
Ruxandra Lasowski

Fakultät für Informatik
Technische Universität München

Visualization modes for CT-
fluoroscopy guided RF liver ablation

Dissertation





Technische Universität München

Lehrstuhl für Informatikanwendungen

Visualization modes for CT-�uoroscopy

guided RF liver ablations

Ruxandra Lasowski

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. G. J. Klinker, Ph.D.
Prüfer der Dissertation:

1. Univ.-Prof. N. Navab, Ph.D.
2. apl. Prof. Dr. H.-P. Meinzer,

Ruprecht-Karls Universität Heidelberg

Die Dissertation wurde am 31.03.2008 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 07.10.2008 angenommen.





Abstract

Radiofrequency ablation of the liver is a minimally-invasive procedure used for
patients with lesions unsuitable for surgical resection. The intra-interventional 2D
image guidance does not provide all important anatomical information to the inter-
ventional radiologist for insertion and positioning of the needle. Therefore, incorpo-
ration of additional pre-interventional 3D data, would improve the needle guidance.
The central aspect of this thesis is an optimized visualization of pre-interventional

CT data based on CT-�uoroscopy (CT-�uoro) slices acquired during the interven-
tion.
Three di�erent visualization modes are developed to cope with the uncertainty in

estimating the liver deformation caused by breathing. For this purpose, we apply
the animation concept used in uncertainty visualization. We �rst introduce a sub-
volume visualization based on piecewise slice-to-volume registration. In the sequel,
a sampling method on isosurfaces in the convergence basin of the employed cost
function is used to retrieve the motion parameters which de�ne the subvolume. In
our last approach, the motion parameters are optimized to display a trajectory path
along the 'valley �oor' of the employed cost function. The last two modes address
the visualization of the fuzzy or �at area of the cost function providing potential
solutions.
These novel visualization modes based on a combination of rigid registration and

adaptive visualization, allow for a better spatial orientation and neighborhood as-
sessment of critical structures whilst performing the needle insertion.
The thesis also presents evaluations of the proposed visualizations by experienced

interventional radiologists.
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Zusammenfassung

Die perkutane Radiofrequenz Ablation (RFA) der Leber ist eine interventionelle
Methode für Patienten mit nicht-resezierbaren primären Lebertumoren oder Leber-
metastasen. Die intra-interventionelle 2D-Bildgebung stellt nicht alle wichtigen ana-
tomischen Informationen bereit, welche der Radiologe während einer Intervention
braucht. Daher würden zusätzlich vorhandene 3D prä-interventionelle Daten die
Nadelführung und Positionierung entscheidened verbessern.
Der zentrale Aspekt dieser Arbeit ist eine optimierte Visualisierung des CT-

Volumens basierend auf intra-interventionellen aufgenommenen CT-Fluoroskopie
(CT-Fluoro) Schichten.
Drei verschiedene Visualisierungsmodi werden in der Dissertation vorgestellt, wel-

che die Unsicherheit der Leberdeformierung abschätzen können. Hierfür setzen wir
das Konzept der Animation ein, das in der Visualisierung von Unsicherheit ver-
wendet wird. Zuerst stellen wir eine Subvolumen Visualisierung basierend auf der
stückweisen Registrierung der CT-Fluoro Schicht zum Volumen vor. Im Folgen-
den, basierend auf der Strukturanalyse der verwendeten Kostenfunktion, wird eine
Sampling-Methode auf Iso�ächen vorgestellt um die Bewegungsparameter, die das
Subvolumen de�nieren, zu bestimmen. Im letzten Ansatz werden die Bewegungspa-
rameter optimiert um eine Trajektorie entlang der Talsohle der Kostenfunktion
anzuzeigen. Ziel der letzten zwei Visualisierungsmodi ist eine Visualisierung der
'fuzzy' oder �achen Bereiche der Kostenfunktion um in Frage kommende Lösungen
zu präsentieren.
Diese neuen Visualisierungmodi basierend auf einer Kombination rigider Regis-

trierung und adaptiver Visualisierung ermöglichen eine bessere Orientierung sowie
eine Nachbarschaftsbeurteilung kritischer Strukturen während der Intervention.
Ausserdem werden in dieser Arbeit auch Evaluierungen der vorgeschlagenen Vi-

sualisierungsmodi präsentiert, die zusammen mit erfahrenen Radiologen erstellt wur-
den.

Schlagwörter:

Visualisierung, Visualisierung von Unsicherheit, stückweise Registrierung, Schicht
zum Volumen Registrierung, abdominelle Prozeduren, Interventionen, RF Ablation,
Leber





ACKNOWLEDGMENTS

The �rst person I would like to thank is Professor Nassir Navab who integrated me
as an external PhD student in his group. Professor Navab and his group create a
very fruitful environment at the TUM which always inspired me with ideas for my
thesis. I thank Professor Navab for his guidance, his great ideas and his enthusiasm.
I thankWolfgang Wein whose 2D-3D registration modules have provided the start-

ing point and the basis for my work. Darko Zikic and Martin Urschler have provided
the deformed ground-truth volume data which I am thankful for. My thanks also to
Jakob Vogel for his performance as an assisting student working within his interdis-
ciplinary project also with the math department of Professor Brokate. Many thanks
to Professor Brokate and Christian Clason for their support and contributions.
It was a great pleasure to work with Selim Benhimane. I thank him for his math

guidance and ideas that contributed a lot to my thesis.
Special thanks to Stefanie Demirci for her useful remarks and for the proofreading

of my thesis.
I thank Siemens Medical Solutions for funding the research, in particular Dr.

Rainer Graumann, Daniel Rinck, Dr. Michael Sühling and all my colleagues there,
specially the other PhD students: Jan, Jens, Ulrike, Arne.
I very much enjoined the evaluations with our medical partners Tobias F. Jakobs

(who's black humor always added a new perspective on a serious matter), Christoph
J. Zech, and Christoph Trumm in the Klinikum Grosshadern.
I am deeply indebted to Verena Grail for her long friendship and for hosting me

during my visits to Munich. Also for her hospitality I would like to thank Stefanie
Demirci again.
I am very grateful to my mother Mihaela Eleonora Micu who strongly supported

the idea of starting a PhD after four years of work in the industry. Unfortunately,
my father Moise Micu could not live as long for seeing me graduating. And I am
also very grateful for my awesome husband Ophir. His love, humor, black humor,
support and surprises make me a happy person.

vii





CONTENTS

I. Introduction 1

1. Motivation 3

1.1. Radiofrequency Liver Ablation . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1. Work�ow of Liver Ablation under CT-�uoro Guidance . . . . 7

1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. State of the Art 11

2.1. Slice-to-Volume Registration . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1. Intensity-based rigid Slice-to-Volume Registration . . . . . . . 11
2.1.2. Intensity-based non-rigid Slice-to-Volume registration . . . . . 12
2.1.3. Feature-based rigid Slice-to-Volume Registration . . . . . . . . 12
2.1.4. Combined Methods for non-rigid Slice-to-Volume Registration 12

2.2. Uncertainty Visualization . . . . . . . . . . . . . . . . . . . . . . . . 13

II. Visualization Modes for CT-Fluoro guided RF Liver Ab-

lation 15

3. Subvolume Visualization based on piecewise Slice-to-Volume Registra-

tion 17

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1. Registration Details . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Subvolume Visualization based on piecewise rigid Registration . . . . 19

3.3.1. Two-Planes Visualization . . . . . . . . . . . . . . . . . . . . . 19
3.3.2. Four-, Six-Planes Visualization . . . . . . . . . . . . . . . . . 19

3.4. Simpler Visualization Modes . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1. Axial-Planes Visualization . . . . . . . . . . . . . . . . . . . . 22
3.4.2. Envelope-Planes Visualization . . . . . . . . . . . . . . . . . . 23

ix



Contents

3.5. Experiments and Results of Two-Planes Registration . . . . . . . . . 25
3.5.1. Simulation Strategy . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2. Experiments on synthetic CT-�uoro Slices . . . . . . . . . . . 26
3.5.3. Experiments on clinical Data . . . . . . . . . . . . . . . . . . 26

3.6. Experiments and Results of Four-, Six-Planes Registration . . . . . . 33
3.6.1. Experiments on synthetic CT-�uoro Slices . . . . . . . . . . . 33
3.6.2. Experiments on clinical Data . . . . . . . . . . . . . . . . . . 33

3.7. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Adaptive Visualization based on Isosurfaces of Slice-to-Volume Simi-

larity Function 39

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Registration Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1. Parameterization of the 3D Transformations . . . . . . . . . . 41
4.2.2. Iterative registration method . . . . . . . . . . . . . . . . . . . 42
4.2.3. M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4. Annealing M-estimator . . . . . . . . . . . . . . . . . . . . . . 43
4.2.5. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.6. Registration results . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3. Adaptive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1. Isosurface Sampling . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2. Trajectory Waypoints . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3. Trajectory Interpolation . . . . . . . . . . . . . . . . . . . . . 48

4.4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1. CEPs generation with M-estimator . . . . . . . . . . . . . . . 49
4.4.2. CEPs generation with AM-estimator . . . . . . . . . . . . . . 49
4.4.3. Linking epsilon with the volume . . . . . . . . . . . . . . . . . 49
4.4.4. Experiments on synthetic Slices without Deformation . . . . . 50
4.4.5. Experiments on synthetic Slices including Deformation . . . . 50
4.4.6. Experiments on clinical Data . . . . . . . . . . . . . . . . . . 51
4.4.7. Evaluation of the Registration Results . . . . . . . . . . . . . 51
4.4.8. Generation of CEPs . . . . . . . . . . . . . . . . . . . . . . . 52

4.5. Evaluation of adaptive Visualization . . . . . . . . . . . . . . . . . . 59
4.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5. Adaptive Visualization based on Eigenanalysis of Slice-to-Volume Sim-

ilarity Function 61

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2. Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1. First Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2. Second Derivative . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3. Simpli�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1. SSD � Sum of squared Di�erences . . . . . . . . . . . . . . . . 65
5.3.2. Beaton-Tukey . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



Contents

5.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1. Trajectory Path using EV-Step . . . . . . . . . . . . . . . . . 66
5.4.2. Trajectory Path using TASC . . . . . . . . . . . . . . . . . . . 66
5.4.3. Path Visualization and Constraints . . . . . . . . . . . . . . . 68

5.5. Evaluations on analytical Surfaces . . . . . . . . . . . . . . . . . . . . 68
5.5.1. Results using EV-Step with Linesearch Correction . . . . . . . 68
5.5.2. Results using TASC . . . . . . . . . . . . . . . . . . . . . . . 74

5.6. Evaluations on synthetic and real CT-�uoro Slices . . . . . . . . . . . 76
5.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6. Conclusion 79

6.1. Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.1. Extensions for new Scanner Protocols . . . . . . . . . . . . . . 80

A. Optimization 85

A.1. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2. Steepest descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3. Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.4. Gauss-Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.5. Trust regions and damped methods . . . . . . . . . . . . . . . . . . . 87

A.5.1. Trust region methods . . . . . . . . . . . . . . . . . . . . . . . 87
A.5.1.1. Trust region subproblem . . . . . . . . . . . . . . . . 88

A.5.2. Damped methods . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.6. Levenberg-Marquardt . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.7. Sequential Quadratic Optimization . . . . . . . . . . . . . . . . . . . 92

B. List of Abreviations 95

B.1. Medical Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2. Medical Imaging Modalities & Medical File Format . . . . . . . . . . 95
B.3. Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.4. Mathematical Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.5. Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C. List of Publications 99

List of Figures 101

List of Tables 103

Bibliography 105

xi





Part I.

Introduction
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CHAPTER

ONE

MOTIVATION

1.1. Radiofrequency Liver Ablation

R
adiofrequency Ablation (RFA) [90] of the liver is an interventional procedure
applied to patients with unresectable primary liver tumors (HCC - hepatocellu-

lar carcinoma) and metastases. This procedure involves the percutaneous insertion
of needle-like electrodes into the lesion. Through the needle electrodes, an electrical
current is then applied to the tumor, heating the tissue to temperatures over 50 de-
grees and leading to its destruction. The procedure is very attractive due it's minimal
invasive nature, causing less complication risks. However, its success is depending
on an accurate placement of the needle which is crucial for a precise distribution of
heat throughout the tumor and an e�ective thermal coagulation necrosis procedure.
Moreover, the existence of big arteries or veins next to the tumors should also be
considered as it requires longer ablation due to a cooling e�ect of the blood-�ow.
Di�erent imaging systems like iMRI, Ultrasound, CT or CT �uoroscopy (CT-

�uoro), [37, 34] are used to guide the insertion and positioning of the needle.
Each guidance system has its own advantages and drawbacks. The biggest advan-

tage of performing a liver ablation under iMRI guidance is the use of non ionizing
radiation. Not only that it is safe for patient and radiologist but also makes it possi-
ble to visualize the thermal distribution allowing to check whether the entire lesion
was captured by the ablation procedure. Yet, special materials needed to be used
in order not to interact with the magnetic �eld, make the use of this modality the
most expensive. Moreover, the quality of the images are lower than standard MRI
due to employment of low �eld magnets. A setup under iMRI for interventions for
an open magnet design is shown in 1.3. A recently introduced MRI system provides
better access to the patient through a bigger bore (see �gure 1.3(c)).
The ultrasound (US) imaging modality provides a less expensive alternative solu-

tion for RF liver ablation and has the ability to provide images from di�erent angles.
However, its main disadvantage is the degradation of the generated images, caused
by air bubbles which are created during the heating of the tissue.
CT and CT-�uoro have the common main drawback of ionizing radiation. In
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Motivation

contrast to CT, CT-�uoro is a relatively new data acquisition mode for the CT
scanner that allows rapid image reconstruction and in-room image viewing during
CT-guided interventional procedures. In order to reduce the radiation exposure
especially for the physician, a lower dose is employed which results in a noisy CT-
�uoro image. A technical review of image-guided procedures can be found in [132].
A setup of an intervention under CT-�uoro guidance is shown in �gure 1.2.

(a) (b)

(c)

Figure 1.1.: RF equipment (courtesy of RITA Medical Systems): (a) Generator (b)
Needle with temperature simulation along the electrode tips. The longer
electrodes provide a 1cm safety margin for eliminating microscopic le-
sions.
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1.1 Radiofrequency Liver Ablation

(a) (b)

(c) (d)

Figure 1.2.: Intervention setup (CT-�uoro guided): (a) Interventional radiologist,
CT-�uoro image display and patient lying on the CT table. (b) Needle
after extension (RITA Medical Systems). (c) During RF ablation. (d)
CT-�uoro acquisitions (with foot pedal).
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(a) (b)

(c)

Figure 1.3.: Setup of an intervention under iMRI guidance. (a) Magnetom Open,
Siemens Medical Solutions, Erlangen, Germany. The MR scanner has
an open magnet design where the access to the patient is from the side.
(b) Planning on the workstation for trajectory path. (c) Magnetom
Espree, Siemens Medical Solutions. New generation of MRI machine
with a bigger bore to enable better patient access.
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1.2 Problem Statement

1.1.1. Work�ow of Liver Ablation under CT-�uoro Guidance

We are analyzing the work�ow of RF liver ablation under CT-Fluoro guidance, as
performed by our clinical partners. First, a high resolution contrasted CT-volume
data of the patient's liver is being acquired. The choice of cardiovascular phase
depends on the type of tumor; HCC, breast cancer metastases, and renal cell car-
cinoma metastases are better visualized in the arterial phase, while for all other
metastases, the venous phase is preferred. Based on this actual data, a rough plan-
ning of the needle insertion is performed1. The following stage of needle insertion
is then performed using real-time CT-�uoro images which are generated with lower
dose. At this stage, the attending interventional radiologist is required to register
the volume in his mind, accounting for the liver contour, ligamentum falciforme,
spleen, gallbladder or other patient speci�c anatomical landmarks, e.g. calci�ca-
tions and previously introduced surgical clips. CT-�uoro images do not display all
anatomical information contained by the pre-interventional volume data. The inter-
ventional radiologist only guesses where the actual needle position is placed in the
pre-interventional volume. Since the needle trajectory is not always in-plane, only
a small part of the needle is visible. The latter fact and the breathing motion pose
additional di�culties to the interventional radiologists. The current set-up forces
the interventional radiologists to leave the intervention room whenever they need to
consult the pre-interventional volume. The data is usually accessible at separated
workstations that are located outside the intervention room. Even if the volume is
present on a second monitor throughout the intervention, only a registration between
the interventional CT-�uoro slice and the pre-interventional volume would spare the
search through the volume of the interventional radiologist. For that purpose, we
are aiming at developing an interface of triggering an automatic registration process
and presenting a high quality subvolume of the pre-interventional CT-volume in the
intervention room. In addition, the table must often be lowered during the insertion
in order to provide access for the needle insertion. Augmentation of the 'Field of
View' (FOV) is performed to have better visibility in the CT-�uoro slice. All these
changes need to be taken into account for a better initialization of the registration
process. As last stage of the work�ow, a post-contrast CT data is acquired after the
ablation to assess the necrosis. A scheme of the work�ow is shown below in �gure
1.4.

