Lehrstuhl für Mikrobiologie der Technischen Universität München

Entwicklung eines DNS-Mikroarrays zur verlässlichen Identifizierung von *Escherichia coli* Sicherheitsstämmen

Andreas Bauer

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Prüfer der Dissertation: Univ.-Prof. Dr. W. Höll 1. Univ.-Prof. Dr. (i.R.) K.-H. Schleifer 2. Univ.-Prof. Dr. W. Liebl

Die Dissertation wurde am 24.01.2008 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 21.02.2008 angenommen.

I	Einleitung	
I.1	Überblick über die Spezies Escherichia coli	11
I.2	E. coli Sicherheitsstämme	
I.3	Differenzierungs- und Identifizierungsmethoden	
I.4	Subtraktive Hybridisierung und Mikroarray-Technologie	
I.5	Ziele der Studie	
II	Material und Methoden	23
II.1	Escherichia coli Stämme	
II.2	Extraktion und Aufreinigung chromosomaler DNS	
II.3	Polymerase-Ketten-Reaktion	
II.4	DNS Modifizierung	
II.4	.1 Restriktionsverdau chromosomaler DNS	
II.4	.2 Ligation mit T4 DNS Ligase	
II.5	Subtraktive Hybridisierungsmethoden	
II.5	.1 Mikrotiterplatten-Ausschlusshybridisierung (MaSH)	
II.5	.2 Biotin-Streptavidin-Methode	
II.5	.3 "Genome subtraction"	
II.6	Aufreinigung der PCR-Produkte	
II.7	Klonierung	
II.8	Klonscreening	
II.9	Plasmidaufreinigung	
II.10	Sequenzierung	
II.11	Sequenzanalyse und Entwicklung von spezifischen Primern	
II.12	Pulsfeldgelelektrophorese (PFGE)	
II.13	Southern Blot	
II.14	DNS-Markierung	
II.1	4.1 Markierung mit DIG bzw. Biotin	
II.1	4.2 Markierung mit Fluoreszenzfarbstoffen	
II.15	Herstellung des Mikroarrays	
II.1	5.1 Herstellung der Sonden	
II.1	5.2 Herstellung des Chips	
II.16	Mikroarray-Hybridisierung	
II.1	6.1 Prähybridisierung	

	II.16	5.2	Hybridisierung und stringentes Waschen	33
II.	17	Datena	auswertung	34
	II.17	7.1	Quantifizierung der Signalintensitäten	34
	II.17	7.2	Normalisierung der Daten	34
III		Erge	bnisse	35
III	.1	Finger	print-Methoden zur Unterscheidung von Escherichia coli Stämmen	35
	III.1	.1	Bestimmung der phylogenetischen Gruppe	35
	III.1	.2	Unterscheidung von Sicherheitsstämmen durch ERIC-PCR	35
	III.1	.3	Unterscheidung der Sicherheitsstämme durch Pulsfeldgelektrophorese	38
	II	I.1.3.a	Erstellung eines Fingerprints für verschiedene E. coli	
			Sicherheitsstämme	38
	II	I.1.3.b	Genomgrößenbestimmung verschiedener E. coli Sicherheitsstämm	e 40
	III.1	.4	Genomanalyse durch subtraktive Hybridisierung	44
III	.2	Entwi	cklung eines auf PCR basierenden Schnellnachweises	45
III	.3	Überp	rüfung der E. coli Sicherheitsstämme auf das Vorhandensein von	
		Virule	enzfaktoren	47
	III.3	.1	PCR mit spezifischen Primern auf Virulenzfaktoren	47
	III.3	.2	Mikroarray-Screening	47
	III.3	.3	Charakterisierung flankierender DNS-Abschnitte	48
III	.4	Entwi	cklung des Mikroarray-Chips	49
	III.4	.1	Evaluierung der Sonden	49
	III.4	.2	Identifizierung von E. coli K-12 Stämmen	52
	III.4	.3	Identifizierung von E. coli B Stämmen	53
	III.4	.4	Identifizierung von E. coli C Stämmen	53
	III.4	.5	Identifizierung von E. coli W Stämmen	54
	III.4	.6	Nachweis von Fremd-DNS in E. coli Sicherheitsstämmen	55
IV		Disk	ussion	61
IV	.1	Evalui	ierung der bisherigen Identifizierungsmethoden für Escherichia coli	
		Sicher	heitsstämme	61
IV	.2	Vergle	eich der subtraktiven Hybridisierungsmethoden	62
IV	.3	Virule	enzfaktorscreening	64
IV	7.4 Sondenevaluierung			65
IV	.5	Neu er	ntwickelte Identifizierungsmethoden für E. coli Sicherheitsstämme	66

V	Zusammenfassung	69
VI	Literaturverzeichnis	70
VII	Anhang	78

Abbildung 1	Theodor Escherich, 1856-191111
Abbildung 2	Auftreten verschiedener Virulenzfaktoren in der Zelle 14
Abbildung 3	Schematische Darstellung der einzelnen Arbeitsschritte
Abbildung 4	Bestimmung der phylogenetischen Gruppe
Abbildung 5	Schema zur Bestimmung der phylogenetischen Gruppe
Abbildung 6	ERIC-PCR ausgewählter Escherichia coli K-12 Stämme
Abbildung 7	ERIC-PCR verschiedener E. coli B, C, W sowie 4 pathogener Stämme 37
Abbildung 8	PFGE Fingerprint von verschiedenen E. coli Sicherheitsstämmen
Abbildung 9	PFGE Fingerprint von E. coli K-12 Stämmen
Abbildung 10	PFGE Fingerprint weiterer E. coli Sicherheitsstämme
Abbildung 11	PFGE-Auftrennung 1.1 zur Genomgrößenbestimmung
Abbildung 12	PFGE-Auftrennung 1.2 zur Genomgrößenbestimmung
Abbildung 13	PFGE-Auftrennung 2.1 zur Genomgrößenbestimmung
Abbildung 14	PFGE-Auftrennung 2.2 zur Genomgrößenbestimmung 42
Abbildung 15	Southern Blot Hybridisierung
Abbildung 16	Charakterisierung der spezifischen DNS-Fragmente45
Abbildung 17	Neu entwickelte Multiplex-PCR Methode zur Identifizierung der E. coli
	Sicherheitsstammlinien
Abbildung 18	E. coli Pathogenitätsinsel EPI-I (Stamm BEN2908 [APEC])
Abbildung 19	Bestimmung des Grenzwertes für positive Hybridisierungssignale
Abbildung 20	Beispiel einer unspezifischen Sonde51
Abbildung 21	Beispiel einer unspezifischen Sonde51
Abbildung 22	Schematische Darstellung des Arrays sowie einiger
	Hybridisierungsergebnisse

Tabelle 1	Liste aller vollständig und partiell sequenzierten Escherichia coli Genome	
Tabelle 2	In dieser Arbeit verwendete E. coli Sicherheitsstämme	
Tabelle 3	Standard PCR Programm	
Tabelle 4	Genomgrößen unterschiedlicher E. coli Sicherheitsstämme 44	
Tabelle 5	Alle verwendeten Sonden und deren Spezifität	
Tabelle 6	Virulenzfaktorscreening durch spezifische PCR Primer	
Tabelle 7	Virulenzfaktorscreening durch Mikroarray Hybridisierung	
Tabelle 8	Ergebnisse des PCR Screenings aller verwendeten Primer	
Tabelle 9	Oligonukleotidsequenzen, Schmelztemperaturen (T _M), Fragmentgrößen und	
	Referenzen	
Tabelle 10	Hybridisierungsergebnisse aller untersuchten Stämme	

Abkürzungen:

А	Adenin		
Abb.	Abbildung		
ATCC	American Type Culture Collection		
bp	Basenpaare		
BLAST	Basic Local Alignment Search Tool		
BSA	Bovine serum albumin		
bzw.	beziehungsweise		
°C	Grad Celsius		
С	Cytosin		
ca.	circa		
Су	Cyanin-Farbstoff		
dATP	Desoxyadenosintriphosphat		
dCTP	Desoxycytosintriphosphat		
DIG	Digoxygenin		
DMSO	Dimethylsulfoxid		
DNS	Desoxyribonukleinsäure		
dGTP	Desoxyguanosintriphosphat		
dNTP	Desoxynukleotidtriphosphat		
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellinien		
dTTP	Desoxythymidintriphosphat		
dUTP	Desoxyuraciltriphosphat		
E. coli	Escherichia coli		
et al.	et alteri		
ERG	Eppendorf Reaktionsgefäß		
G	Guanin, Guanosin		
GC	Mol % Guanin + Cytosin		
gDNS	genomische DNS		

h	Stunde(n)
H. wingeii	Hanensula wingeii
HCl	Salzsäure
H ₂ O _{dest}	Destilliertes Wasser
H ₂ O _{reinst}	Reinstwasser (MilliQ, Millipore, Deutschland)
kb	Kilobase
LB-Amp	Luria-Bertani Medium mit Ampicilin
М	Molar
max.	Maximum
Mb	Megabasen
mM	milli Molar
min	Minute
mRNS	messenger RNS
μ	mikro (10 ⁻⁶)
μg	Mikrogramm
μl	Mikroliter
n	Nano (10 ⁻⁹)
NCIB	National Collection of Industrial Bacteria
ng	Nanogramm
nm	Nanometer
NTP	Nukleotidtriphosphat
PAI	Pathogenitätsinsel
PCR	Polymerasekettenreaktion
PFGE	Pulsfeldgelelektrophorese
RNS	Ribonukleinsäure
rRNS	ribosomale RNS
S. cerevisiae	Saccharomyces cerevisiae

SDS	Natriumdodecylsulfat		
S	Sekunde		
SSC	Standardsalinecitrat		
Т	Thymin, Thymidin		
Taq	Thermus aquaticus		
T _m	Schmelztemperatur von Nukleinsäuren		
UK	Großbritannien		
USA	Vereinigte Staaten von Amerika		
z. B.	zum Beispiel		
ZKBS	Zentrale Kommission für biologische Sicherheit		
z. T.	zum Teil		

I Einleitung

I.1 Überblick über die Spezies Escherichia coli

Escherichia coli ist der wohl am besten charakterisierte Mikroorganismus, an dem grundlegende Erkenntnisse zu diversen biochemischen und molekularbiologischen Prozessen gewonnen wurden (Neidhardt *et al.*, 1996; Schaechter, 2001). Bisher wurden schon 10 Genome komplett sequenziert, 30 weitere sind in Arbeit (siehe Tabelle 1, Stand 03.12.2007). Die Erstbeschreibung dieser fakultativ anaeroben, stäbchenförmigen Bakterien erfolgte durch den Kinderarzt Theodor Escherich (Abbildung 1) im Jahre 1885. Er benannte sie als *"bacterium coli commune"* in einem Vortrag über die "Darmbakterien des Neugeborenen und Säuglings" (Blum *et al.*, 1995). Ein Jahr später charakterisierte er die Morphologie und die Kultureigenschaften in seiner Habilitationsschrift. Erst im Jahre 1919 wurde der Organismus durch Castellani und Chalmers nach seinem Entdecker in *Escherichia coli* umbenannt, dieser Vorschlag wurde jedoch erst im Jahre 1958 akzeptiert.

Die Spezies *E. coli* kann in 3 große Gruppen eingeteilt werden, deren Eigenschaften im Anschluss genauer erläutert werden:

- 1. Kommensale E. coli Stämme
- 2. Pathogene E. coli Stämme
- 3. E. coli Sicherheitsstämme

Kommensale E. coli Stämme gehören, wenn auch nur in untergeordneter Rolle, zur natürlichen Darmflora Hier hilft das von Säugetieren. Bakterium hauptsächlich beim Abbau von Nahrung, produziert zudem auch Vitamin K (Bentley & Meganathan, 1982). Durch das Vorhandensein im Darm wird dieser Organismus auch als Indikatorkeim zum Nachweis B. fäkaler Verunreinigung, bei z. Trinkwasseruntersuchungen, (Gerardi & genutzt Zimmerman, 2005).

Abbildung 1 Theodor Escherich, 1856-1911

Tabelle 1	Liste aller vollständig und partiell sequenzierten Escherichia coli Genome
-----------	--

Komplett sequenzierte Genome

Stämme Escherichia coli 536 Escherichia coli APEC O1 Escherichia coli CFT073 Escherichia coli E24377A Escherichia coli HS Escherichia coli K12 Escherichia coli O157:H7 EDL933 Escherichia coli O157:H7 str. Sakai Escherichia coli UTI89 Escherichia coli W3110

Institut

Universität Göttingen, Deutschland Iowa State University, USA University of Wisconsin-Madison, USA TIGR (The Institute of Genomic Research), USA TIGR, USA University of Wisconsin-Madison, USA University of Wisconsin-Madison, USA Osaka University, Japan Washington University (WashU), USA Nara Institute of Science and Technology, Japan

Genomsequenzen in Arbeit

Stämme

Escherichia coli 042 Escherichia coli 101-1 Escherichia coli 53638 Escherichia coli B Escherichia coli B str. REL606 Escherichia coli B171 Escherichia coli B7A Escherichia coli BL21(DE3) Escherichia coli DH10B Escherichia coli E110019 Escherichia coli E22 Escherichia coli E2348/69 Escherichia coli F11 Escherichia coli O157:H7 str. EC4024 Escherichia coli O157:H7 str. EC4042 Escherichia coli O157:H7 str. EC4045 Escherichia coli O157:H7 str. EC4076 Escherichia coli O157:H7 str. EC4113 Escherichia coli O157:H7 str. EC4115 Escherichia coli O157:H7 str. EC4196 Escherichia coli O157:H7 str. EC4206 Escherichia coli O157:H7 str. EC4401 Escherichia coli O157:H7 str. EC4486 Escherichia coli O157:H7 str. EC4501 Escherichia coli O157:H7 str. EC508 Escherichia coli O157:H7 str. EC869 Escherichia coli O157:H7 str. GZ-021210/cattle Escherichia coli RS218 Escherichia coli SECEC SMS-3-5 Escherichia coli c7122

Institut Sanger Institute, UK TIGR, USA TIGR, USA DOE Joint Genome Institute, USA International E. coli B Consortium TIGR, USA TIGR, USA Korea Research Institute of Bioscience and Biotechnology, Südkorea University of Wisconsin-Madison, USA TIGR, USA TIGR, USA Sanger Institute, UK TIGR, USA J. Craig Venter Institute, USA South China Agricultural University, China University of Wisconsin-Madison, USA TIGR, USA Arizona State University, USA

Pathogene *E. coli* Stämme sind weltweit die Auslöser von relativ harmlosen Durchfallerkrankungen (Reisedurchfall) (Nataro & Kaper, 1998) bis hin zu schwerwiegenden, z. T. tödlichen Infektionen (*E. coli* O157:H7, Hämolytisch Urämisches Syndrom (Goldwater, 2007)). Eingeteilt werden diese Stämme anhand ihres infektiösen Potentials bzw. des Krankheitsbildes in die folgenden verschiedenen Gruppen (Kaper *et al.*, 2004):

- EHEC enterohämorrhagische E. coli
- EPEC enteropathogene E. coli
- ETEC enterotoxische E. coli
- EIEC enteroinvasive E. coli
- EAEC enteroaggregative *E. coli*
- DAEC diffus adhärente E. coli
- UPEC uropathogene E. coli
- SEPEC Sepsis auslösende E. coli
- MENEC Meningitis auslösende E. coli

Faktoren, die zum Ausbruch der jeweiligen Infektionen führen, können in ganz unterschiedlichen Bereichen der Zelle lokalisiert sein. Eine schematische Darstellung der einzelnen Virulenzfaktoren ist in Abbildung 2 dargestellt. Einerseits können die verantwortlichen Gene im Genom lokalisiert sein, wo sie häufig in großer Anzahl in so genannten Pathogenitätsinseln (PAI) (Hacker *et al.*, 1997; Hacker & Kaper, 2000) auftreten (z.B. *E. coli* pathogenicity Island I-V von *E. coli* 536 [UPEC] [Dobrindt *et al.*, 2002]). Sie können andererseits auch extrachromosomal auf Plasmiden kodiert sein (z.B. Gene für das Hämolysin von *E. coli* O157:H7 [EHEC] oder den enteroaggregativen Mechanismus von *E. coli* O42 [EAEC]) bzw. durch Bakteriophagen übertragen werden (Shiga toxin von *E. coli* O157:H7). Weitere Gene, die für die Bildung einer Kapsel und des Oberflächenantigens kodieren, tragen ebenfalls zum virulenten Potential eines Stammes bei.

Der Schwerpunkt dieser Arbeit liegt auf den *E. coli* Sicherheitsstämmen, die im nächsten Abschnitt ausführlich beschrieben werden.

Abbildung 2 Auftreten verschiedener Virulenzfaktoren in der Zelle

Virulenzfaktoren von *E. coli* Stämmen können chromosomal kodiert vorliegen, meist in so genannten Pathogenitätsinseln (PAI). Des Weiteren können sie extrachromosomal auf Plasmiden oder auch Phagen kodiert sein. Eine große Rolle bei einer Infektion spielt ebenfalls das Vorhandensein einer Kapsel sowie des Oberflächenantigens (nach Blum *et al.*, 1995).

I.2 E. coli Sicherheitsstämme

Zu den heutigen Sicherheits- bzw. Laborstämmen zählen nach dem deutschen Gentechnikrecht die Stämme *E. coli* K-12 und dessen Derivate, *E. coli* B und dessen Derivate sowie *E. coli* ATCC 9637 (W) und NCIB 8743 (W). Die Zentrale Kommission für Biologische Sicherheit (ZKBS, http://www.bvl.bund.de/) hat in jüngerer Zeit auch den *E. coli* C Stamm für unbedenklich erklärt. All diese Stämme und deren Derivate gelten als Risikogruppe 1 Organismen, da sie den menschlichen Darm nicht besiedeln können und somit als absolut ungefährlich anzusehen sind. Ein weiterer Vorteil ist die leichte Kultivierbarkeit von *E. coli* (unter optimalen Bedingungen erreicht man Generationszeiten von 20 min), sowie die Möglichkeit der gezielten genetischen Manipulation. Auf Grund all dieser Eigenschaften gelten die *E. coli* Sicherheitsstämme als Prototypen sicherer biologischer Vehikel und werden standardmäßig in vielen molekularbiologischen Labors und Firmen weltweit genutzt, von der einfachen Klonierungsreaktion bis hin zum genetisch optimierten industriellen Produktionsstamm.

Aufgrund ihrer einfachen Handhabung wurden die *E. coli* Stämme nach ihrer Entdeckung zu einem beliebten Forschungsobjekt. Doch zu weltweiter Bekanntheit führten erst die biochemischen und genetischen Untersuchungen von Lederberg und Tatum (Tatum & Lederberg, 1947) sowie die Studien an den spezifischen Phagen durch Max Delbrück, Salvador Luria und Alfred Day Hershey.

Lederberg und Tatum suchten ein Bakterium für ihre geplanten Studien und wurden in der Stammsammlung der Stanford Universität fündig. *Escherichia coli* K-12, im Jahre 1922 von Dr. Blair aus einer Stuhlprobe eines genesenden Diphtherie-Patienten isoliert, wurde ihr Forschungsobjekt. Es stellte sich heraus, dass der *E. coli* K-12 Stamm ein sehr geeignetes Bakterium war, da es sehr leicht zu kultivieren und für Mensch und Tier ungefährlich war. Sie kreierten Mutanten mittels UV und Röntgenstrahlen, die sie dann auf verschiedene Gendefekte hin untersuchten. Mittlerweile gibt es ca. 7000 verschiedene K-12 Mutanten in der Stammsammlung der Universität Yale. In einer Studie von Bachmann *et al.* (1972) wurde versucht, die Abstammung der einzelnen Derivate zu aufzuklären. Die Menge an verschiedenen *E. coli* K-12 Varianten wird hier sehr eindrucksvoll geschildert.

Die Herkunft der drei anderen *E. coli* Sicherheitsstamm Linien (B, C und W) konnte im Vergleich zum *E. coli* K-12 Stamm hingegen weniger präzise rekonstruiert werden. *Escherichia coli* B Stämme wurden zu Beginn zur Untersuchung und Beschreibung ihrer Phagen, der T-Phagen, verwendet. Da das Hauptaugenmerk dieser Studien die Phagen und nicht das Bakterium selbst war, wurde der Ursprung des Wirts nicht beschrieben. Ein Artikel von Abedon (2000) versucht, der Herkunft der T-Phagen und ihres Wirts auf den Grund zu gehen, kommt aber auch zu keinem klaren Ergebnis.

Im Fall der *E. coli* C Stämme gestaltet sich die Aufklärung der Herkunft ebenfalls problematische. Die Referenzen der Stammsammlungen (DSMZ/ ATCC) verweisen auf einen Artikel von Robert Sinsheimer (Sinsheimer, 1959), der sich mit der Isolierung von Bakteriophagen des Typs Φ x174 beschäftigte, dessen Wirt der *Escherichia coli* Stamm C ist. Aber auch dieser Autor beschäftigt sich mehr mit der Beschreibung der Phagen als dem Ursprung des Bakteriums, daher bleiben Ort und Zeit der erstmaligen Isolierung unbekannt.

Der *E. coli* Stamm W erhielt seinen Namen von seinem Entdecker, Selman A. Waksman, der 1943 den Nobelpreis für die Entdeckung des Streptomycins erhielt. Dieser erforschte anfangs Bodenbakterien (Waksman, 1925; Waksman & Martin, 1939), weswegen eine Isolierung des *E. coli* W Stammes aus einer Bodenprobe sehr nahe liegt. In einem Artikel über verschiedene biochemische Stoffwechselwege von *E. coli* Stämmen (Diaz *et al.*, 2001) wird erwähnt, dass Waksman diesen Stamm seinerzeit aus einer Bodenprobe eines Friedhofs isoliert hat, genauere Orts- und Zeitangaben liegen allerdings nicht vor.

Die Isolierung und Beschreibung der *E. coli* Sicherheitsstämme erfolgte somit in einem Zeitraum zwischen 1920 und ca. 1950. Auf deren Bestimmung als Sicherheitsstämme einigte

man sich allerdings erst Jahre später. In den 70er Jahren erkannten Forscher das Potential, jedoch auch die Gefahren der neuen Möglichkeiten in der Molekularbiologie. Durch die neu entwickelten Techniken zur genetischen Modifikation war es möglich Organismen zu verändern, sowohl in positiver, als auch in negativer Hinsicht. Eine Reihe führender Forscher der Molekularbiologie veranstaltete deshalb die Konferenz von Asilomar (1975), um über ethische Grundsätze ihrer Arbeiten zu diskutieren. Auf dieser Konferenz wurde auch darüber beraten, welche Organismen für die Forschung geeignet seien. Es wurden, unter anderem apathogene Derivate von *E. coli* als zweckmäßig erachtet (Berg *et al.*, 1975). Seither gelten diese Stämme als biologische Sicherheitsstämme. International ist diese Regelung aber nicht einheitlich. In Deutschland befasst sich die bereits genannte Zentrale Kommission für Biologische Sicherheit mit dieser Regelung (§5 Absatz 6 Gentechnik –Sicherheitsverordnung [1995]). Die dort vermerkten *E. coli* Sicherheitsstämme besitzen unterschiedliche Eigenschaften und werden deshalb auch für unterschiedliche Zwecke genutzt.

Die K-12 Derivate, die am zahlreichsten sind und am häufigsten Verwendung finden, werden hauptsächlich für einfache Klonierungsreaktionen verwendet. Die B Stämme, insbesondere die BL21 Derivate, eignen sich hervorragend zur Expression von Proteinen, da zwei zelleigene Proteasen (*lon* [Cytoplasma] / *ompT* [Periplasma]) durch Mutationen abgeschaltet wurden. Nahezu alle kommerziellen Expressionsstämme basieren auf einem Derivat von *E. coli* BL21.

Der einzige bekannte kommerzielle Vertreter der W Stämme ist Mach1, ein Stamm im Sortiment von Invitrogen (USA). Die W Derivate sind bekannt als die am schnellsten wachsenden Sicherheitsstämme und ermöglichen somit ein Klon-Screening innerhalb von nur acht Stunden nach Ausplattieren der transformierten Zellen (nach Angaben des Herstellers).

Die *E. coli* C Stämme wurden von der ZKBS erst nachträglich in die Risikogruppe 1 Organsimen übernommen (1998), nachdem die Firma Stratagene die kompetenten Zellen ABLE C und ABLE K anbot. Diese Stämme eignen sich hervorragend für die Expression von Proteinen, die für den Wirt *E. coli* möglicherweise toxisch sind. Erreicht wird dies durch eine 4-10 fache Reduktion der Plasmidkopienzahl im Vergleich zu herkömmlichen Stämmen. Dies erhöht die Chancen der Zelle, die Auswirkungen der Expression des Toxins zu überstehen.

Die Sicherheitsstämme finden aber nicht nur im kleinen Labormaßstab Verwendung, sondern werden auch in der industriellen Produktion weltweit verwendet. Sie eignen sich zur Herstellung von Enzymen (z. B. die gängigen Restriktionsenzyme), Aminosäuren (Livshits, 1996; Zhang *et al.*, 2007), Vitaminen (Lee *et al.*, 1999) und Chemikalien (Maeda *et al.*, 2007). Die Möglichkeit der gezielten genetischen Manipulation macht die Sicherheitsstämme

zu den bakteriellen "Arbeitstieren" der Industrie. Um die Effizienz noch weiter zu verbessern, arbeitet im Moment die Gruppe um Frederick Blattner, die 1997 auch das erste *E. coli* Genom veröffentlichten (Blattner *et al.*, 1997), an einer Reduktion des Genoms. Alle Gene für nichtessentielle biochemische Funktionen sollen durch Vergleiche mit anderen *E. coli* Genomen detektiert werden, um sie anschließend abzuschalten bzw. dauerhaft aus dem Genom zu entfernen (Kolisnychenko *et al.*, 2002; Posfai *et al.*, 2006; Sharma *et al.*, 2007). Dadurch soll eine neue Generation von optimierten *E. coli* Sicherheits- bzw. Laborstämmen sowie Produktionsstämmen kreiert werden.

I.3 Differenzierungs- und Identifizierungsmethoden

Die vorhandenen Differenzierungsund Identifizierungsmethoden für Ε. coli Sicherheitsstämme lassen sich in mehrere Gruppen einteilen: Zunächst wurden verschiedene auf PCR basierende Methoden beschrieben, die einerseits eine Einteilung in die phylogenetische Gruppe ermöglichen (Clermont et al., 2000; Herzer et al., 1990) sowie andererseits einen Fingerprint durch spezifische Bandenmuster anhand von repetetiven Elementen im Genom erzeugen (z.B. ERIC- oder REP-PCR [Versalovic et al., 1991]). Diese Methoden erlauben allerdings nur eine grobe Klassifizierung, werden aber in vielen Veröffentlichungen beschrieben (Corvec et al., 2007; Orsi et al., 2007; Zhang et al., 2002) und auch routinemäßig in Forschungseinrichtungen zur Charakterisierung einer Reihe von Organismen (hauptsächlich für Vertreter der Familie der Enterobacteriacea) angewandt.

Ferner gibt es noch andere Methoden, um einen Sicherheitsstamm zuverlässig zu identifizieren. Diese sind auf drei verschiedene Systeme beschränkt. Zum einen die Identifizierung mittels Pulsfeldgelelektrophorese (PFGE). Diese Technik ermöglicht die Identifizierung anhand eines stammspezifischen Restriktionsmusters. Durch die pulsierende Richtungsänderung der am Gel angelegten elektrischen Spannung ist es möglich, Fragmente bis zu einer Größe von bis zu 5 Mb aufzutrennen (im Vergleich zu einem Agarosegel mit einem Auflösungsvermögen von ca 10 kb). Somit kann das gesamte, mit einem Restriktionsenzym geschnittene Genom (z. B. *Xba*I, Fermentas, Deutschland) aufgetrennt werden. Nahezu alle Genome unterschiedlicher Stämme zeigen ein individuelles Restriktionsmuster. Eine weitere Methode zur Identifizierung ist eine PCR mit stammspezifischen Primern. Diese wurden allerdings bisher nur für die K-12 Stämme sowie B und BL21 Stämme entwickelt und publiziert. Des Weiteren besteht noch die Möglichkeit, Stämme anhand ihrer Reaktion auf die Infektion mit Bakteriophagen zu untersuchen. Der

17

Phage U3 infiziert und lysiert spezifisch nur *E. coli* K-12 Stämme. Ein weiterer Phage, Φ x174, ist spezifisch für die *E. coli* C Stämme. All diese Methoden wurden vom Unterausschuss Methodenentwicklung der Arbeitsgemeinschaft Gentechnik von Bund und Ländern veröffentlicht und basieren z. T. auf den Resultaten von neueren Forschungsergebnissen (Blum *et al.*, 1995; Kuhnert *et al.*, 1995; Schneider *et al.*, 2000).

Obwohl durch diese Methoden die große Mehrheit der Sicherheitsstämme erkannt werden können, gibt es noch keine Methode, mittels der auch die W Stämme und deren Derivate identifiziert werden können. Zudem sind die geschilderten Methoden sehr zeitaufwendig (PFGE, Phagennachweise, bis zu 48 h) oder sie basieren lediglich auf dem Vorhandensein eines einzelnen Gens oder einer Mutation (PCR). Die Identifizierung einzelner Stämme ist nur durch PFGE gewährleistet. Allerdings fehlt es hier, anders als bei dem pathogenen Vertreter *E. coli* O157:H7, an einer Referenzdatenbank, die alle möglichen Restriktionsmuster beinhaltet (http://www.cdc.gov/pulsenet/).

Zusammenfassend kann man schlussfolgern, dass diese Methoden nicht ausreichen, einen Organismus, der mittlerweile zum Standardwerkzeug in allen molekularbiologischen Labors und Firmen zählt, nachzuweisen und zu identifizieren. Die genetischen Unterschiede der einzelnen Stämme sind noch zu wenig aufgeklärt.

I.4 Subtraktive Hybridisierung und Mikroarray-Technologie

Die Kombination von subtraktiver Hybridisierung und Mikroarray Technologie ergänzen sich ausgezeichnet zur Entwicklung neuer Identifizierungssysteme für Mikroorganismen. Eine schematische Darstellung der notwendigen Arbeitschritte ist in Abbildung 3 dargestellt.

Die verschiedenen Techniken zur subtraktiven Hybrisidisierung ganzer Genome (Akopyants *et al.*, 1998; Wassill *et al.*, 1998; Zwirglmaier *et al.*, 2001) ermöglichen das Aufspüren von Unterschieden im Erbmaterial zweier nahverwandter Organismen. Die Anwendung dieser Techniken ist sinnvoll, falls noch keine Genomsequenzen der Organismen vorliegen, man aber an einer schnellen Unterscheidungs- bzw. Identifizierungsmethode anhand spezifischer DNS Fragmente arbeitet (Bae *et al.*, 2005; Brandt & Alatossava, 2003; Dick *et al.*, 2005; Hepworth *et al.*, 2007; Parsons *et al.*, 2003). Zusätzlich ermöglichen diese Techniken das

I. Einleitung

Abbildung 3: Schematische Darstellung der einzelnen Arbeitsschritte

Zunächst werden spezifische DNS Fragmente der einzelnen Stämme durch subtraktive Hybridisierung detektiert. Die Unterschiede der einzelnen verwendeten Techniken sind in den drei Schemata dargestellt.

Die MaSH (Zwirglmaier *et al.*, 2001) wird in den Kavitäten einer Mikrotiterplatte durchgeführt. Bereiche mit hoher Sequenzkomplimentarität hybridisieren mit der immobilisierten Subtraktor-DNS (S-DNS) in den Kavitäten der Mikrotiterplatte, während Fragmente, die spezifisch für die Tester-DNS (T-DNS) sind, im Überstand verbleiben. Die Anreicherung stammspezifischer Fragmente erreicht man durch eine Amplifizierung der Fragmente im Überstand.

Bei der Biotin-Streptavidin-Methode (Wassill *et al.*, 1998) erfolgt die Hybridisierung in einem ERG, die S-DNS muss vor der Reaktion mit Biotin markiert werden. Die Bereiche der T-DNS mit hoher Sequenzsimilarität hybridisieren mit der modifizierten S-DNS, und die Hybride können nach der Reaktion an Streptavidinbeschichtete Magnetpartikel gebunden werden. Diese werden mit einem Magneten entfernt. Die restliche Lösung enthält wiederum T-DNS spezifische Fragmente, die durch eine PCR amplifiziert werden können.

Die "Genome subtraction" (Akopyants *et al.*, 1998) folgt einem anderen Prinzip. Die T-DNS wird mit zwei unterschiedlichen Linkern ligiert, die S-DNS bleibt unmodifiziert. Zunächst werden 2 unabhängige Hybridisierungen gestartet, die in einem zweiten Schritt gemischt werden. Hierbei können T-DNS Hybride entstehen, die mit 2 unterschiedlichen Linkern versehen sind. Diese sollten vorwiegend T-DNS spezifisch sein. Die Anreicherung spezifischer Fragmente wird durch eine PCR erzielt, wobei bevorzugt die Fragmente mit 2 unterschiedlichen Linkern amplifiziert werden. Fragmente mit identischen Linkern am 3'und 5'Ende werden unterdrückt.

Alle detektierten Fragmente können nun als Sonden auf einen Mikroarray aufgebracht werden, der mit fluoreszenzmarkierter chromosomaler DNS hybridisiert wird. Nach einem stringenten Waschschritt, welcher unspezifische Bindungen entfernt, können die Chips ausgewertet werden. Nach der Analyse kann man einzelne Stämme einwandfrei identifizieren.

Aufspüren von Pathogenitätsfaktoren bzw. ganzer Pathogenitätsinseln durch einen Vergleich der Genome von pathogenen und apathogenen Stämmen (Janke *et al.*, 2000; Sorsa *et al.*, 2004).

Alle veröffentlichten Methoden arbeiten grundsätzlich nach dem gleichen Prinzip. Die zu vergleichenden Genome werden mit einem Restriktionsenzym fragmentiert und mit unterschiedlichen Linker-Oligonukleotiden ligiert, die eine spezifische Reamplifikation nach erfolgter Hybridisierung ermöglichen. Die Methoden unterscheiden sich allerdings in ihrer Plattform, einerseits erfolgt die Hybridisierung in Lösung (Akopyants *et al.*, 1998; Wassill *et al.*, 1998), andererseits in Mikroplatten mit einer fest gebundenen Phase (Zwirglmaier *et al.*, 2001) (siehe Abbildung 3). Unterschiede in den Protokollen gibt es zusätzlich in der Dauer der Hybridisierung und der benötigten Ausgangsmenge an Erbmaterial.

Die detektierten spezifischen DNS-Fragmente können anschließend zum Sondendesign verwendet werden, um einen Mikroarray zur Identifikation verschiedener Mikroorganismen zu entwickeln. Die Mikroarray-Technologie erfreut sich zunehmender Beliebtheit, da sie die Möglichkeit bietet, die Reaktion einer großen Anzahl an Sonden in einem einzigen Experiment zu untersuchen und somit einen sehr hohen Durchsatz zu ermöglichen.

Die meisten Anwender nutzen das Mikroarray-Format zur Untersuchung der Genexpression (Schramm et al., 2007; Veit et al., 2007). Hierfür wird Gesamt-RNS isoliert, durch reverse Transkription in cDNS umgeschrieben, markiert, und zur Hybridisierung eingesetzt. Die Signale der spezifischen Gensonden lassen eine Identifizierung der exprimierten Gene zu. Des Weiteren werden Mikroarrays zur vergleichenden Analyse verschiedener Genome (CGH, Comparative Genome Hybridisation) (Dobrindt et al., 2003; Fukiya et al., 2004; Willenbrock et al., 2006) verwendet, indem man die DNS-Fragmente der einzelnen Open Reading Frames (ORF) eines Genoms auf einem Chip immobilisiert, chromosomale DNS verschiedener Stämme markiert und hybridisiert. Die Signale, welche durch die Hybridisierung der markierten DNS an die Sonden entstehen, ermöglichen eine Aussage über die Prä- oder Absenz eines Gens in einem getesteten Stamm. Gleiches gilt für die Untersuchung von Virulenzfaktoren eines Stammes, die durch spezifische Sonden detektiert werden können (Anjum et al., 2007; Ballmer et al., 2007; Hamelin et al., 2006). Eine weitere Anwendungsmöglichkeit dieser Technik ist die phylogenetische Analyse von bestimmten Organismengruppen oder Habitaten (Lehner et al., 2005; Loy et al., 2005). Dafür werden spezifische Sonden auf 16S-rDNS Ebene entwickelt, die eine Identifizierung bis auf Speziesebene ermöglichen. Für diese Methode ist die Markierung eines 16S-rDNS PCR Produkts nötig.

21

Die Mikroarray-Technik eignet sich allerdings auch hervorragend zur Identifizierung einzelner nahverwandter Bakterienstämme, in denen eine Unterscheidung auf 16S-rDNS Basis nicht möglich ist.

I.5 Ziele der Studie

In dieser Arbeit sollte eine neue Identifizierungsmethode für *Escherichia coli* Sicherheits- und Laborstämme entwickelt werden. Die Detektion spezifischer DNS-Fragmente einzelner Stämme erfolgt durch verschiedene subtraktive Hybridisierungstechniken. Anhand der erhaltenen Ergebnisse sollte ein Mikroarray entwickelt werden, der einen schnellen und vor allem verlässlichen Nachweis dieser Stämme bzw. eine Unterscheidungsmöglichkeit von wildtyp- bzw. pathogenen Stämmen erlaubt. Ferner lassen die Ergebnisse aus subtraktiver Hybridisierung und Virulenzfaktorscreening durch PCR und Mikroarray eine Reevaluierung des Risikopotentials dieser Stämme zu. Die Stämme wurden aufgrund der in Kapitel I.2 erklärten Eigenschaften zu den "Arbeitstieren" der Wissenschaft erklärt, und deren Ungefährlichkeit ebenfalls durch verschiedene Methoden von der ZKBS überprüft. Es bleibt dennoch ein gewisses Restrisiko aufgrund des Vorhandenseins partieller oder inaktivierter Virulenzfaktoren, die jederzeit wieder aktiviert werden können.

