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Abstract

One of the oldest dreams of Artificial Intelligence is the realization of autonomous robots
that achieve a level of problem-solving competency comparable to humans. Human
problem-solving capabilities are particularly impressive in the context of everyday ac-
tivities such as performing household chores: people are able to deal with ambiguous and
incomplete information, they adapt their plans to different environments and specific sit-
uations achieving intuitively almost optimal behavior, they cope with interruptions and
failures and manage multiple interfering jobs. The investigations presented in this work
make substantial progress in the direction of building robots that show similar behavior.

This thesis addresses the problem of competently accomplishing everyday manipu-
lation activities, such as setting the table and preparing meals, as a plan-based control
problem. In plan-based control, robots do not only execute their programs but also reason
about and modify them. We propose TRANER (Transformational Planner) as a suitable
planning system for the optimization of everyday manipulation activities. TRANER real-
izes planning through a generate-test cycle in which plan revision rules propose alternative
plans and new plans are simulated in order to test and evaluate them. The unique features
of TRANER are that it can realize very general and abstract plan revisions such as “stack
objects before carrying them instead of handling them one by one” and that it successfully
operates on plans in a way that they generate reliable, flexible, and efficient robot behavior
in realistic simulations.

The key contributions of this dissertation are threefold. First, it extends the plan rep-
resentation to support the specification of robust and transformable plans. Second, it pro-
poses a library of general and flexible plans for a household robot, using the extended
plan representation. Third, it establishes a powerful, yet intuitive syntax for transforma-
tion rules together with a set of general transformation rules for optimizing pick-and-place
tasks in an everyday setting using the rule language.

The viability and strength of the approach is empirically demonstrated in comprehen-
sive and extensive experiments in a simulation environment with realistically simulated
action and sensing mechanisms. The experiments show that transformational planning is
necessary to tailor the robot’s activities and that it is capable of substantially improving
the robot’s performance.





Zusammenfassung

Einer der ältesten Träume der Künstlichen Intelligenz ist die Konstruktion von autonomen
Robotern, deren Problemlösefähigkeit vergleichbar zu der von Menschen ist. Menschliche
Problemlösefähigkeiten sind besonders beeindruckend im Zusammenhang von alltäglichen
Aktivitäten wie Hausarbeit: Menschen können mit mehrdeutigen und unvollständigen In-
formationen umgehen, sie passen ihre Pläne verschiedenen Umgebungen und spezifischen
Situationen an, sodass sie intuitiv fast optimales Verhalten zeigen. Sie kommen mit Unter-
brechungen und Fehlern zurecht und bewältigen mehrere, sich gegenseitig beeinflussende
Aufgaben. Die Untersuchungen, die in dieser Arbeit vorgestellt werden, stellen einen
substantiellen Fortschritt in die Richtung dar Roboter mit ähnlichem Verhalten zu bauen.

Diese Arbeit beschäftigt sich mit der Frage, wie alltägliche Manipulationsaufgaben
wie Tischdecken und Kochen als planbasierte Kontrollprobleme gelöst werden können.
Bei der planbasierten Kontrolle führen Roboter ihre Programme nicht nur aus, sondern sie
stellen auch Schlussfolgerungen darüber an und modifizieren sie. Wir schlagen TRANER

(Transformationsplaner) als geeignetes Planungssystem zur Optimierung von alltäglichen
Manipulationsaufgaben vor. TRANER plant innerhalb eines Zyklus von abwechselndem
Generieren und Testen, bei dem Planrevisionsregeln alternative Pläne erzeugen und neue
Pläne zum Zwecke des Testens und Evaluierens simuliert werden. Die einzigartigen
Merkmale von TRANER sind, dass es sehr allgemeine und abstrakte Planrevisionen be-
handeln kann wie beispielsweise „staple Objekte vor dem Tragen anstatt sie einzeln zu
manipulieren“ und dass es Pläne erfolgreich so modifiziert, dass zuverlässiges, flexibles
und effizientes Roboterverhalten in einer realistischen Simulation hervorgerufen wird.

Diese Dissertation beinhaltet drei Hauptbeiträge. Erstens erweitert sie die Planreprä-
sentation sodass sie die Spezifikation von robusten und transformierbaren Plänen unter-
stützt. Zweitens schlägt sie eine Bibliothek von allgemeinen und flexiblen Plänen für
Haushaltsroboter vor, bei der die erweiterte Planrepräsentation zum Einsatz kommt. Drit-
tens führt sie eine mächtige und gleichzeitig intuitive Syntax für Transformationsregeln
ein, zusammen mit einer Menge von allgemeinen Transformationregeln zur Optimierung
von Manipulationsaufgaben in Alltagssituationen.

Die Realisierbarkeit und Stärke unseres Ansatzes wird empirisch in aufwendigen und
umfassenden Experimenten dargelegt, die in einer simulierten Umgebung mit realistisch
simulierten Aktionen und Wahrnehmungsmechanismen durchgeführt wurden. Die Ex-
perimente zeigen, dass Transformationsplanen notwendig ist um Roboteraktivitäten anzu-
passen und dass es eine substantielle Verbesserung der Leistung des Roboters ermöglicht.
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Chapter 1

Introduction

The demand for technical systems in everyday domains is huge. Who of us has not
dreamed of a robot that cleans the bathroom all by itself? Devices supporting humans
in their daily activities are slowly finding their way into our lives. Just think of car nav-
igation systems or automatic word detection in mobile phones. But all of these devices
provide very limited functionality and are only applicable for specialized tasks. When it
comes to comprehensive systems like household robots, there is still a long way to go.

Brachman (2002) proposes cognitive systems as “systems that know what they’re do-
ing”. He claims that tomorrow’s systems must be able to explain what they do and why
they do it, learn from their mistakes, be instructed and react intelligently to new situations.
This means that such a system must be able to change its own control program and find
new strategies for accomplishing its tasks.

In this work, we consider a simulated autonomous kitchen robot that can prepare
meals, set the table and clean things away as a typical example of a cognitive system
in human-dominated environments (cf. “Toward Flexible and Robust Robots” by Nilsson
(Selman et al. 1996) for a similar challenge). This domain is much more complex than the
ones addressed in today’s systems. The robot must not only be able to navigate safely in a
close area, but also execute sophisticated manipulation tasks like grasping objects, stirring
container contents and transporting things. The objects in a kitchen are very diverse —
a knife must be handled differently from a plate and it even depends on the context, if a
knife is to be used for cutting or if it is to be transported.

Planning is an indispensable component of any control program working successfully
in a kitchen. A planner could reason about how to get a cup out of a cupboard. If the robot
has to take several objects out of the cupboard it can think of an order that simplifies the
reaching tasks or it could check whether temporarily moving an obstacle out of the way
would help. It could reason about whether it could leave a cupboard door open until it is
back or whether it would be safer to close the door in the meantime. The robot could also
think about the overall structure of activities such as setting the table. Here, the question
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is whether to carry the tableware one by one, whether to stack the plates, or to use a tray.
Which of the options is the best critically depends on the robot’s dexterity, the geometry
of the room furnishing, other properties of the environment, the availability of trays, etc.

Although general-purpose planners have received much attention over the last years,
they are still not able to solve these problems (Pollack and Horty 1999). Planners pri-
marily address the problem of generating partially ordered sets of actions that provably
achieve some desired goal state. While some of the planners reason about resources and
generate resource-efficient plans they do so at an abstract level considering plan actions as
black boxes. In contrast, the examples above require much more detailed consideration of
resources and situation-dependent resource requirements. While current planners aim at
provably correct plans, the most important issue in robot control is in most cases whether
one plan is more reliable than another one. Current planners make the assumption that
complex activities are sufficiently specified using a set of actions that must be carried out
and a set of ordering constraints that prevent negative interferences between the plan steps.
For every task plans are computed from scratch. The resulting plans achieve goals under
assumptions that idealize reality. As a consequence of this idealization, issues such as
flexibility, reliability, successful long term activity, and learning from experience are not
addressed sufficiently. In contrast, robot activity requires sophisticated coordination using
control structures much more powerful than simple action chaining, for example when the
robot gets an object out of the way to pick up another one the obstacle should be put back
immediately after the pick up is completed and before the robot leaves its current location.

In contrast, we think that it would be too demanding to develop a robot that works
as it is in every kitchen. Different kitchens require different kinds of navigation, the
objects are stored in different locations and some kitchens offer possibilities that others
don’t (e.g. not all kitchens are equipped with a dish-washer). On the other hand, we
can make some assumptions in a kitchen that don’t hold in a general way. First, we can
assume that the environment is non-hostile. No one willingly disturbs the robot during
its activity and there is no opponent that tries to reach contrary goals like for example in
a game with two players. Secondly, the activities in a kitchen can be assumed to take
place over and over again. Tasks like setting the table are routine repertoire and can
be executed in a similar way each time they are encountered. Because of the unusual
challenges and the assumptions we can make in a kitchen or other everyday environments,
our approach is to equip the household robot with plans for standard tasks that work
in any kitchen. Instead of optimality, we strive for what Herbert Simon (Simon 1955;
1996) called “satisficing” behavior. When the robot is introduced into a new household it
adapts its behavior to the special needs of the kitchen and its inhabitants.

In this work we propose TRANER (TRAnsformational PlanNER for Everyday Activ-
ity), a framework for plan-based control, whose strategy is to equip the robot with robust
and general default plans and adapt these to special situations and environments by plan
transformation.
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1.1 Challenges in Developing Household Robots
Today robotic applications are moving more and more to everyday environments like pri-
vate households. For example, there already are robots for vacuum-cleaning. However,
such robots can only perform very limited tasks, usually restricted mostly to navigation
without destroying anything. In our research we strive for developing a robot with more
diverse abilities that can assist people in a variety of tasks like cooking, cleaning, setting
the table, etc. In this section we show how our robot differs from existing vacuum-cleaning
robots and the major problems in its development.

As we have already mentioned, a general-purpose household robot is confronted with
a wide variety of tasks, which not only involve navigation, but also active manipulation
of objects. For the manipulation work we use two arms with 10 DOF each. This changes
the 2 DOF problem of pure navigation to a 22 DOF problem when manipulation is to be
performed. The computational complexity does not only involve the motion control of the
arms, it also gives rise to more sources of optimization as well as failure. For example,
the robot can already lift its arm when it approaches the table in order to grip something
instead of navigating first and moving the arms afterwards. This optimized behavior,
however, can lead to more failures, for example the arms colliding with objects or with
each other.

Successful application of industrial robots largely depends on the environment the
robot is operated in. The whole surrounding of the robot is usually adapted to its needs. In
a household environment, this is of course impossible. The vacuum-cleaning robot faces
this problem, too. It cannot depend on a certain size of the room or an arrangement of
furniture unless it has operated in this room before. This means that it must explore its
environment on its own. For a general-purpose household robot this problem is even more
striking. While the world of a vacuum-cleaning robot only consists of obstacles and free
space, the household robot must identify objects and use the resources of its environment
as best as it can.

The virtue of industrial robots is that they work more precisely and are less error-prone
than humans. As we have said, this is largely achieved by assuring certain conditions in
its surrounding. In real-world settings, however, we cannot expect a robot to work without
flaws. Because the real world is unpredictable and highly uncertain in many ways, failures
cannot be avoided completely. Figure 1.1 shows a selection of possible unwanted events in
the robot’s activities: objects slipping from the robot’s gripper, not knowing the positions
of objects because they are occluded by other objects, or placing objects at the wrong
position. While some of these failures could be avoided by more accurate state estimation
or robot control, there will always be cases where failures occur. Therefore it is vital to
equip a household robot with the means to detect failures and correct them.

The actions performed by industrial robots or a vacuum-cleaning robot are very lim-
ited. The vacuum-cleaning robot has practically only one task: navigate. Industrial robots
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often perform amazing manipulation tasks, but these are preprogrammed sequences of
motor control signals. In contrast, our household robot has to perform very diverse tasks
such as cooking or setting the table. To perform these high-level activities, it must be able
to identify sub-activities like moving and handling objects, stirring container contents,
opening cupboards and drawers, etc. These more basic actions, which can be used for
several high-level activities, must work robustly, also in the light of interruption. Robust-
ness doesn’t mean that they must work flawlessly. As we said, we cannot rule out failures
completely. Robustness rather means that the actions shouldn’t rely on any preconditions
to hold in the world and that they detect failures and react appropriately.

We have said much about the problems concerned with controlling the robot. Another
aspect of real-world activity is how to describe and identify objects. In industrial settings
all objects have well-defined identifiers and can be recognized with complete certainty.
In contrast, the vacuum-cleaning robot cannot identify the objects in the room. It only
knows that there is a certain area that is occupied by an obstacle. This description fully
suffices for not destroying things while cleaning. But in a kitchen environment the matter
is more complicated. We could use unique identifiers like in the industrial setting, but this
would make the program very inflexible. For example, the robot needs a bowl to mix some
ingredients. If the objects are identified with unique numbers, the robot relies entirely on
finding this one bowl. A better approach is to describe objects symbolically, for example
“a container which is large enough for the ingredients at hand”. In this case, the robot can
use any other bowl or find another container like a cup if no bowl is available.

Related to the description of objects is the ability to communicate with humans about
the course of action taken or ask for advice if necessary. On the one hand, this involves
describing objects in a way that humans understand it. It doesn’t help complaining that

Figure 1.1 Different failures observed during experiments: dropping objects, not being
able to grip objects, and putting objects at the wrong position.
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“object 123 wasn’t found”. But a human can help the robot in finding “an empty cup”.
Similarly, the robot must have knowledge about the state of its own program. This includes
its goals and the actions it has taken to achieve this goals, as well as the degree to which
the goal has been achieved and the robot’s belief if it is still achievable.

In sum, the demands on a general-purpose household robot differ a lot from those of
an industrial robot or a special-purpose robot like a vacuum-cleaning robot. On the one
hand, control is harder because of additional degrees of freedom, uncertain and unknown
environments, failures, and complex actions. On the state estimation side, rich knowledge
representations and object descriptions are necessary to achieve robust behavior. Finally,
intelligent robots must be able to communicate about their tasks with humans.

1.2 General Approach and Research Questions
Considering the problems just described, we are convinced that to implement a useful
general-purpose household robot, it should be designed a priori to work in any kitchen
under all possible circumstances. This means, we don’t make any assumptions about the
kitchen size or specialized equipment. However, such a robot cannot perform efficiently
in all environments, because some kitchens offer the possibility of optimization of the
robot’s plans, while others don’t. For example, the cleaning of dishes should be performed
differently in a kitchen equipped with a dishwasher than in a kitchen without one. So our
approach aims at a way between complete generality and the restrictiveness of industrial
robots. Our robot is to be able to work in any kitchen, but adapts more and more to the
specific circumstances of its home kitchen.

Figure 1.2 shows the fundamental idea of our approach. We equip the robot with a set
of plans, organized in a plan library. Additionally, we provide a set of plan transformation
rules. By applying such a rule to a plan from the plan library, new plans are generated.
If the generated plans (or some of them) work better, they are included in the plan library
for later use. By doing so, the robot develops from a “general-kitchen” worker to one
specialized for a specific kitchen.

The use of a plan library greatly reduces the complexity for activities when contrasted
to plan generation. The activities in a household are usually very similarly each time they
are executed. Therefore, it is a good assumption to use the plan that worked well last time.
On the other hand, the plan transformations add the flexibility necessary in real-world
environments, where the environment can change and unexpected events may happen.
While the original plans in the library needn’t be optimal for a specific environment, they
must be robust, so that they produce the desired result under all circumstances, albeit not
efficiently. By transforming the plans, the robustness is preserved, but the efficiency gets
better, because features of the kitchen at hand can be taken for granted.

Of course, the implementation of the individual plans also contributes largely to meet-
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ing the demands from the last section. In all, our approach considers three major interre-
lated topics:

o the individual plans,
o the plan library and the interaction of plans, and
o plan transformations.

1.2.1 Plans

Plans for intelligent household robots cannot just be sequences of plan steps. As we said,
the world is much too complex to rely on flawless execution of these plan steps. Conse-
quently, the plans must constantly check for failures in the execution and try to recover
from them. This mechanism must not only work on individual plans, but also involves
the interaction of several plans. When a failure is detected in one plan, for example that
a certain object cannot be found, this doesn’t mean that the plan recognizing this failure
is the best candidate for repairing it. The object finding plan cannot do much more than
search again. But a higher-level plan, the one that has chosen this object to be looked for,
can reconsider its steps and select another object as substitute.

Figure 1.2 General approach of adapting robot plans to a specific environment using plan
transformations.

Plan
Library

Transformation
Rules

Plan
Library
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Another important aspect of coding plans is to include semantic information about
the purpose of plan steps. Such information is contained in special language constructs
that tell for instance that while performing the following steps the robot should stay at
a certain location. This approach has several advantages over coding the same with a
command to navigate to the location and then execute the following plan steps. First, it
makes the plan more robust, because the construct doesn’t only move the robot to the
desired location once, but also takes care that the robot stays there while performing its
subsequent actions. Second, this is a step towards the ability to explain the robot’s course
of action. Third, it makes plans transformable, an operation needed to adapt the program
to the environment it is used in.

A third aspect of plan coding involves the representation of external objects, and also
the robot’s internal parameters. Sophisticated knowledge representation is necessary to
describe objects symbolically, so that the robot can reason about optimally exploiting
resources and flexibly replacing one object by another if necessary. This representation
also makes communication with humans easier. Similarly, the robot can represent internal
variables and parameters to be determined in the same symbolical way. This means that it
has notions such as “free space on the table, which is easily reachable from the front side”.
The advantages of this representation over a fully specified coordinate are the same as for
object representations: finding an optimal solution depending on the situation, resolving
failures, and enabling communication with humans.

1.2.2 Plan Library
After considering individual plans, we must think about how they are organized in the
plan library and how the plans interact when they are executed. Both the sequential and
hierarchical interaction of plans have challenging aspects.

A typical sequence of plan steps could be “get the cup out of the cupboard, bring
the cup to the table”. This plan doesn’t say anything about when to open and close the
cupboard door. The opening of the cupboard is a precondition for gripping the cup and it
can be performed directly before. But when should the robot close the cupboard? The plan
doesn’t imply any direct necessity of closing the cupboard. But if the robot doesn’t close
the cupboard, this might make subsequent plans much less efficient or even impossible.
When the door is open the robot doesn’t have as much room for navigation as it would
have otherwise, so some parts of the kitchen might not be accessible to it. Besides, when
the cupboard door is left open for long times, the contents collect dust and when the plates
and cups are needed, they must be cleaned before they can be used. The simplest way to
avoid these long-term risks is to close the cupboard immediately every time the robot has
taken something out. This, however can lead to very undesired courses of action where the
robot opens the cupboard, gets out a cup, closes the cupboard, opens the cupboard again,
gets out the plates, closes the cupboard, etc. Finding the perfect time for performing such
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clean-up actions like closing cupboards can hardly be done analytically. The best method
is to transform the plan and try empirically which solution is the best.

