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Abstract— We investigate the joint optimization of quantizer
and linear receiver for the quantized multi-input multi-output
(MIMO) channel. Our approach is based on a mean square
error (MSE) criterion, taking into account the effects of quan-
tization. An essential aspect of our derivation is that we do not
make the assumption of uncorrelated white quantization errors.
The performance of the modified filter as well as the effects
of quantization are studied theoretically and experimentally.
Furthermore, we provide a lower bound on the capacity of this
channel. Through simulation, we demonstrate the usefulness of
our approach.

I. I NTRODUCTION

Most of the contributions on receiver design for multiple-
input multiple-output (MIMO) systems assume that the re-
ceiver has access to the channel data with infinite precision.
In practice, however, a quantizer is applied to the receive
signal, so that the channel measurements can be processed in
the digital domain. The reliance on high-resolution analog-to-
digital converters (ADCs) easily becomes unjustified as soon
as we have to do with MIMO channels [1]. In this case, the
needed ADCs to fulfill this assumption are expensive and even
no more feasible. In fact, in order to reduce circuit complexity
and save power and area, low resolution ADCs have to be
employed [2]. Therefore, the proposed receiver designs do
not necessarily have good performance when operating on
quantized data in a real system. In [1] and [3], the effects
of quantization are studied from an information theoretical
point of view. In [4], the authors examined these effects
experimentally by using a standard Zero-Forcing filter at the
receiver. In this paper, we are interested in modifying the well-
known linearminimum mean square error (MMSE) receiver
(or Wiener filter) taking into account the presence of the quan-
tizer. Under the choice of an optimal uniform/non-uniform
scalar quantizer we evaluate the resulting MSE between the
estimated and the transmitted symbols and we minimize it
with a linear filter. Thereby, no assumption of uncorrelated
white quantization errors is made. Through simulation, we
compare the new filter to the conventional Wiener filter in
terms of uncoded BER. In our model we assume perfect
channel state information (CSI) at the receiver, which can
be obtained even with coarse quantization [5].

Our paper is organized as follows. Section II describes the
system model and notational issues. In Section III, we discuss
the properties of the chosen Quantizer, then we derive the
optimal receiver in section IV. In Section V, we deal with
the effects of quantization on the MSE. Next, we provide a
lower bound on the channel capacity in section VI, based
on this MSE approach; and we also examine the effects of
quantization on the capacity at low and high SNR values.
Finally, we present some simulation results in section VII.

II. SYSTEM MODEL AND NOTATION

We consider a point to point MIMO Gaussian channel
where the transmitter employsM antennas and the receiver
hasN antennas. Fig. 1 shows the general form of a quantized
MIMO system, whereH ∈ C

N×M is the channel matrix.
The vectorx ∈ C

M comprises theM transmitted symbols
with zero-mean and covariance matrixRxx = E[xxH]. The
vectorη refers to zero-mean complex circular Gaussian noise
with covarianceRηη = E[ηηH]. y ∈ C

N is the unquantized
channel output:

y = Hx + η. (1)

In our system, the real partsyi,R and the imaginary partsyi,I

of the receive signalsyi, 1 ≤ i ≤ N , are each quantized by a
b-bit resolution uniform/non-uniform scalar quantizer. Thus,
the resulting quantized signals read as:

ri,l = Q(yi,l) = yi,l + qi,l, l ∈ {R, I}, 1 ≤ i ≤ N, (2)

whereQ(·) denotes the quantization operation andqi,l is the
resulting quantization error.

