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Abstract

This thesis aims at the ability of a robot to quickly react to changes in
its environment qualifying the robot for seamless interactions with humans. In
particular, the thesis addresses the problem of grasping textured moving objects
with a robotic manipulator considering alternative, non feature-based methods
of image processing.

In order to accomplish the task appropriately, the work copes with the dif-
ferent issues on the physical alignment of the image sensor and robot actuator,
the difficulties of real-time visual pose estimation, and the aspects of robot
control. Accordingly, the relevant literature is firstly examined in the fields of
computer vision and robot control based on visual information.

In contrast to the feature-based approaches, this thesis presents novel meth-
ods for appearance-based tracking in 6 degrees of freedom (DoF) relying on a
textured point cloud as rigid three-dimensional representation. According object
models are matched against the actual images under full-perspective projection.
Hence, the approach allows for the pose estimation of any potential free-form
surface for a large range of object distances.

Two strategies are considered for the exploration of the space of object-
to-camera poses: single hypothesis optimisation by means of Gauss-Newton
minimisation and stochastic multi-hypotheses propagation with an annealed
Markov-Chain Monte-Carlo filter. The real-time tracking performance of the
former approach is improved in this thesis by a novel, analytic formula of the
image Jacobian. Therewith, intensity changes respective to object motion are
efficiently predicted without any actual image measurements. The presented
methods are systematically evaluated with respect to their convergence prop-
erties.

In addition, the potentially adverse effects of changes in illumination are
addressed. Thereby, established computer vision techniques are examined and
adapted to the particular models of surface shape and appearance matching.
Experiments attest the method of template updating the largest improvements
in the probability of convergence.

In consideration of limited computational resources, the task of global pose
estimation in 6 DoF is decomposed into a hierarchy of goals that are accom-
plished in succession. In a cascade of pure appearance-based approaches, the
object is first localised in 2 DoF without any prior information of the object
position. The obtained hypothesis is successively refined to a pose estimate in
6 DoF using the mentioned universal object model and exploration strategies.

In conclusion, the tracking cascade is integrated in robot control on the basis
of an appropriate, i.e., position-based, interface. The physical configuration
of both the sensing components and the actuator is discussed aiming at the
achievement of a convenient and natural interaction area between the robot
and the human. Finally, the system is successfully validated for the desired
human-robot interaction by several experiments on catching a moving object
from the users hand.
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Introduction

One of the greatest dreams of humankind is to enjoy the pleasures of life without
drudgery. In this vision, hard, painful, dangerous, or simply unbeloved work is
totally abolished or accomplished by some other means. This desire stimulated
the development of machines to take the burdens of human work. Eventually,
a general-purpose, intelligent machine, generally known as robot, would assist
humans in every-day life.

Such a machine should perform tasks in a human environment autonomously.
Since the environment is not necessarily modelled to suit the machine, the ma-
chine should be built to suit the environment. Hence, a robot should be capable
of taking orders from humans, recognising its surrounding, and have the ability
to interact with the environment in order to execute a particular task. In detail,
the robot should exhibit sensing, interpreting, decision-making, and actuating
skills in order to become a service robot.

So far, the intelligent, general-purpose robot has not been built, and achieve-
ments have been only reported in isolated domains. Mobile robots are able to
autonomously explore indoor environments and to navigate within that environ-
ment independently. Furthermore, skills have been developed for dedicated ma-
nipulation tasks such as the autonomous grasping of known stationary objects
with a dextrous robotic arm. However, for true interaction with its surround-
ings, especially with humans, the robot capabilities are not sufficient. Instead,
a robot has to continously adapt its actions to the changing environment. This
ability is still subject to research. However, upon completion, it will positively
affect human-robot interaction and the acceptance of robots in a dramatic way.

This thesis aims at an important property of human-robot interaction, i.e.,
the robots ability to adaptively take objects over from a human (see figure 1.1).
In order for this handshake to succeed, the robot has to fulfil several subtasks
autonomously, e.g., first to recognise the object, then to determine its pose and
motion, and finally to follow its motion with robotic actuators so as to grasp
the object with the appropriate tool. This work proposes methods to estimate
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object motion with the aid of visual sensors, and investigates appropriate object
tracking hierarchies, as well as appropriate sensor-actuator configurations for
such a task.

Figure 1.1: Example of human-robot interaction: Grasping of a moving object
with a service robot. The figure shows the DLR humanoid two-arm system
JUSTIN.

The following section 1.1 introduces the interested reader to basic problems
in tracking moving objects with visual sensors. Known problems of robot ac-
tuation and control are outlined in section 1.2. The state of the art methods
for physical human-robot interaction are mentioned in section 1.3, and finally
an overview of the following work is given (section 1.4) highlighting the main
contributions of the thesis.

1.1 Visual Tracking

Sensing the environment is a fundamental property of physically embedded
intelligent systems. While simple machines expect the surrounding to be a
pre-defined setting, intelligent systems are meant to sense an a priori unknown
scene. Among the variety of passive and thus safe sensors, digital video cameras
are advantageous due to their ability to capture high quantities of information
within a single measurement cycle. With this sensor at hand, the tasks of object
detection, object classification, and physical object localisation become possible
and eventually allows for true interaction with the environment.

Once the category of a detected object is identified, its location or pose is
still not determined accurately. In order to estimate the pose, a model repre-
senting the object in question is registered with the sensed environment. The
complexity of this task depends on the constraints imposed by or on the envi-
ronment. Usually, the object is assumed to be rigid, i.e., it is not articulated nor
containing any deformable parts. Hence, from the computational perspective,
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pose estimation is an optimisation problem in at most 6 degrees of freedom, 3
degrees of freedom for the position and 3 degrees of freedom for the rotation of
the object relative to the observer.

These degrees of freedom are restricted further if constraints apply either
to the manifold of object appearance or to the pose manifold. The former
constraints hold for surfaces of revolution or planar surfaces whose texture
does not change in tangential direction, e.g., uniformly coloured bottles. The
latter constraints instead occur when the environment fixes some translational
or rotational degrees of freedom, e.g., when the object is located on top of a
table.

Hence, the complexity of the pose estimation task depends on the number
of unconstrained degrees of freedom (DoF). While objects can be localised in
3 DoF more easily, for instance on a conveyor with two translational DoF and
one rotational DoF, the estimation of a pose in 6 DoF is more difficult and an
ongoing research topic. We denote the problem to be a global pose estimation
problem when no hypotheses are given that could narrow the search space for
object poses. This task proves to be demanding since the interpretation of
the captured image is both difficult and ambiguous due to the manifold in
the appearance of the object. Moreover, global pose estimation typically is
computationally expensive.

It is often the case that the captured scene changes dynamically either
through motion of the sensor or because of movement of objects. In order to
react to these changes, the object has to be recurrently localised as frequently
as possible. Accordingly, tracking approaches generate an initial pose hypoth-
esis for the current sensor readings based on previous pose estimates, and thus
perform local pose estimation. These approaches tackle the ambiguity of pose
estimation and additionally reduce the computational costs of the task. There-
fore, the estimation can be updated at significantly higher rates enabling an
immediate interaction with moving parts.

The following subsections reflect different aspects of tracking within a se-
quence of camera images. For objects in motion, temporal constraints have to
be taken into account when capturing the images (section 1.1.1). For single
images, spatial constraints determine the complexity and the accuracy of pose
estimation (section 1.1.2). Moreover, concurrent constraints on space and time
force the balance between processes in time and processes in space (section
1.1.3).

1.1.1 Properties of Time

Digital cameras produce two-dimensional images of a part of a scene, which are
processed and stored electronically. In contrast to other sensors, a camera is
generally not a continuous analog sensor. The employed sensor chips based on
CCD! or CMOS? technology do not directly transform light into electric signals.
Instead, the radiation hitting the sensor loads a cell with electric charge. The
charge is accumulated over a period of time known as the integration period,

!charge coupled device
2complementary metal-oxide semiconductor
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and is transformed thereafter into an electric signal. The integration periods
are not required to be cohesive and therefore the environmental information
can be sampled and processed discontinuously.

In the following, the major dependencies between the sampling rate and the
properties of the sensing equipment, the environment, and the object motion
are outlined.

Sampling Radiation

Generally, sampling of continuous signals should follow the Nyquist-Shannon
sampling theorem [106] to avoid aliasing effects. Accordingly, in the case of
radiation reaching a single sensor cell, the temporal evolution of the signal
cannot be uniquely deduced from the taken samples if the highest frequency
component of the radiation signal exceeds half the sampling frequency. The
scene radiance itself depends on the characteristics of the light sources, on the
texture and reflection properties of the scene, and on the pose and relative
motion between the sensor and the environment.

Usually, variations of radiation induced by light sources are not explicitely
considered in the definition of a computer vision problem. Nevertheless, these
variations can negatively affect the evaluation of the images. Typically, light
changes slowly in outdoor scenes and very frequently in indoor scenes. While
former changes are caused by the weather conditions and the alternation of day
and night, the latter changes are related to the power frequency of the electric
circuit (e.g. 50 Hz in Europe and 60 Hz in Northern America). These effects
can be compensated by triggering the exposure of the sensor with a multiple of
the alternation period.

Sampling Motion

The Nyquist-Shannon sampling theorem also applies to the trajectory of the
moving object in oder to guarantee accurate and unambiguous reconstruction
of the trajectory from a sequence of pose estimates. Oscillations of the object
pose at a frequency above half the sampling frequency are not detectable. This
circumstance is particularly important whenever tracking is integrated in the
robot closed-loop control. The robot can follow only those trajectories that can
be reconstructed from the sampled sensor signal.

The sampling frequency is not only responsible for the reconstruction of the
past trajectory but also for the accuracy of pose predictions for future time
instants. Because of the typical inaccuracies in pose estimation, future poses
cannot be predicted without errors despite a perfectly known motion model.
The more frequent the poses are estimated, the smaller the time gap becomes
that needs to be bridged by the prediction. Thus prediction error is reduced
accordingly.

In the case of freely moving objects, such as typical objects carried by
humans, the applied forces and accelerations are not known. As a consequence,
future poses cannot be predicted accurately.
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1.1.2 Properties of Space

The task of visual pose estimation in 6 DoF consists of the registration of a
three-dimensional object or scene model to the camera views. The complexity
and accuracy of the estimation process depends to a large extent on the appear-
ance and the shape of objects and the scene. In some cases, the environmental
properties can be controlled and shapes and appearances can be predetermined
in order to simplify the estimation task. However, for general settings, this is
neither desired nor possible and thus the task becomes more difficult.

The perceptual diversity raises the demands on the pose estimation in sev-
eral aspects. A compromise between the ambiguity of motion estimation and
the velocity of motion has to be found to cope with these aspects in real-time.
In the following, the major sources of inaccuracies with respect to the pose
estimation problem for a single image are listed, and considerations on the
computational complexity of the employed methods are given.

Sensing Ambiguity

The first source of ambiguities is given by the sensing equipment. As previously
stated, the sampling process introduces aliasing effects if the Nyquist criterion
is not met. Sampling on the sensor chip avoids aliasing effects in part due to the
spatial dimension and the resulting low-pass filtering effect of the photo-sensible
cells.

Image Matching Ambiguity

The second source of ambiguities or in accuracy is given by the process of
extracting information from the image. The kind of information considered
depends on the measurement domain of the pose estimation method. The two
most important types of measurements are

e local appearance cues (features) and
e global appearances descriptions.

The former type denotes prototypical groups of pixels extracted at prominent
image positions. The latter type comprehends group of pixels at the level of
the complete appearance of the object in the image.

Obviously, the accuracy of the extracted information with respect to the ac-
tual position depends on the degree of conformity of the expected measurement
with the ground truth. The versatility of the model describing the expected
measurement under variation in pose as well as under variation in illumina-
tion determines to a large extent the accuracy and the robustness. Highest
accuracy can be attained when the model considers the whole image formation
process determined by the light sources, surface geometry and texture, as well
as the properties of lens projection. Global appearance models usually aim at
accounting for all these properties while local appearance models use simplified
static patterns for the representation of distinct object points in the image.
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Global Pose Estimation Ambiguity and Complexity

The ambiguity is directly related to the size of the considered pose manifold and
the method of exploring the pose manifold. The degree of ambiguity handled by
the exploration method determines its computational complexity. In accordance
with the properties identified in section 1.1.1, the two major types of exploration
are sequential exploration, such as gradient-descent optimisation methods, and
exhaustive exploration methods, such as correlation-based methods.

The unambiguity of pose estimates is guaranteed for sequential exploration
methods only within the area of convergence, which is related to both the em-
ployed objective function and the object appearance. On the contrary, explo-
ration with exhaustive methods is not affected by local ambiguities. If a globally
distinct solution to the estimation problem exists, global pose estimation can
be pursued. In principle, both of the exploration methods can be adopted for
feature-based pose estimation as well as for appearance-based pose estimation.

In the case of feature-based approaches, the computational complexity of
feature extraction, matching, and pose estimation add up to give the overall
complexity. Two main parameters determine the amount and allocation of the
computational costs, i.e., the complexity of the feature model and the extent
of the explored area. The combination of both determines the uniqueness of a
feature within the explored area. So, increasing the complexity of the feature
model increases the computational costs of feature extraction while lowering
the combinatorial expenses for finding correspondences. Decreasing the area
of exploration lowers the costs of both feature extraction and matching due
to a more confined image region to be pre-processed and due to the reduction
of potential matching candidates. Hence, local exploration is expected to be
computationally less expensive than global exploration.

In the case of appearance-based approaches the efficiency depends on the
matching costs and on the number of iterations for matching the model to the
current appearance for a specific pose hypothesis. In contrast to sequential
methods, exhaustive exploration requires many pose hypotheses to be tested
and thus becomes inappropriate for real-time applications. Equivalent to fea-
tures, the uniqueness of complete appearances is not merely determined by the
matching criteria but rather by the surrounding scene and the extent of the
considered image region. While both shape and texture define the uniqueness
within the same object, the background affects the overall appearance ambigu-

ity.

In summary, the ambiguity defines the reliability of pose estimates. Local
exploration methods are preferred over global exploration methods in order
to increase uniqueness and to decrease the computational complexity. In the
case of sequential exploration, the uniqueness usually determines the upper
distance of the initial pose estimate to the ground truth. Hence, the maximal
object velocity results from the uniqueness and the runtime efficiency of the
exploration algorithm.
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Local Pose Estimation Ambiguity

The third source of ambiguity concerns the accuracy inherent to the correlation
of a pose hypothesis with the information extracted from the image.

In the case of feature-based methods the correct pose relates feature posi-
tions either to points on the three-dimensional object or to feature positions
in a second image. For the latter type of correspondences, the camera pose
is typically estimated together with the scene model. Such approaches are re-
ferred to as Simultaneous Localisation and Mapping (SLAM) methods. The
accuracy of feature-based pose estimation thus depends on the consistency of a
potentially a priori unknown three-dimensional scene model with the observed
feature positions.

In case of appearance-based methods, the accuracy is determined by the
consistency of the appearance model with the currently sampled group of pixels.
Misregistration is caused, for instance, by deficiencies of the model with respect
to perspective distortions, illumination, or occlusion.

1.1.3 Properties of Time and Space

The application of robot interaction using visual sensors takes place simulta-
neously both in space and time. Existing limitations of the sensing hardware
and the computation hardware cause many properties related either to space
or time to affect properties of the other domain. In the following, the major
interdependencies between these properties are listed.

Interdependencies of Temporal Sampling and Spatial Integration

Technological limitations force sensing to balance between the sampling rate
and the image quality. The image quality assesses the ability to reconstruct
the original, noise-free image from the discretised and quantised image signal.
This ability is determined by the signal-to-noise ratio of a single quantised
measurement (aka pixel) on the one hand, and by the signal-to-noise ratio of
the spatial reconstruction of the discretised image on the other hand.

The signal-to-noise ratio related to a single pixel depends on the power of
the scene radiance and the sensibility of the sensor chip in conjunction with the
lens aperture and integration time. Usually, the radiation power is considered
an uncontrollable external parameter. Since the sensibility of the sensor is fixed,
the only controllable parameters are the lens aperture and the integration time.

The signal-to-noise ratio related to the spatial reconstruction depends on
the spatial image resolution and on the degree of blurring. For static images,
the degree of blurring is related to the lens aperture while for moving scenes it
is related to the motion in the image plane and the integration period.

However, lowering the noise level with respect to a single pixel and lowering
the noise level with respect to the spatial representation are concurrent goals.
Usually, increasing the spatial resolution affects the size of the photo-sensible
cells and decreases sensibility of the cells respectively. Higher lens apertures
improve the signal-to-noise ratio of a single cell but introduce static blurring in
the image. Last but not least, a shorter integration period decreases the amount
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of motion blurring but increases the signal-to-noise ratio of a single pixel. In
the end, the shortest appropriate integration time constitutes the lower bound
of the sampling period.

Furthermore, the physical bandwidth supported by the transmission chan-
nels constitutes an additional limit of the sampling rate. Higher rates can only
be obtained at the cost of spatial image resolution and vice versa.

Interdependencies of Temporal Sampling, Motion and Object Ap-
pearance

The radiation reaching a sensor cell changes with the object motion. The
frequency of the signal over time is hereby related to the spatial frequency of
surface texture, the pose of the object, and the direction of the object motion
with respect to the camera. The latter induces motion of the projected surface
points in the image, also known as optic flow. The radiation signal for a single
sensor cell is therefore related to the radiation perceived on the sensor chip in
the direction of optic flow. Consequently, faster motion shifts the frequency
components of the perceived signal accordingly. The variations of the radiation
signal originate from the combination of the object motion and the frequency
components of the object appearance in direction of the corresponding optic
flow.

In consideration of the Nyquist criterion, the sampling rate should meet
the requirements set up by the object velocity, the object pose, and the object
texture. Obviously, in the case of repetitive patterns on the surface texture,
a violation of the Nyquist criterion prevents unambiguous motion estimation
irrespective of the tracking method.

Interdependencies of Temporal Sampling and Spatial Exploration

In general, an error probability distribution can be set up to describe the un-
certainty of pose predictions given knowledge, or simply assumptions, about
the temporal correlation of the object pose. The uncertainties for current and
future time instants have a direct impact on the computational costs of the
estimation problem because they determine the domain to be explored.

Pose estimation methods typically explore the neighbourhood of initial pose
hypothesis in three ways:

e regularly,
e sequentially, or
e stochastically.

The first two methods are considered here in more detail to reveal the specific
correlation between the (temporal) sampling frequency and the computational
costs.

Regular, grid-based exploration of the neighbourhood is characteristic for
feature-based tracking techniques. The image is scanned for features in regular
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spatial intervals within a determined window. This strategy can also be adopted
for the exploration of the pose space in the neighbourhood of a hypothesis.

Suppose in the following that the neighbourhood is represented by a d-
dimensional hypercube, where d corresponds to the number of DoF related to
the estimation problem. The number of samples ) needed to regularly sample
this volume for an object velocity v in a single DoF, for a temporal sampling
frequency f, and for a spatial sampling frequency ¢ in the DoF, is determined
by

Qv, f.q) = (1+2}?)d (1.1)

whereas, for simplicity, the formula encompasses rational numbers of samples.
The computational power C} provided by the target computer represents an
upper limit for the evaluation of () samples, that is

Ct Z f Cq Q(Ua f: Q) ) (12)

where Cy is a factor corresponding to the computational costs per sample.
Additional computational costs induced by increasing object velocities can be
compensated, up to a certain limit, by increasing the temporal sampling fre-
quency. Hence, the number of samples evaluated at each time instant decreases,
whereas the number of samples evaluated per unit time is kept constant.

However, the number of samples per time instant is limited at the lower
bound to 2¢ for the exploration of a unit hypercube in d DoF. The maximal
temporal sampling frequency is therefore determined by

Ct

fmax = 2dCTq (1.3)
and, accordingly, the velocity
fmax
Umax = 1.4
ma q ( )

specifies an upper limit at which objects can be tracked.

In the case of sequential exploration methods, an implicit or explicit objec-
tive function is iteratively minimised. In general, the shape of this objective
function is a priori not known and highly non-linear. Hence, lower order ap-
proximations of the function cause the number of iterations employed in the
minimisation to increase with the displacement of the initial pose estimate to
the actual pose.

Let s(t) denote the evolution of the relative error between the current esti-
mate and the ground truth over time, which initially (¢ = 0) is equal to one and
eventually converges to zero. Since convergence is reached only at infinity, the
residual pose error adds to the prediction error in the consecutive frame. Sup-
pose that the predicted pose corresponds to the pose estimated in the previous
frame. Then, the pose error T; at frame i accounts to

Y ="Yi1s(P/f)+v/f, (1.5)
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where P, oc Cf 1is a factor dependent on the computing power. Obviously, the
sequence (Y1;) converges to
lim Y Y (1.6)
imY,=—+——. .
im0 f— fs(P/f)
This limit is a strictly monotonic decreasing function of the sampling frequency
f and hence, the residual lim; .o, T; is minimised for the sampling frequency
approaching infinity. According to the rule of Bernoulli-I’Hospital, the minimal
gap between the estimate of the tracking procedure and the true object pose is
given by

lim lim Y; = lim Y

f—ooi—o0 f%oo_Pt S,(Pt/f) ' (17)

Increasing the sampling frequency lowers the gap asymptotically to the above
theoretical limit.

As an example, in the case of exploration with linear convergence where
s(t) = a',0 < a < 1, the limit corresponds to —v/ (P In(a)). In the case of
exploration with quadratic convergence where s(t) = a2 1,0 < a < 1 the limit
is given by —v/ (P; In(2) In(a)).

Obviously, both the object velocity as well as the computing power affect the
gap between the initial pose estimate and the actual pose. Due to the limited
area of convergence of sequential sampling methods, the gap is not allowed to
exceed a certain bound. Conversely, the supported object velocity is bound to
an upper limit related to the computational power.

1.2 Robot Control

The interaction of intelligent systems with their physical environment requires
the actuation of moving mechanical parts. The combination of these mechan-
ical parts form a robot if actions are performed autonomously. However, the
degree of autonomy differs from non-adaptive autonomy to adaptive autonomy
depending on the robots capability to react to changes in the environment. In
classical industrial automatisation, for instance, robot applications are designed
for countable recurrent environmental states. The program is not adaptive to
variations apart from these states because the robot is taught to move on prede-
fined trajectories. Instead, higher flexibility is obtained by considering current
sensor readings of the environment and moving the robot accordingly. Here, vi-
sion sensors offer the richest source of information whereas the interpretation of
the corresponding data is arbitrarily complex. In the following, only intelligent
robots are considered, i.e., robots adapting their behaviour to the environment
on the basis of sensor readings.

In general, the information provided by a sensor is mapped to suitable ac-
tions either by commanding velocities or positions (or angles) of the individual
actuation units. The target velocities or target positions are reached by employ-
ing direct control methods or hierarchical control methods. In the first case,
the commanded values affect the electrical motor impulses directly through a
unique control loop that takes into account the whole model of the robot. In
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the latter case, dynamics and kinematic properties are tackled separately by
means of prioritised levels of control: The lower level deals with dynamic issus,
whereas the higher level generates suitable velocity signals consistent with the
robot kinematics.

In practice, robot control is not limited to the surveillance of the actual
and desired velocities or positions. Many other constraints are necessary to
guarantee smooth operation without incidents. In the following, the major
static and dynamic constraints are listed, as concerns the visual servoing of
moving objects.

1.2.1 Configuration Independent Properties

Some constraints are independent of the dynamic of interaction and can be
analysed a priori based on the specifications of the robot.

The first obvious constraint is given by the kinematics of the robot. The
number of joints of the robot, the type of joints, as well as the length of the
connecting links determine the workspace of the robot, also known as dexterous
workspace. With typical joints such as the rotatory or linear joints, at least 6
joints have to be combined to position the robot end-effector freely in 6-DoF
Cartesian space. Restrictions in the dexterous space arise from the specific link
lengths, joint limits, and singularities in the joint configuration. Singularities
occur whenever actuation of two or more joints cause the same motion of the
end-effector in Cartesian space.

The second constraint is represented by the characteristics of the joint dy-
namics. The specifications of motor dynamics as well as the friction character-
istics determine the potential velocities and accelerations of each joint and the
end-effector.

Finally, joints are arbitrarily stiff. Lack in stiffness usually affects the abso-
lute position accuracy of the robot, as well as the transient behaviour because
of dynamical coupling between joint motion and motor motion.

To recapitulate, robot control for the interaction with a moving object faces
at least three configuration independent constraints, i.e., workspace limitation
due to the robot kinematics, limitations of the joint dynamics, and inaccuracies
in absolute position.

1.2.2 Configuration Dependent Properties

The interaction of the robot with a moving object introduces configuration
dependent constraints on the robot control. In all configurations, the stabil-
ity of the control mechanisms must be guaranteed such that bounded object
movements lead to bounded robot movements.

In the course of interaction, the robot can become under-actuated or over-
actuated depending on the joint configuration. In the former case, arbitrary
robot movements exist that satisfy the constraints of the task. In the latter
case, no robot trajectory exists that fulfil the requirements of the task.

Over-actuation occurs, for instance, if the objective is to reach a certain
pose in 6 DoF and the robot consists of more than 6 joints, or the objective is
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to translate the end-effector in 3 DoF with a 6-joint robot. For such tasks, the
robot can exploit the redundant DoFs in order to meet additional constraints
such as optimising given criteria. If the object motion is known a priori, then
the robot can simultaneously follow this motion and avoid joint limits as well
as singularities in the joint configuration.

As as result, any motion generation scheme becomes ill-conditioned close to
singularities and therefore robot control should avoid these singular configura-
tions whenever possible.

1.3 State of the Art

Any type of interaction between humans and robots can be categorised with
respect to the robot input and output channels. In general, communication with
humans® is forced to be acoustic, visual, and/or physical. The present work
focuses on systems performing physical actions, i.e., actuated robotic systems,
for the purpose of service robotics. Thus, all other types of machines providing
only auditive or visual feedback, e.g., desktop computers, are not considered,
which excludes a big part of the existing works in the very general field of
human-machine interaction.

With regard to the robot input, contact sensors such as tactile sensors
have been the first devices used to command robots because joysticks and key-
boards were the primary interfaces to computers at the time. Subsequently,
force/torque sensors have been developed, by eventually culminating in robots
that perceive and react to external forces [67]. Different kinds of haptic inter-
faces are used in the field of tele-robotics to guide a robot and to give immediate
feed-back on collision and forces exchanges with the user, e.g., by means of pen-
style devices? or exoskeletal systems®.

Among contactless sensors, passive acoustic sensors became increasingly
popular input devices thanks to the achievements in speech recognition and
the availability of commercial products [74, 57]. Certainly, speech recognition
brought human-machine interaction significantly further. However, when it
comes to manipulation tasks, it only allows for robot (re-)actions at the slow
rate of the user instructions.

Active acoustic sensors, instead, enable the robot not to wait for commands
but to react autonomously, and possibly in advance to collisions. The low cost
of ultrasound sensors and their ability to measure distances led active acoustic
sensors to become a standard equipment of mobile robots. However, these
sensors provide only coarse information of the surroundings, and, thus, are not
suited for accurate manipulation tasks.

On the other hand, optic sensors arrays, in particular digital cameras, gather
information at a much higher spatial resolution. However, the interpretation
of this information proves to be more difficult. Typically, the complexity of
the visual input only allows to either process a detailed scene at a slow rate

3neglecting the possibility of direct electrical interfaces
‘e.g. the PHANTOM device: http://www.sensable.com
®e.g. the CyberGrasp device: http://www.immersion.com
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compared to the robot control cycle (e.g. [66]), or to seamlessly control the
robot on the basis of simple visual stimuli (e.g. [55, 137]) or constrained object
motion (e.g. [1, 15]).

Among the above mentioned types of input devices, digital cameras are best
suited for task of precise human-robot interaction. This type of sensors allows
the robot not only to obtain user commands, e.g., via gesture recognition, but
also to immediately and precisely react on environmental changes. Especially
when it comes to close interaction, such as grasping an object from the users
hand, the advantage of digital cameras becomes evident. The sensor allows to
gather information about the pose of the object in space, which is then needed
to control the robot.

From the methodotical point of view on image processing, the best results
for interaction with moving objects were attained with so-called feature-based
approaches, in particular based on contour or edge features (e.g. [147, 39]).
However, these approaches are known to suffer from cluttered background and
textured surfaces.

Feature-based approaches are typically limited to simple or piecewise planar
shapes with a homogenous surface texture. Complementary types of object,
i.e., textured and free-form surfaces, are not covered by the mentioned methods.
This thesis aims exactly at coping with these objects in order to eventually allow
the robot to “see” and interact with arbitrarily shaped and non-homogeneously
textured objects.

1.4 Thesis Outline

This work addresses the problem of tracking a known, free moving, object
in 6 DoF, and of catching the object with an autonomous dexterous robot.
The previous sections outlined the basic constraints imposed on both visual
perception of motion (section 1.1) and actuation of robotic systems (section 1.2).
These constraints are inherent to the problem and equally affect all potential
solutions.

1.4.1 Contributions

The thesis comprises novel contributions in several fields associated to visual
servoing.

First of all, the work explores pure appearance-based real-time tracking
methods in 6 DoF. Here, three major improvements are reached: the consid-
eration of full-perspective projection, the support of arbitrary surface shapes,
and the computationally efficient prediction of pose Jacobians based solely on
the reference view. The support of full-perspective cameras allows to apply
the methods not only to the task of object tracking but also to the potential
estimation of ego-motion in indoor scenes.

Previous approaches introduced constraints either in the camera model
(e.g. [21, 116, 148]), the supported object shapes (e.g. [30, 29, 7, 14]), or both.
Still, the camera model based on weak perspective projection enjoys great pop-
ularity due to the linearity of the underlying mapping. This model linearises the
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perspective projection by considering all object points to be equidistant with
respect to the camera. Linearisation is also adopted to object shapes, which
are typically assumed planar or piecewise planar. The present work, however,
employs a full-perspective projection for a camera with known intrinsic param-
eters. This allows for accurate modelling of perspective distortions in scenes
with small and large variations in depth. The latter occurs especially in con-
figurations where the object is close to the camera. Moreover, the restriction
to (piecewise) planar surfaces (e.g. [7, 34]) is successfully abolished by repre-
senting surfaces as unordered, textured, three-dimensional point clouds. No
linearisation is applied at this level allowing for any potential free-form surface
to be modelled. In the effort to provide real-time methods, previous approaches
did not succeed in lowering the perspective constraint or the constraints on the
surface shape.