Die neu entwickelte Methode sollte eine sehr einfache, aber zuverlässige Identifikation durch DNS-Hybridisierung ermöglichen.

II Material und Methoden

II.1 Escherichia coli Stämme

In dieser Arbeit wurden 41 verschiedene *Escherichia coli* Sicherheitsstämme, 10 pathogene Stämme sowie 10 uncharakterisierte Isolate von Lebensmittelproben verwendet, die von unterschiedlichen Quellen erhalten wurden. Zusätzlich wurde auch der probiotische Stamm *E. coli* Nissle 1917 (Mutaflor, ArdeyPharm GmbH, Deutschland) untersucht. Die Anzucht erfolgte in Luria Bertani (LB) Medium bei 37 °C. Einige Stämme (ABLE C, ABLE K, Vektortragende Stämme wie z. B. TOP 10 pHis17*btubA*, Mach1 pCR 2.1, BL21 pLysS sowie C41 pHis17*btubA*) benötigten zusätzlich die Zugabe verschiedener Antibiotika (je nach Vektor bzw. kodierter Resistenz Ampicillin, Tetracyclin, Kanamycin oder Chloramphenicol, nach Angaben der jeweiligen Hersteller). Alle Stämme sowie deren Herkunft sind in Tabelle 2 aufgelistet.

II.2 Extraktion und Aufreinigung chromosomaler DNS

Chromosomale DNS der einzelnen *E. coli* Stämme wurde wie bereits beschrieben (Bauer *et al.*, 2007) oder mit dem DNeasy Tissue-Kit nach Angaben des Herstellers (Qiagen GmbH, Deutschland) extrahiert und bei -20 °C gelagert, für PCR-Reaktionen wurde ein 1:100 (ca. 10 ng/ μ l) verdünntes Aliquot verwendet.

E. coli K-12 Stämme		<i>E. coli</i> C Stämme	
MG 1655	(1)	С	DSM 13127
W 3110	(1)	ABLE C	Stratagene, USA
XL1 Blue	(1)	ABLE K	Stratagene, USA
DH5 a	(1)	E. col	<i>i</i> W Stämme
HB 101	(1)	W	DSM 1116 (ATCC 9637)
TOP F	(1)	W-mutant	DSM 2607 (NCIB 8743)
TOP 10	Invitrogen, USA	Mach 1	Invitrogen, USA
EN 99	(1)	Pathogen	e E. coli Stämme
BMH	(1)	EHEC	
WK6	(1)	O157:H7 EDL 933	(1)
5K	(1)	EAEC	
C600	(1)	O42	(1)
LE392	(1)	ETEC	
J53	(1)	H10407	(1)
678-54	(1)	EPEC	
DH1	(1)	E2348/69	(1)
E.coli 35	(1)	EIEC	
M15	Qiagen, Deutschland	EDL1284	(1)
W3350	(2)	UPEC	
JM 83	(2)	536	(1)
W3350	(2)	J96	(1)
AN92	(3)	CFT073	(3)
AN260	(3)	MENEC	
TH2	Takara	IHE3034	(1)
DSM492	(3)	Sepsis	
DE NovaBlue	Novagen, Deutschland	RS218	(1)
M28	(2)	T T	Weitere
	E. coli B Stämme	Nissle 1917	(3)
В	DSM 613	uncharak	terisierte Isolate
В	(1)	1: Schwein, Kot	(4)
B/r	DSM 500	2: Rind, Kot	(4)
Bs-1	DSM 501	3: Rind, Organe	(4)
BL21	(1)	4: Hund, Kot	(4)
BL21 pLys	Invitrogen, USA	5: Rind, Kot	(4)
C41	Miroux & Walker, 1996	6: Schwein, Milch	(4)
		7: Rind, Kot	(4)
		8: Schwein, Kot	(4)
		9: Schwein, Kot 10: Schwein, Kot	(4) (4)

 Tabelle 2
 In dieser Arbeit verwendete E. coli Sicherheitsstämme

(1) Dr. Ulrich Dobrindt, Universität Würzburg

(2) Dr. Wolfgang Schwarz, TU München

(3) Dr. Sören Schubert, Pettenkofer Institut München

(4) Dr. Ulrich Busch, Landesamt für Gesundheit und Lebensmittelsicherheit

DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Deutschland

ATCC: American Type Culture Collection, USA

NCIB: National Collection of Industrial Bacteria, UK

II.3 Polymerase-Ketten-Reaktion

Zur spezifischen Vervielfältigung von DNS-Fragmenten wurde die Polymerase-Ketten-Reaktion eingesetzt (Saiki *et al.*, 1988). Ein Standardprogramm ist in Tabelle 3 dargestellt.

Reaktion	Temperatur in °C	Zeit in Min	Zyklenzahl
Initiale Denaturierung	94	3	1
Denaturierung	94	0,5	
Annealing	Х	0,5	35
Elongation	72	у	
Finale Elongation	72	10	1

 Tabelle 3
 Standard PCR Programm

x ist abhängig von der Schmelztemperatur des verwendeten Primerpaares

y ist die Elongationszeit abhängig von der Größe des PCR-Fragments (ca. 1000b/ min)

PCR-Reaktionen wurden vorwiegend mit dem *Ex-Taq* System (Takara Shuzo Co., Japan) nach Angaben des Herstellers in einem Volumen von 50 μ l durchgeführt. Unterschiedliche Anwendungen erforderten allerdings die Verwendung weiterer Systeme bzw. Programme:

- Klonscreening: Um die Insertion eines DNS-Fragments in einem Vektor nach erfolgter Klonierungsreaktion (siehe Kapitel II.7, Seite 28) zu überprüfen, wurde die PCR mit dem Bioline System (Bioline, UK) und vektorspezifischen Primern (siehe Tabelle 9, Seite 89 im Anhang) nach Angaben des Herstellers durchgeführt. Da intakte Zellen als Ausgangsmaterial verwendet wurden, musste der initiale Denaturierungsschritt auf 10 min erhöht werden.
- ERIC-(*Enterobacterial* Repetitive Intergenic Consensus) PCR: Diese Reaktion wurde nach dem Protokoll von Casarez *et al.* (2007) durchgeführt, welches zur spezifischeren Amplifikation die Verwendung einer "Hot-Start" Polymerase (Segenetic, Deutschland) sowie BSA beinhaltete.
- Multiplex-PCR: Die während dieser Arbeit entwickelte Multiplex-PCR zur Bestimmung der *E. coli* Sicherheitsstamm Linien wurde nach dem Protokoll von Bauer *et al.* (2007) ebenfalls mit BSA im Reaktionsansatz, durchgeführt (Bauer *et al.*, 2007)
- "Two-Step-Gene-Walking": Diese Methode ermöglicht die Charakterisierung flankierender Regionen eines bekannten Fragments mittels eines speziellen PCR-

Programms und nur einem spezifischen Primer. Die Methode wurde exakt nach dem Protokoll von Pilhofer *et al.* (2007) durchgeführt.

II.4 DNS Modifizierung

Die extrahierte chromosomale DNS wurde vor der subtraktiven Hybridisierung noch enzymatisch behandelt.

II.4.1 Restriktionsverdau chromosomaler DNS

Der Restriktionsverdau von 5 μ g DNS für die Mikroplatten Ausschlusshybridisierung und die subtraktive Hybridisierung mit Biotin wurde mit dem Enzym *Bsp143*I (Fermentas, Deutschland) nach Angaben des Herstellers durchgeführt. Dieses erzeugt einen 3' GATC-Überhang an den Schnittstellen.

Für die "Genome Subtraction" (Akopyants *et al.*, 1998) wurde das Enzym *Rsa*I (Fermentas, Deutschland) eingesetzt, welches keinen Überhang erzeugt.

Beide Restriktionsenzyme liefern geschnittene DNS im Größenbereich von ca. 100-1500 bp. Diese kurzen DNS-Fragmente eignen sich besser zur Hybridisierung als größere Fragmente und ermöglichen eine einfache Reamplifikation durch PCR.

II.4.2 Ligation mit T4 DNS Ligase

Die verdaute DNS wurde ohne Aufreinigung zur Ligation eingesetzt. Dabei wurden verschiedene Linker an die Schnittstellen ligiert, um eine Amplifikation der Fragmente durch PCR zu ermöglichen. Hierfür wurde die T4 DNS Ligase (Roche, Schweiz) nach dem Protokoll von Zwirglmaier *et al.* (2001) bzw. Akopyants *et al.* (1998) verwendet. Die unterschiedlichen Linker-Oligonukleotide sind in Tabelle 9 (Seite 89 im Anhang) angegeben.

II.5 Subtraktive Hybridisierungsmethoden

Um eine möglichst hohe Ausbeute an spezifischen DNS-Fragmenten zu erhalten, wurden verschiedene veröffentlichte subtraktive Hybridisierungsmethoden angewendet und gegebenenfalls modifiziert.

II.5.1 Mikrotiterplatten-Ausschlusshybridisierung (MaSH)

Bei der MaSH erfolgt die Hybridisierung in einer Kavität einer Mikrotiterplatte. Die Subtraktor-DNS (S-DNS) wird in einer Kavität immobilisiert, und die zu untersuchende Tester-DNS (T-DNS) dagegen hybridisiert. Bereiche mit hoher Sequenzsimilarität bleiben somit in der Kavität gebunden, während sich im Überstand die stammspezifischen Fragmente anreichern. Der Überstand wird abgenommen, aufgereinigt und mit den linkerspezifischen Primern reamplifiziert. Die Methode ermöglicht einen relativ hohen Durchsatz in sehr kurzer Zeit bei gleichzeitig recht geringen eingesetzten DNS-Mengen. Eine schematische Darstellung der Methode ist in Abbildung 3 (Seite 19) gezeigt.

Das Protokoll von Zwirglmaier *et al.* (2001) wurde mit den bereits beschriebenen Änderungen (Bauer *et al.*, 2007) durchgeführt.

II.5.2 Biotin-Streptavidin-Methode

Die subtraktive Hybridisierung mit Biotin markierter DNS und die anschließende Anreicherung spezifischer Fragmente folgen prinzipiell dem Schema der MaSH. Die Hybridisierung findet aber in einem ERG in einem Thermocycler statt. Die S-DNS wird vor der Hybridisierung in einer PCR mit Biotin markiert (siehe Kapitel II.14.1, Seite 31). Es bilden sich wiederum Hybride aus den Fragmenten mit hoher Sequenzsimilarität von S-und T-DNS. Diese Hybride werden nach der Hybridisierung an Streptavidin-beschichtete Magnetpartikel gebunden und können durch den Einsatz eines Magneten entfernt werden. Die stammspezifischen Fragmente der T-DNS verbleiben in der Lösung und können durch PCR mit linkerspezifischen Primern amplifiziert werden. Eine schematische Darstellung der Methode ist in Abbildung 3 (Seite 19) gezeigt. Diese Methode erforderte die höchsten DNS-Mengen und die längsten Hybridiserungszeiten.

Die subtraktive Hybridisierung mit Biotin und Streptavidin beschichteten Magnetpartikeln wurde nach dem Protokoll von Wassill *et al.* (1998) mit den beschriebenen Änderungen von Bauer *et al.* (2008) durchgeführt.

II.5.3 "Genome subtraction"

Die von Akopyants *et al.* (1998) vorgestellte Methode ist eine auf PCR basierende subtraktive Hybridisierung. Die Hybridisierung findet in einem ERG in einem Thermocycler oder im Wasserbad statt. Hier wird zunächst die T-DNS mit zwei verschiedenen LinkerOligonukleotiden verknüpft (Adat1 und Adat2, siehe Tabelle 9, Seite 89 im Anhang), welche wiederum aus 2 verschiedenen Teilen zusammengesetzt sind. Der 5'-Bereich ist jeweils identisch, der 3'-Bereich ist unterschiedlich. Es werden zwei unabhängige Hybridisierungen gestartet, mit fragmentierter S-DNS und T-DNS Adat1 sowie S-DNS und T-DNS Adat2. Es bilden sich Hybride aus den Bereichen mit hoher Sequenzsimilarität von S-und T-DNS. Die beiden Reaktionen werden nach ca. 90 min miteinander gemischt, und es wird nochmals fragmentierte S-DNS zugegeben, um weitere ähnliche Fragmente an die S-DNS zu binden. In dieser zweiten Reaktion können sich nun T-DNS Hybride bilden, die jeweils einen Adat1- und einen Adat2-Linker tragen. Diese konnten während der ersten Hybridisierung aufgrund von Sequenzunterschieden nicht an die S-DNS binden und sind somit potentiell spezifisch für den Tester-Stamm. Nach der zweiten Hybridisierung wird die Reaktion gestoppt, und die Anreicherung der spezifischen Fragmente erfolgt durch eine anschließende PCR. Zur Amplifikation werden Primer verwendet, die am Adat1- und Adat2-Linker binden, somit werden bevorzugt Fragmente mit beiden Linkern exponentiell amplifiziert. Eine schematische Darstellung der Methode findet sich in Abbildung 3 (Seite 19).

Die "*Genome subtraction*" wurde nach dem Protokoll von Akopyants *et al.* (1998) durchgeführt, einzig die Hybridisierungstemperatur wurde auf 55°C erniedrigt.

II.6 Aufreinigung der PCR-Produkte

Die subtrahierte DNS wurde nach der Hybridisierung mittels PCR amplifiziert und das erhaltene Produkt mit einem kommerziell erhältlichen Aufreinigungskit (QiaQuick PCR Purification Kt, Qiagen, Deutschland oder AccuPrep PCR Purification Kt, Bioneer, UK) nach Angaben des Herstellers von Enzymen, Salzen und Oligonukleotiden befreit

II.7 Klonierung

Die aufgereinigten PCR-Produkte wurden mit Hilfe des TOPO TA Cloning Kit (Invitrogen, USA) in den Vektor pCR 2.1 oder pCR II kloniert. Als Empfänger des Vektors dienten *E. coli* TOP10 (K-12 Stamm) oder *E. coli* Mach1 (W Stamm) Zellen. Die Reaktion erfolgte nach Angaben des Herstellers.

II.8 Klonscreening

Die erhaltenen Klone mussten auf die eingebaute DNS im Vektor hin überprüft werden. Kolonien, die eine Insertion im Vektor hatten, wurden zufällig ausgewählt und in 100 µl LB-Ampicilin (50 µg/ ml) für mindestens 1 h bei 37 °C inkubiert. Die anschließende Screening-PCR (siehe Kapitel II.3, Seite 25) wurde mit einem Pipettierroboter mit integriertem Thermocycler (MWG RoboSeq2404 SE, MWG Biotech AG, Deutschland) durchgeführt. Dies ermöglichte ein Klonscreening mit hoher Durchsatzrate. Die erhaltenen PCR-Fragmente wurden mittels Agarose-Gelelektrophorese analysiert.

Klone mit unterschiedlich großen eingebauten Fragmenten wurden ausgewählt, in 5 ml LB-Amp bei 37 °C für 16 h inkubiert. Anschließend wurde eine Plasmid-Isolierung durchgeführt (siehe Kapitel II.9).

II.9 Plasmidaufreinigung

Die Aufreinigung wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Deutschland) oder wahlweise mit dem AccuPrep Plasmid Extraction Kit (Bioneer, UK) nach dem Protokoll des Herstellers durchgeführt.

II.10 Sequenzierung

Die Sequenzierreaktion, mit den Insertionen der extrahierten Plasmide als Matrize, wurde mit dem Sequitherm Excel II DNA Sequencing Kit (66cm, Epicentre, UK) nach Angaben des Herstellers durchgeführt. Die Reaktion wurde durch Polyacrylamid-Gelelektrophorese in einem LI-COR Global IR² 4200 (LI-COR Biosciences, Deutschland) System aufgetrennt. Die Sequenzauswertung erfolgte mit der Sequenzanalyse-Software *e*-Seq (LI-COR Biosciences, Deutschland).

II.11 Sequenzanalyse und Entwicklung von spezifischen Primern

Die erhaltenen Sequenzen wurden einer BLAST (Basic Local Alignment Tool) (Altschul *et al.*, 1997) Analyse unterzogen. Zunächst wurde die Ähnlichkeit auf Nukleotidebene untersucht (blastn). Falls dies zu keinem Ergebnis führte, wurden auch Ähnlichkeiten auf Proteinebene überprüft (tblastx).

Sequenzen, die nahezu identisch auch im Genom des Subtraktorstammes (*E. coli* K-12 MG1655 bzw. W3110) vorhanden sind, wurden als unspezifisch definiert und die dazugehörigen Klone wurden nicht weiter untersucht. Alle weiteren Sequenzen wurden einer genaueren Analyse unterzogen. Für diese DNS-Fragmente wurden spezifische Primer entwickelt und an einer Auswahl an Stämmen getestet. Die Ergebnisse der PCR-Untersuchung sind in Tabelle 8 (Seite 85 im Anhang), die Sequenzen und Schmelztemperaturen der verwendeten Oligonukleotide sowie die Fragmentgröße des PCR-Produktes in Tabelle 9 (Seite 89 im Anhang) aufgelistet.

II.12 Pulsfeldgelelektrophorese (PFGE)

Die Pulsfeldgelelektrophorese (PFGE) ermöglicht das Auftrennen hochmolekularer DNS-Fragmente durch ein ständiges Umpolen des elektrischen Feldes. Im Vergleich zu der herkömmlichen Agarose-Gelelektrophorese, welche ein Auftrennen von Fragmentgrößen bis max. 10 kb ermöglicht, kann man mit einer PFGE-Apparatur Fragmentgrößen bis zu 5 Mb deutlich auftrennen. Die Methode eignet sich zur Unterscheidung von Mikroorganismen durch ein spezifisches Restriktionsmuster sowie zur Genomgrößenbestimmung.

Zur Differenzierung verschiedener *E. coli* Sicherheitsstämme wurde die jeweilige DNS aus in Agarose gegossenen Zellen extrahiert und mit einem Restriktionsenzym geschnitten. Der Verdau wurde mit der PFGE aufgetrennt und ergab ein spezifisches Restriktionsmuster.

Die Methode basierte auf einem Protokoll der Landesarbeitsgruppe Gentechnik (www.laggentechnik.de) und wurde leicht modifiziert. Das dort verwendete Restriktionsenzym wurde durch *Xba*I (Fermentas, Deutschland) ersetzt. Dadurch entstanden Fragmente mit einer Größe im Bereich von 500 kb bis 100 bp. Die Elektrophoreseparameter in einem CHEF-DR III PFGE System (BioRad, Deutschland) waren wie folgt: Laufzeit 22 h, Switch time 2-50 s, Spannung 6 V bei einer Temperatur von 14 °C.

Die Genomgrößenbestimmung erfolgte nach einem Protokoll von Bergthorrson und Ochman (1995; 1998), welche die Größen der Genome der gesamten *Escherichia coli* Reference (ECOR) Kollektion mit ihrer Methode bestimmt haben. Es wurde ein Restriktionsenzym (I-*Ceu*I, New England Biolabs, Deutschland) verwendet, welches spezifisch in der 23S-rDNS schneidet. Im Fall von *E. coli*, welches 7 rDNS Operons besitzt, entstehen somit 7 definierte Fragmente im Bereich von 2,5 Mb bis 40 kb. Um diese adäquat aufzutrennen, sind mindestens zwei PFGE-Läufe mit unterschiedlichen Konditionen nötig.

II.13 Southern Blot

Southern Blot Hybridisierung wurde verwendet, um die durch PFGE erhaltenen Fragmente zu verifizieren.

Die DNS-Fragmente aus den PFGE Gelen wurden, nach Vorbehandlung mit 0,2 M HCl und Neutralisierungspuffer (Sambrook & Russel, 2001), mit dem Posi Blot Apparat (Stratagene, USA) nach Angaben des Hersteller auf eine Nylon Membran (PALL, UK) übertragen. Alle weiteren Hybridisierungs- und Detektionsschritte erfolgten nach dem Protokoll von Sambrook und Russel (2001).

Für die Hybridisierung wurden DIG-markierte Sonden (Roche, Schweiz) verwendet. Zum einen wurde ein Fragment der 16S-rDNS hybridisert, zum anderen ein Fragment des F-Plasmids. Die Sondenherstellung ist in Kapitel II.14.1 (Seite 31) beschrieben.

II.14 DNS-Markierung

II.14.1 Markierung mit DIG bzw. Biotin

Die DNS-Markierung mit DIG dUTP (für Southern Blot) (Roche, Schweiz) bzw. Biotin dUTP (für subtraktive Hybridisierung nach der Biotin-Streptavidin-Methode) (Roche, Schweiz) erfolgte mittels einer-PCR Reaktion. Es wurden die Standardprogramme mit den primerspezifischen Konditionen gewählt. Der verwendete dNTP Mix hatte eine 2,5 mM Konzentration jedes Nukleotids, wobei die markierten dUTPs im Verhältnis 1:3 mit den unmarkierten dTTPs gemischt wurden.

II.14.2 Markierung mit Fluoreszenzfarbstoffen

Für die Mikroarray-Hybridisierung wurden die Fluoreszenzfarbstoffe Cy3 dUTP bzw. Cy5 dUTP (GE Healthcare, USA) eingesetzt. Die Markierung von chromosomaler DNS basierte auf einem Protokoll der Universität von Wisconsin (http://www.genome.wisc.edu/resources/ protocols/genomiclabeling.htm). Bei dieser Methode wird die chromosomale DNS zunächst durch ein Restriktionsenzym (*Bsp*143I, Fermentas, Deutschland) fragmentiert (ca. 100-1500 bp) und aufgereinigt. Die eigentliche Markierung erfolgt durch das Klenow-Fragment, welches in einer Random Prime Reaktion die eingesetzte DNS vervielfacht und dabei die markierten Nukleotide einbaut. Nach einem Aufreinigungsschritt wird die markierte DNS in $10 \,\mu\text{I}\,\text{H}_2\text{O}_{\text{reinst}}$ gelöst und bei -20°C gelagert.

Die Methode wurde wie beschrieben angewendet, lediglich die Reaktionszeit wurde auf 16 h verlängert und die Aufreinigung der markierten DNS erfolgte nicht in einem Säulchen, sondern durch eine Ethanolfällung (Sambrook & Russel, 2001).

Pro Reaktion wurden wie im Protokoll beschrieben ca. 5 µg DNS eingesetzt. Diese Menge eignete sich für 4-5 Hybridisierungsreaktionen.

II.15 Herstellung des Mikroarrays

II.15.1 Herstellung der Sonden

Alle spezifische PCR-Produkte (siehe Tabelle 8, Seite 85 im Anhang) wurden mit dem Qiagen PCR Purification Kit (Qiagen, Deutschland) bzw. AccuPrep PCR Purification Kit (Bioneer, UK) nach Anleitung der Hersteller aufgereinigt, in einer Vakuumzentrifuge getrocknet und in 50 µl 50% DMSO gelöst. Die Konzentration der PCR-Produkte sollte 100-200 ng/µl betragen und gegebenenfalls eingestellt werden. Vierzig µl dieser Lösung wurden in 384 well Platten pipettiert und bei -20 °C gelagert, bis sie zum Spotten der Chips verwendet wurden.

II.15.2 Herstellung des Chips

Die verwendeten Chips (Corning GAPS II coated slides) wurden mit dem GMS Arrayer 417 (Affymetrix, USA) bei Raumtemperatur und 45% Luftfeuchtigkeit gespottet. Die Programmierung erfolgte nach Angaben des Herstellers, die Waschzeit der Nadeln betrug 5 s und Trockenzeit 20 s, um eine vollständige Entfernung der Waschflüssigkeit (H_2O_{dest}) zu gewährleisten. Die Sonden wurden mit 5 "Hits per Dot" aufgetragen, um eine ausreichende Menge an DNS auf dem Chip zu immobilisieren. Nach dem Spotting-Vorgang wurden die Chips zum Rehydratisieren der DNS für ca. 3 s in Wasserdampf gehalten und anschließend für ca. 3 s auf eine Heizplatte (ca. 80 °C) gelegt. Die fertigen Chips wurden bis zur Verwendung trocken und dunkel gelagert.

Die 384 well Platten wurden nach dem Schema der Anleitung belegt. Das erhaltene Muster auf dem Array ist in Abbildung 22 (Seite 57) dargestellt.

Die Kopplung der DNS-Fragmente an die silanisierte Glasoberfläche erfolgt lediglich durch eine elektrostatische Bindung zwischen der Amino-Gruppe des Silans und der Phosphat-Gruppe des DNS-Rückgrats, da die verwendeten Sonden keinerlei Modifizierung (z. B. Aminomodifier) hatten.

II.16 Mikroarray-Hybridisierung

II.16.1 Prähybridisierung

Die Oberfläche der Mikroarrays wurde vor der Hybridisierung inaktiviert, um das Hintergrundrauschen zu reduzieren. Die Objektträger wurden für 10 min bei 42 °C in der Prähybridisierungslösung (5x SSC, 0,1% SDS, 0,1 mg/ml BSA) inkubiert, anschließend in 0,1x SSC und H₂O_{reinst} gewaschen und in einer Minizentrifuge getrocknet. Diese Vorbehandlung sollte direkt vor der eigentlichen Hybridisierung stattfinden.

II.16.2 Hybridisierung und stringentes Waschen

Die Mixtur des Hybridisierungspuffers wurde abgeleitet von einem Protokoll der Universität von Wisconsin (www.genome.wisc.edu/resources/protocols/spottedarrayhybridization.htm), jedoch stark verändert. Letztendlich bestand der Puffer aus 0,5x Sigma PerfectHyb Plus (Sigma, Deutschland), 25% Formamid und 200 ng/µl fragmentierter Heringssperma-DNS. Ein Chip wurde mit jeweils zwei unterschiedlich markierten (Cy3 bzw. Cy5 dUTP) gDNS hybridisiert. Dafür wurden 25 µl Puffer mit je 2,5 µl markierter DNS gemischt und bei 94 °C für 10 min denaturiert. Der Hybridisierungsmix wurde sofort auf 4 °C abgekühlt und auf ein Deckglas ([24x50 mm], VWR International, Deutschland) pipettiert. Der Array wurde anschließend auf dem Deckglas platziert, umgedreht und in eine Hybridisierungskammer gelegt, die mit insgesamt 100 µl H₂O befeuchtet wurde um eine Austrocknung des Arrays zu verhindern. Die Hybridisierung erfolgte bei 42 °C für 16-20 h.

Das stringente Waschen des Arrays wurde in einer Slide Washing Station (Adva Wash, Implen, Deutschland) durchgeführt, welche absolut reproduzierbare Bedingungen für jeden Array in jedem Waschschritt ermöglicht. Die Reihenfolge der Waschpuffer war wie folgt:

(1) 2x 2x SSC/0,1% SDS für 2,5 min bei 50 °C; (2) 0,1x SSC/ 0,1% SDS für 10 min mit pulsierendem Flüssigkeitsnachschub; (3) 0,1x SSC für 5 Min mit pulsierendem Flüssigkeitsnachschub und (4) 0,05x SSC für 10 s. Der Chip wurde anschließend in einer Minizentrifuge für 10 s. getrocknet und sofort ausgewertet (siehe Kapitel II.17).

Die ausgewerteten Arrays wurden im Dunkeln bei 20 °C für weitere Analysen gelagert.

II.17 Datenauswertung

II.17.1 Quantifizierung der Signalintensitäten

Die hybridisierten Mikroarrays wurden in einem GMS 418 Array Scanner (Affymetrix, USA) mit den jeweiligen Wellenlängen für Cy3 (548 nm) und Cy5 (647 nm) bei 100% Laser Power und 60-80% Laser gain gescannt. Die Auswertung der Signalintensitäten erfolgte mit der Software Imagene 4.0 (Biodiscovery Inc., USA). Ein Raster, welches jeden Spot erfasst, wurde für den Chip entworfen. Für die Berechnung der Mittelwerte wurden die Einstellungen "Signal intensity min 10% / max 95%" gewählt. Die Hintergrundfläche, welche die Spots umgibt, wurde durch die Parameter "background buffer" 4,5 und "background width" 10 festgelegt.

II.17.2 Normalisierung der Daten

Die erhaltenen Intensitäten wurden nach der Methode von Loy *et al.* (2002) ausgewertet und verglichen. Zunächst wurde das Signal-Hintergrund-Verhältnis bestimmt. Dazu wurde folgende Formel verwendet:

$T = [I_P - (I_N - I_{NLB})] \times I_{PLB}^{-1}$

 I_P entspricht der durchschnittlichen Signalintensität der jeweiligen Sonde, I_N der durchschnittlichen Signalintensität der Negativkontrolle (50% DMSO), I_{NLB} dem Hintergrundrauschen der Negativkontrolle und I_{PLB} dem Hintergrundrauschen der jeweiligen Sonde.

Anschließend wurde der erhaltene T-Wert mit Hilfe der Positivkontrolle (16S rDNS) mit der folgenden Formel normalisiert:

$\mathbf{R} = \mathbf{T} \ \mathbf{x} \left\{ \left[\mathbf{I}_{16S} - (\mathbf{I}_{N} - \mathbf{I}_{NLB}) \right] \mathbf{x} \ \mathbf{I}_{16SLB}^{-1} \right\}^{-1}$

 I_{16S} entspricht der durchschnittlichen Signalintensität der Positivkontrolle (16S rDNS), I_N entspricht der durchschnittlichen Signalintensität der jeweiligen Sonde, I_{NLB} dem Hintergrundrauschen um die jeweilige Sonde und I_{16SLB} dem Hintergrundrauschen um die Positivkontrolle. Die Positivkontrolle erhält somit einen Wert von 1,0.

III Ergebnisse

III.1 Fingerprint-Methoden zur Unterscheidung von *Escherichia coli* Stämmen

III.1.1 Bestimmung der phylogenetischen Gruppe

Eine grobe Einteilung der *Escherichia coli* Stämme erfolgte durch die phylogenetische Gruppierung mit der von Clermont *et. al.* (2000) beschriebenen Triplex PCR-Methode. Die verschiedenen *E. coli* Isolate können in die 4 phylogenetischen Gruppen A, B1, B2 und D eingeteilt werden, wobei A und B1 ausschließlich apathogene Vertreter enthält und die potentiell pathogenen Stämme in die Gruppen B2 und D fallen.

Diese Methode wurde auf die zu untersuchenden Sicherheitsstämme angewandt, mit dem Ergebnis, dass alle getesteten *E. coli* K-12, B und C Stämme in die Gruppe A fallen und die W Stämme in Gruppe B1. Somit sind alle untersuchten Sicherheitsstämme in den Gruppen der apathogenen *E. coli* Stämme. Abbildung 4 zeigt die PCR Ergebnisse für je einen Stamm der 4 Linien sowie einen pathogenen Vertreter (*E.coli* O157:H7), welcher der Gruppe D zugeordnet werden kann. In Abbildung 5 ist ein Organigramm zur Auswertung der Triplex PCR abgebildet.

III.1.2 Unterscheidung von Sicherheitsstämmen durch ERIC-PCR

Eine Fingerprintmethode zur Unterscheidung von *E. coli* Stämmen ist die ERIC (Enterobacterial Repetitive Intergenic Consensus) -PCR (Versalovic *et al.*, 1991). Dabei werden spezifische Primer auf hochkonservierte, sich wiederholende intergenische Regionen gelegt. Da die Anordnung der Gene im Genom einzelner Stämme oft sehr unterschiedlich ist, erhält man in der PCR ein Muster aus verschieden großen Fragmenten, die eine Einzelstammidentifizierung ermöglichen sollen. In dieser Reaktion wurden die Primer ERIC1 und ERIC2 (siehe Tabelle 9, Seite 89 im Anhang) verwendet, das PCR-Programm sowie der PCR Ansatz wurden dem Protokoll von Casarez *et al.* (2007) entnommen. Die Ergebnisse der Reaktion von einer Auswahl an Stämmen sind in Abbildung 6 undAbbildung 7 (Seite 37) dargestellt.

Die Einteilung der *E. coli* Sicherheitsstämme in die jeweilige phylogenetische Gruppe (A, B1, B2 und D) erfolgte nach der von Clermont *et al.* (2000) beschriebenen Multiplex PCR-Methode durch die Amplifikation der Fragmente *yjaA*, *chuA* und TSPE4.C2. Das Gelbild zeigt die Ergebnisse für die Stämme *E. coli* K-12 MG16555 (1), *E. coli* B (2), *E. coli* C (3), *E. coli* W (4) sowie einen pathogenen Vertreter (*E. coli* O157:H7, [5]). (M1=100bp ladder, Invitrogen; M2=1 kb ladder, Invitrogen). Die Auswertung erfolgte nach dem von Clermont *et al.*. entworfenen Organigramm (Abbildung 5). *E. coli* K-12, B und C fallen somit in die phylogenetische Gruppe A, *E. coli* W hingegen in die Gruppe B1.

Abbildung 5

5 Schema zur Bestimmung der phylogenetischen Gruppe

Das Organigramm zeigt die einfache Einteilung in die phylogenetische Gruppe anhand der Triplex PCR Methode (Clermont *et. al.*, 2000).

Abbildung 6 ERIC-PCR ausgewählter *Escherichia coli* K-12 Stämme

Ergebnisse einer ERIC-PCR verschiedener *E. coli* K-12 Stämme. Die erhaltenen Muster weisen leichte Unterschiede auf, speziell die Bahnen 5 und 6 sind im Bereich über 700 bp unterschiedlich. Belegung der Bahnen: M: 1 kb ladder, Invitrogen; 1: *E. coli* K-12 MG1655, 2: *E. coli* K-12 XL1 Blue, 3: *E. coli* K-12 W3110, 4: *E. coli* K-12 DH1, 5: *E. coli* K-12 TOP10, 6: *E. coli* K-12 TH2.

Abbildung 7 ERIC-PCR verschiedener E. coli B, C, W sowie 4 pathogener Stämme

Weitere Ergebnisse einer ERIC-PCR verschiedener *E. coli* B, C und W Stämme sowie 4 pathogener Vertreter. Die verschiedenen Gruppen zeigen durchaus sichtbare Unterschiede, eine einfache Identifizierung hingegen ist nicht gewährleistet. Das Muster der *E. coli* C (13, 14) Stämme ist nahezu identisch zu dem der *E. coli* K-12 Stämme. Belegung der Bahnen: M1: 100bp ladder, Invitrogen, 7: *E. coli* BL21, 8: *E. coli* B, 9: *E. coli* BL21 pLysS, 10: *E. coli* C41, 11: *E. coli* W, 12: *E. coli* W-Mutante, 13: *E. coli* C, 14: ABLE C, 15: *E. coli* J96 (UPEC), 16: *E. coli* IHE3034 (MENEC), 17: *E. coli* H10407 (ETEC) 18: *E. coli* RS218 (Sepsis), M2: 1 kb ladder, Invitrogen

Diese auf PCR basierende Fingerprintmethode eignet sich durch die hohe Ähnlichkeit der erhaltenen Bandenmuster nur bedingt zum Nachweis und zur Identifizierung von *E. coli* Sicherheitsstämmen.

III.1.3 Unterscheidung der Sicherheitsstämme durch Pulsfeldgelektrophorese

III.1.3.a Erstellung eines Fingerprints für verschiedene *E. coli* Sicherheitsstämme

Zunächst wurden von jeder Linie (K-12, B, C und W) zufällig je zwei Vertreter ausgesucht, deren chromosomale DNS mit dem Restriktionsenzym *Xba*I fragmentiert und auf ein Pulsfeldgel geladen wurde. Die Ergebnisse sind in Abbildung 8 dargestellt.

Die Muster innerhalb einer Linie ähneln sich sehr stark, wohingegen sich die anderen Linien klar abgrenzen lassen. Doch auch innerhalb der einzelnen Linien lassen sich einzelne Stämme anhand individueller Fragmente unterscheiden. Die Methode wurde im Folgenden noch auf weitere Sicherheitsstämme angewandt, die Ergebnisse sind in Abbildung 9 undAbbildung 10 (Seite 40) dargestellt. In Abbildung 9 kann man erkennen, dass sich die *E. coli* K-12 Stämme anhand der hochmolekularen Fragmente (ab 450 kb) in 3 verschieden Gruppen einteilen lassen. Allerdings wird die Einzelstamm-identifizierung hier schon erschwert. Stamm 7 (K-12 C600) und 8 (K-12 DH1) weisen ein nahezu identisches Bandenmuster auf, ebenso wie Stamm 5 (K-12 HB 101) und 10 (TH2).

Weitere Sicherheitsstämme der anderen Linien wurden ebenfalls untersucht, die Ergebnisse sind in Abbildung 10 dargestellt.

*Xba*I Verdau chromosomaler DNS von verschiedenen *E. coli* Sicherheitsstämmen. Die Auftrennung erfolgte in einem 1%igen Gel mit den folgenden Laufkonditionen: Laufzeit 22 h, Switch time 2-50 s, Spannung 6 V, Temperatur 14 °C. Bahnbelegung: M: *S. cerevisiae* Chromosomen (Bio-Rad, Deutschland), 1: *E. coli* K-12 MG1655, 2: *E. coli* K-12 TOP10, 3: *E. coli* B, 4: *E. coli* BL21, 5: *E. coli* W, 6: *E. coli* W-Mutante, 7: *E. coli* C, 8: ABLE C (Stratagene). Die unterschiedlichen Linien K-12, B, C und W können sehr gut differenziert werden, einzelne Banden ermöglichen eine Einzelstammidentifizierung bei dieser Auswahl an Stämmen.

Abbildung 9 PFGE Fingerprint von E. coli K-12 Stämmen

*Xba*I Verdau chromosmaler DNS weiterer *E. coli* K-12 Stämme. Anhand der Banden im hochmolekularen Bereich kann man 3 Gruppen erkennen, mit je einer, zwei bzw. drei Banden. Eine Identifizierung einzelner Stämme ist nicht möglich. Die Auftrennung erfolgte in einem 1%igen Gel mit den folgenden Laufkonditionen: Laufzeit 22 h, Switch time 2-50 s Spannung 6 V, Temperatur 14 °C. Bahnbelegung: M1: *S. cerevisiae* Chromosomen (Bio-Rad, Deutschland), 1: *E. coli* K-12 MG1655, 2: *E. coli* K-12 XL1 Blue, 3: *E. coli* K-12 DH5α, 4: *E. coli* K-12 W3110, 5: *E. coli* K-12 HB101, 6: *E. coli* K-12 TOP F', 7: *E. coli* K-12 C600, 8: *E. coli* K-12 DH1, 9: *E. coli* K-12 TOP 10, 10: *E. coli* K-12 TH2, M2: Lambda ladder (Bio-Rad, Deutschland).