The matrixG ∈ C
M×N represents the receive filter, which

delivers the estimatêx:

x̂ = Gr. (3)

Our aim is to choose the quantizer and the receive matrixG

minimizing the MSE=E[‖x̂−x‖2
2], taking into account the

quantization effect. Throughout this paper,rαβ denotesE[αβ∗].
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Fig. 1. Quantized MIMO System

III. O PTIMAL QUANTIZER

Each quantization process is given a distortion factorρ
(i,l)
q

to indicate the relative amount of quantization noise generated,
which is defined as follows

ρ(i,l)
q =

E[q2
i,l]

ryi,lyi,l

, (4)

where ryi,lyi,l
= E[y2

i,l] is the variance ofyi,l and the

distortion factorρ(i,l)
q depends on the number of quantization

bits b, the quantizer type (uniform or non-uniform) and the
probability density function ofyi,l. Note that the signal-to-
quantization noise ratio (SQNR) has an inverse relationship
with regard to the distortion factor

SQNR(i,l) =
1

ρ
(i,l)
q

. (5)



In our system, the uniform/non-uniform quantizer design
is based on minimizing themean square error (distortion)
between the inputyi,l and the outputri,l of each quantizer.
In other words, the SQNR values are maximized. Under
this optimal design of the scalar finite resolution quantizer,
whether uniform or not, the following equations hold for all
0 ≤ i ≤ N , l ∈ {R, I} [6], [7], [8]:

E[qi,l] = 0 (6)

E[ri,lqi,l] = 0 (7)

E[yi,lqi,l] = −ρ(i,l)
q ryi,lyi,l

. (8)

Obviously, Eq. (8) follows from Eqs (4) and (7). For the
uniform quantizer case, Eq. (6) holds only if the probability
density function ofyi,l is even.
Under multipath propagation conditions and for large number
of antennas the quantizer input signalsyi,l are approximately
Gaussian distributed and thus, they undergo nearly the same
distortion factor ρq, i.e., ρ

(i,l)
q = ρq ∀i∀l. Furthermore,

the optimal parameters of the uniform as well as the non-
uniform quantizer and the resulting distortion factorρq for
Gaussian distributed signal are tabulated in [7] for different bit
resolutionsb. Recent research work on optimally quantizing
the Gaussian source can be found in [9], [10], [11].

Now, letqi = qi,R+jqi,I be the complex quantization error.
Under the assumption of uncorrelated real and imaginary part
of yi, we easily obtain:

rqiqi
= E[qiq

∗

i ] =ρqryiyi
,

ryiqi
= E[yiq

∗

i ] = − ρqryiyi
.

(9)

For the uniform quantizer case, it was shown in [11], that the
optimal quantization step∆ for a Gaussian source decreases
as

√
b2−b and thatρq is asymptotically well approximated by

∆2

12 and decreases asb2−2b.
On the other hand, the optimal non-uniform quantizer
achieves, under high-resolution assumption, approximately the
following distortion [12]

ρq ≈ π
√

3

2
2−2b. (10)

This particular choice of the (non-)uniform scalar quantizer
minimizing the distortion betweenr and y, combined with
the receiver of the next section, is also optimal with respect
to the total MSE between the transmitted symbol vectorx

and the estimated symbol vectorx̂, as we will see later.

IV. OPTIMAL RECEIVER

The linear receiverG that minimizes the MSE

E[‖ε‖2
2] = E[‖x − x̂‖2

2] = E[‖x − Gr‖2
2] (11)

is given by
G = RxrR

−1
rr , (12)

and the resulting MSE equals

MSE = tr (Rεε) = tr
(
Rxx − RxrR

−1
rr RH

xr

)
, (13)

whereRxr reads as

Rxr = E[xrH] = E[x(y + q)H] = Rxy + Rxq, (14)

andRrr can be expressed as

Rrr = E[(y+q)(y+q)H] = Ryy +Ryq +RH
yq +Rqq. (15)

Our goal now is to determine the linear filterG as a func-
tion of the channel parameters and the quantization distortion
factor ρq.

To this end, we derive all needed covariance matrices by
using the fact that the quantization errorqi, conditioned on
yi, is statistically independent from all other random variables
of the system.