In addition, this thesis presents an efficient prediction of the non-constant
and computationally expensive motion Jacobian. The corresponding analytic
formula is valid for surface patches with a first-order differentiable shape and
texture. In practice, infringements of the latter assumption are tolerated and
surface points at discontinuities of the surface curvature can be excluded from
the object model. Hence, these requirements do not represent a serious limita-
tion.

In the field of illumination compensation, the present work simplifies the
previous formalisations of pattern matching in the orthogonal illumination sub-
space [13, 62]. Additionally, it is shown, contrarily to the expectations, that
the introduction of the more general model of the illumination subspace does
not necessarily increase the tracking performance.

With respect to the initialisation problem of the tracking procedure as
well as to its re-initialisation to recover from “lost objects”, a new, purely
appearance-based tracking cascade is presented, as opposed to [140]. Unlike
feature-based approaches, the cascade supports free-form, textured surfaces on
all stages.

Moreover, from an experimental point of view, this thesis includes system-
atic evaluation of the appearance-based tracking approaches. An experimental
database is built so as to reflect multiple objects and multiple object poses.
The database comprises object poses fairly distributed within the visible vol-
ume of the perspective camera. Finally, the devised methods are successfully
evaluated for interaction with a 7-DoF lightweight robot actuator and a dex-
trous anthropomorphic hand showing the desired capabilities for human-robot
interaction.

1.4.2 Overview

In order to detail the approaches required for completing the task, chapter 2
enumerates the major scientific areas involved, and presents the related publi-
cations. In general, visual servoing is the scientific field that comprehends both
aspects of computer vision and robot control.

Some researchers address visual servoing from a control point of view. Ac-
cordingly, the variability of appearances in real world is greatly simplified. In-
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stead in this work, special attention is paid to these appearances and to the
capability of the approach to handle real-world objects. In contrast to feature-
based visual servoing typically relying on three-dimensional edges, a novel, com-
plementary approach is presented in chapter 3, which considers arbitrarily tex-
tured free-form surfaces. See figure 1.2 for an illustration of the relation to the
contents mentioned in the following.
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Figure 1.2: Graphical illustration of the content of the thesis.

While feature-based methods perform badly in presence of cluttered back-
ground, the class of texture-based tracking approaches are affected by varying
illumination. In chapter 4, common methods to handle the illumination varia-
tions are analysed and evaluated for suitability

Initial object detection and localisation, as well as the ability to robustly
re-localise lost objects, are mandatory requirements for the acceptance of the
application for human-robot interaction. To this end, a novel cascade of hier-
archically organised appearance-based detection and tracking stages is devised.
As its main contributions, it ensures simple initial object detection, accurate
tracking, and seamless transition to object re-localisation, as described in chap-
ter 5.

The physical constraints of human-robot interaction are considered in detail,
and a generally suitable configuration of robot, camera, and interaction area is
discussed. The appearance-based hierarchy is integrated in the robot control
in chapter 6 via a position-based interface, which eventually allows for visual
servoing and to succeed in capturing moving objects.
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Finally, chapter 7 discusses the main achievements and proposes subsequent
investigations and future developments in this field.



Related Work

The design and implementation of visual servoing applications requires knowl-
edge in the fields of computer vision, optimisation theory, and robot control.
In detail, these applications consist of the tasks of image acquisition, image in-
terpretation, robot motion control, and joint actuation. In general, the overall
objective, as well as the objectives of the subtasks, can be implicitly or explic-
itly formulated as optimisation problems, which can be addressed with methods
from optimisation theory.

In the context of this work, the overall objective is to approach and grasp
freely moving objects with a dextrous manipulator. In order to succeed, the
robot end-effector has to move to a defined position and orientation relative
to the target object. The movement is performed by either estimating the
current object pose or estimating the incremental motion to the target pose.
The configuration of sensors and actuators as well as the specific formulation
of the task to be performed are handled within the superordinate field of visual
servoing.

Hereafter, the problem of motion estimation is subsumed by the problem of
pose estimation. Accordingly, three problems are identified within the above
scientific areas, effectively capturing the main topics, namely

1. pose estimation,
2. handling of variations in illumination and occlusion, and

3. pose prediction.

The first topic addresses the challenge of pose estimation from image data in a
general way, e.g., ranging from the extraction of information up to the estima-
tion of the motion between two views. The next issue concerns the robustness of
such estimation to variation of illumination or to partial occlusion of the object.
The robustness is also affected by the employed model of the object dynamics,
which allows for the prediction of object poses in future time instants.

17
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The following sections review the relevant scientific literature in the above-
mentioned areas. In particular, section 2.1 reviews main scientific works within
the established categories of visual servoing. The pose estimation problem is
addressed at a general level in section 2.2 by classifying the approaches with
respect to the domain of motion, the type of visual information employed, and
the representation of the underlying object model. Methods handling changes in
illumination are considered in section 2.3. The approaches rely either on image
information invariant to illumination, attempt to compensate the variations,
adopt statistical methods for robust parameter estimation, or require certain
constraints to hold. Section 2.4 outlines the approaches supporting models of
object dynamics for the prediction of future poses. Finally, section 2.5 discusses
the existing approaches and provides the motivation for the development of the
novel methods presented in the following chapters.

2.1 Visual Servoing

Controlling a robot by means of information extracted from camera images
is defined visual servoing. The complexity of the visual servoing applications
depends primarily on the task, the setup, and the capability of the robot. For
the setup, two configuration of camera to robot are possible, namely

e eye-in-hand configuration and

e eye-to-hand configuration.

In the former setup, the camera is rigidly mounted on the last link of the
robot [4, 92, 15, 87, 82|, while in the latter case the camera stands apart from the
robot [131]. Eye-in-hand configurations have the advantage that more accurate
information can be extracted from the image as the robot comes closer to the
object of interest. Which of the two setups is used depends on the the accuracy
required from the task, the robot capabilities, visibility constraints, and other
requirements of the specific application.

In control theory, two methods are available to deal with absolute position
accuracy of the robot and the requirements, namely either

e end-effector closed-loop control or

e end-effector open-loop control.

In the former method, the information extracted from the images depends si-
multaneously from the motion of the target and from the motion of the robot
end-effector. This coupling allows to approach an object irrespectively of the
robot position accuracy [131, 92, 87]. The method is implicitly used for an eye-
in-hand configuration, while an eye-to-hand configuration requires that both
the robot end-effector and the target are tracked simultaneously. In the latter
method, the extracted visual information does not change with the motion of
the end-effector. Thus, end-effector open-loop control is given only for those
eye-to-hand solutions that do not track robot motion.

Visual servoing systems can be classified with respect to the type of control
architectures in
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e direct control and
e hierarchical control.

In the former type of architectures, the robot is controlled within a single con-
trol loop. In the latter case, two or more control loops exist. These control
loops are organised hierarchically so that an outer control loop determines the
parameters for an inner control loop. Hierarchical control architectures allow
for the transition between high control cycle frequencies at an inner loop and
lower cycle frequencies at the respective outer loop.

Hierarchical control is typically used for visual servoing where the image
acquisition and recognition operate at frequencies significantly lower than the
robot cycle frequency. In extremis, information is extracted from the image
only once at the beginning of a task. This information is used thereafter in an
inner control loop to autonomously reach the target position. These approaches,
known as dynamic look-and-move approaches, are only appropriate for static
scenes.

The most prominent distinction between visual servoing algorithms is made
with respect to the task space, differentiating between

e image-based visual servoing and
e position-based visual servoing.

The following sections briefly describe these two categories. Refer to [31, 32]
for a recent tutorial on the topic.

2.1.1 Image-based Visual Servoing

In image-based visual servoing the robot control loop minimises an error in the
image plane [136, 137, 113]. Thus for eye-in-hand configurations, the approach
implicitly tries to keep the target in the field of view of the camera.
Originally, image-based visual servoing was intended to overcome hand-eye
calibration by learning the visual-motor model a priori, e.g., [4]. The visual-
motor model directly relates image variations to joint variations. This relation
however, expressed at first order by the image-to-robot Jacobian depends on
the robot pose. To simplify the computation, the image-to-robot Jacobian is
decomposed into Jacobians relating image information to camera pose, camera
pose to tool-centre pose, and tool-centre pose to joint positions. The former
Jacobian is also known as image Jacobian and the combination of the latter two
is known as robot Jacobian. The on-line computation of the pose-dependent
robot Jacobian can be supported by off-line calibration steps. In detail, the
camera-to-tool-centre Jacobian can be determined off-line through hand-eye
calibration [133] and the tool-centre-to-joint Jacobian can be parameterised
appropriately by means of the prior identification of the robot kinematics.
The majority of approaches combine these calibrations with the image Ja-
cobian, which is determined frame by frame [136, 137, 87, 113]. The estimation
of the image Jacobian allows to map image velocities to joint velocities via the
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robot Jacobian for the current robot pose. Image-based visual servoing ap-
proaches do not require accurate camera or robot calibrations since calibration
errors affect the trajectory but not the final pose.

2.1.2 Position-based Visual Servoing

In position-based visual servoing the robot control loop minimises a Cartesian
error [51, 15| between the target pose of the robot and the current pose. Basi-
cally, robot vision is separately kept from robot control imposing a Cartesian
interface between both modules and employing a hierarchical robot control ar-
chitecture. It allows to decouple the processing rate of the vision algorithm
from the robot cycle frequency. The drawback of position-based control, how-
ever, is that visibility of the target is not ensured in the case of an eye-in-hand
configuration.

Traditionally, position-based visual servoing relies on a hand-eye calibration
and a calibrated robot kinematic [92, 82]. Approaches exist learning the image
to robot Jacobian on-line [131]. However, position-based visual servoing is not
robust to calibration errors, which affect the trajectory and the final pose of
the robot.

2.2 Pose Estimation

The problem of pose estimation has a long history in computer vision and traces
back to the registration problems of early computer vision. The objective is the
determination of the parameters of a coordinate transformation between a body
frame and the sensor frame. Usually, rigid-body transformations are considered,
which preserve distances and angles. The term motion estimation is closely
related to pose estimation whereas, in this case, an arbitrary but fixed body
coordinate frame. As a result, the object motion between two time instants is
estimated in contrast to the object pose relative to the sensor frame. Hereafter,
no distinction is made between approaches for pose estimation and motion
estimation since one formulation can be transformed to the other with the
appropriate combination of single rigid-body transformations and a particular
reference frame.

Significant differences between the approaches in motion or pose estimation
stem from the available a priori information, the kind of information extracted
from the image, and the type and number of parameters to be estimated. These
approaches are classified according to three distinct characteristics

1. the motion domain,
2. the measurement domain, and
3. the interpretation domain.

These characteristics are analysed in the following subsections. First, the dif-
ferent types of motion models, from rigid-body transformation to deformable
models are considered. Then, the different types of information extracted from
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the image are addressed. Finally, an overview of the object models is given that
are typically used for motion or pose estimation.

2.2.1 Motion Domain

The motion domain establishes the relation between sensor readings at one
time instant (or sensor position) to the sensor readings at another time instant
(or position). This relation is typically expressed analytically by the following
parametric transformation

x' =m(x,p), xx e€RY peRM (2.1)

known as motion model, where x’ and x are N-dimensional points sensed at
different time instants (or positions) and where p is a M-dimensional motion
parameter vector.

A variety of motion models have been employed for tracking and motion es-
timation. In the following, the models are categorised according to the dimen-
sionality NV into motion on the image plane (N = 2) and in three-dimensional
space (N = 3).

Further distinction is made with respect to the angle and scale preserving
characteristics of the transformation m(-,-). Indeed, as an example, rigid-body
motions preserve angles and scale while deformation transformations do not.
The transformations called articulated motion deserve particular attention be-
cause they resemble deformation models at a global scale and rigid-body motion
on a local scale. In this case, the body of the moving object is composed of
several connected segments, so that the object changes its appearance globally
according to the current configuration of the segments. However locally, each
segment is rigid and its motion is constrained by the motion of the connected
segments.

Motion in R?

Motion in the image plane has been investigated since the early stage of com-
puter vision. The most popular motion models are

e translation and scale,

e affine distortion,

polynomial distortion,

linear shape models (ASM),
e projective invariants and
e unconstrained motion.

Among these models, affine distortion is in widespread use, e.g., [91, 111, 61, 62,
7, 87, 73], mainly because of its simplicity and linearity despite its expressive
power. The model allows to describe rigid-body transformation in the image
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consisting of rotation and translation as well as deformations such as shearing
and scaling. It has been suggested [138, 128] to restrict tracking of object
patches to translational parameters as long as the residual of affine motion does
not exceed a predefined threshold. Recently, its validity has been confirmed for a
medical application [59]. The restriction to the affine parameters of translation
and scale is also in use, e.g., for tracking based on mean-shift [104, 105, 36].

Other deformation models are used to cope with more complex, non-rigid
motion. Polynomial distortion models, for instance, have been applied to track
facial expressions [115, 17]. The same objective is followed by linear shape
models, which constrain potential variation to a linear combination of motion
vectors [40, 7, 41, 95].

In general, the above methods are used to register two sets of measurements
by parametric motion models. The independent, two-dimensional motions of
the measurements in one camera view to the corresponding measurements in
another view is known in literature as optic-flow. Sparse optic-flow can be
computed for salient image positions without the consideration of parametric
motion, that is, without constraining two-dimensional motion at these positions.
Dense optic-flow, however, is an ill-posed problem. In order to find plausible
optic-flow for all pixels of an image, the motion has to be regularised [69].

Such regularisation usually follow smoothness constraints in the optic-flow
field. This is a first step toward the introduction of some kind of knowledge on
the shape of the observed three-dimensional scene. A special type of constraint,
though not directly related to optic-flow, is the projective invariance explored
in [85], which restricts the manifold of possible deformations.

It can be observed that the motion models in the image plane aim at com-
pensating two types of distortions. The motion models are adopted to cope
either with non-rigid three-dimensional deformations or with the perspective
distortions of unknown but rigid three-dimensional objects. Thus, more accu-
rate motion models can be devised by taking the three-dimensional structure
and the perspective distortions explicitly into account.

Motion in R?

Motion estimation in three-dimensional Euclidean space is appropriate when-
ever perspective distortions arise or when the three-dimensional transforma-
tion between the object frame and camera frame is requested. The latter is
mandatory for position-based visual servoing applications where the robot is
commanded according to the three-dimensional information extracted from the
image.

The most common motion models in three dimensions, which have bee in-
vestigated in the computer vision literature, can be classified according to their
projection model as

e orthographic projection,
e weak perspective projection,

e full perspective projection, and
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e homography mapping.

The simplest and most restricted projection model is orthographic projection,
which neglects any perspective distortion. Instead, three-dimensional object
points are projected perpendicularly to the image plane and neither the dis-
tance nor the scale of the object is determined [30, 65, 12]. Weak perspective
projection extends orthographic projection by estimating additionally the over-
all distance or scale [21, 18, 116, 148, 49]. Obviously, these two models are
only legitimate when the object extension in depth is small with respect to the
distance to the camera.

Therefore, to obtain validity for a broad range of scenarios many approaches,
especially in visual servoing, rely on the perspective projection model [3, 79,
80, 130, 10, 146, 45, 65, 29, 131, 75, 46, 124, 50, 63, 92, 143, 126, 34, 94, 25,
26, 35, 113, 38, 86, 101, 107, 20, 100, 60, 82]. For the special case of planar
surfaces, the usually non-linear constraints of full perspective projection can be
expressed by a linear homography mapping [93, 23, 42, 24, 14].

In the case of articulated objects, suitable constraints have been successfully
imposed so as to estimate three-dimensional motion of the individual segments
consistent with the motion of the connected parts [50].

Apart from rigid objects, also deformable objects have been considered
by estimating the deformation parameters in addition to the rigid-body mo-
tion [109, 114, 9].

2.2.2 Measurement Domain

The type of information gathered from images represents the most salient cri-
terion for the classification of pose estimation approaches. Considering the
level at which the extracted information form a unit, the following taxonomy
is derived:

1. methods based on local appearance cues,

2. methods based on global appearance representation,
3. methods based on global appearance description

4. hybrid methods.

The first type of approaches looks for recurrent local groups of pixels, so called
features, and estimates the object or camera pose by evaluating the location
of these features in the image. The second type of methods, instead, directly
considers the global appearance information by analysing the object at pixel-
level in accordance with an overall, shape-dependent sampling rule. In the
case of appearance-descriptor based methods, the collected feature information
or pixel information is further condensed into a single low-dimensional vector.
Sometimes, the type of extracted information is combined in the so called hybrid
methods.
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Local Appearance Cues

The extraction of local cues from a data set is a natural approach to reduce
the dimensionality in information. Also pose estimation takes advantage of
feature extraction by interpreting the arrangement of a reduced set of selected
object points. These points are matched either with the corresponding points
on the three-dimensional object or with the corresponding points in another
image. The location of the correspondences in the measurements reflects a
certain pose.

Three classes of feature-based motion estimation algorithms exist according
to the dimensionality of feature location. These are

e geometric (3d < 3d),
e projective (3d < 2d), and
e visual (2d < 2d)

correspondences, where 3d denotes three-dimensional points on the object and
2d indicates correspondences in the two-dimensional image. An additional dif-
ferentiating factor is the plurality of the established correspondences. Feature-
based motion estimation algorithms can handle either established correspon-
dences of two feature sets (one-to-one relations) or yet to establish correspon-
dences (one-to-many relations).

Geometric 3d-3d correspondences typically rely on range images, such as the
ones generated by stereo algorithms or time-of-flight cameras. Rigid motion
estimation is solved for the simple case of one-to-one relations [52, 68] with
the most prominent solution based on the singular-value-decomposition [6]. If
the point sets represent irregular samples of an object then the motion can be
estimated with the iterative-closest-point algorithms [16, 83] as long as object
rotation is small.

Projective 3d-2d and visual 2d-2d correspondences show higher popularity
for motion estimation compared to pure 3d correspondences since they are based
on single (and relatively inexpensive) camera modules for 2d imaging. The for-
mer type requires a 3d model of the object, while the latter implicitly constructs
a 3d model. These algorithms originate from feature-based optical-flow meth-
ods and are also known as simultaneous-localisation-and-mapping (SLAM) or
structure from motion (SFM) approaches.

Generally, procedures for feature-based motion estimation consist of three
consecutive steps, namely

e feature extraction,
e feature matching, and
e pose estimation,

where the first or latter two steps are often tightly coupled. The type and
discriminative power of the extracted features are mainly responsible for the
complexity of the matching step. Once the correspondences are established,
the object motion or pose can be estimated.
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The most common feature types employed for projection-based and image-
based estimation are point features [130, 146, 85, 90, 149, 21, 20, 92, 26|, contour
features [9, 131, 50, 63, 39, 126, 113, 38, 87, 107], area features [25, 94, 143,
86, 107, 82] and a combination of them [84]. Point features and contour fea-
tures can be extracted from the image without prior information, but they limit
the discriminative power of the feature to the respective class. Area features,
instead, gain discriminative power with the size of the image patch they repre-
sent. Obviously, a trade-off exists between small, ambiguous patches and large
patches, which may suffer from perspective distortions.

The correspondence problem is solved either by locally searching in tempo-
rally consecutive images [146, 10, 131, 50, 63, 126, 25, 26, 94, 143, 113, 38, 87,
86, 107, 82] or by finding the best match within all features under geometric and
appearance constraints [86, 107] or geometric constraints only [21]. Some pub-
lications do not consider the problem at all and establish the correspondences
manually [130, 2, 90, 93, 149, 20, 92, 60].

Accordingly, the object pose is estimated for given 3d-2d correspondences
either locally by means of regression techniques [146, 2, 131, 46, 50, 63, 92,
126, 25, 26, 94, 143, 38, 87, 60, 82], semi-locally through particle filters [20],
or globally convergent [90]. Recently, a globally optimal approach has been
devised for this problem [76]. The global pose can be estimated for ambiguous
correspondences with random sampling consensus (RANSAC) techniques [86,
107] or factorisation methods [21]. In this case, feature correspondences are
simultaneously established.

In the case of visual 2d-2d correspondences, the estimation of motion implic-
itly determines the 3d structure of the object or scene at the same time. This
field has been intensively studied (see [64] for a detailed insight into the topic).
It is known that structure and camera translation can be estimated only up
to scale unless additional metric information is available. While the motion of
calibrated cameras can be estimated for two views through the essential matrix,
e.g., [130], with a translation up to scale, the motion of an uncalibrated camera
can be determined only from multiple views because of perspective ambiguities.
Linear methods have been devised to estimate motion and structure when ad-
ditional constraints apply [117, 118, 72]. Otherwise motion and structure are
iteratively estimated through non-linear minimisation [11, 119, 25, 26, 110, 60],
eigenvalue decomposition [149], factorisation [139, 141], or, most importantly,
through bundle adjustment, e.g., [142, 127, 97].

Appearance-based Methods

In contrast with the above mentioned methods, appearance-based pose estima-
tion does not look for certain features in the image individually. Instead, the
overall appearance of the object is gathered from the image by picking a collec-
tion of pixels. The sampling process requires some kind of knowledge on how the
pose is related to the appearance of the object. This knowledge is either given
by a database of view dependent appearances or through a three-dimensional
geometrical surface model.

View-based methods take pictures of the object off-line from as many poses
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as possible and compare them on-line with the current image, e.g., [145]. Here,
the image has to be segmented correctly into foreground (object) and back-
ground prior to being stored into the database. Obviously, runtime perfor-
mance and estimation accuracy depend on the number of pictures stored in the
database.

Geometry-based, or simply model-based methods are able to reproduce! the
appearance from any view by assuming a certain three-dimensional model of the
surface in connection with a second view of the surface. Therefore, two possibly
consecutive views of the object are related by the geometric model and either
by the camera motion between the two views or by the corresponding object
poses. If one view is a priori registered with the 3-d model then a textured 3-d
representation of the object can be set up. This representation allows either

e image-based or
e texture-based

correlation with the current view. Image-based approaches compare the ren-
dered image of the textured 3-d model for a given pose with the current image,
while texture-based approaches compare the texture of the 3-d model with the
current image inversely mapped to the 3-d model.

Generally, the task of finding the right pose or motion for the current ap-
pearance can be formulated as an optimisation problem. Different numeri-
cal optimisation methods have been employed in literature to solve the prob-
lem, e.g., graph cuts [54], Monte-Carlo sampling [49], singular-value decompo-
sition [42], general factorisation methods [21], and general non-linear minimisa-
tion methods [129, 12, 116, 14, 109, 18]. The simplest non-linear minimisation
methods adopted for motion estimation are gradient-descent methods [30, 17].

Faster convergence compared to gradient-descent methods is achieved for
second order approximations of the error function, as implicitly adopted for in-
stance in Kalman filter approaches [45]. Standard Newton methods have been
also applied [115] by relying on an analytically derived Hessian matrix. How-
ever, Newton methods with a Gauss-Newton approximation of the Hessian show
in practise higher robustness and convergence compared to standard Newton
methods [112].

Herein, the computation of the image Jacobian with respect to the object
pose, hereafter simply called pose Jacobian, represents the computationally
most expensive part of minimisation. Usually, the Jacobian is recomputed at
each iteration [91, 61, 62, 124, 23, 24, 114, 148, 100] but some approaches assume
a constant Jacobian and thus also a constant Hessian [40, 29, 75, 7, 116, 95,
34, 35, 73, 101]. This assumption is valid for planar motion models such as
homography but not for rigid-body motion of non-planar surfaces under full
perspective projection.

Generally, the approaches relying on local, non-linear optimisation with an
on-line or off-line computed pose Jacobian are denoted pizel-based methods or
direct methods in the context of optic-flow. These approaches collect infor-
mation (usually intensity) at selected coordinates in the image, and map this

Lif the illumination is known
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information directly to motion parameters. Single intensity variations, how-
ever, can only contribute to motion components in normal direction of the local
intensity profile?. Therefore, multiple pixel measurements are considered and
an appropriate model links variation in motion to variation of single intensity
values.

Examples of such methods for tracking in the image plane are given by affine
motion [91, 61, 62, 73] and polynomial distortion [115]. Linear two-dimensional
shape models have also been considered for tracking facial expressions [41, 95].
The estimation of motion in three-dimensional space, instead, requires the de-
scription of three-dimensional object shape. Methods have been devised pri-
marily for primitive surfaces, such as planes [48, 30, 45, 7, 23, 42, 14, 24, 113],
composition of planes [34, 35, cylinders and spheres [30], free-form surfaces [124,
114, 101], and linear three-dimensional shape models [116, 148]. A special case
is the estimation of pure rotational motion [129] where variation in depth can be
neglected. Linear three-dimensional morphable models have also been explored
for representation and tracking of facial expressions [116, 148], mostly at the
cost of several approximations of perspective mapping.

The information of three-dimensional structure required for non-primitive
surfaces is either provided a priori [124] or by up-to-date depth images [79,
80, 65]. If shape information is missing then structure and motion have to be
recovered simultaneously given a sequence of images, e.g., [12, 132, 108]. As
with feature-based structure from motion algorithms, translation and structure
can be estimated only up to scale if no additional metric information is available
(cf. 2.2.2).

Usually, the pose Jacobian required for pixel-based methods is computed
analytically. The presence of a textured three-dimensional model of the ob-
ject allows, however, to determine the Jacobian using techniques from com-
puter graphics [100]. Other approaches rely as well on the numerical derivation
of a Jacobian, whereas the aim is to learn a constant first and second order
relationship of image intensity and motion. While [40] considers motion in
the image plane for linear shape models, the approaches for tracking in three-
dimensional space rely on the existence of primitive shapes such as ellipsoids [29]
and planes [75]. Note again that neither the Jacobian nor the Hessian are con-
stant for non-planar surfaces under arbitrary poses.

Appearance Descriptor Methods

While feature-based methods and appearance-based methods rely on a set of
object samples, the class of appearance-descriptor-based approaches condense a
single view-dependent or view-independent property extracted from the image
in a single vector. These properties are typically related to either the area
or the contour of the appearance. The integration of local properties over
the image or over the surface of the object yields descriptors such as colour
histograms [104, 105], moments [111, 136, 137] or Fourier descriptors [3].

In practise, histogram-based approaches have been employed only for 2-

Zalso known as aperture problem
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DoF3 or 3-DoF tracking in the image plane due to the lack in sensitivity to
out-of-plane rotations. In contrast to histogram-based approaches, the extrac-
tion of Fourier descriptors from contours or the extraction of moments from
contours, point-sets, or textured areas allow for the motion estimation in full
6 DoF. However, these approaches require prior object-background segmenta-
tion, and the subsequent motion estimation process proves to be sensitive to
such a segmentation step, especially for higher-order moments. Moreover, any
partial occlusion in the perceived shape can heavily affect the reliability of these
methods.

Hybrid Methods

Rarely, different cues have been used simultaneously to estimate object mo-
tion. Refer to [113] for an example on the combination of texture and contour
information.

2.2.3 Interpretation Domain

Motion estimation algorithms rely explicitly or implicitly on a particular object
model. This model primarily links variation in pose to variations in the mea-
surements. Thus, a geometric, three-dimensional representation of the object
is not necessary unless the measurements are of the same three-dimensional
type. Therefore, a three-dimensional model might only represent a convenient
structure to attain a particular goal.

In the following, existing models are analysed with respect to their assump-
tion on the shape and their employed representation. Shape is the object prop-
erty that is assumed, at least implicitly, for a specific motion estimation ap-
proach. Representation, instead, is the explicit requirement of the algorithm
and, possibly, also of the approach.

Object Shape

Shapes can be attributed to one of two classes, namely primitive surfaces or
free-form surfaces. The former class consists of planes, spheres, cylinders, ellip-
soids etc., while the latter consists of arbitrary, unconstrained shapes. Within
the class of primitive surfaces, planar shapes are the most popular, beginning
with affine motion models [91, 61, 62, 73], which neglect perspective distortions,
planes [111, 45, 75, 42, 136, 137, 87, 107], and homographies [93, 7, 23, 14].
Other primitive shapes, such as spheres [30], cylinders [30, 29], and ellip-
soids [10, 29] are used as well.

In contrast to primitive surfaces, no compact parametric description exists
for arbitrary, free-form surfaces and therefore the change in appearance cannot
be established analytically in closed form. The majority of approaches assume
rigid free-form surfaces [130, 12, 65, 46, 86, 60, 94, 143, 24, 146, 79, 80, 9, 85,
132, 18, 148, 95, 49, 100, 131, 50, 63, 38|, whereas non-rigid, linear deformations
are adopted specially for face tracking [21, 101, 40, 7, 41, 116, 95].

3degrees of freedom
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Object Representation

The concept of representation is closely related to the concept of shape, and
denotes the information used by the algorithm to express the shape of the
object. The representation is determined first and foremost by the measurement
domain.

Appearance descriptor approaches are typically not based on a three-dimen-
sional representation of the object. Instead, the object is represented by the
moments perceived at a particular view [3, 111, 136, 137]. Similarly, view-based
methods do not rely on a three-dimensional object representation, neither. In
this case, images from the different view-points are stored [145].

Other approaches explicitly model the three-dimensional geometry of the
object, with the exception of three-dimensional motion estimation from the
fundamental or essential matrix, e.g., [130]. Appearance-based motion esti-
mation for planar shapes, for instance, stores the information either as image
patches [45, 75, 14] or as 2-d image coordinates together with the corresponding
intensity values [7, 23, 42]. Free-form surfaces are represented either by a com-
position of textured planes [94, 143, 24|, by a set of textured 3-d object points
[65, 132, 46, 21, 86, 101], by a set of un-textured 3-d object points [85, 60], by
a textured wire-frame model [79, 80, 29, 18, 116, 109, 148, 49, 100], by an un-
textured wire-frame model [9], or by a 3-d contour model [146, 131, 50, 63, 38].
Also planar contour or key-point models exist [111, 136, 137, 87, 107], as well
as combinations of keypoints and object contours [82].

2.3 Handling of Illumination and Occlusion

For the task of motion estimation, images are analysed for pose dependent at-
tributes. The perceived image however depends not only on the pose of the
object or scene relative to the camera, but is a superposition of effects at-
tributed to illumination, surface reflectivity, view direction as well as occlusion.
Typically, only the effects related to the view direction are evaluated for motion
estimation, while the other components represent incidental, negative effects.

In literature, several strategies have been devised to handle these negative
effects. In detail, the approaches for pose estimation under changes in illumi-
nation and/or occlusion can be attributed to one of four types:

e estimation of motion from information invariant to illumination,
e concurrent estimation of motion and illumination/occlusion,

e robust estimation of motion from information affected by
illumination/occlusion,

e estimation of motion with constraints on illumination/occlusion.