Abbildung 10 PFGE Fingerprint weiterer E. coli Sicherheitsstämme

*Xba*I Verdau chromosomaler DNS weiterer *E. coli* Sicherheitsstämme. Das Bild dient dem Vergleich von *E. coli* B, C und W Derivaten. Eine Einzelstammidentifizierung scheint in einigen Fällen möglich, besonders die einzelnen *E. coli* C (5, 6, 7) Stämme lassen sich sehr gut unterscheiden. Die Auftrennung erfolgte in einem 1% igen Gel mit den folgenden Laufkonditionen: Laufzeit 22 h, Switch time 2-50 s, Spannung 6 V, Temperatur 14 °C. Bahnbelegung: M: *S. cerevisiae* Chromosomen (Bio-Rad, Deutschland), 1: *E. coli* B, 2: *E. coli* B/r, 3: *E. coli* BL21, 4: *E. coli* C41 (BL21 Derivat), 5 *E. coli* C, 6: ABLE C (Stratagene, USA), 7: ABLE K (Stratagene, USA), 8: *E. coli* W-Mutante, 9: *E. coli* W.

Die Abbildungen zeigen deutlich, dass eine Identifizierung von *E. coli* Sicherheitsstämmen mit dieser Methode möglich ist. Eine Identifizierung bis auf Stammebene ist jedoch nicht in allen Fällen eindeutig.

III.1.3.b Genomgrößenbestimmung verschiedener *E. coli* Sicherheitsstämme

Durch die Verwendung eines speziellen Restriktionsenzyms (*I-CeuI*), das nur in einem hochkonservierten Bereich der 23S-rDNS schneidet, ist es möglich, die Genomgrößen mittels Pulsfeld Gelelektrophorese abzuschätzen. Untersuchungen an einer Reihe von *E. coli* Stämmen haben gezeigt, dass sich deren Genome um bis zu 1 Mb unterscheiden können (Bergthorsson & Ochman, 1995; Bergthorsson & Ochman, 1998). Die DNS einer Auswahl an *E. coli* Sicherheitsstämmen wurde mit diesem Enzym verdaut und auf ein Pulsfeldgel geladen. Um eine gute Auflösung der Fragmentgrößen in den hoch- und niedermolekularen Bereichen zu gewährleisten, sind mindestens zwei Läufe mit unterschiedlichen Parametern nötig. Alle durchgeführten Gelelektrophoresen sind in Abbildung 11-Abbildung 14 (Seite 41-42) dargestellt.

*I-Ceu*I-Verdaute chromosomale DNS verschiedener *E. coli* Sicherheitsstämme. Dieser PFGE-Lauf dient nur der Größenbestimmung der hochmolekularen Bande. Laufkonditionen: Laufzeit 120 h, Switch Time 10-18 min, Spannung 1,8 V, Temperatur 14 °C. Bahnbelegung: M1: *S. cerevisiae* Chromosomen (Bio-Rad, Deutschland), 1: *E. coli* K-12 MG 1655, 2: *E. coli* K-12 TOP10, 3: *E. coli* B, 4: *E. coli* BL21, 5: *E. coli* C, 6: *E. coli* ABLE C, 7: *E. coli* W-Mutante, 8: *E. coli* Mach1, M2: *H. wingeii* Chromosomen (Bio-Rad, Deutschland).

Abbildung 12 PFGE-Auftrennung 1.2 zur Genomgrößenbestimmung

*I-Ceu*I-Verdaute chromosomale DNS verschiedener *E. coli* Sicherheitsstämme. Dieser PFGE-Lauf dient der Größenbestimmung der 6 niedermolekularen Banden. Der rote Pfeil markiert eine zusätzliche Bande im ABLE C Stamm, die zunächst als zusätzliches rDNS Operon eingestuft wurde. Laufkonditionen: Laufzeit 40 h, Switch Time 10-70 s, Spannung 5,8 V, Temperatur 14 °C. Bahnbelegung: M: *S. cerevisiae* Chromosomen (Bio-Rad, Deutschland), 1: *E. coli* K-12 MG 1655, 2: *E. coli* K-12 TOP10, 3: *E. coli* B, 4: *E. coli* BL21, 5: *E. coli* C, 6: ABLE C, 7: *E. coli* W-Mutante, 8: *E. coli* Mach1.

Abbildung 13 PFGE-Auftrennung 2.1 zur Genomgrößenbestimmung

*I-Ceu*I-Verdaute chromosomale DNS verschiedener *E. coli* Sicherheitsstämme. Dieser PFGE-Lauf dient nur der Größenbestimmung der hochmolekularen Bande. Laufkonditionen: Laufzeit 120 h, Switch Time 10-18 min, Spannung 1,8 V, Temperatur 14 °C. Bahnbelegung: M1: *S. cerevisiae* Chromosomen (Bio-Rad, Deutschland), 1: *E. coli* K-12 W3110, 2: *E. coli* K-12 HB101, 3: *E. coli* K-12 TOP F', 4: *E. coli* K-12 C600, 5: *E. coli* K-12 DH1, 6: *E. coli* K-12 TH2, 7: *E. coli* C41 (BL21 Derivat), 8: *E. coli* ABLE C, 9: *E. coli* ABLE K, M2: *H. wingeii* Chromosomen (Bio-Rad, Deutschland).

Abbildung 14 PFGE-Auftrennung 2.2 zur Genomgrößenbestimmung

*I-Ceu*I-Verdaute chromosomale DNS verschiedener *E. coli* Sicherheitsstämme. Dieser PFGE-Lauf dient der Größenbestimmung der 6 niedermolekularen Banden: Der rote Pfeil markiert die zusätzlichen Banden in den ABLE Stämmen, *E. coli* K-12 TOP F' (3) und *E. coli* K-12 W3110 (1, sehr schwach) Laufkonditionen: Laufzeit 40 h, Switch Time 10-70 s, Spannung 5,8 V, Temperatur 14 °C. Bahnbelegung: M: Lambda Ladder (Bio-Rad, Deutschland), 1: *E. coli* K-12 W3110, 2: *E. coli* K-12 HB101, 3: *E. coli* K-12 TOP F', 4: *E. coli* K-12 C600, 5: *E. coli* K-12 DH1, 6: *E. coli* K-12 TH2, 7: *E. coli* C41 (BL21 Derivat), 8: *E. coli* ABLE C, 9: *E. coli* ABLE K.

Der Lauf über 120 h dient einzig der Auflösung der hochmolekularen Bande. Alle anderen Fragmentgrößen können mit dem Lauf über 40 h aufgetrennt werden. Interessant ist die zusätzliche Bande in dem kommerziellen C Stamm ABLE C von Stratagene (siehe Abbildung 12, Seite 41, roter Pfeil). Zunächst wurde vermutet, dass es sich möglicherweise um ein zusätzliches rDNS-Operon handeln könnte. Weitere Sicherheitsstämme wurden mit dieser Methode untersucht, die Ergebnisse sind in Abbildung 13 undAbbildung 14 (Seite 42) gezeigt. Die zusätzliche Bande ist wieder im Restriktionsmuster der Stratagene Stämme sichtbar, eine vergleichbare ist aber auch im Muster des *E. coli* K-12 TOP F´-Stammes deutlich zu erkennen, und sehr schwach auch im Muster des *E. coli* K-12 Stammes W3110. Da das Genom dieses Stammes bereits komplett sequenziert wurde (Hayashi *et al.*, 2006), konnte ein zusätzliches rDNS-Operon ausgeschlossen werden. Die Genotypen der Stratagene-Stämme sowie der TOP F´-Stamm weisen die Präsenz des F-Plasmids auf, somit wurde durch Southern Blot Hybridisierung überprüft, ob es sich möglicherweise um dieses Plasmid handeln könnte.

*I-Ceu*I verdaute chromosomale DNS verschiedener Stämme wurde auf eine Nylonmembran übertragen und mit 2 Sonden hybridisiert. Zum einen wurde eine Sonde, die einen Teil der 16S-rDNS beinhaltete, generiert, zum anderen eine Sonde auf die Transferregion des F-Plasmids. Das Gelbild sowie die Hybridisierungen sind in Abbildung 15 dargestellt. Die zusätzliche Bande konnte in den Stratagene-Stämmen eindeutig dem F-Plasmid zugeordnet werden.

Abbildung 15 Southern Blot Hybridisierung

In Teil A der Abbildung ist der PFGE-Lauf eines *I-Ceu*I Verdaus zu sehen. Die Banden, die jeweils ein partielles rDNS-Operon beinhalten, sind markiert. Die zusätzliche Bande ist mit einem roten Pfeil markiert. Teil B zeigt die Hybridisierung mit einer Sonde auf die 16S-rDNS, Teil C zeigt die Hybridisierung mit einer F-Plasmid spezifischen Sonde. Hier gibt nur die zusätzliche Bande ein Signal und konnte somit als dieses Plasmid identifiziert werden. Bahnbelegung: 1: *E. coli* C41, 2: *E. coli* ABLE C, 3: *E. coli* ABLE K. Laufkonditionen: Laufzeit 24 h, Switch Time 6-120 s, Spannung 6 V, Temperatur 14 °C. Hybridisierungskonditionen: Temperatur 37 °C, Formamidgehalt im Hybridisierungspuffer 50%.

Tatsächlich weist der Genotyp des *E. coli* K12 W3110-Stammes keine Präsenz des F-Plasmids auf (www.dsmz.de). Die Ergebnisse der Southern Hybridisierung sowie des Mikroarray (siehe Tabelle 10, Seite 94 im Anhang) sind jedoch eindeutig. Der Stamm wurde nicht von einer offiziellen Stammsammlung gekauft, sondern von Dr. Ulrich Dobrindt (Universität Würzburg) erhalten. Möglicherweise wurde das F-Plasmid dort von dem Stamm aufgenommen.

Da ein zusätzliches rDNS Operon nun definitiv ausgeschlossen werden konnte, wurden die restlichen Banden aus den PFGE Läufen dazu verwendet, die Genomgrößen der einzelnen Stämme abzuschätzen. Die Ergebnisse sind in Tabelle 4 aufgelistet. Die ermittelten Größen unterscheiden sich um bis zu 600 kb.

Stamm/ Fragment (Mb)	1	2	3	4	5	6	7	Total (Mb)
K-12 MG1655	2,49	0,697	0,657	0,52	0,131	0,093	0,041	4,629
K-12 TOP 10	2,77	0,724	0,590	0,52	0,131	0,093	0,041	ca. 4,87
K-12 W3110	2,49	0,698	0,658	0,52	0,131	0,093	0,041	4,646
K-12 HB101	2,7	0,698	0,658	0,52	0,131	0,093	0,041	ca. 4,71
K-12 TOP F'	2,78	0,698	0,590	0,52	0,131	0,093	0,041	ca. 4,85
K-12 C600	2,75	0,698	0,658	0,52	0,131	0,093	0,041	ca. 4,89
K-12 DH1	2,75	0,698	0,658	0,52	0,131	0,093	0,041	ca. 4,89
K-12 TH2	2,75	0,698	0,658	0,52	0,131	0,093	0,041	ca. 4,89
В	2,50	0,751	0,681	0,57	0,137	0,095	0,041	ca. 4,78
BL21	2,44	0,681	0,657	0,54	0,131	0,095	0,041	ca. 4,59
C41	2,50	0,681	0,657	0,54	0,131	0,095	0,041	ca. 4,65
С	2,50	0,681	0,600	0,54	0,131	0,093	0,041	ca. 4,59
ABLE C	2,70	0,697	0,610	0,56	0,148	0,094	0,041	ca. 4,85
ABLE K	2,70	0,697	0,610	0,56	0,140	0,094	0,041	ca. 4,84
W-Mutant	2,83	0,830	0,657	0,54	0,160	0,093	0,041	ca. 5,17
Mach1	2,83	0,830	0,657	0,54	0,160	0,093	0,041	ca. 5,17

 Tabelle 4
 Genomgrößen unterschiedlicher E. coli Sicherheitsstämme

Die Genomgrößen wurden anhand der einzelnen Fragmentgrößen der PFGE Läufe 1-4 abgeschätzt. Einerseits wurden die aufgetragenen Marker zur Abschätzung herangezogen, andererseits die bekannten Fragmentgrößen der beiden komplett sequenzierten Stämme *E. coli* K-12 MG1655 und W3110.

III.1.4 Genomanalyse durch subtraktive Hybridisierung

Die bereits in der Einleitung beschriebenen subtraktiven Hybridisierungsmethoden wurden zur Unterscheidung der *E. coli* Sicherheitsstämme verwendet. *E. coli* K-12 MG1655 bzw. W3110 wurden jeweils als Subtraktor-Stamm verwendet, da die Verfügbarkeit der kompletten Genomsequenzen die Sequenzauswertung erleichterte. Es wurden von jeder Linie der Sicherheitsstämme einige Vertreter ausgesucht, für die spezifische Sequenzen erhalten werden sollten. Nach subtraktiver Hybridisierung wurde die aufgereinigte, hochamplifizierte DNS in einen TOPO-Vector kloniert und mit den vektorspezifischen Primern M13for und

M13rev sequenziert. Die erhaltenen Sequenzen wurden einer BLAST-Analyse unterzogen (blastn, tblastx), um deren Spezifität zu untersuchen. Falls die erhaltene Sequenz keinerlei Übereinstimmung mit dem Genom von *E. coli* K12 MG1655 bzw. W3110 aufzeigte, wurde anhand von spezifischen Primern die Anwesenheit dieses Fragments in den anderen Stämmen überprüft. Mit Hilfe der verschiedenen Methoden gelang es, 62 spezifische PCR-Fragmente zu erhalten, die für den Aufbau des Chips verwendet wurden. Alle durch subtraktive Hybridisierung detektierten spezifischen DNS-Fragmente sind in Tabelle 8 (Seite 85 im Anhang) hervorgehoben, die zugehörigen Primerpaare sowie Annealing-Temperaturen und Fragmentgröße sind in Tabelle 9 (Seite 89 im Anhang) aufgelistet.

Eine grobe Charakterisierung der detektierten Fragmente ist in Abbildung 16 dargestellt.

Abbildung 16 Charakterisierung der spezifischen DNS-Fragmente

Alle durch subtraktive Hybridisierung erhaltenen spezifischen DNS-Fragmente wurden anhand einer BLAST-Analyse in verschiedene funktionelle Kategorien eingeteilt.

III.2 Entwicklung eines auf PCR basierenden Schnellnachweises

Mittels der detektierten spezifischen DNS-Fragmente war es möglich, einen auf PCR basierenden Schnellnachweis der einzelnen *E. coli* Sicherheitsstammlinien zu entwickeln. Ein derartiger Nachweis für *E. coli* K-12 Stämme wurde 1996 von Kuhnert *et al.* (1996) veröffentlicht. Diese Multiplex-PCR ist jedoch nicht in der Lage, auch die weiteren als Sicherheitsstamm definierten *E. coli* Linien zu identifizieren. Das spezifische PCR-Produkt für K-12 Stämme, eine IS5-Insertion im *rfb*50-Gen, wurde in die neu entwickelte Methode integriert. Des Weiteren wurde ein *E. coli* B (und Derivate) spezifisches PCR-Produkt (224) mit keinerlei Übereinstimmung zu bekannten Sequenzen in den Datenbanken, zwei *E. coli* C spezifische (*rtlA*, Tn7) PCR-Produkte sowie ein *E. coli* W spezifisches Produkt (P27) in der

neu entwickelten Multiplex-PCR verwendet. Das Fragment des Ribitoloperons (*rtlA*) in den C-Stämmen wäre alleine für eine Differenzierung nicht ausreichend gewesen, da die DNS eines pathogenen Stammes (*E. coli* IHE 3034) ebenfalls ein entsprechendes Amplifikat erzeugte. Deshalb wurde ein weiteres PCR-Produkt, welches für eine Transposase kodiert (Tn7), mit in die Methode integriert. Das *E. coli* W spezifische Fragment kodiert für ein Bakteriophagen Protein (P27).

Bei Anwendung dieser neuen Nachweismethode erhält man in einer einzigen PCR-Reaktion Linien-spezifische PCR-Produkte, die einen eindeutigen Nachweis der jeweiligen *E. coli* Sicherheitsstämme ermöglichen. Die Methode wurde an einer umfangreichen, breit gestreuten Auswahl von *E. coli* Stämmen getestet und als geeignet und spezifisch angesehen (Bauer *et al.*, 2007). Das Ergebnis einer Multiplex-PCR auf verschiedene Sicherheitsstämme ist in Abbildung 17 dargestellt.

Abbildung 17 Neu entwickelte Multiplex-PCR Methode zur Identifizierung der *E. coli* Sicherheitsstammlinien

Das Gelbild zeigt die möglichen Resultate der neu entwickelten Multiplex-PCR zur Differenzierung der 4 verschiedenen *E. coli* Sicherheitsstammlinien K-12, B, C und W. Zur Identifizierung von *E. coli* K-12 Stämmen wurden die spezifischen Primer von Kuhnert *et al.* (1996) übernommen. *E. coli* B Stämme und deren Derivate können durch ein 847 bp großes PCR-Produkt identifiziert werden, welches als *E. coli* B spezifische Sequenz beschrieben wurde, da es keinerlei Übereinstimmung zu anderen Sequenzen in den Datenbanken zeigte. *E. coli* C Stämme und Derivate können anhand von 2 spezifischen Fragmenten erkannt werden. Zum einen ein Fragment, das für die Verarbeitung von Ribitol als C-Quelle kodiert (756 bp), zum anderen eine *E. coli* C spezifische Transposase (333 bp). Die Identifizierung der *E. coli* W Stämme und sämtlicher Derivate erfolgt durch die spezifische Amplifikation eines Fragments, das für ein Phagenprotein kodiert (232 bp). Bahnbelegung: M1: 1 kb ladder (Invitrogen, USA), 1: *E. coli* K-12 MG1655, 2: *E. coli* B, 3: *E. coli* C, 4: *E. coli* W, M2: 100 bp ladder (Invitrogen, USA).

III.3 Überprüfung der *E. coli* Sicherheitsstämme auf das Vorhandensein von Virulenzfaktoren

III.3.1 PCR mit spezifischen Primern auf Virulenzfaktoren

Das Vorhandensein einer Auswahl gängiger Virulenzfaktoren wurde durch PCR mit spezifischen Primern für unterschiedliche Gene überprüft. Die meisten Primer wurden von Dr. Sören Schubert (Pettenkofer Institut, München, siehe Tabelle 9, Seite 89) zur Verfügung gestellt. Es wurden 26 Primerpaare getestet. Positive Ergebnisse wurden nur für type I Fimbriae (*fimH*, alle getesteten Stämme) und outer membrane protease *ompT* (*E. coli* K-12 und *E. coli* B) erhalten. Die PCR mit den Yersiniabactin (*fyuA*) spezifischen Primern ergab ein unspezifisches, zu großes PCR Produkt, ebenso mit dem Primerpaar für die Pap-fimbriae *papA*. Als Positivkontrollen für die PCR wurde die DNS von verschiedenen pathogenen *E. coli* Stämmen eingesetzt (erhalten von Dr. Ulrich Dobrindt, Universität Würzburg).

Es wurden jeweils der Wildtyp- bzw. Herkunftsstamm und ein kommerziell erwerblicher Sicherheitsstamm auf Virulenzfaktoren getestet, *E. coli* C und dessen Derivat ABLE C (Stratagene). Die gesamten Ergebnisse dieser Untersuchung sind in Tabelle 6 (Seite 78 im Anhang) dargestellt.

III.3.2 Mikroarray-Screening

Parallel zu dieser Untersuchung wurden in Kooperation mit Dr. Sören Schubert (Pettenkofer Institut, München) und Dr. Ulrich Dobrindt (Infektionsbiologie, Würzburg) 7 verschiedene Sicherheitsstämme (*E. coli* K-12 MG1655, B, BL21, C, ABLE C, W und Mach1) mit einem neu entwickelten Oligonukleotid-Mikroarray auf das Vorhandensein von verschiedensten virulenzassoziierten Genen hin überprüft. Der Chip beinhaltete 170 Sonden für virulenzassoziierte Gene, 6 für apathogene *E. coli* Isolate und 8 Kontrollsonden. Für jedes Gen wurden 2 Sonden entwickelt, somit wurden 88 Gene überprüft.

Alle Stämme außer *E. coli* BL21 zeigten spezifische Hybridisierungssignale für mindestens eine der Sonden für apathogene *E. coli* Isolate. *E. coli* K-12 gab, in Übereinstimmung mit der PCR zur Bestimmung der phylogenetischen Gruppe (siehe Kapitel III.1.1, Seite 35) ein positives Signal für die *yjaA*-Sonde (Clermont et. al, 2000). Weitere positive Signale für *E. coli* K-12 und *E. coli* B wurden bei der Sonde für ein Prophagen-Antigen (Ag43) detektiert, dessen Sequenz in den Genomen von *E. coli* K-12 sowie *E. coli* CFT073 (UPEC) enthalten ist.

Einzig die beiden *E. coli* W Stämme zeigten weitere positive Signale, zum einen für einen Virulenzfaktor, der mit Infektionen im Urogenitaltrakt in Verbindung gebracht wird (p761, p763), und zum anderen für das Gen einer Lipase aus dem Genom von *E. coli* CFT073.

Eine Liste mit den Namen der getesteten Sonden und der Hybridisierungsergebnisse für die Sicherheitsstämme ist in Tabelle 7 (Seite 79, Anhang) aufgeführt.

Die Mikroarrays wurden von der Firma Scienion (Deutschland) nach den Angaben von Dr. Sören Schubert und Dr. Ulrich Dobrindt angefertigt. Die Hybridisierung der einzelnen Stämme erfolgte ebenfalls bei Scienion. Die ausgewerteten Daten wurden uns freundlicherweise von Dr. Ulrich Dobrindt zur Verfügung gestellt.

III.3.3 Charakterisierung flankierender DNS-Abschnitte

Durch subtraktive Hybridisierung wurden zwei Fragmente einer Pathogenitätsinsel (*Escherichia coli* strain BEN2908 pathogenicity Island EPI-I [Chouikha *et al.*, 2006]) in *E. coli* B detektiert (siehe Abbildung 18). Die Insel enthält einerseits Gene, die zur Aufnahme und Abbau diverser Kohlenhydrate dienen (in der Region 5´abwärts), und andererseits eine Reihe von Virulenzfaktoren (vom 3´Ende aufwärts), die zur Infektion von Vögeln beitragen. Durch die Verwendung spezifischer Primer (EPI 1/EPI 2, siehe Tabelle 9 im Anhang) konnte ein Teil (EPI 1) ebenfalls in *E. coli* BL21 Stämmen nachgewiesen werden (siehe Tabelle 8 im Anhang). Die detektierten Fragmente befinden sich jeweils am 5´ bzw. am 3´ Ende der Pathogenitätsinsel (siehe Abbildung 18).

Durch die kürzlich beschriebene "Two-Step-Gene-Walking" Methode (Pilhofer *et al.*, 2007) wurde in dem *E. coli* B Stamm ein flankierender Bereich sequenziert. Vom EPI 2 Fragment aus konnten ca. 1000 bp in 5' Richtung, somit in Richtung des Zentrums der Insel, sequenziert werden. Die erhaltene Sequenz war nahezu identisch zu der veröffentlichten. Die enthaltenen Gene kodieren für hypothetische Proteine mit unbekannter Funktion.

Abbildung 18 E. coli Pathogenitätsinsel EPI-I (Stamm BEN2908 [APEC])

Zwei Fragmente dieser 46 kb großen Pathogenitätsinsel des Stammes BEN2908 (APEC) wurden in subtraktiven Hybridisierungsexperimenten in *E. coli* B Stämmen nachgewiesen. Das EPI 1 Fragment (5⁻) wurde in *E. coli* B sowie BL21 Stämmen durch die anschließende PCR Analyse nachgewiesen, das EPI 2 Fragment (3⁻) konnte nur noch in *E. coli* B Stämmen detektiert werden (beide grau hinterlegt). Durch die "Two-Step-Gene-Walking" Methode (Pilhofer *et al.*, 2007) war es möglich, 1000 bp aufwärts des EPI2 Fragments zu sequenzieren (siehe schwarzer Pfeil). Die erhaltene Sequenz zeigte hohe Übereinstimmung mit der Pathogenitätsinsel EPI-I.

III.4 Entwicklung des Mikroarray-Chips

III.4.1 Evaluierung der Sonden

Die durch subtraktive Hybridisierung und Literaturrecherche zusammengetragene Auswahl an spezifischen Primern wurde nun dazu benutzt, einen Mikroarray aufzubauen. Alle in Tabelle 8 (Seite 85 im Anhang) aufgelisteten PCR-Produkte wurden aufgereinigt, getrocknet und in 50% DMSO als Spotting Puffer gelöst. Danach wurden alle PCR-Produkte auf einen Chip aufgetragen und mit einer Auswahl an Stämmen (je 2 E. coli K-12, B, C und W Stämme sowie die pathogenen Stämme E. coli O157:H7, E. coli O42, E. coli CFT073 und dem probiotischen Stamm Е. coli Nissle 1917) getestet, um die optimalen Hybridisierungskonditionen verschieden ermitteln. Dazu wurden zu Pufferzusammensetzungen, unterschiedliche DNS-Markierungsmethoden sowie unterschiedliche Formamidkonzentrationen überprüft. Die optimalen Ergebnisse wurden mit einem kommerziell erhältlichen Hybridsierungspuffer (Sigma PerfectHyb) und einer Formamidkonzentration von 25% bei einer Hybridisierungstemperatur von 42 °C erhalten. Als effizienteste Markierungsmethode stellte sich der Einbau der markierten Nukleotide mit dem Klenow-Fragment und Random Hexamers dar. Die mittels Imagene (Biodiscovery Inc. USA) erhaltenen Signalintensitäten wurden nach der Formel von Loy et al. (2002) normalisiert (siehe Kapitel II.17.2, Seite 34).

Die erhaltenen Werte wurden anhand der Sonden, welche positive Signale zeigen sollten, und der Sonden die keine Signale zeigen sollten in positive und negative Signale unterteilt, um den Grenzwert der positiven Hybridisierungssignale zu bestimmen und somit auch die entwickelten Sonden auf ihre Spezifität hin zu überprüfen. Die Bestimmung des Grenzwertes für positive Signalintensitäten erfolgte graphisch durch das gegenseitige Auftragen aller positiven und negativen Werte. Der Schnittpunkt beider Kurven markiert den Grenzwert. Einige Sonden, die in einer PCR durchaus zur Unterscheidung benutzt werden konnten, mussten verworfen werden, um keine falsch positiven oder falsch negativen Signale zu erhalten. Zwei Beispiele sind in Abbildung 20 undAbbildung 21 dargestellt. Alle spezifischen PCR-Produkte, sind in Tabelle 8 (Seite 85 im Anhang) aufgelistet. Die Produkte, die nicht als Sonden verwendet wurden, sind separat aufgeführt.

Abbildung 19 Bestimmung des Grenzwertes für positive Hybridisierungssignale

Um den Grenzwert für ein positives Hybridisierungssignal festzulegen, wurden alle generierten PCR-Produkte als Sonden gespottet und mit markierter DNS einer Auswahl an Stämmen (je 2 K-12, 2 B, 2 C und 2 W Stämme) hybridisiert. Die erhaltenen Signale wurden mit den Ergebnissen der PCR und, falls vorhanden, den bekannten Genomsequenzen dieser Stämme verglichen, in positiv und negativ aufgeteilt und in dieser Abbildung gegeneinander aufgetragen. Die x-Werte stehen für die normalisierten Signalintensitäten, die y-Werte für die Anzahl an aufgetragenen Werten Die 2 Kurven schneiden sich bei einem Wert von ca. 0,09. Der Grenzwert für ein postives Hybridisierungssignal wurde um 0,01 erhöht um falsch positive Signale zu vermeiden. Der Grenzwert wurde somit auf 0,1 festgelegt.

Das Gelbild zeigt die spezifische Amplifikation eines PCR Produktes (hyproedl) in einem *E. coli* B Stamm, alle anderen getesteten Stämme sind negativ. Bahnbelegung: M: 1 kb ladder, (Invitrogen, USA), 1: *E. coli* K-12 MG1655, 2: *E. coli* B, 3: *E. coli* C, 4: *E. coli* W. Setzt man dieses Produkt allerdings als Sonde auf dem Mikroarray ein, geben alle getesteten Stämme ein unspezifisches Signal, das oberhalb des ermittelten Grenzwertes liegt (rote Linie).

Das Gelbild zeigt die spezifische Amplifikation eines Fragments (lipo) in *E. coli* B und C Stämmen. Bahnbelegung: M: 1 kb ladder, (Invitrogen, USA), 1: *E. coli* K-12 MG1655, 2: *E. coli* B, 3: *E. coli* C, 4: *E. coli* W. Die Hybridisierung dieses Fragments auf dem Mikroarray zeigt allerdings in keinem der getesteten Stämme ein Signal (rote Linie entspricht Detektionsgrenze für positive Signale). Um eine möglichst einfache Auswertung der Hybridisierung zu ermöglichen, wurde ein neuartiges Design des Mikroarrays entwickelt. Die Stämme können nach der Hybridisierung auf dem Chip sehr einfach durch das erscheinen der einzelnen Buchstaben ("K", "B", "C" und "W", durch spezifische Hybridisierungssignale) erkannt werden. Die Auswertung kann somit rein visuell, ohne komplizierte Datenauswertung, erfolgen. Das Design des neu entwickelten Chips sowie einige Hybridisierungsergebnisse sind in den Abbildung 22A-F (Seite 57) dargestellt (siehe auch [Bauer *et al.*, 2008]). Die Auswahl an Sonden, die eine eindeutige und verlässliche Identifizierung ermöglichen, ist im nächsten Abschnitt für die jeweiligen Stämme beschrieben. Eine Übersicht findet sich in Tabelle 5 (Seite 59).

Jeder Buchstabe enthält als ersten Spot ein 16S-rDNS Fragment, welches als Positivkontrolle verwendet wird. Zusätzlich wurden noch weitere Positivkontrollen integriert, zum einen ein Fragment einer ATP abhängigen Protease (*lon*), zum anderen ein Fragment der typeI fimbriae (*fimH*), die jeweils 3 mal auf dem Chip vorhanden sind (siehe Abbildung 22A, Seite 57 und Tabelle 5, Seite 59). Das für die type I Fimbriae (*fimH*) kodierende Gen wurde ursprünglich als Marker für extraintestinale Infektionen verwendet (Johnson & Stell, 2000). Von dieser Verwendung sollte man jedoch absehen, da dieses Gen in nahezu jedem *E. coli* Stamm (außer *E. coli* K-12 TOP F', K-12 TOP10, K-12 678-54 und IHE3034, wie sich in den Hybridisierungen herausstellte) zu finden ist. Die restlichen DNS-Fragmente, welche die einzelnen Buchstaben bilden, sind spezifische PCR-Produkte. Für eine eindeutige Identifizierung eines *E. coli* Sicherheitsstammes müssen **alle** Spots eines Buchstabens ein Signal geben (siehe Abbildung 22, Seite 57).

III.4.2 Identifizierung von E. coli K-12 Stämmen

Die Identifizierung von *E. coli* K-12 Stämmen beruht auf PCR-Fragmenten, die alle durch Literaturrecherche bzw. *in silico* Analysen der zugänglichen *E. coli* Genome zusammengetragen wurden. Entsprechend des oben geschilderten Auswertungskonzeptes wird beim Nachweis von K-12 Stämmen durch positive Hybridisierungssignale der Buchstabe "K" visualisiert. Das schematische "K" besteht aus 10 verschiedenen DNS-Fragmenten, 9 davon sind bakterielle Insertionselemente (IS1 bis IS5, IS50, IS150 und IS186 [*yi81*]). Um das "K"-Schema zu vervollständigen, wurde ein weiteres DNS-Fragment, welches für eine UDP-galactopyranose mutase (*glf*) kodiert, eingebaut. Diese 10 Sonden ermöglichten die einwandfreie Identifizierung von 28 verschiedenen *E. coli* K-12 Derivaten. Zusätzlich wurden weitere DNS-Fragmente auf dem Chip platziert, die teilweise eine Identifizierung auf

Stammebene gestatteten. Die Selektion beruhte auf den unterschiedlichen Genotypen der *E. coli* K-12 Derivate. Es wurden Gene ausgesucht, die in einigen K-12 Derivaten fehlten und somit deren Abgrenzung oder Identifizierung ermöglichten (*gpt, hsdS, ara, mcrA, gplit, arg, glf, yffs, int* und tn10).

Nicht alle verwendeten Positivkontrollen ergaben ein positives Signal. Einige K-12 Derivate (K-12 67-854, K-12 TOP10 sowie K-12 TOP F[']) reagierten negativ auf die *fimH* Sonde, was vermuten lässt, dass dieses Gen aus dem Genom entfernt wurde. Da alle weiteren Positivkontrollen jedoch spezifisch reagierten, war eine Auswertung des Chips trotzdem möglich.

III.4.3 Identifizierung von E. coli B Stämmen

E. coli B Stämme können nach dem o.g. Visualisierungskonzept durch ein schematisches "B" identifiziert werden. Es wurden 13 DNS-Fragmente, die allesamt durch subtraktive Hybridisierung gefunden wurden, verwendet. Diese beinhalten Gene für verschiedene metabolische Abbauwege (GALA, *vioA*), Transkription (HEL), Regulation (REPRESS), verschiedene Transport- und Sekretionssysteme (CABC, TYPII) sowie hypothetische Proteine mit unbekannter Funktion (893HP, 21_1) als auch gänzlich unbekannte Fragmente mit keinerlei Übereinstimmung in den Datenbanken (224, 914SPEC).

Diese Sondenselektion ermöglichte die einwandfreie Identifizierung aller getesteten *E. coli* B Stämme und deren Derivate. Weitere Sonden ermöglichen zusätzlich die Unterscheidung von *E. coli* B und BL21 Stämmen. Drei Sonden - im Chip-layout "unterhalb" des schematischen "B" plaziert - sind spezifisch für *E. coli* B. In BL21 Stämmen sind die korrespondierenden Gene nicht vorhanden. Diese Fragmente kodieren für ein Protein eines Bakteriophagen (GS8), ein hypothetisches Protein (EPI2) sowie ein mögliches Invasin (PUINV). Während den Hybridisierungen stellte sich zusätzlich heraus, dass *E. coli* B Stämme *ompT* positiv sind, *E. coli* BL21 Stämme hingegen negativ.

III.4.4 Identifizierung von E. coli C Stämmen

Das "C"-Schema beinhaltet 9 verschiedene Sonden, die ebenfalls alle durch subtraktive Hybridisierung von *E. coli* C gegen *E. coli* K-12 Stämmen gefunden wurden. Diese DNS-Fragmente kodieren für mobile genetische Elemente (NIS, W824), hypothetische Proteine mit unbekannter Funktion (310706), sowie Gene für unterschiedliche Abbauwege oder Strukturen (CRT, W826, *pcoD*, *rtl*, PRP).

Es stellte sich heraus, dass sich 2 dieser Fragmente (*pcoD*, PRP) auf einem virulenzassozierten Plasmid eines *E. coli* Stammes befinden, der speziell Vögel infizieren kann (*E. coli* APEC 01, [Johnson *et al.*, 2007]). Das Vorhandensein weiterer Gene dieses Plasmids in den *E. coli* C Stämmen wurde durch spezifische PCR Primer überprüft (Johnson *et al.*, 2006). Es konnten jedoch keine weiteren Fragmente nachgewiesen werden. Zur Unterscheidung des ursprünglichen *E. coli* C Stammes von den kommerziellen Derivaten ABLE C und ABLE K (Stratagene, USA) dienen die IS5 Fragmente im "K" Schema sowie die Sonden zur Detektion des F-Plasmids, die alle positiv für die ABLE Stämme und negativ für den *E. coli* C Stamm sind.

III.4.5 Identifizierung von *E. coli* W Stämmen

Das "W"-Schema zur Identifizierung der E.coli W Stämme beinhaltet 11 verschiedene DNS-Fragmente, die wiederum durch subtraktive Hybridisierung gegen E. coli K-12 Stämme detektiert wurden. Da nicht genügend Fragmente gefunden wurden, die ausschließlich spezifisch für die E. coli W Derivate sind, wurde ein Teil des Schemas mit DNS-Fragmenten besetzt, die nicht in E. coli K-12 Stämmen, aber in allen anderen Sicherheitsstammlinien präsent sind (Non-K-12 Sonden). Diese Fragmente kodieren für Enzyme verschiedener Abbauwege (PAI, aga), ein hypothetisches Adhäsin (B1134) und ein Protein eines Bakteriophagen (Q). Die weiteren Sonden sind spezifisch für alle E. coli W Derivate. Sie sind gegen Gene gerichtet, die für Proteine eines Bakteriophagen (T3443, SAMP5), ein Protein für die Verankerung des Flagellums (FLAG02), ein hypothetisches Protein mit unbekannter Funktion (2.2) sowie einer Penicillin-Acylase (Pac) kodieren. Diese Selektion an Sonden ermöglichte die einwandfreie Identifizierung aller untersuchten E. coli W Stämme. Zur Differenzierung der W-Stämme von dem kommerziell erhältlichen Stamm Mach1 (Invitrogen, USA) konnten wiederum die IS5 Sonden des "K" Schemas hinzugezogen werden (Mach1 positiv), ebenso wie eine Reihe von DNS-Fragmenten, die dieser kommerzielle Stamm nicht mehr besitzt. Es handelt sich um 3 verschieden hypothetische Proteine mit unbekannter Funktion (21_9, 1306 und 1310), sowie ein Teil des E. coli W spezifischen kryptischen Plasmids pRK2.

Weitere Genfragmente, die für den 4-Hydroxyphenylacetat Stoffwechselweg (*hpaB/hpaD*) kodieren, sind in den Stämmen *E. coli* B, C sowie den beiden W Stämmen ATCC 9637 und DSM 2607 vorhanden, aber nicht im Mach1 Stamm.