The second interaction problem of plans lies in their hierarchical composition. We
have said that we want to represent internal parameters in a symbolical form. But sooner
or later, this symbolic representation must be converted to something more tangible like
coordinates. At some point in the hierarchy of plans this decision has to be made. One sim-
ple heuristic would be to postpone the decisions as long as possible and let the lowest-level
plan choose the parameters. However, this decision is based on very limited knowledge.
The lowest-level plan could be a navigation plan. When confronted with the mission to
“navigate to a position near the front side of the table”, the intention of this assignment
is not clear any more. A higher-level plan would know if the purpose is to put something
on the table or to clean the table, which might lead to other instantiations of the abstract
description. On the other hand, if the parameters are instantiated too high up in the plan
hierarchy, the advantages of symbolic descriptions disappear.

1.2.3 Plan Transformations
The plans in the plan library form the basis for our general idea of Figure 1.2, the plan
transformation process. Out of robust, general plans the robot is to develop environment
specific, optimized plans. This includes adaptations to special opportunities or threats of a
specific environment as well as integration of auxiliary goals in the hierarchical interaction
of plans such as closing cupboard doors or cleaning dishes.

But the transformation process is more than just applying a transformation rule to a
plan. It is necessary to know if a transformation is needed at all and if the resulting plan
performs better than the old one. This means that each plan has to be assessed through
simulated execution and evaluation. Figure 1.3 shows the transformation of one plan in the
context of testing and evaluating the plans. The top third of the picture shows a summary
of the performance of the original plan. This consists of the navigation path used in setting
the table and a set of events during the plan execution. One can see that the robot navigates
the same paths several times, an indication that the plan has potential to be improved.

The enhancement of the plan is depicted in the center part of Figure 1.3. It is the
straightforward application of transformation rules. In this example, two rules are used —
one that changes the plan in a way that the robot stacks plates instead of carrying them one
by one, and a transformation rule making the robot use its resources better, in this case by
carrying two cups at a time.

The next step is to find out if the new plan is more efficient than the old one. To this
end, the plan is executed and monitored in simulation1. The result is shown in the bottom

1As our robot is only implemented in simulation, the simulation and real environments are identical in
our case. In general, a simulation is needed for safely and efficiently testing plans, even though a physical
robot is used. For more information see Section 6.1.3
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Figure 1.3 Plan transformation including monitoring and evaluation of plans.
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part of Figure 1.3. With the transformed plan, the robot doesn’t cover the same route
over and over again. We can also measure that the time needed to perform the complete
table setting task is less than before. This means that the new plan should replace the
old one, at least for the specific environmental situation. It is possible that this new plan
can be enhanced further by applying the same procedure of transforming it, executing and
monitoring it in simulation and evaluating it.

One challenge lies in the definition of general plan transformations, so that they are
general enough to work for a wide variety of plans, plans which are unknown at the time
the rules are designed. If the rules were very specific, so that they only worked on a
limited set of plans, we could implement the transformed plans just as well instead of
transforming them. The whole idea of transformation lives from the transformation rules
being general, giving the robot the ability to find plans which are strongly adapted to the
environment it is operating in. Transformations also allow the robot to adapt its plans
when the environment changes or when for example one of the robot’s arms breaks.

This observation doesn’t only make the design of transformation rules an important
issue, but also their representation. It must be possible to specify the necessary character-
istics of the input plan to a rule, describe different transformation operations and make use
of syntactical as well as semantical information about the plan. This representation lan-
guage must be very general and flexible while still being understandable and usable by a
programmer. After all, the sense of transforming plans is to have less work than designing
specialized plans for each environment.

1.3 Technical Challenges
The technical challenges were mainly related to plan construction and transformation, but
also include the implementation of a suitable simulation environment.

The first point was how to make plans robust and still easy to transform. To achieve
this, the detection and the repair of failures must be separated. Furthermore failure re-
covery should take place on more than one level of abstraction to ensure overall robust
behavior. For example, both the gripping and the put down plans monitor if the object is
still in the robot’s hand. But a higher-level plan, for example one for carrying an object
from one place to another, should watch for the loss of the object, too, because between
gripping and putting down the robot has to navigate without losing anything. The failure
recovery on the higher level alone might be suboptimal, because often the sub-plans have
more information about their current execution status and can handle the failure more
effectively.

Then, we had to solve the issue of how to code transformation rules declaratively,
how to find a language in which to describe transformations. It should be declarative to
be readable and easy to understand as well as general so that it is applicable to a wide
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variety of problems. Transformations can be very different. Some might only interchange
execution steps, others regroup the usage of resources, still others replace plan steps by
others. As the plans are always situated in a higher execution context, this has to be
drawn into consideration and be transformed accordingly. Besides being general, the
transformation rules must produce plans that are robust and can be transformed in their
turn.

Finally, we had to develop a realistic simulation for a kitchen environment. Plan sim-
ulations are usually on a conceptional scale, where plan steps are represented as abstract
actions such as “go to the table”. What we wanted was a physical simulation of the robot
and the environment in which we encounter the same problems as in reality, but are able to
make simplifications at will. For example we can model the state estimation step as being
left out, so that the robot can work with ground truth data, or it can be distorted with differ-
ent levels of noise. Besides, we have the possibility to furnish the kitchen with equipment
that would be very expensive in the real world, e.g. automatically opening doors or an
automatic water tap. We made use of the Gazebo simulation environment that integrates
the ODE library for physical simulation. But the possibilities were still restricted. There
were no kitchen or objects used in a kitchen simulated yet. Our robot arm, too, had to be
developed from scratch. Another problem was to model liquids, which are not supported
by Gazebo at all. With the sophisticated simulation we have developed we can now sim-
ulate the robot’s activities from the top-level plan to low-level activities. Because of the
common Player interface we will be able to use most parts of our plans on a real robot that
is presently under development.

1.4 Contributions

The contributions of this work comprise all the steps of building a running plan transfor-
mation system. In particular, they consist of

o concepts for plan design,
o implementing a plan library and organizing the plans therein,
o designing plan transformation rules, and
o implementing and evaluating a running system.
The first contribution is the introduction of representational constructs to be used for

designing robust, general, and transformable plans. This includes special programming
constructs that annotate the plan semantically. Besides, we introduce the concept of des-
ignators — symbolical descriptions of objects and parameters — to make the plans robust
and independent of special environmental conditions. Our plans follow a common struc-
ture, which helps to identify their semantics when they are to be transformed.
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As a second contribution, this work examines how plans should be organized in a plan
library and we offer a fully implemented library for a kitchen robot. Our plan library is
roughly categorized in different hierarchical levels that interact to show the required high-
level behavior. We point out challenges of plans interacting sequentially or hierarchically
and indicate how these can be met with plan transformations.

Developing a general structure of transformations and implementing a set of transfor-
mation rules is the third contribution of this work. We introduce a syntactical framework
that allows a declarative specification of arbitrary transformation rules, which is intuitive
in its usability, but still allows to define complex transformations. We demonstrate the
framework with fully functional examples.

The fourth contribution consists of the implementation of a running plan transforma-
tion system in a realistic simulation of a household robot. The high-level activities of
setting the table and boiling pasta are implemented by a hierarchy of robust plans that are
organized in a plan library. We show how the initial behavior can be improved substan-
tially by applying plan transformations.

1.5 Reader’s Guide
This work describes the plan transformation system TRANER including plan definition and
the organization of plans in a library. The evaluation is performed in a realistic simulation
of a household robot.

Chapter 2 motivates the household scenario as a challenging problem of robot control and
gives an informal overview of the TRANER system and its components. It further
defines the focus and scope of the work.

Chapter 3 addresses the design of robust, reliable and transformable plans. After defining
the requirements for designing such plans, we provide guidelines and syntactical
support for developing robot plans.

Chapter 4 discusses the classification and interaction of plans in a plan library. The first
part of this chapter defines categories of different plan levels. The second part
examines challenges in the interaction of different plans in the library.

Chapter 5 deals with plan transformations. It explains the syntax of our transformation
rules and presents a complete library of rules together with an illustrative example
demonstrating the evolution of plans by applying transformation rules.

Chapter 6 covers the topic of plan execution and evaluation, which is an important com-
ponent of the TRANER system. It also provides a detailed description of the simu-
lated kitchen and robot.
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Chapter 7 evaluates the approach and proves the necessity of plan transformations. It
shows that robot plans can be improved significantly by plan transformations and
that the quality of a plan depends on the circumstances it is executed in.

Chapter 8 concludes this work by summarizing the main aspects of TRANER and provid-
ing a prospect on future enhancements.

Some aspects of former versions of this work have been published. Aspects of plan
representation can be found in (Müller and Beetz 2006; Müller, Kirsch, and Beetz 2004;
Beetz, Kirsch, and Müller 2004). Work on the plan library is described in (Müller and
Beetz 2007) and plan transformations are the topic of (Müller, Kirsch, and Beetz 2007).
An overview of the kitchen scenario is given in (Beetz et al. 2007).





Chapter 2

Transformational Robot Planning

This chapter provides an informal overview of the kinds of problems we want to solve
and how we intend to solve them. We first introduce the robot we are working with and
the kinds of tasks we want it to perform. Then we point out the challenges and char-
acteristics of everyday environments with particular reference to the household scenario.
Section 2.3 is a summary of the transformation planning approach we implemented. The
most important aspects for this work are pointed out in Section 2.4.

2.1 The Robot and its Household Environment

In our work we optimize the behavior of an autonomous kitchen robot in a simulated
world. The decision to use a simulator was made, because a kitchen is a complex environ-
ment where the robot needs sophisticated actuators, especially arms and grippers. Such
equipment, together with the kitchen itself, is very expensive and hard to maintain. The
simulation is much cheaper, better available and more flexible concerning different robot
hardware and different environments.

We state that the performance of plan transformations relies heavily on the specific
environment. This is hardly to be tested with only one kitchen. The simulation gives us
the possibility to have different testing environments at hand. Besides, we can adapt the
features of the environment according to our research focus. For example, for cooking or
setting the table our robot needs to open and close cupboard doors. However, for opening
and closing doors in a kitchen, sophisticated motor control and plans are necessary, which
we are not particularly interested in. Therefore we added automatic doors to the kitchen,
which can be remote-controlled by the robot. This is an assumption that could very well
be built into a real kitchen, but the simulation could be implemented with considerably
less effort. In our simulation we only make simplifications which would also be possible
in the real world, for instance the robot cannot teleport objects.
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On the other hand, the danger of a simulation is that interesting aspects of the envi-
ronment are abstracted away from and the results gotten in simulation aren’t applicable to
realistic settings. To avoid this danger, we chose the Gazebo simulator, which includes the
physical simulation engine ODE. All objects in the kitchen and the robot are composed
of solid entities, whose interaction is simulated very realistically by ODE. The interface
between our robot program and the simulator is the same as between the program and
a real robot. This is possible with Player (Gerkey, Vaughan, and Howard 2003), which
provides a device-layer with a network interface to the hardware (or simulated hardware)
underneath. This makes it possible to use the same control program in simulation and on
a real robot, which we are currently building.

As we aren’t concerned with state estimation, we assume that the robot’s position
(x/y-coordinates and orientation) are given as percepts (which is quite realistic in a known
environment and with a laser-equipped robot) and the position of all objects in the robot’s
field of view can be determined accurately. The simulation is very realistic with respect
to non-determinism in the robot’s actions. Because there are several processes involved
(Gazebo, Player, the robot program) the execution of a robot control program in a given
situation in the simulator never causes exactly the same result. This is due to the delays
in normal process and network communication and brings the simulation very close to

Figure 2.1 The robot and its kitchen environment. The bottom three images show the
camera view and the laser and sonar readings.
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reality.
Our robot and one kitchen it works in are depicted in Figure 2.1. The robot is equipped

with sonar and laser sensors and with a camera. As an additional feature a tray can be
attached to the robot, which it can use to carry objects. For its activity the robot can move
in the kitchen, move its arm and grippers and move the camera.

The kitchen is a copy of a real kitchen containing furniture such as cupboards, a table,
and a sink. The available objects include cutlery (forks, spoons, and knives), dinnerware
(plates and cups), and objects necessary for cooking such as pots, colanders, and wooden
spoons. Beside the solid objects, the simulation includes water, which can emerge from
the tap and disappear into the sink. Pasta to be cooked is represented as a solid object
(even in its finished state).

From a user’s point of view our robot masters two high-level activities: setting the table
and preparing pasta. Both plans raise interesting research issues. While the table setting
is mostly concerned with carrying object around in an efficient manner (e.g. by taking
several objects at a time) the pasta boiling plan is a good example of how to deal with
time and use idle times efficiently (e.g. by setting the table while the pasta is boiling). The
two activities rely on a set of sub-goals, for example for stacking things, grasping objects,
filling containers with water, stirring the content of a container, etc (see Chapter 4).

2.2 Aspects of Household Activity
In this section we scrutinize typical activities encountered in household chores. The ob-
servations we make are specific to household activity, but many of them apply to other
everyday environments such as offices or public utilities as well. Although we don’t in-
tend to mimic human behavior, we describe the special demands of household activities
from the sight of a human performer, because this shows that the requirements are intrinsic
in the environment, not in the robot.

2.2.1 Satisficeability
Many AI techniques for searching, planning or learning strive for optimality. Humans,
however, never work optimally. Everything we do is in some way suboptimal. Not ev-
ery movement we make is necessary when we eat, for instance. Just think of the conse-
quences! If we just used less energy in the eating process by only performing the necessary
movements, we could spare some of the food that we consume which again would save
energy and time!

But humans don’t waste time to find optimal solutions, though they are very skillful
in finding a solution that works and finding it quickly. This kind of solution that is good
enough, but not perfect is called “satisficing”, a term coined by Herbert Simon (Simon
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1955; 1996). The time to contemplate alternatives would be disproportional to the gain
we could achieve by it.

On the contrary, we don’t even think about how to do most of our daily activities,
because we have done them often before. Maybe the activity could be enhanced in the
situation at hand, but it is much faster to take the course of action that we know and
have tried before. On the other hand, people can easily detect situations, in which their
normal plan does not work. For example, someone has managed to cook a certain dish on
Monday. Some weeks later, he does the same thing, but on a Wednesday. Because of his
experience, he doesn’t even consider to change the way of cooking the dish, only because
it’s a different day of the week. However, when the person has to prepare the dish for
more people than the first time, he realizes immediately that the original course of action
must be revised in a way that the resulting food suffices for all the people attending the
meal.

Besides not wasting time to optimize plans into the last detail, in the real world there
is no such thing as a provably optimal plan. The simple reason is that no one can ever
have enough knowledge to decide on the best course of action. In the cooking example,
the best choice of plan would be the one that has worked previously as long as there is no
knowledge about more people coming than the first time. But if unannounced guests turn
up, this plan is not optimal at all. Of course, the cook could have planned for more people
in the first place, but then there might be food left, if no guests attend the meal. In any
case, there is no perfect, provably optimal plan, because the situation can change at any
time.

So instead of provably optimal courses of action, humans seek satisficing solutions. If
a course of action works out without evident flaws including inefficiency and failures, it is
approved as an acceptable plan that should be repeated in similar situations. Although the
environment is very demanding, it has one big advantage: it is benevolent. This means that
small errors usually don’t have catastrophic effects. If we prepare a dish for the first time
and prepare too much of it, the result is still acceptable. Of course, we would recognize
that there is potential for improvement. But in most cases, we can try new things or modify
known plans without fearing calamities. This is very different in domains like road traffic,
where ill-conceived experiments can have disastrous consequences.

Another fact about everyday environments that humans take as given is that failures
or errors cannot be avoided completely. It happens that we drop things and break them,
that we forget to buy the ingredients we need for cooking, that appliances are out of order,
etc. Instead of trying to avoid every contingency, humans can handle such situations when
they come up. This makes the standard plans much more efficient and only leads to small
losses of efficiency in the rare situations when unexpected events adulterate the original
plan.

Another advantage of satisficeability instead of provable optimality is that planning
problems stay feasible. A lot of efficiency can be gained by executing tasks concurrently.
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While we are cooking we use the time to set the table and clean some of the things away
that aren’t needed for cooking any more. If we tried to formulate this triple problem as a
classical planning problem we would fail pathetically. But humans find an approximation
to the optimal solution, because they know how long activities take and if they can be
interrupted. With this knowledge, free time in one activity such as cooking can be used
for short, interruptable activities like bringing the plates to the table.

Overall, household environments are the wrong place for provably correct plans. The
dexterity of humans shows that satisficing plans are the better choice.

2.2.2 Auxiliary Goals
Another characteristic of human activity is the execution of activities that are not crucial
for the person’s momentary goals. For example, when we take something out of the
cupboard, we usually close the door after taking the object out. Why? The goal of the
activity is certainly to have the object, so that closing the door can be seen as a waste
of time in this context. Of course, we have good reasons to close the door, namely to
avoid accidents, to keep the objects inside from getting dusty, etc. But these reasons have
nothing to do with the original goal to get hold of a certain object.

Obviously there is more to human activity than the primary activity goals. We seem to
have a set of auxiliary goals that should always be fulfilled unless there is a good reason to
disregard them, like when we know that we need other objects from the same cupboard,
we would leave the door open. Hammond, Converse, and Grass (1995) refers to this kind
of activity as “stabilization” of the environment. This aspect of everyday activity isn’t
represented in current robotic systems at all and it would be very hard to model them in
the classical planning scheme.

Here again the concept of satisficeability helps to describe auxiliary goals as part of
efficient behavior. Even though the primary plan can be achieved faster without taking
care of auxiliary goals, empirically acquired human activity includes underlying behavior
to establish a certain state.

Other examples for background activity are wiping up spilt liquids, cleaning away the
dishes after a meal, clearing out the dish-washer or arranging ingredients and tools before
they are needed. All of these actions don’t fulfill a necessary goal, but make subsequent
actions easier and more efficient.

2.2.3 Adaptation to Environments
For most activities connected to housework, people have routine plans that they can use
over and over again in similar situations. Interestingly, we know when the precast plan
isn’t appropriate and should be adapted or replaced by a new course of action. An instance
of this behavior is the adaptation of actions to new or changed environments.
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When you have worked in a job for a longer time, you know all your assignments and
handle them skillfully. One day you get a new boss. In principle the tasks don’t change
much, but at first you might be unsure what specific demands the boss has and you aren’t
accustomed to her way of handling things. After a short time you feel comfortable again,
because you have adapted the way you work to the altered conditions.