1.2. Problem Statement

Our entry point in the current work�ow (see �gure 1.4) is the needle insertion
task. We are investigating the registration of one CT-�uoro slice with the pre-
interventional CT data-set (volume). Since the liver moves and deforms with the
breathing, a non-rigid registration would be appropriate. However, to perform a
deformable registration only based on the CT-volume and one slice without incor-

1Recent works of Kröger et al. [59] target to help the planning by simulating a trajectory of the
needle with optimal heat dispersion
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Motivation

Figure 1.4.: Current work�ow performed by our clinical partners for the CT-�uoro
guided liver ablation.

porating any prior knowledge and present one deformed slice as a solution in the
intervention room, is, for this application, very hard to achieve.
The reasons for this ill-posedness are listed below:

1. RFA is performed while the patient is breathing continuously, whereas the pre-
interventional CT-volume is usually acquired during deep inspiration.Only in
this breathing stage the pleura cavity can be appreciated to its full extension.
Also, the patient can hold his breath for the imaging procedure more easily.
Breathing instructions during the intervention are common. Once the needle
is inserted into the target lesion, breathing is usually impaired due to moder-
ate pain and/or psychological reasons. A review regarding liver motion and
deformation due to respiration is published in [21, 9].

2. CT-�uoro slices have a lower signal-to-noise ratio compared to pre-interventional
CT data due to the lower radiation dose applied (e.g. 59mA in Fluoro mode,

8



1.3 Contributions

260mA for diagnostic scan).

3. A single CT-�uoro slice provides much less information than an entire CT-
volume. Furthermore it is thicker( 4mm or 6mm) than pre-interventional CT
data (3mm or 1mm).

4. The only anatomical features that could be used for liver registration are the
vessels. These are only seen in the contrast-enhanced pre-interventional CT
scan. Neither intrahepatic vessels nor metastases can be appreciated using
CT-�uoro slices. Since primary liver cancer (HCC) is usually pretreated using
transarterial chemoembolization (TACE), the used radiopaque embolic agent
can be visualized in the non-enhanced CT-�uoro scan.

5. De�nitions of 'most similar' slices in the pre-interventional CT-volume by two
experienced interventional radiologists showed that there is an inter-observer
variance between the slices. This is expected since the deformation makes it
impossible to have a single deterministic solution.

6. Registration needs to be done in real time.

Commercial solutions for needle guidance in abdominal interventions do not exist.
A previously existing system CT-Guide 1010 (Ultraguide, Tirat Hacarmel, Israel)
was retreated from the market. The system provided virtual navigation through
electro-magnetic tracking of the needle and respiratory gating. Evaluations of the
system as described in [50] showed that the accuracy was 2.2± 2.1mm in 50 proce-
dures. But higher deviations at the order of 20mm also occurred due to agitated or
stronger breathing. Because of the real-time nature of the procedures, most systems
assume rigidity which does not hold without a strict breathing gating technique or
intubation. Intubation is very seldomly employed during RFA and only when med-
ical indication is required. Strict gating techniques did not prove to be reliable in
all cases either [6, 50]. The proposed non-rigid registrations mentioned above [8] are
still under development due to the unsolved validation and huge time they require
for calculations.
We believe that a visualization coping with the uncertainty introduced by the

deformation and displaying slices of the volume without deforming the data, could
be an alternative solution to a deformable slice-to-volume registration. We �nd that
among the techniques of uncertainty visualization the animation is the most suitable
for our application.

1.3. Contributions

In order to support the RF liver ablation procedure under CT-�uoro guidance, we
target on displaying contrasted high resolution data corresponding to the actual
CT-�uoro slice in the intervention room. This thesis proposes new optimized vi-
sualization modes for CT data based on interventionally acquired CT-�uoro slices.

9
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The combination of registration and appropriate visualization provides a solution for
the ill-posed deformable slice-to-volume registration. Three di�erent visualization
modes are developed that cope with the uncertainty in estimating the deformation.
The modes consist in automatically displaying a subvolume next to the CT-�uoro
slice in an animated sequence. The trajectory waypoints and their traversal in the
CT-volume are optimized to allow for displaying only relevant information of the
CT-�uoro slice. Furthermore, we provide a user interface to interact with the an-
imation and to manually navigate through the resulting subvolume. We evaluate
our proposed solutions on realistic synthetic slices constructed from patient data.

� The �rst contribution features a piecewise registration of the liver to detect for
each piece the most corresponding slice in the entire CT-volume for each part
of the liver, respectively [74, 75]. Starting with dividing the liver into its dorsal
and ventral part in the �rst stage, we then increase the partition to six parts
for better estimating the deformation. Since the visualization of a subvolume
de�ned by more than two slices could cause perception di�culties to the in-
terventional radiologists who are used to axial slices, we have also presented
alternative visualization modes for comparison. A detailed presentation of this
method is given in chapter 3.

� In the following, we address the de�nition of a set of solutions based on analysis
of the cost surface in the convergence basin of the registration result [62, 61].
In this neighborhood, out-of-plane motion parameters samples, located on
the isosurfaces of the minimized cost function are found using a line search
strategy. This set of solutions will increase the con�dence in the result and
allows a smooth neighborhood exploration. The resulting volume takes into
account in which projection parameters the registration is most sensitive. The
method is presented in detail in chapter 4.

� Last but not least, similar to the previous approach, starting from the registra-
tion result, a trajectory along the valley �oor of the cost surface is calculated.
By moving along this trajectory, we capture the parameters for which the
change in the similarity measure is minimal, i.e. the parameters which impose
most uncertainty when searching for a solution in the CT-volume. In order to
�nd this valley, we adapt algorithms from computational chemistry, as well as
a newly developed adaptive eigenvector step method. The method is presented
in detail in chapter 5.

All approaches are evaluated on synthetic CT-�uoro slices derived from patient
data. Routinely acquired CT-�uoro slices are used for evaluation and assessment by
experienced interventional radiologists.
The visualization of a subvolume in the pre-interventional volume brings much

more intuitive information to the interventional radiologist than one single slice.
This information includes the vessels as well as lesion spread and distribution. The
needle guidance toward the lesion is therefore improved. In addition, this could
result in less radiation dose for the patient and examiner.

10



CHAPTER

TWO

STATE OF THE ART

2.1. Slice-to-Volume Registration

In order to show anatomy which is only visible in the high quality pre-interventional
acquired volume, the image slices acquired during the intervention must be re-
lated to the pre-interventional volume through a slice-to-volume registration. As
stated in [5, 6, 17], slice-to-volume registration is di�erent than 2D-3D registra-
tion [89, 88, 46, 126]. The X-ray projection images represent each the 2D image.
The digitally rendered radiographs (DRR), generated via ray-casting or light �elds
[104] from the 3D CT-volume, are compared with the 2D projection image1 for the
2D-3D registration. Procedures of the slice-to-volume category utilize several image-
guidance work�ows. Detailed analysis of iMRI/MRI are given in [29], US/MRI in
[87, 8], US/CT in [127, 128], CT/CT in [80], CT-�uoro/CT in [130, 131, 6, 5, 133].

2.1.1. Intensity-based rigid Slice-to-Volume Registration

In [130], piecewise slice-to-volume registration is used to infer the location of the
target lesion into the CT-�uoro image for robotically assisted lung biopsy. The
tracking of circular sections is based on the tracking of the lung texture, the bronchi,
and vessels. In [131], the same registration is used for reconstruction of a 4D CT
lung and deformation estimation for respiration motion compensation.
In [29], rigid slice-to-volume registration is applied to align iMRI interventional

slices to a pre-interventional MRI volume for radiofrequency ablation of prostate
cancer. Di�erent cost functions are used at di�erent resolutions. Su�ciently accu-
rate results are achieved for transversal slice acquisitions in order to aid image-guided
therapy.
In [6], the authors compare di�erent similarity measures for registering CT-�uoro

to CT. The cross-correlation is found to be the optimum measure. However, the
success of the employed cost functions and optimization algorithms has been re-
ported by the authors to be highly depended on the breathing motions artifacts. In

1also called X-ray �uoroscopy image
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[5], the authors introduce a novel similarity measure, stochastic rank correlation, to
overcome the assumption that there is a linear relationship between the intensities
of the images to be registered.

2.1.2. Intensity-based non-rigid Slice-to-Volume registration

For a similar application to ours, namely the CT-�uoro guided lung ablation, a non-
rigid intensity based slice-to-volume registration algorithm is employed by Yaniv
et al. [133]. In particular, Thirion's DEMONS [115] algorithm is evaluated on a
synthetic dataset and is found to be unsuitable for recovering even very small de-
formations (less than 4mm).

2.1.3. Feature-based rigid Slice-to-Volume Registration

Augmented reality guided radio frequency ablation is proposed in [77]. Based on
radio-opaque �ducials, an extended 3D/2D criterion, incorporating error prediction,
is used to register a 3D patient model including skin, liver, and tumor(s) generated
from pre-operative CT data to the patient. Evaluations of this system on real
patients is presented in [80].
During interventions under CT/CT-�uoro guidance, the radiologists are also ex-

posed to radiation by the system itself and scattered radiation from the patient.
Therefore, robotic systems are proposed for overcoming this problem. Robotic as-
sisted spine and kidney interventions are reported in [85]. The same robotic system
has also been used in a randomized patient study for liver biopsies [84]. The �nal in-
sertion has been done by an interventionalist based on the system calculations with
the outcome of a shorter time, better accuracy, and less irradiation of physician and
patient.

2.1.4. Combined Methods for non-rigid Slice-to-Volume

Registration

Integration of vessel feature in intensity based methods for registering US slices to
preoperative MR volumes also for RF liver ablation is reported in [87]. Their work
is extended by Blackall et al. [8] to a patient speci�c breathing model incorporat-
ing deformations. By using the motion models, the authors drastically reduce the
degrees of freedom (DOF) of a non-rigid registration. However, the model does not
take into account the deformation induced by the needle pressure and relies on previ-
ously acquired MR volumes in di�erent breathing stages. A review of active models
for image guided interventions can be found in [43]. Some authors propose an inser-
tion of �ducial markers into the liver for updating and estimating its deformation
in real-time during the intervention. Also, technical guidance like electro-magnetic
[120] or optical tracking [71, 70] is employed for updating a deformable model of
the liver. These systems have been evaluated during CT-guided in-vitro studies of
a liver phantom and in-vivo animal studies.

12
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2.2. Uncertainty Visualization

Uncertainty visualization is a wide area and topic of many research activities in
the �eld of visualization. Di�erent approaches have been developed and proposed
depending on the application and the data types. For one dimensional data, er-
ror bars are common, whereas for two dimensional data glyphs like arrows, balls,
cones, ellipses, boxes, and lines. Also di�erent forms of surfaces (fuzzy, blurred,
transparent, colors, overlays) and animations belong to the arsenal of uncertainty
visualization. The last two approaches are also used for three dimensional data.
An overview of uncertainty visualization can be found in [83, 53]. In the context
of medical uncertainty visualization, the work of Simpson et al. [110] visualizes the
registration uncertainty on a linear path for a surgical task. The method consists of
rendering a path distribution volume to aid the instrument placing. Recent work of
Lundstrom et al. [66] proposes a probabilistic animation to visualize the uncertainty
in medical volume rendering for tissue classi�cation. There, the authors o�er di�er-
ent animation modes with user interaction in order to help the diagnostic decision
support which is routinely very tedious task, since the radiologists manually explore
adjustments of the transfer functions provided for the tissue classi�cation.
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CHAPTER

THREE

SUBVOLUME VISUALIZATION BASED ON

PIECEWISE SLICE-TO-VOLUME REGISTRATION

3.1. Introduction

T
his chapter presents a visualization which is based on piecewise rigid/a�ne
registration of the CT-�uoro slice to the CT-volume. Rigid/a�ne models do

not capture the deformation [21]. However, by dividing the liver into di�erent parts
and searching for each part in the whole CT-volume separately, we expect to estimate
the deformation volume. With an adequate visualization of the volume of interest,
the interventional radiologist can orientate further without interrupting his work.
This will also reduce the number of interventionally acquired slices resulting in less
radiation for patient and physician. The visualization is a side-by-side 2D display as
in �gure 3.14 and additional 3D displays with 3D coronal and sagittal views of the
registration results and segmented liver as shown in �gure 3.16. The 3D visualization
provides information on how the oblique views are located in the liver.

The derivation of clinical ground truth (GT) data by incorporating by incorpo-
rating �ducial markers as proposed in [103] is due to the minimal-invasive nature of
this procedure very di�cult.

We therefore generate a synthetic data set allowing precise analysis and testing of
the registration solutions. For this purpose, approximated �uoro slice simulations are
obtained from the pre-interventional CT-volume to evaluate registration algorithms.
The creation of this synthetic data is described in section 3.5.1.

We have also have asked two experienced interventional radiologists to indepen-
dently de�ne planes in the pre-interventional CT-volume that they consider to be
the best approximation to the corresponding �uoro slices. An inter-observer vari-
ation in the de�nition of corresponding slices has been clearly observed (see table
3.1). Partner physicians believe that also intra-observer variation is highly possible,
in case one interventionalist is asked to rede�ne the slices at a later time. We are
using the manually selected slices to quantitatively and qualitatively evaluate the
registration results on real CT-�uoro data.
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3.2. Methods

3.2.1. Registration Details

The registration is purely intensity based. Vessel features are not visible in CT-�uoro
slices in order to be used for the registration. We employ a robust similarity measure
f as described in [126, p.14]. This choice is justi�ed by the low signal-to-noise ratio
of the CT-�uoro slices, the intensity di�erences between contrasted volume and not
contrasted CT-�uoro slice, and presence of needle in the 2D CT-�uoro slices. Let
a pixel in the 2D CT-�uoro slice (�xed image) be X . Its intensity in this image is
I∗(X ). Further, let T be the transformation matrix de�ning a certain pose estimate
x of the 3D CT-volume. When projected at this pose, the volume results in an
image I (T(x)X ).

f(x) =
X
Xi

1

1 + I∗(Xi)−I(T(x)Xi)
α2

(3.1)

Here, α de�nes the sensitivity to outliers of the bell shaped function f . If it is cho-
sen small, it results in a high rejection rate. Additionally, we constrain the rotation
parameters [bl, bu] that we deduced empirically by letting experienced interventional
radiologists de�ne slices in the pre-interventional volume being closest to the corre-
sponding CT-�uoro slice. Also, the translation along the z-axis is constrained within
the volume bounds. The barrier function, penalizing the involved parameters when
approaching the limits, is thus the following:

b(x) =
6X
i=3

exp(−β(xi − bl)(bu − xi)) (3.2)

where β is a scaling factor controlling the U-shape of the exponential. It is chosen
such that the barrier function is near zero inside the interval [bl, bu] and very high
when approaching the limits. The function to minimize becomes now:

ftotal(x) = f(x) + λb(x)) (3.3)

Figure 3.1.: Barrier function. Between the interval [bl, bu] the barrier function is
almost zero whereas outside it has a very high value.
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For optimization, we use the Best Neighbor1 optimizer in a multiresolution ap-
proach to avoid the local minima.

3.3. Subvolume Visualization based on piecewise

rigid Registration

3.3.1. Two-Planes Visualization

The most simple approach to piecewise registration divides the liver into two parts,
an upper part containing the ventral side of the liver and a lower containing the
dorsal side of the liver. That way, rigid registration is expected to provide better re-
sults, since both parts undergo di�erent level of movement and deformation. During
expiration the rib cage volume decreases and, thus, increased pressure is applied to
the ventral aspect of the liver. Each part is independently rigidly registered with the
whole 3D CT-volume. The resulting two planes de�ne a subvolume which can be
smoothly displayed by interpolation. One possible way is to interpolate the rotations
separately via SLERP [109] while the translation is recovered linearly. Another way
to interpolate between the planes is the use of dual quaternions [26, 56, 123] which
incorporate rotation and translation. Figure 3.2 (a) shows the two part division.

