables the source to encode
a maximum of 3n−n1 indices. The rate R = n−1log2|W0| is

R0 = min

{
n − n1

n
log23,

ni

n
+

1

n
log2

(
n − ni+1

ni

)
: ∀i

}
,

(11)
where 1 ≤ i ≤ m.
Codebook Construction: The source and all relays generate

codewords according to the scheme described in the previous
paragraph. Let wi ∈ W0 indicate a message index forwarded
by relay i, and let si ∈ Si denote a particular slot allocation
used by relay i for encoding indices wi. Note that each si

consists of n−ni+1 slots, which can be embedded in at most(
n

ni+1

)
ways into a block of length n whereas the embedding is

a function of the concurrently used si+1, . . . , sm. The resulting
slot allocations of length n, employed by relay i, are denoted
as zi ∈ Zi and depend on si, . . . , sm. The procedure works
as follows. Fix |W0| relay m codewords xn

m(wm). For each
slot allocation zm used in relay m codewords, construct |W0|
relay m − 1 codewords xn

m−1(wm−1, zm). This ensures that
relay m−1 can encode each message wm−1 independently of
the slot allocation used by relaym. The procedure repeats and,
finally, for each slot allocation z1 used in relay 1 codewords,
construct |W0| source codewords xn

0 (w0, z1).
Encoding (at the end of block b − 1): Let w

(b)
0 ∈ W0

denote the new message chosen by the source to be sent in
block b, and let ŵ

(b)
i ∈ W0 denote the estimate of w

(b−i)
0

made by relay i at the end of block b − 1. Further, ŝ
(b)
i ,

which is a function of ŵ
(b)
i , corresponds to the slot allocation

used by relay i in transmission block b for encoding ŵ
(b)
i

whereas ẑ
(b)
i is determined by ŝ

(b)
i , . . . , ŝ

(b)
m . Relay node m

sends xn
m(ŵ

(b)
m ) in block b. Since relay node i, 1 ≤ i ≤ m−1,

knows all previously sent indices (ŵ
(b−1)
i , ŵ

(b−2)
i . . . ), which

equal (ŵ
(b)
i+1, ŵ

(b)
i+2, . . . ), it knows ẑ

(b)
i+1 and encodes its latest

index ŵ
(b)
i with xn

i (ŵ
(b)
i , ẑ

(b)
i+1). Similarly, the source chooses

xn
0 (w

(b)
0 , ẑ

(b)
1 ) for transmission in block b.

Decoding (at the end of block b−1): At the end of block b−
2, relay i has estimates (ŵ

(b−1)
i , ŵ

(b−2)
i , . . . ) and, therefore,

estimates of (ŝ
(b−1)
i , ŝ

(b−1)
i+1 , . . . ) and of ẑb−1

i . Then, based on
the received sequence xn

i−1(ŵ
(b−1)
i−1 , ẑ

(b−1)
i ) during block b−1

and due to the knowledge of the codebook used by relay i −
1, relay i is able to determine the unknown index ŵ

(b−1)
i−1 .

The destination knows the codebook used by relay m and
upon receiving xn

m(ŵ
(b−1)
m ), it can determine ŵ

(b−1)
m . Both

the codebook construction and the noise freedom of the relay
cascade guarantee, that the decoding steps can be performed
with zero-error probability.
Achievability: Using the relation n−1log

(
n
m

)
= Hb

(
m
n

)
[11, Th. 1.4.5] as n → ∞, optimality assumptions regarding
p(x[i:i+1]) (symmetry, zero probabilities - see Example 2), the
resultant identities ni

n
= pi

0N+pi
1N and

n−ni−ni+1

n
= pi

NN, we
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Fig. 2. A single ternary HD relay channel with two sources is considered.
(a) Bound due to single source capacities. (b) Upper bound due to Theorem 2.
(c) Region due to the coding strategy with block length n = 640.

obtain
ni

n
+

1

n
log2

(
n − ni+1

ni

)
−→ H

(
Xi|X(i+1:i+1≤m)

)
,

where 1 ≤ i ≤ m. According to the model in (1),
H(Xi|Xi+1) = H(Yi+1|Xi+1) what shows that each entry
in (11), except for the first, converges to the corresponding
entry in (3). The first entry in (11) corresponds to a source,
which uses uniformly distributed input symbols when relay 1
is listening. Evaluation of H(Y1|X1) regarding a uniform
pX0|X1

(x0,N) yields pX1(N)log23. Hence, the first entry in
(3) equals the first entry in (11).
Remark 3: At this point, we are able to justify why it has

been without loss of optimality to impose the Markov property
on the channel inputs. Assume that each pair of channel inputs
is statistically dependent given all remaining inputs. Then the
procedure regarding Theorem 1, as shown in the Appendix,
yields max min{H(Yi|X[i:m]), H(Ym+1) : 1 ≤ i ≤ m} as
simplified cut-set bound what is smaller or at most equal to the
achievable rate. But since the cut-set bound is an outer bound,
only equality is valid, achieved e. g. by X0 → · · · → Xm.
For non-Markovian inputs, the rate region bound as stated in
Theorem 2 is still an upper bound (but eventually looser). The
Markov property merely cancels conditional random variables
from the entropies what does not reduce the region.

B. Coding Strategy for a HD Relay Cascade with Two Sources
A coding scheme based on similar ideas can be derived for

a line network where a second relay node r intends to transmit
own information. Two main points have to be considered:

• Relay source r and all subsequent relay nodes must be
able to encode |W0| · |Wr| different indices since W0 and
Wr are independent.

• The slot allocations zr ∈ Zr, applied by relay source r,
are completely determined by the source indices w0.

