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ABSTRACT

We present a general framework for the minimization of a function

which is parametrized by a set of covariance matrices over a con-

straint set. Since all covariance matrices have to obey the property

of being positive semidefinite, this characteristic has to be reflected

in the constraint set. In addition, the sum of all traces of the co-

variance matrices shall be upper bounded. Using a preconditioned

gradient descent algorithm, we derive an orthogonal projection onto

this constraint set in an easy to follow monolithic way such that it di-

rectly results from the definition of the projection. Interestingly, this

projection allows for a descriptive water-spilling interpretation in the

style of the well-known water-filling algorithm. Two possible appli-

cations are investigated: the sum mean-square-error minimization

and the weighted sum-rate maximization for the MIMO broadcast

channel. Simulations finally reveal the excellent performance of the

proposed framework.

1. INTRODUCTION

Many optimizations arising in the context of information theory and

signal processing feature the nice property that the precoding ma-

trices always appear as outer products in the involved expressions.

Congruously, all terms can be represented by functions of the co-

variance matrices. Prominent examples for such expressions are

mean-square-error (MSE) terms (e.g., [1, 2, 3]), rate terms (e.g.,

[4, 5, 6, 7]), and signal-to-noise ratio terms (e.g., [8, 9]). For the

optimization of any of such covariance-based objectives either in

the MIMO multiple access channel (MAC) or in the MIMO broad-

cast channel (BC), we present a general framework consisting of

three parts: an unconstrained gradient descent in combination with

a proper step-size rule, a preconditioning alleviating the influence of

different transmit powers, and an orthogonal projection which opti-

mally maps the unconstrained gradient update back onto the set of

feasible covariance matrices. Indeed, the final result of this mapping

was also independently applied in [10]. However, our derivation of

the optimum projection is based on an optimization following from

the definition of the orthogonal projection. Moreover, it offers an

easy to follow interpretation in the style of the well known water-

filling algorithm.

Considering an arbitrary objective Ψ(·) depending on several

covariance matrices, we first derive the three aforementioned parts

our general framework consists of. In the sequel, we present a

clearly laid out pseudo-code algorithm which can easily be imple-

mented in Matlab for example. This algorithm acts as the composi-

tion of those three elements termed as the preconditioned projected

gradient algorithm. In addition, if the objective is convex, conver-

gence to the global optimum is ensured. Having derived our concept

for general cost functions, we investigate its performance when ap-

plied to the sum-MSE minimization and the weighted sum-rate max-

imization. Both optimizations clearly fall in the category of convex

covariance-based optimizations. Besides the observation of an ex-

tremely quick convergence, the simulations also confirm the conjec-

ture that covariance-based optimizations outperform the respective

precoder-based ones in terms of iterations until convergence.

2. COVARIANCE-BASED GRADIENT DESCENT

We focus on the minimization of a function Ψ(·) which is jointly

convex in every of its arguments. In particular, we turn our attention

to the case where the arguments resemble a set {Q1, . . . , QK} of K
covariance matrices each of which has to fulfill the positive semidef-

initeness constraint Qk < 0, ∀k ∈ {1, . . . , K}. Upper bounding

the sum of the traces by the constant Ptx, the resulting optimization

reads as

minimize
Q1,...,QK

Ψ(Q1, . . . , QK) s.t.: Qk < 0 ∀k∈{1, . . . , K},

K
X

k=1

tr(Qk) ≤ Ptx.
(1)

In general, a closed form solution to above minimization (1) is not

feasible thus necessitating the use of an iterative algorithm. In this

paper we apply the scaled projected gradient algorithm [11] which

performs a preconditioned gradient descent step followed by an or-

thogonal projection onto the constraint set. The gradient descent step

for the covariance matrix Qk ∈ C
rk×rk ignoring the constraints can

be expressed as

Q
′

k = Qk − p · s ·
∂Ψ(Q1, . . . , QK)

∂QT
k

, (2)

where s ∈ R+ denotes the (iteration-dependent) step-size. The

iteration-dependent preconditioning scalar p > 0 increases the speed

of convergence by normalizing the sum of the gradient traces to the

same order of magnitude as the transmit power: Thus, the gradient

is almost independent of the current transmit signal-to-noise ratio.

p =
Ptx

˛

˛

˛

PK

k=1 tr
h

∂Ψ(Q1,...,QK)

∂QT

k

i ˛

˛

˛

.