This observation is another indication that provably correct plans don’t exist in real-
world settings. Otherwise, our familiar plans would work identically in all situations. A
better approach than planning an abstract course of action from scratch is the adaptation of
known plans. In the example you already know how to do your work, so there is no need
to elaborate a completely new conduct. All you have to do is to adapt your knowledge and
expertise to the demands of the new boss.

In the household domain, we are also well adapted to the specific conditions of our
household. When we move house or help other people with their housework, we can do
all the things that we are able to do in our own home, but we need more time, because
we don’t know where things are stored and how time and resources can be saved in the
specific environment. When you know that one of your kitchen drawers jams slightly, you
avoid frequent opening and closing of that drawer. Instead, you would try to take out all
the things you might need in the near future at once and close it only after you have all
the things you need. Someone without your knowledge would open and close the drawer
more often. After some time, the other person will have adapted to the broken drawer, too.
Or she has considered your advice, thereby saving the time to find out for herself.

In sum, the dexterity of people in household activities can be largely attributed to the
fact that the activity plans are not optimal, but satisficing in many situations. People can
adapt their plans to specific situations and environments. Besides, not only steps that lead
to the present goals are executed, but also activities that ease the execution of subsequent,
currently unknown goals.

2.3 Approach

For developing successful household robots, we should learn from the way humans handle
their daily activities. This doesn’t mean that we intend to imitate human behavior, but that
we can use the observations from the last section to build robots that are able to perform
well in everyday environments. Therefore, we first summarize the main observations of
human behavior that should be carried over to robots. We then introduce the TRANER

system, which adapts robot plans to specific situations and environments. After that, we
show how TRANER contributes to the demands for household robots derived from human
behavior.
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2.3.1 Demands on Household Robots

As we have seen, the most important concept for humans to work in everyday environ-
ments is advisability, which has been developed and is constantly improved by experience.
The basic idea of our approach is to obtain similar behavior by transforming existing robot
plans instead of generating them from scratch. Let us regard an example of how this con-
cept works for robots.

Consider a robot that is to prepare a meal with a main dish and a dessert. Let’s assume
that some ingredients for both dishes are in the larder. The robot should realize that the
same subtask — go to the larder to fetch an ingredient — occurs in both plans, the one
for preparing the main dish and the one for making the dessert. In this case it should
combine the two steps into one and only go to the larder once. But possibly the robot
cannot carry all the things at once. Then it should transform the plan again in a way that
it uses a container for transporting the ingredients. So the resulting plan would be to go to
the larder once and get all ingredients at once, possibly by using a container.

But wait, is this really the best plan? Maybe there is no container at hand and the
provisioning of the container needs more time than just going to the larder twice. Or
the kitchen might be very small and the ingredients for the dessert are in the robot’s way
while preparing the main dish. So the best plan can actually not be determined without
knowledge and experience about the environment. Depending on the robot’s dexterity, the
size of the kitchen, the way to the larder, the places where possible containers are kept,
etc. different plans should be favored.

This robot already has a plan in the outset and it doesn’t try to prove the correctness of
its plan or analyze its performance a priori. Instead it uses it and observes what happens.
In this context it is important to remember that household environments are benevolent.
Wrong decisions don’t have catastrophic effects. Besides, transformed plans can be tested
in simulation before using them in the real world.

By transforming and evaluating plans consecutively the robot adapts its plans more
and more to its familiar environment. This doesn’t mean that it cannot work in any other
environment. We assume that the robot is equipped with robust default plans that work in
any environment, for example in all kinds of kitchens. By transforming the default plans,
they are adapted to the specific environment the robot works in most of the time, but it
is still able to use the original default plans for other kitchens. This is similar to the way
humans adapt to their well-known environments.

In the example, only the robot’s primary goals were mentioned. But there are other,
secondary goals to consider for tasks such as “use a container”. The usage includes choos-
ing and fetching a container and putting it away after it has fulfilled its purpose. When the
container is only used for one carrying task, the execution of the auxiliary goals should
obviously take place just before and after the main plan is executed. But what is the robot
to do when it needs to carry a lot of objects and possibly needs the container for future
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activities? It might be more appropriate to leave it in a place where it can be retrieved
easily, but this depends on the available space and the time until it is used again. We see,
for auxiliary goals we have similar problems as for primary goals. Because of that, we use
plan transformations also for treating this kind of stabilization activity.

In the case of humans, we have argued that people accept failures to happen. It is of no
use to forestall all kinds of possible failures and some are beyond our sphere of influence
anyway. We can hardly expect a robot to perform better than humans with respect to
failures. Therefore, the plans must be prepared to recognize failures and react to them
appropriately. This means for the default plans to include elaborate failure detection and
recovery mechanisms, which have to be preserved when plans are transformed.

To summarize, a household robot should show the same characteristics in its execution
as humans do: strive for satisficeability, be tolerant towards failures, execute auxiliary
goals appropriately, and adapt to the specific environment. In this work we will show how
these demands can be achieved by thorough plan design and plan transformations.

2.3.2 The TRANER System

In this section we describe our system TRANER (TRAnsformational PlanNER for Every-
day Activity) in more detail. The strategy is to equip the robot with robust and general
default plans and a set of general transformation rules. Using the transformation rules the
robot can compute more efficient plans by adapting its default plans to specific situations
and environments, and to its own dexterity.

As shown in Figure 2.2 TRANER operates in two modes. In the online mode TRANER

retrieves plans for the given tasks and executes them. It also measures the performance of
the plans by monitoring them with a given cost function that might for example include
the time needed to complete tasks and the execution failures that occurred. Based on
the measured performance TRANER decides whether or not it should try to improve the
respective plans. In idle times, possibly at night, TRANER generates alternative candidate
plans and evaluates them in simulation. If the candidate plans achieve better performance
than the respective plan in the library, the library plan is either replaced by the best new one
or the library is extended with a new plan, depending on the situation of the environment
for which the plan has been adapted. In the rest of the section the components of TRANER

are explained along the illustration of Figure 2.2.

Plan Library. All plans are stored in a plan library. It contains default plans (surrounded
by thin lines) that can be expected to work in any kitchen as well as plans that have already
been enhanced by transformations and are adapted to the specific situations and needs of
the environment and the robot working in it (depicted with thicker lines).

The default plans must be robust and general without making assumptions about the
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specific situation they are executed in. For example, a plan telling the robot to get the
ingredients from the larder one by one is probably suboptimal for most environments and
situations, but it is quite certain to work.

Plan Execution. When the robot tries to reach a goal — be it a user command or some
subgoal required by another plan — it selects a plan from the plan library. All the plans
in the library are expected to work, so that in a known situation, the chosen plan produces
the desired result with high probability. Plans are annotated with situation descriptions
they are adapted to. Default plans work in every situation. If possible, an already adapted
plan is used, otherwise the appropriate default plan is chosen.

During execution of the plan the robot monitors itself and records an execution trace
containing symbolic and quantitative information. For example the execution trace for
setting the table as shown in the left part of Figure 2.3 includes the time taken to achieve
the plan, the fraction of time used for navigation, turning and arm movements, how often
the navigation and turning goal was called, how often an arm was used, the sum of the
covered distance of the robot and the arms, the chosen paths for navigation, the time steps
when objects were picked up and put down, the arm(s) used for manipulating objects,

Figure 2.2 Overview of TRANER. Libraries (Plan Library, Transformation Rules) are
illustrated as boxes with rounded corners. Plans are depicted as diamond-shaped objects,
transformation rules as circles. Plans surrounded by thicker lines have been transformed
more often than those with thin lines. The boxes mark operations (execution, evaluation
and transformation) on data structures like plans, transformation rules or execution traces.
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and the relative position of the robot to the manipulated object. Other information that
is recorded, but not shown in the figure includes if the plan achieved the goal success-
fully, how many failures occurred and could be recovered during execution, or how much
disorder was induced in the environment.

Plan Evaluation. After the execution of the plan has ended (either successfully or with a
failure) the execution trace is evaluated. The evaluation operation computes a performance
value of the plan using the execution trace (right part of Figure 2.3). If the performance
is unsatisfactory according to some other performance value computed with the same
performance measure or if no comparable performance value is available, the plan should
be tried to be optimized by transformation. Other performance values can have been
obtained from previous executions and transformation cycles of the plan or from observing
humans performing the same task1.

Plan Transformation and Rules. For making plans better, a set of transformation rules
is given. A transformation rule accepts a plan with a certain structure and produces several
new plans according to the specified rule. For improving plans, a possible transformation

Figure 2.3 The left part shows data of the execution trace monitored during plan execution
and on the right how it is evaluated by computing a possible performance value.

duration count sum
plan 216.41 s
navigation 95.04 s 8 16.36 m
turning 27.74 s 6 437.32◦

left arm 44.39 s 26 5.10 m
right arm 86.26 s 50 11.36 m

pick-up plate-2 put-down plate-2 pick-up cup-2 put-down cup-2
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1The aspect of observing humans for getting performance measures is subject to ongoing research and
hasn’t been used in this work.
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rule is chosen and applied. All the resulting plans are then executed in simulation, mon-
itoring the same quality criteria as in the real plan execution before. Although we expect
our environment not to be overly perilous, it is advisable to test transformed plans in sim-
ulation, also with regard to time efficiency. It may happen that a new plan is not even
syntactically correct, the transformer doesn’t check this. But such a plan will not be exe-
cuted successfully, and will consequently be discarded. All the resulting plans are tested
against the original plan and against each other. The best plan is then stored in the plan
library.

TRANER performs an exhaustive search in order to find better plans. Plan improve-
ment as just described doesn’t necessarily have to end after one transformation step, in-
stead it is an iterative process. If the new plan is better than the old one, but still doesn’t
fulfill the demands of the evaluation function, it is stored and transformed further. Besides,
if the original plan fits the structural conditions of several transformation rules, all possible
rules are applied and the resulting plans are evaluated against each other. This procedure
corresponds to an unguided search in the space of plans, where plan transformations de-
scribe the possible state transitions (see Figure 2.4). To make this search more efficient,
especially when many transformation rules are available, the transformation rules provide
an applicability condition, which uses the benchmark data observed during plan execu-
tion to determine if the transformation rule might be a good choice. For example, if the
robot dropped objects when it had to transport several things, a rule that adds the use of a
container would be more useful to make the plan stable than one that changes the order in
which the objects are handled.

Operation Modes. We should mention explicitly the two working modes of this scheme
using online or offline transformations. In the procedure just described, the original plan
from the plan library is used without any conditions and only afterwards the performance
is evaluated. The transformations needn’t take place immediately, but can be scheduled
for a later time when the robot has more time to spare. This is the offline operating mode
we are mostly concerned with in this work.

Another method, similar to that of Hacker (Sussman 1973; 1977) is testing the plan
in simulation before it is used in the real world and transforming it at once. Only when
it fulfills the performance criteria, it is employed to fulfill the task. In real-world settings
with complex plans and several transformation rules matching a plan, this operating mode
can seriously influence the robot’s overall performance. In the world we operate in, it is
not vital to execute plans optimally, but to start executing them at once. The acceptance
of a system thinking half an hour about its best course of action cannot be expected to
be very high, even if the resulting plan takes some minutes less than the one without
transformations.
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Figure 2.4 Search Tree for improving the default plan for setting the table. The default
plan places a plate and a cup on a table one by one, repeating these steps for each person
attending the meal. Each transformed plan is executed and monitored in simulation.
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P2b

P3a P3b P3c P4a P4b P4c
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T1

T2 T3

T3 T2

T2 T2

Successful Plans:
P1: set the table (default plan)
P2a: stack cups on plates
P2b: all plates, then all cups
P3c: stack plates
P4b: carry cups in parallel
P5: stack plates and carry cups in parallel

Best plan after evaluation: P5

Transformation Rules:
T1: reorder plan steps
T2: stack objects
T3: carry objects using both arms

Failed Plans:
P2c: stack plates on cups
P3a: stack plates, stack cups
P3b: stack cups
P4b: carry plates in parallel
P4c: carry plates and cups in parallel

2.3.3 Benefits of the Approach

This approach mirrors the idea of satisficeability. Instead of trying to build a plan from
scratch and try to prove its correctness and optimality without any reference to the envi-
ronment, we let the robot find out what works by trial and error. This is similar to what
people do. The assumption that there exist default plans from the outset is no restriction
to this approach, but a strength, because we can rely on different sources for these default
plans. One possibility would be to use a classical planner and let it generate a plan from
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scratch. Another option is generating the plan from natural-language descriptions drawn
from websites like ehow.com or ontologies like Cyc. Another future idea would be to have
the robot be instructed by humans and generate rough default plans from these directions.

Furthermore, failure handling can be integrated in a natural way. The default plans
should work in a way that they succeed in most cases, but they still might fail. One
approach could be to make the agent more cautious and include more failure recognition,
avoidance and fixing. But this produces agents that check the fuse every time before they
turn on the cooker. In contrast, plan transformations produce situation and environment
specific plans, so that only the necessary failure treatment is included without sacrificing
stability.

Our approach also allows to integrate auxiliary goals into the robot’s daily activities.
Without representing them explicitly, the robot will sooner or later realize that it is acting
in a suboptimal way. When the high-level plans are tested, for example setting the table,
the robot soon sees that when it leaves the doors of the cupboards open it comes into
situations where it cannot move properly in the kitchen any more. Over time the plans
will be adapted in a way that the desired behavior of keeping certain assumptions in the
world intact is attained.

Finally, the underlying principle of the approach is that agents are adapted to a par-
ticular environment. This seems quite restrictive at first, one might prefer agents that can
work in any environment. However, we have shown that this adaptation to a special en-
vironment is one of the strengths of human conduct. People can get along in unknown
situations, too, because they have default plans for known situations and can adapt them,
but they are more efficient in familiar settings. The same should apply to robots. Our
default plans are designed in a way that they can be executed in any environment, but
don’t necessarily work efficiently. With the adaptation the robot can develop much more
sophisticated skills that resemble human expertise.

2.4 Research Focus
We have sketched out how autonomous service robots should develop and enhance their
plans in order to produce sophisticated environment and situation specific behavior. This
approach has received very little attention so that there is still a lot of work to be done. In
this section we point out the focus of this work and how it contributes to the overall goal
of plan transformation in autonomous robots.

2.4.1 Plan Design
One important part of the whole approach is how to represent and develop the default
plans so that they are robust and general on the one hand and ready to be transformed on
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the other hand. The default plans must be robust and general without making assumptions
about the specific situation they are executed in.

One aspect for making plans better understandable are designators, logical descrip-
tions of entities in the world. Instead of addressing objects or locations by unique identi-
fiers they are described by the demands in the situation. For example, instead of specifying
“Bring me the object with ID 0815” we would demand “Bring me a book that has ade-
quate proportions for stabilizing the jiggling table”. This way of describing things is more
expressive and gives the robot much more freedom in transforming plans.

Moreover, the plans must be structured in a way that potential transformations can be
recognized. In order to make plans more self-explaining, we introduce macro structures
like at-location, with-designators or with-auxiliary-goals. On the one hand,
these constructs ensure that the action is performed under certain conditions, for exam-
ple the at-location macro warrants that the robot doesn’t move while it is performing
the action. On the other hand, the plans become more structured and therefore easier to
transform.

Also failures must be represented explicitly in the plan structure. By introducing the
construct with-failure-handling in our framework, it is easy to see which are the func-
tional parts, the monitoring tasks, and where the failure recovery is performed. Without
this knowledge failure recovery might get lost during transformations and the plan struc-
ture would be more opaque, so that the applicability of the transformations rules would be
more difficult to ascertain.

2.4.2 Plan Library

The plan library contains all kinds of plans, the whole range from high-level activities
invoked by user commands to basic skills such as moving joints. We classify plans ac-
cording to some structural criteria and examine the interaction of these plans.

One kind of interaction is between sub- and super-plans. Here the question arises,
which plan complements specific information about the plan execution, for example in the
gripping plan, which hand to use. Another interaction of plans arises in their sequential
execution. Here we must decide how to distribute auxiliary goals. Both questions are hard
to answer in a general way and largely depend on the specific situation.

2.4.3 Transformation Rules

Beside the representation of the plans and their organization in the plan library, we have
to consider the structure of plan transformation rules. All the rules in this work are repre-
sented in the following way:
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transformation

input schema

output plan

applicability

The input schema is a structural demand on the original plan to be transformed by
this rule. For example, when the rule reorders plan steps that are executed at the same
location, it is necessary that at least two at-location constructs be contained in the plan,
otherwise the plan cannot be transformed by this rule. Besides determining if the plan
is transformable, the input schema serves for structuring the input plan in a way so that
the transformation can be performed, i.e. certain plan parts are bound to variables. The
transformation part of a transformation rule describes how aspects of the input plan must
be modified in order to receive the desired output. This operation is described by first-
order logic rules. The output plan specifies how the resulting plan is composed from the
transformation results.

The applicability is the heuristic about when the transformation rule can be applied
most effectively. This hint makes use of observations made during the execution of the
plan. For example, we might have a transformation rule that reorders plan steps when
some of the steps are executed at the same location, but are interrupted by other plan
steps in the original plan2. This transformation rule is a good choice when the robot has
observed that several plan steps are executed at the same location. In other cases, for
example when the robot realizes that it drops things frequently, this transformation rule
doesn’t help much, even if the input schema matches.

2.4.4 Plan Execution and Evaluation
Finally, we regard the execution and evaluation of robot plans. For testing transformed
plans a realistic, accurate simulation environment is needed. Therefore, we use the Gazebo
simulator, which provides a very good physics engine and realistic, non-deterministic
simulation. In our current system the “real” and simulated environment are identical.
This ensures that when we have a real robot also a realistic simulation is available.

When the simulated or real execution has ended (either successfully or with a failure)
the result is evaluated. For this purpose, an execution trace is observed during plan exe-
cution, for example the time and resources needed or the number of occurred failures, the
fraction of them that could be repaired etc. Then a cost function is applied to this data,
calculating a performance value for comparing plans.

2This transformation might lead to conflicts with the interleaved plan steps, but the robot will find that
out when testing the plan.
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The topic of automating monitoring and evaluating plan execution, storing and re-
trieving situation specific annotated plans and the transformation process is very wide.
This work concentrates on the basic procedure, more automation and more refined search
strategies for transformations is subject to future work.