First we calculateryiqj
= E[yiq

∗

j ] for i 6= j:

E[yiq
∗

j ] = Eyj

[
E[yiq

∗

j |yj ]
]

= Eyj

[
E[yi|yj ]E[q∗j |yj ]

]

≈ Eyj

[

ryiyj
r−1
yjyj

yjE[q∗j |yj ]
]

(16)

= ryiyj
r−1
yjyj

E[yjq
∗

j ]

= −ρqryiyj
. (17)

In (16), we approximate the Bayesian estimatorE[yi|yj ] with
the linear estimatorryiyj

r−1
yjyj

yj , which holds with equality if
the vectory is jointly Gaussian distributed. Eq. (17) follows
from (9).

Summarizing the results of (9) and (17), we obtain:

Ryq ≈ −ρqRyy. (18)

In a similar way, we evaluaterqiqj
for i 6= j:

E[qiq
∗

j ] = Eyj

[
E[qiq

∗

j |yj ]
]

= Eyj

[
E[qi|yj ]E[q∗j |yj ]

]

≈ Eyj

[

rqiyj
r−1
yjyj

yjE[q∗j |yj ]
]

= r∗yjqi
r−1
yjyj

E[yjq
∗

j ]

= ρ2
qr

∗

yjyi
= ρ2

qryiyj
, (19)

where we used Eq. (18) and (9). From (19) and (9) we deduce
the covariance matrix of the quantization error:

Rqq ≈ ρqdiag(Ryy) + ρ2
qnondiag(Ryy)

= ρqRyy − (1 − ρq)ρqnondiag(Ryy),
(20)

with diag(A) denotes a diagonal matrix containing only the
diagonal elements ofA and nondiag(A) = A − diag(A).
Inserting the expressions (18) and (20) into Eq. (15), we
obtain:

Rrr ≈ (1 − ρq)(Ryy − ρqnondiag(Ryy)). (21)

Afterwards, we get the covariance matrixRxq = E[xqH] in
the following manner:

E[xqH] = Ey

[
E[xqH|y]

]

= Ey

[
E[x|y]E[qH|y]

]

≈ Ey

[
RxyR−1

yy yE[qH|y]
]

= RxyR−1
yy E[yqH]

= −ρqRxy. (22)

Thus, Equation (14) becomes

Rxr ≈ (1 − ρq)Rxy. (23)

Summing up, we get from (21) and (23) the following
expression for the Wiener filter (12) operating on quantized
data:

GWFQ ≈ Rxy(Ryy − ρqnondiag(Ryy))−1. (24)



and for the resulting MSE, we get using (13)

MSEWFQ≈ tr
[
Rxx−(1−ρq)Rxy(Ryy−ρqnondiag(Ryy))

−1RH
xy

]
.

(25)
We obtainRyy andRxy easily from our system model:

Ryy = Rηη + HRxxHH, (26)

Rxy = RxxHH. (27)

V. EFFECT OFQUANTIZATION ON THE MSE

We first examine the first derivative of the MSEWFQ in (25)
with respect toρq:

∂MSEWFQ

∂ρq
= tr

[
GWFQdiag(Ryy)GH

WFQ

]
> 0, (28)

where GWFQ is given in (24). Therefore the MSEWFQ is
monotonically increasing inρq. Since we choose the quantizer
to minimize the distortion factorρq, our receiver and quantizer
designs are jointly optimum with respect to the total MSE.

Now, we expand the MSE expression (25) into a Taylor
series aroundρq = 0 up to the order one:

MSEWFQ ≈ MSEWF + ρqtr
[
RxyR−1

yy diag(Ryy)R−1
yyRH

xy

]
,
(29)

where MSEWF = MSEWFQ|ρq=0 is the achievable MSE
without quantization. Above equation gives the increase in
MSE due to the quantization as a function ofρq and the
channel parameters. It reveals also a residual error at higher
SNR values, with is given by

MSEres≈ρqtr
[
(HHH)−1HHdiag(HRxxH

H)H(HHH)−1
]
,

(30)
sinceRxyR−1

yy = RxxHH(Rηη + HRxxHH)−1 converges
to (HHH)−1HH as Rηη converges to0, by means of the
matrix inversion lemma.
Under a high resolution assumption,ρq is proportional to
2−2b, therefore the residual MSE decreases exponentially with
the number of quantization bitsb.