For the computation of the Wirtinger derivatives, see [12]. Any ob-

jective Ψ(·) which we will investigate in the sequel has the property
that the gradients with respect to any k are negative semidefinite:

∂Ψ(Q1, . . . , QK)

∂QT
k

4 0 ∀k. (3)



As a consequence, the unconstrained gradient descent update in (2)

yields positive semidefinite matrices Q′

k < 0 ∀k and the traces sat-

isfy the inequality

tr(Q′

k) ≥ tr(Qk) ∀k. (4)

3. PROJECTION ONTO THE CONSTRAINT SET

Obviously, the updated temporary covariance matrices Q′
1, . . . , Q

′

K

do not comply with the constraint set in (1). As a consequence, they

have to be mapped to the constraint set C which is defined by

C =
n

C1, . . . , CK

˛

˛

˛
Ck < 0 ∀k,

K
X

k=1

tr(Ck) ≤ Ptx

o

. (5)

Due to the sum-trace constraint
PK

k=1 tr(Ck) ≤ Ptx, all covari-

ances are coupled. Hence, the nonlinear projection has to map all

matrices Q′
1, . . . , Q

′

K simultaneously to the set C in (5). Compos-

ing the blockdiagonal matrix

Q
′ = blockdiag

˘

Q
′

k

¯K

k=1
∈ C

R×R,

where R =
PK

k=1 rk, the orthogonal projection of Q′ onto C yield-
ing the blockdiagonal covariance matrix C is achieved by the oper-

ation C = (Q′)
⊥
.

3.1. The Naive Projection Approach

In our precoder-based projection algorithm in [13], the objective is

a function depending on the precoders T1, . . . TK instead of the co-

variance matrices. There, the constraint set
PK

k=1 ‖Tk‖
2
F ≤ Ptx is

simply a ball, as the covariances Qk = TkT H
k are positive semidef-

inite by construction. The orthogonal projection onto the sphere is

obtained by a common scaling of all precoders such that the sum-

power constraint is met with equality. Since we are working with

the covariances, the constraint set (5) does not simply represent a

ball any longer. But due to the fact that the unprojected gradient up-

dateQ′

k in (2) already fulfills the positive semidefiniteness constraint

Q′

k < 0 ∀k (cf. Eq. 3), one might think of scaling all covariance ma-

trices according to

C = (Q′)⊥ =
Ptx

tr(Q′)
Q

′ =
Ptx

PK

k=1 tr(Q′

k)
Q

′

in order to let C = (Q′)⊥ ∈ C hold, similar to our precoder-based

design in [13]. However, this kind of projection is not orthogonal,

and the scaled projected gradient algorithm employing this kind of

naive projection inherited from the precoder-based approach fails to

converge to a point that fulfills the KKT optimality conditions of (1).

3.2. The Orthogonal Projection Approach

In case of an orthogonal projection and by means of a step-size adap-

tation convergence of the iterative algorithm can be ensured, cf. [11].

The orthogonal projection of Q′ onto the constraint set C in (5) min-

imizes the distance between Q′ and C ∈ C [11, 14]. Here, we use

the Frobenius norm as a distance measure. What follows is a solid

and easy-to-follow derivation of the orthogonal projection [14]

C =
`

Q
′
´

⊥
= Q

′ + E⊥, (6)

where E⊥ is found via

E⊥=argmin
E

‖E‖2F s.t.: tr(Q′+E)≤Ptx, Q
′+E <0. (7)

Note that the blockdiagonal matrix Q′ is positive semidefinite and

satisfies tr(Q′) > tr(Q) = Ptx according to (4). Additionally, the

gradient ∂Ψ(·)/∂QT
k does not vanish in the optimum, i.e., not all in-

equalities in (4) can hold with equality. This implies a blockdiagonal

structure of E⊥ withE⊥ being Hermitian and negative semidefinite.