2.5 Summary
In this chapter we have first given an overview of our experimental setting, which consist
of a simulated autonomous mobile robot equipped with two arms, an optional built-in tray,
a camera, and laser sensors working in a fully equipped kitchen including furniture and
cooking devices.

We have then analyzed key aspects of human everyday activity and identified three
critical observations: (1) Humans do most of their activities suboptimally, but good enough
to succeed. (2) Besides achieving primary goals, there is a wide variety of auxiliary
goals to be met like closing cupboards or cleaning things away, which don’t contribute
to any primary goal directly, but make the execution of primary plans much more effi-
cient. (3) Successful household activity demands adaptation to changing environments.

These requirements led us to our plan transformation system TRANER, which enables
a robot to meet all those challenges. The basic idea is to define a library of default plans
and enhance these plans by plan transformation. This iterative process leads to behav-
ior that is adapted to a specific environment and performs reasonably well, although not
provably optimally.

Finally, we have pointed out the research focus of this work, which is primarily aimed
at the design of robust, reliable plans, their organization in a plan library, the design and
implementation of plan transformation rules, as well as plan execution and evaluation.
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Plan Design

The central concept in TRANER are plans (Figure 3.1). This is why our first focus is on
how to structure and implement the plans, which are then to be transformed. The initial
plans must work reliably in every conceivable situation and be tolerant with respect to fail-
ures, but still must have an explicit, declarative structure so that they can be transformed.

After indicating the important aspects for plan design in the light of transformational
planning, we explain the plan structure in more detail. One important aspect of the plan
representation is the description of objects in the world and how to represent free plan
parameters adequately.

Figure 3.1 Part of TRANER described in this chapter.
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3.1 Motivation and Design Issues
Plans for the blocks world and of many other AI planning applications often contain ac-
tions such as pick-up(?x) and put-down(?y), where at execution time the variables are
bound to “A” and “B”. A and B denote blocks in the real world. Knowing the identity of
the object and the satisfaction of some high-level conditions such as the hand being empty
and the block being accessible from the top suffices to carry out the action successfully.

Unfortunately, when implementing a robot performing household chores this view of
actions and plans is much too simplistic. A robot acting in the real world doesn’t have
symbolic constants that denote objects in the real world. Rather it must parameterize its
actions with object descriptions generated by the robot sensors, which are incomplete,
inaccurate, ambiguous, and even faulty. Instead of relying on exact quantitative values
or pure symbolic descriptions, the robot should have a qualitative idea of an object or
a parameter (like a location) in higher-level plans to make plan revisions possible and
quantitative values on lower levels to make an execution possible.

Also, while picking up objects in the blocks world is an atomic action, picking up
objects in a kitchen requires very complex sophisticated robot behavior: some objects
have to be picked up using a pinch grasp while others require a wrap grasp. Some objects
can be picked up with one hand while others require two hands, and even others require
tools such as spoons. Picking up objects from a cupboard might require complex reaching
trajectories and even temporarily removing obstacles. Also, in order to achieve smooth
and high performance behavior, activities must not be limited to be sequences of discrete
action. A skilled robot will start reaching for an object on the table before it has arrived at
the desired position. This means for a robot to show such behavior it needs a sophisticated
plan representation allowing complex interactions of actions and the means to react appro-
priately to the situation at hand. The latter can be achieved by transforming plans without
the need to develop an optimal procedure by hand for all conceivable circumstances.

Another aspect that is totally missing in the blocks world, but crucial in a kitchen,
are failures. When gripping objects, they can slip from the gripper. The robot might
collide with objects or not be able to find a specific tool. It is important to recognize such
situations as failures and to react to them appropriately.

The bottom line is that we need a rich language that can represent plans for dealing
with the intricacies of real-world environments. We can summarize these requirements as
robustness, generality, transformability and the enabling of cognitive capabilities.

A robot has cognitive capabilities when the structure of its plans allow it not only to
execute them, but also reason about and explain them. Robustness includes the awareness
of, monitoring of, and recovery from failures. Generality of plans means that they work in
typical situations and environments without making assumptions of the specific circum-
stances they are facing. Plans are transformable when their structure allows to manipulate
them with transformation rules.
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3.1.1 Enabling Cognitive Capabilities
The plans we develop are for robots working in human environments. This means that
they strongly interact with humans and must behave in a comprehensible way towards
people, who expect cognitive behavior. Brachman summarizes cognitive systems in the
following way:

A truly cognitive system would be able to learn from its experience — as well
as by being instructed — and perform better on day two than it did on day
one. It would be able to explain what it was doing and why it was doing it.
[. . . ]

Brachman (2002)

One component for achieving cognitive behavior in robots is to use an appropriate
representation language for plans on all levels of abstraction. A robot should, for example,
be able to tell what it is doing, which goals it must achieve in order to achieve a higher-
level goal and recognize that tasks have failed. This is why McDermott (1992a) considers
robot plans to be any robot control program that cannot only be executed but also reasoned
about and manipulated. These are the basic ideas of his plan language RPL, which we use
as our plan representation language (see Section 3.2).

Beside the possibility of manipulating plans, the reasoning should be facilitated by
structuring the plan along semantic aspects. For example, a plan might tell the robot to
go to a certain position, grasp the wooden spoon, and stir the content of a pot with it.
This plan is correct, but it doesn’t say explicitly that the robot should stay where it is
while stirring. When a failure occurs because the robot has moved, it has no hint what
went wrong. In contrast, we could tell the robot to perform the actions of picking up the
wooden spoon and stirring at a certain position. This, too, would make it navigate to the
desired position first, but then it would know that staying at the position is vital for the
program execution. We will introduce several such constructs that provide more semantic
information about the plan.

3.1.2 Robustness
The environment our robot works in is a very close simulation of a real-world kitchen. In
such a complex environment failures are unavoidable. Figure 1.1 on page 4 shows a small
variety of failures that occur while the robot is handling objects. The robot sometimes
cannot grip the object reliably, things slip from the grippers, or the robot places an object at
a position, where another object already is (either because its state estimation is inaccurate
or because it has placed one of the objects at the wrong position). These failures are
sometimes caused by the lacking dexterity of the robot, sometimes by the uncertainty of
the environment. In any case, it is impossible to avoid them completely.
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To achieve robustness, this means first of all that the robot must have certain expecta-
tions about what should not happen during the execution of a plan and the means to check
whether such an unwanted situation has occurred. Secondly, there must be mechanisms
that allow to react from the failure by retrying the plan execution, fixing the problem, or
failing, hoping that the next process in the hierarchy finds a solution.

For example, if the robot detects that it was unable to grip a cup, the low-level grip
plan would try to grip again. If after several trials the cup still couldn’t be reached, the
grip plan fails and passes the failure description to the higher-level plan. This plan might
try to grip with the robot’s other gripper or from another location. If that still doesn’t help,
a higher-level plan might decide to get a different cup that can be reached more easily.

3.1.3 Generality

By generality we mean that plans work in all household environments under almost all
circumstances. In particular, a plan should not assume a certain structure of the environ-
ment, it should not make assumptions about certain objects to be present in the world and
it should be able to adapt parameters to environmental conditions without prior assump-
tions.

We only require the robot to work in almost all circumstances, because exceptional
situations can occur that we don’t want the robot to check for every time it executes the
plan. One example of such a situation is when the robot needs to use the cooker, but the
fuse has burned out. In this situation, our default plan will not work. Of course, the plan
could contain a step to check for the fuse before using the cooker. But the cases with an
intact fuse occur much more frequently than the failure case. Therefore the plan would
become very inefficient without much gain in robustness. In the rare situation of such
failures the plans can be adapted by plan transformations.

One aspect of achieving generality is to describe objects symbolically and bind them
to existing objects during execution. Also free parameters like a good position for the
robot or the trajectory of the arm for gripping an object are defined symbolically, but the
instantiation happens by heuristics, learned functions or specialized modules (e.g. motion
planners). In this way, the assumptions about existing objects are reduced as far as pos-
sible. Again, there are some limits to generality. In a kitchen, we must assume that there
is some area where the robot can put things like a work top or a table and that there are
containers and cutlery.

Unfortunately, the generality of plans is not consistent with the need for high per-
formance plans. A plan that has to work in any environment cannot take advantage of
favorable opportunities in its specific surrounding. But this is the job of the plan transfor-
mations — to adapt general plans to specific environments. The manual adaptation of a
robot to each specific environment isn’t necessary.
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However, having general plans is a crucial precondition for successful plan transfor-
mation. The search space on possible transformed plans can get huge with only a few
transformation rules and as all the plans have to be tested, the search should only consider
very few well-chosen plans. Therefore, the default plan from which the transformation
starts must be extremely reliable, robust and general. If these criteria are fulfilled, the
transformational planner needn’t care about fixing bugs in the default plan. Instead, it
can use the restricted resources to optimize an already valid plan and adapt it to specific
situations.

In sum, to achieve generality, plans should be described only by a set of subgoals to
be fulfilled, but not how to reach them. In the same way, objects and parameters should
not be described by identifiers or coordinates, but rather by symbolical descriptions that
can be adapted depending on the environmental conditions.

3.1.4 Transformability

In the context of TRANER a vital characteristic of default plans is that they can easily be
transformed with transformation rules. This means that the plans must have an explicit,
clear structure so that they match the appropriate transformation rules. The purpose of
plan steps must be identifiable to enable meaningful transformations.

The requirement of transformability is closely related to that of cognitive capabilities.
For both purposes the plan structure must be explicit so that the robot can reason about and
explain its plans. The main difference lies in how this information is used. For displaying
cognitive behavior, the robot makes inferences about its current goals and their execution
status in order to be able to explain its doings and to comprehend the overall situation. In
the case of transformations, the plan must be understood mainly on a syntactic level.

3.2 Plan Representation Language

We use an extension of the Reactive Plan Language (RPL) for representing our plans. In
the following we first give a brief overview of reactive planning and its development. Then
we introduce RPL, focusing on the features necessary for this work. For more information
on RPL see McDermott (1990; 1991; 1992b; 1993).

3.2.1 History of Reactive Planning

Research on planning in its early stages assumed that generating plans is the difficult part,
whereas executing the plans is much easier (Gat 1997). But when real-world applications,
particularly autonomous robots, were regarded, it turned out that plan execution is a big
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problem. It was not as simple as expected, since plan steps can fail or produce unexpected
outcomes and it might be necessary to react to unforeseen events during the execution.

To overcome these problems, more powerful plan execution models called “reactive
planning” (Firby 1987; Agre and Chapman 1987; Payton 1986) were developed. Reactive
planning systems monitor plan execution and are able to react to failures and unexpected
events by changing the course of the lower-level commands.

Reactive planning was embedded on the execution layer of three-layer architectures
(Gat 1997; Bonasso and Kortenkamp 1995). This execution layer was on the middle layer,
making it possible to execute abstract plans generated from the planner on the top layer
using basic skills from the bottom layer. The plans on the top layer were very abstract
actions like pick up object X that didn’t match any skill implemented on the bottom layer.
The middle layer therefore was the broker in the form of a reactive planning (or rather
reactive execution) system to enable a successful robot behavior.

Interestingly when developing these three-layer architectures the top (planning) layer
was often largely neglected and for the success of autonomous robot control mainly the
execution layer was responsible. This shows that the execution plays an important role
when building autonomous systems. One of the best-known reactive planning systems
is RAPs (Reactive Action Packages) developed by Firby (1989), which were originally
developed to be used as execution layer in three-layer architectures.

RAPs are the immediate ancestor of the Reactive Planning Language (RPL) (McDer-
mott 1993; 1992b), which originally implemented the same ideas. However, McDer-
mott (1990) rejects the need of an additional planning layer, which abstracts away from
execution details. The main idea of RPL can be summarized as follows:

This language embodies the idea that a plan is simply a program for an agent,
written in a high-level notation that is feasible to reason about as well as
execute.

(McDermott, Cheetham, and Pomeroy 1991)

3.2.2 Basic Concepts
RPL is a concurrent reactive control language. It provides conditionals, loops, program
variables, processes, and subroutines as well as high-level constructs (interrupts, moni-
tors) for synchronizing parallel actions. To make plans reactive and robust, it incorporates
sensing and monitoring actions, and reactions triggered by observed events. It makes
success and failure situations explicit and enables the specification of how to handle fail-
ures and recover from them. RPL is implemented as an extension to LISP, but is a pure
procedural language.

One feature of RPL is the reaction to external events. This feature is implemented by
so-called fluents, which will be introduced in Section 3.3.1. Besides, RPL offers sophis-



3. Plan Design 37

ticated control over the interaction of plans like sequential execution (seq) and several
modes of parallel execution (par, pursue, partial-order), differing in the way failures
in subplans are treated.

Moreover, RPL includes well-known programming constructs such as when, if, cond,
unless, let, and let*. These have the same name and functionality as the LISP con-
structs, but work in the context of plans. Besides, RPL includes the LISP functionality of
defining macros, which makes it possible to specify the language extensions (explicit des-
ignator definitions and semantic annotations) described in sections 3.3 and 3.4. Arbitrary
LISP functions can be used inside plans, too.

The original RPL doesn’t support goals as an explicit concept. We are of the opinion
that an explicit representation of goals makes plans better understandable and is necessary
for enabling cognitive capabilities. Therefore, goals are represented as objects and a plan
is a means to achieve a given goal. So in contrast to the original RPL we don’t apply plans
directly, but set a goal, which the program must achieve in whichever way. This makes it
possible to use different plans for achieving the same goal in different contexts.

For setting goals, we introduced the construct achieve, which expects a goal speci-
fication as input. When several similar goals are to be achieved, for-all works like a
mapper, achieving the same goal multiple times with different parameters. A special kind
of goal is one where the robot doesn’t manipulate the environment, but tries to identify
objects. The perceive construct achieves special perception goals in order to transform
a symbolic description of an object to an object reference. Note that this can involve
changing the environment (for example by opening a cupboard), but the change is not the
primary goal.

3.2.3 RPL Code Tree
Internally, RPL represents plans in the form of code trees, an example of which is shown
in Figure 3.2. This representation is not just used for interpreting plans, it is present inside
the program and can be modified at run time.

This feature is essential to making plan transformations work. Because the internal
plan structure is available for manipulation, the transformation can replace parts of the
code tree by others or exchange branches of the tree.

Each node in the tree can be identified uniquely by a description of the path leading
from the root to the node to be identified. For example, the subtree β in Figure 3.2 is iden-
tified by the path ((branch 2) (if-arm true)). Another way of identifying parts of
the tree is by giving them a name (called “tag” in RPL). This feature makes the addressing
of tree nodes more comfortable.

The code tree concept is not only a prerequisite for executing plan transformations. It
is also needed to specify the paths in order to identify the parts of the input plan for the
transformation steps.
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Figure 3.2 RPL code tree of the plan (par α (if c β γ ) δ) indicating the path names
of the different subtasks.
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3.3 State Representation
One important detail of defining plans is how to represent the robot’s belief with respect
to its own situation (velocity, position, arm movement) and objects in the world. In the
following we describe the concept of fluents and how they represent values that describe
the state of the world. Then we introduce designators — functional descriptions of ob-
jects — to make the plans general, robust, transformable, and enable it to show cognitive
capabilities.

3.3.1 Fluents and Fluent Networks
Successful interaction with the environment requires robots to asynchronously respond to
events and sensor data arriving from the state estimation as well as to internal program
state changes. To handle these requirements, RPL provides a special type of variable
called fluent. The values of these variables change over time and every change can be
detected by special RPL constructs in other parts of the control program.

Fluents are best understood in conjunction with the RPL statements that respond to
changes of fluent values. The RPL statement (whenever fluent body) is an endless
loop that executes body whenever the value of fluent gets the value “true”. Besides
whenever, (wait-for fluent) is another control abstraction that makes use of fluents.
It blocks the execution of the following plan steps nonrecurringly until fluent becomes
“true”.

The information provided as fluents by the state estimation includes the robot’s es-
timated position and velocity, the arms’ positions, joint angles and velocities, moving
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status, the positions, velocities and force values of the gripper fingers and the camera pan,
tilt and zoom status.

Even more interesting than single fluents is the possibility to build networks of flu-
ents1. A composite fluent is calculated from the current values of other fluents. When one
of the constituent fluents changes its value, the resulting fluent is recalculated.

For example, Figure 3.3 shows a fluent network computing the output fluent
object-in-hand?, which is true if and only if the distance between the hand pose (posi-
tion and orientation) and the object’s gripping pose is smaller than the allowed tolerances
(position-tolerance and angle-tolerance) and the hand-force sensors of both fingers
are above a certain minimum. The inputs object-grip-position and
object-grip-orientation are fluent networks by themselves, calculated by the cur-
rent object pose and the relative gripping position. The object-in-hand? fluent can be
used for checking if the robot has lost an object, which it is carrying and can thus detect
failures.

By using fluents, especially for monitoring the program for failures or unexpected
situations, the plan becomes robust and reactive. Fluents contribute to plans on all levels
of abstraction, so that even higher-level plans have knowledge about what is going on in

Figure 3.3 Fluent network computing the fluent object-in-hand?. The fluent network
receives the hand and object’s gripping poses (positions and orientations) and the hand-
forces of the fingers as its input fluents. Fluents are depicted as rectangles, functions are
denoted by ovals, and parameters are written in italics.
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1Fluent networks are an extension to the original RPL.
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the world. By building fluent networks, the plans can also work with abstract knowledge
representation instead of pure quantities delivered by the state estimation.

3.3.2 Object Designators

In everyday situations, most goals involve the handling of objects. Usually objects are
addressed by unique identifiers and typical goals are “put object 0815 onto object 0955”.
This is feasible in worlds with a small number of well-defined objects. However, in a
household or other real-world scenarios, this kind of description is not enough to make
plans robust and general and poses several problems: (1) Such environments often contain
a great variety of objects that can hardly be enumerated, just think of tea bags. (2) Objects
might cease to exist or come into existence during the robot’s actions, for example when
the robot opens an egg, the egg doesn’t exist any more, but the content can be regarded
as a new object. (3) The robot might not be able to relate the object identification to an
object in its perceptual descriptions (Agre 1988).

For example, if object 0815 is a cup and object 0955 the kitchen table, the goal “put
object 0815 onto object 0955” might fail, because the cup cannot be found or the table is
littered with other objects and there is no room for the cup. Depending on the high-level
goal, the robot might still be able to fulfill its task. For example, if the overall goal was
to prepare tea, the robot can use a different cup and put it on the worktop instead of the
table. With absolute object descriptions, this kind of failure recovery is not possible.

