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Abstract— In machine learning the preprocessing of the obser-
vations and the resulting features are one of the most important
factors for the performance of the final system. In this paper
a method to perform feature selection for change detection in
multivariate time-series is presented. Feature selection aims to
determine a small subset which is representative for the change
detection task from a given set of features. We are dealing
with time-series where the classification has to be done on time-
stamp level, although the smallest independent entity is a scenario
consisting of one or more time-series. Despite this difficulty we
will show how feature selection based on the generalization ability
of a classifier can be realized by defining a cost function on
scenario level. For the classification step in the feature selection
process a modified Random Forest (RF) algorithm—which we
will call Scenario Based Random Forest (SBRF)—is used due to
its intrinsic possibility to estimate the generalization error. The
excellent performance of the proposed feature selection algorithm
will be shown in a car crash detection application.

I. INTRODUCTION

Time-series have been studied extensively mainly in four
important areas of application [1]: forecasting, estimating the
transfer function of a system, analysis of effects of unusual
intervention events to a system and discrete control systems.
Among the most successful techniques applied thereby is mod-
eling the time-series as an autoregressive integrated moving
average stochastic process. In this paper we will not determine
the parameters of stochastic models for time-series, but rather
machine learning techniques will be applied in order to classify
new time-series based on the observation of past time-series
and their labeling. In particular we focus on the feature
selection task since the preprocessing and the resulting features
are one of the most important factors for the classification
performance.

Multivariate time-series classification and change detection
in time-series do not easily fit in the usual feature-value model
used in machine learning, since the scenarios to be classified
consist of a large sequence of elementary features. Whereas for
time-series this elementary features are the successive values
of the signals to be classified, the same problem appears also
in sequence recognition, e. g., pattern recognition in DNA
sequences or character sequences in a written text. In order to
apply feature-value machine learning algorithms to this kind of
problems one has to change the representation of the scenarios
to be classified from the elementary features to high-level

features which can represent the desired classes better and
which can be computed from the elementary features. This
is due to the fact, that an intrinsic property of time-series
or other sequences is the statistical dependency of adjacent
values. Since the nature of this dependence is of practical
interest, the aim in feature extraction is to find those high-
level features which describe best the characteristic features
for each class. The construction of these high-level features
normally requires a priori knowledge about the process that
generated the data. If such domain knowledge is not available,
a large set of predefined high-level features can be constructed
from the data and in a following step feature selection can
be performed in order to keep only a small set of high-level
features which are best suited for the classification task. In the
paper we will mainly focus on the latter task.

A reduced number of features not only combats the curse of
dimensionality [2] but also leads to a reduced computational
complexity. Feature selection techniques can be divided into
filter, wrapper, and embedded methods. We will focus on
wrapper and embedded methods where a learning machine
is involved in the selection step and the importance of the
features is estimated based on the performance of the learning
machine. An advantage of wrapper and embedded methods
is that they also take into account the interactions among the
features when evaluating their importance for the classification
task. As learning machine we will use a modified version of
the Random Forest (RF) algorithm [3] which will be extended,
such that the misclassification error rate can be estimated
on scenario-level. We will call the algorithm Scenario-Based
Random Forest (SBRF). In the paper we will perform forward-
backward feature elimination. The forward feature selection is
accomplished by the use of decision trees in the SBRF and
the backward feature elimination is realized by starting with a
set of features and reducing this set based on the performance
of the SBRF.

Time-series classification using machine learning has al-
ready been discussed in some recent works, e. g., in [4], [5],
[6], [7], [8]. Also possibilities to perform feature extraction
from time-series have been proposed in [9], [10], [11]. How-
ever, none of this works considers the change detection case.
In change detection some segments of a time-series have one
class label and other segments have different class labels.
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Fig. 1: Change Detection

Moreover, in change detection at a certain time instance not
the whole time-series is available but only the sequence up to
this point. The main contribution of this paper is to present
an efficient machine learning algorithm for performing feature
selection for change detection in multivariate time-series. The
method is also applicable to the static time-series classification
where the class label is not changing with time.

Throughout the paper, vectors and matrices are denoted by
lower and upper case bold letters, and random variables and
random processes are written using sans serif fonts.