Therefore, we can ignore the blockdiagonal structure for the deriva-

tion in the following without loss of generality.

Theorem 1. The orthogonal projection of the matrix Q′ with eigen-

value decomposition Q′ = UΛUH onto the constraint set C reads

as C = UDUH, where U is the unitary eigenbasis of Q′ and Λ

contains the eigenvalues λ1, . . . , λR. The diagonal entries of the di-

agonal matrix D are di = [λi−µ]+, and the spilling level µ follows

from
PR

i=1[λi − µ]+ = Ptx, where the operator [·]+ is defined by

[·]+ = max(0, ·).

Proof. Assigning the Lagrangian function

L = tr(EE
H) + 2µ[tr(Q′ + E)− Ptx]− 2 tr[S(Q′ + E)] (8)

to the minimization in (7), the Lagrangian multipliers feature the

properties µ ≥ 0 and S < 0. From the derivative of (8) with respect

to ET, we find

E⊥ = S − µIR. (9)

Furthermore, the second KKT condition S(Q′ + E⊥) = 0 first

implies that

SQ
′ + S

2 − µS = 0,

and second, thatS andQ′ must have the same eigenbasis. Assuming

the eigenvalue decompositions Q′ = UΛUH and S = UΣUH,

where U is unitary and Λ and Σ are diagonal with non-negative

diagonal entries, this leads to

ΣΛ + Σ
2 − µΣ = 0.

In scalar form, these R equations read as

σ2
i + σi(λi − µ) = 0, i ∈ {1, . . . , R},

having the two possible solutions σi = 0 or σi = µ − λi with

µi > λi to ensure Σ < 0. A compact notation is therefore

σi = [µ− λi]+.

Hence, the summand E⊥ generating the matrix C according to (6)

reads as (cf. Eq. 9)

E⊥ = U [µIR −Λ]+ U
H − µIR,

and the projected matrix C = Q′ + E⊥ = UDUH features the

eigenvalues

di = λi + σi − µ = λi + [µ− λi]+ − µ = [λi − µ]+. (10)

Summing up, the orthogonally projected matrix C reads as

C = U [Λ − µIR]+U
H. (11)

It remains to determine the spilling level µ.

Corollary 1. The spilling level is µ = 1
L

(
PL

i=1 λi − Ptx) if all

λi are sorted non-increasingly. The number of active streams L is

found by initializing L with R =
PK

k=1 rk and checking afterwards,

if the termination criterion LλL −
PL

i=1 λi + Ptx > 0 holds. If so,

the optimum L has been found, otherwise, L is repeatedly reduced

by one until the termination criterion is met.
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Fig. 1. Water-spilling interpretation of the projection.

Proof. The number L of active streams after the projection is de-

fined by λL−µ(L)> 0 and λL+1−µ(L)≤ 0. Note that µ(L) = 0
would imply Σ = 0, E = 0, and therefore Q = Q′. But since

tr(Q′) > Ptx, µ(L) = 0 is not possible and the complementary

slackness condition says that the full power Ptx has to be consumed

by Q. Then, we have µ(L)=(
PL

i=1 λi−Ptx)/L. In order to ensure
that λL−µ(L) > 0, we start withL = R and check if this inequality

holds. If not, L is decreased until λL−µ(L)> 0 holds. Otherwise,

the optimum L has been found because λL+1 − µ(L) ≤ 0 is auto-

matically fulfilled since the inequality λL+1−µ(L+1) > 0 was not

fulfilled in the previous iteration.

Note that the solution in (11) represents the unique global opti-

mum of the projection. This follows from the closest point theorem

due to the convexity of the set C. The same result was independently

found in [10] almost at the same time. However, we derive the or-

thogonal projection monolithically as a requirement for the projected

gradient algorithm. In contrast to [10], we come up with a compact

and easy to follow derivation directly following from the KKT con-

ditions of the orthogonal projection.