III.4.6 Nachweis von Fremd-DNS in E. coli Sicherheitsstämmen

Der neu entwickelte Mikroarray beinhaltet zusätzlich Sonden, die eine Detektion von gängigen Virulenzfaktoren ermöglicht. Dadurch können einerseits die pathogenen *E. coli* Vertreter klar von Sicherheitsstämmen abgegrenzt werden, andererseits ist ein Einbau dieser Gene in Sicherheitsstämmen nachweisbar. Die Auswahl besteht aus Genen, die für unterschiedliche Fimbrien (*papA*, *sfa*, *focG*), Eisenaufnahmesysteme (*iron*, *fyuA*), Kapselproteinen (*kpsII*, *kpsIII*), diverse Rezeptoren (*aerJ*, PAI III, *tir*) und Toxine (*hlyA*, *cnf*, *sa*, *stx*) kodieren. Zusätzlich wurden noch 4 Fragmente des Colibactin Biosynthese Clusters (pks-left, pks-right, pks ORF6, pksORF17) auf den Chip aufgebracht.

Keiner der getesteten pathogenen *E.coli* Stämme zeigte nach der Hybridisierung einen vollständigen Buchstaben (K, B, C oder W), sondern nur ein diffuses Muster an Signalen auf dem gesamten Chip und die Signale der Virulenzfaktoren (siehe Abbildung 22F).

Zusätzlich zu den Virulenzfaktoren wurden auch plasmidspezifische Sonden (pLysS, *traE*, *traT*, *traE*, *bla*, *cam*) verwendet, die die Einschleusung der entsprechenden Fremd-DNS in *E*. *coli* Sicherheitsstämmen eindeutig nachweisen können. Das *traE* Gen wurde ursprünglich als Virulenzfaktor in Verbindung mit extraintestinalen Infektionen beschrieben (Bekal *et al.*, 2003), da sich die Gensequenz allerdings auch auf dem F-Plasmid befindet, sollte von einer weiteren Verwendung dieses Gens als Marker abgesehen werden

Abbildung 22 Schematische Darstellung des Arrays sowie einiger Hybridisierungsergebnisse

Abbildung 21: Schematische Darstellung des Mikroarray sowie einige Hybridisierungsergebnisse

Element A-F: Die Elemente A-F zeigen schematisch den Aufbau des Mikroarrays sowie eine Auswahl an Hybridisierungsergebnissen verschiedener *E. coli* Sicherheitsstämme sowie eines pathogenen *E. coli* Stammes. Die Unterschiede zwischen den einzelnen Stämmen sind jeweils umrahmt.

Element A: Schematische Darstellung des Array Musters. Die Belegung der einzelnen Sonden kann anhand des Rasters der Tabelle 5 entnommen werden. Schwarze Kreise stehen für Positivkontrollen, graue Kreise zeigen die Sonden der jeweiligen Buchstaben der Sicherheitsstammlinien K, B, C und W. Die weißen Kreise stehen für weitere Sonden, die in den meisten Fällen eine Identifizierung bis auf Stammebene ermöglichen, sowie eine Auswahl an Sonden für gängige Virulenzfaktoren (A22-A32, B21-B30, C22/23/31/32) und plasmidspezifischen Sonden (D21-24). Die verwendeten Negativkontrollen befinden sich in den Feldern E21-22.

Element B1: Charakteristisches *E. coli* K-12 Hybridisierungsergebnis (*E. coli* K-12 MG1655): Alle Sonden des "K"-Schemas zeigen ein deutliches positives Signal. Die Sonden im Rahmen unterhalb des "K"s (G1-5, H1-5) können zur Differenzierung einiger *E. coli* K-12 Derivate verwendet werden.

Element B2: Weiteres *E. coli* K-12 (*E. coli* K-12 WK6) Hybridisierungsergebnis: Alle Sonden des "K"-Schemas zeigen wieder ein positives Signal, alle eingerahmten Signale verdeutlichen die Unterschiede zwischen den beiden *E. coli* K-12 Stämmen. Dieser Stamm zeigt zusätzlich noch positive Signale für die Antibiotika-Resistenzgene für Ampicillin und Chloramphenicol (D22-24) sowie das F-Plasmid (D21, C31).

Element C1: Charakteristisches *E. coli* C Hybridisierungsergebnis (*E. coli* C): Alle Sonden des "C"-Schemas zeigen deutlich positive Signale, die eingerahmten Signale unterhalb des "C"s sind spezifisch für *E. coli* C und B Stämme (G7-8, H7-8). Die Sonden G7-G8 zeigen zusätzlich auch ein Signal in den ursprünglichen *E. coli* W Stämmen. Der Rahmen auf der rechten Seite zeigt die Signale der Sonden, die als Non-K-12 spezifisch eingeordnet wurden und somit bei allen C, B und W Stämmen positive Signale zeigen (BCDE17).

Element C2: Weiteres *E. coli* C (ABLE C, Stratagene) Hybridisierungsergebnis: Alle Sonden des "C"-Schemas zeigen wieder deutliche Signale. Eine Unterscheidung der beiden *E. coli* C Stämme kann anhand der Signale einiger IS-Elemente im "K"-Schema erfolgen (C1, B2, C2 sowie H5) und durch die F-Plasmid spezifischen Sonden (D21, C31).

Element D1: Charakteristisches *E. coli* B (*E. coli* B) Hybridisierungsergebnis: Alle Sonden des "B"-Schemas zeigen positive Signale. Die eingerahmten Signale der Sonden unterhalb des "B"s sind spezifisch für *E. coli* B (G11-G13). Der Rahmen auf der rechten Seite zeigt wiederum die als Non-K-12 spezifisch eingeordneten Sonden (BCDE17).

Element D2: Weiteres *E. coli* B (*E. coli* BL21 pLysS) Hybridisierungsergebnis: Die Sonden des "B"-Schemas zeigen wieder alle ein positives Signal. Die als ausschließlich *E. coli* B deklarierten Sonden unterhalb des Schemas zeigen keine Signale (G11-G13). Das Plasmid pLysS kann durch 2 spezifische Signale eindeutig erkannt werden (D21, D24). Ein weiterer Unterschied ist das Signal der *ompT* Sonde (B21): *E. coli* B Stämme zeigen ein deutlich positives Signal, *E. coli* BL21 Stämme hingegen sind negativ.

Element E1: Charakteristisches *E. coli* W (*E. coli* W) Hybridisierungsergebnis: Alle Sonden des "W"-Schemas zeigen ein positives Signal, die Sonden unterhalb des "W"'s sowie die Sonden G7-G8 geben nur bei den *E. coli* W Stämmen ATCC 9637 und DSM 2607 ein Signal, aber nicht bei dem kommerziell erwerblichen Stamm Mach1 (G17-18, H17-18).

Element E2: Weiteres *E. coli* W (Mach1 pCR2.1) Hybridisierungsergebnis: Alle Sonden des "W"-Schemas zeigen ein positives Signal. Die Unterscheidung dieses Stammes von seinem Ursprungsstamm erfolgt durch IS-Element spezifische Sonden im "K"-Schema (C1, B2, C2 sowie H5). Der Stamm wurde mit dem TOPO Vektor pCR2.1 transformiert, der durch seine plasmidkodierte Antibiotikaresistenz nachgewiesen werden kann (D23).

Element F: Diffuses Hybridisierungsergebnis (*E. coli* J96): Alle pathogenen oder Wildtypstämme zeigen ein diffuses Hybridisierungsergebnisse mit vereinzelten Signalen über den gesamten Chip verteilt. Keiner der sicherheitsstammspezifischen Buchstaben erscheint komplett. Die spezifischen Sonden der Virulenzfaktoren zeigen deutliche Signale (Rahmen auf der rechten Seite)

Tabelle 5 Alle verwendeten Sonden und deren Spezifität

\mathbf{P}^1	Abkürzung	BLAST Ergebnis mit höchster Sequenzübereinstimmung	K-12	В	С	W	Accession number
A1	16S-rDNA	16S-rRNA gene	+	+	+	+	NC 000913
B1	IS1	insertion sequence IS1	+	+	+	-	U91745.1
C1	IS2	insertion sequence IS2	+	+	•	•	54398625
D1	IS3	insertion sequence IS3	+	+	+	+	M55511
E1	gltF	gltBDF operon gltF gene	+	-	+	-	M74162
B2	IS5	insertion sequence IS5	+	-	٠	•	J01734
C2	ISL	insertion sequence: IS5I in wbbL gene	+	-	•	•	U00096
A3	yi83	insertion sequence element IS186	+	+	٠	-	X03123.1
D3	IS4	insertion sequence IS4	+	+	-	-	J01733
E4	IS150	insertion element IS150	+	+	-	+	X07037
A7	16S-rDNA	16S-rRNA gene	+	+	+	1 +	NC_000913
B/	W824	insertion sequence: IS1222	-	-	+	-	EU250022
C/	W826	putative dicarboxylate-binding periplasmic protein	-	-	+	-	EU250023
D/ 57	pcoD rtlD	ribitel dehydrogenese, ribitel kinese	-	-	+	-	DQ317320 A X005817
Δ8		nutative transcriptional regulator	-	-	+	-	EU250024
E8	310706	hypothetical protein	-	-	+ +		EU250024
A9	CRT	Reverse transcriptase like protein	-	-	+	_	D37918
E9	NIS	truncated transposase	-	-	+	-	EU250026
A11	16S-rDNA	16S-rRNA gene	+	+	+	+	NC 000913
B11	893HP	intergenic region	-	+	-	-	EU250027?
C11	EPI	putative MFS superfamily hexuronate transporter; similar to $c4405$ from E codi CET073	-	+	-	-	EU250028
D11	τνριι	hypothetical type II secretion protein	_	+	_	_	FU250029
E11	REVTRA	transposon: retron EC86	-	+	_	-	EU250029
		synthesis of dTDP-4-amino-4.6-dideoxyglucose (dTDP-		•			10200000
A12	vioA	viosamine)	-	+	-	-	AF125322
C12	21_1	hypothetical protein	-	+	-	-	EU250031
E12	CABC	putative ATP binding protein of ABC transporter	-	+	-	-	EU250032
A13	224	strain B- and derivatives-specific genomic sequence	-	+	-	-	EF121002
B13	GALA	putative 2-keto-3-deoxygalactokinase	-	+	-	-	EU250033
C13	REPRESS	repressor protein	-	+	-	-	EU250034
D13	HEL	helicase related protein	-	+	-	-	EU250035
E13	914SPEC	Putative fimbrial protein	-	+	-	-	EU250036
H13	maoA	copper amine oxidase	+	+	-	+	L47571
A17	16S-rDNA	16S-rRNA gene	+	+	+	+	NC_000913
B17	PAI	phosphopantetheine-binding,	-	+	+	+	NZ_AAWW01000001
C17	B1134	putative adhesin	-	+	+	+	AE005174
D17	agaF	pts dependent N-acetyl-galactosamine-	-	+	+	+	AF228498
E17	0	hacteriophage protein O	-	+	+	+	EU250037
D18	× P27	phage-related tail fiber protein gene	-	-	-	+	EF121000
A19	2.2	hypothetical protein	-	-	-	+	EU250038
B19	T3443	putative bacteriophage tail protein	-	-	-	+	EU250039
C19	SAMP5	unknown DNA fragment, no similarity	-	-	-	+	EU250040
D19	FLAG02	Lateral flagellar hook protein (FlgE-like)	-	-	-	+	EU250041
E19	pac	pac gene for penicillin G acylase	-	-	-	+	X04114
G1	gpt	guanine-hypoxanthine phosphoribosyltransferase	٠	+	+	+	U00096
H1	argF	CP4-6 prophage; ornithine carbamoyltransferase 2, chain F	•	٠	+	+	U00096
G2	hsds	specificity gene of EcoK restriction enzyme	٠	+	-	-	V00288
H2	glf	Galf synthesis pathway protein	٠	-	-	-	ECU09876
G3	araA	L-arabinose isomerase	•	+	+	+	U00096
H3	yffs	CPZ-55 prophage; predicted protein	•	-	-	-	NP_416945
G4	mcra	metnyl cytosine restriction enzyme	•	-	-	-	L19104
П4	เกเ	Cr2-55 prophage; predicted integrase	•	-	-	-	000090

Fortsetzung nächste Seite

\mathbf{P}^1	Abkürzung	BLAST Ergebnis mit höchster Sequenzübereinstimmung		В	С	W	Accession number	
		lit gene encoding a bacterionbage T/						
G5	gplit	late gene expression blocking protein (<i>aplit</i>)	•	-	-	-	M19634	
H5	tn10	transposon Tn10	•	-	•	•	AY528506	
G7	hpaB	component B of the 4HPA-hydroxylase		+	+	•	Z37980	
H7	ÓXIDO	putative oxidoreductase		+	+	-	EU250042	
G8	hpaD	homoprotocatechuate dyoxygenase	-	+	+	•	Z37980	
H8	ACOA	putative acetyl-CoA:acetoacetyl-CoA transferase	-	+	+	-	EU250043	
G9	fimH	minor component of type 1 fimbriae	•	+	+	+	NC_000913	
H9	LON	ATP-dependent protease	+	+	+	+	L20572	
G11	GS8	putative membrane protein precursor, host specificity protein	-	٠	-	-	EU250044	
G12	EPI2	similar to hypothetical protein c3665 from <i>E. coli</i> CFT073	-	•	-	-	EU250045	
G13	PUINV	putative invasin	-	٠	-	+	EU250046	
G17	21_9	hypothetical protein	-	-	-	•	EU250047	
H17	1306	similar to hypothetical protein VV1862 (<i>Vibrio vulnificus</i> YI016)	-	-	-	٠	EU250048	
G18	1310	hypothetical protein	-	-	-	•	EU250049	
H18	prk2	cryptic plasmid pRK2	-	-	-	•	AY639886	
G19	fimH	minor component of type 1 fimbriae	•	+	+	+	NC_000913	
H19	LON	ATP-dependent protease	+	+	+	+	L20572	
A21	16S-rDNA	16S-rRNA gene	+	+	+	+	NC_000913	
A22	pks left	polyketide biosynthesis gene cluster, bacteriophage integrase, hypothetical protein	-	-	-	-	AM229678	
A23	pks right	polyketide biosynthesis gene cluster, IS1400 transposase A+B	-	-	-	-	AM229678	
A24	pks ORF 6	polyketide biosynthesis gene cluster, putative polyketide synthase	-	-	-	-	AM229678	
A25	pks ORF 17	colibactin polyketide biosynthesis gene cluster, putative	-	-	-	-	AM229678	
A28	PALIII	hemin receptor precursor	-	-	-	-	A 1586887	
A29	fvua	Similar to EvuA precursor (<i>Yersinia pestis</i>)	-	-	-	-	AE014075	
A30	iroN	siderophore receptor IroN	-	-	-	-	AJ586887	
A31	sfa	F1C periplasmic chaperone	-	-	-	-	AJ586887	
A32	papA	PapA protein	-	-	-	-	NC_004431	
B21	sat	secreted autotransporter toxin (sat) gene	-	-	-	-	AF289092	
B22	ompT	outer membrane protein 3b (a)	+	٠	-	-	NC_000913	
B23	aerJ	ferric aerobactin receptor precusor IutA	-	-	-	-	AJ586888	
B24	tir	hypothetical protein, intimin receptor	-	-	-	-	NC_004431	
B25	bma	M-agglutinin subunit (bmaE)	-	-	-	-	M15677	
B26	kpsII	polysialic acid transport protein KpsM protein	-	-	-	-	AJ586888	
B27	kpsIII	capsule transport protein KpsT	-	-	-	-	AF007777	
B29	focG	FIC minor fimbrial subunit protein G precusor	-	-	-	-	AJ586887	
B30	cnf	<i>cnf1</i> gene for cytotoxic necrotizing factor 1	-	-	-	-	X/06/0	
C22	hlya	Plasmid-DNA for EHEC-hemolysin operon	-	-	-	-	X86087	
C23	stx	Shiga toxin A-subunit	-	-	-	-	AJ251325	
C31	tral	Plasmid F genomic DNA	•	•	•	•	AP001918 X81422	
C32	eagg	Plasmid pL vs genomia DNA	-	-	-	-	A01423	
D21 D22	prys traE	Plasmid E genomic DNA				•		
D22	cam	Plasmid nLysS genomic DNA	-		-	-	www.embl_hamburg.de	
D23	bla	Plasmid pCR 2.1 Invitrogen	-				www.invitrogen.com	
E21	btubA	Prosthecobacter deiongeii BtubA	-	-	-	-	AY186783	
E22	DMSO	negative control	-	-	-	-	-	
D32	fimH	minor component of type 1 fimbriae	•	+	+	+	NC_000913	
E32	LON	ATP-dependent protease	+	+	+	+	L20572	

¹Position der einzelnen Sonden auf dem Chip (nach Abbildung 22A)

Rahmen zeigen die DNS Fragmente, die zur Bildung der Buchstaben verwendet wurden

+ steht für ein positives Hybridisierungssignal

- steht für ein negatives Hybridisierungssignal

• zeigt die Möglichkeit, durch diese Sonde einzelne Derivate zu unterscheiden

IV Diskussion

IV.1 Evaluierung der bisherigen Identifizierungsmethoden für Escherichia coli Sicherheitsstämme

Es wurden nahezu alle empfohlenen Methoden für die Identifizierung von *E. coli* Sicherheitsstämmen getestet (außer den Nachweisen durch Bakteriophagen), mit teils sehr unterschiedlichen Ergebnissen.

Die Einteilung in die phylogenetische Gruppe erlaubt keinerlei Stammidentifizierung und gilt nur als grobe Charakterisierung der Stämme. Immerhin ermöglicht die Methode laut Entwickler eine schnelle Unterscheidung von pathogenen und apathogenen Stämmen, die sich auf unterschiedliche Gruppen verteilt haben (pathogene Varianten kommen nur in den Gruppen B2 und D vor, alle anderen Stämme fallen in die Gruppen A und B1 [Clermont *et al.*, 2000]). Die chromosomale DNS der *E. coli* K-12 sowie *E. coli* W Stämme bildete zumindest eines der in der Triplex PCR beschriebenen Fragmente, welche aber nicht auf eine dieser Linien beschränkt sind. Die eingesetzte DNS der *E. coli* B und C Stämme erzuegte überhaupt kein Amplifikat, was einen Nachweis natürlich unmöglich macht (siehe Abschnitt III.1.1).

Die Erstellung eines auf PCR basierenden Fingerprints durch ERIC-PCR ermöglicht eine Differenzierung der einzelnen Sicherheitsstamm Linien K-12, B, C und W anhand spezifischer Bandenmuster im Agarosegel. Eine Einzelstammidentifizierung ist auch dadurch nicht möglich. Die Methode erwies sich außerdem problematisch hinsichtlich ihrer Reproduzierbarkeit, diese Schwachstelle wurde auch schon von anderen Autoren beschrieben (Chulain *et al.*, 2006; France *et al.*, 2005). Ein weiterer Nachteil ist die Notwendigkeit eines oder mehrerer Referenzstämme, die jeweils in einer Untersuchung mit verwendet werden müssen, um eine Identifizierung zu ermöglichen.

Die Pulsfeld Gelektrophorese (PFGE) lieferte von den empfohlenen Methoden mit Abstand die besten Ergebnisse, in vielen Fällen war sogar eine Identifizierung bis auf Stammebene möglich. Auch die Reproduzierbarkeit war absolut gegeben. Zu bemängeln ist allerdings ebenfalls die Notwendigkeit eines Referenzstammes, der in jedem Lauf mit untersucht werden muss. Dieses Problem könnte durch eine Referenzdatenbank und die Standardisierung der Methode schnell gelöst werden. So müsste das gesamte Protokoll vereinheitlicht werden, um alle verschiedenen Restriktionsmuster zu protokollieren und zu speichern, so dass jederzeit eine große Datenbank zur Identifizierung des jeweiligen Stammes zur Verfügung stehen würde. Eine solche Datenbank wird bereits für die Identifizierung von *E. coli* O157:H7 Stämmen verwendet (http://www.cdc.gov/pulsenet/), da PFGE für diesen Stamm die standardisierte Nachweismethode ist. Trotz der guten Ergebnisse, die mit dieser Technik erzielt wurden, gibt es doch einige Nachteile. Die gesamte Prozedur ist sehr zeitaufwendig, für ein gutes Ergebnis sind mindestens 48 h nötig. Es wurde ein Protokoll beschrieben, welches einen Nachweis innerhalb von 24 h erlaubt (beginnend mit einer bewachsenen Kultur) (Gautom, 1997), da allerdings bei dem in dieser Arbeit verwendeten Protokoll alleine der Lauf des Gels 22 h gedauert hat, dürfte das Auflösungsvermögen der Methode von Gautom *et al.* (1997) reduziert sein,. Die Interpretation der Ergebnisse ist ein weiterer Punkt, der noch kritisch betrachtet werden muss. Die Identifizierung ist lediglich aufgrund eines Musters im Gel möglich, das mit sehr viel Akribie ausgewertet werden muss, um ein verlässliches Ergebnis zu liefern. Ferner erhält man keinerlei Informationen darüber, worin die genetischen Unterschiede der einzelnen Stämme eigentlich liegen.

Die publizierten auf PCR basierenden Nachweismethoden sind jeweils nur auf eine Linie der Sicherheitsstämme zugeschnitten (K-12 bzw. B/BL21, [www.lag-gentechnik.de]), alle anderen werden nicht erfasst. Der Vorteil wäre Schnelligkeit sowie Spezifität, der Nachteil ist natürlich das zu geringe Spektrum.

Diese Methoden erlauben somit keinen schnellen und gleichzeitig akkuraten Nachweis dieser Organismen, der aufgrund ihrer Bedeutung in der Forschung sowie der Industrie jedoch unbedingt ermöglicht werden muss.

IV.2 Vergleich der subtraktiven Hybridisierungsmethoden

Die drei verwendeten und bereits beschriebenen subtraktiven Hybrdisierungsmethoden waren sehr unterschiedlich hinsichtlich ihrer Effizienz. Unter Verwendung der MaSH, die schon zur Unterscheidung von Xanthomonaden, Listerien und Laktokokken und Legionellen (Mehlen, 2004; Zwirglmaier *et al.*, 2001) erfolgreich eingesetzt wurde, waren ca. 10-20% der erhaltenen Fragmente einer Reaktion spezifisch für den untersuchten Stamm. Dieser Umstand erforderte ein sehr aufwendiges Klonscreening und intensive Sequenzanalyse zur Detektion von Unterschieden in den Genomen.

Der Reaktionsablauf einer "Genome subtraction", welche zur Unterscheidung von *Helicobacter pylori* und *E. coli* Stämmen (Akopyants *et al.*, 1998; Sorsa *et al.*, 2004) verwendet wurde, ergab oft keinerlei Ergebnis bzw. kein Amplifkat nach einer Hybridisierung. Im Falle einer erfolgreichen Reaktion, waren spezifische Banden im Gel sichtbar, ließen sich aber oft aus bisher unerklärlichen Gründen nicht klonieren. In einigen Fällen konnte die Reaktion allerdings ohne Probleme durchgeführt werden. Hier war sehr

auffällig, dass immer wieder identische Fragmente gefunden wurden, sodass die Ausbeute an spezifischen Fragmenten bei ca. 30% lag und somit etwas höher als bei der MaSH.

Die Biotin-Streptavidin Methode, entwickelt zur Differenzierung von Laktokokken und Streptokokken (Wassill *et al.*, 1998), lieferte mit Abstand die besten Ergebnisse. Die Effizienz lag bei bis zu 50% spezifischer DNS Fragmente pro Hybridisierung.

Die Ursachen dieser eklatanten Unterschiede in der Effizienz können durch verschiedene Besonderheiten der jeweiligen Protokolle erklärt werden.

Zunächst unterscheidet sich die eingesetzte Menge an Subtraktor-DNS. In einer MaSH werden pro Kavität der Mikrotiterplatte ca. 1 μ g S-DNS immobilisiert und somit in die subtraktive Hybridisierung eingesetzt, bei einer "Genome subtraction" waren es ca. 600 ng S-DNS, in der Biotin-Streptavidin Methode hingegen ca. 10 μ g S-DNS pro Reaktion.

Ein weiteres Merkmal der einzelnen Protokolle waren die verschieden langen Hybridisierungszeiten. Mit 1,5 h Hybrdisierungszeit war die MaSH mit Abstand die schnellste Methode, die "Genome subtraction" benötigt ca. 18 h und die zeitaufwendigste war hingegen die Biotin-Streptavidin Methode mit 48 h Hybridisierungszeit.

Zusammenfassend lässt sich schlussfolgern, dass die material- und zeitaufwendigste Methode auch die besten Ergebnisse lieferte. Durch den hohen Überschuss an S-DNS in der Hybridisierungslösung und der langen Hybridisierungszeiten wurden die Bereiche der Tester-DNS mit hoher Sequenzsimilarität am effektivsten entfernt. Obwohl alle Methoden in den jeweiligen Veröffentlichungen sehr gute Resultate lieferten, lag die Besonderheit in dieser Studie in der großen Ähnlichkeit der einzelnen Stämme. Die MaSH sowie die "Genome subtraction" scheinen nicht sensitiv genug zur effizienten Detektion der Unterschiede in sehr nahverwandten Stämmen, obwohl sich die Genomgrößen der einzelnen Stämme teilweise bis zu 600 kb unterscheiden. Dies könnte allerdings auch das Resultat diverser Duplikationen sein.

In Zukunft könnten neu entwickelten Sequenziermethoden (z. B.454 Sequencer, Roche, Schweiz), die es erlauben, komplette bakterielle Genome in 1-2 Wochen zu entschlüsseln, die subtraktiven Hybridisierungen ablösen. So wäre es möglich, zwei nahverwandte Stämme genauestens zu vergleichen und spezifische DNS Fragmente zu detektieren. Der Vorteil der subtraktiven Hybridisierung liegt allerdings in der Fähigkeit, viele verschiedene Stämme parallel wesentlich kostengünstiger und innerhalb kürzester Zeit zu untersuchen, wodurch ein deutlich höherer Durchsatz möglich ist.

63

IV.3 Virulenzfaktorscreening

Das umfassende Virulenzfaktorscreening, das in Abschnitt III.3 beschrieben wurde, bestätigt in jeder Hinsicht die Ungefährlichkeit und somit auch die gute Auswahl der *E. coli* Sicherheitsstämme. Die Selektion der überprüften Gene, einerseits durch PCR-Screening, andererseits durch ein umfangreiches Mikroarray-Screening, umfasst alle bekannten *E. coli* Gruppen (EHEC, EPEC, ETEC, EIEC, EAEC, DAEC, UPEC, SEPEC und MENEC) und kann somit als sehr zuverlässig angesehen werden. Dennoch kann eine Aufnahme von Virulenzfaktoren, gerade bei *E. coli*, nicht ausgeschlossen werden (im Labor) und sollte gerade während eines Experiments regelmäßig überprüft werden.

Die subtraktive Hybridisierung ergab im Gegensatz zum Virulenzfaktorscreening einige Anhaltspunkte für Virulenzfaktoren (siehe Abbildung 16), die aber möglicherweise nicht funktionell sind. Zwar wurden mehrere Fragmente eines virulenzassozierten Plasmids eines *E. coli* Stammes, der vor allem Vögel infiziert (*E. coli* APEC 01[Johnson *et al.*, 2006]), in den *E. coli* C Stämmen gefunden, aber ein PCR-Screening mit den beschriebenen, auf dieses Plasmid gerichteten Primern blieb ohne weitere Ergebnisse. Interessant ist auch die Präsenz von TypII (in *E. coli* B Stämmen) sowie TypIII (in *E. coli* C Stämmen) Sekretionssystemen, die in vielen Studien als hochrangige Virulenzfaktoren beschrieben wurden (Mecsas & Strauss, 1996; Stuber *et al.*, 2003). Des Weiteren wurden einzelne Gene mit virulentem Potential gefunden, die in nahezu allen Stämmen außer den K-12 Stämmen vorkommen, zum einen ein Gen kodierend für ein Adhäsin (B1134), zum anderen ein Gen kodierend für ein Invasin (PUINV). Die Funktionalität dieser Gene wurde jedoch nicht experimentell überprüft. Die *E. coli* W Stämme tragen zusätzlich noch ein Gen, welches für ein Makrophagentoxin kodiert (1309).

Die vielleicht interessanteste Entdeckung ist jedoch ein Fragment einer Pathogenitätsinsel (EPI-I, [Chouikha *et al.*, 2006]) in *E. coli* B sowie BL21 Stämmen (EPI). Diese Insel wurde in einem *E. coli* Stamm (BEN 2908) beschrieben, der Vögel infizieren kann. Mit Hilfe der neuen "Two Step Gene Walking Method" (Pilhofer *et al.*, 2007) konnten weitere 1000 bp der Insel sequenziert werden. Die enthaltenen Gene kodieren ausschließlich für hypothetische Proteine mit unbekannter Funktion, liegen allerdings in dem Bereich der Insel der zum pathogenen Potential des APEC Stammes beiträgt. Daher ist nicht auszuschließen, dass der *E. coli* B Stamm die gesamte Insel trägt. Weitere Sequenzieransätze wurden nicht unternommen, da das Genom dieses Stammes und des BL21 Stammes, in dem nur ein Teil der Insel nachgewiesen wurde (EPI), im Moment sequenziert werden (siehe Tabelle 1). Sobald die Sequenz komplett veröffentlicht wird, wird sich aufklären ob der *E. coli* B Stamm dieses virulente Potential hat.

Zusammenfassend lässt sich sagen, dass, obwohl einige Pathogenitätsfaktoren nachgewiesen werden konnten, die Stämme trotzdem weiterhin als ungefährlich gelten können. Denn *E. coli* Stämme benötigen, um wirklich krankheitserregendes Potential zu besitzen, eine gewisse Mindestanzahl verschiedener Faktoren. Ein einzelnes Gen alleine ist dafür nicht ausreichend (Bower *et al.*, 2005; Seed & Hultgren, 2005). Da auch in den ca. 80 Jahren der intensiven Nutzung dieser Stämme keinerlei Komplikationen beschrieben wurden, wird die Unbedenklichkeit dieser Organismen unterstützt.

IV.4 Sondenevaluierung

Wie in Abschnitt III.4.1 beschrieben, eigneten sich nicht alle spezifischen-PCR Produkte zur Hybridisierung auf dem Mikroarray.

Ein positives Hybridisierungssignal durch die markierte chromosomale DNS eines Stammes, welche in der PCR Untersuchung kein Amplifikat zeigte, lässt sich einfach erklären. Die Sequenz des verwendeten Fragments hat im Bereich der Primerbindungsstellen zu viele Unterschiede, um vervielfältigt zu werden, die Sequenzsimilarität das gesamten Fragments hingegen ist ausreichend, um auf dem Chip unter den verwendeten Konditionen zu hybridisieren (z. B. die in Abbildung 20 (Seite 51) verwendete Sonde hyproedl).

Weßhalb ein spezifisches PCR-Produkt in der Hybridisierung mit der zur Amplifikation verwendeten chromosomalen DNS allerdings kein Signal zeigt (z. B. die in Abbildung 21 verwendete Sonde lipo), bleibt offen. Zur Aufklärung dieses Phänomens wurden die Längen und die % GC Gehalte aller verwendeten Polynukleotidsonden überprüft (siehe Tabelle 8 für den GC Gehalt und Tabelle 9 für die Länge). Es galt herauszufinden, ob die stringenten Hybridisierungs- und Waschkonditionen für ein Ablösen der Zielsequenz von der Sonde verantwortlich waren. Die evaluierten Sonden auf dem Chip, die unter den verwendeten Konditionen spezifische Signale durch Hybridisierung zeigten, haben einen GC-Gehalt von 34 (*vioA*) bis 63% (*argF*). Zum Vergleich haben die unspezifischen Sonden einen GC-Gehalt von 33 (Tn7) bis 56 % (vgr) und liegen somit im gleichen Rahmen. Die Länge der evaluierten Sonden liegt zwischen 227 (*kpsII*) bis 3140 bp (*papA*), die der ausgeschlossenen Sonden zwischen 151 (Cspec) und 3387 bp (1309). Somit finden sich auch hier keine großen Unterschiede. Es konnte keinerlei Korrelation zwischen Länge und GC-Gehalt und der Spezifität einer Sonde festgestellt werden.

Da zur Hybridisierung fragmentierte chromosomale DNS eingesetzt wurde, könnte man allerdings darauf schließen, dass die Zielsequenz aus einem sehr kurzen Fragment besteht (im Vergleich zur Sonde). Das könnte unter den verwendeten Hybridisierungsbedingungen zu einer Ablösung von der Sonde führen.

IV.5 Neu entwickelte Identifizierungsmethoden für *E. coli* Sicherheitsstämme

Die bisherigen empfohlenen Identifizierungsmethoden für *E. coli* Sicherheitsstämme sind, wie in Abschnitt I.3 und III.1 bereits beschrieben, nicht ausreichend, um einen einfachen, schnellen und vor allem verlässlichen Nachweis zu ermöglichen.

Zunächst wurde, basierend auf den Ergebnissen der subtraktiven Hybridisierung, ein Schnelltest entwickelt, der durch eine einzige PCR die Identifizierung eines Sicherheitsstammes ermöglicht (Bauer *et al.*, 2007). Eine vergleichbare Methode, jedoch limitiert auf *E. coli* K-12 Stämme, wurde bereits 1996 von Kuhnert *et. al.* veröffentlicht. Das neue Protokoll ermöglicht den Nachweis aller als Sicherheitsstamm deklarierten *E. coli* Stämme mittels spezifischen Primern, die kombiniert in einer einzigen Reaktion verwendet werden können. Da diese neue Methode auch auf intakte Zellen angewendet werden kann, ermöglicht sie einen Nachweis innerhalb von nur ca. 3 Stunden. Sie bietet allerdings lediglich einen groben, aber dennoch spezifischen Nachweis, basierend auf je 1-2 spezifischen PCR-Fragmenten.

Das Hauptziel jedoch war es, einen komplexen Mikroarray zu entwickeln, der eine verlässliche, einfache und vor allem akkurate Identifizierung von *E. coli* Sicherheitsstämmen zulässt (Bauer *et al.*, 2008). Zum Aufbau des Chips wurden spezifische PCR-Produkte als Sonden verwendet. Die chromosomale DNS der untersuchten *E. coli* Stämme wurde vor einer fluoreszenzmarkierung lediglich fragmentiert, somit musste keine PCR vorgeschaltet werden. Dieser neu entwickelte Chip ermöglicht in den meisten Fällen eine Identifizierung bis auf Stammebene. Einige *E. coli* K-12 Derivate können anhand spezifischer Sonden unterschieden werden. Ferner ermöglicht der Chip die Unterscheidung von *E. coli* B und BL21 Stämmen, C und ABLE C sowie W und Mach1. Somit können die jeweiligen Ursprungsstämme von den kommerziell erwerblichen Sicherheitsstämmen eindeutig unterschieden werden.

Zusätzlich wurden Sonden integriert, die die Erkennung eines Plasmids erlauben. Dafür wurden plasmid-kodierte Antibiotika-Resistenzgene sowie weitere plasmidspezifische Fragmente verwendet. Letztlich wurde noch eine Selektion an gängigen Virulenzfaktoren eingegliedert, die es ermöglichen soll, während eines Experiments oder während der Lagerung den Stamm auf die Aufnahme dieser Faktoren regelmäßig überprüfen zu können.

Der Chip wurde an einer umfangreichen Auswahl an Stämmen getestet. Insgesamt wurden 40 verschiedene *E. coli* Sicherheitsstämme, 10 pathogene Vertreter, 10 uncharakterisierte Isolate sowie der probiotische Stamm *E. coli* Nissle 1917 (Mutaflor, ArdeyPharm, Deutschland) untersucht, mit dem Ergebnis, dass alle Sicherheitsstämme als solche einwandfrei identifiziert, und alle anderen klar abgegrenzt werden konnten.

Ermöglicht wurde die einfache und verlässliche Identifizierung durch ein neuartiges Konzept, dass, ähnlich dem Mehrfachsondenkonzept (Behr *et al.*, 2000), eine Selektion an Sonden für die einwandfreie Erkennung eines Stammes benötigt. Es wurden jedoch keine hierarchischen Sonden gewählt, vielmehr wurde die Anordnung der Sonden so ausgewählt, dass die Identifizierung aufgrund der Buchstaben der einzelnen *E. coli* Sicherheitsstammlinien möglich ist. Dieses neuartige Design, sowie die vorherige Selektion und Evaluierung der Sonden ermöglicht eine schnelle und dennoch verlässliche Auswertung des Chips ohne komplizierte und aufwendige Signalquantifizierung. Sie erfolgt rein visuell. Für eine verlässliche Identifizierung müssen **alle** Punkte eines Buchstabens ein eindeutiges Hybridisierungssignal zeigen.

Im Fall von E. coli K-12 Stämmen, mit mehr als 7000 dokumentierten Mutanten, ist es nicht auszuschließen, dass auch eine Mutation eines der Gene des "K" Schemas auf dem Chip erfolgt ist. Durch die Verwendung von Polynukleotidsonden ist es jedoch möglich, auch inaktive Gene mit einzelnen Deletionen oder Insertionen nachzuweisen, da vereinzelte nicht übereinstimmende Basen trotzdem eine Hybridisierung zulassen (z. B. lon-protease in E. coli B Stämmen: das Gen ist inaktiv (siehe I.2), die Hybridisierung hingegen positiv [siehe Abbildung 22]). Falls eines dieser Gene jedoch vollständig deletiert wurde, wird der Buchstabe nicht mehr komplett erscheinen, was zu einer falsch negativen Identifizierung führen könnte. In dieser Arbeit wurde kein solcher Stamm entdeckt oder verwendet, eine Identifizierung wäre aber dennoch möglich. Die meisten Sonden wurden durch subtraktive Hybridisierung gegen K-12 Stämme generiert, da also nahezu alle weiteren Sonden des Chips (außer den Positivkontrollen sowie den plasmidspezifischen Sonden) nicht mit E. coli K-12 Stämmen hybridisieren, sind keine weiteren positiven Signale zu erwarten (siehe Abbildung 22B). Alle anderen getesteten Stämme zeigen entweder einen kompletten Buchstaben (B, C oder W) oder ein diffuses Muster über den ganzen Chip (siehe Abbildung 22F und Tabelle 10 im Anhang).