3.3.2. Four-, Six-Planes Visualization

In order to better estimate the deformation, it is necessary to increase the pieces to
be registered from two to four and six. This improves the estimation of the min-
imum volume of deformation, but, at the same time creates new and challenging
problems in term of visualization. Instead of a simple sweep in-between the two
planes, we need to visualize a more complex volume in such a way that is perceptu-
ally acceptable for the interventional radiologists. The pieces should be big enough
to contain liver borders, also spleen border, and kidney, if they are present in the
image, so that the registration process will have enough information to converge.
See �gure 3.2 for a scheme and �gure 3.4 for a real example. Each part is rigidly
registered independently with the whole 3D CT-volume. The registration details are
provided in section 3.2.1. The planes 3.14, 3.15 which result from optimal transfor-
mation matrices of the registrations de�ne a volume. A minimal path that optimally
connects between these planes is searched to display the volume in-between. This
problem can be modeled as an undirected weighted complete graph, the planes as
the graph nodes and the distances between barycenters as the weights of the graph
edges. Dijkstra's algorithm [28] is used to sort the graph. We are calculating the
barycenters of each plane and sort the graph according to the Euclidean distances
between them. Due to the symmetries we have (n2− n)/2 distances to calculate. A
graph example with six planes is shown in Figure 3.3. Planes with highest distance
represent the bounds, so we have (n2−n)/2− 2 planes to sort. Once the planes are

1Also known as Hill Climbing
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sorted, we are visualizing the volume in an animation sequence. In [109, 25], the
authors show why it is very useful to represent rotations with quaternions and use
quaternion interpolation to interpolate rotations. Our approach is based on 'Spher-
ical Cubic Interpolation' (SQUAD). It is analogous to Bézier curve but involves
'Spherical Linear Interpolation' (SLERP) which performs a great arc interpolation
of the four dimensional quaternion sphere resulting in a rotation with constant an-
gular velocity. Once the rotation is estimated the translation is recovered linearly.

(a) Upper and Lower Pieces (b) Four pieces

(c) Six pieces (d) Upper middle piece

Figure 3.2.: Schematic piecewise division. (a) and (b) show the CT-�uoro slice on
the left and the initial pose position inside the volume on the right,
respectively. The blue horizontal and vertical lines divide the liver into
four non-overlapping pieces. (c) shows the division of the liver into six
pieces, four from (b) plus two overlapping pieces. The red lines include
the two overlapping parts. (d) shows the upper middle piece of the six
pieces division.
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3.3 Subvolume Visualization based on piecewise rigid Registration

Figure 3.3.: Example of a graph represented by 6 planes. The nodes of the graph
represent the planes and the edge weights represent the distances be-
tween the barycenters of the planes.

(a) Division into four pieces. (b) Division into six pieces

Figure 3.4.: Piecewise division on clinical images. (a) and (b) show each time on
the left the CT-�uoro slice and on the right the initial pose position in
the volume. The blue lines divide the liver into four not-overlapping
pieces, while the red lines include two overlapping parts. The lines
which are drawn in the CT-volume slice are only just for orientation,
the registration process searches all the volume.
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3.4. Simpler Visualization Modes

3.4.1. Axial-Planes Visualization

The �rst alternative approach is to visualize the axial slices around the globally
registered plane. The motivation for this approach is that the interventional ra-
diologists are used to axial slice representation. The globally registered plane is
supposed to be in the area of interest. Axial slices going through two most outside
corner points of the global registered plane represent the bounds of the new volume.
This volume is interpolated along the z-axis. Figure 3.5 shows the con�guration.

Figure 3.5.: The Axial Volume is de�ned by the axial slices going through the most
outside corner points of the global registered slice.
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3.4.2. Envelope-Planes Visualization

Another alternative approach for visualization is to de�ne two envelope planes
around the registered planes and display the volume in between these two planes
in an animation sequence. The motivation for this approach is to provide an easier
visualization since a simple sweep between two planes can be performed. Note that
this volume will incorporate more information than needed by its de�nition. Each
of these envelope planes is de�ned by the three most outside corner points of the
registered planes in the z direction. These three points de�ne the normal on the
envelope plane, zenvelope plane. In order to visualize the data properly, we need to
de�ne the new xnew axis as the most parallel to our Cartesian x axis. The new axis
is given by

xnew = x− sgn (x · zenvelope plane) zenvelope plane (3.4)

Figure 3.6 shows the case where the angle between the x axis and the zenvelope plane
is less than 90◦. The derivation is done as following. Setting zenvelope plane = znew
and considering �rst the case shown in Figure 3.6, we have

x = xnew + x‖ (3.5)

xnew = x− x‖

= x− projznewx
= x− dznew (3.6)

where

d = |x| cos (θ) = |x| x · znew
|x| |znew|

= x · znew (3.7)

Thus, the new orientation of the envelope plane is given by the vector (xnew,ynew, znew)T

with

xnew = x− (x · znew) znew

ynew = znew × xnew (3.8)

If the angle between the x axis and the zenvelope plane axis is more than 90◦, the
vector zenvelope plane is �ipped. xnew sums up the two components in equation 3.5.
The translation is recovered by the intersection point of the z-axis and the plane.
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Figure 3.6.: Coordinate system de�nition of the envelope plane. (x,y, z) represent
the original coordinate system of the CT-volume. (xnew, zenvelope plane×
xnew, zenvelope plane) de�nes the new coordinate system for visualization.

Figure 3.7.: Envelope Planes in 3D. The left image shows the four-planes and the
right image is showing the envelope planes de�ned by the most outside
points of the planes along the z direction.

24



3.5 Experiments and Results of Two-Planes Registration

3.5. Experiments and Results of Two-Planes

Registration

3.5.1. Simulation Strategy

For the simulations, we take two routinely contrast-enhanced datasets acquired on a
4 detector-row CT (Siemens Somatom Sensation4) in deep inspiration breath-hold
which have been acquired just prior to the interventional procedure. For one dataset
(dataset1) raw data is provided. This raw data is twice reconstructed with Siemens
Syngo IR Taskcard [116, 51]. The �rst time, the reconstruction is performed with
the same DICOM header parameters as for the CT workstation in the hospital. The
second time, the reconstruction uses the same parameters as previously, except for
the current dose parameter which is decreased to generate a noisy volume. Thus both
volumes have the same �eld of view. For the second dataset (dataset2) raw data is
not available. Therefore, a software [129] is used to re-calculate the projections (raw
data) of CT-data and to generate two CT volumes, one with noise and the other one
without. Both datasets are downsampled in x, y from 512× 512 to 256× 256 to �t
the �uoro slices, which have an image size of 256× 256. For dataset1, the resulting
volume size is: 256×256×208 voxels with a voxel size of 1.32×1.32×1.00mm, and
for dataset2: 256× 256× 69 with voxel size of 1.45× 1.45× 3.00mm. Both volumes
have a CT slice thickness of 3mm.

The applied deformation is a simulated breathing deformation as proposed in
[117]. A nonlinear transformation T : {B(x, y, z) = T (A(x, y, z))} simulates the
diaphragm and rib cage movement. Diaphragm movement is modeled as a trans-
lational force in the data sets' negative z direction. Nonlinearity is introduced by
weighting the constant vertical translation tv with a 2D Gaussian distribution that
depends on the x, y coordinates of the data set, i.e. the further away from the center
of the diaphragm surface a point is, the smaller the negative z translation. Math-
ematically, a displacement vector ~d1 = (0, 0, z′) is applied to each point (x, y, z)T

that maps it to (x, y, z′)T with

z′ = z − tverticale−
(x−µx)2+(y−µy)2

2σ2

where (µx, µy) corresponds to the x, y coordinates of the center of gravity of the
diaphragm points. σ is chosen such that points lying at the exterior of it nearly
remain �xed. To simulate rib cage behavior during breathing, a radial, center-
directed translation tc is used to form a second displacement ~d2 = (x′, y′, 0) that
maps points (x, y, z)T to (x′, y′, z)T with

�
x′

y′

�
=

�
µx
µy

�
+ t′ ∗ ~c

|~c|
where

~c =

�
x− µx
y − µy

�
and t′ = |~c| − tinplane ∗ (1− e−

(x−µx)2+(y−µy)2

2σ2 )
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(a) real (b) sim. (c) real (d) sim.

Figure 3.8.: 2D CT-�uoro slices and simulations using a simple breathing model. (a)
and (b) - dataset1, (c) and (d) - dataset2

Combination of ~d1 and ~d2 gives a total displacement ~d that is equivalent to the non-
linear transformation T : {B(x, y, z) = A(x, y, z) + d(x, y, z)}. The two datasets
were deformed with tv = 30mm and tc = 5mm.
Thus, we simulate another volume in expiration stage, the rib cage is contracting,

while the liver moves toward the heart.
Six axial slices are extracted from each noisy deformed volume, from all parts

of the liver with 1cm spacing between. Figure 3.8 shows one example from each
dataset of real and simulated �uoro slices.

3.5.2. Experiments on synthetic CT-�uoro Slices

The registration starts at an initial resolution of 64 × 64 × 52, increases to 128 ×
128× 104 and �nishes at 256× 256× 104. Dataset2 is downsampled only in x and y
direction due to the lower resolution along z. Registration is performed �rst using all
voxels of the 2D image. RMS error is calculated between all voxels in the CT-�uoro
slice mapped back via the known displacement �eld in the original volume and the
corresponding voxels mapped by the estimated parameters of the rigid and a�ne
registration. Then, each slice is divided into lower and upper part. Tables 3.2, 3.3,
3.4 and 3.5 show the results of one plane versus the results of upper and lower plane.
The RMS error between the CT-�uoro surface and the registered planes decreases
by almost half except for Powell-Brent a�ne registration.
Figure 3.9 shows the rigid registration result planes of slice 2/dataset1 and 5/dataset1

with Best-Neighbor optimization. The resulting planes of the registration are in-
tersecting the retrieved CT-�uoro surface. The upper and lower surface are better
approximated by the 2 planes rather than by the one plane.

3.5.3. Experiments on clinical Data

Five CT-�uoro slices are selected from dataset2. They contain needle, the tumor
and di�erent parts of the liver which are often imaged during the intervention. For
the �ve CT-�uoro slices (256 × 256, 1.48 × 1.48mm, slice thickness 4mm), two
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inverventional radiologists have de�ned the slices that they consider the closest to
the respective CT-�uoro slices. The manual navigation has included 6 DOF, 3
for translation and 3 for rotation. This dataset has a signi�cant liver motion and
deformation, and it has posed di�culties even for experienced radiologists during
manual registration. The other dataset which is used here, dataset3 (256×256×158,
1.29 × 1.29 × 1.5mm), has been acquired in shallow breathing. The liver motion
is not as signi�cant as in dataset2. Three CT-�uoro slices are selected (256 × 256,
1.29× 1.29mm, slice thickness 4mm): one with needle and tumor, one with tumor,
one with the liver next to the heart.
The variation between the slices de�ned by the interventional radiologists is shown

below. Only liver voxels contribute to the RMS calculation. The cut dividing the
liver into upper and lower part is set where the ligamentum falciforme is seen in the
slice and is kept constant for all slices of one dataset, unless the intervention table
has been moved down so that the physician has more space for needle insertion. The
amount of voxels at each position p included in the volume of interest V de�ned by
the upper plane: nu, du and lower plane: nl, dl, satisfy following inequality:

�
pnl

T − dl
� �

pnu
T − du

�
< 0

Tables 3.6, 3.7 and 3.8 show the percentage of the liver voxels included in the
volume for the slices Def1, Def2 which are de�ned by the two radiologists. For real
data, the rigid model with Powell-Brent optimization works best. In particular,
slice 3 of dataset2 (ds2) poses di�culties for automatic registration due to a big
rotation(≈ 12◦) about the x-axis compared to the initial pose. But visual inspection
of the resulting registration and angle calculations of both de�ned slices to the next
registered plane for this case (Def2: 0.77◦ and Def1: 1.96◦) show that they lie very
close to the volume. Figure 3.10 (a) shows this con�guration and 3.10(b) shows an
ideal con�guration for slice 1. For slice 2 of dataset3 (ds3), we have also calculated
the angles of the de�ned slices to the registered next plane. Additionally, the RMS
error between liver voxels that are not included in the volume and the next registered
plane has been calculated (Def1: 1.38◦, RMS 1.92mm, Def2: 2.52◦, RMS 5.65mm).
Both RMS errors lie under RMS variation of Def1 and Def2 for this slice. This
con�guration is shown in �gure 3.10 (d).
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Dataset2 Dataset3
Slice 1 2 3 4 5 1 2 3

RMS[mm] 17.16 10.25 5.79 16.50 19.68 4.12 7.05 9.08

Table 3.1.: RMS[mm] for inter-observer variation.

Best-Neighbor
Rigid A�ne

Slice one lower upper one lower upper
1 12.98 5.90 4.35 8.27 5.59 4.95
2 11.08 5.77 4.61 9.86 5.83 4.95
3 9.61 5.84 4.76 10.52 5.84 5.02
4 9.69 5.95 4.90 9.72 6.17 4.89
5 9.59 6.19 10.59 9.60 6.22 5.10
6 8.20 6.53 4.73 9.51 6.43 4.85

Mean 10.19 5.84 9.58 5.49

Table 3.2.: RMS[mm] for Best-Neighbor optimization. Dataset1 - 256× 256× 208

Powell-Brent
Rigid A�ne

Slice one lower upper one lower upper
1 10.51 7.68 5.90 6.75 9.17 5.42
2 10.36 6.96 6.43 6.95 6.24 7.39
3 12.56 6.72 4.46 6.86 5.81 5.09
4 9.19 7.21 8.17 7.57 6.25 8.36
5 10.58 5.80 4.30 6.90 7.51 6.19
6 8.53 6.37 7.75 8.07 5.88 5.36

Mean 10.29 6.48 7.18 6.56

Table 3.3.: RMS[mm] for Powell-Brent optimization. Dataset1 - 256× 256× 208
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Best-Neighbor
Rigid A�ne

Slice one lower upper one lower upper
1 10.66 6.78 8.69 11.19 6.70 5.46
2 15.97 12.89 12.23 16.64 7.46 7.52
3 15.04 7.90 9.32 15.68 6.94 9.04
4 10.25 6.594 4.87 13.51 6.57 5.66
5 11.55 8.50 6.86 18.48 8.35 5.84
6 10.20 7.72 5.59 10.08 7.59 6.53

Mean 12.28 8.15 14.26 7.00

Table 3.4.: RMS[mm] for Best-Neigbor optimization. Dataset2 - 256× 256× 69

Powell-Brent
Rigid A�ne

Slice one lower upper one lower upper
1 10.28 8.85 10.27 10.02 8.45 9.19
2 16.34 8.06 7.49 12.02 11.67 9.86
3 16.44 8.50 8.23 7.45 9.13 15.01
4 11.37 7.07 6.14 9.87 6.45 8.46
5 11.73 8.52 9.77 10.66 9.39 10.93
6 10.26 7.86 8.86 7.87 9.53 5.85

Mean 12.74 8.30 9.65 9.49

Table 3.5.: RMS[mm] for Powell-Brent optimization. Dataset2 - 256× 256× 69

Percentage of voxels included in VOI
Rigid Powell-Brent

Slice 1 2 3 4 5 Mean
%Def1 100 94.45 30.20 79.11 65.5 75.26
%Def2 100 96.09 0 74.52 11.81 60.01

Rigid Best-Neighbor
%Def1 72.55 73.57 44.00 71.00 78.81 68.95
%Def2 49.58 76.62 0 70.00 100 62.15

Table 3.6.: Dataset2 � percentage of included liver voxels for each de�ned slice in
the subvolume
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Percentage of voxels included in VOI
A�ne Powell-Brent

Slice 1 2 3 4 5 Mean
%Def1 100 81.07 65.32 59.19 67.91 67.91
%Def2 96.12 87.87 2.82 61.17 14.13 55.73

A�ne Best-Neighbor
%Def1 88.14 24.44 5.58 68.89 65.50 54.00
%Def2 72.69 27.75 7.77 70.14 19.91 41.21

Table 3.7.: Dataset2 � percentage of included liver voxels for each de�ned slice in
the subvolume

Percentage of voxels included in VOI
Rigid Powell-Brent A�ne Powell-Brent

Slice 1 2 3 Mean 1 2 3 Mean
%Def1 99.60 78.93 100 91.37 98.88 100 45.63 79.96
%Def2 72.51 0 100 55.70 63.79 64.58 73.55 67.71