VI. L OWER BOUND ON THE MUTUAL INFORMATION AND

THE CAPACITY

In this section, we develop a lower bound on the mutual
information rate between the input sequencex and the quan-
tized output sequencer of the system in Fig. 1, based on
our MSE approach. Generally, the mutual information of this
channel can be expressed as [13]

I(x, r) = h(x) − h(x|r)). (31)

Given Rxx under a power constraint tr(Rxx) ≤ PTr, we
choosex to be Gaussian, which is not necessarily the capacity
achieving distribution for our quantized system. Then, we can
obtain a lower bound forI(x, r) (in bit/transmission) as

I(x, r) = log2 |Rxx| − h(x|r)

= log2 |Rxx| − h(x − x̂|r)

≥ log2 |Rxx| − h(x − x̂
︸ ︷︷ ︸

ε

) (32)

≥ log2

|Rxx|
|Rεε|

(33)

Since conditioning reduces entropy, we obtain inequality
(32). On the other hand, The second term in (32) is upper
bounded by the entropy of a Gaussian random variable whose
covariance is equal to the error covariance matrixRεε of the

linear MMSE estimate ofx. Finally, we get using Eqs (25)
and (27)

I(x, r) ' − log2

∣
∣I−(1−ρq)Rxy(Ryy−ρqnondiag(Ryy))

−1H
∣
∣.

(34)
Now, considering the case of low SNR values, we get easily
with

Ryy ≈ Rηη, (35)

and Eqs (34) and (27), the following first order approximation
of the mutual information12

I(x, r) ' (1 − ρq)tr[RxxHHR−1
ηη H]/ log(2). (36)

Compared with the mutual information for the unquantized
case, also at low SNR [14]

I(x,y) ≈ tr[RxxHHR−1
ηη H]/ log(2), (37)

the mutual information for the quantized channel degrades
only by the factor(1 − ρq). For the spacial caseb = 1, we
have ρq|b=1

= 1 − 2
π (see [7]) and the degradation of the

mutual information becomes

lim
SNR→0

I(x,y)

I(x, r)

∣
∣
∣
∣
b=1

≈ 2

π
. (38)

Using a different approach, we present in our paper [15]
a similar result, and show that the above approximation is
asymptotically exact.

Now assuming perfect CSI at the transmitter, the capacity
of this channel can be expressed as [13]

CQ = max I(x, r). (39)

The maximization is performed over the input distribution
of x under a power constraint tr(Rxx) ≤ PTr. Since the
Gaussian distribution is not necessarily the capacity achieving
distribution, we get from Eq. (34) the following lower bound
on the capacity

CQ ' max
Rxx

− log2

∣
∣I−(1−ρq)Rxy(Ryy−ρqnondiag(Ryy))

−1H
∣
∣.

(40)
This optimization overRxx is, unfortunately, intractable. As
suboptimal solution for low SNR values (see Eq. (36)), we
can employ the eigenmode transmission solution of the un-
quantized effective channelR−1/2

ηη H (water-filling solution)
given in [16] and [17]

Rxx = V ΣV H (41)

Σ = (µI − Λ
−1)+, (42)

where µ is chosen to satisfy the transmit power constraint
and (x)+ denotes max(x, 0). The unitary matrixV and
the diagonal matrixΣ are obtained from the eigenvalue
decomposition ofHHR−1

ηη H.
An other strategy consists of using a transmit zero-forcing
scheme trying to pre-eliminate all the interference at the
receiver, so that the symbols can be reliably distinguished
each other at high SNR, even with few quantization bits; that
is

Rxx =
Ptr

tr[(HHH)−1]
(HHH)−1. (43)

1We assume also thatρq � 1 (or Rηη is diagonal).
2Note thatlog |I + ∆X| ≈ tr(∆X).