Bei den *E. coli* B, C und W Stämmen besteht die Gefahr der möglichen falsch negativen Identifizierung nicht, da weit weniger Mutationen in diesen Stämmen vorhanden sind.

Die Zusammensetzung des Chips sollte ohnehin als Prototyp dienen, der die Potentiale der Methode zeigt, und sehr einfach an jeweilige Experimente angepasst werden kann. Die Konstellation der Sonden, die für die einzelnen Buchstaben stehen, kann direkt übernommen werden. Alle weiteren Bereiche sind ohne großen Aufwand erweiterbar. Falls man weitere Fragmente in einem Experiment nachweisen möchte, können diese sehr einfach hergestellt und in die Methode mit aufgenommen werden. Die relativ geringe Anzahl an verwendeten Sonden macht den neu entwickelten Chip zusätzlich kostengünstig, da alles in eigener Arbeit hergestellt werden kann und nichts zur Produktion außer Haus gegeben werden muss.

Für zukünftige Arbeiten, gerade mit *E. coli*, kann man sich ein weitaus komplexeres Muster des Chips vorstellen: Alle verschiedenen Varianten der pathogenen *E. coli* Stämme tragen jeweils spezifische Namen (EPEC, ETEC, EHEC, EAEC, UPEC; MENEC, STEC). Der Chip könnte somit durch spezifische Sonden erweitert werden, und z.B. die Buchstaben P (EPEC), T (ETEC), H (EHEC) usw. bilden. Somit könnte ein globaler *E. coli* Chip entwickelt werden, mit dem durch einfaches Ablesen der Buchstaben alle möglichen Pathovare und Varianten zu identifizieren sind.

V Zusammenfassung

Escherichia coli Sicherheitsstämme sind durch ihre Ungefährlichkeit sowie der Möglichkeit zur gezielten Modifikation zu den "Arbeitstieren" der Wissenschaft wie auch der Industrie geworden. Die empfohlenen Methoden, um diese Stämme einwandfrei nachzuweisen wurden in dieser Arbeit überprüft, mit dem Ergebnis, dass sie einerseits zu langwierig und ungenau sind und andererseits nicht das nötige Spektrum besitzen, um alle Sicherheitsstämme exakt zu unterscheiden.

Verschiedene subtraktive Hybridisierungsmethoden wurden verwendet, um spezifische Fragmente für die verschieden Linien der *E. coli* Sicherheitsstämme (K-12, B, C und W) zu finden. Diese Abschnitte im Genom der einzelnen Stämme wurden verwendet, um zunächst einen auf PCR basierenden Schnelltest zu entwickeln, der durch eine einzige Reaktion einen akkuraten und vor allem schnellen Nachweis von *E. coli* Sicherheitsstämmen ermöglicht. Diese Methode beschränkt sich allerdings lediglich auf die Identifizierung der einzelnen Linien (K-12, B, C und W).

Um einen genaueren und komplexeren Nachweis zu ermöglichen, wurden die spezifischen PCR-Fragmente zur Entwicklung eines Mikroarrays verwendet. Nach sorgfältiger Evaluierung der Polynukleotidsonden wurde ein neuartiger Aufbau des Chips entwickelt, der einen sehr einfachen und schnellen, aber dennoch zuverlässigen Nachweis bietet. Dafür wurden die Sonden auf dem Chip so angeordnet, dass sie nach der Hybridisierung eines Sicherheitsstammes der jeweilige Buchstabe der Linie (K, B, C oder W) erscheint. Zusätzliche Sonden ermöglichen in den meisten Fällen eine Identifizierung bis auf Stammebene. Darüber hinaus ist der Nachweis verschiedener Plasmide sowie einer Auswahl gängiger Virulenzfaktoren gewährleistet.

Somit bietet diese neue Methode die Möglichkeit des Monitorings der Stämme während laufender Experimente oder die Überprüfung der Reinheit eines Stammes vor einem geplanten Experiment.

In Kooperation mit Dr. Sören Schubert und Dr. Ulrich Dobrindt wurden die Sicherheitsstämme in einem Nebenprojekt zudem auf die Präsenz verschiedenster Virulenzfaktoren hin überprüft. In einem PCR basierten Screening sowie einer Untersuchung durch einen komplexen Mikroarray konnte kein pathogenes Potential nachgewiesen werden, lediglich vereinzelte Gene, die isoliert keinerlei krankheitserregende Wirkung haben. In den subtraktiven Hybridisierungen wurden ebenfalls vereinzelt virulenzassoziierte Gene gefunden, zusammenfassend können die Stämme aber als ungefährlich beschrieben werden.

69

VI Literaturverzeichnis

Abedon, S. T. (2000). The murky origin of Snow White and her T-even dwarfs. *Genetics* 155, 481-486.

Akopyants, N. S., Fradkov, A., Diatchenko, L., Hill, J. E., Siebert, P. D., Lukyanov, S. A., Sverdlov, E. D. & Berg, D. E. (1998). PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. *Proc Natl Acad Sci U S A* **95**, 13108-13113.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25, 3389-3402.

Anjum, M. F., Mafura, M., Slickers, P., Ballmer, K., Kuhnert, P., Woodward, M. J. & Ehricht, R. (2007). Pathotyping Escherichia coli by using miniaturized DNA microarrays. *Appl Environ Microbiol* **73**, 5692-5697.

Bachmann, B. J. (1972). Pedigrees of some mutant strains of Escherichia coli K-12. *Bacteriol Rev* 36, 525-557.

Bae, J. W., Rhee, S. K., Nam, Y. D. & Park, Y. H. (2005). Generation of subspecies levelspecific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes. *Nucleic Acids Res* 33, e113.

Ballmer, K., Korczak, B. M., Kuhnert, P., Slickers, P., Ehricht, R. & Hachler, H. (2007). Fast DNA serotyping of Escherichia coli by use of an oligonucleotide microarray. *J Clin Microbiol* **45**, 370-379.

Bauer, A. P., Dieckmann, S. M., Ludwig, W. & Schleifer, K. H. (2007). Rapid identification of Escherichia coli safety and laboratory strain lineages based on Multiplex-PCR. *FEMS Microbiol Lett* **269**, 36-40.

Bauer, A. P., Ludwig, W. & Schleifer, K.-H. (2008). A Novel DNA Microarray Design for accurate and straightforward identification of Escherichia coli safety strains. *Syst Appl Microbiol* 10.1016/j.syapm.2008.01.001.

Behr, T., Koob, C., Schedl, M. & other authors (2000). A nested array of rRNA targeted probes for the detection and identification of enterococci by reverse hybridization. *Syst Appl Microbiol* **23**, 563-572.

Bekal, S., Brousseau, R., Masson, L., Prefontaine, G., Fairbrother, J. & Harel, J. (2003). Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. *J Clin Microbiol* **41**, 2113-2125.

Bentley, R. & Meganathan, R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. *Microbiol Rev* 46, 241-280.

Berg, P., Baltimore, D., Brenner, S., Roblin, R. O. & Singer, M. F. (1975). Summary statement of the Asilomar conference on recombinant DNA molecules. *Proc Natl Acad Sci U S A* 72, 1981-1984.

Bergthorsson, U. & Ochman, H. (1995). Heterogeneity of genome sizes among natural isolates of Escherichia coli. *J Bacteriol* 177, 5784-5789.

Bergthorsson, U. & Ochman, H. (1998). Distribution of chromosome length variation in natural isolates of Escherichia coli. *Mol Biol Evol* 15, 6-16.

Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A. & other authors (1997). The complete genome sequence of Escherichia coli K-12. *Science* 277, 1453-1474.

Blum, G., Schmittroth, M. & Hacker, J. (1995). Escherichia coli K-12: Herkunft, Nachweiskriterien und Ausbreitung. *Biospektrum* 1, 11-16.

Bower, J. M., Eto, D. S. & Mulvey, M. A. (2005). Covert operations of uropathogenic Escherichia coli within the urinary tract. *Traffic* **6**, 18-31.

Brandt, K. & Alatossava, T. (2003). Specific identification of certain probiotic Lactobacillus rhamnosus strains with PCR primers based on phage-related sequences. *Int J Food Microbiol* **84**, 189-196.

Casarez, E. A., Pillai, S. D. & Di Giovanni, G. D. (2007). Genotype diversity of Escherichia coli isolates in natural waters determined by PFGE and ERIC-PCR. *Water Res* **41**, 3643-3648.

Chouikha, I., Germon, P., Bree, A., Gilot, P., Moulin-Schouleur, M. & Schouler, C. (2006). A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. *J Bacteriol* 188, 977-987.

Chulain, M. N., Morris, D. & Cormican, M. (2006). Enterobacterial repetitive intergenic consensus-polymerase chain reaction for typing of uropathogenic Escherichia coli is not what it seems. *Clin Infect Dis* **42**, 1805-1806.

Clermont, O., Bonacorsi, S. & Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. *Appl Environ Microbiol* 66, 4555-4558.

Corvec, S., Prodhomme, A., Giraudeau, C., Dauvergne, S., Reynaud, A. & Caroff, N. (2007). Most Escherichia coli strains overproducing chromosomal AmpC beta-lactamase belong to phylogenetic group A. *J Antimicrob Chemother* **60**, 872-876.

Diaz, E., Ferrandez, A., Prieto, M. A. & Garcia, J. L. (2001). Biodegradation of aromatic compounds by Escherichia coli. *Microbiol Mol Biol Rev* 65, 523-569.

Dick, L. K., Simonich, M. T. & Field, K. G. (2005). Microplate subtractive hybridization to enrich for bacteroidales genetic markers for fecal source identification. *Appl Environ Microbiol* **71**, 3179-3183.

Dobrindt, U., Blum-Oehler, G., Nagy, G., Schneider, G., Johann, A., Gottschalk, G. & Hacker, J. (2002). Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. *Infect Immun* **70**, 6365-6372.

Dobrindt, U., Agerer, F., Michaelis, K. & other authors (2003). Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. *J Bacteriol* **185**, 1831-1840.

France, A., Marrs, C., Zhang, L. & Foxman, B. (2005). Reply to Riley and Manges and to Johnson doi:10.1086/432130. *Clinical Infectious Diseases* **41**, 568-570.

Fukiya, S., Mizoguchi, H., Tobe, T. & Mori, H. (2004). Extensive genomic diversity in pathogenic Escherichia coli and Shigella Strains revealed by comparative genomic hybridization microarray. *J Bacteriol* **186**, 3911-3921.

Gautom, R. K. (1997). Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. *J Clin Microbiol* **35**, 2977-2980.

Gerardi, M. H. & Zimmerman, M. C. (2005). Coliform Bacteria and Indicator Organisms. In *Wastewater Pathogens*. Edited by M. H. Gerardi: Wiley-VCH Verlag GmbH & Co. KGaA.

Goldwater, P. N. (2007). Treatment and prevention of enterohemorrhagic Escherichia coli infection and hemolytic uremic syndrome. *Expert Rev Anti Infect Ther* **5**, 653-663.
Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H. (1997). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. *Mol Microbiol* 23, 1089-1097.

Hacker, J. & Kaper, J. B. (2000). Pathogenicity islands and the evolution of microbes. *Annu Rev Microbiol* 54, 641-679.

Hamelin, K., Bruant, G., El-Shaarawi, A. & other authors (2006). A virulence and antimicrobial resistance DNA microarray detects a high frequency of virulence genes in Escherichia coli isolates from Great Lakes recreational waters. *Appl Environ Microbiol* **72**, 4200-4206.

Hayashi, K., Morooka, N., Yamamoto, Y. & other authors (2006). Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. *Mol Syst Biol* 2, 2006.0007.

Hepworth, P. J., Leatherbarrow, H., Hart, C. A. & Winstanley, C. (2007). Use of suppression subtractive hybridisation to extend our knowledge of genome diversity in Campylobacter jejuni. *BMC Genomics* **8**, 110.

Herzer, P. J., Inouye, S., Inouye, M. & Whittam, T. S. (1990). Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. *J Bacteriol* 172, 6175-6181.

Janke, B., Hacker, J. & Blum-Oehler, G. (2000). Genetic characterization of the uropathogenic E. coli strain 536--a subtractive hybridization analysis. *Adv Exp Med Biol* 485, 53-56.

Johnson, J. R. & Stell, A. L. (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. *J Infect Dis* 181, 261-272.

Johnson, T. J., Wannemeuhler, Y. M., Scaccianoce, J. A., Johnson, S. J. & Nolan, L. K. (2006). Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. *Antimicrob Agents Chemother* **50**, 3929-3933.

Johnson, T. J., Kariyawasam, S., Wannemuehler, Y. & other authors (2007). The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. *J Bacteriol* **189**, 3228-3236.

Kaper, J. B., Nataro, J. P. & Mobley, H. L. (2004). Pathogenic Escherichia coli. *Nat Rev Microbiol* 2, 123-140.

Kolisnychenko, V., Plunkett, G., 3rd, Herring, C. D., Feher, T., Posfai, J., Blattner, F. R. & Posfai, G. (2002). Engineering a reduced Escherichia coli genome. *Genome Res* 12, 640-647.

Kuhnert, P., Nicolet, J. & Frey, J. (1995). Rapid and accurate identification of Escherichia coli K-12 strains. *Appl Environ Microbiol* 61, 4135-4139.

Lee, B. H., Huh, W. K., Kim, S. T., Lee, J. S. & Kang, S. O. (1999). Bacterial production of D-erythroascorbic acid and L-ascorbic acid through functional expression of Saccharomyces cerevisiae D-arabinono-1,4-lactone oxidase in Escherichia coli. *Appl Environ Microb* **65**, 4685-4687.

Lehner, A., Loy, A., Behr, T., Gaenge, H., Ludwig, W., Wagner, M. & Schleifer, K. H. (2005). Oligonucleotide microarray for identification of Enterococcus species. *FEMS Microbiol Lett* **246**, 133-142.

Livshits, V. A. (1996).Production of isoleucine by escherichia coli having isoleucine auxotrophy and no negative feedback inhibition of isoleucine production. United States: Ajinomoto Co., Inc.

Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K. H. & Wagner, M. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. *Appl Environ Microbiol* **68**, 5064-5081.

Loy, A., Schulz, C., Lucker, S., Schopfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A. & Wagner, M. (2005). 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales". *Appl Environ Microbiol* **71**, 1373-1386.

Maeda, T., Sanchez-Torres, V. & Wood, T. K. (2007). Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. *Appl Microbiol Biotechnol*.

Mecsas, J. J. & Strauss, E. J. (1996). Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. *Emerg Infect Dis* 2, 270-288.

Mehlen, A. (2004). Stammspezifische Identifizierung pathogener und biotechnologisch relevanter Bakterien durch in vitro Amplifikation und Detektion charakteristischer Genfragmente. *PhD Thesis*.

Nataro, J. P. & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. *Clin Microbiol Rev* 11, 142-201.

Neidhardt, F. C., Curtiss III, R., Ingraham, J. L. & other authors (1996). *Escherichia coli and Salmonella: cellular and molecular biology*, 2nd Edition edn. Washington, D.C.: ASM Press.

Orsi, R. H., Stoppe, N. C., Sato, M. I., Gomes, T. A., Prado, P. I., Manfio, G. P. & Ottoboni, L. M. (2007). Genetic variability and pathogenicity potential of Escherichia coli isolated from recreational water reservoirs. *Res Microbiol* **158**, 420-427.

Parsons, Y. N., Banasko, R., Detsika, M. G., Duangsonk, K., Rainbow, L., Hart, C. A. & Winstanley, C. (2003). Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. *Arch Microbiol* **179**, 214-223.

Pilhofer, M., Bauer, A. P., Schrallhammer, M., Richter, L., Ludwig, W., Schleifer, K. H. & Petroni, G. (2007). Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method. *Nucleic Acids Res* 35, e135.

Posfai, G., Plunkett, G., 3rd, Feher, T. & other authors (2006). Emergent properties of reduced-genome Escherichia coli. *Science* 312, 1044-1046.

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239, 487-491.

Sambrook, J. & Russel, D. (2001). *Molecular Cloning: A Laboratory Manual, 3rd edn.*: Cold Spring Harbour Laboratory, New York.

Schaechter, M. (2001). Escherichia coli and Salmonella 2000: the view from here. *Microbiol Mol Biol Rev* 65, 119-130.

Schneider, D., Duperchy, E., Coursange, E., Lenski, R. E. & Blot, M. (2000). Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. *Genetics* **156**, 477-488.

Schramm, G., Zapatka, M., Eils, R. & Konig, R. (2007). Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. *BMC Bioinformatics* **8**, 149.

Seed, P. C. & Hultgren, S. J. (2005). Blueprinting the regulatory response of Escherichia coli to the urinary tract. *Trends Microbiol* 13, 246-248.

Sharma, S. S., Blattner, F. R. & Harcum, S. W. (2007). Recombinant protein production in an Escherichia coli reduced genome strain. *Metab Eng* 9, 133-141.

Sinsheimer, R. L. (1959). Purification and Properties of Bacteriophage-Phi-X174. *J Mol Biol* 1, 37-53.

Sorsa, L. J., Dufke, S. & Schubert, S. (2004). Identification of novel virulence-associated loci in uropathogenic Escherichia coli by suppression subtractive hybridization. *FEMS Microbiol Lett* **230**, 203-208.

Stuber, K., Frey, J., Burnens, A. P. & Kuhnert, P. (2003). Detection of type III secretion genes as a general indicator of bacterial virulence. *Mol Cell Probes* 17, 25-32.

Tatum, E. L. & Lederberg, J. (1947). Gene Recombination in the Bacterium Escherichia coli. *J Bacteriol* 53, 673-684.

Veit, A., Polen, T. & Wendisch, V. F. (2007). Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. *Appl Microbiol Biotechnol* 74, 406-421.

Versalovic, J., Koeuth, T. & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. *Nucleic Acids Res* 19, 6823-6831.

Waksman, S. A. (1925). The Soil Population. Proc Natl Acad Sci USA 11, 476-481.

Waksman, S. A. & Martin, J. P. (1939). The Role of Microorganisms in the Conservation of the Soil. *Science* 90, 304-305.

Wassill, L., Ludwig, W. & Schleifer, K. H. (1998). Development of a modified subtraction hybridization technique and its application for the design of strain specific PCR systems for lactococci. *Fems Microbiology Letters* 166, 63-70.

Willenbrock, H., Petersen, A., Sekse, C., Kiil, K., Wasteson, Y. & Ussery, D. W. (2006). Design of a seven-genome Escherichia coli microarray for comparative genomic profiling. *J Bacteriol* 188, 7713-7721.

Zhang, L., Foxman, B. & Marrs, C. (2002). Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. *J Clin Microbiol* **40**, 3951-3955.

Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T. & Ingram, L. O. (2007). Production of L: -alanine by metabolically engineered Escherichia coli. *Appl Microbiol Biotechnol*.

Zwirglmaier, K., Wassill, L., Ludwig, W. & Schleifer, K. H. (2001). Subtraction hybridization in microplates: an improved method to generate strain-specific PCR primers. *Syst Appl Microbiol* **24**, 108-115.

VII Anhang

Gen	Beschreibung	Größe (bp)	K-12	В	BL21	С	ABLE C	W	W Mutante
EAgg	enteroaggregative mechanism	589	-	-	-	-	-	-	-
hlyA	hemolysin	1500	-	-	-	-	-	-	-
fimH	type I Fimbriae	465	+	+	+	+	+	+	+
aerJ	iutA, siderophore	250	-	-	-	-	-	-	-
focG	fimbriae	300	-	-	-	-	-	-	-
cnf	cytotoxic necrotizing factor	450	-	-	-	-	-	-	-
papA	Pap-fimbriae	711	-	~1200	-	-	~1200	-	-
bma	M-fimbriae	250	-	-	-	-	-	-	-
kpsII	capsule	250	-	-	-	-	-	-	-
kpsIII	capsule	300	-	-	-	-	-	-	-
traT	serum resistance	250	-	-	-	-	+	-	-
rfc	O-antigen polymerase	700	-	-	-	-	-	-	-
esp	<i>E.coli</i> secreted protein	300	-	-	-	+	-	-	-
tir	intimin receptor	341	-	-	-	-	-	-	-
PAI III	pathogenicity island III E.coli 536	639	-	-	-	-	-	-	-
iroN	siderophore	2000	-	-	-	-	-	-	-
fyuA	yersiniabactin	639	~900	~900	~900	~900	~900	~700	~700
ompT	outer membrane protein	702	+	+	-	-	-	-	-
left	colibactin polyketide	1785	-	-	-	-	-	-	-
right	colibactin polyketide	1373	-	-	-	-	-	-	-
6	colibactin polyketide	2265	-	-	-	-	-	-	-
17	colibactin polyketide	2382	-	-	-	-	-	-	-
sfa	S-Fimbriae	359	-	-	-	-	-	-	-
sat	secreted auto transporter toxin	565	-	-	-	-	-	_	_
tir	intimin receptor	341	-	_	_	-	-	_	_
stx	shigatoxin	307	-	-	-	-	-	-	-

Tabelle 6 Virulenzfaktorscreening durch spezifische PCR Primer

+ steht für ein Amplifikat der richtigen Größe (zusätzlich grau hinterlegt) Zahlen geben die Größe eines erhaltenen, unspezifischen Amplifikats an (im Vergleich zur angegebenen Fragmentgröße der Positivkontrolle).

Name	Accession number	Zielbereich der Sonde	Pathotyp Marker	K-12 MG1655	В	BL21	W	Mach1	ABLE K	С
aah_1	AJ304444_1	AIDA heptosyltransferase Aah	DAEC	-2	-2	9	2	0	-3	-1
aah_2	AJ304444_2	AIDA heptosyltransferase Aah	DAEC	-4	4	-4	1	1	-1	-1
aidA_1	X65022_1	aidA (AIDA autotransporter)	DAEC	35	75	162	11	42	146	9
aidA_2	X65022_2	aidA (AIDA autotransporter)	DAEC	-5	3	3	0	2	15	3
aaf1_1	ECU12894_1	aggregative adherence fimbriae I	EAEC	1	0	-6	-3	-1	4	-1
aaf1_2	ECU12894_2	aggregative adherence fimbriae I	EAEC	3	3	17	0	5	0	0
aaf2_1	AF012835_1	aggregative adherence fimbriae II	EAEC	0	-3	-6	3	0	6	-2
aaf2_2	AF012835_2	aggregative adherence fimbriae II	EAEC	6	40	93	1	7	65	37
aggR_1	Z32523_1	aggR (regulator of AAF/I)	EAEC	-1	-8	-1	-3	0	-1	0
aggR_2	Z32523_2	aggR (regulator of AAF/I)	EAEC	-2	-4	0	1	-3	-6	-3
east-1	L11241	enteroaggregative heat-stable enterotoxin 1	EAEC	12	6	20	2	0	44	4
pet_1	AF056581_1	<i>pet</i> (plasmid-encoded toxin, autotransporter)	EAEC	-3	3	-3	-1	-2	-7	1
pet_2	AF056581_2	<i>pet</i> (plasmid-encoded toxin, autotransporter)	EAEC	0	0	10	-1	-1	5	3
pic_1	AF097644_1	<i>pic</i> (serine protease, autotransporter)	EAEC	-4	-2	-5	2	-3	-8	-3
pic_2	AF097644_2	pic (serine protease, autotransporter)	EAEC	-7	-1	-2	1	1	-10	-2
clbA_1	AM229678_1	colibactin polyketide	ECOR B2	-1	-3	-6	5	-1	-10	-2
clbA_2	AM229678_2	colibactin polyketide	ECOR B2	1	2	-7	-1	2	8	0
clbB_1	AM229678_1	colibactin polyketide	ECOR B2	-1	0	0	0	0	-10	-2
clbB_2	AM229678_2	colibactin polyketide	ECOR B2	1	7	36	2	4	52	28
clbC_1	AM229678_1	colibactin polyketide	ECOR B2	5	3	24	-1	4	5	4
clbC_2	AM229678_2	colibactin polyketide	ECOR B2	-2	7	15	1	0	10	1
clbD_1	AM229678_1	colibactin polyketide	ECOR B2	3	2	3	-1	0	-6	0
clbD_2	AM229678_2	colibactin polyketide	ECOR B2	4	13	90	2	0	25	15
clbE_1	AM229678_1	colibactin polyketide	ECOR B2	0	1	0	2	-1	-7	1
clbE_2	AM229678_2	colibactin polyketide	ECOR B2	-2	4	98	3	1	10	2
clbF_1	AM229678_1	colibactin polyketide	ECOR B2	12	20	89	6	2	63	26
clbF_2	AM229678_2	colibactin polyketide	ECOR B2	3	4	58	7	14	12	8
clbG_1	AM229678_1	colibactin polyketide	ECOR B2	34	31	153	14	28	109	67
clbG_2	AM229678_2	colibactin polyketide	ECOR B2	17	17	103	10	17	57	35
								For	setzung i	nächste Seite

Tabelle 7 Virulenzfaktorscreening durch Mikroarray Hybridisierung

Name	Accession number	Zielbereich der Sonde	Pathotyp Marker	K-12 MG1655	В	BL21	W	Mach1	ABLE K	С
11 77 4				0	1	10	2	0	24	7
clbH_1	AM229678_1	colibactin polyketide	ECOR B2	0	1	18	2	0	34 70	/
clbH_2	AM229678_2	colibactin polyketide	ECOR B2	11	21	/6	23	16	70	37
clbl_1	AM229678_1	colibactin polyketide	ECOR B2	-1	-2	0	-4	0	0	-5
clbI_2	AM229678_2	colibactin polyketide	ECOR B2	2	4	12	13	4	5	0
clbJ_1	AM229678_1	colibactin polyketide	ECOR B2	-1	6	17	5	3	11	0
clbJ_2	AM229678_2	colibactin polyketide	ECOR B2	-2	3	-1	2	-1	-1	-1
clbK_1	AM229678_1	colibactin polyketide	ECOR B2	-2	4	6	2	0	-1	3
clbK_2	AM229678_2	colibactin polyketide	ECOR B2	0	32	76	6	2	62	5
clbL_1	AM229678_1	colibactin polyketide	ECOR B2	8	54	124	7	26	76	35
clbL_2	AM229678_2	colibactin polyketide	ECOR B2	41	77	183	63	61	191	77
clbM_1	AM229678_1	colibactin polyketide	ECOR B2	29	56	126	16	22	117	57
clbM_2	AM229678_2	colibactin polyketide	ECOR B2	0	0	-1	-1	0	-1	1
clbN_1	AM229678_1	colibactin polyketide	ECOR B2	0	-13	1	2	0	6	0
clbN_2	AM229678_2	colibactin polyketide	ECOR B2	2	-4	-1	6	1	7	0
clbO_1	AM229678_1	colibactin polyketide	ECOR B2	-3	6	59	1	1	6	1
clbO_2	AM229678_2	colibactin polyketide	ECOR B2	-6	7	12	0	0	2	0
clbP_1	AM229678_1	colibactin polyketide	ECOR B2	3	34	285	5	1	21	6
clbP_2	AM229678_2	colibactin polyketide	ECOR B2	-2	0	-3	0	-4	-2	-1
clbQ_1	AM229678_1	colibactin polyketide	ECOR B2	-4	0	-13	-1	-3	82	-2
clbQ_2	AM229678_2	colibactin polyketide	ECOR B2	27	122	345	55	38	189	95
efa1_1	AF159462_1	EHEC factor for adherence	EHEC	-3	1	-6	0	1	-9	1
efa1_2	AF159462_2	EHEC factor for adherence	EHEC	-2	0	-5	-1	0	-3	0
L0025 1	AF071034 1	eaeA	EHEC	-7	-3	-11	2	0	-4	3
L0025 2	AF071034 2	eaeA	EHEC	73	110	297	85	67	271	98
L0035 1	AF071034 1	escV	EHEC	5	7	71	5	2	17	8
L0035 2	AF071034 2	escV	EHEC	49	42	175	13	29	157	60
sfpA 1	AJ131667 1	<i>Escherichia coli</i> plasmid pSFO157	EHEC	-2	3	-20	-4	-2	-12	-2
sfnA 2	AJ131667_2	<i>Escherichia coli</i> plasmid pSFO157	EHEC	-6	-2	0	-2	0	3	9
stx1A 1	NP 288673 1	Shiga toxin	EHEC	8	27	92	13	10	18	6
stx1A 2	NP 288673 2	Shiga toxin	EHEC	-6	-5	-4	5	-1	-3	-6
stx1B_1	NP 288672 1	Shiga toxin	EHEC	0	6	29	6	2	0	2
·····			-					Fort	setzung nä	chste Seite

VIII.	Anhang
-------	--------

Name	Accession number	Zielbereich der Sonde	Pathotyp Marker	K-12 MG1655	В	BL21	W	Mach1	ABLE K	С
	ND 200672 2		PUPO	20	10	106	20	20	01	11
stx1B_2	NP_288672_2	Shiga toxin	EHEC	30	40	106	20	20	91	11
stx2A_1	NP_286976_1	Shiga toxin	EHEC	0	3	1	9	4	10	4
stx2A_2	NP_286976_2	Shiga toxin	EHEC	8	17	20	10	17	37	12
stx2B_1	NP_286977_1	Shiga toxin	EHEC	222	212	751	227	162	484	200
stx2B_2	NP_286977_2	Shiga toxin	EHEC	0	1	4	2	-3	4	-1
stx2fA_1	AJ270998_1	Shiga toxin	EHEC	-3	-6	-10	-1	0	-8	-3
stx2fA_2	AJ270998_2	Shiga toxin	EHEC	-3	4	12	1	0	-5	0
ureC_1	NP_286680_1	putative urease structural subunit C	EHEC	8	42	140	12	20	107	36
ureC_2	NP_286680_2	putative urease structural subunit C	EHEC	6	107	189	7	42	200	74
invE_1	AF348706_1	invE (virB, ipaR)	EIEC	0	2	21	0	1	-1	0
invE_2	AF348706_2	invE (virB, ipaR)	EIEC	-2	-4	-12	-2	-1	-5	0
ipaH_1	SHFIPAHZ_1	ipaH	EIEC	0	4	2	2	-1	-2	0
ipaH_2	SHFIPAHZ_2	ipaH	EIEC	-3	-4	-9	0	-1	-6	-3
bfpB_1	Z68186_1	<i>bfpB</i> (bundle forming pilus subunit)	EPEC	96	4	8	5	0	-3	6
bfpB_2	Z68186_2	<i>bfpB</i> (bundle forming pilus subunit)	EPEC	9	32	80	8	1	60	18
ler_1	AF200363_1	Ler	EPEC	-2	11	31	4	2	4	-1
ler_2	AF200363_2	Ler	EPEC	0	7	29	2	0	8	15
perA_1	Z48561_1	Per (plasmid-encoded regulator)	EPEC	-3	-4	-10	-6	2	-8	-3
perA 2	Z48561 2	<i>Per</i> (plasmid-encoded regulator)	EPEC	-4	-6	-5	2	0	-12	-2
ltA 1	K01995 1	ltA (toxA)	ETEC	-1	-3	-10	-1	4	-10	-2
ltA 2	K01995 2	ltA (toxA)	ETEC	-4	-1	-15	1	0	-9	-3
ltB 1	ECOELT 1	ltB(toxB)	ETEC	-2	3	-16	70	61	-5	0
ltB 2	ECOELT 2	ltB(toxB)	ETEC	1	-2	-8	2	0	-3	-1
stl 1	M29255 1	heat stable toxin I	ETEC	1	3	9	-1	1	-5	-1
stl 2	M29255 2	heat stable toxin I	ETEC	-4	4	-9	1	-1	3	-2
stla 1	AY342057 1	heat stable toxin I	ETEC	0	-1	-8	1	-1	-8	-2
stla 2	AY342057_2	heat stable toxin I	ETEC	-1	0	4	2	-1	12	1
stlb_1	AY342059_1	heat stable toxin I	ETEC	1	3	-2	3	1	2	2
stlb 2	AY342059_2	heat stable toxin I	ETEC	1	4	3	3	1	-4	2
aufA 1	NC 008563 1	aufA	ExPEC	-4	-1	-4	3	-1	-4	-2
aufA 2	NC 008563 2	aufA	ExPEC	0	2	1	0	0	2	0
=				-			-	Fort	setzung nä	ichste Seite

VIII. A	Anhang
---------	--------

Name	Accession number	Zielbereich der Sonde	Pathotyp Marker	K-12 MG1655	В	BL21	W	Mach1	ABLE K	С
					0	•	0	0	0	
c2165_1	AE014075_1	c2165	ExPEC	-4	0	2	0	0	-8	-2
c2165_2	AE014075_2	c2165	ExPEC	23	68	141	51	30	175	85
c2398_1	AE014075_1	AE016762_0_Tir_c2398	ExPEC	-2	0	4	3	-2	-2	1
c2398_2	AE014075_2	AE016762_0_Tir_c2398	ExPEC	-1	-1	-9	0	0	3	-2
c2400_1	AE014075_1	AE016762_0_Tir_c2400	ExPEC	-3	-5	-1	-1	0	2	-1
c2400_2	AE014075_2	AE016762_0_Tir_c2400	ExPEC	-6	-1	-2	0	-1	-10	0
c3607 (r6)_1	AF447814_1	c3607 (r6) UPEC CFT073	ExPEC	-5	6	-9	5	-2	6	-1
c3607 (r6)_2	AF447814_2	c3607 (r6) UPEC CFT073	ExPEC	17	51	171	10	23	122	56
c4836_1	AE014075_1	putative lipase	ExPEC	-3	6	-3	13775	12162	3	2
c4836_2	AE014075_2	putative lipase	ExPEC	6	32	159	23997	20713	98	5
c4968_1	AE014075_1	<i>yjaA</i> (c4968)	ExPEC	180	-1	-2	3	-1	-2	-2
c4968_2	AE014075_2	<i>yjaA</i> (c4968)	ExPEC	4946	12	27	32	4	51	3
c5382_1	AE014075_1	c5382	ExPEC	71	148	294	92	102	166	121
c5382_2	AE014075_2	c5382	ExPEC	49	106	243	59	92	169	106
cdiA_1	DQ100454_1	<i>cdiAB</i> (contact-dependent growth inhibition)	ExPEC	0	31	107	8	8	56	7
cdiA_2	DQ100454_2	<i>cdiAB</i> (contact-dependent growth inhibition)	ExPEC	4	10	119	3	6	23	1
cdiB_1	DQ100454_1	<i>cdiAB</i> (contact-dependent growth inhibition)	ExPEC	-2	13	27	3	2	22	8
cdiB_2	DQ100454_2	<i>cdiAB</i> (contact-dependent growth inhibition)	ExPEC	5	75	195	3	24	120	51
CFT073_1	Ecoli_0009_1	Ag43 (flu) variable domain CFT073	ExPEC	17268	24742	32	28	41	59	35
CFT073 2	Ecoli 0009 2	Ag43 (flu) variable domain CFT073	ExPEC	16776	21361	256	66	77	299	141
CFT073_1	Ecoli_0010_1	Ag43 (flu) variable domain CFT073	ExPEC	4	46	21	8	52	67	54
CFT073 2	Ecoli 0010 2	Ag43 (flu) variable domain CFT073	ExPEC	0	6	99	3	4	70	6
chuA 1	NC 004431 1	<i>chuA</i> (hemin receptor)	ExPEC	-2	6	4	1	3	-6	2
chuA 2	NC 004431 2	<i>chuA</i> (hemin receptor)	ExPEC	-4	19	41	3	0	13	10
fyuA 1	NC 003143 1	versiniabactin receptor / HPI	ExPEC	47	58	156	61	29	130	68
fyuA 2	NC 003143 2	versiniabactin receptor / HPI	ExPEC	1	44	24	5	4	124	11
hek 1	AJ494981 1	<i>hek</i> (agglutinin, adhesin)	ExPEC	1	3	8	0	0	-3	6
hek 2	AJ494981_2	<i>hek</i> (agglutinin, adhesin)	ExPEC	0	0	9	0	-2	-8	-1
hlvA 1	AJ494981_1	alpha-hemolysin	ExPEC	-4	-3	-21	0	0	-3	-5
hlvA 2	AJ494981 2	alpha-hemolysin	ExPEC	0	3	20	6	0	16	5
iroN 1	AY205565_1	salmochelin	ExPEC	12	12	80	18	14	60	22
								Fort	setzung n	ächste Seite