Rigid Best-Neighbor A�ne Best-Neighbor
%Def1 5.59 52.82 77.90 51.03 44.64 97.49 37.99 63.63
%Def2 69.45 0 83.16 48.66 69.3 6.22 53.09 39.77

Table 3.8.: Dataset3 � percentage of included liver voxels for each de�ned slice in
the subvolume
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3.5 Experiments and Results of Two-Planes Registration

(a) 3D view (b) 3D view

(c) 2D views (d) 2D views

Figure 3.9.: Registration results for two-piece registration: 3D views showing the
GT-surface and registered upper, lower and one plane. 2D views show-
ing from top to bottom the registered one plane, upper and lower. (a)
and (c) belong to dataset1, (b) and (d) belong to dataset2.
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Subvolume Visualization based on piecewise Slice-to-Volume Registration

(a) ds2-slice3 (b) ds2-slice1

(c) ds3-slice1 (d) ds3-slice2

Figure 3.10.: Con�gurations of registered upper and lower plane, de�ned slices Def1,
Def2 by the interventional radiologists and rendered liver surface for
rigid registration with Powell-Brent optimization scheme. (a) Def1
30%, Def2 0% (b) Def1 100%, Def2 100% (c) Def1 100%, Def2 79% (d)
Def1 79%, Def2 0%
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3.6 Experiments and Results of Four-, Six-Planes Registration

3.6. Experiments and Results of Four-, Six-Planes

Registration

3.6.1. Experiments on synthetic CT-�uoro Slices

In the previous section 3.5.1, we have derived synthetic slices according to a breath-
ing model as described in [117]. There, we have shown that the division of the CT-
�uoro slice into 2 pieces decreases the RMS error of the registration results by almost
half. Here, for deriving synthetic 2D CT-�uoro slices that also include deformations,
we take two CT-volumes of one patient, the pre- and the post-interventional datasets.
The pre-interventional CT-volume (the template volume) is elastically [76, 136] reg-
istered to the post-interventional CT-volume (the reference volume). Since after
the intervention, the patient is not able to achieve the full inspiration breath-
hold as before the intervention, the registration of the pre-interventional to the
post-interventional scan is mimicking a possible expiration movement. This post-
interventional scan is not used for the next steps, only the deformed volume. The
displacement �eld for the achieved deformation maps the voxels of the deformed vol-
ume into the pre-interventional scan. In this way, by extracting axial slices of this
deformed volume, adding noise (cf. [129]), each of these slices represent hypothetical
CT-�uoro slices. We choose the piecewise registration based on six pieces for precise
evaluation since this has been the preferred mode for the interventional radiologists
(see 3.7). Deformation models for two di�erent patients are generated using, for each
of them, the pre- and post-interventional volumes. Six axial slices are extracted from
the deformed volume every 5mm. Visual inspection for each slice has been carried
out. The deformation surface is almost included into the subvolume (see �gures
3.11(d), 3.11(e), 3.13(d), 3.13(e)). Only a maximum displacement of 3mm has been
measured between the registered slices to the voxels of the deformation surface that
are not included.

3.6.2. Experiments on clinical Data

For evaluation we use three routinely acquired datasets of three di�erent patients.
Two datasets are acquired with a 4 detector-row CT, Siemens Somatom Sensation4,
one in deep inspiration breath-hold and the second in shallow breathing. The third
one is acquired with a 16 detector-row CT, Siemens Somatom Sensation16. We
select CT-�uoro slices being imaged routinely during the intervention. In total,
eleven CT-�uoro slices are evaluated, �ve from one dataset, and three from the
other datasets, respectively. Each slice is globally and piecewise (4- and 6-pieces)
registered to the whole volume. The average time for the registration takes 27s on
a notebook with 1.80GHz Intel Pentium processor and 1GB of memory. This time
can be reduced to real time by parallelization of the piecewise registration on a more
powerful machine. Figure 3.14 is showing the results of one real CT-�uoro slice.
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Subvolume Visualization based on piecewise Slice-to-Volume Registration

(a) (b)

(c) (d) (e)

Figure 3.11.: Simulations including deformations and noise. (a) is showing a real
CT-�uoro and initial axial position in the pre-interventional volume.
(b) is showing a synthetic simulated CT-�uoro slice on the left and
initial axial position in the pre-interventional volume. The cranio-
caudal depth is coded from dark to light. (d) and (e) are showing the 6
planes resulting from the piecewise registration from two perspectives.
Most of the liver voxels are included in the volume. The liver voxels
that are not included show a distance less than 3mm to the closest
plane.

3.7. Evaluation

Two experienced interventional radiologists evaluated the visualizations modes. All
visualization modes displayed the information contained in the CT-�uoro slice. The
scale for the preference of visualization is qualitatively assessed:

� do not like it at all

� do not like it

� like it

� like it very much

To quantify the qualitative results, the preference has been translated to an integer
scale from -2 up to 2 integer numbers. The diagram of the average of the grades
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3.8 Discussion

(a) Down right (b) Down middle (c) Down left

(d) Upper left (e) Upper middle (f) Upper right

Figure 3.12.: 2D views of six-pieces registration results for one synthetic slice. Right
and left represent the right and left patient side.

for each mode is shown in �gure 3.17. In the beginning of the evaluation of the
visualization modes, the preference has been the axial volume. This is expected
since the interventional radiologists are used to axial slices and other views need
�rst some training to get used to it. After more evaluations, the preference turned
toward the six-planes. The envelope-planes cover usually much more information
than needed therefore it was also not preferable.

3.8. Discussion

In this chapter, we have proposed and evaluated the visualization of a minimum
volume within the high resolution pre-interventional CT, by means of the registration
of respectively, four and six sections of liver to the entire CT-volume. The liver is
divided into multiple rectangular regions. We are opting for this choice because
common anatomical divisions of the liver like the Couinaud [23] segments do not
perform satisfactory for this slice-to-volume registration due to absence of enough
information in some segments. In [130], the authors have chosen a circular shape
for tracking the pulmonary texture since it better approximates the motion with
respect to the surrounding area. For the liver application this is not the preferred
choice. More importantly, it is to include organ borders since these are the main
source of information due to the homogeneous tissue in the liver. The splitting is
done automatically except of the width de�nition in the CT-�uoro slice. This can be
done before the intervention starts and is kept constant for all time. More sections
rather than six can be de�ned but results on the synthetic and clinical data showed
that this number is enough for providing the required information.

In the experiments on synthetic CT-�uoro slices including deformation, we have
observed that the deformation is included within the volume de�ned by the slices.
For the qualitative assessment of the visualization, we have introduced alternative
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Subvolume Visualization based on piecewise Slice-to-Volume Registration

(a) (b)

(c) (d) (e)

Figure 3.13.: Clinical data next to simulations derived from the same patient in-
cluding deformations and noise. (a) shows a real CT-�uoro and initial
axial position in the pre-interventional volume. (b) shows a synthetic
simulated CT-�uoro slice on the left and initial axial position in the
pre-interventional volume. (c) is showing the deformation surface of
the corresponding synthetic CT-�uoro slice. The cranio-caudal depth
is coded from dark to light. (d) and (e) are showing the 6 planes re-
sulting from the piecewise registration from two perspectives. Most of
the liver voxels are included in the volume. The liver voxels that are
not included show a distance less than 3mm to the closest plane.

modes. The �rst one is de�ned by the envelope planes of the minimum volume, while
the second one is the volume de�ned by axial slices around the global registered
slice. The evaluation of patient data by two interventional radiologists has shown
a clear preference for the visualization of the minimum volume de�ned by the six-
planes, followed by the four-planes, over the envelope planes, and the traditional
axial planes. The interventional radiologists highly appreciated the possibility to
assess the target lesion and its neighborhood in relation to the CT-�uoro image.
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3.8 Discussion

(a) Down right (b) Down middle (c) Down left

(d) Upper right (e) Upper middle (f) Upper left

Figure 3.14.: 2D views of six-pieces registration results on real CT-�uoro images.
Right and left represent the right and left patient side. The registration
results of the four-pieces registration are included into the six-pieces
registration: (a), (c), (d), (f) represent the four-pieces registration
results.

(a) Four and six planes

Figure 3.15.: 3D views of piecewise registration results. The initial pose position in
the volume as axial slice is also shown (most left).
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Subvolume Visualization based on piecewise Slice-to-Volume Registration

(a) 3D sagittal-coronal view

(b) 3D coronal view

Figure 3.16.: 3D sagittal-coronal and 3D coronal views. (a) is showing a sagittal-
coronal view of the resulting planes and segmented liver. (b) shows a
coronal view of the resulting planes and segmented liver.

Figure 3.17.: Qualitative evaluation of the four di�erent visualization modes.
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CHAPTER

FOUR

ADAPTIVE VISUALIZATION BASED ON

ISOSURFACES OF SLICE-TO-VOLUME SIMILARITY

FUNCTION

4.1. Introduction

I
n contrast to the previous approach in chapter 3, this chapter presents a method
which aims to �rst obtain a solution to the global registration and then visualize

a speci�c volume that encompasses its neighborhood. Instead of targeting a unique
solution for the registration process, we are proposing a set of solutions de�ned in
the convergence basin of the registration result. In this neighborhood, we sample the
isosurfaces of the employed cost function by using a line search strategy in order to
retrieve the out-of-plane motion parameters. This is based on the assumption that
the optimization path of the similarity measure during minimization encounters
uncertainty along �at hypersurfaces.
In order to overcome the breathing motion artifacts, the noise, and also the needle

artifacts in the CT-�uoro slice, we are employing slice-to-volume rigid robust least-
squares minimization. To this end, an Iteratively Reweighted Least-Squares (IRLS)
technique is used. Equivalent approaches have been already employed for robust
feature- based vascular image registration [113] and retinal mosaicking [15]. In [82],
robust image intensity based registration is used for mono- and multimodal image
registration. Another class of estimators, called annealing M-estimators, have been
introduced in [64, 65, 63]. These estimators are robust to outliers and adapt to
discontinuities. They are used for estimating point locations corrupted by noise,
respectively for estimating rotation angles from image sequences. In this chapter,
we compare both types of estimators for our registration and visualization task.
Figure 4.1 gives an overview of the registration and visualization process of this

chapter.
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Adaptive Visualization based on Isosurfaces of Slice-to-Volume Similarity Function

Figure 4.1.: Process of image registration and visualization.
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4.2 Registration Details

4.2. Registration Details

4.2.1. Parameterization of the 3D Transformations

In order to register the 2D CT-�uoro slice with the 3D CT-volume, the latter should
be projected onto a gray-scale image after having been subject to a 3D rigid trans-
formation. Such transformation can be described by a (4×4) matrix T that belongs
to the Special Euclidean group SE(3) having the following form

T =

�
R t
0 1

�

where R ∈ SO(3) is a 3D rotation matrix and t ∈ R3 is the translation vector.
Such matrix has 6 d.o.f and can be parameterized using the Lie-Algebra se(3) that
corresponds to the Lie group SE(3) through the exponential map. Let Ai, with
i ∈ {1, ..., 6}, be a basis of the Lie algebra se(3). Any matrix A ∈ se(3) can be
written as a linear combination of the matrices Ai:

A(x) =
6X
i=1

xiAi

where x = [x1, ..., x6]> and xi is the i-th element of the base �eld. Let the vectors
bx = [1, 0, 0]>, by = [0, 1, 0]> and bz = [0, 0, 1]> be the natural orthonormal basis
of R3. Knowing that the dimension of the matrices Ai is (4× 4), the generators for
the translation are

A1 =

�
0 bx
0 0

�
,A2 =

�
0 by
0 0

�
,A3 =

�
0 bz
0 0

�

and the generators for the rotation are

A4 =

�
[bx]× 0

0 0

�
,A5 =

�
[by]× 0

0 0

�
,A6 =

�
[bz]× 0

0 0

�

where [bi]× is the skew matrix associated to the vector bi. The exponential map
links the Lie algebra to the Lie Group: exp : se(3)→ SE(3). It exists an open cube
v about 0 in se(3) and an open neighborhood U of the identity matrix I in SE(3)
such that exp : v → U is smooth and one-to-one onto, with a smooth inverse.
Hence given a coe�cient vector x = [x1, x2, ..., x6], the corresponding transforma-

tion matrix T is obtained as

T(x) = exp(
6X
i=1

xiAi) (4.1)

See for example [135] for more details concerning this parameterization.
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4.2.2. Iterative registration method

A pixel in the 2D CT-�uoro slice (�xed image) is the result of the projection of a
voxel X . Its intensity in this image is I∗(X ). Further, let T be the transformation
matrix de�ning a certain pose estimate of the 3D CT-Volume. When projected at
this pose, the volume results in an image I (TX ). Ideally, registering the 2D CT-
�uoro slice with the 3D CT-Volume consists in �nding the transformation matrix T
such that:

∀Xi, I
�
TXi

�
= I∗(Xi) (4.2)

Due to the high non-linearity of the problem, the registration problem is generally
solved iteratively by estimating at each iteration an incremental pose update T(x)
that should be composed with the current estimate ÒT such that a cost function is
minimized. The cost function is generally based on the sum-of-squared di�erences
of pixel intensities (SSD). In practice, it does not give satisfactory results for the
reasons that we already mentioned in the previous chapter: the severe and natural
noise of CT-�uoro slices, due to the low dose applied; the high contrast di�erence
between the pre-interventional volume and the interventional CT-�uoro slices; the
presence of needle in the interventional CT-�uoro slices. That is the reason why
we are using two robust methods. As a �rst method, we employ M-estimators as
cost function in combination with an 'Iteratively Reweighted Least Squares' (IRLS)
process. As a comparative method, we use the annealing M-estimator as cost func-
tion in combination with a graduated non-convexity optimization [64, 65] in order
to compute the update parameters for the incremental pose T(x). In the following
sections, we will describe the cost functions based on the M-estimator and annealing
M-estimator.

4.2.3. M-estimator

The cost function considered for this purpose penalizes the largest residues:

f(x) =
X
Xi
ρ
�
I∗(Xi)− I

�ÒTT(x)Xi
��

(4.3)

where the function ρ is called the robust loss function. There exist many possibilities
for the ρ function e.g. Huber, Cauchy or Beaton-Tukey functions [112]. Basically,
they all play the same role: they permit to give di�erent weights to the image dif-
ferences by putting at a disadvantage the larger residues and at a favor smaller ones
(in di�erent manners depending on the function used). The minimization process
consists in estimating the weights (that re�ect the con�dence of each intensity di�er-
ence), evaluating the vector x by solving the weighted system, then, reiterate until
convergence. With all minimization techniques based on a descent direction e.g.
Gradient descent, Newton, Gauss-Newton or Levenberg-Marquardt [36] (see also
Appendix A), this approach automatically rejects the outliers, the noise, the needle
presence and the high contrast di�erences (that are not solved by the image nor-
malization). Therefore, the registration does not su�er from spurious measurements
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4.2 Registration Details

and the real global minimum can be better localized. As M-estimator, we choose
the popular Beaton-Tukey biweight function, which is a strict outliers rejector since
it descends very fast toward zero with increasing error di�erences:

ρ (d) =

8<: a2

6

�
1−

�
1−

�
d
a

�2
�3
�
, |d| ≤ a

a2

6
, |d| > a

where the parameter a = 4.6851 bσ and where bσ is a robust estimation of the standard
deviation of the inliers. It is usually de�ned by the Median Absolute Deviation
(MAD) bσ = 1.4826ri.
Additionally, we constrain the rotation parameters and translation along z within

an interval, [bl, bu] that we deduced empirically by letting experienced interventional
radiologists de�ne slices in the pre-interventional volume being closest to the corre-
sponding CT-�uoro slice. We use the same barrier function 3.1 from the previous
chapter penalizing the rotation parameters when approaching the limits

b(x) =
6X
i=3

exp(−β(xi − bl)(bu − xi)) (4.4)

where β is a scaling factor controlling the U-shape of the exponential. It is chosen
such that the barrier function is near zero inside the interval [bl, bu] and very high
when approaching the limits. The function to minimize becomes now

f(x) =
X
Xi
ρ
�
I∗(Xi)− I

�ÒTT(x)Xi
�

+ λb(x)
�

(4.5)

4.2.4. Annealing M-estimator

The annealing M-estimator [63, 64, 65] for our registration problem is de�ned as
following:

fγ =

P
Xi(hγ(di)|di|)P
Xi hγ(di)

(4.6)

di = I∗(Xi)− I
�ÒTTXi

�
(4.7)

where di are the intensity di�erences and hγ representing an adaptive interaction
function. For the properties of those functions and the relationship between M-
estimators and the adaptive interaction functions (AIF) see e.g. [65, 63]. We choose
following hγ

hγ(η) =
1

1 + η2/γ
where η = di (4.8)

