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Abstract— We investigate the joint optimization of quantizer Il. SYSTEM MODEL AND NOTATION

and linear receiver for the quantized multi-input multi-output : : : .
(MIMO) channel. Our approach is based on amean square We consider a point to point MIMO Gaussian channel

error (MSE) criterion, taking into account the effects of quan- Where the transmitter employ&/ antennas and the receiver

tization. An essential aspect of our derivation is that we do not hasN antennas. Fig. 1 shows the general form of a quantized

make the assumption of uncorrelated white quantization errors. MIMO system, whereH & CN*M s the channel matrix.

Tpe perIprn;ance of tth% _”:jooligiEd fti!tef”as V\:je” as the eFeIICts The vectorz € CM comprises theM transmitted symbols

of quantization are studied theoretically and experimentally. ., - :

Fur?hermore, we provide a lower bound )c/)n the cagacity of th?/s with zero-mean and covariance matrﬂ(,?x - E[:cm"'}._The .

channel. Through simulation, we demonstrate the usefulness of VECOrn refers to zero-mean complex circular Gaussian noise

our approach. with covarianceR,,, = E[nn"]. y € C" is the unquantized
channel output:

y=Hx+n. Q)

In our system, the real parig z and the imaginary partg; ;

Most of the contributions on receiver design for multipleof the receive signalg;, 1 <i < N, are each quantized by a
input multiple-output (MIMO) systems assume that the ré-bit resolution uniform/non-uniform scalar quantizer.ush
ceiver has access to the channel data with infinite precisidie resulting quantized signals read as:
In practice, however, a quantizer is applied to the receive & _ N _ .
signal, so that the channel measurements can be processed in"' QUat) = aa + dias LEART}, 1<is N, ()
the digital domain. The reliance on high-resolution angmg whereQ(-) denotes the quantization operation apg is the
digital converters (ADCs) easily becomes unjustified asisogesulting quantization error.
as we have to do with MIMO channels [1]. In this case, the The matrixG € C**¥ represents the receive filter, which
needed ADCs to fulfill this assumption are expensive and evealivers the estimaté:
no more feasible. In fact, in order to reduce circuit comipjex
and save power and area, low resolution ADCs have to be
employed [2]. Therefore, the proposed receiver designs @uir aim is to choose the quantizer and the receive m#irix
not necessarily have good performance when operating minimizing the MSE—_E[Hi—mHg], taking into account the
guantized data in a real system. In [1] and [3], the effecgiantization effect. Throughout this paper; denoteE[a 3.
of quantization are studied from an information theordtica
point of view. In [4], the authors examined these effects Y T
experimentally by using a standard Zero-Forcing filter @t th z ﬁbﬁg%ﬁ Q(e) Sﬁ z
receiver. In this paper, we are interested in modifying tied-w M H N G
known linearminimum mean square error (MMSE) receiver n
(or Wiener filter) taking into account the presence of thenqua
tizer. Under the choice of an optimal uniform/non-uniform
scalar quantizer we evaluate the resulting MSE between the
estimated and the transmitted symbols and we minimize it [1l. OPTIMAL QUANTIZER

with a linear filter. Thereby, no assumption of uncorrelated o N : . i)
. o ’ . . Each quantization process is given a distortion fapf,bf‘
white quantization errors is made. Through simulation, we .~ " . o .
. . . ) .10 indicate the relative amount of quantization noise gateet,
compare the new filter to the conventional Wiener filter in, . )
which is defined as follows
terms of uncoded BER. In our model we assume perfec )
channel state information (CSI) at the receiver, which can plid) = E[qz‘,l] (4)
be obtained even with coarse quantization [5]. 1 Tyoryin
Our paper is organize_d as follows. Section Il describt_as thehere Ty, = E[y2,] is the variance ofy,; and the
system model and notational issues. In Section Ill, we discu hon :

. . il . .
the properties of the chosen Quantizer, then we derive tg?tomon factorpé ) depends-on the number 9f guantization
optimal receiver in section IV. In Section V, we deal with s b, t.h_e quant.|zer typg (uniform or non-umform) and the
the effects of quantization on the MSE. Next, we provide %roba.blllty densﬁy funphon ofy;,;. Note thgt the S|gna!-to- .
lower bound on the channel capacity in section VI basé]djant'zat'on noise r_atlo .(SQNR) has an inverse relatignshi
on this MSE approach; and we also examine the effects v(\;\lh regard to the distortion factor
guantization on the capacity at low and high SNR values. SONR#) — 1 _ (5)
Finally, we present some simulation results in section VII. i)

I. INTRODUCTION

&= Gr. ©)

Fig. 1. Quantized MIMO System




In our system, the uniform/non-uniform quantizer design Our goal now is to determine the linear filtéf as a func-

is based on minimizing thenean square error (distortion) tion of the channel parameters and the quantization distort
between the inpuy;; and the output;; of each quantizer. factor p,.