II. THE CHANGE DETECTION PROBLEM

In classification and regression tasks machine learning pro-
cedures aim to estimate the values of a target attribute v given
a set of measured observation attributes u. In the change
detection problem the observations are realizations of random
processes—in the following called scenarios—denoted with
S . In the multivariate case a scenario S ∈ R

L×nend consists
of L time-series and has the length nend whereas the target
attributes taking on discrete values ck, k = 1, . . . ,K—called
classes or labels—are also realizations of the random process
y ∈ {c1, . . . , cK}1×nend :

S = [s[1], . . . , s[nend]], with (1)

s[n] = [s1[n], . . . , sL[n]]T ∈ R
L and

y = [y[1], . . . , y[nend]]. (2)

Unlike the usual feature-value model where the observations
um are assumed to be realizations of i.i.d. random variables,
here the random variables from the same scenario, e. g., s[n]
and s[n− 1] are dependent. Thus, the smallest entity that can
be assumed independent from the others is an entire scenario
S . The set T of measured observations—called training set—
consists of M scenarios and the corresponding target values

T = {(S1, y1), . . . , (SM , yM )}. (3)

One of the difficulties that appears in change detection is that
a scenario Sm consists of segments where the corresponding
target labels change. In most of the literature on time-series
classification using machine learning it is assumed that in a
scenario Sm the class label y[n] is constant, i. e., a scenario
belongs to one class. This is not the case in the change
detection task. As an example in Fig. 1 a scenario consisting
of L = 2 time-series is shown and the scenario is divided in
4 segments with the labels c1, c2, c3 and c4.

The aim of change detection is to figure out for a new
scenario which label the current segment has at a given time-
index n by using only the information from the time-series up

to this point. With S [1,n] = [s[1], . . . , s[n]] ∈ R
L×n denoting

the time-series up to time-index n we are looking for the
mapping

gn : R
L×n → {c1, . . . , cK}, S [1,n] 7→ y[n]. (4)

In order to apply machine learning algorithms one can extract
from S [1,n] high-level features, e. g., slope, duration of local
maxima, magnitude of a peak relative to its neighborhood,
peak counts, fraction of energy between two frequencies, etc..
These high-level features are then stored in the vector x [n] ∈
R

N . Based on the input vector x [n] and the target values y[n]
a machine learning algorithm can then be used to learn the
mapping

f : R
N → {c1, . . . , cK}, x [n] 7→ y[n]. (5)

Thus, instead of searching for the mappings gn, the task
changes into finding the mapping f using a machine learning
algorithm. However, this is not a classical classification prob-
lem since the successive vectors x [n] from the same scenario
are strongly correlated. Moreover, the cost function used for
the classification must be changed because the evaluation of
the change detection performance will be done on scenario
level and not on time-stamp level. Details will be presented
in Section IV. As a consequence also the validation must
be performed on scenario level. For example in V -fold cross
validation all vectors x [n] from a scenario must be either in
the training or in the validation set.

The step of changing the representation of the scenario at
time instance n from S [1,n] to x [n] is crucial for the final
performance of the change detection system. This step can
be decomposed into a feature generation and feature selection
task which will be discussed in the following.

III. FEATURE GENERATION

The aim of feature generation is to construct high-level
features from time-series. Normally this step requires a priori
knowledge about the process that generated the data. If one
has such a priori information, features should be constructed
that capture the known properties of the data. However, it
might be that a previous filtering of the data improves the
discrimination property of the generated high-level features.
Thus, one should also take into consideration the high-level
features resulting after preprocessing steps and then figure out
in the feature selection task which features are best suited for
the classification.

In some applications where a problem specific modeling is
not possible or not desired, one approach is to construct a large
set of possible templates for high-level features [7], [12], [13].
In [13] for example structure detectors are introduced which
try to fit a function (e. g., constant, exponential, triangular)
with free parameters to a time-series such that the difference
between the raw data and the function is minimized. Other
high-level features that have been suggested in the technical
literature are summarized in [14].

One of the most powerful methods for time-series classifi-
cation use similarity measures which are defined to consider
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the time specific nature of the data and then classifiers using
this distance measure (e. g., nearest neighbor algorithm) are
used [15]. Assuming that a set of templates for the scenarios
or for sections of the scenarios is known, methods like [16]
Dynamic Time Warping (DTW) can be applied and the re-
sulting similarities to the templates can be used as high-level
features of the considered scenario.