4.2.5. Optimization

A Gauss-Newton minimization is used in a multi-resolution approach in order to
speed up the process and to help avoiding local minima trap. To minimize the cost
function f , we use an iterative-reweighted least squares [112].
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Adaptive Visualization based on Isosurfaces of Slice-to-Volume Similarity Function

To minimize the cost function h, we use a GNC technique [10, 65], starting with a
su�cient high γ such that the potential function associated with h is strictly convex.
This is called the band of the function [63] and is located between the two extrema
of h. It is given by:

Bγ = [−√γ,√γ] (4.9)

The initial γ needs to satisfy
|η| = di < |

√
γ| (4.10)

At each iteration step, γ is then lowered according to a schedule.
Let d be the vector containing all the intensity di�erences di and ri = |di −

median(d)| denote the case median centered intensity di�erence residuals with as-
sociated variance σi. The median is calculated according to the median of medians
algorithm [11], insuring linear time calculation. Introducing a weight function w by
ρ′ (d) = ψ (d) = w (d) d, we arrive at the following weighted equation system to solveX

Xi
w (ri/σi) J>i Jix =

X
Xi
w (ri/σi) J>i (di + λb(x)) (4.11)

where the Jacobian reads

Ji =
∂ri
∂x
− λ∂b(x)

∂x
(4.12)

The �rst term of equation 4.12 stands for the Jacobian of the residual. The second
term is substracted from it for the translation along z and rotational parts:

β(2xi − bl − bu) exp(−β(xi − bl)(bu − xi)), i = 2, 3, 4, 5 (4.13)

Starting from a �rst order Taylor approximation of the residual, the image gradient
is calculated by following equation

∂I
�ÒTT(x)X

�
∂x

������
x=0

=
∂I(ÒTX )

∂X
· ∂TX
∂T

· ∂T(x)

∂x

�����
x=0

(4.14)

The �rst term is a (1 × 3) matrix and represents the gradient of the image cor-
responding to the projection of the volume at the pose ÒT. The image gradient is
computed before the registration process for the whole volume. The second term
is a (3 × 12) matrix, which depends only on the homogeneous coordinates of the
considered voxel X

∂TX
∂T

=

264 x y z 1 0 0 0 0 0 0 0 0
0 0 0 0 x y z 1 0 0 0 0
0 0 0 0 0 0 0 0 x y z 1

375 =

264 X
> 0 0

0 X> 0
0 0 X>

375 (4.15)

since the gradient generalization to the matrices ∂
∂T

corresponds to the derivative
with respect to each entry of the matrix

TX =

26664
t1 t2 t3 t4
t5 t6 t7 t8
t9 t10 t11 t12
t9 t10 t11 t12

37775
26664
x
y
z
1

37775 =

26664
xt1 + yt2 + zt3 + t4
xt5 + yt6 + zt7 + t8

xt9 + yt10 + zt11 + t12
1

37775 (4.16)
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taken line after line. The third term represents the Jacobian of the exponential map
with respect to the motion parameters

∂T(x)

∂x

�����
x=0

=
�

a1 a2 a3 a4 a5 a6

�
(4.17)

where ∀i ∈ [1, 6], ai is a (12×1) vector containing the entries of the matrix Ai taken
line after line.

4.2.6. Registration results

Here, despite that the projection of the 3D CT-Volume at the initial pose (Fig.
4.2(b)) is far from the reference 2D CT-Fluoro slice (Fig. 4.2(a)), the proposed
approach succeeds to converge toward the minimum (Fig. 4.2(c)). The weights
image makes it possible to detect the spurious measurements, the noise, the needle
presence and the regions su�ering from a high contrast di�erences (see the dark
regions in �gures 4.2(e), 4.2(f)). Figure 4.2 shows a result of the proposed approach
on real data. In this example the M-estimator and AM-estimator give similar results.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2.: 2D views of registration results on clinical data using M-estimator and
AM-estimator. (a) shows the 2D CT-�uoro slice. (b) shows the initial
pose in the CT-volume. (c) and (d) show the estimated minimum for
the M-estimator respectively AM-estimator (e) shows the weights image
at the minimum (dark for small weights and bright for high weights) for
the M-estimator. (f) shows the weights image at the minimum (dark
for small weights and bright for high weights) for the AM-estimator.

46



4.3 Adaptive Visualization

4.3. Adaptive Visualization

For better spatial orientation, and to increase the con�dence in the registration re-
sult, not only the minimizer of the registration function f is visualized as a 2D view,
but also other views �close� to the minimizer. For this, we choose a set of parameters
for which the cost function attains almost minimal value. The corresponding views
(along with the minimizing view) are then visualized in a smooth animation. We
will explain the strategy more precisely, starting with the notion of �close views� in
section 4.3.1.
The visualization of the 3D volume on this trajectory brings more information

than the single slice. It gives the intuition of slowly exploring the volume in the
neighborhood (in real space) of the minimizer. In addition, since the function asso-
ciating a set of parameters to a 2D view is continuous, projecting the volume with
the parameters on this trajectory gives a smooth evolution of the image intensities
in the closed loop passing by the minimum (obtained at the registration) and the
di�erent points on the isosurface.

4.3.1. Isosurface Sampling

For a given α ∈ R+, an isosurface of the cost function f de�ned in the equation
(4.3) is a set C(α) ⊂ R6 given by

C(α) = {x ∈ R6 : f(x) = α} (4.18)

See �gure 4.3(a) for an illustration of isosurfaces in R2 (i.e., isolines). Now, letex ∈ R6 be the estimated minimizer. To �nd a certain number of parameters xi
around the minimizer, we use a line search in di�erent directions for points on the
isosurface C(f(ex) + ε), where ε de�nes the size of the neighborhood in parameter
space. In section 4.4, we explain how, in practice, we choose the directions of the
line search and the ε de�ning the size of the neighborhood. Each of these points
corresponds to a certain pose and, therefore, to a certain projection of the volume.
We call these views cost-equivalent projections (CEPs). See �gure 4.3(b) for an
illustration of the line search approach and the sampling of an isoline close to the
minimizer of a function in R2. Once the minimizer of the function f is identi�ed and
a number of samples on a given isosurface are determined, it is possible to de�ne a
trajectory interpolating these points. See Fig. 4.3(b) for an illustration of a such
trajectory.

4.3.2. Trajectory Waypoints

In order to visualize the volume smoothly, we �rst need to �nd an optimal trajectory
from the minimizer through all of the isosurface sample points xi. Ideally, this
trajectory follows the shortest path from the minimizer toward the isosurface, stays
on the latter exactly, and aims for the minimizer again.
As the isosurface itself is not analytically known, we use the sample points com-

puted previously as waypoints, and rearrange them in a way that we visit each point
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(a) (b)

Figure 4.3.: Trajectories on isosurfaces. (a) a function in R2 and its isolines. (b) an
example of a closed trajectory passing by the minimum of the function
and six sample points situated on a certain isoline (obtained by a line
search in six directions). This illustrates the concept proposed in this
paper in R2 instead of R6.

once while following a trajectory of minimal length. We expect this path to be of
similar merit in our visualization as the ideal trajectory, while being faster in com-
putation. This task is an old problem of theoretical computer science � the Traveling
Salesman Problem (TSP) � and can not be solved deterministically in polynomial
time. Therefore, we use the Minimum Spanning Tree (MST) heuristic that guaran-
tees an upper boundary of 200 % of the minimal path length. We currently use the
Euclidean norm as distance metric between parameters in R6.

The MST is built using Kruskal's Algorithm [60]. For the MST heuristic, each of
the MST's edges are doubled. With Fleury's Algorithm [19], we search for an Euler
circle in the resulting graph. If nodes are encountered that have been visited before,
an additional edge bypassing that node, is created. After this operation, the way
from the minimizer through all of the sample points and back to the minimizer is
known.

4.3.3. Trajectory Interpolation

Here, we create a smooth path passing by the ordered points xi de�ned above. We
interpolate these points in parameter space as elements of the Lie algebra se(3)
and convert these vectors via the exponential map into the Lie group SE(3). The
transformation matrices denote now the position and orientation of the virtual cam-
era. Since the rotational parameters are small between each CEP, global distortion
errors occurring from the �at topology of se(3) which is mapped into the non-�at
topology of SO(3) do not occur (cf. [54]). We use piecewise cubic Hermite interpo-
lation [27] to interpolate between the sample points xi. The desired gradients at
these anchor points are approximated by computing the di�erence between the next
and the previous point in relation to the respective anchor point. Having obtained
suitable values for g(0) = xi, g(1) = xi+1, g

′(0) = xi+1− xi−1, and g
′(1) = xi+2− xi
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for two successive anchor points xi, xi+1 ∈ R6, we can compute a cubic polyno-
mial g : [0, 1] → R6 that is applied to interpolate between these. Repeating this
procedure for all pairs of successive (with respect to the trajectory) points yields a
su�ciently smooth curve through the parameter space.

4.4. Experiments and Results

The volume datasets as well as the CT-�uoro slices are downsampled in x and y from
512× 512 to 256× 256. The registration is performed with a coarse-to-�ne strategy,
starting at 64 × 64 and increasing to 128 × 128 and 256 × 256. In each run, the
estimated values are taken as initialization for the next resolution. The optimization
procedure is started from the pose obtained by the DICOM Image Position Patient
tag since the patient usually stays on the same table throughout the entire procedure.
Also the Reconstruction Diameter was taken into account since the CT-�uoro view
is sometimes augmented by reducing the reconstruction diameter. The following
experiments were run on a PC with 1.80 GHz Intel Pentium processor and 1 GB of
memory. The average time for the registration of the clinical images has been 5.5s
for the M-estimator and 3.9s for the AM-estimator. The computation of the set of
solutions on the isosurface has taken in average 15s. A solution set of 18 sampling
points are taken on the isosurface. The points are retrieved from search directions
obtained by combinations of out-of-plane parameters, i.e. translation along the z
axis, rotations about the x and y axis. Here, six CEPs result from the three out-of-
plane parameters in + and - direction, and twelve CEPs result from the combination
of each of two parameters in + and - direction.

4.4.1. CEPs generation with M-estimator

More precisely, at every search step in one direction, we are computing the weights
based on the actual intensity residuals between the projected slice in the volume
and the CT-�uoro slice with the Beaton-Tukey biweight function and include these
weights to reach the isosurface. The same procedure is used for the parameter
combination to reach the isosurface. The reason for using further a weighted search
is that the estimated minimum is not any more a local minimum when the SSD cost
function is used.

4.4.2. CEPs generation with AM-estimator

Similar to the M-estimator the weights are calculated according to the chosen AIF
and incorporated into the similarity measure to reach the isosurface.

4.4.3. Linking epsilon with the volume

Based on results described in the literature, e.g. [21], [99], [9], the deformation
in the liver can reach up to 20mm from the predicted rigid position, while the
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average across tissue yields about 6mm. Therefore, we would like the CEPs to
represent an average movement between 6mm − 7mm. We start with an initial
guess of ε and adapt it until the average motion of all 3D points Xi considered in
the volume between the minimum view and the views at the CEPs �t in the interval
[6mm, 7mm]. See �gure 4.4 for an illustration of the iterative process.

Figure 4.4.: CEP generation process

4.4.4. Experiments on synthetic Slices without Deformation

To test the registration algorithm, we create a set of Ground-Truth (GT) slices sim-
ulating a CT-�uoro slice. We use a noisy reconstructed volume [51] from one patient
where we extract four slices at di�erent poses including rotations and translations.
These noisy slices are registered to the same high resolution pre-interventional vol-
ume.

RMS Translation [mm] Rotation [◦]
Init 35.7 7.22

M-estimator 0.88 0.28
AM-estimator 0.65 0.03

Table 4.1.: RMS error with respect to the GT slice at the initial position (Init) and
registered slices with the M-estimator and AM-estimator.

4.4.5. Experiments on synthetic Slices including Deformation

For deriving synthetic 2D slices that also include deformations, we use two CT-
volumes of one patient, the pre- and the post-interventional datasets. The pre-
interventional CT-volume, the template volume, is elastically [76] registered to the
post-interventional CT-volume, the reference volume. Since after the intervention,
the patient is not able to achieve the full inspiration breath-hold as before the
intervention, the registration of the pre-interventional to the post-interventional
scan is mimicking a possible expiration movement. This post-interventional scan
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CT-volume CT-�uoro
Pat. Image Image Image Image Slice No.

Size Res. [mm] Size Res. [mm] thick. img.
[mm]

1 256x256x212 1.48438x1.48438x1.00 256x256 1.0936x1.0936 6 105
2 256x256x223 1.32813x1.32813x1.00 256x256 1.0936x1.0936 3 110
3 256x256x208 1.32000x1.32000x1.00 256x256 1.4063x1.4063 4 111
4 256x256x212 1.44141x1.44141x1.00 256x256 1.4453x1.4453 3 108
5 256x256x213 1.37891x1.37891x1.00 256x256 1.1719x1.1719 6 100
6 256x256x208 1.06250x1.06250x1.00 256x256 1.0938x1.0938 6 211
7 256x256x219 1.33203x1.33203x1.00 256x256 1.3672x1.3672 3 117
8 256x256x194 1.32031x1.32031x1.00 256x256 1.0938x1.0938 3 144

Table 4.2.: Description of datasets

is not used for the next steps, only the deformed volume. The displacement �eld
for the achieved deformation maps the voxels of the deformed volume into the pre-
interventional scan. In this way, by extracting axial slices of this deformed volume,
adding noise (cf. [129]), and adding for some of them a previously segmented needle
of real CT-�uoro slice, each of these slices represent hypothetical CT-�uoro slices.
Six axial slices are extracted every 1cm, and we run the robust minimization for
each of them. Figure 4.6 shows such a registration result. For each synthetic CT-
�uoro slice, each voxel is mapped into the pre-interventional volume resulting in a
deformation surface.
Starting with an initial guess of ε = 0.25 the corresponding average movements

and ε are shown in the table below:

Slice 1 2 3 4 5 6
RMS[mm] 6.38 6.37 6.52 6.60 6.06 6.56

ε 0.3 0.25 0.3 0.3 0.25 0.3

Visually, we clearly see that the deformation of all slices of the liver voxels is
included by the estimated CEPs.

4.4.6. Experiments on clinical Data

We evaluate datasets of eight di�erent patients. The datasets have been routinely
acquired using a Sensation 16 and Sensation 4 scanner (Siemens AG, Forchheim).
Table 4.2 summarizes the image details.

4.4.7. Evaluation of the Registration Results

Visual assessment of all 880 registrations has been carried out by automatically
loading the slices and the corresponding result. Criterias that have been taken into
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M-Estimator AM-Estimator
Patient Avg time [s] Failure rate [%] Avg time [s] Failure rate [%]

1 8.65 0 14.31 0
2 6.4 9.89 14.68 11
3 4.97 0 2.74 0
4 7.48 27 9.41 1.85
5 9.35 0 10.04 5
6 7.00 8.82 3.63 0
7 4.78 18.81 2.69 0
8 7.88 1.81 8.86 .9

Table 4.3.: Registration results for M-estimator and AM-estimator

account are the shape of the liver, ligamentum falciforme in the liver, gallbladder,
the lesions, spleen, the right kidney, and other patient speci�c landmarks like calci-
�cations1. Unsatisfactory results have been noted and further assessed. Note that
due to the involved deformation (breathing, needle pressure), we are not aiming at
a perfect match. Our goal is to show the relevant areas, respectively all information
that occurs for the liver in the CT-�uoro slice. When structures which are present
in the CT-�uoro slice had not been found in the estimated slice, a search of 10mm
in the normal direction of the registered plane has been performed. In our further
automatic visualization (section 4.3.3), we consider all out-of-plane parameters and
combinations of them and not only the normal direction. Table 4.3 summarizes
the registration results. We have also shown samples of these results to our clini-
cal partners and their evaluation agreed with ours. In some cases a failure rate of
27% has occured so the use of the Levenberg-Marquardt algorithm or Trust region
optimization (see appendix A) might provide better results and could be further
assessed. Both algorithms are more robust to a highly non-convex cost surface.