Approaches of the first kind process information that is invariant to illumina-
tion. In contrast, approaches of the second type explicitly model the acquired
information to be function of motion, illumination, and occlusion. Approaches
of the third kind do not explicitly model the effects of illumination and/or
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occlusion. Instead, robust methods are employed with the ability to handle
reasonable alterations of illumination and/or occlusion. Hence, estimation is
not totally insensitive to these effects. The latter approaches are not robust
to changes in illumination and/or occlusion. Therefore, correct estimations are
only guaranteed, if certain constraints on illumination and occlusion are met.

2.3.1 Estimation Invariant to Illumination

Generally, no method exists that is completely invariant to changes in illumi-
nation. Appearance invariance is usually obtained by separating the method
from illumination dependent pre-processing steps.

Accordingly, appearance-descriptor methods based on area moments or con-
tour moments [3, 111, 136] rely on a prior correct image segmentation. This
pre-processing step is per se a difficult task for inhomogeneous objects.

Similarly, feature extraction is expected to be in large extent invariant to
illumination changes. While contour features like the ones used in [131, 63, 126,
87, 107], point features as employed in [130, 85, 93, 60], and a combination of
both as used in [84, 82] are preserved under illumination changes, the detection
of these features is usually not invariant to illumination effects. In particular,
the extraction and matching of image patches is sensitive to illumination effects.

Appearance-based motion estimation on the other hand is generally not in-
variant to illumination. Here, surface irradiance may vary over time as the
object moves. In addition, non-Lambertian reflections cause the radiance per-
ceived form the surface to depend also on the view-point. The latter effects
are minimised by correlating the intensity profiles of narrow baseline stereo
images [42, 114] .

2.3.2 Concurrent Estimation of Motion and Illumination

Modelling variations attributed to the simultaneous change in pose and illumi-
nation has achieved significant attention in appearance-based pose estimation
and recognition. Here, the effects of illumination are compensated by explicitly
or implicitly computing the parameters of illumination simultaneously to the
parameters of motion.

A simple method is given by the global adjustment of brightness and con-
trast [91, 109]. Its suitability is however limited to planar patches or moderate
illumination changes. Alternatively, a complex model of surface reflectivity and
illumination can be taken into account. In practice however, only a reduced set
of parameters can be estimated [18].

The determination of an illumination subspace [13] combines expressive
power with moderate computational requirements. It shows high popularity
for motion estimation in the image plane [61, 62, 40, 41, 95] and in three-
dimensional space [12, 29, 18, 116, 95, 148, 49, 24, 35, 101]. Minimally, a set
of three illumination bases is required to model the light effects. However, the
dimensionality of the subspace grows roughly to amount of non-parallel surface
patches when self-shadowing is additionally taken into account. In the case
of tracking of facial expressions with active appearance models [40], the sub-



2.3. HANDLING OF ILLUMINATION AND OCCLUSION 31

space is used to jointly estimate illumination effects and appearance changes
not attributed to motion.

2.3.3 Robust Estimation of Motion

Motion estimation is possibly affected by perturbations at all processing levels,
starting from scene formation over image acquisition to image processing. The
first source of error, however, is not the scene itself but rather the inconsistency
between the assumptions of scene formation and the reality. Erroneously, the
acquisition process is usually considered the main source of noise. Early com-
puter vision systems tended to introduce significant level of noise, but nowadays
this factor has been greatly reduced by the manufacturers of camera systems.
The last source of perturbations, i.e., the error introduced by image processing,
can be attributed again to the discrepancy between real image formation and
the assumed image formation.

Generally, an estimation can be either biased or unbiased depending on
whether the perturbations match the model assumptions about the error. Noise
at the level of the acquisition process is typically modelled as additive and white
Gaussian. This model assumption is usually not appropriate for other sources of
perturbations such as occlusion or illumination changes. Only those processes
are considered robust in the statistical sense that produce an unbiased estimate
despite of non-normally distributed measurements errors.

The design of specific methods for robust motion estimation depends strongly
on the underlying measurement domain (see section 2.2.2). For instance, rea-
sonable robustness is achieved for descriptor-based motion estimation with his-
tograms as appearance descriptors by varying the bin size according to the
expected level of perturbations.

In contrast, appearance-based motion estimation allows for a wider range
of approaches. Special attention is paid to the matching criteria between two
patches. Normalised cross correlation [143] is adopted, as well as mutual infor-
mation [144, 109, 77] and local intensity ordering criteria [54, 86]. These meth-
ods aim to primarily compensate for illumination effects. Given a sequence of
chronological ordered images, slow illumination changes can also be compen-
sated by estimating motion from frame to frame [79, 11, 80, 65, 132, 108]. The
related tendency to drift can be eliminated combining a model update with
tracking of the original model [96]. For appearance-based estimation, statis-
tically robust methods such as well known m-estimators [98] are applied [116,
113].

In the case of feature-based motion estimation, perturbations are attributed
to the position of the extracted features. Well known approaches are RANSAC
methods, e.g., [86], and parameter clustering methods, e.g.,[4], which search a
subset of features that is consistent with the model. High popularity is observed
for m-estimator methods, which neglect the measurements that do not cope with
a common variance [146, 50, 39, 143, 51, 38, 113].
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2.3.4 Estimation with Constrained Illumination and Occlusion

A pragmatic approach to deal with illumination changes and occlusion is to
impose certain assumptions on the scene that constrain the perturbations to a
regime that can be handled by motion estimation algorithms [115, 17, 145, 45,
30, 75, 23, 126, 34, 94, 14, 15, 21, 73, 100].

The assumptions typically address surface reflectivity and visibility. Vari-
ablity of irradiance is usually decoupled from the viewer position by assuming
perfectly diffusive (Lambertian) surfaces, a common legitimate approximation.
Likewise, a visibility constraint is also valid as long as it reflects reality.

2.4 Pose Prediction

The task of image-based pose or motion estimation is usually formulated as an
optimisation problem. In practice, the corresponding objective function shows
to be highly non-linear and non-convex, and therefore the optimisation process
is likely to get stuck in local extrema representing alternative solutions. The
ambiguities of solutions can be alleviated by considering previous images of the
image sequence. That is, future poses are predicted with certain assumptions
on the motion dynamics and the history of past estimations. Thus, the task of
global pose estimation based on highly non-linear objective functions changes
into a tracking problem with local optimisation.

However, in the case of an observer or an object moving autonomously,
the pose parameters cannot be reliably predicted even for the very next frame,
because the energy introduced in the motion prevails over the inertia of the
masses. Therefore, the simplest prediction is to consider the pose of the camera
at the previous frame, e.g., [130, 49]. This behaviour is assumed to be default for
the majority of tracking algorithms that do not explicitly mention this problem.
The basic model is slightly extended by many applications so as to consider not
only the pose at the previous frame, but also the object velocity [45, 73, 104,
105].

A common framework for combining an observation model with a motion
model is given by the Markov-Chain models. While Kalman filtering approaches
follow a single hypothesis based on a Gaussian error model [130, 45, 87, 107], the
more general Sequential Markov-Chain Monte-Carlo methods are able to con-
sider multiple hypothesis at once, and without requiring necessarily a Gaussian
error model [70].

2.5 Discussion

The above sections outline the variety of approaches coping with the problems
of pose estimation, handling of variations in illumination, pose prediction, and
visual servoing. In the following, their suitability for the overall problem of
tracking and grasping of non-cooperative objects for the purpose of human-
robot interaction is assessed, by considering the four categories in a top-down
manner.
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2.5.1 Visual Servoing

The most prominent distinction of visual servoing is made with respect to the
task space, that is the domain of control. In image-based visual servoing the
task consists in minimising distances of a feature-vector defined in the image-
domain. Instead, position-based visual servoing specifies the task for the robot
end-effector in the Cartesian domain determining the poses that the end-effector
shall approach.

Originally, image-based visual servoing methods excelled in the presence of
a rough calibration of the camera and robotic system and in the lack of a priori
object models. As in any other robotic task however, the robot-Jacobian, which
maps motion in the camera frame to joint motion, is determined off-line accu-
rately. Moreover, the image-Jacobian, which links motion in the image plane
to motion of the camera frame, typically needs additional spatial information
such as the average distance of the object to the camera in order to be esti-
mated correctly. The lack of a priori object models tempts to assume that no
object constraints are employed. However, the object is implicitly assumed flat
or almost flat in order to obtain an analytical expression of the image-Jacobian,
whose evaluation is needed by the control algorithm.

With respect to the trajectories of the robot end-effector, position-based
visual servoing allows to follow a straight line in Cartesian space to reach the
desired position. Image-based visual servoing, on the other hand, controls the
end-effector such that the object features detected in the image follow a straight
line toward the desired feature positions. Thus, image-based visual servoing
implicitly keeps the object in the visible area but unpredictable Cartesian tra-
jectories may arise.

Position-based visual servoing exhibits two important advantages. First, the
robot can be commanded to approach any pose relative to the object, provided
that the object is visible at the final configuration. In contrast to image-based
visual servoing, the view to the object at the target position does not have to be
taught a priori. Second, the position interface allows to easily combine the goal
with higher level Cartesian plans. Thus, once on-line path planning becomes
feasible, the robot movements can be flexibly adapted to external events such
as collision avoidance guaranteeing a globally optimal path at any time instant.

On overall, position-based visual servoing is hereafter preferred to image-
based servoing. The often cited advantages of image-based visual servoing fade
in the presence of accurate calibrations and implicit model assumptions. More-
over, position-based servoing easily integrates with path planners and allows
for arbitrary target positions without additional training efforts.

The decision does affect neither the choice of the camera to robot configura-
tion nor the choice for end-effector open-loop or end-effector close-loop control.
This decisions are postponed to the Chapter 6.

2.5.2 Pose Estimation

The commitment to position-based visual servoing excludes tracking methods
with planar motion models and thus focuses on tracking in three-dimensional
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Cartesian space. Approaches based on orthographic projection, weak perspec-
tive projection, or homography projection impose serious constraints on the
object and/or the camera-to-object configuration and are therefore also ex-
cluded from further considerations. The full perspective projection, on the
other hand, does not only allow to track objects accurately in appropriate dis-
tances to the camera but also in close-up configurations, where the effects of
perspective projection become dominant.

Furthermore, the choice of position-based visual servoing affects the mea-
surement domain. Descriptor-based methods are closely connected to image-
based visual servoing approaches and, therefore, are not suited. Methods based
on local appearance cues, on the other hand, have been successfully employed
for position-based visual servoing.

In the following however, the complementary domain is explored compris-
ing methods based on global appearance representation. These methods are
not affected by the texture of objects nor by a cluttered background. Up to
now, appearance-based approaches have been proposed that rely on representa-
tions severely restricting the object shape or the camera-to-object configuration.
This thesis explores methods that assume general but known free-form objects
and, at the same time, impose no restrictions on the perspective camera model.
Furthermore, the internal object representation is not restricted to a composi-
tion of locally planar patches, and hence no linearisation of the object shape is
employed at this stage.

2.5.3 Handling of Illumination

Handling of variations in illumination is still a hard problem in computer vision.
All 2-d image-based pose estimation methods, regardless of their measurement
domain, access pixel values at the first processing stages and, therefore, are
subject to variations in illumination. It would be highly desirable to base pose
estimation on illumination invariant quantities but, up to now, no description
exists for general types of surfaces and surface reflectances. Hence, this the-
sis explores existing solutions of illumination compensation and adopts them
to the problem under examination. The methods considered comprise robust
estimation of motion from information affected by illumination/occlusion, con-
current estimation of motion and illumination, and estimation of motion with
constraints on illumination/occlusion.

2.5.4 Pose Prediction

Different models of motion dynamics have been proposed relying, in general,
on the knowledge about the energy introduced in the system and the inertia
of the moving object. In the special case of tracking non-cooperative objects
moved by humans, the inertia of the object is considered very low compared to
the energy employed by the human. Thus, in the following, no assumption on
the object trajectory is introduced other than continuity.



Shape-Texture Based Tracking

The image taken from the physical environment depends on the properties of
the objects in scene, properties of the light sources and the camera, as well as on
the relative positions of all these components. In detail, the objects in the scene
are described by their shape and their material properties such as texture and
reflection characteristics. Light sources, on the other hand, are distinguished
by their power spectrum and direction of radiation. Finally, the cameras can
be characterised by their focal length, lens distortion, principal point, and the
physical resolution of the sensor chip.

Theoretically, it is possible to build a sophisticated imaging model depen-
dent on the manifold of all the parameters of the environment and the camera.
However, the computational power of desktop computer systems is not yet suf-
ficient for photo-realistic rendering of complex scenes for a given parameter set
in real-time. The inverse problem of determining these parameters from an im-
age is computationally even much more expensive. Indeed, rendering of many
such images may be required for parameter estimation.

The complexity of the problem is generally tackled by the introduction of
constraints that reduce the number of free parameters of the environment. First,
it is assumed that no interdependence exists between parts of the scene with
regard to their appearance. The objects are not obscured by other objects
neither in terms of visibility nor in terms of illumination. Accordingly, the
object in question can be isolated from the background and their appearance
depends solely on the characteristics of the objects themselves, the lighting
conditions, and the camera. Second, the objects are assumed to be rigid and
therefore shape parameters do not vary over time. Finally, constant and a priori
known intrinsic camera parameters represent the third popular constraint.

In the case of moving objects the complexity can be considerably reduced by
tracking an object. That is, the problem of global pose parameter estimation at
each time instance reduces to a local problem starting from an initial estimate
of the parameters. Such an initial estimate, called hypothesis, is refined in the

35
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image, and its state is subsequently propagated to a pose hypothesis in the
following image.

In the following, the type of camera is restricted to commercially avail-
able monochromatic cameras as opposed to 2.5-d cameras such as time-of-flight
cameras'. Only a single camera is used, which further reduces the cost of the
system.

The goal is to consecutively locate an a priori known object in 6 degrees of
freedom (DoF) in a video-stream of monocular images in hard real-time. Here,
real-time refers to the frame-rate of the camera at a minimum of 25 frames per
second. Either the camera, the object or both are moving, while the parameters
in question describe the relative pose between the object and the camera.

The majority of 6-DoF pose estimation algorithms are based on the detec-
tion of specific features in the image such as edges and corners in the brightness
image. Projective correspondences are established between the feature posi-
tions and the geometric model. Yet, these shape-cues do not exist for smooth
or general free-form surfaces.

Alternatively, the object texture can be used for the task of 6-DoF pose esti-
mation. In contrast to shading, texture is an illumination-independent property
of the surface describing the portion of the reflected radiation to the received
radiation. Apart from this reflection property and apart from the illumination
conditions, the object appearance is determined by the object pose. In princi-
ple, the appearance given by the perspective projection of the surface texture
can be inversely used to estimate this 6-DoF pose.

The challenge herein consists in efficiently matching either appearance to
pose or appearance variation to pose variation. View-based approaches match-
ing appearance to pose are typically not adequate for real-time pose estimation
due to their computational complexity. On the other hand, tracking meth-
ods matching variations in appearance to variations in pose so far have been
established only for primitive surfaces or simplified projective models.

Hereafter, appearance-based approaches are developed that estimate the
pose of an a priori known rigid-body in real-time. A general object represen-
tation allows to model arbitrary surfaces by samples of combined shape and
texture information. This object model is used within the so called likelihood
function to determine the evidence for a specific pose (section 3.1). Two ap-
proaches are devised to maximise the likelihood and thus to estimate the object
pose. The first approach updates a single pose hypothesis by mapping appear-
ance variation to pose variation (section 3.2). The second approach, instead,
keeps track of multiple pose hypotheses by matching the current appearance
with the appearances associated to the hypotheses (section 3.3). Both ap-
proaches are evaluated as to their functionality and convergence characteristics
(section 3.4).

le.g. from PMD Technologies (http://www.pmdtec.com), or Mesa Imaging
(http://www.mesa-imaging.ch)
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3.1 Shape-Texture Based Maximum Likelihood Es-
timation

As a first simplification of the image formation model the object appearance is
determined by the surface texture and the pose of the surface with respect to
the camera. In order to inversely estimate the pose from the object appearance
an objective function is set up that reflects the evidence of the current appear-
ance for a specific pose. This function is optimised with respect to the pose
parameters to yield the estimate of the object pose. Typically, the objective
function is described by three aspects. First, the objective relies on a specific
meaning of the parameters. Second, the objective function incorporates a model
linking the parameters to the measurements, that is, to the appearance. Last
but not least, the objective function defines how the parameters agree with the
measurements for the employed model.

Overall, these issues are embedded in the following in the theory of maxi-
mum likelihood estimation. This widely accepted stochastical framework allows
to clearly show the objective of the task and to disclose the employed assump-
tions. Moreover, it allows to address the problem with stochastical methods
and methods from optimisation theory, such as efficient second order minimisa-
tion for single hypothesis tracking (section 3.2) or Markov-Chain Monte-Carlo
methods for tracking many hypotheses at once (section 3.3).

The following subsections start with a definition of the terms of motion and
pose outlining the different possibilities for the determination of a reference
frame. After a brief description of maximum likelihood estimation, the central
idea of likelihood based on a combined model of shape and texture is presented.

3.1.1 Rigid-body Motion

In contrast to the motion of deformable surfaces, the notions of motion and
pose refer hereafter to the coordinate transformation of object points given
in a specific frame to their coordinates relative to another frame. Thus, the
estimation of motion and pose relies on the determination of a particular frame,
called reference frame, relatively to which the coordinate transformation will
be expressed. In principle, the reference frame can be arbitrarily set. However,
the placement significantly affects the mathematical structure of the problem
formulation easing or complicating the derivation of efficient pose estimation
algorithms.

Generally, motion can be classified into object motion and ego motion de-
pending on whether the camera or the object is considered stationary. In the
case of object motion, the transformations are estimated between consecutive
locations and orientations of the object frame. For ego motion instead, the
transformations are estimated relatively to the previous location of the cam-
era frame. Analogously to the task of motion, estimation also pose estimation
problems can be associated to either object pose or camera pose estimation.

Theoretically, all of these four types are interchangeable whereas pose and
motion estimation are linked via an additional frame, that is the object frame.
Thus, successive motion estimates can be composed to a single pose estimate,
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knowing the initial relative pose between camera and object.

Hereafter, two possible combinations of transformations between object and
camera frames are considered for the task of pose estimation. Generally, these
approaches are independent of the representation of transformations between
frames. The commitment to a specific representation however, allows to es-
timate the computational costs associated with the transformation. Thus, a
special representation is shortly outlined first.

Representation of Rigid-body Transformation

Several representations of rigid body transformations have been proposed in the
literature, such as dual quaternions, Plucker coordinates, or transformations
with separate translation and Eulerian or Cartesian rotation. For the latter
type, let the motion parameters p = (Lo, 148, Ly, fix, Ly, [z) € RS define the
transformation

m(x, p) = R(pa, 1g, ty) X + (1, fhy, 1z) (3.1)

of a point x € X from one coordinate frame to another coordinate frame.
Here, R(pa, 118, tty) € SO(3) denotes the rotation and t(ux, fty, ft,) specifies the
translation in three dimensions associated with the pose pu.

Many representations exist for the rotation in SO(3), ranging from quater-
nions, angle-axis representations to Euler angles. The latter representation is
very popular and widely used in robotic systems because of to its comprehensi-
bility and its simplicity. Among the possible combinations of Eulerian rotation
axes, the rotation can be specified around the moving Cartesian axes x, y and
Z’

R(pa; g, piy) = (3:2)
1 0 0 cos(pg) 0 sin(ug) cos(pty) —sin(py) 0
0 cos(a) —sin(fa) 0 1 0 sin(py) cos(py) 0
0 sin(pa) cos(pa) —sin(pg) 0 cos(pg) 0 0 1

Generally, any other parametrisation of rotation can be adopted. However, the
choice has to be conscious about the singularities in representation. It has to
be ensured, that the motion has not to be estimated close to these singularities.
Last but not least, the translations are usually defined by its vector components,

Mx
Eps oy ptz) = |y | (3.3)
M,

which are performed according to equation 3.1 subsequently to the rotation.

Motion w.r.t. a Stationary Reference Frame

For the task of pose estimation, the rigid-body transformation between an ob-
ject frame and the camera frame is eventually determined. Generally, the prob-
lem of global estimation of this transformation is simplified to a local problem
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static reference frame moving reference frame

camera

Figure 3.1: Stationary reference frame (left) and moving reference frame (right).

using a prior pose hypothesis close to the true pose. The rigid-body transfor-
mation between the object frame given by the hypothesis and the object frame
at the true pose can be expressed relative to either of the frames or relative to
the stationary camera frame.

Tracking approaches generate pose hypothesis fi;, at any, possibly discrete,
time instant ¢. Thus, if the pose increment du; between the time instant ¢ and
i + 1 refers to the same stationary camera frame then the rule

Frip1 = [ + Op (3.4)
updates the pose estimate at time 4 to the next time instant 7 + 1. Refer to

figure 3.1 for an illustration. The corresponding rigid-body transformation is
determined according to

m (X, 1) = m(x, fu; +0p;) - (3.5)

Baker and Matthews [8] refer to these approaches using the stationary reference
frame as additive methods.

Motion w.r.t. a Moving Reference Frame

Alternatively, the rigid-body transformation between the object frame at the
pose hypothesis and the true object frame can be expressed w.r.t. the former
frame. This object related frame is continously moving relative to the stationary
camera frame.

That is, the approach relies again on a hypothesis fi; of the object pose at
time instant . If the motion between the time instants ¢ and ¢ + 1 is modelled
as the nested transformation of initial pose ft; and the pose variation dp; then
the resulting rigid-body transformation reads

m(X7 ﬂi—i—l) = m(m(x7 5#‘1)7 :ﬁ‘z) : (36)

Accordingly, the pose estimate at time instant ¢ is updated to the next instant
1+ 1 through

Bigp = pioop; (3.7)
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where the operator o composes the motion parameters in line with equation
3.6. See figure 3.1 for an illustration of the concept. In the literature, tracking
methods based on this definition of a moving reference frame are referred to as
compositional approaches [8].

3.1.2 Maximum Likelihood Estimation

In statistics, maximum likelihood estimation (MLE) is an established method
for the estimation of the parameters of a probability density function from given
data samples. The theory dates back to R. A. Fisher at the beginning of the
20th century [53] and gained more and more popularity through the years.

In maximum likelihood estimation the term likelihood is closely linked to
the probability of joint occurrence of a set of data samples I = (I, I1,...,Ix)
given some (multi-dimensional) parameter p. The conditional probability of
the set of samples for given model parameters is expressed by the probability
density function (pdf)

p(Ipu) = p(I1, Iz, ..., In|p) (3.8)

The so-called likelihood function binds the set of data samples to known values
and reduces the above definition consequently to

L(p) = p(lp) (3.9)

which reflects the probability density of the constant set of samples for a given
parameter pu. The objective of a maximum likelihood estimator is to find the
pose parameter f1* that maximises the probability density of the given data
samples, that is

o= arg max L(p) . (3.10)

Given the correct probability model, the maximum likelihood estimator has
optimal asymptotic (N — inf) properties (cf. [43])

e the MLE is asymptotically unbiased,
e the MLE is statistically consistent and
e the MLE is asymptotically efficient.

The latter asserts that the MLE reaches asymptotically the minimal expected
squared error achievable with any estimator.

3.1.3 Shape-Texture Based Likelihood

The likelihood is adopted in this work for the evaluation of the joint occurrence
of object pose parameters and image measurements. In contrast to feature-
based pose estimation, the measurements are constituted neither by the loca-
tions of sparse, salient features in the image nor by the position of shape features
of the surface. Instead, pixel measurements are taken on image locations not
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restricted to salient brightness changes. The set of pixel measurements describe
the appearance of the object.

Assume I = (I1,I1,...,IN) to be a N-dimensional vector of measured in-
tensity values of the surface texture that are conditionally independent given
the object pose. Thus, the probability density of the measurement I, given the
6-dimensional pose vector u, is specified by the product of the pixel individual
conditional probabilities

N

p(lw) = [ p(Lilw) - (3.11)

=1

The conditional probabilities are determined by setting up an appearance
model and comparing the appearance linked to a specific pose with the current
measurements. In contrast to view-based pose or object recognition, no image
database is set up correlating appearances to viewpoints. Instead, a functional
model for the local object radiance towards the camera is built. Note the
difference to a model for the local irradiance received from the object: the
former projects the image of the object back to its surface while the latter
evaluates the image captured from the object. This difference is analogous
to the one between the texture-based and image-based approaches outlined in
section 2.2.2.

Unlike approaches based on the surface texture expressing the illumination-
independent albedo of the surface, the functional model for the local surface
radiance reflects illumination-dependent quantities. This model allows to di-
rectly map measured image intensity values to the surface.

The functional model is composed of the object shape description, the mo-
tion model, the model of image projection, and the image of the object. The
object shape, which is assumed a priori known, is represented in terms of an
unordered set of sample points

X = {x1,%3,..,xny} CIR? (3.12)

in three-dimensional Euclidean space. This description does not impose any
constraints other than visibility on the surface, as opposed to the shape con-
straints imposed by any parametric surface description, e.g. planes, cylinders,
and NURBS? surfaces.

The quantity of light emitted from the shape X towards the viewer is deter-
mined sampling an image for a specific pose of the shape relative to the camera.
Here, this pose is represented by the rigid-body transformation of equation 3.1,
whereas in theory other representations are possible.

The model points transformed into the camera frame are linked to the cor-
responding image coordinates by the model of projection. Up to now, efficient
solutions for motion estimation adopted either an orthographic or a weak per-
spective projection model. These models are an approximation of full perspec-
tive projection but allow for the estimation problem to become linear and to

2Non-uniform rational b-gpline
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be solved with linear methods. Instead, the surface model points x € X are
non-linearly mapped here to the image under the full perspective projection

ki -x ki -x 8
= (X XY 3.13
b0 = (s i) (3.13)

which accounts for perspective distortions for any object and object pose. The
intrinsic camera parameters ki, ko, ks are known a priori and are generally

defined by

ki a vy up
ki |=10 8 w |. (3.14)
kT 0 0 1

Here, @ and 3 denote the scale parameters in horizontal and vertical directions,
respectively. The parameter v represents skew, while the optical centre in the
image is given by (ug,u1).

Let I(v) be the intensity value in the current image at position v € IR2.
Now, the radiances I = (Ix,, Ix,, ..., Ixy) of the surface X are related to the
image I and the pose u by

Ix(p) = I(p(m(x,p))) , x€X. (3.15)

Likewise, the radiances °1 = (U, ,%x,, ..., ) of the surface in a reference
image °I and the reference pose %u are defined by

L (p) =T (p(m(x,%n))) , x€X. (3.16)

The radiance values do not change, if either the surface has Lambertian re-
flectance properties and the illumination remains fixed relative to the surface
or if the surface is homogeneously illuminated. In this chapter, the radiances
are assumed constant under pose variation and consistently I and %I are referred
to as the current and reference texture, respectively.

Generally, handling of the likelihood function can be greatly simplified by
assuming normally distributed measurement errors. Thus, the pdf of condition-
ally independent observations Iy given the pose parameter p is finally defined

" I (L) — e (w))?
p<1|u>—xg Ty P (— 52 : (3.17)

The corresponding likelihood function is hence maximised when the ra-
diances sampled in the current image for the pose p resemble the reference
texture. The problem is equivalent to the maximisation of the log-likelihood
function

In L) = ~X|nv3r0 — 2 3 (helpn) — () (3.18)
xeX

which is essentially the sum of squared differences (SSD) between the intensity
values in the current and reference views.
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3.2 Single-Hypothesis Tracking

Appearance-based pose estimation in 6 DoF can be accomplished by propa-
gating and refining a single pose hypothesis from frame to frame. Despite the
reduced complexity, considerable computational power is still needed for this
local pose estimation task. The unpredictability of object motion and the time
elapsed between two observations dictate the size of the pose space to be ex-
plored and respectively affect the computational requirements (cf. chapter 1).

Under the assumption of uni-modality, the shape-texture based likelihood
function of subsection 3.1.3 can be maximised sequentially for the given pose
hypothesis. Typical sequential optimisation methods are first-order and second-
order optimisation techniques, whereas both rely on the computation of the
Jacobian and respectively of the Hessian of an objective function. Accurate and
quick convergence is obtained for an analytical representation of the Jacobian
(and Hessian) as opposed to the numerical computation of the Jacobian. In the
case of appearance-based pose estimation, the calculated Jacobian represents
the first-order relation between variation of appearance and variation in pose.

In contrast to non time-critical optimisation problems, the speed of con-
vergence plays an important role for pose tracking. The speed of convergence
determines the maximal object velocities supported by the approach. The re-
quirement to raise computational efficiency can be met by computing parts of
the current motion Jacobian off-line. Implicitly, the question is raised how the
current, non-constant motion Jacobian can be related to past Jacobians, espe-
cially to the Jacobian of the reference view to precompute part of the Jacobian
a priori.

In the following subsection 3.2.1, sequential second-order minimisation by
means of the well known Gauss-Newton algorithm is described first. The com-
putational complexity involved in the computation of the Jacobian is outlined
motivating the development of approaches for the efficient prediction of the
Jacobian. The link between past and present motion Jacobians is established
in subsection 3.2.2 by the image-constancy assumption specialised to the rigid-
motion of arbitrary free-form surfaces. An efficient analytic formula is derived
in subsection 3.2.3 predicting the spatial texture Jacobian for any object pose.
In subsection 3.2.4, the spatial texture Jacobian is mapped to the motion Ja-
cobian to allow for efficient tracking with a moving reference frame [121]. Fur-
thermore, the analytic formula allows to determine the conditions for relaxing
the image-constancy assumption as described in subsection 3.2.5. Accordingly,
the approximation error can be quantified for the assumptions on the constancy
of the texture Jacobian. Hence, the relaxation leads to a constant motion Ja-
cobian for moving reference frames, which further increases the computational
efficiency.

3.2.1 Sequential Maximisation of Likelihood

Obviously, the likelihood for a pose is maximised by minimising the negative
of the log-likelihood 3.18. Generally, parameter optimisation is defined as the
problem of finding the extrema of the cost function, characterised by the zero
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crossing of the first derivative of the cost function.

In numerical analysis, various local first-order and second-order minimisa-
tion techniques exist, for instance gradient descent methods, Newton-Raphson
method, quasi-Newton methods, and the modified Newton method employed
in the Levenberg-Marquardt minimisation. The latter is the most common for
SSD approaches. Lucas and Kanade [91] introduced such a modified Newton
method to the vision community, which proved very valuable for image regis-
tration tasks.

The negative log-likelihood function is minimised here with Newton’s algo-
rithm and a Gauss-Newton approximation to the Hessian by iteratively solving
the linear equation system at the pose estimates ft

> Oule()” - Oul)| o= Oul(w)"|  (Ixlit) = L (m))
x€X K= xeX K=
(3.19)

for the pose increment 5};. Here, 0,, denotes the partial derivative with respect
to p.