In the feature generation step the mapping

hn : R
L×n → R

Ñ , S [1,n] 7→ x̃ [n] (6)

is performed, where the vector x̃ [n] ∈ R
Ñ consists of high-

level features. It is important to note here, that the dimen-
sionality of the vector x̃ [n] is not changing with time. If for
example the ith entry in x̃ [n] stands for the amplitude of
the first local minima in the `th time-series, its value will
be zero until the first local minima is included in S [1,n]. Since
the dimensionality Ñ of x̃ [n] will be large and many entries
may contain redundant information, the next step—feature
selection—aims to reduce x̃ [n] to the vector x [n] with smallest
possible dimensionality N that is required for an accurate
classification.

IV. FEATURE SELECTION

In the following a forward-backward feature selection will
be considered. We assume that a large set of high-level features
has been extracted from the time-series and now the task
is to figure out which of these features are best suited for
the classification task. Thus, we are looking for the selection
matrix J ∈ {0, 1}N×Ñ , N < Ñ such that

x [n] = J x̃ [n]. (7)

Feature selection is strongly related to the task of model
assessment and thus also the methods are similar, i. e., either
statistical tests or machine learning methods like V -fold cross
validation can be used. In this work we will focus on machine
learning methods and perform the selection based on the
estimated generalization error of a powerful classification
algorithm.

Since we are dealing with time series, first we have to define
what the expected risk—or classification error—is in change
detection. If the corresponding targets to the time-series S are
accumulated in the vector y , the expected risk is

R(g) = ES,y {L(g(S), y)} , (8)

and the empirical risk is

Remp(g) =
1

M

M
∑

m=1

L(g(Sm), ym), (9)

where L(g(S), y) denotes the loss function with g(S) ∈
{c1, . . . , cK}1×nend ,

g(S) =
[

g1

(

S [1,1]
)

, . . . , gnend

(

S [1,nend]
)]

, (10)

and ES,y {L(g(S), y)} is the expectation of L(g(S), y) with
respect to the random processes S and y . Since with the

mappings hn we transform the scenario S to its high-level
representation

X̃ = [x̃ [1], . . . , x̃ [nend]] ∈ R
Ñ×nend (11)

and with the selection matrix J from Eq. (7) we obtain

X = JX̃ = [x [1], . . . , x [nend]] ∈ R
N×nend , (12)

the expected risk R(f(J)) and the empirical risk Remp(f(J))
can now be introduced analogously to Eq. (8) and Eq. (9) by
replacing g(S) with

f(X ) = f(JX̃ ) = [f (x [1]) , . . . , f (x [nend])] . (13)

For the evaluation of the classifier performance it does not
matter whether we work with elementary or high-level features
such that the loss function must be chosen to fulfil

R(f(J)) = R(g) and Remp(f(J)) = Remp(g). (14)

In the static time-series classification the loss function only
measures whether the time-series has been assigned to the
correct class and in the change detection task the time instance
when a class-change is identified or missed determines the
loss function, such that it does not play any role whether
elementary or high-level features are used.

In order to obtain a good change detection system, one
has to find the mappings gn that minimize the expected loss
R(g), or according to Eq. (14) the mapping f(J) which
minimizes R(f(J)). For the feature selection task we assume
that the only mapping we do not know and which influences
R(f(J)) is the selection matrix J . Our aim is to obtain a
small expected risk and thus we implement the mapping f
by using a powerful classification algorithm such that the
relevant quantity in changing R(f(J)) is the matrix J . Thus,
the feature selection task can be formulated as finding the
selection matrix J

J = argmin
J̃

{

R(f(J̃))
}

. (15)

Since the probability density functions needed to perform this
optimization task are not known, one uses Remp(f(J)) for
training the classifier and estimates R(f(J)) from the M
observed scenarios with methods like V -fold cross validation
or the out-of-box (oob) technique [17], [18], [19]. We will
use the latter in this work since oob-estimation can easily
be integrated in the SBRF-algorithm which we will apply to
implement the mapping f . In [17] Breiman gives empirical
evidence that the oob-estimate is as accurate as using a test
set of the same size as the training set.