4.4.8. Generation of CEPs

For each of the 8 datasets, we use 3 CT-�uoro slices which results in 24 examples.
The CEPs are generated for each slice starting with an ε = 0.2 for the M-estimator
and ε = 0.25 for the AM-estimator. A linear model of the increase/decrease of ε
with respect to the RMS error is assumed. This is not true for all examples resulting
in an increase of iterations which has been 4. Since the calculations along the out-
of-plane parameter axes are independent, the whole procedure can be parallelized.
Figure 4.8 shows a 3D view of the generated CEPs for a slice of patient 3 where
the registration of the AM-estimator has been rated as successful. The result of the
M-estimator has not been rated successful because the spleen which is present in
the CT-�uoro slice, is not present in the estimated minimum. Figures 4.9 and 4.10
show the 2D views of all 18 CEPs. In this example, the registration employing the

1See liver ablation work�ow in section 1.1.1
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M-estimator has been trapped in a local minimum. In �gure 4.8(b), we see that
there are three planes outside the bundle. These planes represent the images shown
in the 2D view represented by 4.10(i), 4.10(m), 4.10(s) which all contain the spleen
that was not captured.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5.: 2D views of registration results for synthetic slices without deformation.
(a) shows a 2D CT synthetic slice including noise. (b) shows the starting
position for optimization with an RMS of 20.12mm for translation and
5.4◦ for rotation. (c) shows the estimated minimum (M-estimator) with
an RMS of 0.86mm for translation and 0.004◦ for rotation. (d) shows
the estimated minimum (AM-estimator) with an RMS of 0.08mm for
translation and 0.0009◦ for rotation.(e) and (f) show the weights image
in the estimated minimum for the M- and AM-estimator respectively.
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(a) (b) (c) (d)

Figure 4.6.: 2D views (M-estimator). (a) shows a 2D CT synthetic slice including
deformation, noise and needle. (b) shows the same axial position in
the pre-interventional volume as the position where the synthetic slice
was extracted in the deformed volume. This position is used as starting
position for optimization. (c) shows the estimated minimum. (d) shows
the weights image in the estimated minimum.

(a)

(b) (c)

Figure 4.7.: 3D views of the example showed in �g.4.6. (a) shows an axial view of
the deformed surface where the cranio-caudal depth is coded from dark
to light. (b) shows a saggital view on the recovered deformed surface
and the estimated minimum slice intersecting the surface. (c) shows the
same con�guration as (b) from di�erent viewpoints plus the CEPs at
an average movement of 6.56mm and ε = 0.3. All the liver voxels are
included into the volume de�ned by the CEPs.
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(a) (b)

Figure 4.8.: 3D views of the generated CEPs. (a) AM-estimator (b) M-estimator.
Notice that in the case of the M-estimator which was rated as not suc-
cessful there are three planes outside the bundle. These correspond to
projections where the spleen is captured, as it is present in the CT-
�uoro slice. The CT-�uoro slice for this case is shown in �gures 4.9(a)
or 4.10(a). The slices are shown in a 2D view in �gure 4.10 and cor-
respond to the �gures 4.10(j), 4.10(n) and 4.10(t). Note that they are
located in the subvolume which is identi�ed as the solution subvolume.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p) (q) (r) (s)

(t) (u)

Figure 4.9.: AM-estimator: (a) represents the CT-�uoro slice. (b) represents the
initial pose in the volume. (c) represents the estimated minimum. From
(d) to (u): the 2D views represent CEPs.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p) (q) (r) (s)

(t) (u)

Figure 4.10.: M-estimator: (a) represents the CT-�uoro slice. (b) represents the ini-
tial pose in the volume. (c) represents the estimated minimum (note
that the spleen is not captured). From (d) to (u): the 2D views repre-
sent CEPs.
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4.5. Evaluation of adaptive Visualization

Three experienced interventional radiologists have evaluated independently the CEP
visualization versus the visualization of a single slice for the case of M-estimators.
Six datasets have been assessed with corresponding three CT-�uoro slices, resulting
in eighteen examples. Two of the radiologists have considered, in all eighteen cases
(100%), the CEP visualization more valuable than one slice. One of them has voted
for the CEP visualization in eleven examples (61%).

4.6. Discussion

In this chapter, we have presented two robust slice-to-volume registration meth-
ods to overcome the noise and the di�erence between the conditions of the pre-
interventional and the interventional acquisitions. The methods have been evalu-
ated with simulations on synthetic noisy slices with and without deformations. We
have also extensively evaluated the registration results on clinical data since our
proposed adaptive visualization relies on a good registration result. The visualiza-
tion has included views of the CT-volume determined along �at directions of the
out-of-plane motion parameters next to the minimum pose, where the optimization
encounters uncertainty. The views have been generated at poses that represent an
average movement reported in the literature. In this way, the deformation caused
by the breathing could have been included in the volume de�ned by the views.
Segmentation of the liver would contribute to a better accuracy of the subvolume
estimation. Now, the average movement of voxels is computed for a rectangular
mask (which is automatically detected) in which the whole body is considered. The
proposed method has given very good results in a reasonable time with a standard
computer. Furthermore, it can be run in parallel threads since the line search is done
on independent directions from each other speeding up the process of visualization.
The result of the registration and the adaptive visualization have been assessed

by three experienced interventional radiologists on clinical CT-�uoro data2. The
evaluation outcome supports that such visualization in the intervention room allows
the examiner to orientate himself better and estimate more accurately the path to
the lesion. This is because all relevant features (vessels and lesion(s)) of the liver
were present in the CEP visualization. The neighborhood assessment helps to know
in which direction to further perform and how to angulate the needle. A single
slice in the CT-volume will con�rm or not the right position, but it misses further
guidance and neighborhood assessment. On the other hand, this visualization ties
up to the familiar view in the radiology. By permitting interaction, a user interface
further improves the usability of the proposed approach. Finally, in addition to the
proposed visualization, a display for the scale of distance to the target and a 3D
coronal view for incorporating the cranio-caudal direction eases the perception of
depth and orientation of the needle.

2The evaluation has been performed only for the case of M-estimators
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CHAPTER

FIVE

ADAPTIVE VISUALIZATION BASED ON

EIGENANALYSIS OF SLICE-TO-VOLUME

SIMILARITY FUNCTION

5.1. Introduction

S
imilar to the previous chapter 4, we start from an already detected minimum
pose in the CT-volume and analyze the six-dimensional cost surface in order

to detect its structure. Since some of the registration parameters impose stronger
constraints than the others, we therefore expect to see a higher-dimensional valley
roughly pointing into the directions of the weak parameters. We seek a trajectory
along the cost function valley �oor and thus capture the parameters for which the
similarity measure is not changing much, i.e. the parameters which impose most
uncertainty when searching a solution in the CT-volume. In order to �nd this valley,
we apply algorithms from computational chemistry that we adapt for our needs, as
well as a newly developed adaptive eigenvector step (EV-step) method.

When analyzing a cost function surface for a CT-volume and a perfectly matching
�uoro slice, we expect to �nd a well-de�ned global minimum, that is a clear funnel-
like shape of the surface. However, the deformations caused by breathing will add
a considerable amount of fuzziness. Figures 5.1(a) and 5.1(b) show the cost func-
tion for the out-of-plane parameters z translation (cranio-caudal direction) and x
rotation (with respect to an axial CT slice). Figure 5.1(a) shows the cost potential
for a synthetic slice at a rigid pose from the volume � a small but sharp trough
at the minimum. Figure 5.1(b) shows the cost function for a synthetic slice with
deformations: the trough is wider and rather �at at the center. We suppose that
by detecting the fuzziness or �atness and visualizing that area, we will also recover
the deformation volume. This expectation coincides with the 'weak perspective'
around the minimum observed by Birkfellner et al. [6] when analyzing di�erent cost
functions for slice-to-volume registration for the same application. The 'weak per-
spective' is similar to the DRR-based registration, where the uncertainty arrives at
the translation along the direction of the normal beam. In contrast to our proposed
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solution, the authors suggest a second slice as solution to this problem since the new
generation of multislice CT-scanner already provide this functionality.

For detecting this 'weak perspective', we need to analyze the cost surface in the
neighborhood of the optimum that was already found using numerical optimization.
The local shape of the cost potential can be described by second order derivatives.

Analysis of the second order derivative is extensively used for pattern analysis
where the structure of a point can be described by taking into account its neigh-
borhood. It is known as structure tensor [41, 33]. In [39], Hessian analysis of the
cost function at the minimum is performed to better understand the training of
neural networks. In the same community, the thesis of Gallagher [35] analyzes the
error surface (cost surface) by Principal Component Analysis (PCA) and proposes
a trajectory visualization of the learning path, as well as sampling techniques.

In the context of monocular human tracking, [111] presents two methods to build
roadmaps linking local minima on a cost surface. The �rst uses a trust region
damped Newton method along the eigendirections of the cost function. The other
one uses a constrained optimization, in particular a quadratic sequential optimiza-
tion, along an evolving hypersurface to track saddle points and minima within it. In
computational chemistry, the path between minima passing through saddle points
on an energy potential encodes the minimal energy such that a reaction can occur.
Many publications exist that aim for its determination, such as [48], [95]. A review
of methods used in this �eld can be found in [4].

In our context, the trajectory path connects local minima in the neighborhood of
the initially found optimum and passes through saddle points. Fluctuations caused
by the deformation will thus be passed and other potential solutions to our registra-
tion problem will be found. A trajectory planning method will identify those motion
parameters for which the similarity measure is not changing much, i.e. the motion
parameters which impose most uncertainty. As a single six-dimensional point in
parameter space uniquely identi�es a coordinate frame in three-dimensional space
and thus a slice in the original CT-volume, we can convert such a path into a smooth
animation sequence of slices.

In contrast to this plan, �gure 5.1(b) suggests to explore all directions around
the minimum to capture the deformation as our expectation of a valley may not
necessarily apply. However, as we plan to convert the path into an animation se-
quence, a set of multiple trajectories will be hard to display. A visualization along
one dominant path of uncertainty will be much simpler generated and much easier
understood by the interventional radiologists. A single one-dimensional subspace
will thus su�ce in our application.

In section 5.2, we present our employed similarity measures and their derivatives.
In the sequel, in section 5.4, two methods for moving along the valley �oor of the
cost surface are introduced. The �rst method performs iterative motions along the
eigenvector corresponding to the smallest eigenvalue and subsequently corrects the
position using a linesearch orthogonal to the original direction. The second method
has been adopted from [95] and adapted for our application. Similarly to the �rst
method, the latter relies on the correction of a predicted step. After introducing

62



5.2 Cost Functions

our methods in sections 5.4.1 and 5.4.2, we present a performance evaluation on
mathematical models and on real registration data.

(a) Sharp trough (b) Fuzzy trough

Figure 5.1.: Cost function plot using the Beaton-Tukey M-estimator for the out-of-
plane parameters � translation along the z axis and rotation around the
x axis. (a) shows a small but sharp funnel as the synthetic slice was
not deformed whereas (b) shows a fuzzy area since the synthetic slice
contains deformation. The information of the CT-�uoro slice is thus
dispersed into a subvolume of the CT data set.

5.2. Cost Functions

Consider the case when f is based on the sum of squared di�erences (SSD) between
a �xed image I∗ and a slice I resampled from a CT-volume at a pose described by
a six-dimensional parameter vector x. The sum is computed over all image voxels
X as

f(x) =
X
X
ρ(dX (x)) (5.1)

with

ρ : R→ R,

for instance

ρ(d) =
1

2
‖d‖2,

and

dX (x) = I∗(X )− I(T(x)X ).
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5.2.1. First Derivative

The �rst derivative of the cost function (5.1) reads:

∂f(x)

∂x
=

X
X

∂ρ(dX (x))

∂x
(5.2)

=
X
X
ρ′(dX (x)) · ∂dX (x)

∂x
(5.3)

=
X
X
ρ′(dX (x)) · ∂(I∗(X )− I(T(x)X ))

∂x
(5.4)

=
X
X
ρ′(dX (x)) · (−1) · ∂I(T(x)X )

∂x
(5.5)

= −
X
X
ρ′(dX (x)) · ∂I(T(x)X )

∂x
. (5.6)

The second factor of each summand � subsequently referred to as JX (x) � is

∂I(T(x)X )

∂x
=
∂I(T(x)X )

∂T(x)X
· ∂T(x)X
∂T(x)

· ∂T(x)

∂x
=: JX (x). (5.7)

JX (x) is the Jacobian of the image I at the transformation T(x). The �rst term of
JX (x) represents the image gradient at the pose de�ned by the transformation. The
second term represents the derivative with respect to the homogenous coordinates
and the third term represents the derivative with respect to the parametrization of
the motion.

5.2.2. Second Derivative

Likewise, the second derivative of the cost function (5.1) reads:

∂2f(x)

∂2x
= −

X
X

∂(ρ′(dX (x)) · JX (x))

∂x
(5.8)

= −
X
X

∂ρ′(dX (x))

∂x
· JX (x) + ρ′(dX (x)) · ∂JX (x)

∂x
(5.9)

=
X
X
ρ′′(dX (x)) JX (x)>JX (x)− ρ′(dX (x)) · ∂JX (x)

∂x
. (5.10)

The second factor of the subtrahend � subsequently referred to as HX (x) � reads:

∂JX (x)

∂x
=

∂2I(T(x)X )

∂2x
(5.11)

=

�
∂2I(T(x)X )

∂2T(x)X
· ∂T(x)X
∂T(x)

· ∂T(x)

∂x

�>
· ∂T(x)X
∂T(x)

· ∂T(x)

∂x
(5.12)

=: HX (x). (5.13)
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5.3. Simpli�cations

For a constant ρ′′ = c, formula (5.10) can be rewritten as

∂2f(x)

∂2x
= c J(x)>J(x)−

X
X
ρ′(dX (x)) ·HX (x) (5.14)

with J(x) denoting the stacked up JX (x)'s.

5.3.1. SSD � Sum of squared Di�erences

ρ(d) =
1

2
d2 (5.15)

ρ′(d) = d (5.16)

ρ′′(d) = 1 (5.17)

When using this formula for ρ, the simpler equation (5.14) holds and writes as

∂2f(x)

∂2x
= J(x)>J(x)−

X
X
dX (x) ·HX (x). (5.18)

5.3.2. Beaton-Tukey

ρ(d) =

8<: a2

6

�
1−

�
1−

�
d
a

�2
�3
�
, |d| ≤ a

a2

6
, |d| > a

(5.19)

ρ′(d) =

8<: d
�
1−

�
d
a

�2
�2
, |d| ≤ a

0, |d| > a
(5.20)

ρ′′(d) =

(
1− 6

�
d
a

�2
+ 5

�
d
a

�4
, |d| ≤ a

0, |d| > a
(5.21)

5.4. Methods

In order to evaluate the quality of a cost function

f(x) : Rn → R,

the second derivative with respect to the parameter vector x

∂2f(x)

∂2x
: Rn → Rn×n,

is computed at a previously found minimum x0 and evaluated using eigenvalue
decomposition. The eigenvector vmin corresponding to the smallest eigenvalue λmin
points into the direction of f 's smallest variance.
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The Taylor expansion of f(x) around the optimum x0 is

f(x) = f(x0 + ∆x) ≈ f(x0) +

�
∂f

∂x
(x0)

�>
(∆x) +

1

2
(∆x)>

�
∂2f

∂2x
(x0)

�
(∆x) + ...

For an analysis of the smallest change only the third term matters as the �rst can
be discarded as constant and the second term depends on the �rst derivative that
is supposed to equal 0 in the optimum x0. The Taylor expansion can be rewritten
for x = x0 + vmin as

f(x0+vmin) ≈ f(x0)+
1

2
(vmin)>

�
∂2f

∂2x
(x0)

�
(vmin) ≈ f(x0)+

1

2
(vmin)> λmin (vmin) .

Consequently, a small eigenvalue directly corresponds to a small change of the func-
tion value. This relationship is also valid outside the minimum when the gradient is
constant e.g. on a �at surface. In any other case where the cost function will increase,
we would like to stay on the valley �oor of the cost surface. Therefore, even if the
gradient is not zero any more, its variation should be kept as small as possible. A �rst
order approximation of the gradient is gf (x0 + ∆x) = gf (x) ≈ gf (x0) + Hf (x0)∆x.
Here again, the smallest variation of the gradient occurs in the direction of the
eigenvector corresponding to the smallest eigenvalue.
In the next sections the methods ensuring that the trajectory path continues along

the valley �oor are described.