3.3. Water-Spilling Interpretation of the Projection

Due to the similarity of Eq. (10) and the standard water-filling so-

lution, we present a graphical interpretation for the orthogonal pro-

jection. Now, the eigenvalues λi of Q′ represent the powers of the

individual modes of the unprojected gradient update (2). In sum,

they correspond to the amount of water before the projection. Hav-

ing applied the projection, the energies di of the modes follow from

spilling water with the level µ, which is illustrated in Figure 1, such

that the total water mass
PL

i=1 di equals Ptx.

4. THE COMPLETE COVARIANCE-BASED PROJECTED

GRADIENT ALGORITHM

Combining the unconstrained preconditioned gradient descent

in (2) and the orthogonal projection from Section 3.2, we end up at

the covariance-based preconditioned projected gradient algorithm,

which is depicted in Alg. 1 in detail. Given an accuracy ε and a

transmit power Ptx, the algorithm starts with the initialization of all

covariance matrices Qk ∀k with scaled identities in Line 1. Hav-

ing set up the inverse step-size d, the current objective under white

signaling is evaluated in Line 3. Lines 5 to 18 correspond to one

outer iteration. After the computation of the gradient in Line 5, the

preconditioning scalar p which reduces the sensitivity to the trans-

mit power Ptx is determined in Line 6. Lines 8 to 15 are executed

Algorithm 1 Covariance-based preconditioned projected gradient

algorithm for a general cost function Ψ(Q1, . . . , QK).

Require: Accuracy ε, transmit power Ptx

1: Qk ←
Ptx

P

K

k=1
rk

Irk
∀k initialize all covariance matrices

2: d← 1 initialize inverse step-size

3: old cost← Ψ(Q1, . . . , QK) evaluate objective

4: repeat

5: Gk ←
∂Ψ(Q1,...,QK)

∂QT

k

∀k gradient computation for all users

6: p← Ptx
P

K

k=1
tr(Gk)

precoditioning scalar computation

7: repeat

8: s← 1
d

set step-size

9: Q′

k ← Qk − p · s ·Gk unconstr. gradient update (2)

10: C ← (Q′)⊥ simult. projection of blockdiagonal Q′ (11)

11: new cost ← Ψ(C1, . . . , CK) evaluate objective

12: cost reduction← old cost − new cost
13: if cost reduction ≤ 0 then

14: d← d + 1 decrease step-size

15: end if

16: until cost reduction > 0
17: Qk ← Ck ∀k save new covariances

18: old cost← new cost save new objective

19: until cost reduction ≤ ε

until the projected gradient descent leads to a reduction of the ob-

jective. First, the unconstrained gradient update according to (2) is

performed in Line 9. Then, the result is simultaneously projected

onto the convex set C from (5) via (11). If the resulting covariance

matrices C1, . . . , CK bring a reduction of the cost function, these

covariances are saved in Line 17. Otherwise, the step-size is reduced

in Line 14 by increasing d by one.

5. APPLICATIONS SUITED FOR THE

COVARIANCE-BASED PROJECTED GRADIENT

ALGORITHM

Having derived the covariance-based gradient descent step in com-

bination with the orthogonal projection onto the convex constraint

set, we point out two well known optimizations in the MIMO broad-

cast channel which can be solved using above general framework:

sum-MSE minimization with linear pre- and decoding and weighted

sum-rate maximization utilizing nonlinear dirty paper coding [15].