The only missing part now in order to realize feature selec-
tion for change detection is the definition of the loss function
L(f(X ), y). The loss function should be designed such that
it takes account of the importance that a misclassification has
at the various time instances of a scenario. If this importance
is stored in the vector

γ = [γ[1], . . . , γ[nend]] ∈ R
1×nend (16)
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Fig. 2: Penalization Terms γ[n]

and the time instances when a class change occurs either in y

or in f(X ) are denoted with ncd,i, then we define

L(f(X ), y)=
1

C

C
∑

i=1

γ[ncd,i](1−I(f(x [ncd,i]), y[ncd,i])), (17)

where C is the total number of changes in y and f(X ), and
the function I(a, b), with a ∈ R and b ∈ R is defined as

I(a, b) =

{

1 if a = b
0 else . (18)

Note that by setting γ[n] = 0 for all time-stamps where
an observed scenario has a length smaller than nend we
can consider scenarios of different lengths. Another possible
definition of the loss function is

L(f(X ), y) =

∑nend
n=1 γ[n](1 − I(f(x [n]), y[n]))

∑nend
n=1 γ[n]

, (19)

but this definition does not differentiate whether misclassifi-
cations are caused by the same or a different event in the
scenario, thereby putting too much emphasis on misclassifi-
cations that have the same reason. Thus, in the following the
loss from Eq. (17) will be used.

The importance γ for the example from Fig. 1 may have
the values shown in Fig. 2. The values of γ[n] have been
chosen here to penalize a misclassification strongly if it occurs
in regions that clearly belong to one of the classes while
the penalization gets smaller the closer one moves towards
a change to a different class. Because in time-series adjacent
values are strongly related usually a certain time-interval is
required in order to construct a high-level feature, e. g., a
local maximum can only be recognized as a maximum after
observing some values after the peak. This is the reason why
in the vicinity of a class-change a “do not care” interval is
introduced i. e., γ[n] = 0 for all n in this interval such that
a misclassification here is not taken into consideration when
computing the risk. It should be noted that this requires to set
the corresponding value ncd,i from Eq. (17) to the next time
instance following the “do not care” interval.

In the next subsection we will review how the RF algorithm
can be used for feature selection in the usual feature-value
model and in Subsection IV-B we show how this algorithm
must be modified in order to obtain the SBRF-algorithm which
can be used for feature selection in change detection tasks.

A. Feature Selection with RF

The RF algorithm has been introduced by Breiman in [3]
and it is one of the most powerful known classification
algorithms. It is a randomized and aggregated version of the

well-known [20] Classification And Regression Tree (CART)
algorithm strengthened by the bagging (stands for bootstrap
aggregating) technique. Given a set of input vectors u and the
corresponding targets v, the idea underlying the RF algorithm
is to construct a large number B of classifiers Di(u), i =
1, . . . , B, with low bias, e. g., full grown decision trees and
then to take a majority vote among the individual classifiers.
It is proven in [3] that the algorithm does not overfit as more
trees are added to the RF. The step of taking the majority vote
for classification tasks or the average in regression problems
reduces the variance of the classifier determined using the
aggregated algorithm considerably without increasing its bias
compared to the bias and variance of the individual classifiers
in the ensemble [21]. Thus, one obtains a classifier with low
bias and low variance leading to a small generalization error.
It is interesting to note that for classification the generalization
error does not decompose into a sum of bias and variance as
it is the case in regression, but in a fraction term containing
the bias and variance, such that it is possible to reach the
minimum of the generalization error by only decreasing the
variance [22]. This explains why ensemble methods like
AdaBoost or RF perform so well in classification.

In order to decrease the variance term it is important
that the individual classifiers differ from each other, i. e.,
have a low correlation. To achieve this goal a randomization
source is introduced in the construction of each tree. Although
there are many possibilities to introduce randomness, for the
feature selection task the bagging technique is crucial allowing
the oob-estimation of the generalization error [3]. The idea
underlying the oob-estimate is that each tree-classifier in the
ensemble is built based on a training set that is obtained
by applying the bootstrap procedure, i. e., sampling with
replacement from the original training set. Assuming that there
are M ′ feature-value patterns in the original training set, there
are ≈ (1 − 1/M ′)M ′

· M ′ (≈ e−1M ′ for large M ′) patterns
that are not used in the learning phase of the ith tree-classifier.
On the other hand, this means that every pattern from the
training set has not been used for the training of ≈ 36% of
the B trees in the RF. Thus, one can estimate the generalization
error by taking for each pattern the majority vote only among
those trees which have not seen this pattern during the training
phase.