Name	Accession number	Zielbereich der Sonde	Pathotyp Marker	K-12 MG1655	В	BL21	W	Mach1	ABLE K	С
iroN 2	AY205565 iroN 2	salmochelin	ExPEC	69	79	229	142	52	172	78
irp2 1	Ecoli 0005 1	versiniabactin biosynthesis / HPI	ExPEC	1	41	141	1	2	60	35
irp2 2	Ecoli 0005 2	yersiniabactin biosynthesis / HPI	ExPEC	-3	0	8	3	0	-4	-1
iucA_1	NC_004431_1	aerobactin biosynthesis	ExPEC	-5	7	6	-1	1	-1	2
iucA_2	NC_004431_2	aerobactin biosynthesis	ExPEC	-5	0	-4	0	-1	-6	0
modD_1	NC_004431_1	modD	ExPEC	-1	6	15	-1	0	-1	3
modD_2	NC_004431_2	modD	ExPEC	-1	8	62	2	0	6	4
orf4_1	AJ494981_1	putative membrane protein	ExPEC	-1	4	1	2	0	0	3
orf4_2	AJ494981_2	putative membrane protein	ExPEC	-4	-2	-3	1	0	-8	-2
p761_1	p761_1	p761_ORF5p706SPL00373	ExPEC	-1	24	99	28723	26329	17	3
p761_2	p761_2	p761_ORF5p706SPL00373	ExPEC	4	71	157	16511	15258	81	42
p763_1	p763_1	p763_ORF3p666SPL00395-ORF4	ExPEC	6	48	148	31271	26659	125	8
p763_2	p763_2	p763_ORF3p666SPL00395-ORF4	ExPEC	4	58	179	36814	31181	134	4
p776_1	p776_1	p776_ORF4p666SPL00395-ORF5	ExPEC	-1	8	7	8	32	15	19
p776_2	p776_2	p776_ORF4p666SPL00395-ORF5	ExPEC	0	10	7	4	3	19	2
PAI III536 ORF36_1	X16664_1	put. hemin receptor	ExPEC	-1	3	16	3	1	1	0
PAI III536 ORF36_2	X16664_2	put. hemin receptor	ExPEC	-6	-4	-17	-2	0	-5	0
papF_1	AE016771_1	P fimbriae	ExPEC	-6	0	-8	0	0	-7	-1
papF_2	AE016771_2	P fimbriae	ExPEC	-4	-1	-9	-3	0	-6	-1
papG_1	AE016771_1	P fimbriae	ExPEC	-3	3	-8	1	0	0	-3
papG_2	AE016771_2	P fimbriae	ExPEC	0	0	4	3	0	-11	-1
prrA_1	U85771_1	PrrA	ExPEC	0	3	17	-1	1	8	0
prrA_2	U85771_2	PrrA	ExPEC	3	38	90	7	17	77	31
sfaB_1	X16664_1	S- / F1C fimbriae	ExPEC	0	15	42	3	3	37	9
sfaB_2	X16664_2	S- / F1C fimbriae	ExPEC	-1	1	14	-1	2	30	4
SPL00386_1	Ecoli_0004_1	SPL00386 (SSH fragment of JS299)	ExPEC	8	67	154	33	28	149	61
SPL00386_2	Ecoli_0004_2	SPL00386 (SSH fragment of JS299)	ExPEC	17	48	109	23	30	73	39
usp_1	AB056440_1	usp (uropathogen-specific protein)	ExPEC	5	8	25	1	0	12	6
usp_2	AB056440_2	usp (uropathogen-specific protein)	ExPEC	3	47	20	5	5	12	22
MG1655_1	Ecoli_0012_1	Ag43 (flu) variable domain MG1655	non-pathogenic E. coli	29665	49	145	3	2	4	5
MG1655_2	Ecoli_0012_2	Ag43 (flu) variable domain MG1657	non-pathogenic E. coli	27166	24744	162	5	4	71	32
					_			For	tsetzung 1	nächste Seite

Name	Accession number	Zielbereich der Sonde	Pathotyp Marker	K-12 MG1655	В	BL21	W	Mach1	ABLE K	С
SPI 00135_1	Ecoli 0007 1	SPI 00135 (SSH fragment of HE300)	non-pathogenic F coli	6	23	78	142	120	197	846
SPL00135_2	Ecoli 0007_1	SPI 00135 (SSH fragment of HE300)	non-pathogenic E. coli	0	4	14	18997	16444	33459	23142
SPL00135_2 SPL00345_1	Ecoli_0007_2	SPI 00345 (SSH fragment of IS200)	non-pathogenic E. coli	-6	-3	_11	1	0	-5	0
SPL00345_2	Ecoli_0008_2	SPI 00345 (SSH fragment of IS200)	non pathogenic E . coli	0	0	_11	0	1	4	0
odtB-L 1	LCOII_0008_2	cytolethal distending toxin I	non-pathogenic E. coli	-1	-3	-11 _4	0	-2	-2	1
cdtB L 2	U03293_1	cytolethal distending toxin I	pathogenic E. coli	-1	-5		-1	0	-2 -4	-3
cdtB II 1	U04208_1	cytolethal distending toxin I	pathogenic E. coli	-5	_2	6	-1	_2	- - 2	-3
cutB-II_1	U04208_1 U04208_2	cytolethal distending toxin II	pathogenic E. coli	-5	-2	18	0	-2	2	-5
cdtB III_1	U04208_2 U80305_1	cytolethal distending toxin II	pathogenic E. coli	-1	0	-10	3	4	_0	0
cdtB III_2	U89305_1 U89305_2	cytolethal distending toxin III	pathogenic E. coli	- <u>5</u> -1	1	8	2	- 0	-7	0
cdtB IV 1	AV162217 1	cytolethal distending toxin IV	pathogenic E. coli	-1	21	01	0	5	- - 57	32
cdtB IV 2	AT102217_1 AV162217_2	cytolethal distending toxin IV	pathogenic E. coli	-3	1	0	6	0	6	3
$cutD-1V_2$	H1102217_2	cytotoxic pecrotizing factor 1	pathogenic E. coli	-3	2	13	5	1	-5	1
cm1_1 cmf1_2	$U42029_1$	cytotoxic necrotizing factor 1	pathogenic E. coli	-5	2	10	2	1	13	2
cm1_2	U01007	cytotoxic necrotizing factor type 2	pathogenic E. coli	-2	10	-10 56	5	2	37	-2
int A 1	A 1586888 1	aerobactin recentor	pathogenic E. coli	-3	10	-5	2	_2	-5	0
iutA_1	AJ500000_1	aerobactin receptor	pathogenic E. coli	-5	12	-J 14	2	-2	-5	2
mobB 1	Ecoli 0006 1	mobB_ECOP31	pathogenic E. coli	16	46	155	33	10	85	37
mobP 2	Ecoli_0006_1	mobB_ECOR31	pathogenic E. coli	5	40 74	150	55	22	07	0
EDL022 1	Ecoli_0000_2	A g42 (flu) veriable domain EDI 022	pathogenic E. coli	1	83	36	4	5	12	27 27
EDL955_1 EDL033_2	Ecoli_0011_1 Ecoli_0011_2	Ag43 (flu) variable domain EDL935 Ag43 (flu) variable domain EDL935	pathogenic E. coli	4	6	30	4	1	6	1
EDE935_2	Ecoli_0011_2	Ag45 (IIII) variable ubilialli EDL955	paulogenie E. con	0	0	5	0	-1	0	1
ActB	ActB	actin, beta	control	5	2	15	6	3	96	4
LTP4	LTP4		control	-1	0	0	1	0	7	-1
LTP6	LTP6		control	0	6	30	4	3	17	29
PRKase	PRKase		control	0	1	2	0	-1	0	-1
rbcl	rbcl		control	-1	21	0	-3	-2	4	1
RCA	RCA		control	0	1	92	0	0	20	0
XCP2	XCP2		control	-3	3	-8	2	0	-7	0
H ₂ O	H ₂ O		control	1	1	0	2	0	-2	0

Alle Werte >999 stehen für ein positives Signal (zusätzlich grau hinterlegt)

Abkürzung	BLAST-Ergebnis mit höchster Sequenzübereinstimmung	% GC	K-12 MG1655	K-12 W3110	В	BL21	С	ABLE C	W	Mach1
16S	16S rRNA	54	+	+	+	+	+	+	+	+
IS1	insertion element	53	+	+	+	+	+	+	+	-
IS2	insertion element	53	+	+	-	-	-	+	-	+
IS3	insertion element	50	+	+	+	+	+	+	+	+
gltf	E. coli <i>gltBDF</i> operon <i>gltF</i> gene (involved in nitrogen-regulated gene expression)	40	+	+	-	-	-	-	-	-
IS5	insertion element 5	52	+	+	-	-	-	+	-	+
K12 ISL	is5 in <i>rfb50</i> gene	52	+	+	+	+	-	-	-	-
yji83	IS186/IS421 transposase	52	+	+	+	+	+	+	-	-
IS4	insertion element	54	+	+	+	+	-	-	-	-
IS150	insertion element	44	+	-	-	-	-	-	-	-
W824	insertion sequence: IS1222, <i>E. coli</i> fliA gene for sigma F factor, fliC pseudogene for flagellin	57	-	-	-	-	+	+	-	-
W826	putative dicarboxylate-binding periplasmic protein, shigella	46	-	-	-	-	+	+	-	-
PCOD	APEC plasmid	46	-	-	-	-	+	+	-	-
rtla	Escherichia coli ribitol dehydrogenase (<i>rtlD</i>), ribitol kinase (<i>rtlK</i>), and ribitol transporter (<i>rbtT</i>) genes	51	-	-	-	-	+	+	-	-
PRP	putative transcriptional regulator, APEC plasmid	46	-	-	+	+	+	+	-	-
310706	ECs1339, <i>E. coli</i> plasmid pC15-1a	49	-	-	-	-	+	+		-
CRT	reverse transcriptase like protein, strain C (published)	52	-	-	-	-	+	+		-
NIS	truncated transposase	48	-	-	-	-	+	+		-
893hp	intergenic region	46	-	-	+	+	-	-		-
EPI	hexuronate transporter, pathogenicity island EPI-I	42	-	-	+	+	-	-		-
TYPII	typII secretion system	55	-	-	+	+	-		+	-
REVTRA	E. coli reverse transcriptase, retron EC86	46	-	-	+	+	-		+	+
vioa	<i>E. coli</i> O7-specific lipopolysaccharide biosynthesis gene cluster, nucleotide sugar transaminase	34	-	-	+	+	-	-	-	-
21_1	hypothetical protein, t-rna, patho island V E. coli 536	44	-	-	+	+	-	-	-	-
CABC	putative ATP binding protein of ABC transporter	45	-	-	+	+	-	-	-	-
224	non-coding region	46	-	-	+	+	-	-	-	-
								Fortse	etzung nä	chste Seite

Tabelle 8 Ergebnisse des PCR Screenings aller verwendeten Primer

VIII. Anhang

Abkürzung	BLAST-Ergebnis mit höchster Sequenzübereinstimmung	% GC	K-12 MG1655	K-12 W3110	В	BL21	С	ABLE C	W	Mach1
CALA		51								
GALA	putative 2-keto-3-deoxygalactokinase	51 20	-	-	+	+	-	-	-	-
REPRESS	repressor protein, snigella	39	-	-	+	+	-	-	-	-
HEL	helicase salmonella	52	-	-	+	+	-		-	· ·
914 SPEC	putative fimbrial protein	46		-	+	+	-	-	+	-
maoA	tyramine oxidase, copper-requiring, maoA	51	+	+	+	+	-	-	+	+
PAI	Putative saframycin Mx1 synthetase B	53	-	-	+	+	+	+	+	+
B1134	putative adhesin	51	-	-	+	+	+	+	+	+
aga	N-acetylgalactosamine-specific PTS system enzyme IIC component	53	-	-	+	+	+	+	+	+
q	Phage protein Q	54	-	-	+	-	-	-	+	-
P27	E. coli strain W phage-related tail fiber protein gene	48	-	-	-	-	-	-	+	+
2.2 10/19	hypothetical protein	63	-	-	-	-	-	-	+	+
T3443	hypothetical protein, putative phage	56	-	-	-	-	-	-	+	+
SAMP5	putative bacteriophage protein	48	-	-	-	-	-	-	-	-
FLAG02	E. coli 042 Flag-2 locus	57	-	-	-	-	-	-	+	+
pac	coli pac gene for penicillin G acylase	48	-	-	-	-	-	-	+	+
gpt	guanine-hypoxanthine phosphoribosyltransferase	52	+	+	+	+	+	+	+	+
argF	CP4-6 prophage; ornithine carbamoyltransferase 2, chain F	63	+	+	-	-	+	+	-	-
hsdS	type I restriction modification DNA specificity domain	40	+	-	-	-	-	-	-	-
glf	UDP-galactopyranose mutase, FAD/NAD(P)-binding	36	+	+	-	-	-	-	-	-
ara	L-arabinose isomerase	55	+	+	+	+	+	+	+	+
vffs	CPZ-55 prophage; predicted protein	50	+	-	-	-	-	-	-	-
mcrA	e14 prophage; 5-methylcytosine-specific restriction endonuclease B	38	+	-	-	-	-	-	-	-
intZ	CPZ-55 prophage; predicted integrase	54	+	-	-	-	-	-	-	-
gplit	<i>E. coli</i> lit gene encoding a bacteriophage T4 late gene expression blocking protein	39	+	+	-	-	-	-	-	-
tn10 right	tn10 transposon	40	-	-	-	-	-	+	-	-
hpa	<i>E. coli</i> (ATCC 11105) <i>hpaA</i> , <i>hpaB</i> , <i>hpaC</i> genes for 4-hydroxyphenylacetic hydroxylase	53	-	-	+	+	+	+	+	+
OXIDO	putative oxidoreductase	54	-	-	+	+	+	+	-	-
hpc	E. coli (ATCC 11105) hpaA, hpaB, hpaC genes for 4-hydroxyphenylacetic hydroxylase	55	-	-	+	+	+	+	-	-
ACOA	putative acetyl-CoA:acetoacetyl-CoA transferase	50	-	-	+	+	+	+	-	-
LON	DNA-binding ATP-dependent protease	52	+	+	+	+	+	+	+	+
								Forts	etzung nä	chste Seite

Abkürzung	BLAST-Ergebnis mit höchster Sequenzübereinstimmung	% GC	K-12 MG1655	K-12 W3110	В	BL21	С	ABLE C	W	Mach1
GS8	putative phage tail fiber protein	51	-	-	+	-	-	-	-	-
EPI2	similar to hypothetical protein c3665 from E. coli CFT073, patho-island EPI-I	47	-	-	+	+	-	-	-	-
PUINV	putatve invasin	53	-		+	+	+	+	+	+
21_9	hypothetical protein	44	-	-	-	-	-	-	+	-
1306	similarity to hypothetical protein (Vibrio vulnificus YJ016)	40	-	-	-	-	-	-	+	-
1310	hypothetical protein	58	-	-	-	-	-	-	+	-
prk2	cryptic plasmid prk2, W-strains, published	42	-	-	-	-	-	-	+	+
pLys	plasmid plys	54	-	-	-	-	-	-	-	-
traE	F-Plasmid	47	-	-	-	-	-	+	-	-
cam	chloramphenicol resistance pLysS	47	-	-	-	-	-	-	-	-
bla	ampicillin resistance pCR2.1, pHis17	50	-	-	-	-	-	-	-	-
<i>btubA</i>	Prosthecobacter dejongeii btubA	55	-	-	-	-	-	-	-	-

Spezifische PCR Produkte, die nicht als Sonden auf dem Chip verwendet wurden:

K-12 LR	IS5 insertion rfb50+ flanking region	52	+	+	-	-	-	-	-	-
yjaA	conserved hypothetical protein	45	+	+	-	-	-	-	-	-
vgr	unknown, similar to Vgr proteins e.g. VgrE protein	56	-	-	+	+	+	+	+	+
flxA	hypothetical protein	44	-	-	+	+	-	-	+	+
typ3	putative type III secretion apparatus protein	46	-	-	-	-	+	+	+	+
hyproeEDL	hypothetical protein	51	-	-	+	+	+	+	-	-
gs21	Bacteriophage L-413C (auch Phage Q)	52	-	-	+	>	-	-	-	>
rmsb	restriction modification system	47	<	<	<	<	+	+	+	+
b828	ABC transporter related	44	-	-	+	+	-	-	-	-
rtl	<i>E. coli</i> ribitol dehydrogenase (<i>rtlD</i>), ribitol kinase (<i>rtlK</i>), and ribitol transporter (<i>rbtT</i>) genes	53	-	-	-	-	+	+	-	-
ctrans	insertion sequence: ISEhe3	42	-	-	-	-	+	+	-	-
tn7	E. coli strain C Tn7-like transposase gene	33	-	-	-	-	+	+	-	-
Cspec	transposase, yersinia plasmid	56	-	-	-	-	+	+	-	-
colpla	psiB, 100 pct identical to gp:AB021078_43[PsiB of plasmid ColIb-P9	56	-	-	-	-	-	-	+	+
								Fortsetz	zung nächs	te Seite

Abkürzung	BLAST-Ergebnis mit höchster Sequenzübereinstimmung	% GC	K-12 MG1655	K-12 W3110	В	BL21	С	ABLE C	W	Mach1
hspro	probable host specificity protein	51	-	-	-	-	-	-	+	+
TspE4.C2	unknown	54	-	-	-	-	-	-	+	+
test	no similarity	50	-	-	-	-	+	-	+	+
psp	putative structural protein, APEC plasmid	44	-	-	-	-	+	-	-	-
uti	hypothetical protein, bacteriophage CUS-3 provirus	54	-	-	-	-	-	-	+	+
yagm	CP4-6 prophage; predicted protein	35	-	-	-	-	-	-	-	-
ydf	Hypothetical protein ydfR	48	<	<	+	+	<	<	<	<
de	phage	51	-	-	-	+	-	-	-	-
20_2	no similarity	48	-	-	-	-	-	-	+	+
FimUsh1	putative fimbrial chaperone protein precursor	42	-	-	-	-	-	-	-	-
1309	putative macrophage toxin	53	-	-	-	-	-	-	+	+
ecb	E. coli B specific sequence	40	-	-	+	-	-	-	-	-
lipo	Lipocalin family protein	40	-	-	+	+	-	-	-	-
fimush	putative fimbrial chaperone protein precursor	42	-	-	+	+	-	-	+	+
hydrat915	2-keto-4-pentenoate hydratase	58	-	-	-	-	+	+	-	-

+ steht für ein Amplifikat der richtigen Größe (zusätzlich grau hinterlegt)
>< steht für ein Amplifikat das entweder größer oder kleiner ist
Alle durch subtraktive Hybridisierung gefundenen Fragmente sind Fett markiert.

Name	Vorwärtsprimer	T_{M}	Name	Rückwärtsprimer	T_{M}	Fragment größe	Referenzen
							Ludwig
616Valt	AGAGTTTGATYMTGGCTCAG	55.2	Univ1390	GACGGGCGGTGTGTACAA	52.4	1363	persönliche Mitteilung
IS1_F	GATGGTGTTTTTGAGGTGCTCC	60.3	IS1_R	TTATTGATAGTGTTTTATGTTCAGATAATGCC	60.5	668	Diese Arbeit
IS2_F	CCTATATTTCCAGACATCTGTTATCAC	60.4	IS2_R	AACCAGTATCACTTAAATAAGTGATAGTC	62.2	1240	Diese Arbeit
IS3_F	CGCTTCGCGAAGTATGTCGC	61.4	IS3_R	ACTCACATGACAAAAACAGTATCAACC	60.4	250	Diese Arbeit
gltF_F	ATGTTTTTCAAAAAGAACCTCACAACAGC	61.0	gltF_R	TTATAAATACTGAACGCTGATAGTGACGTTAC	63.1	705	Diese Arbeit
IS5Fnew	TGCGAATAAGCGGGGGAAATTCTTC	61.0	IS5Rnew	GGAAGGTGCGAACAAGTCCC	61.4	1146	Diese Arbeit
K12ISL	CGCGATGGAAGATGCTCTGTA	59.8	K12R	ATCCTGCGCACCAATCAACAA	57.9	928	Kuhnert, 2000
yi81_3F	CCGATGAATTACTCTCACGATAAC	59.3	yi81_3R	TTCTTCTTTTCGGATCCGGCAC	60.3	1076	Diese Arbeit
IS4_F	TTAAGCAACTGACTGGCTCTTTTTC	59.7	IS4_R	CAGGCTCTTGATCTGGTATCC	59.8	1272	Diese Arbeit
IS150_F	GACGATGAAATGGAATAGCCCC	60.3	IS150_R	ACCCCAAAAAGTTGGACAGTTAAAC	59.7	1369	Diese Arbeit
W_8_2_4F	GCCGAAGCTGGGGTACC	60.0	W_8_2_4R	GCGACCGGTGGAAAGTGC	60.5	577	Diese Arbeit
W826_F	TAAAAGTATCCGCTGGCATTATC	57.1	W826_R	TTACTTAGCTGCCTGAATATC	54.0	922	Diese Arbeit
PCOD_F	GGCGCCCAGAATGATAATCGCAACA	64.6	PCOD_R	GGGCGTGGCGCTGGCTACACTT	67.7	456	Johnson, 2007
rtlA_F	ATGATGAATCACTCTGTGCCC	57.9	rtlA_R	CCTTACAGATCGACACTGCC	59.4	715	Diese Arbeit
prpF	TCACGTGGGTCCCTCTCC	60.5	prpR	AGGACGCTGAACACCCTAAAC	59.8	355	Diese Arbeit
310706_6_F	AGCACATCTTGTGGTCAGGC	59.4	310706_6_R	TATGGCGCAGATACGCTTC	56.7	289	Diese Arbeit
C_rt_F	GCCGGAGGAGTATGGCCC	62.8	C_rt_R	CGCCGCATCGCTGACAGC	62.8	917	Diese Arbeit
NisI_F	TTACTACTGCCGCAAGACTTCC	60.3	NisI_R2	GCAGCTACGCACCGAAGTTC	61.4	215	Diese Arbeit
893hp_F	TCTCTATTCCACCATCATTATTCTC	58.1	893hp_R	TGTATCTCGCGATTTTTTTTTTGTAACTTT	58.2	210	Diese Arbeit
EPI_F	GATCATTTATTACATCCGGTGGGG	61.0	EPI_R	AGCCCATGCTGGCTCTGCC	63.1	758	Diese Arbeit
typII_F	CGGGCAGGTTTTACCCTGC	61.0	typII_R	CAGCGCCTCAAGCCCCTG	62.8	174	Diese Arbeit
913revtra_F	TAAAGGGCAGAAGATTAGCCAGTC	61.0	913revtra_R	CATCAGGAAAATGGTTTTGTAAGTGAATC	61.0	340	Diese Arbeit
vioA_F	ATGAACGATAAAACTATTCCAGTAACGC	60.7	vioA_R	ACACTATTGGCTATTGGTAGATTATCAAC	61.0	969	Diese Arbeit
21_1_F	GATCCAAAAGCAAAAACCCGCC	60.6	21_1_R	CAAAAGGCTGGAGCTGATTGAC	60.3	208	Diese Arbeit
Cabc_F	TGTACCCAATGGAAGATGGCGTG	62.4	Cabc_R	CGGCAGGCGTATGGTTTGC	61.0	411	Diese Arbeit
(224) 060922_4_F	AGGTAATCGAAATCCCAGGAGC	60.3	(224) 060922_4_R	ATCTACGTTTAGTTAACGAGGTTAGC	60.1	232	Bauer, 2007
gala_F	GGTATGCCAGTGCTGATAGGC	61.8	gala_R	ATCACGTAGCAAACTGGATGCC	60.3	312	Diese Arbeit
						Fortsetzu	ng nächste Seite

Tabelle 9Oligonukleotidsequenzen, Schmelztemperaturen (T_M), Fragmentgrößen und Referenzen

Name	Vorwärtsprimer	T _M	Name	Rückwärtsprimer	T _M	Fragment größe	Referenzen
F		(1.2	P			205	D: 41.1
repressF	GAATCICIAAAAGIACACICGCCAC	61.3	repressR	GITATIICGCCATCAATACITATIACCC	60.7	295	Diese Arbeit
hel_F	CGGACGTACAGAATAGCCGA	59.4	hel_R	CCIGCCGGGITIGICACC	60.5	512	Diese Arbeit
914specF	GATCAAGATACAGGTATAACATACCC	60.1	914specR	TAAATGATGTCGTGTTGCCTGGC	60.6	174	Diese Arbeit
(maoA) feaA_F	ACTTATCTTTCTTCAGCGCCCC	60.3	(maoA) feaA_R	GGCCCACGCACCAGTACC	62.8	475	Diese Arbeit
PAI_F	GTTATCAGAAGGCTTATGC	53.2	PAI_R	TTCCACACCGTTTTCGACC	56.7	757	Diese Arbeit
B11_34F	GATCACTGATGTCGCAGATGGT	60.3	B11_34R	ATGGTTTTCGCACCCATTGCC	59.8	1185	Diese Arbeit
agaF	CGCTTAACCCTTCGCGCTCC	63.5	agaR	CGGCTGGAGTCCGCTGC	62.4	382	Diese Arbeit
Phage Q F	CTTCGCGAAAACATGGTGAAGTC	60.6	Phage Q R	CCCATGAAGCGGGGGGGGC	65.1	529	Diese Arbeit
P27_F	TTAAACACTCGCCACGTTATACC	58.9	P27_R	ATGACCGGGGAACTGAAAATCC	60.3	804	Bauer, 2007
2.2 10/19_F	TCCAGTGCGATCACCCGTGAC	65.1	2.2 10/19_R	CCGTTACTGGCGTTTAACGCCC	64.0	366	Diese Arbeit
P_t3443_F	GATGATGGTGCTGGGATTGTAC	60.3	P_t3443_R	CGGACAGGGATTCATCCACC	61.4	342	Diese Arbeit
P_samp5_10 0406 F	GATCCTCAAAACAGAGGACGGC	62.1	P_samp5_10 0406 R	CCAGTTGGGTAATCTTTCGCCC	62.1	607	Diese Arbeit
Flag02_Fnew	GCGTAAACTTTGCCATCGTCATC	60.6	Flag02_R	GCAGGCCAGCAGCAGCC	62.4	445	Diese Arbeit
Pac_F	AAGCTTCGTTGCTAGTATC	52.4	Pac_R	TTATCTCTGAACGTGCAAC	52.4	2556	Diese Arbeit
gpt_F	CGATGGGCAATTTATCGAGT	55.2	gpt_R	GCGACTCCTTTTTCTCAACG	57.3	368	Diese Arbeit
argF_F	AGGCGTTTAACGAGATGACGC	59.8	argF_R	CTCTGCCCACTTCTCTTTGG	59.4	244	Diese Arbeit
hsdSF	TACGTGAGGCTTTTTTACCCCC	60.3	hsdSR	GAGGGGTGGGTTATCGCC	60.5	1324	Diese Arbeit
glf_F	TTGATAAAGAGCGGCAGATATCAC	59.3	glf_R	TGGTTCTGGTTTGTTTGGTGCC	60.3	1012	Diese Arbeit
araA_F	CGATAACATGCGTGAAGTGGC	59.8	araA_R	GTGTTTTCACCGTGTCGATGC	59.8	660	Diese Arbeit
yffs_F	TTACGAAATCAAAATTTGCGACATCCTC	60.7	eutB_R	CATTTCCTTCCTGAATGCGGTA	58.5	918	Diese Arbeit
mcrA_F	GGAATTGAACTGAAAGCTGAGTGTTC	61.6	mcrA_R	AATCGGTTTATATTAACGTAAAGCATCTC	59.6	749	Diese Arbeit
eutAF	TTCCCTCAGGAAGAATCGATGA	58.4	intZ_R	GTTCTAGAGGATTGCCGTTACC	60.3	1330	Diese Arbeit
gplitF	ATGCGCTCACCAATTTGTCATC	58.4	gplitR	AGTTACTGGTAAGACGTGAAATATC	58.1	846	Diese Arbeit
tetA_F	CCTTTTTTATCGCTGCGTTGC	57.9	tn10R	TTCTGCCCCGAATTACACTTAAAAC	59.7	3072	Diese Arbeit
hpa_F	GATCGTCATTTGCCGACC	56.0	hpa_R	CAGCACGTTATCCATCACC	56.7	297	Diese Arbeit
oxidoF	CTATGGCGCGATTCTTCGTTAT	58.4	oxidoR	ATCTTATACAGCGAGATAGACAGC	59.3	776	Diese Arbeit
hpcF	TTCCGAAATGGGGAGTC	52.8	hpcR	AGTGCGGCATAAAACGTCC	56.7	857	Diese Arbeit
AcoA_F	GGTGCGATTTCAATTAATTCAACGCC	61.6	AcoA_R	ATCAGTACGGTAACGTCAACGTC	60.6	268	Diese Arbeit
lonF	GTTCTGAACGCATTGAAATCCCC	60.6	lonR2	CGCCGCCCAGCGCCATAC	65.1	1445	Diese Arbeit
GS_B_8F	CTGATATATAGGGGTGTTATTGATATGC	60.7	GS_B_8R	CAGCACACCTGAGATTTTTACTGC	61.0	847	Diese Arbeit
						Fortsetzu	ng nächste Seite

Name	Vorwärtsprimer	T _M	Name	Rückwärtsprimer	T _M	Fragment größe	Referenzen
		(1.0			(0 7	0(1	D' 41 '
EPI.2F		61.8	EPI.2R	GITACATCAGTATACGCAATACAGATAC	60.7	261	Diese Arbeit
puinv_F	GACTGAACTAACTTTCAAACCGGC	61.0	puinv_R	CAAGCGGCCCGGCAACAAAC	63.5	492	Diese Arbeit
21_9F	GCGGTCTGTTCAATGTGACCC	61.8	21_9R		59.8	210	Diese Arbeit
1306_F	CGGTAGAGAAGCTCACCAGC	61.4	1306_R	CTCTGCCGCTTATCCAGATATTC	60.6	676	Diese Arbeit
1310_F	GGCTGGCATGGCGGTAC	60.0	1310_R	ATGAGCTTCTCAATACGGTAAAGAC	59.7	158	Diese Arbeit
pRK2F	CGACTTCACTAGCAATGATAAGATC	59.7	pRK2R	AGATAAGAGAGGAACGGTTGATAC	59.3	740	Diese Arbeit
pks- islandleft.1	AATCAACCCAGCTGCAAATC	55.2	pks- islandleft.2	CACCCCATCATTAAAAACG	55.2	1785	Nougayrede, 2006
pks- islandright.1	AGCCGTATCCTGCTCAAAAC	57.3	pks- islandright.2	TCGGTATGTCCGGTTAAAGC	57.3	1373	Nougayrede, 2007
pks ORF5- 6.1	TCTGTCTTGGTCGCGTAGTG	62.9	pks ORF5- 6.2	TCAGTTCGGGTATGTGTGGA	57.3	2265	Nougayrede, 2008
pks ORF17- 18.1	CCTCGCTAAAGAAGGTGACG	63.4	pks ORF17.18.2	ACCGTTGACTGTGATGGACA	57.3	2382	Nougayrede, 2009
UKF30-PAI III- 536 362 for	ATCTGGATCCGGCACTCGTCA	65.5	OKF30-PAI III- 536 1021 rev	ACGGTAATATTCAGCGCCATA	55.9	639	*
fyuA.1080.fo	CTACGACATGCCGACAATGCC	61.8	fyuA.1709.re	TGCTTCCCGCGCCATAACGTG	63.7	609	*
iroN.28.for	CTAACTGTGCTCCTGGTTGGGTTGA	64.6	iroN.2053.re v	TGACGCCGACATTAAGACGCAGATT	63.0	2001	*
sfa 1	CTCCGGAGAACTGGGTGCATCTTAC	66.4	sfa2	CGGAGGAGTAATTACAAACCTGGCA	63.0	359	Johnson, 2000
PapA f	ATGGCAGTGGTGTCTTTTGGTG	60.6	PapC r	ATATCCTTTCTGCAGGGATGCAATA	59.7	3140	Johnson, 2001
sat.498.for	CCCGGCAGAGACCAACCCTAC	65.7	sat.1083.rev	AAGATAATACCACCGCTACCA	55.9	565	*
ompT_F	CTGACAACATAAATGCGGACA	55.9	ompT_R	AACCCGATTCCATGCGCCTTC	61.8	702	*
aerJF	GGCTGGACATCATGGGAACTGG	64.0	aerJR	CGTCGGGAACGGGTAGAATCG	63.7	260	Johnson, 2001
tirF	GCCCAGTCTATTTCTGCTAAAGA	58.9	tirR	GGCAACAATATGTATAATATCCT	53.5	341	*
bmaE f	ATGGCGCTAACTTGCCATGCTG	62.1	bmaE	AGGGGGACATATAGCCCCCTTC	64.0	462	*
kpsII f	GCGCATTTGCTGATACTGTTG	57.9	kpsII r	CATCCAGACGATAAGCATGAGCA	60.6	227	*
KpsIII f	TCCTCTTGCTACTATTCCCCCT	60.3	KpsIII r	AGGCGTATCCATCCCTCCTAAC	62.1	347	*
FocG f	CAGCACAGGCAGTGGATACGA	61.8	FocG r	GAATGTCGCCTGCCCATTGCT	61.8	321	*
cnf1	AAGATGGAGTTTCCTATGCAGGAG	61.0	cnf2	CATTCAGAGTCCTGCCCTCATTATT	61.3	450	Chapman, 2006
						Fortsetzu	ng nächste Seite

Name	Vorwärtsprimer	T _M	Name	Rückwärtsprimer	T _M	Fragment größe	Referenzen
HLY A 1	GGTGCAGCAGAAAAAGTTGTAG	58.4	HLY A 4	TCTCGCCTGATAGTGTTTGGTA	58.4	1508	Schmitt, 1995
stx_F	CAGTTAATGTGGTGGCGAAGG	59.8	stx_R	CACCAGACAATGTAACCGCTG	59.8	307	Schmitt, 1996
TraT f	GGTGTGGTGCGATGAGCACAG	63.7	TraT r	CACGGTTCAGCCATCCCTGAG	63.7	247	Johnson, 2000
EAgg2	CAATGTATAGAAATCCGCTGTT	54.7	EAgg1	CTGGCGAAAGACTGTATCAT	55.2	589	Schmitt, 1995
pLysS_for	GTCACTATGGCGTGCTGCTA	59.4	pLysS_rev	CGCTCACTGCTTGTCACACT	59.4	410	Diese Arbeit
traE_F	CACGGTGCCCGTTTAAGTACC	61.8	traE_R	CGTCTGTTTCCCCGAAATTATCC	60.6	504	Diese Arbeit
camF_pLys	CGCCGCCCAGCGCCATAC	65.1	camR_pLys	GAGAAAAAAATCACTGGATATACCACC	60.4	600	Diese Arbeit
bla_pcr2.1F	TATTCAACATTTCCGTGTCGCCC	60.6	bla_pcr2.1R	CTTAATCAGTGAGGCACCTATCTC	61.0	801	Diese Arbeit
PdjF	TGACAGTCATATGAAGGTCAACAACACCAT TGTCGTT	68.4	PdjR	TAGCTAGAATTCTTAGCGGCGGCGATCCACC	70.8	1376	Pilhofer, persönliche Mitteilung
K12L	TTCCCACGGACATGAAGACTACA	60.6	K12R	ATCCTGCGCACCAATCAACAA	57.9	1644	Kuhnert, 1996
yjaA_F	TGAAGTGTCAGGAGACGCTG	59.4	yjaA_R	ATGGAGAATGCGTTCCTCAAC	57.9	171	Clermont, 2000
vgr_F2	GTGGCACAGGCGTGGGC	62.4	vgr_R2	CTGCGCGTGGATGTAGACC	61.0	229	Diese Arbeit
flxA_F2	GATTTTTCTTCTCAAGTTCCTTGTTC	58.5	flxA_Rnew	AGTTGTGTTTCCAGTAGGGTG	57.9	244	Diese Arbeit
typIII_F2	GATCATTACTGGCATTAACAATATAAAAAG C	60.2	typIII_R2	TCAGAGAATTAACAGCACAAGAACC	59.7	200	Diese Arbeit
hyproedl_F	TGAACGCTTCGCCGCTGC	60.5	hyproedl_R	CATATCGACAGCGTATTTGGTCC	60.6	420	Diese Arbeit
GS_B_21F	ACTTTAGGCGCTTTCTTCTGC	57.9	GS_B_21R	CTGGCCGACACGATGGC	60.0	714??	Diese Arbeit
RMS_F	ACAGCATTGCAACGAATTAATCC	57.1	RMS_R	GAGAACGACAGCGGCTAC	58.2	448	Diese Arbeit
B_8_2_8_F	GATTCTATTGACAGCGGAAC	55.2	B_8_2_8_R2	CAATTATAATTTTCTGCTGGTTTC	54.2	272	Diese Arbeit
rtl_F	TACACACTACCCGCCGCC	60.5	rtl_R	ACCACCAGAGAACAGGTGGC	61.4	475	Diese Arbeit
CtransF	AGAAAGCTTTTTCCAGTTGTTGAAAC	58.5	CtransR	CGCCACGGATAATCTAGAC	56.7	163	Diese Arbeit
(Tn7)060407 _3_F	AATCTTTTTTATGAATGTGATCCTGAAATT GC	60.5	(Tn7)060407 _3_R	ACCCGGCGAGATTCGTATATTTC	60.6	278	Diese Arbeit
CspecF2	CAAGCGGCAGTTCGGCTAC	61.0	CspecR2	CACCCGCTCATTTCGGTGC	61.0	151	Diese Arbeit
913ColPlas_ F	GATACCGTGATGAAAACTGAACTGAC	61.6	913ColPlas_ R	TCGCTCAGCGAAATCCGGC	61.0	569	Diese Arbeit
Hspro_F	AGCAGTAAGGGGCATACCC	58.8	Hspro_R	TCAACGGATACTGATGCC	53.7	3366	Diese Arbeit
TspE4C2_F	GAGTAATGTCGGGGGCATTCA	57.3	TspE4C2_R	CGCGCCAACAAAGTATTACG	57.3	?	Clermont 2000
test_F2	GATCACGTTTCATCCAGAGGATG	60.6	test_R2	TTTAAATCATCAGGAAAGGACACCC	59.7	275	Diese Arbeit
						Fortsetzu	ng nächste Seite