As the SNR go to∞, and for the special caseM = N , the
capacity achieved by the zero-forcing scheme converges to3

lim
SNR→∞

CTx-ZF
Q = − log2 |ρqI | = −M log2(ρq) ∼ 2Mb.

(44)
This means that the capacity increases linearly with the
resolution b at high SNR. Intuitively, this is because the
receiver can maximally distinguish2Mb input symbols.

VII. S IMULATION RESULTS

The performance of the modified Wiener filter for a 4-
and 5-bit quantized output MIMO system (WFQ), in terms
of BER averaged over 1000 channel realizations, is shown in
Fig. 2 for a10×10 MIMO system (QPSK), compared with the
conventional Wiener filter (WF) and Zero-forcing filter (ZF).
The symbols and the noise are assumed to be uncorrelated,
that isRxx = σ2

xI andRηη = σ2
ηI . Hereby, the (pseudo-)SNR

(in dB) is defined as

SNR= 10log10(
σ2

x

σ2
η

). (45)

Furthermore, the entries ofH are complex-valued realization
of independent zero-mean Gaussian random variables with
unit variance. Clearly, the modified Wiener filter outperforms
the conventional Wiener filter at high SNR. This is because
the effect of quantization error is more pronounced at higher
SNR values when compared to the additive Gaussian noise
variance. Since the conventional Wiener filter converges to
the ZF-filter at high SNR values and looses its regularized
structure, its performance degrades asymptotically to the
performance of the ZF-filter, when operating on quantized
data. For comparison, we also plotted the BER curves for the
WF and ZF filter, if no quantization is applied.
Fig. 3 illustrates the simulated MSEWFQ compared with the
closed-form expression (theoretical MSEWFQ) from Eq. (25)
for the same scenarios (b = 4 and 5), and averaged over
1000 channel realizations. As we can see, the approximationis
very tight, which demonstrates the usefulness of our approach.
Fig. 4 shows, also for the same scenarios, the lower bounds on
the average capacity (ergodic capacity) derived in the previous
section compared to the unquantized case. Obviously, the
eigenmode transmission strategy performs well at low SNR
and closely to the unquantized system. Nevertheless, the zero-
forcing transmit (TxZF) scheme achieves higher throughput
at high SNR values, since the symbols can be more reliably
distinguished at the receiver.

VIII. C ONCLUSION

We addressed the problem of designing a linear MMSE
receiver for MIMO channels with quantized outputs. Under an
optimal choice of the quantizer, we provided an approximation
for the mean squared error between the transmitted symbol
and the received one. Then, we derived an optimized linear
receiver, which shows better performance in terms of BER
compared to the conventional Wiener filter. Moreover, our
receiver does not present any extra complexity from the
implementation point of view. We examined the capacity
of such a system and proposed a lower bound on it. We
also studied the effects of quantization on the MSE and the
capacity.

3We useRyy ≈ HRxxHH and Eq. (34).

−5 0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

 

 

WFQ−−5bit
WF−−5bit
ZF−−5bit
WFQ−−4bit
WF−−4bit
ZF−−4bit
WF without Quant.
ZF without Quant.

U
nc

od
ed

B
E

R

10log10(
σ2

x

σ2
η
)

Fig. 2. WFQ vs. the conventional WF and ZF receivers, QPSK modulation
with M = 10, N = 10, 4- (ρq = 0.01154) and 5- (ρq = 0.00349) bit
uniform quantizer.
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Fig. 3. Theoretical MSEWFQ from Eq. (25) vs. simulated MSEWFQ, M =
10, N = 10, 4- and 5-bit uniform quantizer.
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[1] J. A. Nossek and M. T. Ivrlǎc, “Capacity and coding for quantized
MIMO systems,” inIntern. Wireless Commun. and Mobile Computing
Conf. (IWCMC), Vancouver, Canada, July 2006, pp. 1387–1392, invited.

[2] R. Schreier and G. C. Temes, “Understanding Delta-Sigma Data
Converters,”IEEE Computer Society Press, 2004.
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