Being able to obtain an honest estimate of the generalization
error using the oob-technique the importance of a variable can
be determined by comparing the performance of the RF on
the original data with the performance when the information
in the variable is removed. Firstly, one computes the oob-
estimate of the generalization error e′oob. Then, assuming that
the importance of the jth variable is analyzed, for each of
the B trees in the RF the information of the jth variable is
removed by randomly permuting the jth entry of the input
vectors u which have not been used in the training phase by
the tree. Now the generalization error e

′(j)
oob is estimated again

using the oob-method. The difference

∆′(j) = e
′(j)
oob − e′oob (20)
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represents an importance measure for the jth variable. The
larger ∆′(j), the more important the jth variable is for the
classification. This importance measure can be applied to every
learning machine, for example by estimating the generalization
error using V -fold cross-validation. Thus, this procedure is a
wrapper method for feature selection.

In [23] Breiman also suggests another importance measure
which is typical for RF and thus leads to an embedded method.
It makes use of the margin that can be calculated using the
RF algorithm. Assuming that the example (u, v) has not been
used for the training of B′ trees, the margin is defined as [3]

m̃g(u, v)=
1

B′

B′

∑

i=1

I(Di(u), v)−max
ck 6=v







1

B′

B′

∑

i=1

I(Di(u), ck)







(21)

where ck denotes the kth class. A positive margin means that
the example has been classified correctly, whereas a negative
margin occurs for misclassifications. The margin offers a
measure of confidence in the classification result. In order to
figure out the importance of the jth variable the margin can
be used. Thereby, the increase in the average margin over all
data examples when removing the information from the jth
entry in u is taken as a measure of importance of feature j.

After computing the importance for each feature one can
remove the features which have little or no importance, thereby
reducing the dimensionality of the input vector u. Then, a
new RF is built using only the important features. If the
generalization error estimated using the new RF is not worse
than the one estimated using all features, then a smaller set of
features has been found for the classification task. Thus, in an
iterative process one can figure out a small subset of features
that still leads to the desired classification performance.

It is important to note that the RF algorithm leads to accurate
classification results even if the dimensionality of the input
vector u is high [3]. This is the reason why in the 2003 NIPS
competition on feature selection in high-dimensional data the
top entries performed feature selection using the RF algorithm.

B. Feature Selection for Time-Series

When dealing with time-series one must take account for
the fact that the loss function is defined on scenario level
(see Eq. (17)). Thus, to apply the feature selection described
in the previous subsection to time-series some changes are
necessary in the RF algorithm leading to the SBRF algorithm.
Firstly, in the SBRF algorithm the bootstrap method used when
constructing a forest must be done on scenario level, i. e.,
the training set T ′

i needed for the ith tree is constructed by
sampling M scenarios in their high-level feature representation
X̃ with replacement from T . This allows the computation
of an honest oob-estimate Roob(f(J)) of the risk R(f(J))
since each scenario has not been used in the training phase by
≈ 0.36%B trees in the forest.

Secondly, one must consider the varying penalization weight
of a misclassification represented by the importances γ in
every scenario. This can be realized by oversampling the

patterns with a high corresponding value γ[n]. The idea here
is based on the methods applied for imbalanced data-sets
where one class constitutes only a very small minority of
the data [24]. In these cases one can either assign a high
cost to the misclassification of the minority class and then
minimize the overall cost [25] or sampling techniques can be
applied. Different sampling methods exist, e. g., downsampling
the majority class, oversampling of the minority class [26] or
both. Oversampling raises the weight of those samples that are
replicated and this is exactly what we want. More precisely
we will replicate the examples (x̃ [n], y[n]) according to their
weighting γ[n]. This leads to the training set Ti which is used
to construct the ith tree in the SBRF. At this level there is
no difference to the RF algorithm, i. e., unpruned trees are
grown where at each node only a reduced number of features
is examined for the best split thereby introducing an additional
source of randomization.

The loss function for the construction of a tree D is

LD(D(x ′), y′) = 1 − I(D(x ′), y′), (22)

where the realizations of x ′ and y
′ used to built the ith

tree are stored in Ti. The minimization of the expectation of
LD(D(X ), y) also assures the minimization of the risk using
the loss from Eq. (17) or Eq. (19).