5.1. Sum-MSEMinimization

Based on the MSE duality results in [16, 17, 18] stating that the

MIMO BC and the MIMO MAC feature the same MSE region un-

der a sum-power constraint with linear filtering, any MSE-based op-

timization in the BC can conveniently be solved in the dual MAC

and afterwards be transformed back to the BC. Thus, we can exploit

the hidden convexity [16] of the BC sum-MSE minimization and

solve the equivalent optimization in the uplink, where it turns out to

be convex. Converting the solution of the dual MAC problem to the

downlink BC turns out to be very easy entailing a very low complex-

ity since only a single scalar has to be computed, cf. [16]. Assuming

MMSE receivers in the dual MAC, the sum-MSE cost function Ψ(·)
reads as

Ψ(Q1, . . . , QK) = tr

»

“

IN +σ−2
η

K
X

ℓ=1

HℓQℓH
H
ℓ

”−1
–

+R−N,



withHk ∈ C
N×rk denoting the channel matrix describing the trans-

mission from user k to the base station, N refers to the number of

antennas at the base station, and σ2
η is the noise variance at each

receive antenna. Above objective involves the Wirtinger derivatives

∂Ψ(Q1, . . . , QK)

∂QT
k

= −σ−2
η H

H
k

“

IN+σ−2
η

K
X

ℓ=1

HℓQℓH
H
ℓ

”−2

Hk

which obviously satisfy (3) such that the orthogonal projection de-

scribed in Section 3.2 is optimum. If the gradient update (2) yielded

an indefinite matrix Q′

k, the projection would look different. Be-

cause of the joint convexity of the cost function with respect to the

covariance matrices Q1, . . . , QK and due to the convexity of the

constraint set, the algorithm described in Section 4 converges to the

global optimum.

5.2. Weighted Sum-Rate Maximization

Similar to the MSE regions for linear filtering in the previous section,

the capacity regions of the BC and the MAC obtained by nonlinear

processing exactly coincide. The linking element between uplink

and downlink is again resembled by duality transformations [5]. Ev-

ery rate tuple feasible in the BC can also be achieved in the MAC

and vice versa, and the conversion from one domain to the other is

obtained by means of singular-value-decomposition-based transfor-

mations resulting from the effective/flipped channel framework. In

turn, this duality converts the weighted sum-rate to a concave func-

tion in the dual MAC. There, the rate of user π[k] reads as (cf. [4])

Rπ[k] = log2

˛

˛

˛
IN +σ−2

η

Pk

ℓ=1 Hπ[ℓ]Qπ[ℓ]H
H
π[ℓ]

˛

˛

˛

˛

˛

˛
IN +σ−2

η

Pk−1
ℓ=1 Hπ[ℓ]Qπ[ℓ]H

H
π[ℓ]

˛

˛

˛

, (12)

where π[1] is the index of the user who is decoded last. From the

polymatroidal structure of the capacity region it follows that the de-

coding order π[·] is optimal, if the rate weights w1, . . . , wK are

sorted in a nonincreasing order [19], i.e., wπ[1] ≥ wπ[2] ≥ . . . ≥
wπ[K]. W.l.o.g. we assume in the following a renumbering of the

users for a clearer notation such that w1 ≥ w2 ≥ . . . ≥ wK

and π[·] becomes the identity mapping. Let αk = wk−wk+1 for

k ∈ {1, . . . , K−1} and αK = wK . The cost function Ψ(·) cor-

responding to the negative weighted sum-rate −
PK

k=1 wkRk then

reads as (cf. Eq. 12)

Ψ(Q1, . . . QK) = −
K

X

k=1

αk log2

˛

˛

˛

˛

˛

IN +σ−2
η

k
X

ℓ=1

HℓQℓH
H
ℓ

˛

˛

˛

˛

˛

. (13)

The Wirtinger derivatives can be computed via

∂Ψ(Q)

∂QT
k

= −
1

ln 2

K
X

i=k

αiH
H
k

“

IN + σ−2
η

i
X

ℓ=1

HℓQℓH
H
ℓ

”−1

Hk.

Again, (3) holds and due to the convexity of (13), the iterative algo-

rithm in Section 4 reaches the global optimum.