Designator Concept

To overcome these problems, RPL offers the concept of designators, which are developed
further in TRANER. A designator is a symbolic representation of an object, possibly
including the object type, structural properties (e.g. its color, is it clean, or has it a flat
surface) and functional properties (e.g. can it contain liquids). The goal in the example
would then be to “put a clean cup onto a flat surface”, which gives the robot much more
freedom for optimization and failure tolerance. Of course, on some level of execution
— usually on lower level plans — the abstract descriptions must be instantiated to well-
identified objects. It is possible that the cup will be associated with object 0815, but it
might also be identified as some other cup. The following designator describes an object,
which is a currently unused and clean plate a specific person likes to use:

(some entity (type plate)
(status unused)
(status clean)
(preferred-by person))



3. Plan Design 41

Designator Instantiation

For using objects described by designators, the robot has a goal perceive, which tries to
establish a connection between a designator and an object in the world using a perceptual
plan. The strategy for the plan achieving the perceive goal is first to check whether the
designator already has a reference to an object in the world. If this is the case, the robot
has to check if this reference is still valid, i.e. if the object is still at the position where it
was last perceived. Therefore, the robot moves to the supposed position and if it finds any
objects there it compares their properties with the ones described in the designator.

When no reference is available or the robot decides it to be invalid, it generates a list of
possible objects matching the description and then proceeds as in the case of already in-
stantiated objects, that is, look for the object at the last known position. When no matching
object can be found, the plan to achieve the perceive goal fails.

Once an object in the real world matching a designator has been found, this specific
object is added as a reference to the symbolical designator description. From then on the
coordinates and specific properties of the reference object can be used in the program.

With designators, a plan gets more general in that it doesn’t rely on specific objects
to be available in the world. The use of designators also enhances failure tolerance, be-
cause when one object isn’t available another object can be found with similar properties.
Besides, plan transformations have more flexibility in improving the plan by changing de-
scriptions of designators. Because designators are functional descriptions of objects, they
contribute to the goal of showing cognitive capabilities by providing information about
the object properties and why a specific object was used in a situation.

3.4 Plan Structure
RPL already provides many aspects for having a plan representation that enables the writ-
ing of plans with the characteristics described in Section 3.1. In this section we present
the language extensions we added (enlargement of the designator concept and semantic
annotations of the plans) for writing robust, general and transformable plans. We then
define a general framework of all the plans in the plan library.

3.4.1 Parameter Designators

In Section 3.3.2 we introduced designators as a means of specifying objects by giving
their properties instead of unique identifiers. The concept of designators can be seen in
a more general scope when they are also used to describe parameters needed for execu-
tion. Instead of preprogramming default values, the parameters to be set are described by
functional aspects and instantiated at execution time.
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Consider a plan that is to specify how the robot is to pick up a cup. Clearly, which hand
to use, which kind of grip to apply, how to position itself to grasp the cup reliably, which
gripper and arm trajectory to take, and where to hold the cup after picking it up cannot
be determined before seeing the cup. The optimal choice also often requires to take the
situational context, expectations, and foresight into account. In our kitchen scenario, the
hand to be used, the pose of the hand during transportation, and the pose used to grip
the cup decide on the reliability and efficiency with which the tasks of the subplans are
executed.

Figure 3.4 shows three typical examples of parameter designators in our plans. The
first one returns a collision free arm trajectory that is possible to follow with the given hand
(a parameter designator) and that enables the robot to grip the specified entity (an object
designator) by closing its fingers afterwards. The second example describes a hand that is
currently unused and a certain entity can be gripped with. The last returns a location for
an entity on the table where a person prefers to sit and which matches the relative position
of the entity to a cover.

At the time of execution, the abstract descriptions of the designators must be converted
to concrete values of the parameters, that means that they are instantiated. Our plan in-
terpretation calls specific arbitration mechanisms that decide on the appropriate value of
the parameter. The choice of these values depends on the environment situation and the
robot’s abilities. As it is infeasible to foresee every possible situation and optimize it,
one has to find appropriate heuristics. The most efficient and flexible way is to learn the
heuristics automatically using the experience the robot makes when executing the plans
(Kirsch and Beetz 2007), or to use specialized modules like motion planners.

Like object designators, parameter designators make plans very flexible, robust and
transformable. Plan Transformations can add or remove constraints of the designators.
Moreover, they provide a declarative structure of what conditions the parameter value
must fulfill. This again makes cognitive behavior possible. When a robot is to justify why
it put an object at a certain position, it can describe its choice in terms of abstract concepts
like “I needed a place where to put the object safely near the sink”.

Figure 3.4 Typical examples of parameter designators.

(some trajectory (collision-free)
(gripable-at-end entity)
(possible-with hand))

(some hand (status free)
(gripable-with entity))

(some location (on table)
(at (preferred-seating-location person table))
(matches (entity-cover-location entity)))
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3.4.2 Semantic Annotation of Plans

Plan transformations work mostly on the syntactic structure of plans. But to describe
sophisticated plan transformations often more information is necessary. Therefore, we
extend the RPL language by introducing specific constructs using the macro mechanism
offered by RPL. The new constructs annotate plans in a way that more semantic informa-
tion about the doings of the plans can be transmitted to the transformational planner. The
plans are also better structured and more readable, thus enabling cognitive capabilities.
These constructs make some assumptions about the robot, e.g. that the robot is mobile
and that it manipulates objects. These assumptions, however apply to any robot acting in
scenarios like a kitchen.

In the following we present the new constructs with-failure-handling,
at-location, with-designators, and with-auxiliary-goals. Listing 3.1 on page 48
shows an example using these constructs. The example will be described in detail in
Section 3.5.

Behavior Monitoring and Failure Recovery

Robustness is one of the design issues we wanted for our plans. To achieve it, it is neces-
sary to (1) monitor the robot’s behavior, (2) signal failures, (3) catch failures, and (4) re-
cover from failures.

Behavior monitoring is best accomplished by running the monitoring and the execu-
tion parts in parallel. RPL already offers a rich set of constructs for parallel execution,
like par, pursue, try-all. With all these control structures it is possible to monitor the
behavior, but they differ in how they implicitly handle failures. par succeeds if all actions
succeed or fails if one fails. pursue succeeds if one action succeeds or fails if one fails.
try-all succeeds if one action succeeds or fails if all fail.

All constructs don’t check for and react depending on the type of failure. Failure
handling is implicitly encoded in the control structure. This makes it difficult for the robot
to act appropriately depending on the failure type and for the transformational planner to
identify the purpose (behavior monitoring, failure handling) of the code pieces.

We achieve an effective integration of execution monitoring, failure generation, failure
catching and failure recovery by introducing with-failure-handling as an additional
control structure of the plan language RPL:

(with-failure-handling failure
recover-vars
(recover <recovery-code>)
(monitor <monitoring-code>)
(perform <body>))

This control structure executes <body> and <monitoring-code> in parallel. Every



44 3.4 Plan Structure

time monitoring-code detects an undesired behavior it signals a failure. This failure
or a failure thrown from a lower level plan is bound to the local variable failure and
<recovery-code> is executed. <recovery-code> checks for the type of the failure and
whether a handler for this type is specified, otherwise the failure is propagated to higher
level plans. For storing information about previous recover tries, <recovery-code> uses
the local variables defined in recover-vars.

The control structure with-failure-handling makes the purpose of code pieces
meaningful for the planning mechanisms. If the code pieces produce goal achieving be-
havior they are located in <body>, if they monitor the robot’s behavior and signal failures
they are part of <monitoring-code>, and if they are to catch and recover from signaled
failures they must be specified as <recovery-code>.

In sum, the with-failure-handling construct enables the development of robust
plans that react appropriately to failures. At the same time, the code is annotated seman-
tically, so that plan transformations can be performed and the robot can show cognitive
behavior, for example by explaining an action as a means to recover from a previous fail-
ure.

Location of Execution

Often a robot needs to make sure that it is located at a certain position in order to fulfill
a manipulation task such as gripping an object. The construct (at-location location
subplan) ensures that the robot moves to the location before it starts the execution of the
subplan. During the plan execution, it monitors constantly if the robot leaves that location.
If this is the case, it takes care to move the robot back into the specified position. This
construct is important for manipulating objects. It contains a specific failure monitoring
and recovery, using the construct with-failure-handling, to make the execution robust.

Specifying Designators

An interesting characteristic of a plan — both for plan transformations as well as pro-
ducing cognitive capabilities — is which object and parameter designators are used and
instantiated in the plan. Using the construct (with-designators (desigs) subplan)
the transformational planner is informed that the specified designators are used in the plan.
This knowledge allows optimization of common resource usage of plans and provides in-
formation of whether plans can be executed in parallel or compete for the same resources.
Knowing that a parameter designator is used in a plan allows optimization of parameter
instantiation for the plan.
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Formulating Auxiliary Goals

Not every action taken by an intelligent robot is an explicit step towards its goal, for
example cleaning up or opening and closing cupboards. Some of these actions must be
taken to achieve a goal, but it is not specified when they have to be taken, like opening a
cupboard. Others aren’t really necessary, but ensure the reachability of subsequent goals,
such as the closing of cupboards. The construct with-auxiliary-goals indicates that
an action should be taken, but doesn’t contribute directly to reaching the goal:
(with-auxiliary-goals local-vars
(prepare <prepare-goals>)
(perform <body>)
(clean-up <clean-up-goals>))

The control structure separates the auxiliary goals (prepare-goals and
clean-up-goals) from the body. Additionally local variables needed only for the ex-
ecution of the auxiliary goals can be defined in local-vars.

Because it is often extremely difficult to find good heuristics for such secondary tasks,
with-auxiliary-goals indicates appropriate places for improving plans by transforma-
tions, for example when the robot needs several objects from the same cupboard (which
can be determined using the construct with-designators), it can consider leaving the
cupboard open in the meantime.

Since the plans are required to work in almost all circumstance, we include in our
plans only those steps and conditions, which are highly probable to occur and which we
humans normally also take and check. For example if we grip a object, we check if it is
inside a cupboard or not, but we don’t check if the fuse is working before turning on the
cooker.

3.4.3 General Plan Framework
All default plans in the plan library make extensive use of these additional constructs.
They make it possible that plans follow a rough common structure separating the principal
plan from failure monitoring, failure recovery, or the execution of auxiliary goals. A
typical plan structure is illustrated in Figure 3.5 and Figure 3.6 shows as an example the
plan for picking up an object2. This structure is not mandatory for plans, but it has proved
to be useful for many kinds of plans.

Usually, the outermost declaration is with-designators declaring the designators
(both for objects and parameters) used in the plan. Note that the designators are not
instantiated at this time. The construct only defines the designators symbolically and says
that these designators will be used in the plan.

2Detailed explanation and the complete code (Listing 3.1) follow in the next section
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The next step is usually a with-failure-handling construct. Since most steps in
a plan are prone to failures, the failure handling is best located as far outside the actual
plan steps as possible. For recovering from failures, one common reaction is to execute
the body of the plan a second time, either directly or after some repairing steps have been
performed. For this method to work, the plans are required to find out for themselves
which steps have been performed successfully before the failure occurred and which are
still to be achieved. For example, when the robot is to carry two cups to the table and
drops one of them. When restarting the plan, the first goal is to pick up the first cup. But
this cup is already in the robot’s gripper, since it has only lost the second one.

Inside the failure handling construct the body of the plan is executed. This usually
involves using the with-auxiliary-goals and at-location constructs. The nesting of
these constructs depends completely on the purpose of the plan, so that it is hard to make
a general statement about their usage.

Figure 3.5 Typical structure of the plans in the library.
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3.5 Example
Now we have described all the relevant aspects of our plans. As an example, Listing 3.1
shows the plan for achieving the goal of picking up an entity and Figure 3.6 summarizes
the important aspects of the plan.

The plan gets as inputs entity-desig, a designator describing which object should be
picked up, and designators, containing a list of object and parameter designators which
are merged with the designators defined in lines 2–7 by the construct with-designators.
The control structure checks if a designator is already defined in the variable designators
and in the true case it merges the conditions provided by the calling plan and the current
plan, otherwise a new designator is created. For example hand-desig (line 2) has no
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constraints in this plan, but a top-level plan could have added the condition only to use the
left arm, and the sub-goal for gripping the object (lines 41–42) will add more constraints,
like the hand being free and that the object can be gripped with this hand.

Another designator defined is pick-up-loc-desig (lines 3–4), which describes a lo-
cation where the robot should position itself so that it is possible to grip the object from
this location. The designators specified in lines 5–7 set maximum values for how often
certain failures are tried to be recovered before forwarding the failure to the calling plan.

For easier understanding we explain the rest of the plan from the inside to the outside.
The goal achieving steps are listed in lines 27–29 and 38–47. These steps specify that in
order to achieve the state of holding an object described by entity-desig the robot has
to (1) find the object described by the designator and if the object is not already in its hand
(2) position itself at a position such that the object is in the working space of one of its
arms and ensure that the robot stays there (lines 38–39); (3) get the object in its gripper;

Figure 3.6 Plan for picking up an object described by the structure of Figure 3.5.

entity-picked-up

inputs: (1) entity

designators: (1) pick-up location
(2) carry tries
(3) grip tries
(4) at location tries

recover: (1) entity-lost-failure
(2) grip-failure

monitor: (1) entity-lost-failure: when lifting entity

prepare: (1) enclosing-container-opened
(2) supporting-entity-extended

subgoals: (1) robot-at-pose: achieved by at-location
(2) entity-gripped
(3) entity-lifted

clean-up: (1) supporting-entity-retracted
(2) container-closed

description: Search entity described by designator. If entity is already gripped do noth-
ing. Otherwise grip and lift entity at a suitable location.
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Listing 3.1 Plan for picking up an entity.

1 (define-plan (achieve (entity-picked-up ?entity-desig) !?designators)
2 (with-designators ( (hand-desig ‘(some hand))
3 (pick-up-loc-desig
4 ‘(some location (gripable-from ,entity-desig)))
5 (carry-tries-desig ‘(some value (maximum 3)))
6 (grip-tries-desig ‘(some value (maximum 3)))
7 (at-loc-tries-desig ‘(some value (maximum 3))) )
8 (let ( (object-in-hand? nil) )
9 (with-failure-handling failure

10 ( (carry-tries-count (value carry-tries-desig))
11 (grip-tries-count (value grip-tries-desig)) )
12 (recover ( (typep failure ’entity-lost-failure)
13 (handle-plan-failure carry-tries-count
14 :entity entity
15 :do-always ( (signal-entity-gone entity-desig) )
16 :do-retry ( (recover-arm-pos hand-desig) )) )
17 ( (typep failure ’grip-failure)
18 (handle-plan-failure grip-tries-count
19 :entity entity
20 :do-retry ( (recover-arm-pos hand-desig) )) ))
21 (monitor (scope (begin-task carry) (end-task carry)
22 (whenever (not object-in-hand?)
23 (fail :class entity-lost-failure
24 :entity entity-desig
25 :hand hand-desig))))
26 (perform
27 (:tag find-entity (perceive entity-desig))
28 (unless (or (desig-eq entity-desig (left-hand-entity))
29 (desig-eq entity-desig (right-hand-entity)))
30 (with-auxiliary-goals ( (enclosing-entity nil)
31 (supporting-entity nil) )
32 (prepare
33 (setf enclosing-entity
34 (achieve (enclosing-entity-opened entity-desig)))
35 (setf supporting-entity
36 (achieve (supporting-entity-extended entity-desig))))
37 (perform
38 (at-location ( pick-up-loc-desig
39 :max-tries at-loc-tries-desig )
40 (:tag grip
41 (achieve (entity-gripped entity-desig)
42 :hand-desig hand-desig)
43 (setf object-in-hand?
44 (get-object-in-hand-fluent-net
45 entity-desig hand-desig)))
46 (:tag carry
47 (achieve (entity-lifted entity-desig)))))
48 (clean-up
49 (achieve (entity-retracted supporting-entity))
50 (achieve (entity-closed enclosing-entity))))))))))
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and (4) lift the object into a position that is safe for subsequent plans (normally the object
is lifted a few centimeters).

These are the steps, which the robot has to perform definitely for achieving the goal.
In lines 32–36 the prepare steps and in lines 48–50 the clean up steps of auxiliary goals
are specified. Prepare steps are to open the enclosing container (e.g. a cupboard door)
if the object is inside a container and to extend the supporting entity (e.g. a board3) the
object is placed on. Clean up steps include retracting the supporting entity and closing the
container. The container and the supporting entity are stored in local variables specified
at the beginning of with-auxiliary-goals (lines 30–31)

The plan is made robust by wrapping it inside the perform part (line 26) of
with-failure-handling (line 9). Failure monitoring is done in lines 21–25. Only
while lifting the object (the failure monitoring is restricted by the scope construct) the
plan signals an entity-lost-failure whenever the fluent object-in-hand? becomes
false. The object-in-hand? variable is defined in line 8 and a fluent is assigned to it in
lines 43–45. The separation of the definition and the assignment is necessary, because the
variable has to be known in the monitoring code, but can only be set to the correct fluent
after the object is gripped. Before the robot hasn’t gripped the object the hand to be used
is unknown and the according designator hand-desig is not instantiated.

Failure recovery is done in lines 12–20. The plan catches two types of failures, other
failures are propagated to the calling plan. In the case of an entity-lost-failure
the plan is retried, but only if the value of carry-tries-count is greater than zero.
carry-tries-count is initialized in line 10 with a maximum value specified with the
designator carry-tries-desig. When an entity-lost-failure has occurred the in-
ternal knowledge about the entity is always updated (signal-entity-gone) and in the
case of retrying the plan the arms are moved to a position, in which the plan can safely
be executed again. The plan also recovers from a grip-failure not monitored by itself.
This failure is signaled by the subplan for gripping the object. Again, the plan is retried if
grip-tries-count is greater than zero and before retrying the plan the arms are moved
to a safe position.

3.6 Related Work on Plan Representation
Many ideas on designing routine plans originate from the work on XFRM (McDermott
1992b) and SRCs (Structured Reactive Controllers) (Beetz 2000; 2002a). Beetz tries to
make some of the implicit design practices of XFRM explicit and proposes them as design
principles. Transformable plans were the subject of the work by Beetz (2002b), who
extended RPL to create plans that can automatically be revised. The language presented

3We made the boards movable, because it’s easier for the robot to manipulate objects inside cupboards
if the boards are extended.
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in this chapter offers an even richer language for plan representation including semantic
annotations. Besides, our household domain is a lot more complex as opposed to the
abstract simulation and the office robot used by Beetz.