After building B trees we can compute for each time in-
stance of a new scenario the class label by taking the majority
vote among the trees, thereby implementing the function f .

To find out the importance of the jth high-level feature one
proceeds as in the usual feature-value model from the previous
subsection, namely by computing the loss on performance due
to the jth feature

∆(j) = R
(j)
oob(f(J)) − Roob(f(J)). (23)

Thereby, R
(j)
oob(f(J)) is the oob-estimate of the risk when the

information from the jth feature has been removed. Alg. 1
sums up the steps required to perform feature selection using
the SBRF algorithm.

The larger the value of ∆(j) the more important the jth
feature is. Since only the relative magnitudes of ∆(j) are of
interest one can normalize these quantities such that the most
important feature has the importance 100.

Then, in an iterative process one can eliminate the features
with low importance as long as the estimated risk is still
acceptable, thereby making a hypothesis about the features to
use. Since for every new hypothesis a new SBRF is required
one can speed up the selection process by eliminating—
especially at the first iterations—more than one feature in line
17 of Alg. 1.

A consequence of the random choice of the
√

Ñ features
that are examined for the best split in a tree (see line 10
of Alg. 1) is the fact that masking effects do not appear as
in the CART algorithm [20]. Thus, features that share much
of the same important information will lead to high values
of the corresponding ∆(j) making it difficult to eliminate
such redundant features. Fortunately, this effect only plays a
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role in the final selection iterations. Therefore, when only a
small number of features is left, one can extend the algorithm
and test whether the removal of a different feature than the
one with lowest estimated importance can still fulfill the
requirement of having a generalization error below the critical
value from line 3 of Alg. 1. In line 12 of Alg. 1 the estimate

Algorithm 1 SBRF feature selection
J = IÑ

2: Roob(f(J)) = 0
while Roob(f(J)) ≤ critical value do

4: for m = 1 : M do
X̃m = JX̃m

6: end for
for i = 1 : B do

8: • construct T ′
i : sample M scenarios with replacement

from T in the high-level representation
• construct Ti: in each scenario oversample the
examples (x̃ [n], y[n]) according to γ[n]

10: • construct the full-grown tree Di by considering
only

√

Ñ features at each split and by using the
training set Ti

end for
12: compute Roob(f(J)) where the loss is defined on

scenario level and the mapping f is realized by the
majority vote among the B trees
for j = 1 : Ñ do

14: remove the information from the jth feature and
compute R

(j)
oob(f(J))

compute ∆(j) = R
(j)
oob(f(J)) − Roob(f(J))

16: end for
choose a new J such that the feature with the minimal
value of ∆(j) is discarded

18: end while
the penultimate J is the desired selection matrix

Roob(f(J)) must be computed based on a loss function on
scenario level as the one defined in Eq. (17). Similarly to
the RF procedure for the usual feature-value model described
in the previous subsection, also another loss function can
be defined based on the margin of the SBRF algorithm,
leading to an embedded method for feature selection in change
detection. For this purpose we introduce the confidence based
penalization

cp[n] = γ[n](1 − mg(x̃ [n], y[n])), (24)

where mg(x̃ [n], y[n]) is defined analogously to Eq. (21) and is
computed by using only those trees that have not used the sce-
nario to which x̃ [n] and y[n] belong during the training phase.
The margin mg(x̃ [n], y[n]) measures the degree of confidence
one can have in the decision of the SBRF at time instance n.
If for the input x̃ [n] all trees in the SBRF identify the correct
class y[n], then cp[n] will be zero, whereas the greatest value
of cp[n] is 2γ[n] since the margin mg(x̃ [n], y[n]) ∈ [−1, 1].
Whenever a misclassification occurs the value cp[n] exceeds
the value γ[n].