In other words, the SQNR values are maximized. Under To this end, we derive all needed covariance matrices by
this optimal design of the scalar finite resolution quamtizeusing the fact that the quantization errgt conditioned on
whether uniform or not, the following equations hold for all;, is statistically independent from all other random vaeab

0<i<N,le{R,I} 6], [7] [8] of the system.
Elgi] = 0 ©) First we calculater,,,; = E[y;q;] for i # j:
Elriiqy] = 0 7 Elyigj] = Ey[Elviq;ly;l]
Blyiagia] = —pS 7y .- (8) = Ey[Elyily;]Elg; lys]]
Obviously, Eq. (8) follows from Egs (4) and (7). For the ~ Eyj{ryiyﬂ;jbjij[Qﬂyﬂ] (16)

uniform quantizer case, Eq. (6) holds only if the probayilit
density function ofy; ; is even. B 17
Under multipath propagation conditions and for large numbe = TPa"yiys- a7)

of antennas the quantizer input signgls are approximately |, (16), we approximate the Bayesian estimatdy;|y,] with
Gaussian distributed and thLle, they undergo nearly the Sajg jinear estimatory,,,,, ', y;, which holds with equality if
distortion factor p, i.e., pi") = p, Vivl. Furthermore, the vectory is jointly Gaussian distributed. Eq. (17) follows
the optimal parameters of the uniform as well as the nofipm (9).
uniform quantizer and the resulting distortion facigy for Summarizing the results of (9) and (17), we obtain:
Gaussian distributed signal are tabulated in [7] for déferbit
resolutionsb. Recent research work on optimally quantizing Ry, ~ —p,Ry,. (18)
the Gaussian source can be found in [9], [10], [11].

Now, letg; = ¢; r+7¢;,1 be the complex quantization error.
Under the assumption of uncorrelated real and imaginary par Elgigl] = E, [E[qiq}‘lyj]]

of y;, we easily obtain: .
= Ey,[Elaly]Elgly;]

—1 *
= Ty Ty, BlYG]

In a similar way, we evaluate,, . for i # j:

Tqiqi = E[qiqgk] =PqTyiyi>

©) ~ E [7" T y-E[q’-‘\y-]}
Tyigs = E[yzq:‘] = — PyTyiui- Yi| Y5 yy; 97 J197
. . : _ = 7.t Byl
For the uniform quantizer case, it was shown in [11], that the gjq; Yivi ) J
optimal quantization step\ for a Gaussian source decreases = Py = PqTuivs> (19)

—b . . .
asvb2"" and thatp, is asymptotically well approximated byWhere we used Eq. (18) and (9). From (19) and (9) we deduce

A2 —2b

Tz and decreases a8 . _ _ the covariance matrix of the quantization error:
On the other hand, the optimal non-uniform quantizer

achieves, under high-resolution assumption, approximtie R, =~ pgdiag R,,) + pgnondlaQRyy)

; . . 20
following distortion [12] = pqRyy — (1 = pg)pgnondiad Ry, ), 20

~ L‘/§2—2b (10 with diag(A) denotes a diagonal matrix containing only the
a 2 ' diagonal elements oA and nondiagA) = A — diag(A).
This particular choice of the (non-)uniform scalar quagntiz Inserting the expressions (18) and (20) into Eq. (15), we
minimizing the distortion between andy, combined with obtain:
the receiver of the next section, is also optimal with respec .
to the total MSE between the transmitted symbol veator R, ~ (1= pg)(Ryy — pgnondiag Ry, )).  (21)

and the estimated symbol vectdr as we will see later. Afterwards, we get the covariance matd¥,, = E[zq"] in
the following manner:

1%

IV. OPTIMAL RECEIVER

The linear receiveG that minimizes the MSE E[g;qH} = Ey[E[quWH
— H
E[lel3] = [« — ]3] = E[|z — Gr|3] (11) = Ey[i[wlﬁEl[quyu
is given by ol wgl vy yH[q ly]]
G =R, R, (12) = RyyR,, Elyq]
= —pgRay. (22)

and the resulting MSE equals

1 3H Thus, Equation (14) becomes
MSE = tr (Rss) =1 (Rm - R R, er) ) (13)

where R, reads as Ror = (1= pg) Ray. (23)

_ H Hy _ Summing up, we get from (21) and (23) the following
Ry = Blor”] = Elz(y + )] = Ray + Rag, (14) expression for the Wiener filter (12) operating on quantized

and R,., can be expressed as data:

R, = E[(y+q)(y+q)"] = Ryy+Ryy+ R + R,,. (15) Gwro ~ R.y(R,, — p,nondiadR,,))~".  (24)



and for the resulting MSE, we get using (13) linear MMSE estimate ofc. Finally, we get using Eqs (25)

: _ and (27
MSEnrtr [Ruu— (1 - pyRoy Ry, pynondiagR,,)) 'RY). 2" 7
(25)  I(z,7) 2 —log, [l - (1—p)Ruy(Ry,—pynondiagR,,) ) 'H |.
We obtainR,, and R, easily from our system model: (34)
R, = R, + HR, H", (26) \l/\lwct)zv considering the case of low SNR values, we get easily
_ H
R,, = R, H". (27) R, ~ Ry, (35)

V. EFFECT OFQUANTIZATION ON THE MSE and Eqgs (34) and (27), the following first order approximatio

We first examine the first derivative of the M@k, in (25) of the mutual informatiort2
with respect top,:
I(x,r) Z (1 — py)tr[Re H' R, H/1og(2). (36)

IMSBRQ _ i 1 rodiag Ry, ) GY 0 28 "
opg [Gurodiag Ry,) Gineg] > 0. (28) Compared with the mutual information for the unquantized
where Gweg is given in (24). Therefore the MSkq is case, also at low SNR [14]
monotonically increasing ip,. Since we choose the quantizer I(@,y) =~ trR,. H' R, H]/log(2), (37)

to minimize the distortion factgs,, our receiver and quantizer _ _ _

designs are jointly optimum with respect to the total MSE. the mutual information for the quantized channel degrades
Now, we expand the MSE expression (25) into a Tayldnly by the factor(1 — p,). For the spacial case = 1, we

series aroungh, = 0 up to the order one: have py|,_, = 1 — 2 (see [7]) and the degradation of the

mutual information becomes

MSEwrq ~ MSEwe + pgtf R,y R, diag R, )R, R} ], /

. (z,y) 2
(29) lim ~—. (38)
where MSEr = MSEwrg|,,—0 iS the achievable MSE SNR—0 I(m,7) [,y
without quantization. Above equation gives the increase Wsing a different approach, we present in our paper [15]
MSE due to the quantization as a function @f and the a similar result, and show that the above approximation is
channel parameters. It reveals also a residual error aehighsymptotically exact.
SNR values, with is given by

M ~ ptr[(HPH)~'H" diag HR,,,H") H (H"H) " qu assuming perfect CSI at the transmitter, the capacity
SEres? pytr (" H) diag(HR,,H") H (H"H) (%0) of this channel can be expressed as [13]

since R,y R, = R, H"(R,, + HR,,H")~! converges Co = max I(x, 7). (39)
to (H"H)~'H" as R,, converges to0, by means of the S _ o
matrix inversion lemma. The maximization is performed over the input distribution

Under a high resolution assumptiop, is proportional to Of  under a power constraint(R,,) < Pr. Since the

2-2b, therefore the residual MSE decreases exponentially wigaussian distribution is not necessarily the capacityesitng
the number of quantization bits distribution, we get from Eq. (34) the following lower bound

on the capacity
VI. LOWERBOUND ON THEMUTUAL INFORMATION AND

THE CAPACITY Co & max —log, [ = (1= pg)Ray (Ryy— pynondiadR,,)) H|.

In this section, we develop a lower bound on the mutual =~ . _ (40)
information rate between the input sequenacand the quan- This optimization overR,, is, unfortunately, intractable. As
tized output sequence of the system in Fig. 1, based onSuboptimal solution for low SNR values (see Eq. (36)), we
our MSE approach. Generally, the mutual information of th@&n employ the eigenmode transmission solution of the un-

channel can be expressed as [13] quantized effective channd®,,'/>H (water-filling solution)
given in [16] and [17]
I(z,7) = h(x) — h(x|r)). (31
Given R, und int(R,.) < P R = VIV (41)
iven R,, under a power constraint(iR,,) < Pr, we s = (ul —A—1)+, (42)

chooser to be Gaussian, which is not necessarily the capacity
achieving distribution for our quantized system. Then, @® ¢ where 1, is chosen to satisfy the transmit power constraint
obtain a lower bound fof (x,r) (in bit/transmission) as and (z), denotes mai:,0). The unitary matrix V' and
the diagonal matrixX are obtained from the eigenvalue
I(x,r) = log,|Ryz| — h(x|r o _
(@,7) 82 | Raa| = hiz|r) decomposition ofH" R, ' H.