Research on PRS (Ingrand, Georgeff, and Rao 1990; Ingrand, Georgeff, and Rao 1992;
Ingrand et al. 1996; Myers 1997), TDL (Simmons and Apfelbaum 1998) and the Archi-
tecture for Autonomy (Alami et al. 1998) focus on the design and implementation of plan
execution languages that incorporate failure monitoring and recovery as well as concur-
rent execution. Applications include fault diagnosis and control of spacecraft (Georgeff
and Ingrand 1989) and mobile robots (Georgeff and Lansky 1987). However, the repre-
sentation doesn’t take into account the transformability, because these systems don’t make
use of transformational planning.

Williams et al. (2003) developed the Reactive Model-based Programming Language
(RMPL) to represent reactive plans. RMPL includes model-based programming features
for making the plans more robust. The language was mainly employed in spacecraft
applications. Again, plans that are transparent and explicit to the planner in the way that
our representations are, is not a focus of William’s research.

An early approach to monitor failures is presented by Fikes and Nilsson (1971), where
tables assigning plan execution states to expected world states are kept and compared to
the happenings in the environment.

Another approach to include reactivity, failure handling and situation dependent ac-
tions are universal plans (Schoppers 1987). Universal planning integrates goal-directed
planning with situation-driven reaction by precomputing a plan that has a set of relevant
actions for each possible world state and goal.

Robustness was also a main issue in the RAPs system (Firby 1989; Firby, Prokipowicz,
and Swain 1995), one of the best-known reactive planning languages. By formulating
expectations about the outcome of plans, the system could compare the desired and actual
behavior of its activities.

Classical plan languages like PDDL (McDermott 2000), the language used in the an-
nual planning competition are also evolving into the direction of representing uncertainty
and temporal relations (Fox and Long 2006). Still the approach is very different to the
reactive planning approach, which uses richer control structures, failure monitoring, and
parameter representations.

3.7 Summary
In the beginning of the chapter we have defined the design issues we should bear in mind
when developing a language for plan description and coding the plans: robustness, gen-
erality, transformability, and enabling cognitive capabilities. Later we have presented
several extensions of the plan language RPL that contribute to achieving these demands.
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Showing cognitive capabilities includes the ability to explain the course of action taken
and that the robot’s activities are comprehensible to humans. The symbolic representation
of objects using object designators contributes largely to this goal. On the one hand,
the robot can explain what kind of object it is dealing with on a level that humans can
understand. On the other hand, the robot shows intelligent behavior by not giving up
a task just because a certain object cannot be found, but adroitly looks for alternatives.
Besides, the semantic annotations of plans help to make the robot understand what it is
doing and why. So if a human asks why the robot has closed a cupboard door, it can
answer that this is an auxiliary goal, which facilitates subsequent actions.

Robustness requires the robot to recognize failures and react intelligently. The con-
struct with-failure-handling offers both components and enables sophisticated failure
handling that keeps track of former recovery trials. The failure concept of RPL allows to
treat failures on different levels of abstraction in the program. Additionally, with the con-
cept of designators, the robot is free to reconsider former decisions. For example when
an object is to be placed at a certain position and this location is already occupied by
another object, a higher-level plan can deduct another position that fulfills the high-level
designator description.

Generality is the quality of a plan to work in all instances of a certain class of environ-
ments, for example in any kitchen. Here again designators are a vital concept to describe
activities on an abstract level, to be replaced by more tangible values when executed in a
certain environment.

Finally, the plans must be represented in a way that they can easily be transformed.
We have introduced a general plan framework that makes it possible to develop general
transformation rules that are applicable to a wide range of plans. The constructs provid-
ing semantic annotations are especially important for understanding the purpose of plan
parts. In particular, the failure handling construct clearly separates failure recovery from
the main activity and thus ensures that failure recovery code is not destroyed in transfor-
mations.





Chapter 4

Plan Library

For the whole plan transformation system to work, the initial plan library (Figure 4.1)
must contain general plans that work in any kitchen and without assumptions about the
situation they are executed in. The general structure of such plans has been described in
the last chapter. Based on this structure and other characteristics of plans we now present
how the plans are organized in the plan library.

We first introduce the hierarchical structure of the library based on a detailed example.
Then we explain the hierarchy levels at greater length. The combination of plans both in a
hierarchical structure by calling subplans and in a sequential order poses many problems

Figure 4.1 Part of TRANER described in this chapter.
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in real world scenarios that haven’t been subject to extensive research yet. We point out
these issues and hit at how they can be solved by plan transformations. Finally, we provide
links to related work and give a summary of our plan library.

It is worth mentioning here, that we are only aware of one research project that aimed
at the development of a library of general plans applicable to different contexts of the
cleanup office task of the IJCAI robot competition 1995 — the Chip robot of the Ani-
mate Agent Project (Firby et al. 1996). In this project, however, plan revision was not
investigated.

4.1 Plan Hierarchy
For an illustration of what a plan library for everyday activity must comprise, let us have
a closer look at activities of the household robot. From the view of a user, it must be able
to accept abstract commands like “set the table!” or “prepare pasta!”. These represent the
most abstract class of goals1 contained in our library, named activities.

Now let’s try to fulfill the user’s desire to prepare pasta. From a high-level perspective
we would describe the activity by actions like “put the pot onto the cooker” or “fill the pot
with water”. We expect the robot to be able to perform these plans in any situation without
special preconditions. These are what we call higher-level manipulation plans. This class
of plans also includes less abstract plans. For example, to fill a pot with water, the robot
must be able to bring the pot from one location to another, which involves picking up the
pot, carrying it, and putting it down. All of these plans are general enough to work in any
situation in the kitchen. For bringing an object from one place to another, for example,
the robot may already be holding the object or not even know where it is located.

The higher-level manipulation plans rely on specific plans to manipulate objects, like
gripping, lifting or releasing them. These are less robust with respect to different envi-
ronment situations than higher-level manipulation plans. For example, when gripping an
object, the object must have been identified before and the robot must be at a location
from where it can reach the object. Otherwise, the plan fails. This class of plans is called
basic manipulation plans.

On the lowest level of the hierarchy are basic goals, which constitute the connection
to the robot and the environment. These goals control the robot’s base, arms, grippers and
camera with position commands or translational and rotational velocity commands to the
joints. The goal values are sent as commands to the hardware2.

1We use the terms “plan” and “goal” interchangeably. In fact, a plan is necessary to fulfill a goal. Most
goals have only one plan, which achieve them. When we mention goals, we usually mean the plan that is to
achieve that goal. If a goal can be fulfilled by more than one plan, we explicitly mention it.

2Actually commands are sent to Player, which provides a hardware abstraction interface (see Sec-
tion 6.1).
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A summary of the levels and their criteria of differentiation is shown in Figure 4.2.
All these levels of plans are represented by the same plan representation language RPL,
so that all operations on plans, including plan transformations, can be applied to them.
However, the transformation of plans is usually more convenient on the higher levels,
whereas the lower-level plans can be optimized by classical learning approaches. We have
already mentioned one criterion for splitting plans into different classes: the robustness
with respect to preconditions. Plans in the activities and higher-level manipulation levels
are restartable since they don’t have preconditions. They also tend to be more robust in the
light of failures. As they have more information about the overall goals and plan execution,
they can apply more sophisticated failure recovery methods, including retrying the plan.
The job of the lower levels is usually to instantiate parameter designators with concrete
values like coordinate positions or the arm used for gripping, whereas the more informed
higher levels add constraints to the designators in order to calculate a better informed value
(for an example of constraining and instantiating designators see Section 4.3). Auxiliary
goals are most commonly found in the higher-level manipulation plans and the activities.

This classification of plans is not a strict separation. But as we represent all plans in
a common way, it provides a good indication of their characteristics. As indicated in the
introductory example, the plans are not restricted to only have subplans from lower-level
plans of the hierarchy. The calling structure usually moves from abstract goals downward,
where often several plans from the same category are involved. In principle, even a basic
goal could have an activity as a subgoal.

Figure 4.2 Plan library levels and their characteristics. Darker colors indicate that a crite-
ria is more common in a level.
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4.2 Plan Categories
In the following we describe the categories of our plan hierarchy in more detail and give
examples of the plans pertaining to each class. At the end of each category follows a list
of plans belonging to the category with short descriptions. For every goal the necessary
input designators are given. Optional designators, which are collected in the variable
designators and merged by the construct with-designators as explained in Section 3.5
are omitted. But it is important to note, that these optional designators enable the plans
to constrain designators in higher-level plans and instantiate them in lower-level plans at
execution time (see Section 4.3).

4.2.1 Basic Goals
In our robot architecture, which is described in Chapter 6.1, we use an abstract hardware
interface provided by the Player open source project. In this abstraction layer basic skills
such as moving joints, controlling the robot’s velocity, navigation or inverse kinematic cal-
culations are implemented. The lowest level of plans is almost a straightforward mapping
of the goals to the commands provided by the Player interface.

These goals can be divided into goals for moving the robot’s base, arms, grippers and
camera. Base goals are turning to an angle and navigating to a position either with a
specified orientation or not. Arm goals comprise setting the angle of each joint separately,
moving the arms end effectors to a three dimensional position (including the orientation)
either synchronously or separately. Goals for the grippers are setting the position and
velocity of the fingers. For the camera changing the pan, tilt or zoom is possible.

All these basic goals get many parameter designators, like the goal position of the
robot/arm, the maximum turning and driving velocity, intermediate waypoints for naviga-
tion, or trajectory points for moving arms. The designators are instantiated at this level
and the resulting values are sent as commands to the hardware abstraction layer.

Summary of Basic Goals:
(robot-set-vel velocity) Set the velocity of the robot.
(robot-at-angle angle) Turn the robot to the given angle.
(robot-turned degree) Turn the robot by the specified amount of degree.
(robot-at-point point) Move the robot to the given point ignoring the orientation.
(robot-at-pose pose) Move the robot to the given pose, including x- and y-coordi-

nates, and the orientation.
(hand-at-pose side pose) Move one arm (determined by side) of the robot to the

given pose. The pose is a three-dimensional position and orientation.
(hand-fingers-set-vel side velocity) Set the velocity of the fingers of the arm

given by side.
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(hand-fingers-at-pos side position) Set the position (opening distance) of the
fingers of the arm given by side.

(arm-joint-at-angle side joint angle) Turn a joint of one arm (specified by side)
to the given angle.

(camera-ptz-at-angle pan tilt zoom) Set pan, tilt and zoom of the camera.

4.2.2 Basic Manipulation

Using the basic goals, we implemented a set of basic manipulation skills serving as sub-
goals for several higher-level plans. Such goals include very simple activities like opening
and closing the gripper and turning the wrist. More complex plans in this category are
moving the arm to a save position for navigation, which we call “idle pose” and depends
on the currently gripped object, navigating the robot to a position where it is save from a
specified cupboard door when opened, and object handling plans like moving, gripping,
lifting, dropping, and unhanding objects.

Obviously, these plans perform tasks of different complexity. The main characteristics
to differentiate them from higher-level plans are (1) that they depend on certain precondi-
tions to hold and (2) that they supplement most free parameter designators for execution
in the real world. This means that they are more specific and less flexible than higher-level
plans. They operate on a local view of the execution context. In many cases, especially
the ones for handling objects, the goals are achieved by different plans depending on the
object. For example some objects must be gripped with both hands, for others one hand
suffices.

In contrast to the higher-level plans to achieve the goals on this level of abstraction,
certain conditions in the environment must hold. For example, the grip goal only makes
sense when the robot has already found the object and is at a suitable position to grip it.
The plans for gripping don’t take care of looking for objects, they fail if the object is un-
known. The identification of objects must be done in higher-level plans. In general, these
basic manipulation plans have only few possibilities to react to failures. They monitor
their execution and throw failures, but most failures have to be dealt with on more abstract
levels.

The goal entity-gripped is a typical representative of a basic manipulation goal.
There are three plans available for achieving the goal. One plan grips objects with both
hands, another one uses only one hand, and the last one performs a handing over which
is explained shortly. Which plan is used depends on the object to be gripped. Figure 4.3
shows the abstract description of the plan for gripping an object with one hand. Every
designator in the example depends on the entity to be gripped. Since objects in a kitchen
are very diverse there are many different (learned) heuristics available to instantiate the
designators. The arbitration mechanism chooses the appropriate heuristic and calls it.
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The gripping hand side designator chooses an arm to use for gripping, depending on
the kind of object to be grasped, the position of the object and the robot, and if the arm
is currently unused. A cup can be gripped at the handle (front or back), at the cup’s base
or from the top. Which position is used is specified by the designator gripping pose.
Which trajectory the arm should take to get from the current position to the gripping pose
is determined by the designator gripping trajectory of arm. For the trajectories we use
manually implemented heuristics, but we are on the way to replace these with a motion
planner. The last two designators closing velocity of grippers and gripping end force
decide how fast the grippers should be closed and what force should be applied afterwards
to hold the object in the robot’s grippers.

The last five basic manipulation goals described in the following summary have the
same preconditions. They assume that the entity has already been searched and identi-
fied and that the robot is at a position where it can manipulate the object or reach the given
pose with its arms. These goals have at least two plans fulfilling them, either handling
objects with one or both arms. A third plan, handing over objects, exists for the goals

Figure 4.3 Plan for gripping an object with one hand. The description is based on the
typical plan structure presented in Figure 3.5.

entity-gripped-with-one-hand

inputs: (1) entity

designators: (1) gripping hand side
(2) gripping pose
(3) gripping trajectory of arm
(4) closing velocity of grippers
(5) gripping end force

recover: (1) grip-failure: call goal hand-at-recover-pose and return failure

subgoals: (1) hand-at-pose
(2) hand-gripping

description: For gripping the given entity move one hand (designator 1) to a suitable
gripping position (designator 2) by following a trajectory (designator 3). Then
close the gripper with a certain velocity (designator 4) and ensure a necessary
gripping force (designator 5) at the end. If a grip failure occurs move the hand to
a safe recover pose and return the failure to the calling plan. This plan assumes
that the object is already identified and that the robot is at a location where it is
possible to grip the object.
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entity-gripped and entity-dropped. For instance the handing over plan is necessary
when a wooden spoon is needed for stirring (see Figure 4.4). If the grasp mode wouldn’t
be changed the wooden spoon is lost with high probability during the stirring activity.
Particularly the higher-level manipulation goals entity-picked-up, entity-put-down
and entity-turned use these last five goals.

Summary of Basic Manipulation Goals:
(hand-gripping side) Close fingers of arm described by the side designator until the

contact sensors of both fingers are activated, otherwise throw a grip-failure.

(hand-closed side) Close fingers of specified arm side completely. If the grippers
can’t be closed because of a collision detected by the contact sensors, throw a
failure.

(hand-at-idle-pose side) Move arm side to an appropriate idle pose for safe navi-
gation. The idle pose depends on the currently gripped object and is also different
if no object is in the hand.

(hand-at-recover-pose side) After for example a grip-failure has occurred, open
the fingers and move the arm side to an idle pose, but stop executing as soon
as the hand has no contact with an object any more. This ensures a safe state
for following plans, otherwise it is possible that with the next arm movement the
object is knocked over.

(hands-at-safe-navigation-pose pose) If the robot has to cover a distance greater
than a certain tolerance to reach the given pose, the arms are moved to the idle
pose by calling the goal hand-at-idle-pose for every side. This ensures that the
arms do not collide with other objects while the robot is moving.

Figure 4.4 The robot has to change the kind of grip used for the wooden spoon, in order
to be able to stir the content of a pot.
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(wrist-turned side degree) Turn the wrist joint of an arm given by side by the spec-
ified amount of degree

(robot-outside-door-range door) Ensure that the robot and its arms are outside the
door range when afterwards the door is opened or closed.

(entity-gripped entity) Grip entity either with one or both hands. For details see
Figure 4.3

(entity-lifted entity) Lift the gripped entity to ensure that following plans don’t
lose it again when the arm is moved and friction prevents the object to move along
smoothly.

(entity-dropped entity pose) Put down the entity at the given pose, but still keep
the object gripped3. Throw a failure if the object is lost while setting it down.

(entity-unhanded entity) Open the fingers to release the already set down entity
and move the arm to a safe position where following plans don’t knock over the
object.

(entity-moved entity pose) Move the already gripped and lifted entity to the given
pose in three-dimensional space. For example this goal is called by the higher-
level manipulation goals container-content-decanted and container-
content-stirred.

4.2.3 Higher-level Manipulation
More abstract goals can be achieved by using the basic manipulation goals and embed
them in higher-level manipulation plans. Goals on this level don’t have preconditions. The
plans take care to analyze the circumstances first and then choose appropriate subgoals.
They make extensive use of auxiliary goals, perform failure recovery, are restartable and
constrain parameter designators. Thus plans in the higher-level manipulation level fulfill
all the design issues discussed in Section 3.1.

Low-end examples of goals in this level are picking up and putting down objects,
opening and closing entities such as cupboards, switching on and off devices such as hot
plates or the oven, and turning the tap. More sophisticated skills include taking an object
from one position to another, filling containers with water, decanting the content of a
container into another container, and stirring the contents of containers.

Although the plans fulfilling these goals constrain designators, they usually rely on
the lower-level goals to add concrete constraints and instantiate them. But there are other
considerations involved in the execution of plans in real-world environments like the inte-
gration of auxiliary goals. This is mainly done on this level of higher-manipulation plans.

3The name entity-dropped is in some way misleading, since the robot doesn’t just open its fingers and
let the object fall down, but the name entity-put-down is reserved for a higher-level manipulation goal.
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The plan for picking up objects is an instance of a typical higher-level manipulation
goal, where several failures are monitored and recovered from and auxiliary goals are
used. This plan is discussed in depth in Section 3.5. The plan for placing an entity at a
location is another example of a higher-level manipulation plan and is shown in Figure 4.5.

Summary of Higher-level Manipulation Goals:
(entity-picked-up entity) Grip and lift entity. For details see Section 3.5 and Fig-

ure 3.6 on page 47.

(entity-put-down entity location) Find a suitable position for the robot, put down
the entity at the given location and unhand it. If the object has the wrong orien-
tation resulting from restrictions of the arms’ dexterity, turn the object. Auxiliary
goals include opening and closing cupboard doors and extending and retracting
boards. Throw a failure if object is lost during navigating to a suitable position.

(entity-turned entity) This goal is achieved by different plans. Every plan first
searches the entity. If a freely movable object is involved, like cups or plates,
the entity is picked up, turned and put down. For doors, hot-plate knobs, water
knobs and the tap the functionality is adapted to the object. In the case of doors
it means opening or closing them and for knobs turning them in order to operate
some device.

(entity-at-pose entity pose) Pick up entity and move it to the given pose still
holding the object. For instance the goal container-content-decanted uses
this goal.