Newton methods show quadratic convergence to the minimum, which is the
major strength of the method. Additionally, this second-order minimisation
can be gradually reduced to a first-order or gradient descent method, a strategy
realised by the Levenberg-Marquardt algorithm.

Commonly, both first-order and second-order minimisation algorithms rely
either on the numerical or analytical derivative of the model function. Comput-
ing the first order derivative (Jacobian) numerically requires an evaluation of
the model function for every dimension of the parameter space. This approach
is not feasible for real-time applications, if a single evaluation of the model
function is computationally expensive. In contrast, analytic determination of
the Jacobian is computationally less expensive and has moreover the advantage
that the closest minimum is reached with higher accuracy.

In order to compute the pose Jacobian 9,1 at a specific pose f1 analytically,
the derivative of the image as well as the derivatives of the projection and ob-
ject motion have to be computed. The floating point operations involved in the
computation of the Jacobian amount to 26 N multiplications and 11N additions
for N 3-d model points as depicted in Table 3.1. The complexity for computing

’ H Oul Oxkp Ouym Ol -0xp Oul - Oxp-Opm ‘ total ‘
#fp mult. | 0 (min) 9 9 5 3 26
#fp add. | 2 (min) 1 6 2 2 13

Table 3.1: Number of floating point operations employed for the computation
of the texture Jacobian for a single 3-d model point.

the image derivatives dyl depends on the sub-pixel interpolation scheme and
numerical differentiation in the discretely sampled image I. Bilinear interpola-
tion and the robust differentiation with the Sobel operator, for instance, require
additionally 5 floating point multiplications and 12 additions.
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The effective performance eventually depends not only on the number of
floating point operations but also on the structure of the program. Computation
of the chained derivative for example can hardly be vectorised to benefit from
SIMD instructions on modern CPUs. Another important aspect is the memory
throughput, which suffers from random access to image pixels. Typically, the
projections of the 3-d model points spread all over the image making efficient
memory block transfers useless.

All these factors decrease the performance of first-order and higher-order
minimisation methods such as the Newton method. A constant frame-rate and
limited processing resources constrain the minimisation to few iteration steps.
The speed of convergence and robustness are heavily affected, motivating the
development of more powerful approaches.

3.2.2 Image-Constancy Assumption in 3-d

In optical flow theory, the so called image-constancy assumption for Lambertian
surfaces asserts that consecutively captured images of a scene are congruent
under local coordinate transformations, that is

I'(uy(t)) = const (3.20)

for a given path uy(t) : IR — IR? of the pixel coordinate v in space time
continuum. The derivative d:uy(t) is called optic flow and is usually given
by numerical differentiation. The total derivative of the above equation with
respect to ¢

o' (n) = —0u'I(n) Opuy (t) (3.21)
u=uy (¢) u=uy (¢)

represents the standard optic flow equation. In practice, the discrete version
of the first-order derivative relates two consecutive camera images. However,
equation 3.21 is not suited to express the relation between two images subject to
substantial camera or object motion because it is typically based on local spatial
and temporal derivatives. Also equation 3.20 is not appropriate for object pose
estimation since the optic flow dyuy(t) is not constrained by variations of pose.
Here, two images are instead related via surface and texture, which leads
to a specialisation of the standard image-constancy assumption. Let Iy (u) and
O, (Ou) again denote the functions perspectively mapping a three-dimensional
object point x to intensity values of the current image I and reference image I
for the respective rigid-body motions g and “u. The intrinsic camera param-
eters including possible distortion parameters are assumed known. Then, the
standard image-constancy assumption is specialised imposing simultaneously
surface and texture constraints at any point x of the uncountable set of scene

surface points X O X. The resulting function

L(p)="(°%p) , xeX CRR? (3.22)

is referred to as image-constancy assumption in 3-d. In contrast to the standard
constancy assumption, equality is not postulated for the image pixels but for
the surface texture.
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3.2.3 Analytic Prediction of the Spatial Texture Jacobian

Respectively to the definition of the pose Jacobian 0,,Ix () for a surface point
x € X, the partial derivative of the texture function with respect to the three-
dimensional object coordinates

VIX(“) = (6561IX(”) vaﬂﬁzlx(y’) ’axslx(u)) y X = (xlv T2, '7;3) (3'23)

is called in the following spatial texture Jacobian. The definition of the spatial
texture Jacobian V I (O,u) for the reference image I and reference pose “u are
obtained analogously.

In order to express the current spatial texture Jacobian in terms of the
reference Jacobian, the derivative of the image-constancy assumption with re-
spect to the surface is considered. For this purpose, let first Be(a, A) = {b €
Allla = b|| < €} with 0 < € denote an e-neighbourhood of a point a in domain
A. Then, a continously differentiable local parameterisation

Sx Bn(O,]R2) — Be(x,X), sx(0)=x, sx€C (3.24)

of the surface X is specified at x € X. This function maps motion on a
two-dimensional grid to motion in three-dimensional space. Consequently, the
image-constancy assumption reads for parametrised surfaces in 3-d:

I, (uy (1) = Ost(u) (OIJ') , xed. (3.25)

The derivative of the image-constancy assumption with respect to the surface
parameters is now given by

ViIk(p) - Ousx(u) = AV (Op,) cOusx(u), x€eX, (3.26)

which holds for continuously differentiable images I and Y at any point of the
surface. This equation binds parameter variation in B, (O,IRQ) to brightness
variation in IR. Note that the surface variation spans a three-dimensional plane
tangential to the surface at u. The base vectors of the plane are given by the
columns of the gradient 0y sx(u), which are hereafter assumed w.l.0.g. orthonor-
mal at u = 0.

Obviously, the image-constancy assumption in 3-d and its derivative are
restricted to the surface shell. Hereafter, the equality 3.26 is transformed
from variations on the two-dimensional surface patch to variations in three-
dimensional space. The objective is achieved through an injective mapping
from local three-dimensional variations to lower-dimensional variations on the
tangential plane of a surface point. This rank-deficient linear mapping is ac-
complished by the projector 1 — nyn), where ny is the surface normal at a
point x € X. The multiplication of the image-constancy assumption 3.26 with
the transpose (Oysx(u))T leads at u = 0 to the first assertion.

Assertion 1 (Constancy of Spatial Texture Jacobian) Let x € X and
n, € R3, |ny|| = 1 be a point and the corresponding normal on a continously
differentiable rigid surface with a continuously differentiable texture invariant to



3.2. SINGLE-HYPOTHESIS TRACKING 47

changes of viewpoint. Moreover, let °I, I : IR? — IR denote two camera images
with respective object poses °p, p € RE.

The projection of the spatial texture derivative VIx(p) matches the projec-
tion of V Iy (Ou) on the tangential plane 1 — nynl, i.e.,

Vik(p) - (1 - nan) =V Ix(op,) (11— nxnz) .

Obviously, the view dependent spatial derivative VIx(p) cannot be com-
puted directly from an a priori known reference image % and reference pose ‘.
The rank-deficient, constant mapping 1 — nxnz constrains the spatial deriva-
tive only up to a linear subspace. Therefore, an additional constraint is needed.
Prior to the introduction of this constraint, assertion 1 is analysed in more
detail. Consider a slightly rearranged equation of the assertion given by

Vik(p) — VU (p) = (VIx(p) — Vx(‘p)) nxny . (3.27)

Then, the first fundamental characteristic concerning the direction of the one-
dimensional linear subspace containing the spatial derivatives follows immedi-
ately.

Corollary 1 (Orientation of Residual) Let x € X, n, € R3, I, T : R? —
R, and %, p € RS be given as in assertion 1.

The difference between any two spatial texture derivatives VIy(p) and V %Iy (Ou)
is parallel to the surface normal ny, i.e.,

(VIx(n) = V() || 0 -

This stationary property is split in the following into two orthogonal con-
straints (illustrated in figure 3.2), which facilitate an efficient computation of
the spatial texture Jacobian.

Corollary 2 (Coplanarity with Origin) Let x € X, I : R?> — IR, and
p € RS be given as in assertion 1.
The spatial texture derivative VIx(p) lies on a plane through the origin:

Jox €R3,|jox||=1: VI(t)-0x=0.

Corollary 3 (Coplanarity with Spatial Surface Texture Gradient) Let
x e X, I:R? - 1R, and p € R® be given as in assertion 1.

The spatial texture derivatives VIx(p) lies on a plane defined by the spatial
surface texture gradient gy, i.e.,

Jgx € IR3\O p VIk(p) gx = ng||2 .

Here, the spatial surface texture gradient gy corresponds to the three-
dimensional gradient of the surface texture, which, per definition, lies on the
tangential plane defined by ny.

The corollaries 2 and 3 define two-dimensional subspaces containing the
spatial derivative irrespective the actual object pose. The planes corresponding
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to theses subspaces, given by ox for corollary 2 and gx for corollary 3, are
orthogonal to the surface normal ny and are orthogonal to each other. Thus,
the normals corresponding to these three planes form an orthonormal system.
The intersection of the planes ox and gy defines the static, one-dimensional
linear subspace of the spatial texture derivative. The spatial surface texture
gradient gy is a special representative of this subspace.

The direction dx of the spatial surface texture gradient gx and the normal
of the orthogonal plane ox are computed a priori by

ny x VO (O[J,)
Oy = T X VL ()] dy = ox X ny, (3.28)

for a surface model point x.

Additionally to the above stationary constraints derived from equation 3.27
a view dependent constraint is introduced that allows to uniquely define the spa-
tial texture Jacobian within the one-dimensional subspace (see also figure 3.2).
For this purpose, a basic property of full perspective projection is used. For
every y € IR?, the derivative of perspective projection spans a two-dimensional
space orthogonal to the line of sight y, that is

Iyp(y) y=0. (3.29)

This fact leads to the last, dynamic constraint. Beforehand, the pose dependent
line of sight for the object point x is defined relative to the object frame reading

() = m N0, ) —x = — (Oem(x, 1) " m(x, @) . (3.30)
The orthogonality of the ray to the partial derivative dxp(m(x, p)) follows im-
mediately from equation 3.29 and 3.30.

Assertion 2 (Orthogonality with Line of Sight) Let x € X, I : R? —
R, and p € RS be given as in assertion 1.

The spatial texture derivative VIx () is orthogonal to the line of sight r ()
from the surface point to the optical centre:

ViIk(p) -rx(p) = 0.

Also this last assertion determines a plane constraining the surface texture
Jacobian. Obviously, the combination of all three planar constraints determines
the Jacobian uniquely. In a straightforward approach, the Jacobian can be
computed by setting up a linear equation system by the assertion 1 (corollaries 2
and 3) and the assertion 2. Hereafter however, a computationally more efficient
solution is proposed.

By merging the constraints of corollary 2 and assertion 2 the spatial texture
Jacobian is defined up to scale, namely VIx(p) || ox X rx(p). The combination
with the corollary 3 then allows to map the current spatial texture derivative
step by step

oo V() ds
; Vix(p) dx

Vojx(ou) dy (0x X rx(p)) nan (3.32)

VI (@) ngnk (3.31)
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Figure 3.2: Illustration of the image-constancy constraints in 3-d for a surface
point x, surface normal ny, spatial surface texture gradient gx, and viewing
vector r« (). Top left: stationary constraints represented in corollaries 1 and 2.
Top right: dynamic constraint expressed in assertion 2. Bottom: combination
of stationary and dynamic constraints.

into a term independent of the current image derivative. Note, that the fraction

T
% corresponds to the tangent of the angle enclosing the spatial texture
derivative and the surface texture gradient. The expression is further simplified

taking the orthonormality of ny, ox, dyx into account and finally reads

T
X dx

Vik(p) nxnz = — VOIX(O[I,) dx%ng . (3.33)
rx(p)” ny

Thus by computing the line of sight r«(p) to the surface point in question, the
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current spatial image derivative

T
Vik(p) = V() (]1 — nxny — I.X(M)dedxng> (3.34)

rx(p) nx

can be expressed in terms of the spatial derivative of the reference image times
a factor related to the imaging geometry.

3.2.4 Tracking with the Image-Constancy Assumption (IC)

The relationship established in the previous section between the spatial texture
derivative in two arbitrary views allows to predict the spatial Jacobian for any
object pose given the spatial Jacobian in the reference image [121]. In order
to track the object in a sequence of camera images by means of a maximum
likelihood estimator, the spatial Jacobian VIx () has to be transformed to the
current pose Jacobian 0y Ix(p). The overall efficiency depends thus not only on
the prediction of the spatial Jacobian but also on the subsequent transformation
to the motion Jacobian.

Here, the choice of the motion reference frame determines the computa-
tional efficiency of the approach. By definition, the spatial derivatives analysed
in detail in the previous section refer to texture variation for unconstrained
translation of the surface point in the object coordinate frame. By virtue of its
definition, the spatial derivative points in the direction of highest change of the
intensity value. These derivatives are finally mapped to motion derivatives via
the motion field, which describes the motion of all single surface points under
variation of pose. Since the spatial derivatives are computed with respect to
the object coordinate frame, it is most convenient to refer pose variations to
the same coordinate frame. The motion field is constant if the reference frame
of section 3.1.1 is set to the moving object frame.

Thus, the objective function for a maximum likelihood estimator is set up
for the moving reference frame. Here, the overall motion is considered as a
composition of two nested motions, the previous motion estimate gt and a small
variation in motion du. Herewith, the formerly defined objective function 3.18
is reformulated to

O6p) = > (L(froop) — L (%w))* . (3.35)

xeX

This objective function is minimised with a Gauss-Newton approximation to
the Hessian. The corresponding linear equation system

D Ooulxlivo o) Dslulfvo o) o= (3.36)
xeX -

Z 86;1,Ix(ll 0 5“)T‘
xeX

=0 (Ix(ﬂ) - OIX (OFL))

is repeatedly solved at the moving pose estimates fi for the pose variation 5;u.
The estimated variation dp is successively combined with the motion estimate f
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to a new pose estimate according to the directives for moving reference frames of
section 3.1.1. Hence, dpu = 0 at the beginning of each iteration, which conforms
with the identity transform.

The derivatives with respect to the pose variation du for the moving refer-
ence frame is composed of the spatial derivatives VIx(fx) and the motion field
Ospum(x, o) according to the chain rules of derivation, reading

D5 L (j 0 1) ‘ = VI (f1) - Dsam(x, 54s) . (3.37)
dpu=0 ou=0
With the relationship established in equation 3.34 this Jacobian is approximated
for a pose f1 close to the true pose u* by

D5 L (ju 0 1) ‘5“:0 ~ (3.38)

A

X dX
VOIX(O/J,) (]1 —nyn, — r(lf)denE> Ospm(x,0p) S0

rx (1) ny
The expression can be efficiently computed since only the ray rx(ft) depends
on the current pose estimate and all other terms can be computed a priori. In
detail, the motion Jacobian is composed of two terms. One term specifies the
motion Jacobian for a perpendicular view on the surface point x, reading

Oy = VUx(p) (1 - nxny, ) s m(X, Spt) ‘ (3.39)

6u:0'
The other term refers to the component of the motion Jacobian in normal
direction. The direction of this component is hereafter referred to by

0f = —VU(W) (dxnl) dsyum(x, 1) | (3.40)

5u=0.
Both 6-dimensional vectors 2, and €2 are constant for each model point x and
can be easily computed off-line. At runtime, they are merged to the motion
Jacobian at a specific pose estimate fi according to

- \T

r d

Dol (fr o 5pa) ~ Qx + &TX Q. (3.41)
5p=0 rx(ft)” nx

The number of floating point operations for the computation of the texture

Jacobian as shown in Table 3.2 are thus substantially reduced compared to the

straight forward computation reported in Table 3.1.

! [ #fp mult. #fp add. |
| Osulx(podpw) | 13 10 |

Table 3.2: Number of floating point operations employed for the prediction of
the Jacobian for a single 3-d model point under the image-constancy assump-
tion.
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3.2.5 Tracking with the Relaxed Image-Constancy Assumption
(IC-R)

Prediction of the view-dependent motion Jacobian with the image-constancy
assumption in 3-d reduces the computational efficiency of maximum likelihood
estimation considerably. Minimisation by means of the Newton algorithm, how-
ever, leaves room for further improvements. So, the Gauss-Newton approxima-
tion of the Hessian requires 21N floating point multiplications and 21(N — 1)
additions.

The computational efforts can be further reduced by assuming that the mo-
tion Jacobian remains constant over changes in view [125]. This functional
model represents an approximation and thus introduces an error in the estima-
tion process [121].

The error by the motion Jacobian is traced back to the difference between
the true spatial Jacobian and the constant spatial Jacobian of the reference
view. The difference, as described in equation 3.27, is most easily quantified
for points x € X where the line of sight is perpendicular to the surface in
the reference view, that is V %, (O,u) -nyx = 0. Then the difference is entirely
expressed by the component of the true spatial Jacobian in normal direction,
that is

|VIc(p*) = VU (%) || = [VIk(p*)nx| & () xne=0. (3.42)

According to equation 3.33 the true spatial Jacobian can be expressed by the
reference Jacobian and thus its Euclidean norm is rewritten as

X 07 (0 ry(p) " dy
|fo(u )nx’ = ‘V Ix( N) dx‘ o \T (3'43)
rx(p*) " ny
Now, let « denote the angle between the surface normal and the projection of
*\T
the line of sight on the plane ny X dx, and accordingly tan(a) = %

With this substitution at hand and with the initial assumption V I (Ou) ‘ny =0
equivalent to V Iy (Ou) || dx, equation 3.42 is rewritten as

[VIx(p*) = VU () || = ||V (p) || tan(e) < rx(w) xne =0. (3.44)

It can be easily inferred that the residuum grows as the line of sight approaches
the direction dy of the surface texture gradient.

For moderate differences between the angle in the current view and the
reference view the residual can be neglected and the spatial derivative reduces
to

Vik(p) ~ VI (p) , x€X. (3.45)

This approximation corresponds to the derivative of a relaxed image-constancy
assumption in 3-d that reads

Iy(p) = OIy(Op,) , Y€ U B,Y(X,IR3) (3.46)
xXEX
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in a y-neighbourhood of the surface X. Here, relaxed refers to constancy and
not to assumption. The approximation 3.45 simplifies the image Jacobian 3.36
at op =0 to

Osplx(froop) ~ VO (%) - Ospmi(x, 5 p) ‘ . (3.47)
Sp=0 dp=0
Hence, the image Jacobian and Hessian are constant in the framework of the
relaxed image-constancy assumption (cf. [120]).

Consequently, at runtime only a minimal set of calculations is required for
the Newton algorithm. First, the residual Iy (f1) — %I« (Ou) between the current
and reference texture is computed. This residual is mapped thereafter to the
motion templates represented by the constant image Jacobian 85”01,( (Ou e (5u)
at o = 0. Finally, the linear equation system is solved for the pose variation
.

Note that the estimation of motion between two iterations of the Newton
algorithm is a process integrating contributions from all points of the surface
model. Thus, the error on the direction of the spatial derivative for a single
surface point is alleviated if texture gradient directions are uniformly distributed
on the surface.

3.3 Multi-Hypotheses Tracking

The robustness of tracking by means of maximum likelihood estimation as pre-
sented in the previous sections depends among other things on the speed and
the region of convergence of the applied minimisation algorithm. Because of the
ragged nature of the likelihood function, the minimisation process starting from
a single pose hypothesis is prone to get caught in a local minimum representing
a wrong pose estimate.

In order to increase robustness, prior information on the motion dynamics
can be added to the estimation process. Here, Kalman filters are well known
representatives of single-hypothesis trackers incorporating constraints imposed
by an a priori known motion model. The specific approaches of Kalman Filter
(KF) or Extended Kalman Filters (EKF), however, are not feasible here because
of the high dimensionality of the image Jacobian.

Another possibility to reduce the risk for local minima is to evaluate multi-
ple pose hypotheses at once. These samples are optimally distributed given the
model of dynamics, the complete history of observations, and knowledge of the
initial pose. Systematic sampling is accomplished by Monte-Carlo methods,
which approximate an arbitrary continuous probability density with a finite
set of such samples. Thus, Monte-Carlo methods can handle not only Gaus-
sian distributions as assumed in Kalman filtering but also general uni-modal
or multi-modal distributions that cannot be modelled analytically. The model
of dynamics, which constrains the state space over time, is assumed here as
dependent on only a pair of successive states. Thus, propagation of state distri-
butions from one observation to the following is reduced to Markov-Chain rules.
The combination of the observation model presented in section 3.1.3 with a sim-
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ple model of motion dynamics allows to devise a Markov-Chain Monte-Carlo
(MCMC) method for appearance-based object tracking in 6 DoF.

3.3.1 Markov-Chain Monte-Carlo Methods

The concept of sampling from a continuous probability distribution and tracking
the distribution represented through the samples over time has been developed
separately by researches in different contexts. In the community of probabilistic
inference these approaches are referred to as Markov-Chain Monte-Carlo Meth-
ods. These methods represent the dynamics in Bayesian filters with a finite
set of samples of the continuous state and have been intensively studied in the
past century. Markov-Chain Monte-Carlo Methods have their counterparts in
computer vision, where they are called Particle Filters. Isard and Blake [70] in-
troduced Particle Filters to the vision community with the CONDENSATION
algorithm in 1998. Like bootstrap filters this type of particle filter uses a special
strategy for sampling from the posterior distribution.

The following outlines Bayesian filtering as the theoretical background of
Markov-Chain Monte-Carlo methods for continuous probability densities. Sub-
sequently, the major strategies for sampling from the densities are mentioned.
See [5] for more details on the topic.

Bayesian Filter

Bayesian filters offer a methodology for recursively computing a posterior prob-
ability density function (pdf) based on a previous density function.

Let x5 be the unobservable and thus hidden multi-dimensional state of a
stochastic system at time k € IN.The corresponding multi-dimensional observa-
tion for the same time instant is denoted by z; while the set of all observations
up to time k is given by zq.,. The probability density function in question is
p(Xk|z1.1) for state xj given the current measurement together with all previous
measurements zj.x.

The link from a previous density function to the posterior probability density
function is established in two stages. The first stage involves the prediction of
state xj, based on the pdf p(xy|xx—_1) describing the system dynamics. Given the
Markov assumption, the transition probability from all states and observations
up to time k — 1 to the next state x; depends only on the previous state
Xk—_1, hence p(xg|X1.5—1,21:k—1) =~ p(Xg|Xxx—1). The probability for the current
state x; given the previous observations is then obtained with the Chapman-
Kolmogorov equation

P(Xk|Z1:k—1) = /p(Xk|Xk1)p(Xk1!ZLk1)ka1 . (3.48)

In the second stage, the current observation z; is used to update the predicted

density function to the posterior pdf. Following Bayes’ rule, the posterior pdf

is expressed by

p(zx|xk) p(Xk|Z1:1-1)
P(Zk|Z1:6-1)

p(xk|z1:k) = : (3.49)
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which comprises the probability p(zx|xx) of the current observation given the
current state x; and the normalisation constant p(zg|z1x-1) = [ p(zk|xk) -
P(Xk|Z1k-1) dXp.

The model employed in the Bayesian filter is a hidden Markov model (HMM)
with the transition probability p(xi|xx—_1) and observation probability p(zg|xx)-

Sequential Importance Sampling (SIS)

In general, the above recursive propagation of the posterior density cannot be
solved analytically. Therefore, sampling techniques are employed to approxi-
mate the continuous density function by a set of random samples of the hidden
state. In the following, sequential importance sampling is presented as a com-
mon basis for many Monte-Carlo filters.

Let a sample xq.;, represent the history of all states up to time k including
the initial state xo In the simulation, the posterior pdf is characterised by

the set {(XOk,wk )i = 1,2,...,°N} consisting of the samples x(()}g and the

corresponding weights w,(C)

by

. The continuous posterior density is approximated

p(X0:k|2Z1:) Zw (X(]k —X((fi;) ) (3.50)

whereas 0 < wg) and ), w,(;) = 1. The representation strongly relies on the
choice of the samples also called particles. Since sample states xg.; cannot
be drawn from the yet unknown pdf p(x.x|z1.x) an auxiliary and yet to be
defined distribution q(x.x|z1.x) known as importance density is used instead.

So, X[()Z)k ~ q(x0.x|21.x) while the weights are defined up to proportionality by

w® ol (X%zl:’“)
w,’ X q<x(()’;)k‘zl:k) . (3.51)

This principle is called importance sampling and forms the basis for a recur-
rent description of the weights and thus also of the posterior density. Gener-
ally, arbitrary importance densities can be used whereas p(xg.x|z1.x) # 0 =
q(x0:x|2z1.x) # 0. However, the better the chosen importance density resembles
the unknown pdf p(xg.x|z1.x) the less samples have to be drawn to obtain a
good approximation of the unknown pdf.

Moreover, a wisely chosen importance density eases the simulation of the
process. For instance, the equation 3.51 can be transformed into a more conve-
nient expression if the importance density is selected such that it factorises to
the form

q(X0:6|21:6) = ¢(Xk|X0:6—1, Z1:) ¢(X0:k—1]Z1:k—1) - (3.52)

Given the Markovian assumption, the posterior density can be described up to
proportionality by

P(X0:k|Z1:8) < p(Zk|Xk) P(XK|XK—1) D(X0:6—1|Z1:6—1) (3.53)
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which reflects the stages of prediction 3.48 and update 3.49 as described in the
above subsection. Refer to [5] for a detailed derivation of the expressions. In
conjunction with the factorisation 3.52, the computation of weights 3.51 can be
transformed into the recursive expression given by

W @ 7P (Z’f’xi(:)> p (Xl(:)‘xl(fizl)

P X k-1 (i) @
q\ Xy ‘Xo;kflvzlzk’

The Markovian assumption simplifies the expressions further. The history
of states is sufficiently represented by the current state xj, which, in turn,
depends only on the previous state x;_; and the current measurement zj.
Hence, the set {(X&L,wg))ﬁ =1,2,...,°N} can be replaced by {(x,(;), w,(;))|i =
1,2,...,5N}. Accordingly, samples are drawn from the single state importance
density q(xg|x0.x—1,21.x) instead of q(xg.x|Z1.x), which eventually simplifies to
q(Xk[Xp—1,2).

(3.54)

Sampling Importance Resampling (SIR)

The SIS particle filters as described above suffer from the degeneration of the set
of samples, which occurs when the particles are spread over the state space and
exhibit insignificant weights except for one state. This problem can be solved
in two ways. The first possibility consists in altering the importance density to
condition the compactness of the samples. The second optimisation involves a
resampling stage where the particles are not drawn from the importance density
distribution but from the approximated posterior distribution itself.

Both optimisations are considered by the method of sampling importance
resampling with simple choices for the importance density and the resampling
stage. The importance density q(xg|Xi_1,2k) is set to the prediction density
p(Xg|Xk—1), which simplifies the computation of the weight to

w,(:) x w,(ﬁlp(zk\ng)) . (3.55)
In the resampling stage a new set {x,(ﬁ)lh =1,2,...,5N} is generated by draw-

ing samples from the approximated posterior density function 3.50, which en-

(ix) (4) ) (4) (2)

sures that p(xk_1 =X, ., ) = w;”,. Thereafter, the weights w,”, are reset to

1/°N since the density of the states represents already the desired distribution.
Therefore, the computation of new weights simplifies further to

w,(j*) x p(zk|x,(j*)) . (3.56)

However, the above choices for the importance density and the re-sampling
exhibit some drawbacks. The prediction with the density p(xx|xr—1) neglects
the current observation and thus the state space will not be efficiently explored.
Furthermore, the set of particles might quickly loose diversity because the par-
ticles are re-sampled from a discrete distribution rather than from a continuous
distribution. Nevertheless, these weaknesses are compensated by the simplicity
of the importance density responsible for sampling prominent states.
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3.3.2 Monte-Carlo Based Shape-Texture Tracking

Up to now, Markov-Chain Monte-Carlo methods have been used in computer
vision mainly for the purpose of tracking contours in the image. The state
space for such applications is usually the parameter space of snakes describing
the object contours whereas the observation is given by intensity gradients or
texture gradients on selected intervals along the contour.

In the following, a Markov-Chain Monte-Carlo method for shape-texture
based tracking in 6 DoF is presented [123, 56] that does not rely on features in
the image such as edges or corners, i.e. the contour. Conforming to subsection
3.1.3, the object is tracked instead by a set of unordered 3-d points

X = {Xl,Xg, ..,XN} C IR3 . (365)

These points are again characterised by their associated grey values %Iy, x € X,
leading to a textured 3-d model of the object. Overall, °T = (°I,, L,, ..., %x,)
refers to the reference texture of the model. The reference texture is gathered
from any view on the object with known or manually registered object-to-
camera pose following the rule established in equation 3.16.

The continuous state of the Monte-Carlo approach is the 6-DoF pose p €
IR® of the object relative to the camera consisting of three translational and
three rotational parameters as pointed out in subsection 3.1.1. The object pose
changes over time as the object moves relative to the camera. Generally, the
probability of transition from a specific pose to another is a priori unknown.
In particular, neither object masses nor forces or torques applied to move the
object are assumed to be known. Hence, the trajectory of the object cannot be
physically predicted.

In consequence, the process noise is designed here to account for the un-
known system dynamics. The process resembles simulated annealing explo-
ration of the pose space as motivated in [47]. Hence, for a single observation
multiple iterations k of a diffusion process are realised with

i1 = pg 0" Vi, Vi ~ N(0,5y) (3.66)

where NV (0, Xy) represents the white normal process noise with covariance ma-
trix Xy and 0 < b < 1 denotes the base of the decay term. In terms of the
prediction or transition probability density this means

1
P(tg1py) o exp <—2bk (1 — 1) " Sy (Bgr — Nk)) : (3.67)

This simplistic model neglects possible hidden states such as velocity or accel-
eration of the object. However, it allows to use the model not only for pose
prediction between two frames but also for the iterative re-evaluation of the set
of particles for the same observation. According to the rules of sampling impor-
tance resampling, a previous distribution of object poses is propagated to a new
distribution via the prediction density. The resulting distribution is updated
thereafter to the posterior pdf p(uk il ) given the current observation I. The
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weights for the particle poses are updated within the annealed Monte-Carlo
simulation according to the observation probability density

(M) = o (5o M) = 1)) . 369

which conforms to the pdf 3.17 defined in section 3.1.3. In this expression,
I(pyy1) represents the vector of texture values for the image I and the pose
My at iteration k£ + 1 computed according to equation 3.15.