5.4.1. Trajectory Path using EV-Step

Starting from a minimum found previously, we compute an eigenvalue decomposition
of the Hessian of the cost function at this location. We move a small step away from
that minimum in the negative and positive direction of the eigenvector corresponding
to the smallest eigenvalue. At the new point xt+1, we apply a linesearch orthogonal
to the trajectory path in order to correct the deviation. The �nal points will reside
on the valley �oor again. Note that if the valley �oor can be approximated by a
linear path, the eigenvector step will yield a point on the valley �oor right away that
does not need to be corrected. We repeat this process at the new end points using
the same rule until further exploration is not useful any more.

Adaptive step size. During the iteration, an adaptive step size is computed. We
start with a small step value and iteratively increase the step length as long as
the eigenvector corresponding to the smallest eigenvalue at the current point xk
coincides with the gradient at the new estimated point xt+1 up to a small deviation.
We are sure hence to move along the valley �oor ([48], [95]). See �gure 5.2 for an
illustration of the linesearch concept.

5.4.2. Trajectory Path using TASC

We use a slightly adapted implementation of the TASC (Tangent Search Concept)
algorithm proposed by Quapp [95] which generates a path along the valley �oor
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Figure 5.2.: The blue star marks the starting point, the black cross marks the point
which results from the EV-step. The red point is the corrected location
using the linesearch marked as a black line

gradient extremal. Gradient extremals [48] are curves where the gradient is an
eigenvector of the Hessian of the cost surface. This results from the minimization of
the gradient norm over a level set on the surface [95]. The TASC method handles
curved reaction paths very well. The original proposal consists of two consecutive
steps that generate a new point on the valley �oor xk+1 from a point xk and a
search direction rk. Iterating over k, a complete path along the valley �oor can be
computed.

Initialization. Before starting the iteration, we need to generate useful initial seed
points and search directions that ful�ll the requirements imposed by TASC. As the
procedure is gradient based, it is not possible to start at the minimum directly. We
use the method described in 5.4.1 to move a small step away from that minimum in
the negative and positive direction of the eigenvector corresponding to the smallest
eigenvalue. Starting at the minimum x0, we generate two start points x±1 = x0 ±
Cvmin and two corresponding initial search directions r±1 = ±vmin. These values
are stored in a FIFO structure.

Iteration. For each entry in the queue, the two TASC steps are executed. Let the
current seed point be denoted as xk and the current search direction as rk. The
�rst step is the predictor step that attempts a preliminary move along a Newton
trajectory. A tangent direction tk of unit length is computed as the null space of
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PrkHf (xk) using singular value decomposition, i.e. PrkHf (xk)tk = 0, with Prk :=
In−rkr

>
k denoting the orthogonal projection on the orthogonal complement of rk. In

order to roughly move into the same direction as in the previous step, the tangent
vector is constrained to point into the direction provided by the original search
direction. Using the tangent and an adaptive step length sk as described in section
5.4.1, the position is updated as xk+sktk. This position is augmented in a corrector
step that optimizes the cost function Ptkgf (x) = 0 using Newton-Raphson steps,
starting at the intermediate position computed in the predictor step. The result
of this operation is stored as xk+1. If further exploration makes sense, rk+1 := tk
and xk+1 are added to the queue to serve as seed for a later iteration. The queue
structure enables us to create a very generic and �exible framework that allows to
follow bifurcations by adding two tasks to the queue at such a point.

5.4.3. Path Visualization and Constraints

As stated above, a smooth interpolation between the poses on the trajectory is used
to render an animation sequence of slices, starting at the minimum pose, passing
through slices de�ned by path nodes, and returning back to the minimum. This
approach imposes certain restrictions on the path. A �rst consequence is the desire
to avoid sharp turns on the path trajectory. In order to guarantee a smooth camera
�ight, the path is abandoned in this case. Another stopping criterion, which we
also used in the previous chapter in section 4.4.3, is an average relative motion of
the voxels belonging to the slices generated at the respective trajectory points of
more than 7mm with respect to the minimum rigid pose. We thus ensure that only
relevant information corresponding to the CT-�uoro reference slice is retrieved and
presented during the visualization of excerpts of the high resolution CT data.

5.5. Evaluations on analytical Surfaces

5.5.1. Results using EV-Step with Linesearch Correction

For analytical experiments we use the Rosenbrock function for the two dimensional
case which has one minimum at (1, 1):

f (x, y) = 100
�
y − x2

�
+ (x− 1)2

We also use the Mueller-Brown triple-well potential surface from computational
chemistry which has often been used as a benchmark for optimization algorithms.
It has three minima m1 = (0.6235, 0.0280), m2 = (−0.0500, 0.4667), and m3 =
(−0.5582, 1.4418) and two saddle points s1 = (0.21249, 0.29299), and
s2 = (−0.822, 0.62431).

V (x, y) =
4X
i=1

Aie
ai(x−xi)2+bi(x−xi)(y−yi)+ci(y−yi)2

where A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c =
(−10,−10,−6.5, 0.7), x = (1, 0,−0.5,−1), y = (0, 0.5, 1.5, 1).
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Comments on the algorithms. Besides the stopping condition described in sec-
tion 5.4.3, we also check the bounds of the de�nition domain and stop if crossing
them. Both proposed methods produce a similar path in case of the Rosenbrock
surface, which has only one minimum and no saddle points. Whereas in the case
of the Mueller-Brown surface, some stopping criterias apply in the case of TASC.
This is due to the gradient extremal of this surface which does not lead to the up-
per minimum m3 (cf. �gure 4 in [4]). So, TASC stops prior to pivoting into the
associated valley. This termination is caused according to the rule in section 5.4.3
after discovering the sharp bend immediately after the saddle point. Other methods
can help in this special case, e.g. the steepest descent path from the saddle point,
potentially in combination with a linesearch correction.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3.: Corrected versus uncorrected trajectories using the EV-step with adap-
tive step size on the Rosenbrock function. (a)-(d) show trajectories
starting at the minimum (1, 1). (a) and (c) shows the uncorrected tra-
jectory while (b) and (d) includes the linesearch correction. Note that
between (c) and (d) there is no di�erence since the valley �oor is a lin-
ear path. (e) and (f) show trajectories starting at (−1, .733) outside the
valley �oor. (e) shows the uncorrected trajectory while (f) includes the
linesearch correction thus after some iterations it arrives on the valley
�oor and passes through the minima.
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(a) (b)

(c) (d)

Figure 5.4.: Corrected versus uncorrected trajectories using the EV-step on the
Mueller-Brown potential. The saddle points are marked with black
crosses and the minima with black stars. (a) and (c) show the uncor-
rected trajectories while (b) and (d) includes the linesearch correction
starting from the �rst minimum m1. Notice how the step size is large
whenever the gradient is the eigenvector corresponding to the smallest
eigenvalue like in (c) and (d). Also notice, that between (c) and (d)
there is a very small di�erence since the valley path is linear. However
when moving in the other direction of the eigenvector, saddle points and
minima are not detected without the linesearch correction as shown for
(a) and (b). In this case the valley �oor has a more complex structure.
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(a) (b)

(c) (d)

Figure 5.5.: Corrected versus uncorrected trajectories using the EV-step on the
Mueller-Brown potential. The saddle points are marked with black
crosses and the minima with black stars. (a) and (c) show the uncor-
rected trajectories while (b) and (d) includes the linesearch correction
starting from the second minimum m2. In this case without the line-
search correction none of the stationary points are detected.

72



5.5 Evaluations on analytical Surfaces

(a) (b)

(c) (d)

Figure 5.6.: Corrected versus uncorrected trajectories using the EV-step on the
Mueller-Brown potential. The saddle points are marked with black
crosses and the minima with black stars. (a) and (c) show the uncor-
rected trajectories while (b) and (d) includes the linesearch correction
starting from the third minimum m3. This minimum is embedded into
a long linear valley �oor and there is almost no di�erence between the
corrected and uncorrected paths. And no other stationary points are
detected when starting from this minimum.
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5.5.2. Results using TASC

(a) (b)

(c) (d)

Figure 5.7.: TASC algorithm on the Rosenbrock function. (a) and (b) show trajecto-
ries starting at (−1, .733) outside the valley �oor. (a) and (c) show the
predictor and corrector steps while (b) and (d) show only the resulting
trajectory. From both starting points TASC ensures that the trajectory
stays on the valley �oor.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8.: TASC algorithm on the Mueller-Brown potential. The �gures show
trajectories starting from all three minima along the valley �oor. No-
tice that the algorithm stops in �gure (c) after the saddle point since
the trajectory performs a sharp bend and we do not allow this for the
visualization. See section 5.5.1 for explanations.
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(a) EV-step (b) TASC (c) EV-step (d) TASC

Figure 5.9.: 3D views of estimated slices for synthetic data � results for the TASC
algorithm. (a) and (b) show results for synthetic CT-�uoro slices in-
cluding noise and deformations. (c) and (d) show results on clinical
CT-�uoro data.

5.6. Evaluations on synthetic and real CT-�uoro

Slices

For quantitative evaluations, we calculate the generated costs, i.e. the accumulated
similarity measures as given by the cost function for all generated slices, for both
methods. We expect that the optimal algorithm yields a minimal sum. Our aim is
not to miss any information of the CT-�uoro slice but in the same time to ensure
that the generated slices along the trajectory in the CT-volume have minimum
di�erences from the CT-�uoro slice.

We use data from 7 di�erent patients and 4 CT-�uoro slices for each of them.
Additionally, we also use synthetic noisy slices with and without deformation. In
total, we evaluate the average costs on 9 data series. For those experiments, we
estimate a �xed number of 8 slices using both methods. The �rst two slices are by
design identical. For both methods, the same step size has been employed, such
that the conditions are the same. Quantitatively, the TASC method outperformed
the EV-step method.

Figure 5.9 shows three-dimensional views of the proposed methods at the posi-
tions where the algorithm stopped due to the average motion of voxels criterion.
Figures 5.9(a) and 5.9(b) show examples for synthetic CT-�uoro slices containing
deformations. The ground-truth surface which is plotted in the volume as a blue
surface, is included for the liver voxels into the volume with the stopping criterion.
Figures 5.9(c) and 5.9(d) show examples for clinical CT-�uoro slices. Figure 5.10
shows the estimated slices in a 2D view for the example using TASC presented in
�gure 5.9(d).
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Figure 5.10.: 2D views of estimated slices for clinical data � results for the TASC
algorithm. The �rst image column shows the CT-�uoro slice on the
bottom and the estimated minimum at the top. The other images
show slices on the valley �oor created by the TASC algorithm.

5.7. Discussion

We have presented two methods based on works from computational chemistry and
adapted them for visualization along the parameter-space valley �oor of the sim-
ilarity measure. The visualization along this path represents slices in the volume
where the uncertainty is highest when estimating the pose in the volume �tting
the CT-�uoro slice best. This method has also the advantage of connecting several
nearby local minima. Compared to the visualization of the previous chapter 4, this
visualization can be easier perceived by users. This is because, basically, a dom-
inant direction along the eigenvector corresponding to the smallest eigenvalue has
been identi�ed by analysing the cost surface. As a future step, we will present this
visualization to experienced radiologists in order to evaluate it qualitatively.
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CHAPTER

SIX

CONCLUSION

Summary. The main objective of this thesis was to visually support the needle
insertion task for CT-�uoro guided liver ablation. In order to achieve this goal, we
developed novel visualization modes for CT data based on CT-�uoro slices acquired
during the intervention. As the visualization modes consisted in displaying a smooth
animation sequence, the uncertainty introduced by the deformation was conveyed
by providing a set of solutions. The developed algorithms are purely image-based
and could be very well integrated into the current work�ow. Furthermore, a user
interface was provided to interact with the animation and to manually navigate
through the resulting subvolume.

The �rst developed visualization mode relating to the idea that di�erent parts of
the liver undergo di�erent levels of motion and deformation, optimized the motion
parameters for each part of the CT-�uoro slice to determine the corresponding slice
in the CT-volume. Besides this visualization based on piecewise registration, we
also developed simpler visualization modes for evaluation purposes. We tested the
di�erent visualization modes, volume against volume as described in section 3.7,
in order to sense the value of such model. The outcome showed that although
interventional radiologists are used to axial slices (that we also presented), the �nal
result was in favor of the visualization based on piecewise registration.

In order to use all CT-�uoro information for the registration process, the next
two modes modeled the visualization by analyzing the sensitivity of the cost surface
for the employed similarity measure in the neighborhood of the globally estimated
minimum. Herein, we targeted to visualize those slices in the volume for which the
registration process encounters most uncertainty.

The adaptive visualization based on isosurfaces of slice-to-volume similarity func-
tion recovered out-of-plane motion parameters on isosurfaces. In this approach, we
targeted to expand the cost surface sampling uniformly in all out-of-plane directions
and combinations of these. A line search was used to provide the sampling points.
For that purpose, we developed an adaptive technique for linking the isosurface of
the cost function (function space) to the volume (motion parameter space). The
adaptivity consisted in correlating the average motion of the voxels within the sub-
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volume with liver motions reported in the literature. For this visualization mode, we
evaluated the visualization of a single slice versus the recovered subvolume, where
the latter proved to be the preferred choice of the interventional radiologists.
The adaptive visualization based on eigenanalysis of slice-to-volume similarity

function recovered a trajectory along the valley �oor of the cost surface. On this tra-
jectory, the cost surface had small variance and, thus, high uncertainty in estimating
a solution in the CT-volume. Furthermore, this trajectory had also the property
of connecting nearby local minima by passing through saddle points. We evaluated
two such methods on analytical surfaces, on synthetic slices including deformation,
and on real CT-�uoro slices. This concept proved to yield a visualization which can
be easier perceived by users.

6.1. Discussion and Future Work

Uni�ed visualization evaluation. The last two of the three approaches presented
in this work feature the highest robustness. The second approach, presented in
chapter 4, featured the highest accuracy in visualizing the fuzziness around the
minimum, as it expands a visualization in all out-of-plane directions around the
estimated minimum, while weighting all directions in the same way. On the other
hand, the last visualization mode presented in chapter 5, seems to be the best
perceivable of all since the visualization follows a trajectory1 identi�ed by all motion
parameters but favoring those imposing weaker constraints. However, its superior
perceivability is still to be con�rmed in a comparative evaluation of the modes by
interventional radiologists.

Further clinical applications. In this work, we focused on the liver ablation pro-
cedure. However, the developed visualization methods can be transferred to other
interventional applications where a solution set can aid the operation. Ablations
performed on other organs like lung or kidney can be considered. Biopsies feature
the same work�ow as ablations until the target lesion has been reached. The de-
veloped registration and visualization tools are also suitable for di�erent modalities
other than CT/CT-�uoro, used for the pre-interventional scan and the intervention.
In this case, the employed similarity measure has to adapted for the application.

6.1.1. Extensions for new Scanner Protocols

A recently introduced software for CT scanners provides the feature of saving three
CT-�uoro slices at the same time. This protocol adds more information in the z
direction and makes this application less ill-posed. The registration methods devel-
oped can be naturally extended from a slice-to-volume registration to a subvolume-
to-volume registration. The additional information will certainly improve the regis-

1The trajectory path is along the positive and negative directions of the eigenvector corresponding
to the smallest eigenvalue
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tration step and also the estimation of the subvolume in the pre-interventional scan.
The visualization along a trajectory which imposes most uncertainty is very suitable
also for this protocol.

Enhanced visualization. Future work can investigate the position of the needle
tip relative to the target lesion in the volume. The predicted position could then be
displayed in the 3D CT-volume. Recent works [59] focus on an optimal trajectory
planning which can be incorporated together with the segmented lesions into a 3D
view, and displayed during the intervention. In this case an uncertainty visualization
of the trajectory path in a similar way to [110] could be useful.

Evaluation of clinical data. Due to the lack of a gold standard algorithm for this
application or gold standard clinical data, the only available option for evaluating
the clinical data regarding registration and visualization results has been to rely
on visual assessment. The criteria that can help for the assessment of registration
results have been gained during several discussions with interventional radiologists
(see 1.1.1). However, this method is only qualitative and subjective. Providing gold
standard data for this application is a necessary step toward clinical use.

Deformable registration. Supplementary to a rigid registration, a deformable
registration can be used to locally re�ne and update the result. The approach to
be used should be fast and mainly intensity based2. A promising class of functions
that could provide the requirements are the Radial Basis Functions (RBF's). The
displacement �eld is parametrically de�ned at discrete control points xi:

v(x) =
NX
i=1

ciΦ(x− xi).