Name	Vorwärtsprimer	T _M	Name	Rückwärtsprimer	T _M	Fragment größe	Referenzen
nen F	GTCAGGTGGTCTGTAGCAACC	61.8	nen P		61.6	520	Diese Arbeit
р <u>5р_</u> г 11 т189 г	CATCTCATTGCTGCTGCTTGAC	60.3	UTI89 R	CGGCAGTTCTCAGGCTCAG	61.0	154	Diese Arbeit
vagM F	ATGCCAGACTAACAAATAAATC	52.8	vagM R	GCCCGGCATCAAAGTAATAA	55.2	427	Diese Arbeit
vdfr F	GGTAACTTTAGCGTTACGGGAC	60.3	vdfr R	GGAAACACTTACCGGGGCC	61.0	947	Diese Arbeit
DE3_F	CTTCCGGCTCGTATAATGTG	57.3	DE3_R	GCCTGAACGGTTGTATTGTC	57.3		www.lag- gentechnik.de
20_2F	GTGCGGCAGTGGAAAAACGC	61.4	20_2R	GATCAACGTCGCATCAACCAGC	62.1	234	Diese Arbeit
FimUsh_F	TTGATATCATCAATAGTAAAAGGGCCG	60.4	FimUsh_R	GGAATAAATGCTGGGCTTCTAAACTAT	60.4	423	Diese Arbeit
1309_F	TTGCTGATACTGGCGTGGATTTTTC	61.3	1309_R	AGTACAGTGTGTCTGACAGACC	60.3	3387	Diese Arbeit
ECB_F	CACTACCCGTGTTATTCCAT	55.2	ECB_R	GCATCAGGTGCAACATACAT	55.2		www.lag- gentechnik.de
lipoca_F	CGAAAAACAAATGGAGCGAGAGC	60.6	lipoca_R	GCCTCCCCAAAGGCTGGT	60.5	298	Diese Arbeit
FimUsh2_F	ATTAACTCCGCGTATTAAGGCAACC	61.3	FimUsh2_R	GATCATTGCTTAAAAACCGTGGATTAAAATA	60.2	177	Diese Arbeit
hydrat_F	GATCACCTGGAAAACTTTGTCC	58.4	hydrat_R	GATCAACACCCAGCTGTTGC	59.4	460	Diese Arbeit
Primer für su	btraktive Hybridisierung:						
S1	CGCCAGGGAACACCCAGTCACGAC	69.5	S2	GATCGTCGTGACTGGGTGTTCCCTGGCG	72.4		Zwirglmaier, 2001
P1	AGGGGATAACCAATTCACACACCA	61.0	P2	GATCTGGTGTGTGAATTGGTTATCCCCT	65.1		Zwirglmaier, 2002
M13 for	TGTAAAACGACGGCCAGT	53.7	M13 rev	CAGGAAACAGCTATGACC	53.7		www.invitrog en.com
Adat1	CTAATACGACTCACTATAGGGCTCGAGCGG CCGCCCGGGCAGGT	>75.0	Adat2	CTAATACGACTCACTATAGGGCAGCGTGGTCGC GGCCGAGGT	>75. 0		
And1_blunt	ACCTGCCCGG	36.0	And2_blunt	ACCTCGGCCG	36.0		Akopyants,
Adat1nest	AGCGGCCGCCCGGGCAGGT	73.3	Adat2nest	AGCGTGGTCGCGGCCGAGGT	67.6		1998
T7	CTAATACGACTCACTATAGGG						
Primer für Ty	wo Step Gene Walking:						
EPI2up1	ATCCAGCCGGAACTGGTAAGC	63.5	EPI2up2	TCCCGGGAGCCATATCGTATC	63.3		Diese Arbeit
EPI2up3	CACTGGCAAATCAGGTGATAAAACC	60.1	EPI2up4	AGTCATGACGATGACACTGGC	62.7		Diese Arbeit
EPI2up5	CACCGGAGATCCGTCCCC	64.2	Epi2up6	TTGTGACAGCTACCAGTGCC	62.0		Diese Arbeit

											E	E. <i>coli</i> 1	K-12 S	tämme	9					-	· · · · · · · · · · · · · · · · · · ·			
P ¹	Abkürzung	K-12 MG1655	K-12 XL1Blue	K-12 DH5 alpha	K-12 W3110	K-12 HB101	K-12 TOP F′	K-12 EN99	K-12 BMH	K-12 WK6	K-12 5K	K-12 C600	K-12 LE 392	K-12 J53	K-12 678-54	K-12 M28	NovaBlue	K-12 DH1	K-12 35	K-12 TOP10 pHis17btubA	K-12 M15	K-12 AN92	K-12 AN260	K-12 DSM498
A1	16S rDNA										norm	alisier	e Posit	tivkont	rolle									
B1	IS1	1,26	1,46	0,84	1,44	1,00	1,00	1,00	2,41	1,99	1,84	1,04	0,63	2,15	0,69	0,24	1,07	1,57	1,05	3,89	0,80	0,88	1,04	1,00
C1	IS2	1,38	1,45	0,63	0,68	1,00	0,92	0,73	1,53	1,75	1,58	0,92	1,59	2,23	0,85	1,22	1,06	0,76	0,81	3,56	0,91	0,76	0,92	0,98
	183 altE	0,47	0,43	0,29	1,05	0,95	0,73	0,43	1,82	1,30	0,40	1,04	0,20	0,91	0,12	0,41	0,94	0,39	0,29	0,09	0,29	0,33	0,00	0,08
	<i>gur</i> 185	1 38	1.53	0,17	1.63	1.00	0,41	0,20	2.00	1.45	1.07	0,00	2 28	1.07	1,35	1.38	1.07	0,29	1.04	6 30	1 16	1.06	0,40	1.00
C^2	135 151	1,30	1,35	1.00	0.84	1.00	0,90	0.88	1 76	1,51	1 73	0,05	2,20	1.21	0.61	1,30	1.05	1 58	0.94	2.33	0.66	0.84	0,92	0.86
A3	vi83	0.86	0.63	0.99	1.05	1.00	0.87	0.83	1.80	2.14	0.85	1.00	0.60	1.49	0.33	0.35	0.93	0.62	0.42	2,00	0.51	0.60	0.50	1.00
D3	JS4	0.43	0.43	0.65	0.92	0.98	0.46	0.51	0.99	1.99	0.57	0.90	0.30	0.95	0.37	0.36	0.67	0.29	0.90	1.15	0.42	0.42	0.75	0.78
E4	IS150	0,34	0,52	0,77	0,60	0,80	0,87	0,28	0,58	0,63	0,41	0,67	0,15	0,55	0,25	0,14	0,40	0,25	0,30	1,19	0,17	0,27	0,54	0,65
A7	16S rDNA										norm	alisier	e Posit	tivkont	rolle									
B7	W824	0,02	0,02	0,03	0,03	0,04	0,03	0,02	0,02	0,02	0,02	0,01	0,05	0,01	0,03	0,06	0,04	0,03	0,01	0,03	0,05	0,01	0,01	0,02
C7	W826	0,02	0,04	0,04	0,04	0,08	0,03	0,04	0,02	0,02	0,02	0,01	0,05	0,02	0,03	0,11	0,05	0,03	0,01	0,07	0,08	0,01	0,02	0,05
D7	pcoD	0,02	0,02	0,04	0,03	0,04	0,02	0,02	0,02	0,02	0,02	0,01	0,04	0,02	0,02	0,02	0,03	0,03	0,01	0,04	0,05	0,02	0,01	0,02
E7	rtlD	0,03	0,05	0,06	0,07	0,08	0,04	0,05	0,02	0,04	0,03	0,03	0,05	0,03	0,03	0,04	0,03	0,04	0,02	0,09	0,13	0,03	0,02	0,06
A8	PRP	0,01	0,01	0,03	0,01	0,12	0,02	0,04	0,02	0,02	0,04	0,01	0,04	0,02	0,02	0,04	0,07	0,02	0,01	0,04	0,03	0,01	0,01	0,01
E8	310706	0,01	0,02	0,03	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,03	0,01	0,02	0,02	0,01	0,02	0,01	0,03	0,05	0,01	0,01	0,02
A9	CRT	0,04	0,06	0,07	0,07	0,08	0,06	0,06	0,08	0,06	0,04	0,04	0,06	0,03	0,05	0,03	0,10	0,04	0,04	0,09	0,23	0,04	0,01	0,09
E9	NIS	0,01	0,01	0,03	0,01	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,03	0,02	0,01	0,01	0,01	0,02	0,01	0,03	0,04	0,01	0,01	0,01
A11	16S rDNA										norm	alisier	e Posit	tivkont	rolle									
B11	893HP	0,00	0,04	0,04	0,05	0,05	0,03	0,02	0,06	0,04	0,03	0,04	0,03	0,04	0,01	0,03	0,02	0,04	0,02	0,05	0,04	0,03	0,01	0,08
C11	EPI	0,02	0,01	0,03	0,01	0,03	0,02	0,02	0,02	0,02	0,02	0,01	0,04	0,02	0,01	0,02	0,02	0,04	0,01	0,02	0,05	0,02	0,01	0,02
D11	TYPII	0,02	0,03	0,03	0,00	0,04	0,03	0,02	0,04	0,04	0,04	0,04	0,03	0,04	0,01	0,03	0,02	0,03	0,02	0,02	0,03	0,03	0,01	0,06
E11	REVTRA	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,03	0,01	0,01	0,02
																					Forts	etzung	nachst	te Seite

Tabelle 10 Hybridisierungsergebnisse aller untersuchten Stämme

											E	. coli I	K-12 St	tämme	!									
\mathbf{P}^1	Abkürzung	K-12 MG1655	K-12 XL1Blue	K-12 DH5 alpha	K-12 W3110	K-12 HB101	K-12 TOP F′	K-12 EN99	K-12 BMH	K-12 WK6	K-12 5K	K-12 C600	K-12 LE 392	K-12 J53	K-12 678-54	K-12 M28	NovaBlue	K-12 DH1	K-12 35	K-12 TOP10 pHis17btubA	K-12 M15	K-12 AN92	K-12 AN260	K-12 DSM498
A12	vioA	0,01	0,00	0,02	0,01	0,02	0,01	0,00	0,01	0,01	0,02	0,00	0,03	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,03	0,01	0,01	0,02
C12	21_1	0,00	0,02	0,04	0,06	0,06	0,03	0,03	0,03	0,02	0,02	0,03	0,05	0,04	0,04	0,03	0,03	0,04	0,02	0,09	0,03	0,03	0,01	0,05
E12	CABC	0,01	0,01	0,03	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,01	0,02
A13	224	0,01	0,01	0,03	0,01	0,02	0,01	0,00	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,02	0,01	0,02	0,00	0,03	0,03	0,01	0,01	0,01
B13	GALA	0,01	0,01	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,01	0,04	0,02	0,03	0,02	0,01	0,03	0,02	0,04	0,05	0,02	0,01	0,02
CI3	REPRESS	0,01	0,01	0,02	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,00	0,02	0,03	0,01	0,01	0,01
DI3	HEL	0,01	0,03	0,05	0,06	0,09	0,04	0,05	0,04	0,03	0,03	0,03	0,06	0,04	0,01	0,04	0,02	0,06	0,04	0,06	0,11	0,04	0,01	0,05
E13	914SPEC	0,01	0,05	0,08	0,08	0,07	0,04	0,02	0,06	0,05	0,04	0,05	0,03	0,04	0,03	0,01	0,02	0,04	0,02	0,06	0,03	0,05	0,01	0,07
HI3	maoA	0,00	0,23	0,08	0,19	0,22	0,09	0,09	0,20	0,20	0,14	U,20 oligiant	0,17 a Davit	U,25	0,05	0,00	0,09	0,12	0,13	0,02	0,02	0,24	0,00	0,30
AI/	IOS IDNA	0.00	0.05	0.06	0.02	0.12	0.07	0.07	0.06	0.05						0.06	0.02	0.00	0.07	0.00	0.16	0.00	0.02	0.00
D17	PAI D1124	0,00	0,03	0,00	0,02	0.07	0,07	0,07	0,00	0,03	0,03	0,00	0,09	0,08	0,01	0,00	0,03	0,09	0,07	0,08	0,10	0,09	0,02	0,08
D17	D1134	0,02	0,02	0,03	0,00	0,07	0,03	0,05	0,02	0,03	0,05	0,02	0,02	0,04	0,02	0,03	0,02	0,04	0,02	0.02	0,09	0,04	0,01	0,04
F17		0,01	0,02	0.08	0,00	0,05	0,02	0.12	0.12	0,02	0.05	0.10	0.12	0,02	0.01	0,02	0.01	0,02	0,01	0,02	0,05	0,05	0.02	0,02
D18	Q P27	0.02	0.01	0.03	0.05	0.03	0.06	0.01	0.02	0.02	0.01	0.02	0.04	0.03	0.04	0.02	0.01	0.03	0.02	0.05	0.04	0.03	0.01	0.03
A19	2.2.10/19	0.04	0.04	0.07	0.07	0.12	0.05	0.07	0.04	0.06	0.03	0.04	0.07	0.06	0.02	0.07	0.03	0.06	0.05	0.08	0.16	0.06	0.01	0.07
B19	T3443	0.02	0.02	0.05	0.04	0.05	0.04	0.03	0.03	0.03	0.02	0.02	0.04	0.03	0.02	0.04	0.01	0.04	0.03	0.05	0.08	0.04	0.01	0.04
C19	SAMP5	0,00	0,01	0,02	0,00	0,04	0,02	0,02	0,01	0,02	0,01	0,01	0.07	0,02	0,04	0.03	0,02	0,02	0,01	0,02	0,05	0,02	0,01	0.01
D19	FLAG02	0,01	0,01	0,03	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01	0,08	0,03	0,09	0,03	0,01	0,03	0,02	0,04	0,05	0,02	0,01	0,02
E19	pac	0,01	0,03	0,05	0,09	0,05	0,04	0,02	0,04	0,04	0,02	0,04	0,05	0,04	0,04	0,03	0,02	0,04	0,03	0,06	0,07	0,08	0,01	0,06
G1	gpt	0,18	0,29	0,11	0,74	0,05	0,43	0,17	0,67	0,29	0,18	0,42	0,12	0,49	0,09	0,21	0,58	0,18	0,15	0,33	0,14	0,02	0,04	0,36
H1	argF	0,21	0,30	0,08	0,52	0,37	0,38	0,20	0,63	0,48	0,19	0,34	0,23	0,30	0,12	0,28	0,45	0,14	0,16	0,38	0,27	0,16	0,35	0,35
G2	hsds	0,47	0,01	0,24	0,04	0,04	0,02	0,36	0,51	0,39	0,36	0,88	0,23	0,76	0,36	0,29	0,56	0,28	0,22	0,04	0,19	0,34	0,54	0,62
H2	glf	0,18	0,06	0,14	0,31	0,33	0,10	0,13	0,25	0,22	0,18	0,37	0,11	0,38	0,14	0,14	0,36	0,16	0,17	0,23	0,11	0,16	0,31	0,33
G3	araA	0,29	0,39	0,19	0,54	0,67	0,08	0,34	0,56	0,50	0,34	0,65	0,31	0,53	0,20	0,35	0,37	0,28	0,28	0,18	0,37	0,27	0,56	0,49
																					Forts	etzung	nächst	e Seite

											Ŀ	E. <i>coli</i> 1	K-12 S	tämme										
		12 MG1655	12 XL1Blue	12 DH5 alpha	12 W3110	12 HB101	12 TOP F′	12 EN99	12 BMH	12 WK6	12 5K	12 C600	12 LE 392	12 J53	12 678-54	12 M28	vaBlue	12 DH1	12 35	12 TOP10 lis17btubA	12 M15	12 AN92	12 AN260	12 DSM498
P ¹	Abkürzung	K-	<u>k</u>	<u>K</u>	<u>K</u>	<u>k</u>	K-	K.	K	<u>K</u>	<u>×</u>	<u>k</u>	<u>K</u>	<u>K</u>	<u>K</u>	К	Ž	<u>K</u>	K-	F. PH	K-	<u>k</u>	<u>k</u>	К
H3	yffs	0,66	0,04	0,03	0,09	0,07	0,30	0,52	0,04	0,03	0,03	0,04	0,08	0,05	0,07	0,49	0,05	0,05	0,47	0,71	0,60	0,04	0,05	0,84
G4	mcra	0,27	0,13	0,13	0,00	0,01	0,02	0,00	0,29	0,02	0,18	0,42	0,03	0,36	0,01	0,15	0,33	0,15	0,12	0,02	0,04	0,15	0,22	0,45
H4 C5	int anlit	0,29	0,03	0,03	0,03	0,05	0.01	0.00	0,01	0,02	0,03	0,03	0,06	0,03	0,06	0,30	0,03	0,04	0,31	0.02	0.02	0,03	0,03	0,54
СЭ Н5	gpili tn10	0.02	0,20	0.06	0.02	0.03	0,01	0,09	0,31	0,01 0.02	0.02	0.01	0,02	0.03	0,01 0.02	0.02	0,24	0.03	0.02	0,02	0,05	0.02	0.02	0.02
G7	hpaR	0.01	0.02	0.03	0.03	0.40	0.02	0.02	0.01	0.01	0.02	0.01	0.03	0.02	0.02	0.02	0.01	0.03	0.01	0.04	0.06	0.02	0.02	0.02
H7	OXIDO	0.05	0.05	0.03	0.08	0.10	0.05	0.06	0.05	0.04	0.04	0.05	0.05	0.06	0.05	0.03	0.04	0.06	0.04	0.07	0.20	0.05	0.04	0.07
G8	hpaD	0.01	0.01	0.03	0.02	0.13	0.02	0.01	0.01	0.01	0.02	0.01	0.05	0.02	0.07	0.02	0.02	0.02	0.01	0.04	0.04	0.01	0.01	0.02
H8	ACOA	0,01	0,02	0,03	0,02	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,02	0,01	0,02	0,01	0,03	0,01	0,03	0,04	0,02	0,01	0,02
G9	fimH	0,26	0,53	0,57	0,52	0,69	0,05	0,28	0,82	0,70	0,40	0,73	0,17	0,52	0,03	0,22	0,26	0,36	0,27	0,07	0,21	0,27	0,22	0,76
H9	LON	0,37	0,88	0,36	0,86	0,90	0,32	0,34	0,79	1,25	0,67	0,84	0,27	0,55	0,42	0,35	0,42	0,37	0,45	0,88	0,36	0,58	0,68	0,96
G11	GS8	0,01	0,03	0,06	0,00	0,02	0,07	0,02	0,07	0,09	0,07	0,14	0,10	0,09	0,01	0,04	0,03	0,07	0,05	0,02	0,02	0,02	0,01	0,01
G12	EPI2	0,01	0,02	0,04	0,05	0,03	0,02	0,01	0,01	0,04	0,03	0,02	0,02	0,04	0,02	0,02	0,01	0,03	0,02	0,04	0,03	0,03	0,01	0,04
G13	PUINV	0,02	0,02	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,04	0,02	0,02	0,01	0,02	0,02	0,05	0,04	0,02	0,01	0,03
G17	21_9	0,01	0,11	0,03	0,00	0,02	0,02	0,03	0,18	0,02	0,05	0,11	0,06	0,02	0,01	0,04	0,02	0,05	0,07	0,03	0,03	0,05	0,02	0,01
H17	1306	0,02	0,01	0,03	0,03	0,03	0,03	0,01	0,02	0,03	0,02	0,03	0,04	0,03	0,01	0,02	0,01	0,03	0,02	0,04	0,03	0,02	0,01	0,02
G18	1310	0,00	0,02	0,03	0,03	0,06	0,02	0,03	0,03	0,03	0,02	0,02	0,05	0,03	0,02	0,03	0,02	0,03	0,02	0,06	0,05	0,03	0,01	0,02
h18	prk2	0,01	0,01	0,03	0,02	0,03	0,02	0,01	0,01	0,01	0,01	0,01	0,03	0,02	0,02	0,01	0,02	0,02	0,01	0,37	0,03	0,01	0,01	0,01
G19	fimH	0,24	0,30	0,57	0,43	0,61	0,05	0,19	0,47	0,43	0,10	0,43	0,17	0,37	0,01	0,21	0,22	0,33	0,26	0,05	0,02	0,39	0,13	0,11
H19	LON	0,40	0,28	0,36	1,25	0,84	0,32	0,26	0,80	1,46	0,15	0,79	0,37	0,71	0,42	0,55	0,37	0,47	0,61	1,20	0,13	0,81	0,14	0,64
A21	16S rDNA										norm	alisier	te Posit	tivkontı	olle									
A22	pks left	0,02	0,03	0,04	0,04	0,01	0,03	0,00	0,02	0,02	0,02	0,02	0,05	0,03	0,02	0,02	0,02	0,03	0,02	0,03	0,03	0,02	0,01	0,02
A23	pks right	0,01	0,02	0,03	0,04	0,01	0,02	0,01	0,01	0,02	0,02	0,01	0,03	0,02	0,01	0,02	0,01	0,02	0,01	0,02	0,03	0,01	0,01	0,01
A24	pks ORF 6	0,04	0,08	0,08	0,07	0,01	0,03	0,00	0,06	0,05	0,04	0,07	0,09	0,07	0,07	0,04	0,05	0,06	0,06	0,04	0,06	0,05	0,02	0,06
A25	pks ORF 17	0,03	0,04	0,05	0,05	0,01	0,05	0,00	0,04	0,03	0,03	0,04	0,09	0,05	0,07	0,04	0,04	0,04	0,04	0,03	0,04	0,03	0,02	0,04
																					Forts	etzung	nachst	e Seite

											E	E. coli I	K-12 St	tämme	•									
P ¹	Abkürzung	K-12 MG1655	K-12 XL1Blue	K-12 DH5 alpha	K-12 W3110	K-12 HB101	K-12 TOP F′	K-12 EN99	K-12 BMH	K-12 WK6	K-12 5K	K-12 C600	K-12 LE 392	K-12 J53	K-12 678-54	K-12 M28	NovaBlue	K-12 DH1	K-12 35	K-12 TOP10 pHis17btubA	K-12 M15	K-12 AN92	K-12 AN260	K-12 DSM498
A28	PAI III	0,01	0,03	0,04	0,02	0,01	0,03	0,00	0,03	0,03	0,02	0,02	0,04	0,03	0,02	0,01	0,02	0,03	0,02	0,03	0,04	0,02	0,01	0,02
A29	fyua	0,04	0,07	0,05	0,04	0,04	0,05	0,01	0,05	0,05	0,03	0,05	0,07	0,06	0,03	0,04	0,04	0,05	0,04	0,03	0,05	0,04	0,03	0,05
A30	iroN	0,03	0,06	0,05	0,04	0,02	0,03	0,01	0,04	0,05	0,02	0,05	0,06	0,05	0,01	0,03	0,04	0,06	0,03	0,03	0,04	0,05	0,02	0,05
A31	sfa	0,01	0,02	0,03	0,01	0,01	0,01	0,00	0,01	0,02	0,02	0,01	0,03	0,02	0,01	0,02	0,01	0,02	0,01	0,02	0,03	0,01	0,01	0,01
A32	papA	0,01	0,01	0,03	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,00	0,00
B21	sat	0,01	0,03	0,04	0,01	0,02	0,02	0,00	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,03	0,02	0,01	0,01
B22	ompT	0,11	0,53	0,34	0,65	0,31	0,31	0,16	0,23	0,37	0,12	0,38	0,26	0,36	0,20	0,25	0,45	0,14	0,16	0,57	0,08	0,18	0,12	0,24
B23	aerJ	0,01	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,03	0,02	0,01	0,02	0,02	0,02	0,01	0,02	0,03	0,01	0,01	0,01
B24	tir	0,01	0,01	0,03	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,03	0,01	0,01	0,01
B25	bma	0,03	0,08	0,04	0,07	0,01	0,01	0,00	0,08	0,01	0,05	0,08	0,02	0,08	0,01	0,03	0,05	0,04	0,03	0,02	0,02	0,06	0,02	0,06
B26	kpsII	0,01	0,01	0,03	0,00	0,01	0,01	0,00	0,00	0,01	0,01	0,00	0,02	0,01	0,01	0,01	0,01	0,02	0,00	0,02	0,02	0,01	0,00	0,00
B27	kpsIII	0,01	0,01	0,03	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,00	0,01	0,02	0,01	0,01	0,01
B29	focG	0,01	0,01	0,03	0,00	0,01	0,01	0,00	0,00	0,01	0,01	0,00	0,02	0,02	0,01	0,01	0,01	0,02	0,00	0,02	0,02	0,01	0,01	0,01
B30	cnf	0,01	0,01	0,02	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,00	0,00
C22	hlya	0,01	0,01	0,03	0,01	0,01	0,01	0,00	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,02	0,01	0,01	0,01
C23	stx	0,01	0,01	0,03	0,01	0,01	0,02	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,03	0,01	0,01	0,01
C31	traT	0,01	0,02	0,03	0,57	0,01	0,17	0,00	0,51	0,35	0,01	0,01	0,03	0,02	0,01	0,12	0,30	0,03	0,01	0,02	0,07	0,01	0,01	0,01
C32	eagg	0,01	0,01	0,02	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,02	0,01	0,00	0,01
D21	plys	0,02	0,03	0,00	0,05	0,03	0.00	0,02	0,03	0,02	0,02	0,02	0,01	0,02	0,04	0,02	0,02	0,03	0,01	0,07	0,05	0,02	0,02	0,02
D22	traE	0,08	0,01	0,05	0,99	0,01	0,22	0,01	0,01	0,40	0,01	0,01	0,03	0,04	0,01	0,12	0,33	0,02	0,01	0,02	0,07	0,01	0,01	0,01
D23	cam	0,01	0,01	0,05	0,02	0,01	0,03	0,01	0,02	1,80	0,02	0,01	0,05	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,05	0,01	0,01	0,01
D24	bla	0,02	0,05	0,05	0,05	0,01	0,02	0,00	0,05	2,10	0,02	0,03	0,06	0,04	0,04	0,02	0,03	0,03	0,02	0,10	0,05	0,02	0,01	0,02
E21	btubb	0,03	0,05	0,03	0,07	0,02	0,05	0,02	0,05	0,09	0,02	0,03	0,00	0,04	0,03	0,03	0,03	0,03	0,02	5,8 /	0,04	0,02	0,01	0,01
E22	DMSU	0,01	0,00	0,03	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,02	0,01	0,01	0,01	0,01	0,02	0,00	0,02	0,03	0,01	0,00	0,00
D32	JIMH LON	0,17	0,52	0,57	0,30	0,01	0,05	0,19	0,30	0,20	0,19	0,33	0,14	0,51	0,02	0,21	0,22	0,20	0,23	0,03	0,10	0,25	0,19	0,43
E32	LUN	0,19	0,00	0,30	1,23	0,84	0,52	0,20	0,20	0,24	0,28	0,49	0,27	0,52	0,57	0,17	0,57	0,52	0,30	1,20	Forts	etzung	nächst	e Seite

VIII. Anhang

		E. coli	K-12 St	tämme	E. co	li C Sti	imme	E. coli	i W St	ämme			E	. <i>coli</i> B	Stäm	me		Ą	Pa S	athoge tämm	ne e,
P ¹	Abkürzung	K-12 JM83	K-12 W3350	K-12 TH2	U	ABLE C	ABLE K	Α	W- mutante	Mach1 pCR2.1	B (DSM)	B	B/r	Bs	BL21	BL21 pLysS	C41	C41 pHis17 btub	0157:H7 EDL 933	042	H10407
A1	16S rDNA							F	norm	alisiert	e Posit	ivkontr	olle								
B1	IS1	0,40	0,93	2,05	1,33	1,23	2,32	0,03	0,03	0,06	1,21	1,01	1,23	2,29	1,00	1,02	1,65	1,36	0,32	0,95	1,01
C1	IS2	1,05	0,91	1,06	0,04	0,46	1,25	0,03	0,03	0,78	0,21	0,15	0,88	0,44	0,15	0,21	0,40	0,28	0,35	0,42	1,00
D1	IS3	0,17	0,37	0,53	0,79	1,13	1,49	0,52	0,18	0,70	0,31	0,41	1,20	0,64	0,33	0,47	0,78	0,17	0,12	0,21	0,54
E1	gltF	0,16	0,22	0,40	0,53	0,47	0,56	0,01	0,02	0,04	0,01	0,02	0,01	0,01	0,04	0,01	0,02	0,02	0,05	0,02	0,05
B2	IS5	1,37	0,93	1,35	0,05	0,61	0,88	0,02	0,03	0,77	0,02	0,03	0,09	0,05	0,04	0,11	0,03	0,06	0,07	0,02	0,16
C2	ISL	0,80	0,91	0,66	0,04	0,40	0,59	0,02	0,03	0,74	0,01	0,03	0,04	0,03	0,04	0,05	0,02	0,05	0,08	0,02	0,15
A3	yi83	0,54	0,87	1,20	1,38	0,97	1,83	0,04	0,03	0,06	1,06	1,01	1,23	1,69	0,84	0,99	1,51	0,79	0,07	0,05	1,00
D3	IS4	0,34	0,73	0,77	0,05	0,06	0,07	0,05	0,06	0,09	0,35	0,26	1,10	0,61	0,51	0,48	1,04	0,37	0,05	0,04	0,08
E4	IS150	0,17	0,72	0,50	0,02	0,02	0,03	0,77	0,52	0,67	0,87	0,90	1,21	1,35	0,80	0,83	1,43	0,81	0,06	0,06	1,01
A7	16S rDNA								norm	alisiert	e Posit	ivkontr	olle								
B7	W824	0,01	0,01	0,02	1,38	1,24	2,00	0,02	0,04	0,03	0,01	0,03	0,02	0,02	0,03	0,01	0,02	0,02	0,04	0,03	0,07
C7	W826	0,02	0,02	0,04	0,85	1,14	0,80	0,16	0,04	0,20	0,01	0,04	0,03	0,02	0,04	0,02	0,02	0,02	0,04	0,02	0,85
D7	pcoD	0,01	0,02	0,02	0,41	0,76	0,59	0,01	0,02	0,04	0,01	0,03	0,03	0,02	0,04	0,04	0,02	0,02	0,08	0,03	0,47
E7	rtlD	0,02	0,02	0,04	0,58	0,69	0,46	0,04	0,05	0,10	0,03	0,06	0,07	0,04	0,07	0,03	0,03	0,04	0,04	0,04	0,63
A8	PRP	0,01	0,08	0,01	0,19	0,35	0,19	0,05	0,03	0,06	0,01	0,02	0,03	0,03	0,03	0,09	0,01	0,02	0,04	0,02	0,02
E8	310706	0,01	0,01	0,01	0,25	0,35	0,21	0,01	0,02	0,03	0,01	0,02	0,02	0,01	0,03	0,01	0,02	0,02	0,04	0,07	0,28
A9	CRT	0,02	0,05	0,08	1,38	1,17	2,28	0,05	0,07	0,07	0,02	0,04	0,07	0,02	0,05	0,05	0,05	0,02	1,95	1,00	0,96
E9	NIS	0,01	0,01	0,01	0,16	0,19	0,11	0,01	0,02	0,02	0,01	0,01	0,02	0,01	0,03	0,01	0,02	0,02	0,03	0,17	0,10
A11	16S rDNA								norm	alisiert	e Posit	ivkontr	olle								
B11	893HP	0,03	0,01	0,05	0,02	0,09	0,05	0,09	0,04	0,09	0,22	0,17	0,37	0,17	0,15	0,20	0,13	0,36	0,04	0,16	0,02
C11	EPI	0,02	0,01	0,00	0,01	0,02	0,02	0,02	0,04	0,05	0,58	0,35	0,97	0,31	0,40	0,44	0,30	1,02	0,04	0,02	0,03
D11	TYPII	0,02	0,01	0,00	0,02	0,02	0,04	0,19	0,14	0,03	0,17	0,10	0,42	0,16	0,12	0,16	0,14	0,49	0,05	0,14	0,20
E11	REVTRA	0,01	0,00	0,01	0,01	0,03	0,01	0,28	0,13	0,25	0,29	0,21	0,82	0,18	0,21	0,29	0,22	0,50	0,04	0,02	0,03
A12	vioA	0,01	0,01	0,01	0,01	0,02	0,02	0,00	0,01	0,02	0,25	0,17	0,36	0,26	0,19	0,15	0,15	0,62	0,03	0,01	0,02
C12	21_1	0,01	0,02	0,07	0,02	0,10	0,03	0,06	0,02	0,07	0,10	0,10	0,22	0,13	0,11	0,15	0,16	0,28	0,04	0,07	0,12
																			Fortsetzung	nächs	te Seite

VIII. Anhang

		E. coli I	K-12 St	tämme	E. co	li C St	ämme	E. col	i W St	ämme			E.	<i>coli</i> B	Stämi	ne			Pa S	tämme	ne e,
P ¹	Abkürzung	K-12 JM83	K-12 W3350	K-12 TH2	c	ABLE C	ABLE K	M	W- mutante	Mach1 pCR2.1	B (DSM)	B	B/r	Bs	BL21	BL21 pLysS	C41	C41 pHis17 btubA	0157:H7 EDL 933	042	H10407
E12	CABC	0,01	0,01	0,01	0,01	0,03	0,02	0,01	0,02	0,02	0,28	0,24	0,76	0,19	0,19	0,25	0,17	0,17	0,10	0,02	0,02
A13	224	0,01	0,00	0,01	0,01	0,02	0,02	0,00	0,01	0,02	0,16	0,12	0,30	0,14	0,13	0,12	0,10	0,30	0,03	0,02	0,02
B13	GALA	0,01	0,01	0,02	0,01	0,06	0,02	0,01	0,03	0,03	0,42	0,23	0,67	0,21	0,26	0,23	0,21	0,23	0,03	0,02	0,03
C13	REPRESS	0,01	0,00	0,00	0,01	0,02	0,02	0,00	0,01	0,02	0,10	0,10	0,42	0,13	0,12	0,17	0,29	0,29	0,04	0,02	0,02
D13	HEL	0,04	0,02	0,04	0,03	0,04	0,04	0,05	0,05	0,08	0,97	0,45	1,21	0,50	0,50	0,58	0,44	1,27	0,05	0,03	0,06
E13	914SPEC	0,03	0,01	0,08	0,01	0,04	0,02	0,12	0,07	0,05	0,19	0,11	0,29	0,10	0,10	0,14	0,12	0,15	0,04	0,07	0,02
H13	maoA	0,11	0,08	0,00	0,01	0,02	0,01	0,15	0,10	0,19	0,19	0,11	0,74	0,26	0,14	0,24	0,17	0,17	0,07	0,03	0,07
Al7	16S rDNA	0.07	0.02	0.00	0.00	0.07	0.4	0.04	norm	alisiert	e Posit	1vkonti	rolle	0.46	0.04	0.44	0.00	0.00	0.00	0.44	0.00
B17	PAI	0,07	0,03	0,08	0,60	0,86	0,65	0,31	0,32	0,31	0,95	0,44	0,92	0,46	0,31	0,41	0,93	0,93	0,09	0,44	0,03
CI7	B1134	0,02	0,01	0,01	0,13	0,13	0,26	0,35	0,24	0,39	0,82	0,40	0,87	0,25	0,62	0,40	0,13	0,13	0,90	0,10	0,03
DI/	agaF	0,02	0,01	0,00	0,51	0,10	0,38	0,20	0,11	0,23	0,45	0,15	0,70	0,21	0,15	0.09	0,58	0,58	0.04	0,17	0,13
EI/	Q DO7	0.02	0,05	0,01	0,10	0.06	0.02	0,50	0,45	0,21	0,02	0.05	0.04	0.02	0.04	0,08	0.01	0.06	0,04	0.02	0,09
D18	P27	0,02	0,01	0,04	0,02	0,00	0,05	0,40	0,30	0,25	0,05	0,05	0,04	0,02	0,04	0,02	0,01	0,00	0,04	0,05	0,05
A19 D10	2.2 10/19 T2442	0,00	0,02	0,00	0,03	0.06	0,03	0,22	0,25	0,29	0,00	0,05	0,00	0,05	0,00	0,05	0,01	0,09	0,04	0,03	0,02
C10	13443 SAMP5	0,03	0.01	0,04	0,02	0,00	0,03	0,24	0,10	0,24	0,03	0,05	0,04	0,02	0,04	0,02	0.01	0,04	0,04	0,03	0,02
D10	SAMES	0,01	0.01	0,00	0,02	0.02	0,02	0.13	0,13	0,22	0,03	0,02	0.04	0,04	0.03	0,02	0.01	0,00	0,03	0,02	0,02
E10	FLAG02	0,02	0.01	0,05	0,01	0,07	0.04	0,13	0.71	0.57	0.06	0.05	0.08	0.03	0.05	0.02	0.01	0,10	0,04	0.04	0.02
G1	ant	0.02	0.16	0.03	0,04	0,09	1 29	0.32	0.13	0.36	0.13	0,05	0,00	0,05	0,05	0,02	0.26	0,09	0,04	0.28	0.32
H1	gpi aroF	0.04	0.22	0.21	0.42	0.47	0.83	0.11	0.15	0.13	0.05	0.12	0.09	0.11	0.08	0.06	0.04	0.07	0.06	0.06	0.20
G2	hsds	0.20	0.29	0.02	0.03	0.03	0.04	0.03	0.02	0.04	0.14	0.13	0.43	0.28	0.21	0.17	0.25	0.21	0.04	0.03	0.11
H2	ølf	0.12	0.16	0.20	0.01	0.02	0.03	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.03	0.01	0.01	0.03	0.04	0.01	0.05
G3	araA	0.17	0.30	0.44	0.51	0.42	0.51	0.49	0.16	0.40	0.19	0.31	0.66	0.38	0.26	0.25	0.34	0.17	0.69	0.33	0.52
H3	vffs	0,03	0,03	0,05	0,09	0,05	0,07	0,05	0,06	0,07	0,04	0,05	0,03	0,05	0,06	0,03	0,02	0,02	0,05	0,03	0,41
G4	mcra	0,01	0,13	0,00	0,02	0,01	0,03	0,01	0,02	0,02	0,01	0,02	0,03	0,01	0,03	0,01	0,01	0,02	0,03	0,01	0,04
H4	int	0,02	0,02	0,02	0,04	0,04	0,04	0,02	0,03	0,05	0,02	0,03	0,02	0,03	0,03	0,02	0,02	0,09	0,05	0,02	0,23
																			Fortsetzung	nächst	te Seite