Within the Monte-Carlo simulation, the set {(ug),w,(;))ﬁ =1,2,...,5N}
contains the pose hypotheses and the corresponding weights, i.e., the corre-
sponding likelihood, at the current time instant ¢. Typically, only a single
representative pose is condensed from this simulated distribution and passed to
an application, e.g., robot control. A reasonable estimate f1;, is determined
here by the particle with the highest weight

Pl = ,u,EQl , J = argmax w,(:j_l : (3.69)
(2
Hence, this Particle Filtering process aims at maximising the likelihood L(f) of

the pose estimate fi for the current observation I. See figure 3.3 for a summary
of the algorithm.
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For any iteration k& > 0 process the particle set {(p,,(f) ,w,(:))\z' =
1,2,...,°N}

1. Resampling
Based on the discrete distribution of the current particle weights

Wi =Y w), 1<j<N (3.57)

Sample state u’,(;) for all i € {1,2,...,°N}
(a) Draw a uniformly distributed random number
r U0, Wiy (3.58)
(b) Determine state u’,(f) = ug) with

I =min{j | r'Y < Wy} (3.59)

2. Prediction ‘
For all re-sampled states u’,(;), ie{l,2,...,°N}

(a) Draw a normally distributed white noise vector
v~ N(0,y) (3.60)
(b) Propagate the state according to the process model
pl) =V o v? D 0<b<t (3.61)

3. Observation A
For all new states ;L,(;J)rl, ie€{1,2,..,°N}

(a) Determine weight based on the current observation
'y =p(1lng),) (3.62)
(b) Normalise the new weights

(i) 1 10
Wi = oy —w'p (3.63)
2j=1 w/é]ll

4. Extraction
Determine the most probable state

Ppr1 = “1?4)-1 , J = argmax w,&)rl . (3.64)
(]

Figure 3.3: Shape-Texture based annealed Particle Filtering algorithm.
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3.4 Evaluation

In the following, the tracking methods described in sections 3.2 and 3.3 are
empirically evaluated and compared under both non real-time and real-time
conditions. The performance of a method is determined first by its general
ability to correctly estimate the object pose in relation to the inaccuracy of
the initial pose estimate. Subsequently, these results are re-interpreted taking
the computational costs into account. Hence, the methods are assessed in the
end with respect to real-time conditions of limited computational resources and
rotational and translational object velocities (subsection 3.4.4).

The performance evaluation is preceeded by the description of the objects
to be tracked (subsection 3.4.1) and the description of the setup used for the
evaluation (subsection 3.4.2). These subsections exemplify the processes of
model acquisition and data representation. Furthermore, the objective function,
the prediction the motion Jacobian, and the computational costs are evaluated
in order to illustrate the properties of the methods presented in this chapter
(subsection 3.4.3).

3.4.1 Model Acquisition and Representation

Three objects with distinct shape characteristics are used as a test set, namely
a box, a bottle, and a sculpture. Surface parts are manually identified that are
not subject to self-occlusion and that are characteristic for the object. These
parts, as sketched in figures 3.4, 3.5, and 3.6, are of different sizes and exhibit a
variety of shapes: a piecewise planar shape (box), a cylindrical shape (bottle),
and a free-form shape (sculpture).

Figure 3.4: The three-dimensional point-set model of a rectangular edge of size
100mm x 100mm x 90 mm. From left to right: lateral, frontal, and top view.

The surfaces are sampled individually in regular steps of 2mm (box), 1 mm
(bottle), and approximately 2mm (sculpture), leading to surface models of
4947 (box), 3721 (bottle), and 3790 (sculpture) 3-d points. While the former
two shapes are sampled based on analytic surface descriptions, the latter shape
is digitised with a robot-guided rotating laser-scanner [135, 19].

The last step in model acquisition consists in the registration of the 3-d
point model with a single view referred to as the reference view. This view is
chosen to correspond to a central view with respect to the encountered camera-
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Figure 3.5: The three-dimensional point-set model of a 74° section of a cylinder
of radius 46 mm and height 60 mm. From left to right: lateral, frontal, and top
view.

Figure 3.6: The three-dimensional point-set model of a sculpture with an ap-
proximate size of 65 mm x 83 mm x 29 mm. From left to right: lateral, frontal,
and top view.

to-object poses. Figure 3.7 displays the reference images taken at these poses
for the objects in question.

For the objects with an analytic surface description (box and bottle), the
registration of the 3-d model with the camera image is performed manually. In
this process, the image coordinates of a few surface points are manually deter-
mined. Thereafter, the corresponding 6-DoF object pose is estimated through
non-linear optimisation of the projection error for these surface points. For the
object digitised with the robot-guided laser-scanner (sculpture), the registration
of the 3-d model with an eye-in-hand camera is implicitly given by an off-line

Figure 3.7: Reference images for shape-texture based object tracking. Left: box
at 0.415m distance. Centre: bottle at 0.31m. Right: sculpture at 0.315m.
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hand-eye calibration performed with appropriate tools [122, 134]. Eventually,
both registration processes yield a textured three-dimensional point cloud as an
object model. Figure 3.8 sketches the steps in the registration process, whereas
figure 3.9 shows the obtained textured models.

image

intrinsic
camera
parameters

i
il
textured
shape model

object pose
parameters

shape model

Figure 3.8: Registration of the image data with the shape model to generate a
textured 3-d model of a real box object.

Figure 3.9: Textured shape models. Left: 3-d edge. Centre: 3-d cylinder.
Right: 3-d face.

3.4.2 Data Acquisition

Grey-valued image data is acquired with a progressive scan camera at a res-
olution of 780x580 pixels and a lense aperture of 56° x 43°. The number of
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pictures taken and the poses chosen for this purpose aim at efficiently sampling
the space of object appearances.

For this purpose, 7 orientations and 8 positions of the object are identified
relative to the camera viewpoint. The mentioned orientations comprise a +25°
rotation about the x-axis, a £15° rotation about the y-axis, and a £40° rotation
around the z-axis. The object positions are chosen to span an obelisk-shaped
volume of depth 250 mm and a frontal plane of size 112 mmx68 mm parallel
to the camera at a distance of 310 mm. From the camera point of view, the
vertices of the obelisk (the 8 positions) project to the upper left (2nd) quadrant
of the image plane. Positions in only one quadrant are chosen because symmet-
ric appearance distortions are expected at counterpart positions in the other
quadrants.

These orientations and positions are finally combined with each other, yield-
ing a total of 56 different object poses. Figure 3.10 sketches the different object
poses employed for image acquisition. In order to guarantee the repeatability
of these poses for all three objects, the camera is mounted on a robot. An off-
line eye-in-hand camera calibration together with an initial object-to-camera
registration allow for the robot to realise the desired object poses relative to
the camera.

object-to-camera poses camera-to-object poses
% é _~ camera
AN A ; % camera
% ’ frames
object
frames s e

object

Figure 3.10: Poses for the acquisition of 56 test images. Left: object-to-camera
poses. Right: camera-to-object poses.

3.4.3 Properties of the Objective Function and the Minimisa-
tion Methods

The objective function 3.35 is inspected for one camera-to-object configuration
(see figure 3.11) prior to the identification of radius and speed of convergence.
Here, the box object is chosen, with its texture exhibiting high frequency com-
ponents. This property is reflected in the objective function 3.35 by a narrow
valley and fast modulations apart from the global minimum (see figure 3.11). In
a real-world scenario, initial pose estimates may differ from the ground-truth in



64 CHAPTER 3. SHAPE-TEXTURE BASED TRACKING

more than two parameters. Thus, the objective function is expected to actually
vary more rapidly than suggested by figure 3.11.

Vo
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Figure 3.11: Mean squared error (MSE) for motion of the box around the
reference pose (46°,—1°,—179° 2 mm,—2mm,—416 mm). Left: rotation. Right:
translation. From top to bottom: with respect to the axes x-y, x-z, and y-z.

Three methods of single-hypothesis tracking have been identified in section
3.2 that minimise the objective function 3.35 and hence, maximise the likelihood
function 3.17. These methods are based on the motion Jacobian 0s,Jx (ft o o)
at du = 0, which, in turn, depends on the spatial Jacobian VIx(f). Figure
3.12 illustrates the motion Jacobian showing positive (blue) and negative (red)
changes on the assumed surface intensity under pose variation. The arrows
indicate the expected optical flow for the surface point projections under pose
variation.

Differences between the single-hypothesis methods are best seen in the dif-
ferent assumptions about the motion Jacobian and the expected optical flow.
The Jacobian and the corresponding optical flow can vary significantly from
view to view, as exemplified in the left and central pictures of figure 3.13.
Accordingly, the assumption of a constant Jacobian (cf. section 3.2.5) leads to
significant local errors in these cases. By contrast, the prediction of the Ja-
cobian (cf. section 3.2.4) shows negligible differences w.r.t. the true Jacobian
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L
dele

Figure 3.12: Motion Jacobians at the reference pose for rotations (top) and
translation (bottom) with respect to the x, y, and z axis (from left to right).
Colours illustrate positive (blue) and negative (red) changes while arrows indi-
cate the optical flow for selected model points.

Figure 3.13: Motion Jacobians for rotation around the x-axis computed at
the reference pose (left) and at an alternative pose (middle), and the residual
between the true Jacobian and its prediction (right).

(compare central and right picture of figure 3.13).

The convergence speed for single-hypothesis methods as well as for the pre-
sented multi-hypotheses method does not only depend on the correctness of the
underlying assumptions, but also on the computational costs associated with a
single iteration of the optimisation method. Table 3.3 reports the averaged time
measurements for each method. The computational advantage of predicting the
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motion Jacobian (GN-IC, cf. section 3.2.4) instead of computing the derivatives
for the current image (GN, cf. section 3.2.1) becomes evident. Further compu-
tational improvements are possible assuming a constant Jacobian (GN-IC-R,
cf. section 3.2.5). The measurements also show the computational complexity
of the multi-hypotheses approach (MCMC, cf. section 3.3.2) for fully-sampled
surface models.

H P-4 2.4 GHz Xeon 2.8 GHz P-D 2.8 GHz Core2 2.4 GHz

GN 4675 3785 3608 2389
GN-IC 1100 954 795 515
GN-IC-R 776 661 668 414
MCMC 528851 477657 433846 310575

Table 3.3: Computational costs (time [us]/iteration) for single-hypothesis (GN,
GN-IC, GN-IC-R) and multi-hypotheses (MCMC) approaches. The measure-
ments are performed on Intel-CPU based platforms consistently with 3720 sur-
face model points and 1000 particles in case of the multi-hypotheses approach.

3.4.4 Convergence Properties of the Estimator

Although the methods presented in this chapter aim at tracking objects in
consecutive images, no image sequence is actually grabbed for the experiments
in this section. Indeed, the ability to track the object pose through a sequence
of images without any assumptions on object motion is determined effectively
by the region and speed of convergence.

These properties are determined empirically for all of the identified single-
hypothesis and multi-hypotheses methods with respect to 56 different viewing
poses. For all views, first estimates of the ground-truth object-to-camera poses
are obtained with a 6-DoF registration of the object and the camera in the
reference view, and the known poses of the robot. The estimates are refined by
maximising the log-likelihood of equation 3.18 with the standard Gauss-Newton
(GN) approach for the textured model obtained from the reference view.

The convergence behaviour of the methods is identified by repeatedly per-
forming the estimation procedure for increasing offsets in rotation and trans-
lation with respect to the ground-truth pose. The approach differs from a
Monte-Carlo simulation by the systematical variation of the offsets in order to
gain specific information about both the speed and range of convergence.

In particular, three offsets are considered: an offset in rotation along an
arbitrary axis of rotation, an offset in translation in the x/y-plane, and an
offset in translation along the camera z-axis. The initial object-to-camera pose
is set up as a combination of a specific offset in one of the mentioned components
and normally distributed errors in the other respective components.

Figures 3.14 and 3.15 report the range of convergence obtained for the bottle,
box, and sculpture object. In addition, figure 3.14 exemplifies the speed of
convergence for the former object. For each of the 56 views, 50 samples are
randomly drawn for each specific offset in rotation or translation. Hence, both
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the probability of convergence and the speed of convergence are estimated from
as many as 2800 trials for each specific offset. The former statistics expresses the
relative frequency of the final estimate lying within a certain ellipsoid around
the ground-truth pose. The latter statistics reports the average number of
iterations employed by the approach to reach this particular accuracy.
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Figure 3.14: Convergence performance for the bottle object. Left: Convergence
probability as a function of the initial pose offsets. Right: Speed of convergence
measured in iterations.

In these experiments, 100 iterations are allotted to everyone of the single-
hypothesis methods. However, multi-hypotheses tracking by means of the
Markov-Chain Monte-Carlo algorithm is optimised with regard to execution
time in order to equalise the computational resources spent for each trial. Ac-
cordingly, 100 iterations of the annealed Markov-Chain Monte-Carlo method
are used for the bottle and sculpture objects, while 140 iterations are allot-
ted for the box object. In order to reduce computational time, the surface
point-models are sub-sampled by a factor of 40-50 and the number of parti-
cles is limited to 300. A convergence threshold higher than the one used for
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the single-hypothesis methods is granted to this approach due to its stochastic
nature.

The evaluation of the experiments reported in figures 3.14 and 3.15 show
that the GN-IC algorithm outperforms the GN-IC-R algorithm in terms of con-
vergence radius. The non-optimised Gauss-Newton (GN) approach exhibits
typically an even bigger range of convergence, because it considers the current
image for the computation of the Jacobian. The Markov-Chain Monte-Carlo
algorithm (MCMC) shows the biggest range of convergence toward the correct
pose. If the performance is measured in number of iterations needed for con-
vergence, then the non-optimised Gauss-Newton (GN) approach outperforms
all other algorithms.
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Figure 3.15: Convergence probability as a function of the initial pose offsets for
the box object (left) and the sculpture object (right).

The evaluation, however, does not reflect equal estimation accuracies be-
cause of the particular threshold granted to the Markov-Chain Monte-Carlo
algorithm. This method exhibits higher inaccuracies in the final estimates
compared to the single-hypothesis methods as exemplified in figure 3.16. In
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the diagrams, the pose error is equal to 0.5 5[] + 0.5 Sfmm] ) whereas

At denotes the translation vector and Ar specifies the rotation angle of the
angle axis representation of the differential transformation.
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Figure 3.16: Distribution of pose errors for the bottle object. Initial distribution
(top), final estimation accuracy for the Gauss-Newton algorithm (lower left),
and final accuracies for the annealed Monte-Carlo method (lower right). Note
the different scalings on the abscissas. See text for further details.

The ranking of convergence performance changes significantly if the rota-
tional and translational offsets are re-interpreted with respect to the individual
processing times. Accordingly, the offsets represent displacements obtained for
specific object velocities within the processing period allotted to a particular
method. The convergence probabilities for the respective object velocities are
shown in figures 3.17 and 3.18. In these figures, the processing times are calcu-
lated for 100 (140) iterations of the methods on a Pentium 4 processor at 2.4
GHz (see table 3.3). Tracking with the image-constancy assumption (GN-IC)
and the relaxed image-constancy assumption (GN-IC-R) outperform the other
methods with respect to the supported speed of object motion in the cases of
the bottle and box objects. In terms of the average amount of time needed for
convergence to the right pose, tracking with the constant Jacobian (GN-IC-R)
yields the best results (see figure 3.17).

In spite of the increased robustness obtained by the prediction of the Ja-
cobian (GN-IC) with respect to the object velocity for the bottle and the box,
the experiments reveal a decreased performance for slow motion of the sculp-
ture object (figure 3.18). The loss in performance originates from the problems
of the algorithm to converge to the true pose for selected views of the setup
(figure 3.15). These failures result from violations of shape and texture assump-
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tions. The shape of the sculpture object is not perfectly known but measured.
Local inaccuracies can lead to significant deviations from the image-constancy
assumption in 3-d for out-of-plane rotations of the object with respect to the
camera. The resulting error affects the method twice, namely by the prediction
of the motion Jacobian and by non-vanishing residuals of the objective func-
tion. In addition, the surface of the sculpture violates the assumption on pure
Lambertian, i.e., diffuse, reflection, which accounts for additional deviations
from the image-constancy assumption.
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Figure 3.17: Real-time convergence performance for the bottle object on a P-
4 2.4 GHz computer. Left: Convergence probability with respect to object
velocity. Right: Speed of convergence measured in seconds.

In conclusion, the single-hypothesis methods based on the image-constancy
assumption (GN-IC) usually outperform the standard approach (GN) in the
most important category, namely the radius of convergence under real-time
constraints. Theoretically, the annealed Monte-Carlo method (MCMC) can
achieve unlimited radius of convergence if the computational costs are neglected.
In practice, however, the resources are limited and both the number of samples
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and the number of surface model points have to be reduced significantly. Hence,
the method does not obtain by far an accuracy as high as the one of the single-
hypothesis methods.
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Figure 3.18: Real-time convergence probability with respect to object veloc-
ity for the box object (left) and the sculpture object (right). The tests are
performed on a P-4 2.4 GHz computer.
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Object-Luminance Adaptation

Variants and invariants play important roles in computer vision. The appear-
ance of objects on the image plane vary with the pose of the observer, the
illumination conditions, the shape of the surface, and its reflectance proper-
ties. The task of object classification, for instance, is mainly interested in the
invariant properties among the class members, such as shape and reflectance
properties. The task of tracking objects in three dimensions, however, aims
especially at characteristics of the appearance that vary with the pose of the
object. Obviously, these variations are necessary in order to estimate the object
pose up to six degrees of freedom (DoF).

The consideration of all possible variations of appearance is usually pro-
hibitive for real-time applications. Hence, it is opportune to assume particular
properties to be constant, first and foremost, those attributes intrinsic to the
object. These attributes comprehend the object shape, which can be assumed
rigid, i.e., non deformable or articulated. Furthermore, intrinsic properties refer
to the reflectance characteristics of the object surface.

The reflectance characteristics determines how the light emitted by the sur-
face, termed object luminance or object radiance, relates to the light falling
on the surface, which is termed irradiance. In general, this characteristic is a
function of the direction and the power of incoming light, as well as the view-
ers direction as expressed by the bidirectional reflectance distribution function
[102]. This function has been established by the National Bureau of Standards!
and is not necessarily a priori known but can be assumed constant. Of course,
this is not a serious restriction of the possible set of objects since the vast ma-
jority of objects do not change their reflectance over a reasonable amount of
time.

Models in line with the bidirectional reflectance distribution function (BRDF)
are used in computer vision as well as in computer graphics. In order to gather

!standardisation authority of the USA
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the BRDF for a specific material, the reflectance has to be thoroughly measured
for possible illumination and viewing directions. No general analytic descrip-
tion of the BRDF exists and thus the function is usually approximated by a
basis function network. However, simplifications of the BRDF are possible for
several types of materials. The most important and widely used model is the
Lambertian reflectance model, which assumes perfect diffuse surfaces. In this
case, the surface radiance does not depend on the viewer direction but solely
on the angle of the incident light relative to the surface normal.

Given the rigidity assumption and the assumption of unknown but constant
reflectance characteristics, the remaining factors for the variations in the ap-
pearance are the pose of the observer, the illumination power and direction.
The changes in appearance due to a moving object or a moving camera are
considered in chapter 3. In that approach, the surface radiance is thought to
be independent of the object pose. This assumption is, however, only met if

1. the object has Lambertian reflectance properties and
2. the irradiance on the surface remains constant.

The latter is especially true if the object remains immobile and only the viewer
moves without casting shadows on the object. The assumption of constant ra-
diance is relaxed in the following to consider tracking of moving objects. Hence,
attention is payed to the variations of the appearance due to illumination.

In the following, three methods are presented, which handle the variations
in illumination [120] differently. None of these methods infers changes in ob-
ject or viewers pose from these variations. Rather, they counteract the ef-
fects attributed to changes in illumination. The methods are popular in the
computer-vision community and are adapted here to the shape-texture based
tracking approaches. Section 4.1 applies intensity normalisation to the surface
texture gathered in the current image. The next section 4.2 considers a method
that determines the linear texture subspace attributed to variation of illumina-
tion conditions. Finally, section 4.3 considers the template-update approach of
Matthews et al. [96], which is not tailored specifically to changes in illumination
but to all kinds of appearance changes.

4.1 Texture Normalisation

Generally, surface radiance is a non-linear function of light direction even in
the case of Lambertian surfaces. Let fx(6,1)) be the bidirectional reflectance
distribution function for a surface point x with the unit vector 8 of the incoming
light and the unit vector 1 of the reflected light (cf. [78]). The intensity 5Ly
measured for surface point x viewed from direction 1y is determined by

ST, — tc( /9 £ (0, 1) B (0) d@) (A1)

where SEy denotes the direction-dependent irradiance for surface point x, and
‘¢ : R — IR represents the camera transfer function. The latter reflects the
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typical saturation characteristic of the photosensitive sensor cells and possibly
an additional non-linear gamma correction?. The transfer function may also
vary over time ¢t when camera parameters, e.g., integration time (shutter) and
linear amplification (gain), are not kept constant.

Usually, the purpose of automatic shutter, brightness, and gain control is
to prevent the saturation of sensor cells and to guarantee good contrast in the
image. In theory, this control allows for compensation of brightness changes of
the tracked object. However, the control does neither operate individually on
a per-pixel or per-texel basis, nor on the basis of a distinct surface. Instead,
the control strategy refers to the image as a whole and hence is not suited for
tracking distinct objects in the scene.

The same functionality is provided by normalisation of brightness of a se-
lected pattern but with two important differences. First, the set of the observed
pixels can be arbitrary and possibly non contiguous. Second, brightness is not
adapted in a closed-loop control of shutter and gain but independently at each
time instant keeping overall shutter and gain parameters constant. Hence,
normalisation operates immediately without a tune-in phase but with the dis-
advantage that saturation or low contrast at sensor level cannot be prevented.
Two normalisation methods are described in the following (cf. [58]).

4.1.1 Intensity-Distribution Normalisation

This approach analyses the first order moment and the central second order
moment of the reference pattern and the current pattern for the surface X =

{x1,x%2,...,Xxy} computed respectively by
1 1
E() =+ Y Ic and D*(I) = ~ > (Ix - E@)? (4.2)
xeX xeX
for the surface texture I = (Ix,,Ix,,...,Ixy). Either the reference texture,

the current texture, or both of them are transformed so that subsequently all
textures coincide in their mean (first order moment) and standard deviation
(root of central second order moment).

The rule can be easily integrated into the shape-texture tracking methods
of section 3.1.3 thanks to the linearity of the transformation. Let ‘I(u) =
(T, (1) , Iy (1) , - - ., "Iy (1)) Tepresent the vector of texture values for the im-
age ‘I and the pose pu at time ¢ computed according to equation 3.15. The
augmented log-likelihood function with the transformation of the current tex-
ture then reads for the object pose u

In'L(p) = —|X|1In V270 (4.3)
1~ (DOCw) (o t 2
ot 3 (e )~ B(300) - O 3) - 131 )

2Gamma correction has been introduced on camera level to compensate for the non-linear
response of cathode ray tube (CRT) screens.
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This objective function is referred to as normalised, zero-mean SSD since it
considers both scaling of texture values and shifting the mean texture value to
Zero.

4.1.2 Intensity-Difference Normalisation

Intensity-distribution normalisation as described in the above section is closely
related to the linear brightness adaptation of Lucas and Kanade [91] given by

O(tu,'a,'v) = 3 (fa () + b~ *L)” . (4.4)
xeX

In contrast to the previous approach, scale and shift are considered free param-
eters and not bound to specific values a priori. Despite the resemblance of the
parameters ‘a and b to scale and shift of the normalised, zero-mean SSD, these
parameters do not necessarily match the corresponding terms at the overall
optimum of the above objective function. This follows from the fact that linear
brightness adaptation of Lucas and Kanade considers pattern differences, while
intensity-distribution normalisation considers each pattern separately. We shall
hence refer to the former as intensity-difference normalisation.

In practise, for the estimation of motion, intensity-distribution normalisa-
tion is preferred over intensity-difference normalisation because of its higher
robustness to badly aligned patterns.

4.2 Complementary-Subspace Mapping

In order to cope more accurately with possible intensity variation of single
surface points, the physical laws of light reflection measurement of equation
4.1 are elaborated in more detail before these findings are integrated into the
methods for shape-texture tracking.

4.2.1 TIllumination Subspace for Lambertian Surfaces

A preliminary and widespread assumption for the simplification of the light
reflection measurement models is the linearity of the camera transfer function.
More precisely, the transfer function  : IR — IR is thought to correspond to
the identity mapping, which leaves the reflected intensities unaltered.

The simplification of the surface radiance of equation 4.1 starts with the
irradiance. The amount of light falling on a surface depends on the inclination
of the surface with respect to the direction of illumination. Therefore, the
surface irradiance SEy for the surface point x and illumination direction 6 is
given by

SEx(0) = max(ny 0,0) - “Lx(0) , (4.5)

where ny represents the surface normal and 2Ly denotes the direction dependent
ambient radiance towards the surface. The non-linear function max truncates
incompatible illumination directions. The object irradiance is simplified consid-
ering only light sources at infinity and convex shaped objects. Hence, convex
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objects do not cast any shadow on themselves, and a single surface element
is illuminated by any light source it is facing. The radiance towards the ob-
ject is therefore considered global and identical for each surface point, that is
AL« (0) = AL(#). Accordingly, the surface luminance 5Ly for a surface point x
measured by the camera in direction 1» expands to

SLy = /0 fx(6,%x) - max(n6,0) - *L(6) db . (4.6)

The formula is further simplified by taking exclusively the diffuse reflection
characteristic of the surface into account. For Lambertian surface points the
above equation reduces to

SLy = /px . max(nze, 0) . AL(H) de (4.7)
0

where the bidirectional reflectance distribution function fx(6,1x) is replaced
by a single albedo value px. This equation shows to be the illumination model
intensively studied by Belhumeur and Kriegman [13] where the surface texture

SL = / max(B6 - 2L(6),0) df (4.8)
0

is expressed in vector form for the surface points X = {x1, X2, ...,xxy}, whereas
the product of surface albedo and normal is aggregated to the N x 3 matrix

T
pxl nX1

B | Pete | (4.9)
P By
The set of texture images that can be generated for any possible illumination
is a convex cone in R [13]. The cone is delimited by up to N extreme rays
depending on the number of non-parallel surface normals. These extreme rays
correspond to illumination conditions with at least one shadowed surface.

The generative formula for the surface texture becomes linear when the
shadowing configurations are not considered. Let s € IR? denote an arbitrary,
non-shadowing radiance direction and power, then the so-called illumination
subspace is given by

L£={’LPL =Bs,s € R} . (4.10)

The rank of the subspace depends on the rank of B, which, in turn, depends
on the shape of the object. Planar surfaces as well as cylindrical surfaces, for
instance, do not exhibit full rank, i.e., 3, but respectively rank 1 and 2.
According to Belhumeur and Kriegman, the basis for the illumination sub-
space is determined by gathering images of the object for at least 3 different
illumination directions that do not cast any shadows. The basis vectors are
identified by the left orthonormal vectors corresponding to the non-zero singu-
lar values of B. This basis suffices to synthesise any appearances of the Lam-
bertian surfaces not subject to shadows. Since the formulation of Equation 4.10
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does not consider specular reflections or shadowed configurations, more than
3 principal components of B are taken into account. However, any increase in
dimensionality affects complexity and efficiency of the involved methods.

In order to constrain the dimensionality of the illumination subspace to at
most 3, exclusively Lambertian reflectance characteristics are considered in the
following. A distinct approach is developed, which determines a basis for the
diffuse components of reflection even in the presence of partially specular surface
points. It allows for identification of the surface albedos that best describe the
approximated Lambertian surface.

In contrast to the work of Belhumeur et al. [13, 62], the three-dimensional
model of the object is given a priori. Obviously, this extra information helps
in the determination of the basis of the illumination subspace. Let M =
(nyx, , Nx,, ..,an)T be the matrix of surface normals. Then, B is defined by

B =diag(a) M, a= (px,,P xzs--->Pxn) (4.11)

where diag(a) represents the diagonal matrix of corresponding surface albedos.
Since the normals are known a priori, the problem of finding the basis of illumi-
nation subspace is reformulated to the task of ascertaining the surface albedo
and illumination direction. Given N textures {71 | j € 1,2,...,!N} of the
surface under different illumination, then the problem can be formulated as a
non-linear least-squares problem

iN
O(a,S) = Z |diag(a) Ms; —jIH2 , S=(s1,82,...,8iy) , (4.12)
j=1

which has to be solved for the vector of surface albedos a and the unknown
illumination directions S. The task can be accomplished by iteratively solv-
ing for the illumination directions and the surface albedos as described by the
algorithm in Figure 4.1. The basis of the illumination subspace is finally deter-
mined by the left orthogonal vectors Ug for the non-zero singular values of B,
obtained through a singular value decomposition

B=Ug -X5-V}. (4.16)

According to the definition of singular value decomposition, the diagonal matrix
Yp contains the singular values and (Ug)™(Ug) = 1, (V)T (Vp) = 1.

4.2.2 Shape-Texture Tracking in the Complementary Subspace

The integration of the illumination subspace into the approaches of shape-
texture tracking presented in chapter 3 implicates the substitution of the static
reference texture with an illumination-dependent texture. If any shadowing
effects are excluded or neglected, then any linear combination within the il-
lumination subspace produces a valid surface texture. Accordingly, the log-
likelihood function is augmented by the unknown overall illumination vector s
to

1
InL(p,s) = —|X|Inv2r0 — 7 11k — Bs|? , (4.17)
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Capture 'N images and sample corresponding
surface textures {11, 7q,..., 1NI}

Set initial albedo a «— 11

Do
Determine illumination direction and power
S = (Sl,SQ,.. . 7SN)
s; — argmin ||diag(a) Ms; — /1| (4.13)
Sj
Determine surface albedo a = (px,, Pxgs - - Pxy)
. N2
Px — argmmz (px (nzsj) — ]Ix) (4.14)

Px ]

Re-weight surface albedo

— —a (4.15)

Until convergence of O(a,S)

Figure 4.1: Iterative minimisation of the objective function 4.12 with respect
to illumination and surface albedo.

whereas I(p) = (Ix, (), Ixo () 5 - .., Ixy (1)) represents the vector of texture
values for the image I and the pose p computed according to equation 3.15.
Hager and Belhumeur [62] as well as Baker and Matthews [7] showed that the
dependency on the parameters of the linear subspace can be removed from the
sum-of-least-squares formulation if the explicit value of the parameters is not
requested. The corresponding objective function to be minimised for the un-
known pose p is constrained by the implicit texture solution in the illumination
subspace and corresponds to

_ 2
O(n) = H (11 — B (B™B) 1BT) I(u)H . (4.18)
In the following, the objective function is further simplified to

I (4.19)

O(p) = || (1 — UgUR) I(p)
using the singular value decomposition of B = Uy - ¥ - Vg. According to
the above equation, the squared Euclidean norm is only considered for the
components of the surface texture orthogonal to the illumination subspace.
Note that the reference texture used by Hager and Belhumeur [62] an Baker
and Matthews [7] is safely ignored in this formulation since it is supposed to lie
completely in the illumination subspace.
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The generation of an observation probability density function corresponding
to the (log-likelihood) objective function 4.19 is straight forward and allows for
shape-texture tracking with the annealed Monte-Carlo Method of section 3.3.
Tracking by local optimisation as described in section 3.2, however, deserves
further consideration.