Theorem 3: Consider a ternary single HD relay channel
where both source and relay send own information. The bound,
described by equations (8) to (10), is achievable provided that
the source rate exceeds a threshold.

Proof: Let t n1 and (1 − t)n1 denote the number of
binary symbols used by the relay for encoding each w0 and
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w1, respectively, where 0 ≤ t ≤ 1. Further, all possible slot
allocations of the relay represent indices w0. If the number
of source indices matches the number of relay codewords for
representing source indices, or expressed in R0

n − n1

n
log23 =

t n1

n
+

1

n
log2

(
n

n1

)
, 0 ≤ t ≤ 1, (12)

the cut-set bound is achievable. Note that the lhs of (12)
equals pX1(N)log23 what in turn equals H(X0|X1), assumed
the same p(x[0:1]) is used than in Example 1. Further, R1 =
(1 − t)n1n

−1. As n → ∞, R0 + R1 → H(X1) what results
from [11, Th. 1.4.5] under consideration of the rhs of (12).
The minimum R0 (threshold) follows from (12) for t = 0.

V. APPENDIX
Proof of Theorem 1: An upper bound on the capacity of

each single source-destination network with source 0 and sink
node m + 1 is given by [12, Th. 14.10.1]

C ≤ max
p(x[0:m])

min
S∈M

I(X0, XSc ; YS , Ym+1|XS), (13)

where M = P({1, . . . , m}) and Sc is the complement of S

in {1, . . . , m}. In case of a noise-free network, (13) becomes

C ≤ max
p(x[0:m])

min
S∈M

H(YS , Ym+1|XS). (14)

Let S be nonempty and let l ∈ {1, . . . , m} denote the smallest
integer in S. Then

H(YS , Ym+1|XS)
(a)

≥ H(Yl|XSl̄
, Xl) + H(YSl̄

|XSl̄
, Xl, Yl)

(b)
= H(Yl|Xl) + H(YSl̄

|XSl̄
, Xl, Yl)

(c)

≥ H(Yl|Xl), (15)

where (a) follows from the chain rule and (b) from XSl̄
→

Xl → Yl. Equality in (a) and (c) is achieved by the
ascending index sets S = {l, l + 1, . . . , m}, 1 ≤ l ≤ m,
which compose the entries of a set say Ma. Hence, for
each S′ ∈ M\{∅} there exists an S ∈ Ma such that
H(YS , Ym+1|XS) ≤ H(YS′ , Ym+1|XS′). Take e. g. S′ =
{l, l+v}, where 0 ≤ v ≤ m− l, and extend it to an ascending
index set S = {l, l + 1, . . . , m}. The claim, stated in the
sentence before the last, holds. In summary, (15) yields the
first m entries in (3) whereas the remaining entry, H(Ym+1),
follows when S in (14) is replaced by the empty set.

Proof of Theorem 2: The derivation of the individual
rate bounds is almost along the same lines as in the proof of
Theorem 1. Hence, we concentrate on the sum-rate bound.
An upper bound on the sum-rate of each network with two

sources 0 and r and a sink m + 1 is [12, Th. 14.10.1]

R0 + Rr ≤ max
p(x[0:m])

min
S∈M

I(X0, Xr, XSc ; YS , Ym+1|XS),

(16)
where M is the power set of Md ∪ Mu := {1, . . . , r − 1} ∪
{r + 1, . . . , m}. Note that the rhs of (16) simplifies to the rhs
of (14) due to the assumed noise freedom. Let Sd ∈ P(Md)
and Su ∈ P(Mu) where S = Sd ∪ Su. First let Sd and Su

be nonempty, i. e. M′ := P(S) ⊂ M. Further, let i and j be
the minimum and maximum values in Sd whereas k denotes
the minimum value in Su. Then

H(YS , Ym+1|XS)
(a)

≥ H(Yi, Yk|XS)

+H(YSd

ī

, YSu

k̄
|XS , Yi, Yk)

(b)
= H(Yi, Yk|Xi, Xj , Xk)

+H(YSd

ī

, YSu

k̄
|XS , Yi, Yk)

(c)

≥ H(Yi|Xi) + H(Yk|Xr−1, Xk), (17)

where (a) follows from the chain rule, (b) from
(XSd

ī

, XSu) → Xi → Yi and (XSd

j̄

, XSu

k̄
) → (Xj , Xk) → Yk,

and (c) from applying chain rule to the first term in (b) under
consideration of (Xj , Xk) → (Xr−1, Xk) → Yk together
with the described Markov relations. Equality in (a) and (c)
is achieved by the ascending sets Sd = {i, i + 1, . . . , r − 1},
1 ≤ i ≤ r − 1, and Su = {k, k + 1, . . . , m}, r + 1 ≤ k ≤ m,
which compose the entries S = Sd ∪ Su of a set say
Ma. Then for each S′ ∈ M′ there exists a S ∈ Ma such
that H(YS , Ym+1|XS) ≤ H(YS′ , Ym+1|XS′). Take e. g.
S′ = {i, i + v} ∪ {k, k + w}, where 0 ≤ v ≤ r − 1 − i and
0 ≤ w ≤ m − k, and extend S′ to an ascending index set
S = {i, i + 1, . . . , r − 1} ∪ {k, k + 1, . . . , m}. The inequality
relation holds. In summary, the procedure yields

min{H(Yi|Xi) : 1 ≤ i ≤ r − 1}

+ min{H(Yk|Xr−1, Xk) : r + 1 ≤ k ≤ m}

in (7), what follows from (17) taking into account all com-
binations of i and k. The last entry in (7) and the modified
version of above equation in (7) result when, in addition, the
sets S ∈ M\M′ are considered (Sd, Su empty or both).
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