Figure 4.5 Plan for placing an object at a location based on the plan structure described
in Figure 3.5.

entity-placed-at-location

inputs: (1) entity
(2) location

designators: constrain used arm

recover: entity-lost-failure

subgoals: entity-picked-up, entity-put-down

description Search entity described as a designator. If entity is already at the requested
location do nothing. Otherwise pick up the object and place it at the location.
Also, if possible add a constraint to the designator choosing the used arm for
gripping by giving a hint what the final goal location of the object will be.
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(entity-placed-at-location entity location) Pick up entity and put it down at
the given location. For details see Figure 3.5.

(entity-on-entity top-entity bottom-entity) Place top-entity on top of
bottom-entity by calling entity-placed-at-location. Optionally a location
designator describing where the top entity should be placed on the bottom entity
can be given. This designator is forwarded to the subgoal. If the location designa-
tor is omitted then a default location designator is created.

(entities-stacked entities-list) Stack the objects given in the list of entity designa-
tors. The plan determines an order of how to achieve a stable stack and returns
a newly created stack designator. The plan recognizes whether the objects are
already completely or only partly stacked and skips stacking of these objects.

(entities-unstacked stack) Unstack the given stack. Optionally a list of goal lo-
cations of the objects in the stack can be given, otherwise a suitable location is
calculated.

(hot-plate-temperature hot-plate temperature) Turn the knob of the hot-plate
to set the specified temperature.

(container-content-decanted current-container goal-container) Decant the
content of current-container into goal-container. First current-container
is picked-up and moved to a decanting pose. In a clean-up step the container is then
put down at the original position.

(container-content-stirred container) Find a suitable tool for stirring, pick it up,
stir the content of the container and in a clean-up step put the tool down at the
original position.

(container-filled container content amount) Fill container with the specified
amount of content (e.g. water, pasta). The plan for filling a pot with water places
it under the tap, turns the tap and fills the pot with water by opening and closing the
tap. In the case of pasta4 the objects are picked up and put down in the container
by calling the goal entity-placed-at-location.

(door-at-angle door angle) Turn the door to the given angle.
(door-opened door) Open the door by calling door-at-angle and specifying the an-

gle to be set to the maximum possible value.
(door-closed door) Close the door by calling door-at-angle.
(board-at-pos board position) Slide the board to the specified position

(board-extended board) Call board-at-pos to extend the board completely.
(board-retracted board) Call board-at-pos to retract the board completely.

4Pasta is modeled as solid cuboids with a certain weight.
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(enclosing-entity-opened entity) Used as an auxiliary goal of entity-picked-up
and entity-put-down. Determines the enclosing entity of entity and calls the
appropriate opening goals. The newly created designator enclosing-entity is
returned.

(supporting-entity-extended entity) Checks if entity is on a supporting entity
(e.g. a board) which can be extended, calls the appropriate goal and returns a new
designator supporting-entity.

(entity-closed entity) Closes the specified entity by calling the appropriate goal.
entity is normally the returned designator of enclosing-entity-opened.

(entity-retracted entity) Retract the specified entity by calling the appropriate
goal. The goal supporting-entity-extended normally returns the designator
entity.

4.2.4 Activities

Using the higher-level goals, we can implement sophisticated household activities. At the
moment, our robot can boil pasta and set the table. From the view of a user, these are
the goals or abstract commands the robot should be able to accept and perform. In these
activities a great variety of plans on all levels of abstraction are used. Figure 4.6 shows the
hierarchy of goals involved in the plan for setting the table. When a goal can be fulfilled
by more than one plan, the appropriate plans are mentioned inside parentheses. The goal
table-set uses for-all to repeatedly place the objects on the table, for every person
separately. The code of the plan is depicted in Listing 5.3 on page 88 and explained in
Section 5.4.1 as running example of the transformation rule library.

The execution of the pasta boiling plan is depicted as a slide show in Figure 4.7 that
demonstrates some of the higher-level manipulation plans used in the activity. Addition-
ally, for the pick up and put down tasks, the relative position of the robot towards the
object and the arm used for manipulating it are indicated. When gripping the wooden
spoon, it slips from the robot’s hand. This failure is discovered immediately, so the robot
tries a second time and succeeds.

The activities for setting the table and boiling pasta make use of the 22 higher-level
manipulation and the 12 basic manipulation plans presented. The hierarchy is 7–9 levels
deep, the lowest level consisting of the basic goals provided by the Player interface. In all,
the plans used in the activities monitor eight kinds of failures, supplement 27 parameters
by hand-coded heuristics or learned functions and set five auxiliary goals.

Activity Goals:
(table-set persons) Set the table for the given persons. The plan places the objects

(plate, cup, cutlery) one by one on an optionally specified table (otherwise the
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Figure 4.6 Subgoal hierarchy of goal table-set.

table-set
for-all
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perceive
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door-at-pos
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supporting-entity-extended
board-extended
board-at-pos
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entity-gripped (with-one-hand, with-both-hands)
hand-at-pose
hand-gripping
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hand-at-pose
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door-closed
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perceive
. . .
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entity-dropped (with-one-hand, with-both-hands)
hand-at-pose

entity-unhanded (with-one-hand, with-both-hands)
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hand-at-pose

entity-turned (with-one-hand)
. . .

. . .
. . .
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normally used table in the household is used). These steps are repeated for every
person that will attend the meal.

(pasta-boiled amount) Boil the specified amount of pasta. The steps necessary in-
clude placing a colander in the sink, filling a pot with water, placing the pot onto a
hot plate, switching on the hot-plate, boiling the water, adding pasta, waiting until
the pasta is boiled, switching off the hot-plate, decant the water and the pasta into
the colander and placing the pasta on a serving object.

Figure 4.7 Plan for boiling pasta showing some higher-level manipulation plans as a slide
show.

pick-up colander put-down colander pick-up cooking-pot put-down cooking-pot

fill with tap water pick-up cooking-pot put-down cooking-pot wait for water to boil

pick-up pasta put-down pasta pick-up pasta put-down pasta

pick-up wooden-spoon wooden-spoon lost pick-up wooden-spoon stir content and wait

put-down wooden-spoon pick-up cooking-pot decant content put-down cooking-pot

both both both both

both both

right right right right

left right

left both both

(0.67 m,-109.4◦) (0.69 m,-90.3◦) (0.56 m,77.0◦) (0.75 m,89.0◦)

(0.75 m,89.0◦) (0.58 m,89.8◦)

(0.44 m,-109.3◦) (0.58 m,-22.7◦) (0.52 m,-111.7◦) (0.63 m,-20.2◦)

(0.76 m,-119.3◦) failure (0.84 m,-0.1◦)

(0.74 m,-127.5◦) (0.62 m,89.0◦) (0.58 m,76.7◦)
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4.3 Combining Plan Steps

We have described the hierarchy of plans needed for sophisticated activities. However,
the overall plan performance can not only be explained by the plans involved without
having a deeper look at how they work together. The interaction takes place in two ways:
(1) the hierarchical decomposition of plans into subplans and (2) the sequential execution
of plans. The first gives rise to questions about which level of plans is responsible for
constraining and instantiating designators. When executing plans sequentially, the pursuit
of auxiliary goals should be rethought. In both cases, the issues raised here haven’t been
studied in depth, so that no analytical methods exists to solve these problems. To our
knowledge, plan transformations are the most general and reliable approach to handle
these issues.

Hierarchical Interaction. The first interaction to be mentioned is within the hierarchy.
We have required the lower-level plans to replenish the parameters that higher-level plans
abstract away from. However, the basic manipulation plans have a very narrow view on
the job to be done. They don’t have any information what happens before or after they
perform their task and can therefore only make local decisions. Often, better results can
be obtained when the higher-level plans suggest concrete parameterizations or impose
restrictions on the designators describing the parameters, because they have a wider view
of the overall goal.

One example of this phenomenon is the choice of the arm the robot should use to grip
an object with. The latest point for deciding on the arm is the entity-gripped plan. This

Figure 4.8 The top three images show the robot placing a plate from position p1 to p2
by picking up the plate at position e1, driving to position e2 and putting down the plate.
In contrast in the bottom three images the position c is chosen to perform picking up and
putting down the plate.

c e1e2

p1p2
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plan bases its choice on the knowledge if an arm is already used and on the object position
relative to the robot. What it doesn’t know is where the object is to be carried and put
down afterwards and if a specific arm is needed for later activities performed before the
object is released. Therefore, the grip plan might choose the wrong arm when seen in the
overall context. The higher-level plan moving an entity from one place to another is much
better informed about additional constraints and can select the hand based on the original
object position as well as the target location.

A similar situation arises when the robot chooses the position where to stand in order
to grip an object and put it down (see Figure 4.8). When the choice is postponed to the
last possible plan, unwanted effects arise when the object’s original and target locations
are close. In this case, the robot should select a position from where it can reach the object
and put it down without the need to navigate in between. The information about the two
positions for the object is only available in the plan that carries an object from one location
to another.

On the other hand, higher-level plans can more easily be manipulated and are more
flexible when they don’t have to bother about the low-level details of execution. It is
an important research issue to find a good balance between too much detail at higher
abstraction levels, uninformed choices on the lower levels, and how transformations can
modify plans to add more constraints to the designators to make the plans more robust.

Sequential Composition. Similar trade-offs are necessary for sequential goals. In our
plan library, goals are defined by a predicate describing the situation when the goal is
reached. For example, the grip goal is reached when the robot’s touch sensors detect an
object and this object is the one to be gripped. But often, the borderline between different
plans is fuzzy. One instance is when an object is put down (see Figure 4.9). From an
abstract point of view the goal is reached as soon as the object is sensed at the target
location. If the next plan performs another manipulation action with another object, it will
probably fail, because the arm knocks over the first, recently put down object.

Figure 4.9 The goal placing a cup at a location is reached from an abstract view as soon
as the cup is at the given location. But the robot fails to grip another cup, if it doesn’t
leave a clean state.
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Obviously, we need auxiliary goals that ensure that the next plan has a chance to
succeed after a goal has been reached. These actions include moving the arms to the
idle pose, closing doors, put back objects that have been shifted to enable the first plan,
etc. An even wider view of such actions is described by Hammond, Converse, and Grass
(1995). They claim that long-term activity can only be successful when the robot performs
“stabilization” tasks like cleaning dishes and storing them away. These activities aren’t
explicit goals, but must be performed somewhere in between the primary plans.

Like the hierarchical coupling of plans, the questions arising in sequential performance
aren’t trivial. One possible approach is to ensure after every plan that any subsequent plan
finds a set of prespecified conditions, e.g. that all cupboard doors are closed and the robot’s
arms are in the idle pose. This ensures that all plans can rely on uniform conditions and
don’t fail just because the previous plan has left the environment in a mess. However,
it often gives rise to funny sequences of actions (see Figure 4.10), for example the robot
carries a cup, puts it down, moves its arm to the idle pose, moves the arm towards the
cup in order to turn it to its target orientation, and moves the arm back into the idle pose.
Because the plan putting down the cup is eager to leave a good starting situation for the
next action, it makes the whole process very inefficient, because the hand is needed at the
cup for the next action.

A similar situation occurs when the robot takes two cups out of a cupboard (see Fig-
ure 4.11), one in each hand. It opens the cupboard, takes out the first cup, closes the
cupboard, opens the cupboard, takes out the second cup and closes the cupboard again.
As we have pointed out, leaving the cupboard open in general is not a good solution as
it might hinder the robot to perform later actions. Another solution would be to integrate
the opening and closing activities in a higher-level plan, in this case the one that tries to
take both cups. But this doesn’t solve the problem in general. There might be other things
to be taken from the same cupboard, so that the closing should be performed on an even
higher level. On the other hand, when there are people working in the kitchen, it might
make sense to close the door more often, in order not to hinder others in their activities.

It is extremely hard to find a general solution to this problem and the more abstract
the cleaning up activity, the more difficult it gets to integrate it into the overall sequence

Figure 4.10 Sequence where the arm is moved too often to the idle pose. Between putting
down the cup and turning the cup, the idle pose isn’t needed.
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of actions. In our plans, we differentiate between the robot’s state and that of the envi-
ronment. Each plan takes care that the robot is in a state that makes the execution of the
plan possible before it is started. For example, when navigating the robot checks on the
distance it is going to move and decides if the arm should stay in the position it currently
is in or should be moved to the idle pose (for longer distances). In contrast, the situation
in the environment is stabilized after a goal has been reached. So when the robot takes
something out of the cupboard, it closes it afterwards. This is described with auxiliary
goals and for the default plans this is a desired behavior, because it ensures that the robot
can use them in every environment. By using plan transformations the default plans are
then adapted to find optimal times to perform auxiliary goals and to omit unnecessary plan
steps (see Chapter 5).

Figure 4.11 Sequence where the cupboard door is closed and opened again between taking
two cups of the cupboard

4.4 Related Work on Plan Libraries
As already mentioned in the beginning of the chapter, our plan library is similar to the
work by Firby et al. (1996), who describes the components and the general plan library
of the robot Chip, whose task was to clean up trash in an office environment. They use
Firby’s (1989) RAPs language for their plans, which is a direct predecessor of RPL, but
doesn’t enable plan transformations.

Sussman’s (1973; 1977) Hacker system uses a similar approach of defining plans in a
library and transforming them in the blocks world domain. His library contains plans that
have already been used successfully.

The hierarchical execution of plans at different layers of abstraction is also the basic
idea of the prominent 3T architectures (Bonasso et al. 1997; Firby 1989; Pell et al. 1997).
Other than our system, where the different plan layers are implemented in the same lan-
guage and the calling structure is not restricted, 3T architectures assume three independent
levels of execution, where higher levels pass commands to lower levels. Optimization can
only take place in each level, thereby omitting necessary higher- or lower-level informa-
tion.

Zöllner et al. (2005) build hierarchical task representations in a kitchen environment
by observing humans. In contrast to our complete plan library, they focus on the level of
basic manipulation skills.
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The problem of parameter instantiation is addressed by Agre (1988). His solution,
called deictic representation, symbolically describes objects and their relation to the agent.
The representation of such objects can be performed with designators. However, Agre
assumes that no instantiation with low-level values is necessary for the agent to choose its
action. This is a feasible approach in Agre’s Pengi world (a simple computer game), but
too abstract to be used on a robot acting in the real world.

The work on lifeworld analysis performed by Agre and Horswill (1997) offers ideas
how to instantiate and, more importantly, how to interchange designator descriptions. The
use of predictive models for optimizing partially specified parameters is also demonstrated
by Stulp and Beetz (2005).

Besides, the problem of auxiliary goals has been studied under the term “stabilization”
of environments by Hammond, Converse, and Grass (1995) as a problem in household
domains without offering an implementable solution.

4.5 Summary
In this chapter we have presented our plan library for performing sophisticated household
activities. To achieve the desired behavior, we need plans on different levels of abstrac-
tion. These abstraction layers cannot be seen as fixed categories, but include plans that
are similar with respect to failure monitoring and recovery, constraining and instantiating
parameter designators and the use of auxiliary goals.

Although lower-level goals can diagnose failures, they have few means to recover
from them. They have to complement the abstract problems with values for execution
parameters, which are needed for the execution on the system level. Higher-level plans
are more concerned with repairing failures and to ensure that they can be executed robustly
at any time without preconditions. An important concept here are auxiliary goals, which
are necessary for reliable execution, but are hard to integrate efficiently into the plan.

We have especially pointed out the challenges in combining plans, both sequentially
and hierarchically. We discussed the problems of shifting the responsibility for the low-
level parameters to basic plans, because they often lack the information needed for an
appropriate choice. We have also explained the intricacies of defining when a plan has
ended and what the next plan in a sequence may expect from the world state. Plan trans-
formations become a vital tool in making robot activity feasible in the real world.

With the use of auxiliary goals and failure recovery our plans show very robust and
reliable performance. They are represented in a uniform way, so that they can be enhanced
by plan transformations.

The most abstract activities in our library are currently setting the table and boiling
pasta. The higher-level and basic manipulation plans are very general, they are used for
both activity plans equally.



Chapter 5

Plan Transformation

We have presented how plans are designed and organized in the plan library. The epony-
mous component of TRANER, however, is the transformation of such plans. In Chapter 2
we have explained the role of transformation rules in the complete plan execution and
transformation process. Now we introduce the concept of transformation rules in detail
and show how a plan and a transformation rule result in new plans. The chapter concludes
with a description of our complete set of transformation rules.

Figure 5.1 Part of TRANER described in this chapter.
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5.1 Motivation
Figure 5.1 highlights the components of TRANER we explain in this chapter: the transfor-
mation rules and the procedure of transforming a plan to new ones using transformation
rules. First we motivate why a special representation for transformation rules is necessary
and what the requirements are. Second we look at the challenges of processing transfor-
mation rules.

5.1.1 Rule Representation
Similar to plans, transformation rules must follow a determined syntactical structure, be-
cause like plans they must be understood by TRANER to execute the transformation. The
transformation rules should be able to perform complex modifications on plans in order
to change the course of activity of and the actions taken by the robot significantly. For
instance, transformations can suggest to use tools (e.g. a knife or a pair of scissors) or ap-
pliances, to leave cupboard doors open or to use containers. These modifications have to
be performed on the concurrent reactive plans with complex control structures presented
in Chapter 3. This is only possible by using a special transformation language for the
rules. Whereas plans are represented in a procedural way, we use a logical notation for
transformation rules.

Let’s first have a look at some examples. For instance a transformation rule should
be able to express things like if a plan places objects one by one on another object (e.g.
a table), then stack the objects first, bring the stack to the goal object and unstack the
objects. Another possibility would be to use a container (e.g. a tray) instead of stacking
the objects, which requires to add steps for finding and getting the container. A third
possibility is, if the type of the object allows it, to carry two objects (e.g. cups) in parallel.
Another rule is if a plan opens and closes doors multiple times, then leave the doors open,
but make sure they are closed at the end of the plan.

These examples show that a transformation rule needs a condition (if ) under which it
can be applied and an output part (then) specifying the new plan. As the transformation
rules must be general enough to apply to a wide range of plans they must specify exactly
which assumptions they make about the plan to be transformed without restricting the set
of matching plans more than necessary.

Furthermore, transformation rules should not be tailored to a certain robot. They
should be general enough to be carried over to several platforms and different problems.
To make the rules understandable both to the transformation mechanism and to the pro-
grammer, a declarative rather than procedural specification is necessary.