Here, a pose estimate f1* is iteratively refined by Newton’s algorithm through
the repeated solution of a linear equation system for the pose variation du. In
case of the illumination subspace method, the equation system reads at the
current estimate [

~ T
Osul" - (1 — UpUg) - 91|, op = 951" |, (L — UpUg) 1l (4.20)
taking advantage of the idempotence of the projector, i.e.,
(1 - UsUE)" (1 - UpUE) = (1 - UpUE) . (4.21)

Recall that the efficient formulation of the motion Jacobian 0s,l is based on
the image constancy assumption in 3-d, which is now given by

Iy(p) = b)T,s , yeXCcR? (4.22)

for a point y of the uncountable set of scene surface points X and the position
dependent illumination basis by € IR3. As a consequence, the spatial Jacobian
depends not only on the surface point but also on the illumination parameter s.
Obviously the illumination parameter has to be determined beforehand in order
to predict the illumination-dependent Jacobian with the formulas of Section
3.2.4 and hence, computational complexity increases.

After all, Hager and Belhumeur [62] reported that illumination is safely ig-
nored for the computation of a motion Jacobian. Accordingly, the illumination-
dependent image-constancy assumption is also replaced here by its illumination-
independent counterpart. This allows to efficiently predict the motion Jacobian
with the IC algorithm of section 3.2.4. Nevertheless, the solution of the illumina-
tion subspace equation 4.20 with this pose-dependent Jacobian is substantially
more expensive than the solution of the linear equation system 3.36. By con-
trast, the approximations employed in the IC-R algorithm of section 3.2.5 can
keep the extra computational costs low due to the constant, pose-independent
Jacobian.

4.3 Texture Update

The previous sections explored methods using explicit models of illumination
and reflection. Generally, their expressive power depends on the degree of
detail of the model, which in turn is limited by the available amount of com-
putational resources. Typically, models of reduced complexity are employed,
introducing constraints on the light, the object, or the camera in order to meet
the demands of real-time applications. The success of the resulting algorithms
depends on the degree of correspondence between the real scenery and the
combined illumination-reflection model.
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In the following approach, illumination is not considered as an isolated phe-
nomenon. Instead, all sources of appearance changes are handled implicitly by
updating the appearance over time. In this way, any variation of appearance
is addressed, which originate, for instance, from varying illumination or even
non-constant reflection properties.

This strategy has a long history in two-dimensional tracking, which requires
the compensation of both appearance changes under variation of the camera
perspective and appearance changes due to deformation in shape. In this track-
ing scenario, the object model is represented by a two-dimensional image patch
that should be tracked over a sequence of images. By updating the reference
patch to the current two-dimensional appearance of the object, the method
accounts for any potential changes.

Of course, the rate of appearance changes that can be handled is limited.
In practise, however, this limitation does not represent a handicap. In fact,
the major drawback of the approach is that tracking is subject to drift due
to slight misregistrations between the reference patch and the current patch.
These inaccuracies accumulate over time causing increasing shifts between the
initial reference pattern and the continuously updated reference pattern.

4.3.1 Template-Update Method

Recently, Matthews et al. [96] presented a simple solution to the drift prob-
lem. Still, the objective function in question is the sum-of-squared differences
between the pixel values of the reference image and the pixel values in the
current image. Adapted to pose estimation with shape-texture models, the
corresponding objective function reads

O () = [[1() ~ T . (4:23)

with the N-dimensional reference texture T gathered from the reference image
with object pose °u and the texture ‘I (t,u,) sampled from the current image given
the pose hypothesis .

Matthews et al. do not alter the objective function. Instead, they consider it
within the context of local minimisation. First- and second-order minimisation
techniques tend to reach the minimum closest to the previous pose estimate.
Hence, the found minimum depends on the previous estimate and the shape of
the objective function.

It can be observed that the more the appearance of the target differs from
the reference, the smaller the convergence area of the minimum becomes. To
counteract this effect, a reference pattern is used that better reflects the current
appearance. Matthews et al. combined the benefits of both the large conver-
gence area of an up-to-date reference pattern and the ground truth represented
by the initial reference pattern. At the first step, the current image is matched
against the updated pattern. Subsequently, this pose estimate is used as a
starting value for the local search of the best match to the original reference
pattern.

Formally, let ‘T be the up-to-date reference texture at time instant ¢. Given
the current image I and pose estimate {u, the outcome of a minimisation A
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consists in finding a pose variation
‘= A, ', 'T) (4.24)

which locally minimises the objective function O(6p) = ||I(" o '5ps) — tTHQ for
the current reference pattern “T. The new pose estimate is used to minimise the
objective function 4.23 with respect to the initial reference pattern, formally
given by

" = A(tI, m OT) . (4.25)

The final pose estimate corresponds to the combination of the initial pose esti-
mate, the pose variation for the updated reference texture, and the pose varia-
tion for the initial reference texture, which hence reads

i =l oSpolsy” . (4.26)
An additional innovation of Matthews et al. concerns the criteria for updating
the reference texture. Here, the template is updated only when minimisation
with the initial texture and minimisation with updated texture reach the same
optimum. In the contrary case, the template is not altered, and therefore

t+1T _ tI(tﬂ*) : 03 (t(s;j’*) <e€ (4 27)
B T . else '

where € represents negligible pose variations rated by an appropriate error func-
tion O3 : SE(3) — IR™ on the special Euclidean group SE(3).

4.3.2 Shape-Texture Tracking with Texture Update

The above template-update strategy aims explicitely at sequential minimisation
approaches. Hence, the strategy naturally fits with the approaches of single
pose-hypothesis tracking adopting local optimisation techniques as proposed in
section 3.2.1.

Stochastical sampling approaches, however, are not well suited to the idea
of template update as proposed. Multi-hypotheses tracking based on Markov-
Chain Monte-Carlo techniques as described in section 3.3 are designed to ap-
proximate the posterior pose probability density for a given reference texture. A
possibility to integrate a template update in this approach, consists of sampling
the probability density separately for an updated texture and the reference tex-
ture. Then, the texture would be updated if the difference between the final
estimates on both densities is small enough. In practice, however, the estimates
might not be accurate and therefore no update would ever be performed.

4.4 FEvaluation

In the following, the above concepts are evaluated with respect to their suit-
ability for tracking moving objects. More precisely, the methods of intensity-
distribution normalisation, complementary illumination subspace, and the tem-
plate-update method are confronted with sequential single-hypothesis tracking
without any adaptation to illumination changes.
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4.4.1 Model Acquisition and Model Representation

The experiments are performed hereafter on a standard Pentium Xeon 1.7 GHz.
Images are captured with an analog interlaced camera at a resolution of 768 x
576 pixels (PAL) and a horizontal aperture of 56° and vertical aperture of 48°.
The internal parameters of the camera together with the distortion coefficients
for a 3rd degree polynomial distortion model are determined offline.

The test set consists of two objects, a bottle and a sculpture as in section
3.4.1. Here, a slightly broader segment of 83.17° of the soda label is chosen,
which allows to catch a wider range of illumination changes for the same time
instant. Sampling of the cylindrical body of radius 0.046 m leads to 4624
three-dimensional surface points. The sculpture object, instead, is digitised
with a hand-guided rotating laser-scanner, which poses are captured in turn by
a passive robotic manipulator [135, 19]. Accordingly, 3668 three-dimensional
surface points are acquired for the face of the sculpture.

The registration with the reference as well as with illumination-dependent
images is achieved as in section 3.4.1 either manually, or automatically via the
external pose sensor of the hand-guided scanning device. The illumination de-
pendent textures extracted from these images (see Figure 4.1 and Figure 4.2
for an excerpt) are used to determine the illumination base. In detail, the

Table 4.1: Sample set of images for building the illumination subspace for the
bottle surface.

Table 4.2: Sample set of images for building the illumination subspace for the
sculpture surface. The illumination direction is changed only slightly not to
produce self shadows.

algorithm of Table 4.1 is applied for estimation of the surface albedos. Sub-
sequently, these albedos are used to determine two illumination basis textures
for the bottle surface and three illumination basis textures for the sculpture
surface by means of a singular value decomposition (see Figures 4.2 and 4.3).
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Figure 4.2: Basis of the illumination subspace for the bottle surface.

Figure 4.3: Basis of the illumination subspace for the sculpture surface.

4.4.2 Data Acquisition

In order to compare the methods for handling changes in object luminance, the
object is required to move freely in three-dimensional space. Hence, three image
streams are recorded for each of the objects, i.e., the bottle and sculpture object,
moving under different conditions of illumination. The object trajectories start
in the vicinity of the reference pose with respect to the camera.

Ground-truth trajectories for both objects are obtained in the first place
through shape-texture based registration in the corresponding video data. In
detail, maximum likelihood estimation of the object poses is performed on the
sequences of slowly moving objects by means of exhaustive single-hypothesis
minimisation with the Gauss-Newton method. In the case of the bottle object,
the resulting poses are further registered to the trajectories measured by the ex-
ternal optical tracking system smARTtrack23. For this purpose, retro-reflective
markers are solidly attached to the body, which was not possible for the sculp-
ture object. The accordingly registered trajectories of the external sensor are
considered ground truth.

Virtually accelerated versions of the trajectories are generated for each of
the streams through sub-sampling. This procedure ensures a broad coverage
of possible combinations of rotational and translational object motion between
two images. For each object, all adjacent image pairs (samples) of the acceler-
ated streams are grouped with respect to the amplitude of their rotational and

Shttp://www.ar-tracking.com
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translational motion. The histogram over these groups (figure 4.4) shows that
some groups of motion occur more frequently than others. In total, approxi-
mately 7600 samples are considered for the bottle object in the ranges of [1, 5] °
and [1.5,5] mm, and approximately 6100 for the sculpture object in the ranges
of [2,5]° and [3,10] mm.
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Figure 4.4: Histograms of intra-sequence motion samples taken from three se-
quences of the bottle object (left) and the sculpture object (right). A motion
sample is characterised by the norm of its rotational (Ar) and translational
(At) components.

4.4.3 Evaluation of Convergence Properties

The performance of the single methods for handling changes in illumination is
established with respect to the probability of convergence from an initial pose
to the ground-truth pose. This evaluation is only useful in comparison to the
respective other methods. Hence, the performance of the method of choice, i.e.,
efficient Gauss-Newton based tracking with the image-constancy assumption,
is opposed pairwise to the extensions devised to handle illumination changes.

In contrast to the evaluation in section 3.4, the probability of convergence is
assessed for different combinations of initial rotational and translational offsets.
An estimation process is considered converged when its final rotational and
translational residuals to the ground truth fall below appropriate thresholds.
These thresholds are 1° and 1.5 mm for the bottle object and 2° and 3 mm for
the sculpture.

Figure 4.5 exemplifies the gathered information on behalf of the bottle
object. Five different methods of single-pose hypothesis tracking are consid-
ered, i.e., standard Gauss-Newton minimisation (GN), Gauss-Newton minimi-
sation with the prediction of the Jacobian based on the image-constancy as-
sumption in 3-d (GN-IC), the complementary-subspace extension (GN-IC-CS),
the template-update method (GN-IC-TU), and the modification for intensity-
distribution normalisation (GN-IC-IN). For a representative comparison of these
methods with respect to their real-time performance, a comparable amount of
computational time is allotted to the methods. In particular, six minimisation
iterations are allowed to the standard Gauss-Newton implementation and 22
iterations to all the methods based on the image-constancy assumption. The



86 CHAPTER 4. OBJECT-LUMINANCE ADAPTATION

texture-update method performs 14 iterations with an updated texture (ob-
tained here from the starting frame) and eight iterations with the reference
texture. This method is not specifically penalised, though additional computa-
tions occur when the texture is updated.

P(conv GN)

)

7
\V

o P s
AWV AWAVERY,
¢ V.V

od.’oi

¢

Figure 4.5: Convergence probability over combinations of initial rotational (Ar)
and translational (At) offsets. All methods have been alloted a comparable
amount of time for computation.

The convergence performances of the methods are compared in turn to the
method of choice, i.e., the Gauss-Newton method with the prediction of the mo-
tion Jacobian (GN-IC). In detail, the convergence probabilities of the methods
are compared to the respective probabilities of the GN-IC method. Accord-
ingly, each method exhibits either a gain or a loss in convergence probability
with respect to the particular method for each combination of rotation and
translation. The histogram over all gains in the considered ranges of rotation
and translation offsets as shown in figure 4.6 discloses the relative performances.

Clearly, the standard Gauss-Newton approach (GN) performs badly in track-
ing moving objects under real-time conditions. This effect was already postu-
lated in section 3.4 showing a reduced range of convergence with respect to the
rotational and translational object velocities. This property now becomes more
evident.

Surprisingly, the extension to the complementary subspace (GN-IC-CS)
does not show a clear gain in performance for any of the objects. A possi-
ble interpretation of this fact finds its reason in the motion templates, i.e., the
motion Jacobian, being partially contained in the illumination subspace. Hence,
convergence would suffer from less clear local derivatives.
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The template-update method (GN-IC-TU) provably outperforms the method
of choice (GN-IC) and in turn all other methods. Obviously, the two step
strategy to track an first updated texture-model and subsequently the original
texture-model supports the convergence to the true pose.
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Figure 4.6: Histograms of gains in convergence probability for GN-IC with
respect to (from top to bottom): GN, GN-IC-CS, GN-IC-TU, and GN-IC-IN.
Left: bottle sequences. Right: sculpture sequences.
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The modification for the intensity-distribution normalisation (GN-IC-IN)
does not show a clear trend. While for the sequences of the bottle object the
method succeeded more often to converge, it is more likely not to converge
on the sculpture sequences. The reasons for this behaviour could be found in
differences in the lighting conditions of both objects: the bottle sequences show
moderate changes in illumination while those for the sculpture exhibit in part
challenging illumination conditions.

Finally, the accuracy of pose estimation is assessed for all methods under
the above mentioned real-time constraints. Table 4.3 reports the accuracy with
respect to those samples for which convergence is attained. Again, the standard

bottle sculpture
P(conv) 0ot  Otrans | P(conv)  ovot  Otrans
(%] ] [mm] 7] ]  [mm]
GN 19.6 0.45 0.67 5.9 1.42 147
GN-IC 75.3 0.30 0.61 42.9 1.16 0.94

GN-IC-CS 75.9 0.31 0.61 38.6 1.18  0.78
GN-IC-TU 81.8 0.29 0.60 44.3 0.95 0.83
GN-IC-IN 78.4 0.28 0.61 28.0 1.29  0.80

Table 4.3: Accuracy for estimation procedures converged to the true pose
and probability of convergence for all considered samples under real-time con-
straints.

Gauss-Newton method (GN) shows the worst performance. On average, in the
bottle sequences an accuracy of 0.30° and 0.6 mm is obtained for the methods
that take advantage of the efficient prediction of the Jacobian (GN-IC), while
in case of the sculpture sequences, an accuracy of 1.1° and 0.8 mm is reached.
For the former sequences no significant difference can be ascertained among
the IC-methods, in contrast to the sculpture images, where the advantage of
texture update (GN-IC-TU) becomes evident.

Some snapshots of successful tracking of both the bottle and the sculpture
are augmented and displayed in figures 4.7 and 4.8. The tracked point set is
shown in yellow and manually outlined for better visualisation. The bars in the
lower part of the pictures indicate the degree of rotation around the Cartesian
axes (left) together with the degree of translation along these axes (right).
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Figure 4.7: Images no. 128 and 600 of a bottle sequence augmented with the
tracked 3-d model point cloud and indications of the estimated 6-DoF pose at
the bottom. The tracked points are manually outlined for better visualisation.

Figure 4.8: Images no. 100 and 800 of a sculpture sequence augmented with the
tracked 3-d model point cloud and indications of the estimated 6-DoF pose at
the bottom. The tracked points are manually outlined for better visualisation.
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Hierarchical Visual Tracking

The robustness of tracking moving objects primarily depends on the conformity
of the visual appearance with the assumptions employed in the tracking algo-
rithm. Typically, assumptions are set up on the object dynamics, e.g., on the
maximal object velocity and on the objects visibility. Obviously, the object gets
lost if one of the assumptions is violated, i.e., by to fast motion, by the object
leaving the visible volume or the object being obscured by foreign bodies.

Thus, seamless object tracking cannot be guaranteed in uncontrolled envi-
ronments. Nevertheless, the acceptability of the application that incorporates
the tracking method depends on a robust initialisation and the ability to re-
cover from “failure” so that the loss of the object becomes temporary and not
permanent. With regard to visual servoing of moving objects, the applica-
tion is required to perform global pose estimation, irrespective previous object
locations in order to be able to (re-)initialise tracking at any time.

Nowadays, global pose estimation in 6 degrees of freedom (DoF) is possible
in real-time for feature-based methods [86] under the burden of heavy a priori
training. Non feature-based tracking in 6 DoF, however, is still out-of-reach for
current personal computer technology. In theory, the search space for this type
of tracking is O(rd) where d denotes the number of degrees of freedom and r
represents the search range in each DoF (see Figure 5.1). The computational
efforts grow linearly with the search space and, hence, global search in all 6
DoF can be achieved only at comparatively high computational costs.

In the following, an architecture is presented that addresses all the require-
ments of tracking applications in consideration of limited computing power.
The task of global pose estimation in 6 DoF is split into several stages, which
allow for seamless transition between initial object detection, tracking, and
consecutive re-initialisation of tracking when the object gets lost.

Section 5.1 starts with the theoretical background of tracking at different
stages showing the dependencies of the maximal object velocity on hardware
constraints, task specifications, and methodological characteristics. These find-
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computational
complexity rangePoF x rate
search range
‘ local global

Figure 5.1: Computational complexity of appearance based tracking approaches
for a constant number of degrees of freedom (DoF) and constant temporal
sampling rate.

ings are used in section 5.2 to identify appropriate object models and sampling
strategies for an appearance-based tracking cascade. The rules of activation
aiming at switching between the single stages of the cascade are given in sec-
tion 5.3. The following section 5.4 proposes concrete methods for quick object
localisation in all translational degrees of freedom, while the final section 5.5
presents the methods for subsequent refinement and tracking in all translational
and rotational degrees of freedom.

5.1 Theory of Multi-Level Tracking

Limitations in the computational power force the restriction of the requirements
on global pose estimation in 6 DoF to the most important demands of visual
servoing and grasping. The top level demands are identified in the following to
be:

requirements of space

— pose estimation in all 6 DoF

— high translational and rotational accuracy
requirements of time
— pose estimation at high temporal sampling rates

The first two sub-items are mandatory for grasping objects in a definite and
accurate manner. As such, they are not particular for visual servoing but gen-
eral for the purpose of grasping. Additionally to these static requirements, the
third sub-item introduces a constraints on the temporal behaviour of tracking.
It imposes rapid estimation of successive poses in order to minimise the lag of
the pose estimation process and to allow for seamless integration in a visual
servoing loop. In combination, the above constraints ensure accurate tracking
and grasping of moving objects. These necessities are hereafter referred to as
target requirements.
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Though these demands represent the minimal set of characteristics of the
servoing application, they still cannot be accomplished “on-the-fly”, i.e., with-
out prior information. Less exigent requisites are set up that should be fulfilled
at the beginning of the application. The definition of both entrance and target
requirements allows to set up a multi-level tracking application that succes-
sively meets increasingly demanding constraints. The minimal requirements
that have to be imposed on the first stage of tracking are identified to be:

requirements of space and time
— tracking at high object velocities

This is the only requisite and allows for fast object detection without prior
knowledge and is implicitly also suited for re-initialisation of tracking as the
target got lost. In the following, this necessity is referred to as entrance re-
quirement.

Theoretically, tracking algorithms could simultaneously meet target and
entrance requirements. Whether both can be accomplished at the same time
depends on exterior circumstances such as the available processing power. The
computational resources are considered here inadequate to simultaneously ac-
complish all the constraints.

The target and entrance requirements are not sufficient to uniquely identify
the concrete tracking algorithms neither on the bottom (entrance) or top (tar-
get) level nor on intermediate levels. The constraints affect different domains
and therefore no direct link is visible between entrance and target requirements.
For the purpose of multi-level tracking, the correlation between the constraints
in the domains of DoF, accuracy, temporal sampling rate, and object veloc-
ity must be determined. Hence, the question arises whether these demands
represent concerted or concurrent goals.

To answer the question, the three most common strategies for pixel-based
tracking are analysed in more detail. All of these strategies find the most
probable object location (and possibly orientation) by comparing the object
appearance with the pixel measurements corresponding to a specific location
hypothesis. The approaches differ in their strategies to explore the range of
possible locations. These strategies perform either

e regular (e.g. correlation based),
e sequential (e.g. gradient-descent based), or
e stochastic (e.g. Monte-Carlo based)

sampling of the object pose space. The methods are characterised by a particu-
lar relation of the properties in question, i.e., DoF, accuracy, temporal sampling
rate, and object velocity. In the following, the individual relation of the prop-
erties of the complete system, i.e., properties of the hardware, the method,
and the task, are identified and unfolded to a directed graph. Here, the object
velocity, being a property of the task to accomplish, specifies the root node.
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Figure 5.2: Graph of property and parameter dependencies characterising reg-
ular sampling. The graph emphasises the persistency of tracking, which implic-
itly limits the sustained object velocity.

5.1.1 Characteristics of Regular Sampling

The equidistant and equiangular exploration of the pose space is denominated
regular sampling. Examples of regular sampling methods are correlation-based
approaches for object detection.

The relation of the properties DoF, temporal sampling rate, and object
velocity have been identified in section 1.1.3. Accordingly, the object velocity
eventually depends on the sustained temporal sampling rate as well as on the
spatial sampling rate.

The former is limited by characteristics of the camera hardware, by the
processing time per sample, and by the dimensionality of the explored pose
space. For given characteristics of the sensor and the computational resources,
the remaining properties, i.e., complexity of the object model and the number
of DoF, are the only parameters that affect the temporal sampling rate and
eventually the maximal object velocity. Hence, increasing demands on the
number of DoF or the model complexity result in a lower sampling rate and
a lower object velocity for given hardware resources. The dependence graph
5.2 illustrates the relation of the mentioned properties with exception of the
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accuracy of object localisation.

The latter is determined by the spatial sampling frequency and by the model
complexity. In principle, the more measurements are accumulated for the eval-
uation of a model, the higher the positional accuracy! will be. Since increasing
object velocities as well as increasing localisation accuracy demand for more
computational resources, both objectives cannot be achieved contemporane-
ously.

5.1.2 Characteristics of Sequential Sampling

In contrast to regular sampling methods, the sequential exploration of the pose
space can eventually achieve arbitrary localisation accuracy because the path
of exploration is adapted to the observation at hand. Examples of sequential
sampling methods are gradient-descent based approaches for function minimi-
sation.

According to section 1.1.3, the object is tracked as long as the initial pose
is contained in the region of hypotheses converging to the true pose. The gap
between these two poses depends on the object velocity, the temporal sampling
rate, and the convergence rate of the tracking method. The limitation of the
supported gap to the radius of convergence constitutes in return a limitation
on the supported object velocity. Figure 5.3 shows the dependencies of the
most important properties. In comparison to regular sampling, the choice of
the minimisation method and the choice of the objective function play a more
important role for the efficiency of the tracking approach.

The localisation accuracy, the second property of interest besides the object
velocity, is determined by the final gap between the current pose estimate and
the true pose. The final gap depends in turn on the gap between the initial
pose hypothesis and the true pose and on the temporal convergence rate of
the minimisation method. To increase the temporal convergence rate, either
more computational resources, less complex models, less degrees of freedom,
or faster minimisation methods have to be engaged. In the latter case, for
instance, second order minimisation techniques let the pose estimate converge
quadratically to the best estimate in contrast to the linear convergence of first
order techniques.

5.1.3 Characteristics of Stochastic Sampling

Alternatively, object tracking is accomplished through stochastic sampling of
the pose space using multiple, independent pose hypotheses. The sampling
process follows a model of the object dynamics formulated as a transition prob-
ability function. Hence, the supported object velocity is implicitly specified by
the model of dynamics. An example of stochastic sampling are Markov-Chain
Monte-Carlo methods such as Particle Filtering.

The persistency of stochastic tracking depends on two properties, the cov-
erage of the state density predicted through the dynamic model by hypotheses

!The Nyquist criteria limits the spatial sampling frequency respectively to the frequency
components of the object appearance.
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Figure 5.3: Graph of property and parameter dependencies characterising se-
quential sampling.

(particles), and the broadness of the observation density. Again, the higher
the sampling rate, the more compact the predicted density becomes, and the
better the density will be covered by particles. Hence, computational resources
are freed for handling faster object movements. Figure 5.4 illustrates the major
dependencies of the parameters and properties of stochastic tracking.

The coverage of the posterior probability density for object poses by appro-
priate hypotheses represents the key figure for the accuracy of the estimation
process. Doucet et al. [44] assessed a convergence rate of 1/N for estimators on
bounded functions of the simulated density toward the true estimate, whereas
N denotes the number of particles.
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5.1.4 Common Characteristics

The correlation between the requirements in the domains of DoF, accuracy,
temporal sampling rate, and the object velocity can be generalised over the
considered tracking strategies. The following properties are ascertained:

e temporal sampling frequency T = supported object velocity T
e number of DoF | = supported object velocity |
e object model complexity T = supported object velocity |.

Accordingly, increasing the sampling rates will increase the sustained objects
velocities independently of the above mentioned methods. By contrast, the
number of DoF and the employed complexity of the object model are related
anti-proportionally to the supported velocity. Hence, on one hand, tracking
slows down as the employed observation model increases and as more degrees of
freedom are considered. On the other hand, objects are localised with increasing
accuracy under these variations.
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5.2 Appearance-based Multi-Level Tracking

The observations of the previous section are applied in the following to a novel
cascade of appearance-based and appearance descriptor-based tracking stages
(see Figure 5.5).

The stages are designed for increasing degrees of freedom as well as for
increasing model and localisation accuracy from the bottom level to the top
level. Objects are first tracked at high velocities and high positional uncertainty
at the bottom level. Then, the degrees of freedom are gradually increased along
with an increasing refinement of the observation model. At the same time, the
sustained object velocity is reduced and the localisation becomes more accurate.
The top level is designed to guarantee accurate tracking of objects at high
temporal sampling rates and moderate object velocities.

The specific choices for the levels of appearance-based tracking are based
on two characteristics, the type of object model and the sampling strategy.

Shape-Texture Model
6 DoF
level 4 L Sequential Sampling < ’
6 DoF
level 3 L Stochastic Sampling , ’
2 £
s o
£ 2
3 DoF
level 2 L Sequential Sampling D
track
2 DoF
level 1 u Regular Sampling < ’
Colour-Histogram Model

Figure 5.5: Appearance-based multi-level tracking.

5.2.1 Object Model

The first design decision is made with respect to the object model. Obviously,
the decision is coupled to the desired accuracy and to the required degrees of
freedom. At the top level, the employed object model must allow unambiguous
estimation of the object pose in all 6 dof. Obviously, the shape-texture repre-
sentation of section 3.1.3 models the appearance for different poses in detail.
The pose can be estimated precisely, as long as the unity of texture and surface
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ensures measurable variation of appearance for arbitrary motion in 6 DoF?2.

At the entry level, no requirements exist with respect to the number of
supported degrees of freedom. Accordingly, the object model is expected to be
generic enough to cope with variations in the neglected degrees of freedom. In
practice, histogram-based models are reasonably robust in reference to changes
of the object orientation. Feature matching with gradient location and orienta-
tion histogram descriptors, for instance, proved to support out-of-plane rotation
of 50°, though with a lower detection rate with respect to the reference view
[89, 99]. Colour histograms have been shown to allow tracking of non-rigid
objects with affine motion parameters [37, 104].

5.2.2 Sampling Strategy

The completion of the choices on the object model and the DoF with an ap-
propriate selection of the sampling strategy finally allows to uniquely identify
the algorithms for the single tracking stages.

As stated at the beginning of the section, the requirements on the top level
of the tracking cascade comprise pose estimation in all 6 DoF, accurate pose
estimation, and tracking at high sampling rates. Sequential sampling methods
based on first order or second order function minimisation are known to allow
for accurate parameter estimation. The efficiency of these approaches typically
depends on the employed observation model and on the computational costs for
the calculation of the corresponding first order derivative. In accordance with
the optimisations in the computation of the Jacobian presented in sections
3.2.4, 3.2.5, sequential sampling ensures low computational costs and hence a
high sampling frequency when adopted to the Shape-Texture based observation
model of section 3.1.3.

In the case of sequential sampling, the sustained object velocity depends on
the radius of convergence, the convergence rate per iteration, and the temporal
sampling frequency. The optimisations mentioned above address not only the
demand for a high sampling rate. Eventually, these optimisations increase the
radius of convergence in terms of the object velocity in contrast to unoptimised
sequential sampling. Experiments in favour are reported in section 3.4.

Clearly, limitations in the radius of convergence exist, and hence sequential
sampling is not suited for the initialisation of the tracking cascade. Accord-
ingly, the limitation is relaxed on the next lower level employing stochastic
sampling. In particular, Monte-Carlo methods are not sensitive to local min-
ima as single-hypothesis trackers because multiple hypotheses are considered
at once. However, the covered pose space as well as the accuracy of final pose
estimation depends on the distribution of the hypotheses. Hence, an increased
coverage of the pose space is accompanied either by a lower temporal sampling
rate when increasing the number of hypotheses, or by a decreased localisation
accuracy when the number of hypotheses is kept constant.

2This correlation is pose dependent. For instance, the conditionedness of the estimation
of out-of-plane rotation deteriorates as the object moves away from the camera and the full-
perspective distortion turns into a weak-perspective projection.
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The restriction to fewer degrees of freedoms allows to adopt other sampling
strategies at the entry level. Nowadays, regular, correlation-based sampling
is feasible for global pose estimation in 2 DoF and thus ideally suited for the
bottom level of the tracking cascade. The ability to localise the object without
prior knowledge on the location ensures the process to keep up with objects
moving arbitrarily fast. However, the rate of this estimation process is not
assured. The gap from object localisation in the image plane to pose estima-
tion in 3-d is bridged by adopting a sequential sampling method to the same
observation model. Hence, regular sampling in 2-d on the bottom level is suc-
ceeded by irregular, observation dependent sampling for pose estimation in 3-d
on the next higher level. Figure 5.5 summarises on the methods selected for
the tracking cascade.