Fig. 3 shows how cp[n] evolves over time for a scenario
from the application that will be described in the next section.
Up to n = 5 the considered scenario corresponds to the class
c1 = 0, then a ”do not care” interval follows until n = 10 and
finally the corresponding class changes to c2 = 1. As it can be
seen from Fig. 3 the SBRF detects the class change only at n =
13, thereby leading to two misclassifications at n = 11 and
n = 12. The confidence based penalization cp[n] does not only
penalize these two misclassifications but also the decisions at
n = 13, . . . , 20 since there are trees in the SBRF—as the
margin mg[n] = mg(x̃ [n], y[n])) shows—which decide for
the wrong class.
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Using the confidence based penalization we can define a
loss function on scenario level that is typical for the SBRF-
algorithm, namely

L(f(X ), y) =

∑nend
n=1 cp[n]

2
∑nend

n=1 γ[n]
. (25)

The loss L(f(X ), y) from Eq. (25) is the ratio of the areas
below the confidence penalization cp[n] and γ[n] for the dura-
tion of a scenario. The lower L(f(X ), y) the more confidence
we have that the decisions of the SBRF algorithm are correct
for the scenario. Using this loss function in line 12 of Alg. 1
in order to estimate the risk R(f(J)) we can perform feature
selection based on the confidence information.

In addition to the reliable way to estimate the change detec-
tion performance by using the oob-method which is the basis
for feature selection another advantage of the SBRF algorithm
is the possibility—analogous to the RF algorithm [3]—to use
categorical variables as features. This might play an important
role when in the feature generation step one constructs features
based on the similarity to a finite set of possible templates.
Then a categorical variable might be used as a feature,
indicating to which template the scenario is most similar.

V. APPLICATION

The methods that we introduced in the previous section can
be applied to many industrial applications. In the following
we will show how feature selection can be performed for car
crash detection.

In modern cars there are various sensors used to detect and
to categorize the severity of a crash. We will consider the task
of identifying the relevant features that can be generated from
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the deceleration signals produced by 4 sensors during front-
crash tests. Since the requirements set by law and consumer-
tests like EURO-NCAP or US-NCAP are very demanding a
simple threshold of a deceleration signal is not enough to
determine the severity of a crash. Therefore, state-of-the-art
algorithms for crash detection [27] use features which are
deduced from the deceleration signals and define rules based
on these features that fulfill the requirements for the available
crash test measurements. Since the choice of the features and
the rules are based on empirical experience we will apply the
feature selection method to identify the most discriminative
features.

Three of the four sensors measure the deceleration in
longitudinal direction of movement at different locations in
the car and one sensor the acceleration in the transversal
direction. Since there are four time-series that have to be
taken into consideration this is a typical change detection
task in multivariate time-series where the data from each
crash builds a scenario S containing L = 4 time-series.
Depending on the crash severity it is required to activate the
safety-systems, e. g., belt pretensioner or airbag at the right
time. Thus, the output y[n] belongs to one of the two classes
c1 = FIRE or c2 = NOFIRE. For example the time instance
where the class change occurs for the airbag deployment is
computed using the “5” − 30 ms” criterion. This criterion
requires the deployment at the time instance where an unbelted
passanger, being subject to the negative of the deceleration that
is measured by one of the sensors—located in the passenger
compartment—moves forward 5 inches minus 30 ms which
are required for the inflation of the airbag. The class-change
time tFIRE is computed by subtracting 2 ms from the time
computed using the “5” − 30 ms” criterion. Then, on the left
and the right of tFIRE a “do not care” interval of 2 ms is
introduced. This leads to a penalization γ[n] as the one shown
in Fig. 4. Not only a change detection that occurs too late but
also a deployment that occurs too early must be penalized.
The time-series taken into consideration have a duration of
tFIRE + 20 ms for all crashes that demand a deployment and
the total measured length (ca. 100 ms) for misuse cases and
harmless crashes that do not require the activation of any safety
system. For these cases the penalization is set to γmin for all
time instances.

Using a data set of 83 independent scenarios Sm, and a
starting number of 53 features the above methods have been
applied in order to determine good features for the car crash
detection task. Among the 53 features that were generated
from the deceleration signals there were traditionally used

No. estim. risk estim. risk misclassified
features wrapper embedded scenarios

53 0.24 5.9 · 10−2 2

33 0.29 5.4 · 10−2 2

25 0.30 5.4 · 10−2 2

15 0.37 5.1 · 10−2 1

10 0.36 4.8 · 10−2 1

8 0.32 5.7 · 10−2 1

5 0.40 4.7 · 10−2 1

4 0.33 4.5 · 10−2 1

3 0.39 5.3 · 10−2 2

TABLE I: Feature Selection with Wrapper Method

quantities like velocity loss or displacement but also features
resulting from a time-scale (wavelet) decomposition of the
signals. The SBRF considered here consist of B = 300 trees
and the values γmax = 5 and γmin = 1 have been chosen.