6. SIMULATION RESULTS

6.1. Sum-MSEMinimization

We investigate the number of iterations which are required to let

different iterative algorithms targeted at minimizing the sum-MSE

achieve an MSE which is smaller than (1+ε) times the total MMSE

with an accuracy of ε = 10−4. The total MMSE is assumed to

be reached after 100 iterations of our proposed algorithm since our

algorithm has converged then long before. Fig. 2 shows the number

of iterations to reach the MMSE up to a fraction of ε versus the

relative frequency for three different algorithms. For this setup, K =
4 two-antenna users (rk = 2 ∀k) are served by a base station with

N = 4 antennas, and the transmit power is set to Ptx = 10, whereas
the noise variance is σ2

η = 1. Moreover, we averaged over 10000

i.i.d. channel realizations where each entry of Hk has a zero-mean

complex Gaussian distribution with variance one.

The alternating optimization approach in [20] optimizes the

transmit and receive filters in an alternating fashion directly in the

downlink and is resembled by the red bars. Unfortunately, this algo-

rithm is very sensitive to the ratio Ptx/σ2
η and a higher ratio results

in a slower speed of convergence. As a consequence, the relative fre-

quencies have a nonzero support between 20 and 200 approximately,

and the average number of iterations to achieve the target MSE is

around 75. Increasing the number of antennas N at the base station

leads to a reduced number of iterations. In [17] the authors present

a projected gradient descent algorithm working on the precoders.

Thus, the orthogonal projection onto the sum-power constraint is

simply a rescaling of the matrices obtained by the unconstrained gra-

dient descent. The corresponding green bars show a much denser

histogram at much fewer iterations yielding an average number of

iterations around 16. Finally, our proposed approach performing the

covariance-based projection is depicted by the blue curve. The av-

erage number of iterations necessary to converge within a tolerance

of ε reduces to about 6, i.e., less than half of the number of itera-

tions are required compared to the precoder-based approach in [17],

and less than ten percent compared to the alternating optimization

in [20]. Note that the last two algorithms have been initialized with

scaled identity covariance matrices in the uplink and solve the opti-

mization in this dual MAC whereas the alternating optimization ap-

proach directly operates in the downlink. There, the precoders have

been initialized such that they correspond to a white power allocation

in the uplink, i.e., according to [16], the precoders are scaled Her-

mitian MMSE receivers of the downlink. This initialization yields

much better results than a white power allocation in the downlink.

6.2. Weighted Sum-Rate Maximization

We measure the number of iterations that are needed in order to

let the weighted sum-rate grow above (1 − ε) times the maximum

weighted sum-rate. This time, the relative accuracy ε = 10−3 is

slightly larger than before due to the fact that the algorithm in [21]

takes an enormous amount of time to reach this target rate. All other

parameters are left unchanged, and the weight vector w is arbitrarily

set to w = [1, 2, 3, 4]T . We compare four different algorithms: The

covariance-based rank-one covariance matrix update in [21], which

can be regarded as the first one tackling the problem of maximizing

the weighted sum-rate. Second, the precoder-based conjugate gradi-

ent approach in [22], third, the covariance-based conjugate gradient

approach from Liu et al. in [10], and finally, our proposed method

which is also mentioned in [22] to some extent.

The right plot of Fig. 3 shows that the algorithm in [21] con-

verges extremely slowly. Since the covariance matrix updates have

only rank one, an average number of about 450 iterations is nec-

essary to reach the desired target rate. Moreover, every single itera-

tion has a critically high complexity since many function evaluations

have to be executed for the one-dimensional bisection which deter-

mines the optimum step-size. The most recent work from Liu et al.

in [10] combines a conjugate gradient ascent with an Armijo rule for

the outer step-size. However, convergence cannot be guaranteed this
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way since this kind of step-size rule should be applied to the inner

step-size which is held constant in [10]. Its performance is depicted

in the left plot of Fig. 3, yielding an average number of around 6

iterations to reach the target rate. Both the conjugate gradient pre-

coder based approach from Böhnke et al. in [22] and our proposed

covariance-based algorithm obtain an even smaller average number

of iterations, which is about 3. The latter one needs only two it-

erations in 30 percent of the cases whereas the first one features a

smaller standard deviation and requires only 3 iterations in about 75

percent of the cases.
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