5.3 Switching Rules for Multi-Level Tracking

Reduced computational power force to activate tracking levels in turn and not
in parallel. The transition rules from one level to the next higher or lower level
are kept simple in favour of a lean implementation.

Each individual tracking method is based in principle on an observation
model and a confidence value. The latter value indicates the degree of consis-
tency of the pose estimate with the current measurement. Accordingly, a pose
estimate is linked to a high confidence value if the observation model fits very
well with the current measurement for the particular pose. On the other hand,
a low confidence indicates that the observation model does not well explain the
current measurement for the proposed pose estimate.

Therefore, two confidence bounds are individually chosen for each track-
ing level. These bounds mark the transition to an adjacent level. Let i €
1,2,...,°N specify the level active at time ¢, whereas 1 denotes the bottom
layer and ¢N the top layer. Moreover, let 0, € [0,1] and 91+ € [0,1] denote
the lower and respective upper confidence bound for level [ € 1,2,...,SN. The
active process switches from the current tracking level to the next lower level
when the confidence value reaches the lower confidence bound, and to the next
higher level when the upper confidence bound is reached. Accordingly,

+1 if <N A Hfgﬁtv
et -1 if 1<% AN W< O (5.1)
0 else

whereas %y denotes the confidence value computed at the level active at time ¢.
The lower and respective upper confidence bound specify different rules on the
entry and the target level. If the confidence falls below the lower bound on the
bottom level, then the object may not be present at all in the image. Usually,
the desired action in this case is to repeat detection on the bottom level until
the object is finally found. Likewise, when the confidence exceeds the upper
bound on the top level, then observing instances can take appropriate action.
In the context of visual servoing and grasping the appropriate control signals
are emitted commanding the robot to catch the object.
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The above switching rules are implicitly based on some assumptions about
the significance of the confidence value. The employed model is thought to be
robust to variations induced by parameters other than pose, e.g. illumination
parameters. In this situation, the lower confidence bound is only reached when
the estimated pose does probably not match the true pose. Conversely, the
upper confidence bound is thought to be reached only when the estimated pose
matches the true pose accurately enough.

However, unambiguity of local extrema of the optimised function, e.g. the
objective function or likelihood function, is not guaranteed. Therefore, the
upper and lower confidence bounds have to be chosen conservatively to ensure
a proper switching behaviour. The upper confidence bound should be set large
enough to distinguish between estimates close to the true pose and estimates
in a nearby local minima. Respectively, the lower confidence bound should be
set small enough to quickly detect when the object got lost.

5.4 Histogram-based Localisation and Tracking

The first levels of tracking aim at detecting and tracking a fast moving object
in a reduced set of degrees of freedom. In the computer vision community,
histogram-based models are used for description and matching of single features
as well as for tracking moving objects. Especially histograms of colour (e.g. [104,
89]) or gray-level gradient distributions (e.g. [89, 99]) are frequently used due
to their robustness with respect to illumination changes and variations of pose.

Here, the focus falls on the colour distributions, in particular on the colour
histogram used by Comaniciu et al. [37] as target models as presented in
[123, 56]. In contrast to gradient-based object descriptions, colour histograms
demand slightly less computational resources because no derivative of the image
is computed.

In the following, let {7(v) € C denote the colour value at the position v € IN?
of the image at time ¢ in an arbitrary but fixed colour space C. In addition,

let the function h: C — {1,2,...,PN} map each colour value to the index of a
corresponding colour bin and let
1
k(u,o) = exp(—QuTE(a) u> (5.2)

define an anisotropic kernel in IR? with standard deviation o. The diagonal
matrix

Oy

o2 0
S(owo) = (T %) (53)
allows for individually scaled axes. The probability of occurrence of a specific
bin b in the neighbourhood of the position u € IR? at time ¢ is now defined by
. Sk(u—v,a)d(h(I(v)) —b)
— A4
pb(u? 0') Zv k(u_v7 a_) I (5 )

whereas 0 : IR — {0, 1} represents the Kronecker delta function

5(z) = { L ifz=0 (5.5)

0 else
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and where the colour occurrence is weighted according to the spatial distance
to the centre by the anisotropic kernel k.

The object to be tracked is recognised by the prior colour probabilities
a=(q¢1,92,---,qn) € [0, 1}bN, Zl;fl ¢; = 1 obtained from a reference image.
The similarity between the current colour distribution p = (%p1, %2, ..., puy) €
[0, 1]bN , Z;fl t; = 1 and the prior distribution q is measured by the Bhat-

tacharyya coefficient
p(pra) = Vo g (5.6)
b

which takes the value 1 for identical distributions.

5.4.1 2-DoF Histogram-based Localisation

The initial object detection is achieved evaluating the Bhattacharyya coeffi-
cients in the image plane on regular grid positions. In order to reduce the
occurrence of local minima and to decrease the computational costs, the coeffi-
cients are not computed at every image position. Instead, the possible domain
of 2-DoF location is sub-sampled.

In this sense, let o0 = (0y, 0y) determine the elongation of the kernel k. The
Bhattacharyya coefficients are sampled at intervals 20, 20 assuring good cov-
erage in the image as with Gaussian pyramids [27]. Let S = {(2ioy, 2jov) | i,j €
IN} be the set of sampling coordinates, then the location 1 € IR? of the object
in the image space is estimated according to

= argmax 3 v/ (w,0) gy (5.7)
ues 5

and the confidence value is given by

= x> V(o) 0 59
b

The detection is rejected as long as the confidence value is lower than the
detection threshold HT.

5.4.2 3-DoF Histogram-based Tracking

Object tracking by means of sequential optimisation starts immediately after
localisation of the object in the image plane. At this stage, the initial two-
dimensional position is augmented by an additional scale parameter.

Tracking is performed with the Mean-Shift algorithm, a non-parametric
statistical method for sequential determination of the nearest mode of a point
sample distribution. The shift is first computed in planar coordinates according
to Comaniciu et al. [37]. Here, the initial hypothesis {1y € IR? of the object
location in the image plane at time instant ¢ is gathered from the previously
active tracking stage *~'¢ according to the rule

t_lﬂ if t—1< =1
fap = =y, if “li¢=2 . (5.9)
p(m(E(X),")) if (=3
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Here, E(X) = + >, x X represents the centroid of the surface-model points.
Hence, if the active process switched from the detection level (*~¢ = 1) to this
tracking level (¢ = 2), then the hypothesis 1 is gathered from the previously
estimated location *~!fi. If no level switch occurred from time instant ¢ — 1 to ¢
(*=1¢ = 2), then the hypothesis is given by the final estimate '~ Y, previously
reached after Ny iterations. If the next higher tracking level (‘71 = 3) was
active at ¢ — 1, then the centroid of the model is projected to the image with
the previous position estimate ‘~!fi in order to obtain the hypothesis. After
this initialisation step, the location hypothesis is refined in Ny iterations.

At each iteration i, every position in the neighbourhood of the estimate 4i;
is weighted according to the relevance of the corresponding colour bin. The
relevance of a single bin is determined by the ratio of the frequency of its oc-
currence in the reference pattern to the corresponding frequency in the current
pattern. Hence, the weight at a specific location u € IR? with respect to a

position v reads
bw(u, v, o) = _ B T(v)) — )
(v.0) =3\ [ 3T - (5.10)

for a specific scale . Now, a new object location ;1 is estimated for the
current scale estimate '6; by

Zv k(tﬁZ -V, t&i) tw(tfll, Vv, tﬁ'i) tfl,
Zv k(tﬁl -V, té’z) %(tﬁ“ Vv, t&z)

with the kernel k of 5.2. The initial scale hypothesis ‘6 is set either to the
previous scale estimate or to the default scale o = (0, 0y) used for detection,

that is
ta { t_la'NQ if t_1< =2

Mg = (5.11)

(5.12)

o) —
o else

Subsequently, the correct scale of the object is identified by the evaluation of
pixel relevances over 2n + 1 scales relative to a current scale, that are

tU(S)

s

='6;-a°>; —n<s<n (5.13)

whereas a > 1 denotes a constant logarithmic base. A new scale index ;1
and scale ‘6,1 are estimated according to

Sy k(s — v o) (v ) s
Doy k(tﬁi-‘rl -V, tags)) tw(tﬁiﬂ, v, tags))

ta
Si+1 =

L G =6 a
(5.14)
Note that here simply the kernel £ of 5.2 is used instead of a Laplacian of
Gaussian or a Difference of Gaussian as proposed by Collins [36].
For the image at time ¢, the computation of shift and scale are alternated
for N iterations. These No optimisation cycles apply to the following image
t + 1, until either the confidence

t’}/ = Z \/tpb(tﬁNwt&Nz) db (515)
b
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falls below the threshold specified by ¢, or the estimation process converged?,
that is, the Euclidean distance |%y, — || and |'6 y, — ‘6| fall below a conver-
gence threshold 9; . As long as tracking continuous on this level, the estimates
of location and scale of the last iteration constitute the initial hypotheses for
the corresponding measures in the following image.

For each image, the estimates of two-dimensional object location Wy, =
(fun,,'wn,) and scale 6 n, = (%n,, 4y, ) are mapped to three-dimensional Eu-
clidean space at the last iteration considering a full-perspective projection model
with known intrinsic camera parameters

a 0 wug
K = 0 B w (5.16)
0 0 1

and the physical extent d of the object. The physical extent is related to the
position ¢, in direction of the z-axis by the formula « - d ~ 4 t&NZ -t,. Hence,
the estimate for the translation of the object is computed according to

, tﬂx ad (t@Nz - UO) /o

=y | = T (tﬁNz - "UO) /B . (5.17)
i 4%
Hz 2 1

The active process switches from this extension of Mean-Shift tracking to the
lower level, as soon as the confidence falls below the threshold 6, . The next
higher level is invoked when convergence is reached within the threshold defined
by 65 .

5.5 Shape-Texture Based Tracking

Subsequent to the initial object detection in 2 DoF and tracking in 3 DoF
performed at the entry levels, the top tracking levels aim at tracking the object
in 6 DoF with Euclidian translation and rotation parameters.

At these two levels, object representation is replaced by the shape-texture
model of section 3.1.3. In the first level, multiple pose hypotheses are checked
against the visible appearance of the object. On the top level instead, changes
in appearance induced by object and/or camera motion are matched to pose
variations of the shape-texture model [123, 56].

5.5.1 6-DoF Multi-Hypotheses Tracking

Object tracking in 3 DoF on the lower level is extended to tracking in 6 DoF
adopting the annealed Markov-Chain Monte-Carlo filter as described in section
3.3.2. The robustness and the broad area of convergence qualify sequential
Monte-Carlo filters for this task. A sequential Monte-Carlo filter propagates a
particle set {(tpgj),tng)) | j =1,2,...,5N} over time ¢, whereas here, multiple
iterations ¢ € {1,2,..., N3} of the filter are performed for each time instant
following a continously decreasing process of particle diffusion.

3This rule shows in practice to be an effective alternative to 5.1.
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The initial distribution {(tu(()j ),tw(()j )) | 7=1,2,...,5N} is set up in depen-
dence of the tracking level *I¢ active at t — 1. If 3-DoF tracking was previously
active (171 = 2), then the single position hypothesis "' = (* Yy, iy, = 10,)
is augmented first by the object orientation (%, Oﬂﬁa Ouv) in the reference view
to a 6-DoF pose hypothesis Yty = (%a, g, %y, ™ x, T Y0y, ©10,).  Subse-
quently, 3N particles are set up with respect to the single estimate according to

1
s\’
whereas ¥4 denotes the covariance matrix expressing the initial uncertainty
of the hypothesis. The same policy applies to the initialisation of the particle
set if the highest level was previously processed (*~¢ = 4). If Monte-Carlo
tracking was active and no level switch occurred (*~!¢ = 3), then the previous
distribution of particles is kept. Hence, the rules for the level are:

t“(()ﬂ) NN(tﬂ(),EA) ’ tw(()ﬂ) — (518)

t“éj) NN(tﬂo,EA), tw(()j) _ % if t1¢ =2

(tuéj),twéj)) — t“(()j) _ tfllujg\ﬂ}g’ tw(()j) _ tfl,w](\ﬂfg if tlc—3 . (5.19)
t#(()j) NN'(t_lﬂ,EA) : t) — % ittt =4

The particle set is refined in subsequent steps of Markov-Chain Monte-Carlo
filtering by means of the annealed SIR approach of section 3.3.2, following the
steps of re-sampling, propagation, and update.

In the former step, an existing particle distribution is re-sampled according
to the associated, normalised weights {th(j ) | = 1,2,...,°N} resulting in a
new set of hypotheses { ;(] ) | i =1,2,...,5N}. The following propagation step
resembles an inverse diffusion process. A diffusion vector v, perturbing a single
re-sampled pose hypothesis, is given by

v o N(0,8y) (5.20)

whereas Y specifies the covariance matrix of the process noise. Then, the
re-sampled hypotheses are propagated to the next iteration according to

tugr)l _ tM;(j) + b tvl(j) (5.21)

with a decay term b°, 0 < b < 1, fading with the iterations. The propagated
particle distribution is updated to the posterior distribution by the conditional
(9)

probability of the observation ‘I given the propagated poses i, ‘11, which reads

tw;(ﬁ :p<tI]tu§]+)1> . (5.22)

for an unnormalised weight tw:ﬂ Here, the observation probability p(tI |tug_)1)

is determined by equation 3.17 in respect to the shape-texture representation of
the object. In contrast to other approaches, the steps of propagation, update,
and re-sampling are repeatedly applied to one observation. Hence, the approach
resembles a optimisation process with simulated annealing, and allows to gain
accuracy for a single image.
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In principle, different information can be extracted from the posterior den-
sity p(tmtl ) Here, only the most probable object pose after all N3 iterations
is considered. This pose is obtained from the particle set approximating the
posterior density by

' = tugl\;g , k= argmaxtwgz . (5.23)

J

The confidence value for this pose is given by the corresponding weight, reading
by = twg\z) , k= argmax tw%i . (5.24)
J

The above annealed particle filter is applied to the sequence of images as
long as the confidence value associated to the most probable pose ‘i lies in
the interval marked by the lower and upper confidence bounds 65 and 9; . In
detail, the lower tracking level becomes active when the confidence falls below
05 . Conversely, the next higher tracking level is processed in the following if

the confidence exceeds 93+ .

5.5.2 6-DoF Single-Hypothesis Tracking

The 6-DoF pose estimate obtained with multi-hypotheses tracking on the pre-
vious level is refined on the top level of the tracking cascade. Here, a single
pose hypothesis is sequentially optimised according to the Maximum-Likelihood
estimator of section 3.2.4.

Depending on the previously active level, the initial 6-DoF hypothesis i,
is initialised either with the most probable pose of Monte-Carlo filtering or to
the estimate of Gauss-Newton based tracking performed on this level. Hence,
the rule reads

o =" ifY e (3,4} . (5.25)

The single pose estimate is iteratively refined with respect to the same
shape-texture based observation model as used in the previous stage (cf. equa-
tion 3.17). By contrast, at this stage the pose is determined that maximises
the log-likelihood 3.18 associated to the observation model. The task is accom-
plished by minimising the negative log-likelihood by means of the Gauss-Newton
approach. The linear equation system, which is set up for a single iteration i
of the approach (cf. equation 3.36), reads

> o'l 0 0m) " 05 (i 0 0m) | oy = (5.26)

xeX B
> Ot (o) | (i) — ()
xeX

=

and solved for a variation of pose t(S;iZ- with respect to the pose estimate ;.
Here, the computationally expensive computation of the Jacobian 85,}[,( for
each new estimate is replaced by the efficient approximation 3.41. According
to the evaluation of section 3.4, this approach features fast and accurate pose
estimation in 6 DoF. Though area of convergence is restricted in respect to the
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offset of the initial hypothesis to the true pose, the computational efficiency of
the optimised minimisation process allows to gain convergence in respect to the
object velocity.

The estimate f1;,, for iteration i + 1 is determined by the composition of
the previous pose estimate ‘1; and the pose variation téAui in accordance with
equation 3.7, which reads

i1 = g0 g (5.27)
The final estimate for the image at time instant ¢
="y, (5.28)

is determined after N4 iterations in which the variation of pose is first de-
termined solving the linear equation system, and thereafter combined with the
current estimate. The confidence for the pose estimate is easily assessed through
the evaluation of the observation probability

Y =p(1'iy,) (5.29)

for the current image.

Tracking at the top level is performed as long as the confidence %y exceeds
the lower bound 6, . Once the confidence falls below the threshold, the active
process switches to the lower tracking level.
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Visual Servoing for Grasping
Non-Cooperative Objects

Nowadays, the term “robot” is well established in society. Usually, robots are
considered machines that operate autonomously, move around and/or manip-
ulate objects. However, this point of view has been promoted primarily by
book and film writers and is directed toward possible and less possible future
capabilities of robots.

Still, the capabilities of robots are very restricted. Robots in automatisation,
for instance, are autonomous but not “intelligent”. The actions they perform
are taught once and repeated many times. In order to succeed in their task, the
objects they manipulate or interact with are static. Moreover, the positions of
the objects are known a priori. Researchers have pushed forward this limitation
by defining methods to localise certain classes of objects in an unknown but
static environment.

A further important improvement is the capability to interact with non-
static environments. The stability of control and the responsiveness of the
robot to the changes represent the primary issues of this task. The topic has
been investigated in a field known as wvisual servoing for many years. Analo-
gously to the problem of object localisation and tracking, one challenge of visual
servoing consists in the classes of objects that can be handled. Visual servo-
ing applications have been successfully demonstrated for complex polyhedral
objects in 6 degrees of freedom (DoF). So far, however, successful interaction
with a moving object has been reported only for either primitive objects or for
complex objects with reduced degrees of freedom (DoF).

In the following chapter, visual servoing and grasping in 6 DoF are investi-
gated and demonstrated. This is an application of the approaches presented in
the previous chapters capable of tracking free-form surfaces in 6 DoF. In prin-
ciple, the shape of the objects to be grasped is not restricted to certain classes,
such as planes, spheres, cylinders, or composition of such primitive surfaces.

109
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The constraint imposed by the approaches refers exclusively to the inhomo-
geneity of the object texture and the unambiguity of the combination of shape
and texture.

A successful application demands further investigation of static aspects of
robotic systems and dynamic aspects of interaction. From the former point
of view, the task of following and grasping the moving object is not possible
without a suitable hardware configuration. From the latter point of view, the
course of perception, control, and action with respect to the target should allow
seamless interaction with the object and eventually with the human moving the
object.

Though the choices of robotic hardware are limited, the suitable combi-
nation of the sensors and actuators determine the success of the task. Sec-
tion 6.1 elaborates the static aspects of robotic systems discussing the sensing
workspaces and outlining the constraints of robot actuation. The following
section 6.2 addresses the spatial arrangement of sensor and actuator, which
eventually ensures that the workspaces of the single components overlap as
best as possible.

In addition, the flow of robot actions with respect to the target determine
the impression of the human involved in the interaction task. Hence, section
6.3 proposes high level robot control rules that fulfil the task appropriately.

The consideration on the robot workspace and high level control are finally
combined with the cascade of initial object localisation, pose refinement, and
tracking presented in chapter 5. Successful experiments on physical human-
robot interaction are reported in the concluding section 6.4.

6.1 Layout of Sensor and Actuator Workspaces

The workspace suited for human-robot interaction is determined by the work-
space of both, human and robot. In order to maximise the area suited for
interaction, the robot workspace has to be designed appropriately. In partic-
ular, the space covered by the sensor and the space reached with the robot
actuator have to be analysed. For a given configuration of both system compo-
nents, the intersection of the single workspaces specifies the volume for visual
servoing.

6.1.1 Sensing Workspace

The robot is equipped in the following with a camera as primary sensor, which
allows for the contactless inspection of the environment. The sensing range of
cameras depends mainly on the lenses in use. Commercially available lenses
typically perform either an orthographic projection or a perspective projection
of three-dimensional object points to two-dimensional coordinates of the image
plane.

Lenses of the former projection type sense a cylindrical volume and guar-
antee constant spatial sampling of the object irrespective of its distance to the
camera. However, the width of sensed area is limited to the radius of the lenses,
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which typically vary between 5 mm and 100 mm. This range is not acceptable
for visual servoing and grasping, and is thus not considered in the following.

Perspective camera lenses, on the other side, sense a pyramidical volume
and show spatial sampling that varies with the object to camera distance. The
maximally admissible distance is limited since vision methods cannot deal with
infinitesimal small object images. The closest distance is also restricted since
usually the visible size of the objects in question is not allowed to exceed the
image size. Both the upper and lower distance limits are related to the camera
lense aperture.

In the following, the camera lens settings are identified that allow to max-
imise the working space in accordance with the requirements of the application.
For appearance-based pose estimation, the concrete choice is related to the de-
sired lower limit of perspective distortion. The amount of perspective shortening
is the main factor for the accuracy of pose estimation under out-of-plane object
rotations. The bigger the distance between object and camera, the less reliable
the estimation of rotation becomes.

Hereafter, the workspace is uniquely defined by four values: the near and
far bound widths of the workspace “Wy [m] and respectively "Wy [m], and the
near and far bound distances “W, [m] and respectively "W, [m]. Let Ox [m]
denote the known object width!, and let C, [px] denote the constant horizontal
resolution of the camera image measured in pixel. Then, the near and far bound
widths are determined in the following by

Wy = OX 5 +Wx = Tmin * Cu s (61)

where 7pin [p—“}‘(] denotes the minimal required sensor resolution measured in

unit length per pixel. The near and far bound distances are computed in
accordance with the minimal relative perspective distortion for out of plane
rotations around the vertical axis. Suppose, in the following, a full-perspective
camera with optical centre (0,0). Then, the relative distortion &p;, of the ob-
ject border point Ox = (Ox/2,0,0) perceived at the far bound pose pu(f) =
(0,0,0,0,0, W,) for a rotation around the perpendicular orientation 6 = 0 is
specified by

goowonl o

Smin = O m @) | 20w,
6=0

Here, p : IR? — IR? denotes the camera projection according to equation 3.13
and m : IR? x RS — IR? corresponds to the rigid-body motion of equation 3.1.
Hence, the near and far bound distances can be determined, which read

B 2gmin ’

The horizontal lens aperture ZC [rad] of the camera for the above workspace is
finally given by

T, = 1w,

+
W, T

(6.3)

£C = 2tan” " (27W,,, TWy) | (6.4)

Lor object height respectively
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where tan~!(z, y) computes the angle enclosing (1,0) and (z,y). In conclusion,
the sensing workspace (“Wy, Wy, “W,, TW,) and the appropriate lens param-
eters ZC' are determined with the above rules on the basis of the horizontal
camera resolution Cy, the minimal required object resolution rmi,, the object
width Oy, and the desired minimal relative perspective distortion &pi,.

6.1.2 Dexterous Workspace

The physical arrangement of joints and joint limits determine the ability of the
robot to assume different positions and orientations with its end-effector. While
the reachable workspace is defined by the three-dimensional volume accessible
to the robot end-effector, the dexterous workspace is characterised by the three-
dimensional volume reached by the robot in any orientation.

The workspace of interest, however, might not correspond to the dexterous
workspace. Rather, the workspace depends on specific constraints of the task.
In addition to the kinematics, these constraints may involve also to the exertion
of forces/torques on the environment. While kinematics describes geometric
relation between joint values and end-effector pose, the dynamics describes
how motor torques affect joint motion. For the particular task of grasping
uncooperative objects, the constraints that matter the most apply to the robot
dexterous capabilities.

The dextrous workspace reflects the overall capabilities of the system irre-
spective of the current joint configuration. Hence, dexterity is not related to
the effort needed to move the robot between two poses of the workspace. These
efforts are reflected by the robot manipulability. Many different measures of
such efforts have been proposed in literature (see [33] for a survey), where the
majority of approaches considers manipulability as a local performance index.
The manipulability index based on the condition number of the robot Jacobian
is an exception as it has been used to determine global performance measures
separately in translational and rotational space [88].

6.2 Combination of Sensor and Actuator Workspaces

The physical configuration of the sensor and actuator determines the volume
of the conjoint workspace. Hence, the spatial arrangement between these sys-
tem components, and furthermore between this components and the human,
is of special interest in order to determine the configuration that suites the
interaction task the best.

6.2.1 Sensor-Actor Configuration

Mainly, two physical configurations exist relating camera and robot. Either
the camera is mounted on the robot end-effector or the camera is fixed relative
to the robot base. The former is called eye-in-hand configuration, while the
latter is known as eye-to-hand configuration. In the following, both types are
confronted and the benefits and disadvantages are enumerated.
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Eye-In-Hand

At the beginning of robotic research, articulated machines were not able to ap-
proach accurately desired metric positions. Manufacture tolerances, the heavy
weight of the robot in combination with the joint elasticity caused substantial
discrepancy between the desired and actual positions of the end-effector. In
practice, the true dimensions and alignment of robot cells are often unknown.
Both inaccuracies, however, can be alleviated by teaching the joint values for
the target positions of the end-effector.

Another possibility to overcome these inaccuracies, is to incorporate senso-
rial input that guides and aligns the robot with the desired position. Typically,
the sensors are rigidly mounted with respect to the end-effector. In this case,
end-effector and camera motion are coupled. Two solutions exist that handle
the rigid-body transformation between sensor and end-effector, i.e., the dis-
placement between these two systems. Either the transformation is determined
in an off-line calibration step, or the transformation is neglected at all by simply
learning the sensor-readings for the desired end-effector position.

Eye-in-hand configurations have two major advantages. First, visually guided
manipulation can be performed in the complete dexterous workspace since the
sensing workspace moves together with the end-effector. Second, the sensor
accuracy generally increases as the end-effector approaches the target. This
characteristic matches the requirements of typical tasks.

Eye-in-hand setups exhibit also some drawbacks. End-effectors are compact
mechatronic devices and additional hardware, such as a camera, demands extra
space at the tool-centre-point (TCP). The sensor is usually attached laterally
to the end-effector in order not to interfere with the active components of the
effector. Such configurations impose particular prudence in collision avoidance
for robot motion, and severely restrict the dextrous workspace. Moreover, spe-
cial attention is required in controlling the trajectory of the TCP to prevent the
loss of a moving target from the sensing volume. Image-based visual servoing
approaches implicitly address this problem in optimising the path of the visual
features in the image-plane as opposed to position-based approaches, which
tend to minimise the length of the path in three-dimensional Euclidean space.

Eye-To-Hand

Alternatively, the camera is not attached to the end-effector but is placed at an
external position from which the desired workspace can be observed partially
or totally. This configuration, known as eye-to-hand or stand-alone configu-
ration, is best known in the animal world, where motion of the extremities is
independent of motion of the eyes.

Obviously, this setup increases the autonomy of sensor and end-effector, such
that observations are decoupled from the taken actions. On the other hand, if
the camera is fixed relative to the robot base, the sensing workspace remains
static and thus the volume for conjoint sensing and manipulation is determined
a priori by the configuration. In any case, the eye-to-hand configuration requires
coordination between hand and eye.
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Coordination is achieved either through the contemporaneous observation of
both, the hand and the target, or through observations of the target only, while
the pose of the manipulator is known or estimated with other sensors. In the
domain of robotics, the former approach fulfils end-point closed-loop control,
while the latter performs end-point open-loop control. Hence, in contrast to eye-
in-hand configurations, the movement of the end-effector does not necessarily
affect the information extracted from the image.

The benefits and drawbacks of end-point closed-loop and end-point open-
loop control are evident. The former requires the estimation of the object pose
as well the estimation of the end-effector pose. Due to the complex appearance
of the end-effector and the encountered occlusion, this can be an arbitrarily
difficult problem. End-point open-loop control, instead, relies on the exact
knowledge about the kinematic chain between the camera and the end-effector
and on the accuracy of sensor readings in the kinematic chain.

The absolute position accuracy of robot actuators has improved significantly
compared to the beginnings of robotics. The increased accuracy is achieved
through higher stiffness, improved position sensors accuracy, as well as improved
stiffness of the motors and gears. Hence, end-point open-loop visual servoing
became feasible for current robots and robot applications.

The rigid-body transformation between camera and robot constitutes part of
the kinematic chain that is needed for end-point open-loop control. Hence, this
transformation has to be determined prior to the application through possibly
simplified observations of the end-point.

6.2.2 Human-Robot Interaction Configuration

In the following, the eye-to-hand configuration is chosen because the applica-
tion benefits from an anthropomorphic arrangement of sensor and actuator. A
human user quickly recognises the configuration and is willing to interact seam-
lessly with the robot. A larger and dynamic interaction volume obtained with
an eye-in-hand configuration would not be honoured appropriately.

The sensor workspace is optimally aligned with dexterous workspace when
a manipulability performance measure over the intersection of both workspace
reaches its maximum. In order to avoid local maxima encountered in sequen-
tial optimisation, the space of eye-to-robot configurations needs to be sampled
exhaustively. Moreover, at every position of the conjoint workspace, the manip-
ulability index should be considered for any orientation of the robot end-effector.
In the case of redundant robots, all poses of the kinematic null-space need to
be considered in addition.

Here, a pragmatic approach is proposed as an alternative. The sensing
workspace is manually aligned with the reachable workspace while accounting
for additional constraints on the orientation. This configuration is iteratively
refined checking the reachability and manipulability performance of the robot
on selected paths in the sensed volume.
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6.3 Visual-Servoing Control-Rules

The acceptance of robot assistants is determined by its behaviour, i.e., the
course of perception, control, and action with respect to external events. Hence,
high-level control rules play an important role for the specific case of human-
machine interaction. The actions performed by the robot are designed in the
following to communicate a gentle and familiar behaviour, which favours the
acceptance by humans.

The discrimination between gentle and rude behaviour may change with cul-
tural and social interaction habitudes. Nowadays, smooth and slow motions are
accepted widely as gentle, whereas fast and unpredictable motions commonly
cause discomfort or even anxieties.

Familiarity is a property that depends only to a certain degree on the cul-
tural roots. Personal experiences have a higher impact on the definition of
familiarity and unfamiliarity. Here, the complete appearance of the robot as
well as its actions are subject to the individual judgements. The familiarity
does not only depend on what and how actions are performed, but also which
entity is performing.

On the other side, robots are currently regarded as dull and numb and
corresponding actions are considered familiar. Hand in hand with the develop-
ment and dissemination of robots in society, the acceptance of robots as well as
the expectations in their capabilites are likely to increase. Not only in future
but already nowadays the capabilities of robots and humans are continously
confronted. This shows clearly the desire for intelligent robot assistants.