= logy |Ryy| — h(z — &[r) An other strategy consists of using a transmit zero-forcing

> logy |Ryz| — h(z — ) (32) scheme trying to pre-eliminate all the interference at the
e receiver, so that the symbols can be reliably distinguished
| R | each other at high SNR, even with few quantization bits; that
> log, (33) is
R Py -
Since conditioning reduces entropy, we obtain inequality R., = W(HH ) (43)

(32). On the other hand, The second term in (32) is upper
bounded by the entropy of a Gaussian random variable whos€ye assume also thai, < 1 (or R, is diagonal).
covariance is equal to the error covariance maRix of the 2Note thatlog || + AX| = tr(AX).



As the SNR go toxo, and for the special cask/ = N, the

capacity achieved by the zero-forcing scheme convergés ti
SNlégoo ng'ZF = —logy |pgl| = =M logy(py) ~ 2Mb. 1078 P
(44) pR 4 *'V bl
This means that the capacity increases linearly with tiy g A A ath An
resolution b at high SNR. Intuitively, this is because then &3 AL =3
receiver can maximally distinguish/b input symbols. S 10 2L 8 :x;o_ o‘}'\‘:\
5 ’~x.,_’- ~
VIlI. SIMULATION RESULTS § — WFQ--5bit \q e ""'
- . . 5 —6— WF--5bit ‘o o
The performance of the modified Wiener filter for a 4= —¥— ZF——5bit ‘ Q‘b
and 5-bit quantized output MIMO system (WFQ), in term 197°L| . =. <. WFQ--4bit >
of BER averaged over 1000 channel realizations, is shown 1 =0= ' WF-—4bit
Fig. 2 for al0x10 MIMO system (QPSK), compared with the =V ZF-—4bit
conventional Wiener filter (WF) and Zero-forcing filter (ZF). ::: ;‘fﬁ:ﬁjﬁ&ﬁ?t'
The symbols and the noise are assumed to be uncorrela 15 ‘ —— i i
thatisR,, = o2l andR,, = o2l. Hereby, the (pseudo-)SNR -5 0 5 1000 10 52 15
. : . 910(5%)
(in dB) is defined as T
2 Fig. 2.  WFQ vs. the conventional WF and ZF receivers, QPSK md&duala

Uav
SNR= 10Iog10(§).

(45) with M = 10, N = 10, 4- (p, = 0.01154) and 5- p, = 0.00349) bit

n uniform quantizer.

Furthermore, the entries d are complex-valued realization
of independent zero-mean Gaussian random variables w™**-
unit variance. Clearly, the modified Wiener filter outpenfier

: , : : T 45 ; ;
the conventional W|ener filter qt high SNR. This is becgus — Simulated MSE——5bit
the effect of quantization error is more pronounced at high 4} - © - Theoretical MSE--5bit| 1
SNR values when compared to the additive Gaussian no — Simulated MSE-—4bit
3.5 = © = Theoretical MSE——4bit| |

variance. Since the conventional Wiener filter converges
the ZF-filter at high SNR values and looses its regularize

structure, its performance degrades asymptotically to t825>

performance of the ZF-filter, when operating on quantiqu
data. For comparison, we also plotted the BER curves for 12
WF and ZF filter, if no quantization is applied.

Fig. 3 illustrates the simulated MQfg compared with the
closed-form expression (theoretical Mgk) from Eq. (25)

for the same scenariod (= 4 and 5), and averaged over

3»

2»

1»

0.5f
1000 channel realizations. As we can see, the approximistior
very tight, which demonstrates the usefulness of our amproa 9 0 5 10 1‘§2 20 Py 20
Fig. 4 shows, also for the same scenarios, the lower bounds 10l0g,(5%)

n

the average capacity (ergodic capacity) derived in theipusv

section compared to the unquantized case. Obviously, the 3. Theoretical MSfgrq from Eq. (25) vs. simulated MSfgq, M =
eigenmode transmission strategy performs well at low SNIR NV = 10, 4- and 5-bit uniform quantizer.

and closely to the unquantized system. Nevertheless, the ze
forcing transmit (TxZF) scheme achieves higher throughput
at high SNR values, since the symbols can be more reliably
distinguished at the receiver.

VIIl. CONCLUSION ]
We addressed the problem of designing a linear MMSEZ]
receiver for MIMO channels with quantized outputs. Under a
optimal choice of the quantizer, we provided an approxiomati [3]
for the mean squared error between the transmitted symbol
and the received one. Then, we derived an optimized Iine%
receiver, which shows better performance in terms of BER
compared to the conventional Wiener filter. Moreover, our
receiver does not present any extra complexity from th&
implementation point of view. We examined the capacity
of such a system and proposed a lower bound on it. We
also studied the effects of quantization on the MSE and thigl
capacity. (8]

3We useRy, ~ HR,,H" and Eq. (34). [9]
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