If the wrapper method is used, i. e., the feature selection
is performed by using the loss from Eq. (17) we obtain as
importances for the features the results from Table I. The first
column in the table contains the number of features that were
taken into account when constructing the corresponding SBRF.
All results in a raw have been generated by the same SBRF.
The second column shows the value of the oob-estimate of the
risk when the loss from Eq. (17) is used and the third column
shows the value of the oob-estimate computed with the loss
from Eq. (25). The values in the third column have only been
computed for the comparison with Table II. The fourth column
presents the number of crashes that were misclassified over
the whole duration of the crash, i. e., either a crash requiring
the deployment of a safety system has been classified as a
harmless crash, or a harmless crash led to the deployment of
a safety-system. The critical value of the estimated risk from
line 3 of Alg. 1 was set to 0.45. The crash that appears as
misclassified scenario in the table when using the selected
4, 5, 8, 10 or 15 features, represents a misuse case—the drive
through a deep road hole—whose deceleration signals have
been multiplied by the factor 1.3.

No. estim. risk estim. risk misclassified
features wrapper embedded scenarios

53 0.24 5.9 · 10−2 2

33 0.29 5.6 · 10−2 2

25 0.32 5.8 · 10−2 2

15 0.34 6.0 · 10−2 2

10 0.40 5.2 · 10−2 2

8 0.45 6.0 · 10−2 3

5 0.48 6.1 · 10−2 2

4 0.49 6.4 · 10−2 3

3 0.57 6.2 · 10−2 2

TABLE II: Feature Selection with Embedded Method

Applying the embedded method, i. e., the feature selection
is performed by using the loss from Eq. (25) which is based
on the confidence information indicated by the SBRF, we
obtained Table II. Here, again 300 trees were used in the
SBRF and the critical value of the estimated risk from line
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3 of Alg. 1 was set to 6.5 · 10−2.
Comparing Table I with Table II one sees that in this

application the embedded method performs worse than the
wrapper method in the feature selection task. Whereas the
wrapper method leads to a reliable classification with only
4 features one would decide to use more than 10 features
when using the embedded method. The explanation for this
result is related to the reason why the loss in Eq. (17)
has been preferred to the one from Eq. (19). Due to the
correlation of the input vector x [n] to the inputs in his vicinity,
adjacent misclassifications often have the same reason. Since
we are trying to penalize this reason and not how long its
effect lasts, the loss from Eq. (25) puts too much emphasis
on long lasting intervals of uncertainty that have the same
reason, i. e., intervals with strongly correlated inputs. For the
example presented in Fig. 3 the region of the input space to
which the inputs x̃ [n] belong changes considerably between
n = 11 and n = 13. Because the inputs following n = 13
are strongly correlated but have a very high cp[n] value, a
feature which influences the SBRF-decision in that region of
the input space where these inputs lie, will wrongly get a
too high weight compared to a feature which influences the
region of the input space where x̃ [n] lies at n = 11. Thus,
a possible improvement for the loss function from Eq. (25)
can be achieved by considering the change in the confidence
penalization cp[n] only in small intervals around the time
instances where a class-change occurs either in y or in f(X̃ ).

After having identified the strongest features, interpretable
classifiers like a single decision tree can be trained, such that
the resulting rules can be validated by experts. Thereby, in
order to take account for the fact that we are dealing with
time-series one must use a risk defined on scenario level.

VI. CONCLUSION

Two methods how feature selection can be performed in
change detection applications have been presented in the
paper. The first can be used with every machine learning
algorithm, whereas the second method makes use of the
confidence one has into a decision and is specific for the
SBRF algorithm. The key for feature selection in time-series
is a reliable estimation of the generalization error which has
to be done on scenario level and not on time-stamp level.
Identifying the relevant features for an application offers the
possibility to use these features for training a decision tree,
thereby enabling interpretability. Thus, numerous applications
can benefit from the feature selection methods described in
the paper. As an example a car crash detection application has
been presented. Further analysis of the method is the subject
of current research as well as the use in other change detection
applications.
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