VIII. Anhang

	1	E. coli I	K-12 St	tämme	E.	coli C	C Stä	mme	E.	coli	W Sta	ämme			E	. <i>coli</i> B	8 Stäm	me			Pa S	athoge tämme	ne e,
P ¹	Abkürzung	K-12 JM83	K-12 W3350	K-12 TH2	ت		ABLE C	ABLE K		M	W- mutante	Mach1 pCR2.1	B (DSM)	B	B/r	Bs	BL21	BL21 pLysS	C41	C41 pHis17 btubA	01 <i>5</i> 7:H7 EDL 93:	042	H10407
G5	gplit	0,00	0,10	0,26	0,0	1 0,	,02	0,01	0	,00	0,01	0,01	0,01	0,01	0,01	0,01	0,03	0,00	0,01	0,01	0,03	0,01	0,03
H5	tn10	0,01	0,01	0,71	0,0	3 1 ,	,18	2,24	0	,01	0,03	0,86	0,01	0,04	0,03	0,02	0,04	0,02	0,02	0,03	0,03	0,02	0,10
G7	hpaB	0,01	0,01	0,34	0,3	4 0,	,48	0,35	0	,23	0,11	0,02	0,13	0,25	0,73	0,20	0,26	0,18	0,24	0,24	0,04	0,02	0,07
H7	OXIDO	0,04	0,05	0,05	0,7	50,	,84	0,84	0	,05	0,05	0,09	0,34	0,35	1,23	0,53	0,39	0,45	0,63	0,24	0,06	0,04	0,70
G8	hpaD	0,01	0,02	0,12	0,2	0 0,	,27	0,24	0	,20	0,12	0,03	0,12	0,12	0,33	0,28	0,16	0,12	0,13	0,35	0,04	0,02	0,06
H8	ACOA	0,01	0,01	0,01	0,2	3 0,	,35	0,29	0	,01	0,02	0,03	0,14	0,15	0,75	0,17	0,13	0,20	0,23	0,23	0,03	0,02	0,24
G9	fimH	0,18	0,31	0,48	0,5	2 0,	,78	0,55	0	,51	0,19	0,45	0,28	0,29	1,20	0,28	0,26	0,38	0,48	0,11	0,25	0,10	0,45
H9	LON	0,31	0,52	0,69	1,1	1 0,	,86	0,86	0	,91	0,21	0,73	0,50	0,55	1,22	0,61	0,52	0,55	0,90	0,51	0,72	0,44	0,99
G11	GS8	0,01	0,01	0,00	0,0	1 0,	,02	0,02	0	,13	0,17	0,11	0,33	0,16	0,68	0,41	0,06	0,05	0,03	0,03	0,62	0,47	0,02
G12	EPI2	0,01	0,01	0,03	0,0	20,	,05	0,03	0	,03	0,02	0,02	0,41	0,27	0,74	0,31	0,04	0,01	0,01	0,02	0,04	0,60	0,45
GI3	PUINV	0,02	0,01	0,02	<mark>- 0,:</mark>	7 0 ,	,70	0,59	0	,28	0,15	0,30	0,36	0,21	0,99	0,27	0,04	0,01	0,01	0,06	0,37	0,20	0,27
GI7	21_9	0,03	0,01	0,01	0,0	1 0,	,02	0,04	0	,13	0,23	0,02	0,06	0,02	0,08	0,04	0,03	0,01	0,03	0,03	0,04	0,02	0,05
HI7	1306	0,01	0,01	0,03	0,0	20,	,05	0,02	0	,26 17	0,29	0,03	0,03	0,00	0,07	0,04	0,05	0,02	0,01	0,03	0,03	0,04	0,02
GI8	1310	0,02	0,01	0,03	0,0	20,	,08	0,04	0	,15 01	0,26	0,03	0,03	0,03	0,04	0,03	0,04	0,01	0,01	0,08	0,07	0,03	0,01
n18 C10	prk2	0,01	0,00	0,01	0,0	1 0, 7 0	,03 55	0,02	U	,91 27	0,70	0,04	0,01	0,01	0,05	0,01	0,04	0,01	0,01	0,03	0,04	0,02	0,45
U19 U10	Jumin LON	0,30	0,00	0,40	0,4	$\frac{7}{2}$ 0,	,55 18	0,30		,21 77	0,11	0,27	1.00	0,55	0,25	0,20	0,15	0,40	0,40	1,02	0,25	0,10	0,45
л19 Δ21	16S rDNA	0,54	0,14	0,71	- U , .	4 1,	,10	0,34	U	,	0,10	0,72	1,00	0,07	0,01	0,07	0,17	0,20	0,17	1,51	0,72	0,44	0,24
Δ22	nks left	0.01	0.01	0.00	0.0	1 0	03	0.04	0	03	0.04	0.04	0.01	0.02	0.01	0.02	0.04	0.02	0.01	0.01	0.05	0.11	0.16
A23	pks right	0.01	0.01	0.01	0.0	6 0.	.07	0.14	Ő	.01	0.02	0.03	0.01	0.03	0.01	0.01	0.04	0.01	0.01	0.04	0.06	0.02	0.07
A24	pks ORF 6	0.04	0.03	0.00	0.0	4 0.	.06	0.10	Ő	.06	0.03	0.07	0.04	0.02	0.04	0.05	0.07	0.04	0.01	0.01	0.06	0.04	0.10
A25	pks ORF 17	0.04	0.03	0.00	0.0	3 0.	.04	0.05	0	.03	0.06	0.06	0.03	0.07	0.03	0.05	0.06	0.03	0.01	0.06	0.06	0.04	0.05
A28	PAI III	0.02	0.01	0.00	0.0	1 0	.03	0.04	0	.02	0.03	0.03	0.02	0.04	0.02	0.02	0.04	0.01	0.01	0.03	0.06	0.03	0.05
A29	fvua	0.03	0,02	0.03	0.0	4 0.	.05	0.12	0	.05	0.03	0.06	0.03	0,05	0,04	0,04	0,04	0.03	0,02	0,08	0,05	0.23	0.57
A30	iroN	0,04	0,01	0,02	0.0	4 0.	,03	0,08	0	,04	0,03	0,05	0,03	0,06	0,05	0,03	0,04	0,02	0,02	0,02	0,06	0,03	0,06
A31	sfa	0,01	0,01	0,00	0,0	1 0.	,02	0,03	0	,01	0,02	0,02	0,01	0,02	0,01	0,01	0,03	0,00	0,01	0,02	0,05	0,01	0,03
	v				*																Fortsetzung	nächst	e Seite

VIII. Anhang

		E. coli I	K-12 St	tämme	E. co	li C Sti	ämme	Е. с	oli W St	ämme			E	. <i>coli</i> F	8 Stäm	me			P: S	athoge tämm	ne e,
P ¹	Abkürzung	K-12 JM83	K-12 W3350	K-12 TH2	C	ABLE C	ABLE K	M	W- mutante	Mach1 pCR2.1	B (DSM)	B	B/r	Bs	BL21	BL21 pLysS	C41	C41 pHis17 btubA	0157:H7 EDL 933	042	H10407
A32	papA	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,03	0,00	0,01	0,02	0,07	0,01	0,02
B21	sat	0,01	0,01	0,01	0,01	0,02	0,04	0,02	2 0,02	0,03	0,02	0,02	0,02	0,00	0,04	0,01	0,02	0,01	0,04	0,02	0,03
B22	ompT	0.01	0.01	0.01	0,00	0,03	0,09	0,0		0,02	0.01	0,27	0,15	0.02	0,03	0,00	0,01	0,02	0.03	0,02	0,03
D23 D24	derj tir	0,01	0,01	0,01	0,01	0,02	0,02	0,0		0,02	0,01	0,01	0,02	0,02	0,03	0,00	0,01	0,02	0,03	0,02	0,03
B24 B25	hma	0,01	0.02	0,00	0,01	0.01	0,02	0,01	0,01	0,02	0.01	0.01	0.01	0.01	0.03	0.01	0.01	0.02	0.03	0.01	0,02
B26	knsII	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.04	0.05	0.08	0.10	0.06	0.08	0.03	0.29	0.03	0.06	0.02
B27	kpsIII	0,01	0,00	0,00	0,01	0,02	0,01	0,0	0,01	0,01	0,01	0,01	0,01	0,01	0,03	0,00	0,01	0,02	0,03	0,01	0,02
B29	focG	0,01	0,00	0,00	0,01	0,01	0,02	0,00	0,02	0,01	0,01	0,02	0,00	0,01	0,03	0,00	0,01	0,02	0,04	0,01	0,02
B30	cnf	0,01	0,00	0,00	0,01	0,01	0,01	0,00	0,02	0,01	0,01	0,01	0,01	0,01	0,03	0,00	0,01	0,02	0,03	0,01	0,02
C22	hlya	0,01	0,01	0,01	0,01	0,01	0,02	0,0	0,02	0,02	0,01	0,02	0,01	0,01	0,03	0,01	0,01	0,04	0,18	0,01	0,02
C23	stx	0,01	0,00	0,00	0,01	0,01	0,02	0,0	0,02	0,02	0,01	0,02	0,01	0,01	0,03	0,00	0,01	0,03	0,14	0,02	0,02
C31	traT	0,01	0,01	0,00	0,01	0,21	1,07	0,0	0,02	0,02	0,01	0,02	0,01	0,01	0,03	0,01	0,01	0,03	0,06	0,27	0,04
C32	eagg	0,01	0,00	0,00	0,01	0,01	0,02	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,03	0,00	0,01	0,01	0,03	0,09	0,02
D21	plys	0,01	0,02	0,02	0,01	0,05	0,03	0,03	3 0,01	0,04	0,02	0,06	0,01	0,00	0,03	1,02	0,01	0,01	0,00	0,01	0,05
D22	traE	0,01	0,01	0,01	0,01	0,34	1,17	0,0	0,02	0,03	0,01	0,02	0,01	0,01	0,03	0,01	0,01	0,03	0,05	0,31	0,92
D23	cam	0,01	0,01	0,01	0,01	0,02	0,02	0,02	2 0,02	0,02	0,01	0,02	0,01	0,01	0,03	1,02	0,01	0,04	0,03	0,09	0,04
D24	bla	0,02	0,01	0,00	0,01	0,04	0,04	0,0	0,05	1,00	0,02	0,05	0,02	0,02	0,04	0,03	0,01	1,43	0,05	0,03	0,08
E21	btubb	0,03	0,02	0,02	0,02	0,03	0,07	0,02	2 0,06	0,05	0,02	0,07	0,01	0,04	0,05	0,01	0,01	1,51	0,04	0,03	0,06
E22	DMSO	0,01	0,00	0,00	0,00	0,01	0,01	0,00) 0,01	0,01	0,01	0,01	0,00	0,01	0,02	0,00	0,01	0,03	0,03	0,01	0,01
D32	fimH	0,17	0,17	0,46	0,22	0,25	0,64	0,4	0,10	0,31	0,50	0,29	0,24	0,34	0,12	0,37	0,23	0,46	0,25	0,10	0,22
E32	LON	0,33	0,21	0,38	0,31	1,18	0,59	0,48	3 0,11	0,27	0,63	0,25	0,42	0,61	0,18	0,42	0,26	0,19	0,72	0,44	0,33
																			Fortsetzung	nächs	te Seite

VIII. Anhang

			Patl	hogene	e Stäm	me, Ni	ssle 19	17			ur	nchara	kterisie	erte Iso	olate (l	LGL, E)r. Bus	ch)	
		48/69	01284			r073	3034	18	de 1917										
\mathbf{P}^1	Abkürzung	E23	EDI	536	J96	CE	HI	RS2	Niss	1	2	3	4	5	6	7	8	9	10
A1	16S rDNA								norm	alisierte Positi	vkont	rolle							
B1	IS1	0,11	0,64	0,55	0,15	0,32	0,02	1,01	1,00	1,80	1,59	2,08	0,07	1,70	0,39	0,59	1,00	0,85	1,64
C1	IS2	0,26	1,01	0,74	0,25	0,22	0,69	0,37	0,91	1,01	0,19	1,63	0,06	0,27	0,25	0,21	0,66	0,34	1,22
D1	IS3	0,16	0,29	0,24	0,11	0,14	0,24	0,07	0,21	0,18	0,08	0,17	0,27	0,13	0,36	0,10	0,09	0,06	0,01
E1	gltF	0,05	0,11	0,09	0,02	0,01	0,02	0,01	0,09	0,42	0,03	0,04	0,03	0,10	0,02	0,01	0,23	0,07	0,02
B2	IS5	0,17	0,62	0,62	0,14	0,10	0,82	0,15	0,66	0,09	0,05	0,15	0,09	0,06	0,02	0,12	0,02	0,06	0,13
C2	ISL	0,17	0,85	0,67	0,13	0,04	0,01	0,14	0,23	0,08	0,04	0,15	0,07	0,05	0,02	0,10	0,02	0,07	0,10
A3	yi83	0,29	0,18	0,35	0,04	0,06	0,01	0,05	0,49	1,28	0,05	0,06	0,09	0,22	0,02	0,03	0,02	0,41	0,09
D3	IS4	0,96	1,05	1,34	0,95	1,11	0,04	0,54	1,00	0,99	0,37	0,07	0,10	0,36	0,98	0,39	0,06	0,22	0,11
E4	IS150	0,31	0,06	0,05	0,01	0,04	0,04	0,01	0,04	0,28	0,12	0,03	0,01	0,15	0,01	0,02	0,61	0,04	0,01
A7	16S rDNA								norm	alisierte Positi	vkont	rolle							
B7	W824	0,08	0,61	0,67	0,19	0,01	0,02	0,02	0,11	0,04	0,01	0,04	0,04	0,02	0,01	0,03	0,01	0,04	0,01
C7	W826	0,06	0,23	0,32	0,02	0,03	0,02	0,02	0,16	0,46	0,02	0,16	0,39	0,09	0,24	0,20	0,01	0,06	0,02
D7	pcoD	0,07	0,16	0,11	0,02	0,02	0,02	0,02	0,14	0,04	0,03	0,05	0,04	0,02	0,02	0,03	0,31	0,05	0,02
E7	rtlD	0,12	0,43	0,35	0,05	0,03	0,03	0,05	0,38	0,07	0,04	0,05	0,06	0,07	0,02	0,03	0,02	0,07	0,03
A8	PRP	0,02	0,02	0,03	0,01	0,03	0,02	0,01	0,08	0,03	0,08	0,07	0,02	0,04	0,02	0,02	0,15	0,07	0,08
E8	310706	0,12	0,47	0,33	0,18	0,31	0,14	0,22	0,65	0,22	0,12	0,05	0,02	0,02	0,01	0,10	0,01	0,05	0,03
A9	CRT	0,39	1,05	1,29	0,88	1,25	0,09	1,01	1,00	0,52	0,35	0,54	0,11	0,09	0,20	0,98	0,04	0,24	0,21
E9	NIS	0,03	0,20	0,23	0,12	0,42	0,12	0,10	0,75	0,10	0,11	0,05	0,01	0,02	0,00	0,02	0,08	0,05	0,01
									norm	alisierte Positi	vkont	rolle							
B11	893HP	0,01	0,04	0,03	0,03	0,14	0,09	0,08	0,33	0,02	0,03	0,04	0,03	0,02	0,01	0,02	0,06	0,04	0,02
C11	EPI	0,04	0,08	0,08	0,03	0,42	0,02	0,01	0,05	0,04	0,01	0,03	0,01	0,01	0,01	0,02	0,01	0,07	0,02
D11	TYPII	0,21	0,43	0,34	0,14	0,04	0,23	0,04	0,52	0,02	0,04	0,04	0,02	0,01	0,00	0,02	0,00	0,04	0,03
E11	REVTRA	0,45	0,08	0,07	0,02	0,15	0,02	0,13	0,04	0,02	0,01	0,03	0,01	0,01	0,03	0,05	0,01	0,06	0,01
A12	vioA	0,02	0,01	0,02	0,01	0,01	0,02	0,01	0,03	0,02	0,01	0,04	0,01	0,01	0,01	0,01	0,01	0,03	0,01
C12	21_1	0,04	0,04	0,04	0,05	0,16	0,02	0,02	0,17	0,02	0,05	0,10	0,03	0,02	0,00	0,07	0,02	0,05	0,03
																Fort	setzung	g nächs	te Seite

			Pat	hogene	e Stäm	me, Ni	ssle 19	17			un	chara	kterisi	erte Iso	olate (l	LGL, I	7 8 9 10 0,02 0,01 0,05 0,01 0,02 0,01 0,05 0,01 0,02 0,01 0,05 0,01 0,02 0,01 0,05 0,01 0,02 0,01 0,05 0,01 0,02 0,01 0,05 0,01 0,05 0,00 0,03 0,02 0,04 0,02 0,16 0,02 0,03 0,01 0,04 0,01 0,05 0,10 0,06 0,05 24 0,03 0,17 0,09 ,05 0,14 0,23 0,01 ,05 0,01 0,09 0,02 ,09 0,08 0,07 0,01 ,03 0,01 0,14 0,04 ,13 0,02 0,06 0,02 ,03 0,01 0,08 0,01 ,04 0,03 0,10 0,01						
\mathbf{P}^1	Abkürzung	E2348/69	EDL1284	536	96f	CFT073	IHE3034	RS218	Nissle 1917	1	2	3	4	5	6	7	8	9	10				
E12	CABC	0,02	0,03	0,02	0,01	0,01	0,02	0,01	0,04	0,02	0,01	0,03	0,01	0,01	0,00	0,02	0,01	0,05	0,01				
A13	224	0,02	0,02	0,03	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,04	0,01	0,01	0,00	0,01	0,00	0,06	0,01				
B13	GALA	0,06	0,47	0,35	0,17	0,36	0,20	0,17	0,91	0,02	0,04	0,04	0,01	0,01	0,01	0,02	0,01	0,05	0,01				
C13	REPRESS	0,05	0,02	0,03	0,01	0,01	0,01	0,02	0,02	0,02	0,01	0,04	0,01	0,01	0,03	0,05	0,00	0,03	0,02				
D13	HEL	0,05	0,58	0,49	0,52	0,04	0,03	0,02	0,21	0,07	0,03	0,04	0,01	0,02	0,02	0,04	0,02	0,16	0,02				
E13	914SPEC	0,01	0,02	0,03	0,02	0,06	0,04	0,01	0,16	0,03	0,02	0,04	0,02	0,01	0,02	0,03	0,01	0,04	0,01				
H13	maoA	0,02	0,02	0,05	0,01	0,00	0,06	0,01	0,02	0,11	0,01	0,05	0,03	0,02	0,06	0,05	0,10	0,06	0,05				
A17	16S rDNA								norm	alisierte Posit	ivkontı	rolle											
B17	PAI	0,03	0,02	0,02	0,25	0,72	0,17	0,20	0,95	0,06	0,01	0,03	0,01	0,01	0,12	0,24	0,03	0,17	0,09				
C17	B1134	0,13	0,57	0,67	0,12	0,26	0,02	0,09	0,77	0,05	0,01	0,04	0,01	0,02	0,08	0,21	0,01	0,09	0,02				
D17	agaF	0,19	0,56	0,42	0,10	0,33	0,26	0,14	0,39	0,09	0,01	0,03	0,01	0,02	0,05	0,09	0,08	0,07	0,01				
E17	Q	0,10	0,94	0,89	0,10	0,12	0,28	0,04	0,68	0,15	0,01	0,03	0,01	0,01	0,21	0,13	0,14	0,23	0,01				
D18	P27	0,02	0,52	0,47	0,02	0,04	0,03	0,01	0,20	0,12	0,01	0,04	0,01	0,01	0,01	0,03	0,01	0,10	0,01				
A19	2.2 10/19	0,03	0,30	0,35	0,15	0,58	0,15	0,21	1,00	0,05	0,09	0,05	0,02	0,02	0,04	0,07	0,05	0,14	0,04				
B19	T3443	0,13	0,17	0,13	0,02	0,60	0,03	0,17	0,17	0,03	0,01	0,03	0,01	0,01	0,07	0,13	0,02	0,06	0,02				
C19	SAMP5	0,01	0,03	0,03	0,01	0,01	0,01	0,01	0,02	0,08	0,02	0,04	0,01	0,01	0,02	0,03	0,02	0,09	0,02				
D19	FLAG02	0,01	0,10	0,09	0,02	0,03	0,03	0,01	0,11	0,03	0,01	0,04	0,01	0,01	0,01	0,03	0,01	0,08	0,01				
E19	рас	0,01	0,01	0,02	0,03	0,05	0,04	0,02	0,28	0,05	0,01	0,08	0,07	0,02	0,23	0,04	0,03	0,10	0,01				
G1	gpt	0,40	0,67	0,42	0,23	0,32	0,13	0,15	0,67	0,30	0,16	0,11	0,19	0,14	0,17	0,08	0,15	0,10	0,14				
H1	argF	0,22	0,67	0,61	0,10	0,12	0,08	0,09	0,56	0,16	0,18	0,11	0,15	0,05	0,06	0,05	0,06	0,05	0,11				
G2	hsds	0,10	1,05	1,03	0,48	0,02	0,05	0,21	0,12	0,23	0,02	0,04	0,03	0,02	0,01	0,01	0,01	0,05	0,02				
H2	glf	0,05	0,06	0,04	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,02	0,01	0,01	0,00	0,01	0,00	0,03	0,01				
G3	araA	0,57	0,95	0,83	0,28	0,20	0,22	0,33	0,95	0,47	0,27	0,14	0,45	0,14	0,27	0,12	0,32	0,06	0,11				
H3	yffs	0,48	0,93	0,91	0,06	0,05	0,03	0,08	0,43	0,08	0,06	0,06	0,09	0,02	0,02	0,02	0,02	0,05	0,04				
G4	mcra	0,03	0,03	0,05	0,01	0,01	0,01	0,01	0,05	0,02	0,01	0,03	0,01	0,04	0,01	0,01	0,01	0,04	0,01				
H4	int	0,20	0,91	0,45	0,03	0,01	0,02	0,04	0,16	0,04	0,04	0,05	0,07	0,02	0,01	0,03	0,01	0,04	0,03				
G5	gplit	0,02	0,02	0,04	0,01	0,01	0,02	0,01	0,03	0,02	0,01	0,03	0,01	0,01	0,00	0,01	0,00	0,03	0,01				
															0,14 0,27 0,12 0,32 0,06 0,11 0,02 0,02 0,02 0,02 0,05 0,04 0,04 0,01 0,01 0,01 0,04 0,01 0,02 0,01 0,01 0,04 0,01 0,02 0,01 0,01 0,04 0,01 0,02 0,01 0,03 0,01 0,04 0,03 0,01 0,00 0,01 0,00 0,03 0,01 0,01 0,00 0,01 0,00 0,03 0,01 0,01 0,00 0,01 0,00 0,03 0,01								

			Pat	hogene	e Stäm	me, Ni	ssle 19	17				un	chara	kterisie	erte Iso	olate (I	LGL, I	Pr. Bus	ch)	
P ¹	Abkürzung	E2348/69	EDL1284	536	96	CFT073	IHE3034	RS218	Nissle 1917		1	2	3	4	5	6	7	8	9	10
H5	tn10	0,14	0,32	0,16	0,02	0,01	0,03	0,02	0,09	0	,03	0,02	0,04	0,03	0,14	0,01	0,24	0,02	0,03	0,02
G7	hpaB	0,13	0,08	0,10	0,01	0,02	0,02	0,02	0,13	0	,20	0,02	0,09	0,17	0,01	0,17	0,01	0,14	0,05	0,01
H7	OXIDO	0,97	1,05	1,21	0,40	0,50	0,08	0,51	0,99	0	,56	0,24	0,17	0,44	0,11	0,29	0,19	0,40	0,06	0,04
G8	hpaD	0,07	0,09	0,08	0,02	0,01	0,01	0,02	0,10	0	,15	0,02	0,05	0,18	0,01	0,07	0,02	0,12	0,06	0,02
H8	ACOA	0,26	0,30	0,30	0,18	0,22	0,42	0,14	0,40	0	,17	0,07	0,06	0,08	0,04	0,09	0,07	0,13	0,04	0,01
G9	fimH	0,61	0,92	0,73	0,31	0,44	0,08	0,31	0,90	0	,32	0,16	0,12	0,29	0,06	0,21	0,16	0,30	0,08	0,14
H9	LON	0,99	1,05	1,29	0,61	0,88	0,18	0,71	1,00	0	,68	0,27	0,15	0,54	0,14	0,32	0,20	0,55	0,07	0,27
G11	GS8	0,02	0,01	0,02	0,09	0,01	0,14	0,06	0,02	0	,03	0,01	0,03	0,01	0,01	0,05	0,11	0,05	0,12	0,01
G12	EPI2	0,02	0,89	0,78	0,43	0,48	0,11	0,02	0,86	0	,04	0,08	0,06	0,04	0,02	0,01	0,21	0,01	0,03	0,01
G13	PUINV	0,38	0,63	0,49	0,15	0,58	0,11	0,09	0,76	0	,06	0,03	0,04	0,03	0,02	0,07	0,13	0,01	0,05	0,04
G17	21_9	0,16	0,34	0,16	0,07	0,01	0,02	0,06	0,05	0	,05	0,01	0,04	0,01	0,01	0,02	0,04	0,02	0,10	0,01
H17	1306	0,02	0,03	0,03	0,02	0,02	0,03	0,01	0,12	0	,03	0,01	0,03	0,01	0,01	0,01	0,02	0,01	0,04	0,01
G18	1310	0,01	0,01	0,01	0,02	0,04	0,02	0,01	0,13	0	,06	0,02	0,04	0,01	0,01	0,01	0,02	0,02	0,06	0,01
h18	prk2	0,37	0,05	0,04	0,01	0,01	0,06	0,01	0,05	0	,66	0,24	0,04	0,01	0,02	0,00	0,02	0,01	0,65	0,01
G19	fimH	0,12	0,71	0,44	0,16	0,57	0,08	0,21	1,00	0	,18	0,11	0,04	0,11	0,03	0,10	0,16	0,14	0,14	0,04
H19	LON	0,40	1,05	1,21	0,37	1,34	0,18	0,33	1,00	0	,36	0,19	0,06	0,16	0,03	0,17	0,28	0,28	0,19	0,08
A21	16S rDNA								norm	alisierte I	Positi	vkontr	olle							
A22	pks left	0,06	0,59	0,43	0,53	0,64	0,36	0,94	1,00	0	,04	0,03	0,05	0,02	0,02	0,02	0,02	0,01	0,04	0,01
A23	pks right	0,04	0,56	0,47	0,55	0,45	0,22	0,87	1,00	0	,17	0,02	0,05	0,02	0,01	0,01	0,01	0,01	0,08	0,01
A24	pks ORF 6	0,07	0,88	0,69	0,79	0,90	0,43	1,00	1,00	0	,12	0,08	0,06	0,05	0,03	0,02	0,03	0,02	0,07	0,02
A25	pks ORF 17	0,04	0,50	0,43	0,51	0,70	0,01	0,83	0,93	0	,06	0,05	0,08	0,05	0,03	0,02	0,03	0,02	0,05	0,02
A28	PALIII	0,04	0,99	0,67	0,79	0,49	0,03	1,01	0,98	0	,04	0,32	0,19	0,03	0,12	0,01	0,11	0,01	0,05	0,02
A29	fyua	0,05	0,65	0,56	0,48	0,54	0,01	0,78	0,94	0	,06	0,20	0,06	0,04	0,06	0,02	0,02	0,03	0,06	0,03
A30	iroN	0,05	0,67	0,66	0,49	0,92	0,01	0,84	0,97	0	,06	0,06	0,06	0,03	0,02	0,24	0,02	0,02	0,04	0,02
A31	sja	0,02	0,23	0,10	0,10	0,32	0,03	0,23	0,83	0	,03	0,02	0,04	0,01	0,01	0,01	0,01	0,01	0,04	0,01
A32	рарА	0,02	0.02	0,19	0.02	0,12	0,02	0,07	0,20	0	,02	0,01	0,03	0,01	0,01	0,00	0,02	0,00	0,04	0,01
B21	sat T	0,02	0,03	0,05	0,02	0,26	0,02	0,03	0,59	0	,01	0,01	0,04	0,01	0,01	0,01	0,01	0,00	0,05	0,01
B 22	omp1	0,21	0,24	0,19	0,17	0,24	0,02	0,29	0,99	<mark>_ U</mark>	,42	0,21	0,04	0,25	0,05	0,17	0,13	0,01	0,10	0,07
																	Fort	setzung	g nachs	te Seite

			Patl	nogene	e Stäm	me, Ni	ssle 19	17			un	charal	kterisie	erte Iso	olate (L	.GL, D	r. Bus	ch)	
P ¹	Abkürzung	E2348/69	EDL1284	536	J96	CFT073	IHE3034	RS218	Nissle 1917	1	2	3	4	5	6	7	8	9	10
B23	aerJ	0,03	0,03	0,04	0,01	0,16	0,07	0,02	0,90	0,03	0,11	0,15	0,01	0,14	0,15	0,07	0,01	0,04	0,01
B24	tir	0,01	0,08	0,07	0,04	0,08	0,02	0,01	0,31	0,02	0,01	0,02	0,01	0,01	0,00	0,01	0,00	0,03	0,01
B25	bma	0,02	0,02	0,03	0,01	0,01	0,06	0,10	0,03	0,10	0,03	0,03	0,04	0,02	0,01	0,01	0,07	0,04	0,01
B26	kpsII	0,01	0,02	0,03	0,01	0,07	0,02	0,13	0,19	0,01	0,01	0,03	0,01	0,01	0,00	0,01	0,00	0,03	0,01
B27	kpsIII	0,02	0,17	0,14	0,11	0,01	0,07	0,01	0,03	0,02	0,01	0,03	0,01	0,01	0,00	0,01	0,01	0,04	0,01
B29	focG	0,01	0,06	0,06	0,04	0,12	0,06	0,03	0,32	0,02	0,01	0,02	0,01	0,01	0,00	0,01	0,00	0,04	0,01
B30	cnf	0,01	0,15	0,14	0,12	0,01	0,27	0,20	0,01	0,02	0,01	0,03	0,01	0,01	0,00	0,01	0,00	0,04	0,01
C22	hlya	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,03	0,01	0,01	0,01	0,01	0,01	0,04	0,01
C23	stx	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,03	0,01	0,01	0,01	0,01	0,01	0,04	0,01
C31	traT	0,04	0,40	0,25	0,43	0,01	0,04	0,68	0,03	0,18	0,14	0,03	0,01	0,04	0,05	0,05	0,01	0,08	0,01
C32	eagg	0,01	0,02	0,03	0,01	0,01	0,08	0,01	0,02	0,02	0,01	0,03	0,01	0,01	0,00	0,01	0,00	0,04	0,01
D21	plys	0,04	0,08	0,05	0,03	0,03	0,02	0,04	0,08	0,05	0,04	0,07	0,03	0,02	0,02	0,02	0,04	0,06	0,02
D22	traE	0,02	0,38	0,20	0,21	0,01	0,09	0,51	0,03	0,12	0,10	0,04	0,01	0,06	0,08	0,06	0,01	0,12	0,04
D23	cam	0,02	0,02	0,03	0,01	0,01	0,01	0,01	0,04	0,03	0,09	0,08	0,01	0,03	0,01	0,09	0,01	0,07	0,01
D24	bla	0,06	0,04	0,06	0,02	0,02	0,02	0,03	0,09	0,44	0,79	0,18	0,04	0,13	0,31	0,19	0,37	0,13	0,01
E21	btubb	0,06	0,03	0,02	0,02	0,02	0,03	0,02	0,10	0,04	0,04	0,05	0,03	0,02	0,01	0,02	0,01	0,05	0,01
E22	DMSO	0,01	0,01	0,01	0,01	0,00	0,01	0,00	0,01	0,02	0,01	0,03	0,01	0,01	0,00	0,01	0,00	0,04	0,01
D32	fimH	0,18	0,22	0,22	0,26	0,35	0,08	0,38	0,67	0,22	0,11	0,09	0,11	0,04	0,10	0,16	0,13	0,14	0,09
E32	LON	0,35	0,20	0,27	0,41	1,34	0,18	0,66	1,00	0,58	0,19	0,07	0,16	0,04	0,17	0,28	0,19	0,19	0,06

 \overline{P}^1 steht für die Position auf dem Chip (nach Abbildung 22A) Alle Werte über 0,1 stehen für positive Hybridisierungssignale (grau hinterlegt)

Die vorliegende Arbeit wurde am Lehrstuhl für Mikrobiologie der Technischen Universität München unter Leitung von Herrn Prof. Dr. K.-H. Schleifer im Zeitraum von Juli 2005 bis Dezember 2007 angefertigt. Die Finanzierung des Projektes erfolgte durch das Bayerische Landesamt für Umwelt und Verbraucherschutz.

Auszüge dieser Arbeit wurden bereits veröffentlicht:

Bauer, A. P., Dieckmann, S. M., Ludwig, W. & Schleifer, K. H. (2007). Rapid identification of Escherichia coli safety and laboratory strain lineages based on Multiplex-PCR. *FEMS Microbiol Lett* **269**, 36-40.

Bauer, A. P., Ludwig, W. & Schleifer, K.-H. (2008). A Novel DNA Microarray Design for accurate and straightforward identification of Escherichia coli safety strains. *Syst Appl Microbiol* 10.1016/j.syapm.2008.01.001.

An dieser Stelle möchte ich mich bedanken bei...

Herrn Prof. Schleifer, für die Möglichkeit, die Promotion an ihrem Institut durchzuführen, das große Interesse an der Arbeit und für die hervorragende Bertreuung.

Herrn Dr. Ludwig, für den guten Führungsstil, der ein freies und selbstständiges Arbeiten mit vielen eigenen Ideen ermöglichte, und die guten Ratschläge, wenn man mal nicht weiter kam.

Barbara Wunner-Füßl, für die guten Tipps in Sachen Kindererziehung, ihre Seelsorgertätigkeit im Labor 103, ihrer stets guten Laune und der Fahrt mit dem Porsche.

Martin Pilhofer, für kompetentes Fachsimpeln auf höchster Ebene, 2 ½ Jahre Männerinsel in einer Welt voller Amazonen, die Ausflüge ins Münchener Nachtleben und seine täglich neuen Pläne für das Ende seiner Doktorarbeit. Und für die Plastiktüten.

Nina Rappl, für die peniblen Korrekturen sämtlicher Veröffentlichungen und Vorträge (besonders die Farben!), die Einhaltung der Knigge-Regeln im Labor und die Übernahme des Amts des roten Sherriffs mit ihrer Spionkamera.

Marko Pavlekovic, für dein heiteres, immer gut gelauntes Wesen, dein exzellentes Computerverständnis und dafür, das du beim Kickern immer verloren hast.

Manuela Hartmann, für die guten Tipps in Sachen DNS-Hybridisierung.

Sibylle Schadhauser für dein Sequenzier-Know-How.

Sibylle Stindl für die kurze Einführung in die Technik der subtraktiven Hybridisierung.

Conny Garus für den Kaffee und die Milliarden von gesteckten Spitzen.

Sarah Dieckmann und Mathias Zeiler, die mir als meine Studenten sehr viel Arbeit abgenommen haben.

Allen anderen Institutsangestellten und Studenten für das gute Arbeitsklima

Dr. Sören Schubert, Dr. Ulrich Dobrindt für ihre Hilfe bei der Suche nach Virulenzfaktoren.

Dr. Wolfgang Müller, für die Möglichkeit am Friedrich-Löffler-Institut in Jena eine Vortrag zu halten und mit Francisellen zu arbeiten.

Sabine und Kilian, für ihre volle Unterstützung, die immer aufregende Freizeitgestaltung mit einem kleinen Kind und vor allem für die gelungene Ablenkung von der Arbeit.
Persönliche Daten	
Name, Vorname	Bauer, Andreas
Strasse	Hochfeldstraße 13
PLZ/Wohnort	85419 Mauern
Geboren	12.06.1978 in Moosburg a. d. Isar
Staatsangehörigkeit	deutsch
Familienstand	verheiratet, 1 Kind (2)
Berufserfahrung	
Juli 2005- Dez. 2007	Promotion bei Prof. Schleifer am Lehrstuhl für Mikrobiologie
	der TUM, Arbeitsgruppe Dr. Wolfgang Ludwig
	Thema: Entwicklung eines DNS-Mikroarrays zur verlässlichen
	Identifizierung von Escherichia coli Sicherheitsstämmen
	Betreuung einer Bachelor-Studentin und eines Großpraktikums
<u>Studium</u>	
Mai 2004 – März 200	Diplomarbeit in der Arbeitsgruppe Dr. Wolfgang Ludwig am
	Lehrstuhl für Mikrobiologie der TUM, in Kooperation mit Dr.
	Giulio Petroni von der Universität Pisa, Dipartimento di
	Etologia, Ecologia Evoluzione
	Thema: Comparative molecular phylogeny of free living and
	symbiotic Verrucomicrobia by using protein coding genes
Okt. 1999 – März 20	05 Studium der Biologie an der Technischen Universität München
	mit dem Hauptfach Mikrobiologie und den Nebenfächern
	Virologie sowie Zoologie
	Diverse hilfswissenschaftliche Tätigkeiten in der Arbeitsgruppe
	Dr. Wolfgang Ludwig am Lehrstuhl für Mikrobiologie der
	TUM, sowie Betreuung mehrerer mikrobiologischer Praktika für
	das Grundstudium Biologie
Praktika	Mikrobiologisches Großpraktikum (Teil 1 und 2) am Lehrstuhl
	für Mikrobiologie der TUM
	Tierphysiologisches und morphologisches Praktikum am
	Lehrstuhl für Zoologie and der TUM

Lebenslauf

Nebentätigkeiten	Virologisches Praktikum am Institut für Virologie der TUM sowie in der Abteilung Virusforschung des MPI für Biochemie in Martinsried seit 1999 Teilzeitbeschäftigung am Flughafen München
Zivildienst	
Nov. 1997 – Dez. 1998	Klinik und Poliklinik für Psychiatrie und Psychotherapie - Klinikum der LMU München
Schulausbildung	
1988 – 1997	Karl-Ritter von Frisch Gymnasium Moosburg Abschluss der allgemeinen Hochschulreife
1984 – 1988	Grundschule Moosburg
Publikationen	

Bauer, A P, Dieckmann S, Ludwig W & Schleifer K H, (2007) Rapid identification of Escherichia coli safety and laboratory strain lineages based on Multiplex-PCR, *FEMS Microbiol Lett*

Pilhofer, M, **Bauer A P**, Schrallhammer M, Richter L, Ludwig W, Schleifer K H & Rosati, G, (2007) Characterization of bacterial operons consosting of two tubulins and a kinesin-like c gene by the novel Two-Step Gene Walking method, *Nucleic Acids Res*

Bauer, A P, Ludwig W & Schleifer K H, (2008) A Novel DNA microarray for accurate and straightforward identification of Escherichia coli safety and laboratory strains, *Syst. Appl. Microbiol.*

Tagungen

Vortrag über "Subtraktive Hybridisierungsmethoden zur Anreicherung Stammspezifischer DNA-Abschnitte am Beispiel *Escherichia coli*", Friedrich Löffler Institut Jena, 2007 Posterpräsentation auf der VAAM in Jena 2006 Vortrag über "Comparative molecular phylogeny of *Verrucomicrobia* by using protein coding genes" auf der VAAM im September 2005 in Göttingen Teilnahme und Präsentation der Ergebnisse am XXIV Convegno della Societa Italiana di Protozoologica, Oktober 2004 in Rapallo, Italien