The coe�cients ci act like forces at the control points. In [98] RBF's have been
used in an intensity based approach where regions of mismatch are automatically
identi�ed and a topology preserving constraint is also derived. To move toward a
more physically intensity based parametric approach, in [86] the authors suggest to
use a Gaussian shaped force for which the corresponding analytical solution in an
elastic medium is known. In this approach both the forces and the irregular placed
control points are optimized during the alignment.
Figure 6.1 shows the deformation on a grid when applying a Gaussian RBF in

one point. A Gaussian RBF reads

Φ(x) = exp(−‖x‖
2
2

2σ2
), with x ∈ R3

In order to show the e�ect of the deformation along each axis' direction separately,
the coe�cients in the non-considered dimensions are set to zero.

2Since vessel features cannot be used for the registration in this application as we already men-
tioned in section 3.2.1
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Figure 6.1.: Left: Gaussian RBF along x-direction, middle: Gaussian RBF along
y-direction, right: Gaussian RBF along z-direction (out-of-plane)

We apply an intensity based slice-to-volume deformable registration de�ned by
Gaussian RBF's on synthetic medical data, for which the GT is known from an
elastic deformation. The optimization of the force coe�cients ci is performed with a
gradient descent optimization. Initial experiments show that contours are very well
recovered, however the lesion is not matching well. In this case, additional informa-
tion along the z-axis will probably improve this result. It is also recommendable to
use data from patients with HCC since this lesion is visible also in the CT-�uoro
slices making a validation easier. This approach can be further extended to the one
proposed by Pekar et. al [86] to reach a more physically based model.

82



(a) Init

(b) After slice-to-volume deformable registration

Figure 6.2.: Slice-to-volume deformable example. (a) shows on the left a synthetic
CT slice where the GT is known. On the right, the image in the CT-
volume is shown at the axial position where the synthetic CT slice was
extracted from the deformed volume. For this large deformation, also
a large grid of the control points is applied to cope with it. Note that
the predicted lesion position in the volume is not matching with the 2D
CT slice.





APPENDIX

A

OPTIMIZATION

The material of this appendix is taken from [36], [81], [68], [38], [3]. Optimization
algorithms based on descent directions are presented below. For simplicity only the
non-robust case for the SSD is presented.
Consider the function F (x) : Rm 7→ R being the sum of squares of nonlinear func-
tions and x∗ satisfying:

x∗ = argminx

(
F (x) =

1

2

mX
i=1

fi(x)2 =
1

2
‖f(x)‖2

2

)
(A.1)

Due to the non-linearity, the solution x∗ is iteratively estimated: from a starting
point x0, xk is computed in a descent direction such that F (xk) < F (xk+1) is sat-
is�ed. This iterative process is based on a local linear or quadratic model of the
objective function. Depending on the employed model, there are several optimiza-
tion techniques each of them having di�erent convergence properties (see section
A.1). Let gi be the gradient and Hi,j be the Hessian Matrix of F with:

g = gi =
∂F

∂xi
= Jf (x)Tf(x) with Jf (x) =

∂fi
∂xi

(A.2)

H = Hi,j =
∂2F

∂xi∂xj
= Jf (x)TJf (x) +

mX
i=1

fi(x)f
′′

i (x) (A.3)

The generic algorithm for the iterative "step-length-based" descent methods is:

k := 0, x := x0

while ‖gi‖ < ε1 and ‖αh‖ and k ≤ kmax do
Find a descent direction h

x := x + αh, α > 0
k := k + 1

end while
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Considering a variation of F along the half line starting from x with direction h,
the Taylor expansion is given by:

F (x + αh) ' F (x) + αhTg (A.4)

for α su�ciently small. Thus, in order that h is a descent direction, it has to satisfy
hTg < 0. If no such direction exist then g = 0 (cf. [36], section 3.2.2). Otherwise α
has to be determined in order to get a decrease in the objective function F . This is
called line search

α∗ = argminα>0 {F (x + αh)} (A.5)

A.1. Convergence

linear convergence ‖xk+1 − x∗‖ < ε‖xk − x∗‖
superlinear convergence ‖xk+1 − x∗‖ < εk‖xk − x∗‖ with εk → 0
quadratic convergence ‖xk+1 − x∗‖ < ε‖xk − x∗‖2

A.2. Steepest descent

The relative gain of F when moving in a descent direction as in eq.A.4 satis�es:

lim
α→0

=
F (x)− F (x + αh)

α‖h‖
= −hTg

‖h‖
= −‖g‖ cos θ, (A.6)

where θ represents the angle between the vectors g and h. The biggest gain is
achieved when θ = π. The resulting direction is the one of negative gradient and it
is called the steepest-descent direction:

h = −g (A.7)

The step length α is then computed by a line search, e.g. with the Armijo back-
tracking line-search condition. This method is very slow, it converges linearly.

A.3. Newton method

A quadratic Taylor expansion of F about x is given by:

F (x + h) ' L(h) = F (x) + gh +
1

2
hTH(x)h (A.8)

The unconstrained minimum of L(h) solving for the step length is:

L′(h) = g + hH(x) = 0 (A.9)

⇔ hH(x) = −g (A.10)

This method has �nal quadratic convergence but it is not robust. Far away from the
minimum, there is no guarantee that the objective function is still strictly convex
and thus the Hessian matrix is not any more positive de�nite.
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A.4. Gauss-Newton method

The GaussNewton method is based on a linear approximation to the components of
fi about x. The assumption is that near the minimum the residuals fi tend towards
zero and thus the second part of the Hessian (see eq. A.3), too. In this case the
Gauss-Newton optimization has also quadratic convergence, since H = L′′(h) =
JT (x)J(x)

f(x + h) ' l(h) = f(x) + Jf (x)h (A.11)

F (x + h) ' L(h) =
1

2
l(h)T l(h) (A.12)

=
1

2
fT (x)f(x) + hTJT (x)f(x) +

1

2
hTJT (x)J(x)h (A.13)

= F (x) + hTJT (x)f(x) +
1

2
hTJT (x)J(x)h (A.14)

The unconstrained minimum of L(h) solving for the step length is:

L′(h) = JT (x)f(x) + JT (x)J(x)h = 0 (A.15)

⇔ JT (x)J(x)h = −JT (x)f(x) (A.16)

the matrix L′′(h) = JT (x)J(x) is symmetric and positive semide�nite. If J(x) has
full rank (i.e. the columns are linearly independent) then it is also positive de�nite.
In this case the descent direction hTg < 0 is satis�ed. If the functions {fi} have small
curvatures {f ′′i } or their absolute values are small, then a superlinear convergence
is expected, but in general the �nal convergence is linear.

A.5. Trust regions and damped methods

These methods build a model L of the behaviour of F in the neighbourhood of the
current iterate x and accept the step h, only if the model is a good approximation
of the original function. Usually a quadratic model is employed by a second order
Taylor approximation:

F (x + h) ' L(h) = F (x) + gh +
1

2
hTH(x)h (A.17)

In order to check if the model is adequate, the gain ration between the model and
the true function is computed:

ρ =
F (x)− F (x + h)

L(0)− L(h)
(A.18)

A.5.1. Trust region methods

In this case the step is computed by the constrained optimization subproblem:

h = htr = argmin‖h‖<∆{L(h)} (A.19)
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A basic algorithm for the trust region problem can be formulated as following:

k := 0, ∆ := ∆0, ηv = 0.9, ηs = 0.1, γinc = 2.0, γdec = 0.5
while not converged do

Built a model L(h) of F (x + h)
"Solve" the trust-region subproblem to �nd hk for which L(h) < F (xk) and

‖h‖ < ∆ and de�ne ρk = F (xk)−F (xk+hk)
L(0)−L(hk)

if ρk ≥ ηv [very successful] then
set xk+1 = xk + hk and ∆k+1 = γinc∆k

else if ρk ≥ ηs [successful] then
set xk+1 = xk + hk and ∆k+1 = ∆k

else {unsuccessful}
set xk+1 = xk and ∆k+1 = γdec∆k

end if

k := k + 1
end while

A.5.1.1. Trust region subproblem

If H is positive de�nite and it lies in the interior of ∆, then the solution to eq. A.17
is the solution of eq. A.10, i.e. the Newton step. If the solution lies outside the trust
region, the solution lies on the boundary of the trust region. Special care has to be
paid when H is inde�nite or positive semi-de�nite and singular, in these cases the
solution is not unique. This is denoted as the "hard case" (for the handling please
see [22]). For those cases except of the hard case the solution of the subproblem
satis�es (for a proof see for instance [3], section 4.1):

(H + λI)h = −g

‖h‖ = ∆ (A.20)

This is a non-linear system where λ, the regularization factor (since it pushes the
system to be positive de�nite), and the step h are the unknowns. For solving this
non-linear system it is convenient to decompose H into its spectral decomposition
and also to consider ‖h‖2 = ∆2 rather than the second part of eq. A.20.

H = UTΛU (A.21)

here U is a matrix of (orthonormal) eigenvectors while the diagonal matrix Λ is made
up of eigenvalues λ1 < λ2 < λ3 < ... < λm. Since H + λI has to be positive semi-
de�nite, and so the solution (s, λ) to eq. A.20 has to provide a λ which is greater
than the smallest eigenvalue λ1. The �rst part of eq. A.20 can be transformed to
write h explicitly in terms of λ:

h(λ) = (H + λI)−1g = −UT (Λ + λI)−1Ug (A.22)
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Now substituting eq. A.22 into the second part of eq. A.20:

ψ(λ) = ‖h(λ)‖2 = ‖UT (Λ + λI)−1Ug‖2 =
mX
i=1

γ2
i

(λi + λ)2
= ∆2 (A.23)

where γi = 〈ei,Ug〉 =
¬
UT ei,g

¶
is the component of g in the direction of the ith

eigenvector. Thus to solve the trust-region subproblem is to �nd a particular root
of a univariate nonlinear equation. Since this equation has poles at its eigenvalues,
it is more convenient to solve for an equivalent equation, the secular equation which
has no poles and the Newton method can be applied for the root �nding:

φ(λ) =
1

‖h(λ)‖
− 1

∆
= 0 (A.24)

The Newton secant method approaches iteratively the root with the correction factor
−φ(λ)/φ′(λ).

φ(λ) =
1

(〈h(λ),h(λ)〉).5
− 1

∆
(A.25)

φ′(λ) = − 〈h(λ),∇λh(λ)〉
(〈h(λ),h(λ)〉)1.5

(A.26)

In addition by deriving the �rst part of eq. A.20:

(H + λI)∇λh(λ) + h(λ) = 0 (A.27)

Now the numerator of eq. A.26 becomes using a Cholesky factorization of (H+λI) =
L(λ)L(λ)T :

〈h(λ),∇λh(λ)〉 = −
¬
h(λ), (H + λI)−1h(λ)

¶
= −

¬
h(λ),L(λ)−TL(λ)−1h(λ)

¶
= −

¬
L(λ)−1h(λ),L(λ)−1h(λ)

¶
= ‖w‖2 (A.28)

The Newton method for the secular equation is summarized as following:

λ > λ1 and ∆ > 0
while not converged do

Factorize (H + λI) = L(λ)L(λ)T

Solve L(λ)L(λ)Th = −g
Solve L(λ)w = h

λ← λ+
�
‖h‖−∆

∆

� �
‖h‖2
‖w‖2

�
end while

This method is not suitable for large scale problems where the Cholesky factorization
is expensive. Approximate solutions are e.g.: the conjugate-gradient method [38],
Powell's Dog Leg method [68].
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(a) TR with radius .2 (b) TR with radius .5

Figure A.1.: TR examples for a function with two minima and one saddle point. The
starting point is marked with a blue star while the end point with a
red star. The TR radius is adapted according to how well the model is
approximating the function. For visibility only the radii of the �rst four
iterations are shown. The same color encodes the radius corresponding
to the actual iteration position. In (a) the algorithm converges to the
one minimum while in (b) it converges to the saddle point. This hap-
pens due to the fact that the TR radius is in (b) bigger than the �rst
Newton step, and thus the step is accepted.

A.5.2. Damped methods

In a damped method the step update is computed as:

h = argmin{L(h) +
1

2
µhTh} (A.29)

where the damping parameter µ ≤ 0 and the term 1
2
hTh = 1

2
‖h‖2 is a regularization

term for penalizing large steps. A small factor gain ρ (eq. A.18) indicates that
the model does not predict well the true function therefore the damping parameter
should be increased, in this way increasing the penalty on large steps. A big factor
indicates that the the model is a good approximation and therefore the damping
parameter can be decreased.
The step update in this method is then the stationary point of the function as
de�ned in A.29 and can be computed by:

L′(h) + µh = 0

⇔ (H(x) + µI)h = −g (A.30)

where L(h) is de�ned in eq. A.17. If µ is su�ciently large, the matrix H(x) + µI is
positive de�nite and the step is descent direction of L.
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(a) Damped Newton

(b) Trust region

Figure A.2.: Rosenbrock function. Starting point is marked with a blue star, while
the end point is marked with a red star. Both algorithms are converged
to the minimum. In (a) the damping parameter is adapted accordingly,
thus robustizing the Newton method. Alternatively, one can use the
steepest descent with a line search when the Newton step fails. (b)
The Trust region radius is set to .2 in the beginning. The TR radius is
adapted according to how well the model is approximating the function.
For visibility only the radii of the �rst three iterations are shown. The
same color encodes the radius corresponding to the actual iteration
position.
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A.6. Levenberg-Marquardt

This method is a damped Gauss-Newton method. The modi�cation of eq. A.16
is done by adding the penalty term as described in A.5.2, thus the step update
computation resulting in:

(JT (x)J(x) + µI)h = −JT (x)f(x) (A.31)

The damping parameter in�uences both the direction and the size of the step, and
this leads to a method without a speci�c line search. The direction is a descent
direction for all µ > 0 since the coe�cient matrix is positive de�nite. If µ = 0
the step is a Gauss-Newton step. If µ is large then the step is a short step in the
steepest descent direction h = − 1

µ
g. The starting value of µ should be related to the

coe�cients of the matrix JT (x)J(x) by taking the maximum of them for instance.
The updating is controlled by the gain factor ρ as in eq. A.18 where L is now a linear
model as in A.11. A large value of ρ indicates that L(h) is a good approximation
to F (x + h), and µ can be decreased so that the next Levenberg-Marquardt step is
closer to the Gauss-Newton step. If ρ is small (maybe even negative), then L(h) is
a poor approximation, and µ should be increased with the twofold aim of getting
closer to the steepest descent direction and reducing the step length. Strategies for
increasing/decreasing µ are described e.g. in [81]

A.7. Sequential Quadratic Optimization

This method is again an iterative method where at each iteration a general quadratic
optimization is solved. A quadratic optimization problem has a quadratic cost
function and all the constraints are linear. In this section only equality constraints
are considered:

x∗ = argminx∈Pf(x)

P = {x ∈ Rn|c(x) = 0} (A.32)

where c : Rn 7→ Rr and whose ith component is the ith constraint function ci. The
corresponding Lagrange's function is:

L(x,λ) = f(x)− λTc(x), (A.33)

with the gradient

L′(x,λ) =

�
L′x(x,λ)
L′λ(x,λ)

�
=

�
f ′(x)− JTc λ)
−c(x)

�
, (A.34)

where Jc is the Jacobian matrix of the constraint function c:

(Jc)ij =
∂ci
∂xj

(x)⇔ Jc = [c′1(x)...c′r(x)]
T
. (A.35)
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Now eq. A.32 can be solved by �nding the pair (x∗,λ) such that the non-linear
system of equations in eq. A.34 is equal to 0. By using the Newton-Raphson's
method(see also section A.3) to estimate the step (h,η added to the current iterate
(x,λ) the update equation looks like:

L′′(x,λ)

�
h
η

�
= −L′(x,λ) (A.36)

where L′′ is the Hessian of the Lagrange function:

L′′(x,λ) =

�
L′′xx L′′xλ
L′′λx L′′λλ)

�
=

�
W −JTc
−JTc 0

�
, (A.37)

with W = L′′xx = f ′′(x)−Pr
i=1 λic

′′
i (x).

One Newton-Raphson step is:�
W −JTc
−JTc 0

� �
h
η

�
= −

�
f ′(x)− JTc λ)
−c(x)

�
x := x + h; λ := λ + η, (A.38)

Replacing η with µ− λ the equation system becomes:�
W −JTc
−JTc 0

� �
h

µ− λ

�
= −

�
f ′(x)− JTc λ
−c(x)

�

⇔
�

W −JTc
−JTc 0

� �
h
µ

�
+

�
JTc λ
0

�
= −

�
f ′(x)
−c(x)

�
+

�
JTc λ)

0

�
(A.39)

�
W −JTc
−JTc 0

� �
h
µ

�
= −

�
f ′(x)
−c(x)

�
x := x + h (A.40)
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