Familiarity depends also on the combination of actions and appearance.
Notable results has been achieved in the imitation of human appearance, facial
expressions, and actions by building remotely controlled humanoids [71, 103].
In the following, the focus of attention falls on the control rules for physical
interaction.

6.3.1 Task-Oriented High-Level Control

The task of grasping an object carried by a human is accomplished in three
phases (see figure 6.1): standby, follow, and grasp.

At the beginning of the interaction, the robot waits for the object to be
detected (standby). Hence, no pose information is sent to the robot in this
state, which, in consequence, remains immobile.

Once image processing detects the object and succeeds in the proper es-
timation of the object pose, the robot starts moving (follow). The robot is
continously controlled by the follow frame Fg relative to the tracked object
model. In order for the end-effector not to unintentionally collide with the
object, the follow frame is not set to a frame suited to immediately grasp the
object. Instead, this frame is chosen reasonably close to the object grasp frame.

As soon as the end-effector reaches the current follow pose within a prede-
termined distance, the robot approaches the object for grasping (grasp). In this
period, the end-effector is commanded to move to the grasp frame Fg relative
to the tracked object. The cascade of state switches culminates in sending an
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Figure 6.1: Robot state machine for grasping uncooperative objects. Here, Fg
and Fg denote the follow frame and grasp frame respectively.

appropriate grasp command automatically to the end-effector as soon as the
grasp pose is reached within a predetermined epsilon neighbourhood.

In general, an uncountable number of stabile grasps and grasp frames Fg
exist for a certain object. In order to keep the efforts low, a suitable frame
is not selected on-line in dependence of the current object pose. Instead, the
frame is considered in this work to be determined off-line either by simulation
or with a real experiment. In the former case, models of the object and the
gripper are needed to plane the appropriate configuration. In the latter case, a
grasping experiment is performed and the resulting object pose is determined
w.r.t. the end-effector.

Obviously, once the object is caught its position is fixed relative to the end-
effector. It is interesting to note, that object motion is restricted already before
the grasp is completed. More precisely, the object motion is gradually restricted
as the gripper approaches the object because the gripper naturally restricts the
free space surrounding the object. This fact is fully taken into account by the
states for high-level robot control.

6.3.2 Method-dependent Control

The object pose estimates needs to be mapped appropriately to robot control
parameters such for instance motor acceleration, velocity or torque. The levels
of the tracking cascade presented in chapter 5 generate pose estimates that
differ significantly in dimensionality and accuracy.

In detail, the methods at the entry levels are based on a histogram repre-
sentation of the target and hence, are not designed to accurately localise the
object. Moreover, the first level detects the object on the image plane and not in
three-dimensional Euclidean space. Though, the second stage tracks the object
in three-dimensions, its estimate is not considered accurate. In consequence,
these two stages are not connected to robot control [56]. When either of both
stages is active, the robot switches to or remains in the standby state.

The top two layers, instead, are based on the shape-texture representation
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and generate 6-DoF pose estimates in three-dimensional Euclidean space. These
parameters are easily integrated into a visual servoing application (refer to figure
6.2) via position-based control [81]. Here, the robot poses for the follow or grasp
frame (Fr and respectively F) relative to the target (Fp) are mapped via an
inverse kinematic to the configuration space, e.g., to the robot joint angles
(0"). In view of substantial differences between the current and the desired
robot pose, an interpolation module generates intermediate commands either
in Cartesian space (F};) or in configuration space.

Stability of the above visual-servoing application is guaranteed since it im-
plements open-loop control where commands sent to the robot do not affect the
object as long as there is no contact.

N task level control
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Figure 6.2: Control loop for grasping uncooperative objects consisting of control
units at a low level, a path level, and the task level. The estimated object pose
Fp is combined either with the tracking frame Fg or the grasping frame Fg to
the desired end-effector frame F} feeding the robot controller with the desired
end-effector frame. The robot controller supplies each joint controller with the
desired angles.

6.3.3 Under- and Over-actuation

The transformation of a desired 6-DoF trajectory in three-dimensional Carte-
sian space to a trajectory in the configuration space is well posed if exactly
one solution to the problem exists. Under- and Over-actuation occur if no so-
lution or respectively more solutions can be found. Redundant robotic arms,
e.g., robots with more than 6 DoF, are typically over-actuated with respect
to the positioning task. Situations of over-actuation are reflected by redun-
dancy singularities of the task [22]. The inverse kinematics has to take care of
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these conditions employing additional constraints, for instance, on the power
consumption, on acceleration, or aiming at the avoidance of collision.

Furthermore, the inverse kinematics is required to avoid configuration sin-
gularities. These singularities occur when the robot becomes under-actuated,
i.e., when the task cannot be accomplished instantaneously.

Thus, in case of human-like 7-DoF robotic arms, the inverse kinematics has
to prevent under-actuation and simultaneously manage over-actuation carefully
by following additional optimality constraints. In contrast to local manipulation
tasks, the application of grasping uncooperatively moving objects poses faces
a new problem. The challenge is to prevent configuration singularities without
knowing the future trajectory of the target in advance. Approaches that would
solve the problem need to embrace two disciplines, which are considered sepa-
rate til now, i.e., reactive control and motion planning. In this work, no general
solution to the problem is proposed.

Instead, typical configurations of the human arm for reaching and grasping
tasks are used as a priori knowledge. The human physiology favours particular
postures, i.e., the lateral arrangement of the elbow. By contrast, a robot can
usually assume a wider range of configurations within the space designated
for the man-machine interaction. Within the manifold of configurations, the
robot posture that resembles the “elbow” configuration clearly supports the
task favouring

e the acceptance by humans,
e a common understanding of robot dextrous space and
e the avoidance of under-actuation.

Accordingly, this configuration aims at supporting object poses accepted by
humans. The inverse kinematic does not have to deal with unnatural postures
but only with those close to the initial configuration. A bias towards these joint
configurations avoids the drift encountered during interaction in the direction
of problematic configurations.

6.4 Evaluation

The above design criteria finally allow to integrate and evaluate the tracking
cascade presented in chapter 5 in a real human-robot interaction application.
The following sections describe first the setup used for this real-world applica-
tion. Accordingly, the robot hardware is presented, the physical arrangement
of the system components is shown, and the procedure is outlined that allows
to registers these components with each other (section 6.4.1). Thereafter, the
interaction experiments are explained (section 6.4.2), and finally the visual-
servoing application is evaluated for the accomplishment of the reference task
of grasping a bottle moved by a human being (section 6.4.3).
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6.4.1 Hardware Setup

The hardware employed in the demonstrator consists of a light-weight robotic
arm, an anthropomorphic robotic hand, and a digital progressive scan camera.
These components are briefly described, followed by the description of their
physical arrangement. Finally, the procedure for the physical registration of
the camera with the robot actuator is outlined.

Components

Visual servoing is evaluated on one of the currently most sophisticated robotic
arms, the DLR? light-weight robot-2 (LWR-2) [67] with 7 degrees of freedom
and a total length of 1024 mm (for further details see section A.1).

In order to handle general objects, especially objects of daily use, the DLR
anthropomorphic robotic hand IT [28] is used as generic grasping tool in the
setup (see section A.2 for technical details). The type of grasp performed with
the anthropomorphic hand is chosen off-line according to the desired manipu-
lation task. While pinch or precision grasps allow for object fine manipulation,
a power grasp is especially suited for handling heavy objects. The latter results
in particularly stable grasps and is therefore chosen in absence of subsequent
requirements on manipulation.

The optical sensor is chosen according to the methods of object localisation
and tracking. Though the requirements on the sensor are reasonably limited
by the sampling frequency that the tracking methods sustain (cf. figures 5.2,
5.3, 5.4), the sensor capabilities are constrained in particular by the available
communication resources. The combination of frame-rate, image resolution,
and pixel depth dictate the requirements on the communication bandwidth.
In addition, the maximal bandwidth is typically limited by the sensor chip
to approximately 30 MBit/s. As a consequence, mega-pixel cameras are not
considered. Instead, a camera supporting PAL resolution (768 x 576) images
and a frame-rate up to 50 Hz is chosen. The camera models Marlin F-046C
and Guppy F-046C of Allied Vision Technologies® are identified to fulfil these
requirements (see section A.3 for the data sheet).

Workspaces and Arrangement

According to the rules established in section 6.1.1, the sensing workspace is
determined based on the object width, minimally required object resolution,
and the desired minimal perspective distortion. Here, objects widths of 80 mm
are considered. The resolution is set according to the spatial sampling distance
of the object models (cf. section 3.4.1) to 1 pixel per mm. With a minimal
perspective distortion of 5% at the far bound of the sensing volume, 52° are
identified as the required horizontal lens aperture. In respect to this guideline,
a nominal focal length of 6 mm is chosen, which establishes a pyramidal sensing
space with a horizontal and vertical aperture of approximately 56° and 43°,

2Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (German Aerospace Center)
Shttp://www.alliedvisiontec.com
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Figure 6.3: Visualisation of the 5-DoF capability map for the LWR-2. The
colour scale refers to the robot ability to reach the corresponding point with
different orientations. Blue indicates regions of high capability and red indicates
regions of reduced capability. Courtesy of Franziska Zacharias [150].

respectively. Hence, the workspace exhibits a depth extension of approximately
660 mm at the theoretical minimal distance of 75mm. At the far bound, a
region of 780 mm X 580 mm meets the above requirements.

The dextrous workspace of the robot is identified in simulations by means
of a capability map [150]. Figure 6.3 shows this map, which allows to locate
appropriate regions for interaction.

Finally, the robot arm and robotic hand are combined with the camera into
an eye-to-hand setup. Though the robot is mounted on a mobile, holonomic
platform (figure 6.4), these additional degrees of freedom are not considered for
visual servoing.

Sensor-Actuator Registration

The top two layers of the tracking cascade presented in chapter 5 require an in-
trinsically calibrated camera in order to accurately match and track the object.
In addition, position-based visual servoing relies on an extrinsic calibration of
the camera w.r.t. the robot. In an eye-to-hand configuration, this calibration
allows to map pose estimates from the camera frame to the robot base frame.

The registration of camera and robot base frame is achieved by attaching a
special landmark to the robot tool-centre-point (TCP). The TCP is moved to
arbitrary but known positions within the conjoint sensor-actuator workspace
while an appropriate module localises the landmark in the camera images. Ob-
viously, the correspondence of the three-dimensional points in the robot frame
to the two-dimensional points on the image plane is immediately given. Al-
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Figure 6.4: The DLR Robutler: A mobile service robot with a 7-DoF light-
weight robotic arm, a 13-DoF dextrous hand, and an eye-to-hand camera sys-
tem.

though a non-linear optimisation process may face the problem of local min-
ima, a rough initial estimation is sufficient to drive minimisation to the global
6-DoF optimum of the rigid-body transformation between robot and camera.
This registration process is able to compensate reasonable inaccuracies in the
sensed robot pose.

Note, the above registration process can be extended to calibrate both the
intrinsic and extrinsic parameters. Hereafter, intrinsic calibration is separated
from the extrinsic registration since former parameters can be determined accu-
rately with stand-alone calibration tools [122, 134] at minimal additional cost.

6.4.2 Experiments for Human-Robot Interaction

The following experiments aim at demonstrating the eligibility of the tracking
cascade elaborated in chapter 5 for texture-based visual servoing. Moreover the
setup is validated giving proof of successful experiments for grasping moving
objects.

Accordingly, the focus is on the temporal behaviour of the system. The
capability of the top tracking levels with respect to different shapes and textures
has been assessed in chapter 3. Hence, the following experiments are performed
with a single object suited to demonstrate human-robot interaction, i.e., a bottle
object. The procedures to sample part of this object and to register it with a
reference-image are accomplished as described in the experimental section of
chapter 3.

The experiments make use of the conjoint workspace of robot, camera, and
human being as best as possible. The purpose of these tests is to challenge the
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robot in catching the object as quickly as possible. Here, a person is designated
to take the object, present it to the robot (camera), and to move the object
until the robot decides autonomously to fulfil the grasping action. Contempora-
neously to the actions performed by the human, the robot is thought to follow a
certain procedure. First the robot detects the object. Thereafter, the position
and the orientation of the object is determined. The robot approaches the ob-
ject by following any motion of the object. Finally, it switches to a closer pose
in order to finally execute the clasping commands with the anthropomorphic
robotic hand.

Ten trials with varying object velocities are carried out to evaluate the
performance of tracking and servoing. In contrast to section 6.3.1, here the
command to switch from the state follow to the state grasp is triggered by time
in order to be able to better analyse the servoing behaviour.

6.4.3 Evaluation of Workspaces and Tracking Capabilities

The visual-servoing system is assessed by real-world experiments. These experi-
ments are evaluated with respect to three distinct characteristics: the workspace
covered by object motion and robot motion, the ability of the tracking cascade
to adapt to different object velocities, and the servoing capability of the robotic
system.

The experiments are performed for the complete task, that is from ini-
tial object detection and localisation, to accurate object tracking with con-
current position-based control of the robot end-effector. The tracking cascade
established in chapter 5 is composed in the following of the stages histogram-
based object detection and localisation in 2 DoF (section 5.4.1), histogram-
based 3-DoF tracking with the Mean-Shift algorithm (section 5.4.2), shape-
texture based 6-DoF pose refinement and tracking with an annealed Markov-
Chain Monte-Carlo filter (section 5.5.1) and accurate shape-texture based 6-
DoF tracking adopting sequential optimisation and the relaxed image-constancy
assumption (section 5.5.2 and section 3.2.5).

Sensed and Actuated Workspace

The conjoint workspace for sensing and actuation plays an important role for
the physical human-robot interaction. Especially the size and the location of
the volume available for the interaction affects the acceptance of the application.

Both properties are measured on the basis of 10 trials of human-robot in-
teraction. Table 6.1 reports the range of sensed object locations transformed to
a desired end-effector position and the range of the actually performed robot
trajectories. An interaction volume of approx. 0.4m x 0.45m x 0.3m has been
exploited in the experiments. The discrepancy between the desired and actual
range results from the low-pass filtering characteristic of robot motion.

This effect becomes apparent in Figure 6.5, which shows single data points
of the desired and the actually performed trajectories for each of the trials.
Here, the trajectories are transformed to the coordinate system of the principal
axes of the desired end-effector positions.
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X y z
min max A | min max A | min max A
desired || 304 736 432 | -229 227 456 | 1031 1472 441
actual || 314 698 384 | -225 231 456 | 1163 1454 291

123

Table 6.1: Range of desired and actual end-effector positions with respect to

the robot base frame in mm.
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Figure 6.5: Desired (left) and actual (right) end-effector positions in mm from
different viewpoints along the principal axes. The data points for 10 interaction
trials are shown in a different colour/symbol combinations. From top to bottom:

top, frontal, and lateral view.

Capability of Adaptation to Varying Object Velocities

According to the design of cascaded hierarchical tracking, the process of pose es-
timation switches from one level to the next higher or lower level in dependence
on the external conditions, e.g., on object velocity, occlusion, or illumination.
This capability is assessed on the basis of 10 trials of human-machine interac-
tion, which vary in their trajectory and in the average object velocity. Figure
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6.6 reports the temporal proportion of the three tracking levels of the cascade
for each trial. Clearly, the proportion changes with the average velocity of the

Proportion of tracking stages
duration

1882;0 I histogram
’| P shape-textureMCMC

80%
20% [ shape-texture GN-IC-R

60%
50%
40%
30%
20%
10%

E(v)

24.2 28.0 36.0 44.9 485 585 60.0 60.5 61.7 80.0 [MM/s]

Figure 6.6: Proportion of histogram-based tracking, shape-texture based track-
ing with Monte-Carlo methods, and shape-texture based tracking following
Gauss-Newton optimisation for each interaction trial. The trials are sorted ac-
cording to the average translational velocity encountered in the shape-texture
based tracking stages.

object. In particular, shape-texture based tracking by means of the Gauss-
Newton algorithm is active for a shorter period of time as the object velocity
increases. This observation is perfectly in line with the design of the tracking
cascade since failures at the top level are compensated by the annealed Monte-
Carlo approach in the first place followed by histogram-based tracking as the
next fall-back level.

This tendency is clearly seen in the comparison of two particular trials, the
trajectory with an average object velocity of 46 mm/s (reported in figure 6.7)
and the trajectory with an average velocity of 24 mm/s (displayed in figure
6.8). While shape-texture based tracking dominates the object moving at 24
mm/s, frequent switches to histogram-based tracking are required for a higher
object velocity.

Servoing Capability

The servoing capability is best observed by opposing the trajectory of the
tracked object with the trajectory of the end-effector. Figure 6.7 reports the tra-
jectories for the trial with an average object velocity of 46 mm/s, while figure 6.8
shows the trajectories for the experiment with an average velocity of 24 mm/s.
In each case, the robot remains immobile for 4 seconds and subsequently starts
moving as soon as shape-texture based tracking becomes active. From then on,
the robot end-effector approaches the follow frame within the position-based
control loop. After 15 seconds from the beginning, the target frame switches to
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the grasp frame and the end-effector executes the grasp command as soon as
the residual distance from the desired pose falls below a threshold.
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Figure 6.7: Trajectories of an exemplified visual servoing session with an aver-
age object velocity of 46 mm/s. Top & Middle: Desired and actual absolute
positions in x,y and z. Bottom: Rotational and translational error between the
desired and actual end-effector poses.

Both figures show that the trajectory performed by the end-effector is af-
fected by low-pass filtering and hence, introduces a phase lag. Low-pass filtering
is inherent to the system due to the robot inertia* and the delay of pose esti-
mation caused by the tracking stages. The phase appears in particular during
the periods of histogram-based tracking. While high-level control switches to
standby and no new target poses are emitted, the robot still tends to the most
recent pose.

In the phases of shape-texture based tracking, the residual rotation as well as
the residual translation between the desired and the actual robot pose depend on
the current object acceleration. For constant object motion, the robot control

4The robot inertia is a combined value of mass and underlying control.
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loop is able to diminish the residuals (see figure 6.8). During the phases of
acceleration, however, the residuals are growing. Eventually, the robot grasps
the object when it is not accelerating.
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Figure 6.8: Trajectories of an exemplified visual servoing session with an aver-
age object velocity of 24 mm/s. Top & Middle: Desired and actual absolute
positions in x,y and z. Bottom: Rotational and translational error between the
desired and actual end-effector pose.

The final proof for the validity of the servoing approaches is given by the
capability not only to follow the object movements but also to catch the object.
In the set of 10 interaction trials with an adequate maximal object velocities of
80 mm/s, the application succeeded in this task.

Finally, some pictures are reported documenting the course of interaction
seen from the camera point of view. Figure 6.9 shows the anthropomorphic
hand approaching the bottle and finally grasping it while still in motion.
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Figure 6.9: Augmented screen-shots of successful visual servoing and grasping
of a bottle. The tracked model points are outlined in green when the tracking
stage GN-IC-R is active, and red when the annealed Particle filter is tracking.
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Conclusion

The thesis addressed the problem of tracking and grasping a moving object
with a robotic actuator following a novel object representation model. In con-
trast to feature-based approaches, this representation allows for free-form and
non-homogeneously textured surfaces. The work elaborated methods for real-
time tracking and evaluated different techniques to cope with variations of the
illumination. A tracking cascade was proposed that allows for the initial local-
isation of the object in 2 DoF and subsequent refinement of the pose estimate
to 6 DoF. Physical configurations of the sensor and the robot were discussed
with respect to their suitability for the task. Finally, an appropriate control
framework for visual servoing was devised and all components are evaluated in
real-world interaction experiments.

In this concluding chapter, the proposed methods and attained results are
discussed (section 7.1), and motivations for following research are given (section
7.2).

7.1 Discussion

The discussion of the methods, setups, and evaluations presented in the thesis
follows the order of occurrence respectively to the chapters.

7.1.1 Shape-Texture Based Tracking

The central methods of shape-texture based tracking presented in chapter 3
use a novel object model that, in its universality, has not yet been used for
appearance-based tracking. In combination with the considered full-perspective
projection, 6-DoF motion can be estimated for any potential non-homogeneous
object or scene. Especially, the novel method for predicting the motion Jacobian
increases robustness under restricted availability of computational resources.
This feature is very important for real-time applications such as visual servoing.

129
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Inherently to the used object model, self-occlusions and changes of illumi-
nation are not explicitely handled. However, self-occlusions can be trivially
handled in the case of convex objects by looking at the orientation of the sur-
face normal with respect to the camera. This technique is known in computer
graphics as back-face culling. A more complex object description is needed
for non-convex surfaces. Here, wire-frame models represent a possible exten-
sion. Errors in the model, i.e., errors in the surface shape, texture, or initial
registration, naturally affect the tracking performance. These errors can com-
promise robustness especially when the motion Jacobian is predicted, and not
measured, in the current image. However, this effect only occurs at viewing
angles substantially different from the reference view.

In this thesis, we evaluated the methods very generally and application un-
specific. The tests comprehend planar, curved, and free-form shapes as well as
both richly textured and low textured surfaces. Moreover, the tests consider a
large variation of object poses in the visible region of the camera. The perfor-
mance is finally assessed with respect to the probability of convergence (to the
true pose) under real-time conditions, i.e., with respect to the speed of object
motion and the available computing power. Hence, the experiments provide a
fair benchmark for the tracking performance.

7.1.2 Object-Luminance Adaptation

Shape-texture tracking is extended in chapter 4 by additional support on vary-
ing illumination conditions. In particular, three different strategies are consid-
ered: estimation based on a concurrent model of motion and illumination (sec-
tion 4.2), estimation based on an adaptation to illumination effects (sections
4.1 and 4.3), and estimation based on the assumption of constant conditions of
illumination (sections 3.2.1 and 3.2.4).

The evaluation showed clearly that the template-update technique (section
4.3) improves tracking performance with respect to the tracking method that
uses the predicted motion Jacobian (section 3.2.4). In addition to the findings
of chapter 3, the experiments show that the latter tracking method outperforms
in turn the non-optimised Gauss-Newton approach (section 3.2.1) under real-
time constraints, even in conditions of changing illumination. Surprisingly,
neither the complementary illumination subspace approach (section 4.2) nor
the adaptation with intensity-distribution normalisation (section 4.1) change
the tracking performance significantly.

The evaluation is based on real trajectories with no intentional motion bi-
ases. Furthermore, the illumination in the experiments changes from moder-
ately homogenous to strongly directed. Despite all efforts, the data-set can
be only considered a subset in the domain of all appearances and appearance
changes. Accordingly, the robustness and accuracy of the methods can change
in relation to biases on the object or the illumination conditions.
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7.1.3 Hierarchical Visual Tracking

The successful application of the tracking methods depends on the additional
ability to determine the initial pose without prior estimates and to recover from
occlusions or failures. Due to real-time limitations, the accomplishment of this
goal requires the appropriate partitioning of the problem.

In chapter 5 the dependencies of different estimation strategies are anal-
ysed, and a tracking cascade is presented in line with the found dependencies.
The adjustment of the threshold parameters inherent to the tracking cascade is
left to the user. In principle however, these parameters can be determined on
the basis of appropriate training data. Furthermore, at the transition between
3-DoF histogram-based localisation and tracking stage to the stage of 6-DoF
shape-texture based tracking, the large range of object orientations needs to
be explored, which can be an computationally expensive task. In practice, the
application benefits from the actual preferences of humans on the object orien-
tation during interaction. This knowledge lowers the computational constraints
significantly.

The tracking cascade is evaluated in chapter 6 based on real-world interac-
tion trials. The experiments validate the design criterias and give evidence of
suitability for the approach.

7.1.4 Visual Servoing for Grasping

Finally, the tracking cascade is integrated in chapter 6 into an appropriate
robotic demonstrator. Physical layouts of the sensor (camera) with respect
to the actuator (robot) and the human are investigated for their suitability
to human-robot interaction. In general, robots exhibit a limited dexterous
workspace. Their dexterity typically diminishes both towards the robot base
and towards the border or of their workspace. Hence, the devised configuration
is specific to the particular task of human-robot interaction for grasping.

Real-world interaction experiments show the validity of the devised configu-
ration, the control loop, the tracking cascade, and its components for the desired
task of grasping a moving object from the hand of the user. In the end, these
experiments prove that the task based on pure appearance-based object mod-
els is possible. This approach differs from the popular contour feature-based
methods, which typically lack of support for textured objects.

Obviously, the smoothness of interaction is determined by the degree of
cooperation of the participants. The duration of the interaction til completion
cannot be determined a priori due to the unpredictability of the movements of
the human. Interestingly, the trajectories seem to depend on the familiarity of
the human with robots. However, further research is necessary to prove this
affirmation.

7.2 Prospective Questions

In spite of these achievements, potential improvements can be identified and
new questions arise.
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The experiments of shape-texture based tracking allow to conjecture that
the size of the convergence area depends on the frequency components of the
surface-texture. Thus, in order to extend the area of convergence, high fre-
quency components on the surface texture should be suppressed (cf. typical ap-
proaches based on Gaussian-pyramids). Accordingly, image processing should
start at a course image resolution and terminate at the native sensor resolution.
Another possibility consists of the combination of local appearance cues (fea-
tures) with the presented global-appearance representation. In this way, surface
point correspondences could be established over increased distances in the im-
age. Moreover, the simultaneous use of sparse local appearance cues (features)
and global appearance representation in an integrated tracking method would
not only improve robustness, but would also join the originally disjunct object
classes separately supported by each method.

The appearance-based methods are capable of tracking arbitrarily shaped
but known objects. However, shape models could also be acquired on-line
through dense stereo methods. Furthermore, the models can also be potentially
constructed from a monocular image sequence following structure from motion
approaches. It would be very interesting to investigate the impact of the image-
constancy assumption (cf. sections 3.2.2 and 3.2.3) on an efficient method for
the simultaneous and direct estimation of both structure and motion.

With respect to the illumination compensation, new and promising findings
on illumination invariants exist. They have to be investigated for suitability to
the appearance-based methods. Generally, and in contrast to the existing off-
line computation of the illumination subspace, it could be convenient to deter-
mine both the illumination base and its parameters on-line without additional
efforts. The robust handling of occlusions is not addressed in the presented
approaches but can be easily accomplished with M-estimators [98]. In addition,
it would be very informative to investigate to which extent M-estimators affect
the area of convergence of any tracking method.

Deliberately in the present work, no physical model of object dynamics is
considered in order to avoid wrong assumptions about object motion. However,
the adoption of conservative assumptions can increase the maximal sustained
object velocity in the average case.

It is almost impossible to track the object until the end of the grasping
task because the employed gripper or the employed dextrous anthropomorphic
hand often obscure the object. Moreover, the object can slip during grasping,
and the commanded tool-centre-point pose might vary from the true one due
to the potentially flexible robot structure. All these effects cause the actual
final object pose to deviate from the estimated pose. It would be interesting to
quantify the final discrepancies through external measurement systems.

In the end, this successful application can be extended to an increased num-
ber of degrees of freedom, for instance, the pan-tilt degrees of freedom of the
stand-alone camera could be extended, or additional degrees of freedom in the
robot base could be added in order to allow for mobile visual-servoing applica-
tions.



Technical Data

The hardware employed in the demonstrator consists of DLR light-weight robot-
2 (LWR-2), DLR anthropomorphic robotic hand, and a digital progressive scan
camera. These components are briefly described in the following.

A.1 DLR Light-Weight Robotic Arm (LWR-2)

The arm [67] exhibits 7 degrees of freedom (DoF), hence, the robot is redundant
for the task of assuming a certain pose with its end-effector. This redundancy
can be used to optimise the robot trajectory, e.g., with respect to power con-
sumption or velocity. The robot consists of a serial configuration of links and
revolution joints with a total length of 1.024 m. A single joint consists of
a electrical brushless DC motor with a Harmonic Drive! gear, a force-torque
sensor on the output side, position encoders on the motor side and at the link
side, a power-supply, and all the signal-processing components needed to locally
control the position or the torque applied by the joint.

In total, the LWR-2 has a weight of 18kg and is able to manipulate up to
7kg. The maximal joint speed is 187°/s, which sufficiently resembles human
capabilities. See table A.1 for further details.

A.2 DLR Robotic Hand 11

This anthropomorphic robotic hand [28] features four identical fingers whereas
one finger assumes the role of a thumb. Each finger is composed of three serial
links with three DoF, two for the finger base and one for dependent motion of
the last two links. In addition, the palm can be contracted in order to support
clasping of objects. In total, the robotic hand exhibits 13 DoF. Each finger is

"http://www.harmonicdrive.de
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overall || DoF 7
weight 18 kg
length 1024 mm
max. payload 7kg

joint motors 7 brushless DC
gears 7 Harmonic Drive
max. speed 187° /s
Sensors 2 position sensors & 1 torque sensor per joint
brake electromagnetic safety brake
power supply 48V DC, 20 kHz AC
electronics fully integrated electronics
control position, torque, impedance control

Table A.1: Technical data of the DLR light weight robot 2 (LWR-2).

equipped with three position and three force-torque sensors, one for each degree
of freedom, and a six-dimensional force-torque sensor at the finger tip.

All electrical motors and all the electronic communication components are
integrated into the dextrous hand. As a consequence the hand is roughly 1.5
times bigger than a human hand at a total weight of 1.8 kg. However, it can
be attached to every robotic arm by connecting a minimal set of cables. Table
A.2 summarises the technical information.

overall | number of fingers 4
DoF 13
weight 1.8kg
finger | motors 3 brushless DC
gears 3 Harmonic Drives
DoF 3
max. speed 360°/s
active force 30N
Sensors 1 position sensors & 1 torque sensor &
1 6-DoF force-torque sensor
electronics fully integrated electronics
palm DoF 1 ‘

Table A.2: Technical data of the DLR hand 2.

A.3 Digital Cameras AVT Marlin F-046C and Guppy
F-046C
The camera models Marlin F-046C and Guppy F-046C of Allied Vision Tech-

nologies? features a IIDC-DCAM protocol over an IEEE-1394a interface. The
data-sheet for the former camera is reported in table A.3.

Zhttp://www.alliedvisiontec.com
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hardware || sensor 1/2” progressive scan CCD
resolution up to 780 x 582 (format 7)
colour colour Bayer-pattern
A/D 10 bit
trigger extern/intern
frame-rate up to 53 Hz (format 7)

firmware || protocol DCAM v1.30
shutter manual/auto (11 us - 67 s)
gain manual/auto (0-16 dB)
white-balance manual /auto
additional features | real-time shading correction,

programmable look-up-table

Table A.3: Technical properties of the IIDC-DCAM 1.30 compliant camera
Marlin F-046C of Allied Vision Technologies.
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