No matter how general the transformation rules are, it is inevitable to rely on certain
assumptions about which plans exist in the system and what they do. For example, a trans-
formation rule for stacking objects relies on the existence of the plans entity-on-entity
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and entities-stacked and that they do indeed what their names imply.
The transformations are not as simple as formulated in the examples. For instance in

the example where a plan places objects on another object one by one, the transformed
plan stacks the objects before carrying them. When now for instance the objects are four
plates, should all four plates be stacked, or only three or two? If three or two plates are
stacked, which of the four should be chosen? Which combination results in the best plan
can only be found out by testing all alternatives and the number of subsets can get large.
A transformation rule has to support the generation of multiple alternatives.

To get a better feeling what transformation rules should look like, the left hand side
of Figure 5.2(a) shows a simplified version of a plan for setting the table1. This plan
first binds the necessary designators (desigs), like the plates, cups and the table. Then
a sequence of steps follows, where each step places either all plates or all cups on the
table2. A possible improvement of the plan is shown on the right side of Figure 5.2(a)
where instead of placing the plates on the table one by one, all plates are stacked first,
then the stack is placed on the table and afterwards it is unstacked.

The problem is now, how to get from the left plan to the right plan. A direct approach
would be to write rules where the original input plan is replaced with the output plan.
When implementing rules this way, we could write all the plans by ourselves, because the
generality is missing. Therefore it is necessary that a transformation rule accepts more
than one input plan by checking a condition and is able to identify important parts of
the input plan. The top part of Figure 5.2(b) shows the code tree3 of the left plan in
Figure 5.2(a). In the example the transformation rule has to match the (STEP 1) branch
and transform it to the branch shown at the bottom part of Figure 5.2(b). The new branch
contains three new subbranches.

Often it is necessary not only to modify one part of the input plan, but also some other
parts. The top part of Figure 5.3 shows a simplified code tree of the plan for setting the
table. When a transformation rule optimizes the opening and closing of doors, it has to
identify the subplans in the tree where the plan closes doors. This happens three times in
the example (indicated by circles). The output code tree is depicted at the bottom part of
Figure 5.3. Here the closing operations are removed and new steps at the beginning and
the end of the plan are added. One parallel step (indicated by a rectangle) is included,
which monitors the plan for doors opened by the robot. The second new step closes all
opened doors in the end.

Beside being general, transformation rules have to express complex transformations.

1The plan is already transformed and not the default plan contained in our plan library. The default plan
is shown in Listing 5.3 on page 88 and will be explained in Section 5.4.1. The transformed plan is chosen
to simplify the example.

2(achieve (eoe p→t)) is the short version of achieving the goal entity-on-entity by placing a plate
on the table

3Code trees are explained in Section 3.2.3 on page 37
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Figure 5.2 Illustration of a plan transformation.
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They need to describe how the input plan is converted to an output plan by only modifying
some parts of the a priori unknown plan and maintaining the functionality of the rest of
the plan.

In sum, a transformation rule has to be able to modify the right subplans. This means,
that it must be possible to specify all relevant parts of the input plan, the transformation
of the identified parts and the assembly of the output plan by replacing the matched parts

Figure 5.3 The top code tree depicts a simplified view of the plan for setting the table. In
this plan a cupboard door is closed three times (indicated by circles). In the output plan
(bottom code tree) the transformation rule has identified and removed these branches.
Additionally a branch monitoring the opened doors (rectangle) is added and at the end
plan steps are added to close the opened doors.

set-the-table

Y
g

set-the-table
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with the transformed parts. Because the situations a robot might encounter are not known
at the time when the transformation rules are implemented, they must be general enough to
comprise a great variety of situations. Currently, we develop transformation rules carefully
by hand. For the future we plan to generate transformation rules by comparing the robot’s
performance to that of humans and extracting possible transformations.

5.1.2 Transformation Procedure

Beside the representation of transformation rules, the processing of the plans by the rules
is another important research question. When a plan has shown to work suboptimally, an
adequate transformation rule must be selected from the set of available rules. The first cri-
terion is simply if the rule (condition) matches the plan. Each transformation rule assumes
a specific syntactic structure of the plan, for example that the plan contains two concur-
rent subplans. Only transformation rules for which the plan is syntactically valid can be
considered. After the matching test there might still be several applicable transformation
rules.

In principle, all these rules could be applied to the plan and the resulting plans can be
executed and evaluated in simulation. This procedure results in a search tree as shown in
Figure 2.4 on page 26. However, the branching factor of the search for a good plan is very
large when all valid transformation rules are used. Another criterion is necessary to narrow
the search. All rules contain an applicability condition telling in which situations this
rule is particularly useful. The condition is based on the execution trace observed when
the plan was executed. As an example, consider two transformation rules assuming the
plan to be composed of two subplans to be executed in parallel. The first transformation
rule transforms the plan in a way that the two subplans are executed sequentially in the
resulting plan. The second transformation rule intensifies the parallel execution so that
not only parallelizable actions are executed concurrently, but when one plan contains idle
times, these are used by the other plan to execute plan steps. Both transformation rules
can be applied to plans that contain two concurrent subplans. But the first rule should
be applied when the observed data indicates that the parallel actions thwart their goals
mutually, whereas the second rule can be used to enhance the robot’s performance.

Not only several applicable transformation rules lead to different resulting plans. We
have seen that by applying only one transformation rule a plan can be transformed to
several other plans by generating alternatives. For instance this happens when only a
subset of the objects should be stacked. In this way, one transformation rule is used like
a set of transformation rules and this has to be supported when transformation rules are
processed.
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5.2 Transformation Rules

In the following we introduce the representation of our transformation rules first infor-
mally in a structural way, then formally by providing the syntax of the rules, each time
together with an example. The language is based on logical concepts, but includes the full
expressiveness of LISP.

5.2.1 General Structure

We have argued that a sophisticated transformation rule should consider both the obser-
vations on the robot’s behavior and the syntactical structure of the plan. Therefore our
transformation rules, whose structure is depicted in Figure 5.4, are split into a reasoning
component and a rule body describing the syntactic operations on the plan.

Figure 5.4 Graphical illustration of transformation rules.

transformation

input schema

output plan

applicability

Syntactical Declarations

The syntactic component is subdivided into three parts: the input schema, the transforma-
tion, and the output schema. The input schema determines if a plan matches the transfor-
mation rule syntactically. This means, it expresses how a plan must be structured in order
to be transformable by the rule. For example, a rule might rely on the plan containing
subplans or including a sequential execution of several plan steps. A rule whose input
schema matches the plan structure is called a valid transformation rule for the plan.

An input schema is not just a condition on the validity of the rule, but binds parts of the
input plan to variables by pattern matching. As the plans contain subplans, which might
have to be transformed in their turn, the whole transformation gets a hierarchical character
entailing a more complicated structure of the pattern matching.

Figure 5.5 illustrates how a transformation rule can be valid for a plan in several ways,
because there are multiple valid assignments for the variables sub1 and sub2. Depending
on the semantics of the rule, all possible assignments or only a subset might be reasonable
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for the transformation. Our syntax enables the specification and restriction of multiple
matches.

The matched variables are the input for the transformation part of the rule. The dec-
larations here specify how the code is to be transformed before being reassembled in the
output schema. For very simple rules, the transformation part can be omitted, for example
when the rule only changes the order of two commands of the original plan. But in most
cases, more sophisticated operations are needed, for example to ensure correct variable
bindings, adjust designator specifications, and not to lose failure recovery methods.

The result of a transformation rule is determined by the output plan of the rule. It
assembles the resulting plans by using variables bound in the previous parts and arranging
them to the desired plan structure.

Figure 5.5 A rule input schema matched against a plan, resulting in multiple valid assign-
ments for sub1 and sub2. If the order of the subplans in the input schema is important,
only the first two assignment are valid.
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Pure syntactic transformations lead to a huge search in the space of possible plans, whose
branching factor is determined by the number of transformations applied to the plan. For
keeping this number small and only trying promising transformations, we don’t use all
valid transformation rules to produce new plans, but introduce the concept of applicable
transformation rules. The applicability of a rule is a condition on the execution trace,
which was observed when the plan was executed. Such conditions might include the
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number and kind of objects manipulated, the traveled distance, or the number of failures
during execution. A rule can only be applicable, if it is valid for a plan, that is that it
matches the input schema.

This deliberation doesn’t only consider if the rule is applicable at all, but also restricts
the possible matches of the input schema. Conditions on the observed robot behavior
determine which input matches are the most promising ones.

Example

For illustrating the structure of a transformation rule, let us regard a rule which eliminates
unnecessary execution of auxiliary goals as shown in Figure 5.6.

The applicability condition states that this rule is only useful for plans, during whose
execution the robot has opened and closed containers several times. However, there is
no guarantee that the transformed plan will behave better than the original one. First, the
applicability doesn’t require the containers to be equal, which means that all containers
that are opened and closed can be disjunctive. Second, it might not be possible to leave
a container open for a longer time, for example because the content might deteriorate or
there is not enough room for other activities if containers are left open or the family cat
likes to jump into cupboards. On the other hand, the rule discards the transformation of
plans that contain auxiliary goals, but the handling of containers is already done efficiently.

The input schema analyzes the plan and identifies auxiliary goals that close containers.
These closing operations are then removed by the transformation part. By these operations
alone, all containers would be left open in the end. Therefore, the rule defines a new
program part monitoring which containers are opened during execution.

Figure 5.6 Transformation rule for optimizing the opening and closing of containers spec-
ified as auxiliary goals.

(1) remove closing container steps
(2) define monitoring component

identify auxiliary goals closing containers

plan with
(1) adapted auxiliary goals

(2) added monitor detecting opened containers
(3) added step for closing opened containers at the end

containers are opened and closed multiple times
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The output plan is constructed by using the original auxiliary goals without the com-
mands for closing cupboards. Then the monitoring component is added, and finally a new
auxiliary goal is added at the end of the plan execution, closing all opened containers at
the end.

Note that the transformation didn’t try to eliminate multiple opening of containers.
This is due to the fact that the plan for opening containers is a higher-level manipulation
plan, which can operate in any situation. When the container is already open, the plan
realizes this and terminates immediately.

5.2.2 Rule Representation

For representing transformation rules in our plan language, we defined a special program-
ming construct def-tr-rule along the concepts introduced in the previous section. The
syntax specification for transformation rules is given in Figure 5.7 and an example is
shown in Listing 5.1. Using the example, in this section the syntax is explained and in the
next section we describe how the parts of the transformation rules play together and are
executed.

The Basics

Our transformation rules are based on XFRML (XFRM Language) (Beetz and McDermott
1997; Beetz 2000; 2002a), the transformation language of the planning system XFRM
(McDermott 1992b), which allows the declarative specification of general transforma-
tion rules. XFRML itself is based on a Prolog-like Horn clause language with fifty to
sixty built-in predicates, specifying relations on plan code and execution traces. With this
language it is possible to retrieve information from plans and execution traces and test
properties of them by writing Prolog-like queries.

Beetz (2000) describes XFRML as “the usual Prolog-in-LISP combination: parenthe-
sized prefix notation, with variables indicated with ‘?’ and segment variables by ‘!?’.” Ba-
sic general predicates provided are (true) and (false), unification with
(unify e1 e2), arithmetic equality and inequalities (=, !=, <, <=, >, >=), the logical op-
erations (and pred1 . . . predn) and (or pred1 . . . predn), as well as set operations like
(member el list) and (set-of arg pred set). The last predicate succeeds if every
arg in set satisfies pred.

Besides it is possible to call LISP-code with the predicates (eval exp val) and
(lisp-pred pred x1 . . . xn). The predicate eval is true if exp evaluates to val in LISP
and the predicate lisp-pred is successful if (pred x1 . . . xn) returns a value other than
nil in LISP. New predicates can be defined with (<- p (and q1 . . . qn)), where p is an
atomic formula.
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Basic Syntactical Elements

As described in Section 5.2.1 a transformation rule has four parts: (1) applicability,
(2) input-schema, (3) transformation, and (4) output-plan. This structure is reflected in
the construct def-tr-rule as shown in Figure 5.7(a). Every definition part is a list of at

Figure 5.7 Syntax specification of transformation rules.

(def-tr-rule 〈name〉
:applicability (〈predicate〉+)
:input-schema (〈input match〉+)
:transformation (〈predicate〉+)
:output-plan (〈rpl code〉+))

(a) Transformation rule definition.

〈predicate〉 → (〈pred-name〉 〈pred-arg〉∗) |〈plan identification〉
〈pred-arg〉 →〈expr〉 |〈predicate〉
〈expr〉 →〈variable〉 |〈symbol〉 | (〈expr〉+)
〈variable〉 →〈symbol〉 starting with ‘?’ or ‘!?’
〈input match〉 → (〈plan identification〉 〈control command〉)
〈plan identification〉 → (match-plan

:at 〈path〉
:plan 〈variable〉
:bind-path 〈variable〉
:cond 〈predicate〉)

〈path〉 →〈variable〉 | (〈path-spec〉∗)
〈path-spec〉 →〈rpl-path〉 |〈variable〉
〈control command〉 →〈branch〉 |〈for-each〉
〈branch〉 →:branch (:generate (〈lisp-function〉 〈variable〉∗)

:unify 〈expr〉
:cond 〈predicate〉)

〈for-each〉 →:for-each 〈variable〉 :unify 〈expr〉
(b) Explanation of the expressions of part (a).

〈expression〉 An expression that is defined later or has been defined.
〈lisp expression〉 A construct from LISP or RPL giving a short specification.

a→ b ‘a’ is of the form ‘b’.
a | b Alternative construct, either ‘a’ or ‘b’.

a+ → a | aa+.
a∗ either nothing or a+.

optional An optional expression is illustrated in gray.
(c) Explanation of the notation used in part (a) and (b).
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least one specification and each list has the same length4. When a transformation rule is
executed the elements of the lists are traversed in a certain order as shown in Figure 5.8
on page 87 and explained in Section 5.3.

The specification of the applicability condition (lines 2–6 in Listing 5.1), the transfor-
mation part (lines 23–28), and the output part (lines 29–42) are straightforward. Each list
element of the applicability is a predicate returning true or false. The rule is only used
when each applicability predicate returns true. If a list element has to perform several
operations, they can be combined as conjunctive predicates. The transformation is also
given as a list of Prolog predicates, performing modifications on the matched parts of the
input plan. The output plan is a plan where some parts are represented by the variables
bound in the input schema and the transformation part. More sophisticated operations on
plan parts must have been performed in the transformation part.

Input Schema Matching

The remaining part of a transformation rule — the input schema (lines 7–22) — is slightly
more intricate in its definition. The reason is that our plan language is quite complex
and therefore a sophisticated language for pattern matching and identifying interesting
subparts of plans is required. The most basic possibility to define the input schema is when
the interesting parts of the plan can be specified by a known path. Then the specification is
(match-plan :at <path-spec> :bind-path ?path-var :plan ?plan-var), where
<path-spec> is the known path specification. The arguments :bind-path and :plan are
optional. If they are provided, the path in the task tree and the plan found at this path are
bound to the respective variables.

The situation is more complicated when the exact path specification is unknown, but
some feature of the plan is required, for example the part in the plan where
with-failure-handling is called. In this case, an additional condition specified as a
predicate can be given. The condition can be combined with a complete or incomplete
path specification. If a complete path specification is provided, the condition only checks
if the plan at this position in the task tree can be transformed by the rule. But it is also
possible to give an incomplete path specification and then a search for a plan matching the
condition is performed in the subtask tree of the given path. An incomplete path specifi-
cation is characterized by containing unbound variables.

When working with conditions and incomplete paths, it may happen that several sub-
plans match during the search. If more than one subplan is accepted by the condition,
then the first matching plan is used. This behavior is not always desired. In the example
transformation rule all occurrences where containers are closed in clean up steps should
be removed. To achieve this match-plan itself is defined as a predicate, which can be

4(length applicability) = (length input-schema) = (length transformation) = (length output-plan)
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Listing 5.1 Implementation of the transformation rule for optimizing the opening and
closing of containers specified as auxiliary goals.

1 (pl:def-tr-rule :containers-closed-at-end
2 :applicability
3 ( (and ... ; ap-1
4 (> ?containers-opend-count 1)
5 (> ?containers-closed-count 1))
6 (true) ) ; ap-2
7 :input-schema
8 ( ((match-plan :at () :plan ?plan ; is-1
9 :cond (set-of (?path ?bdgs ?prepare ?perform ?in-clean-up)

10 (match-plan :at ?path :plan ?aux-goal
11 :cond
12 (and (unify (with-auxiliary-goals ?bdgs
13 ?prepare
14 ?perform
15 (clean-up ?in-clean-up))
16 ?aux-goal)
17 (lisp-pred tr-rules-has-goal
18 ?in-clean-up ’container-closed)))
19 ?aux-goal-vars)))
20 ((match-plan :at ?path) ; is-2
21 :for-each ?aux-goal-vars
22 :unify (?path ?bdgs ?prepare ?perform ?in-clean-up)) )
23 :transformation
24 ( (transformed-plan ; tr-2
25 ?in-clean-up
26 (reduction (:achieve (container-closed ?_)) (no-op))
27 ?out-clean-up)
28 (true) ) ; tr-1
29 :output-plan
30 ( (with-auxiliary-goals ?bdgs ; op-2
31 ?prepare ?perform (clean-up ?out-clean-up))
32 (with-auxiliary-goals ; op-1
33 (perform
34 (with-constraints
35 (roll:acquire-experiences
36 (getgv :experience ’observe-containers-opened-exp))
37 (:tag OBSERVE-CONTAINERS-OPENED
38 ?plan)))
39 (clean-up
40 (for-all
41 (lambda (container) (:achieve (container-closed container))
42 (get-observed-containers-opened ?tag))))) ))



84 5.2 Transformation Rules

used inside the condition. In combination with set-of all occurrences can be collected
(lines 9–19).

The first input schema (is-1, lines 8–19) binds the whole plan (path is empty) to the
variable ?plan and searches for all subplans with the command with-auxiliary-goals
containing a call to the goal container-closed in the clean-up part. The interesting

variables of the search are collected in a set and bound to the variable ?aux-goal-vars
(line 19).

This variable contains now several subplans and each should be transformed. The con-
trol command :for-each 〈variable〉 :unify 〈expr〉 provides the ability to loop over each
element and unify its content, which then can be used by match-plan (is-2, lines 20–22).
For each iteration the appropriate transformation predicate (tr-2, lines 24–27) is called.
In this case (:achieve (container-closed ?_)) is replaced with (no-op). At first,
the new output plan is a copy of the input plan and then the transformed subparts are
replaced with the code specified. In the example output plan two (op-2, lines 30–31)
replaces the command with-auxiliary-goals with the new version. Output plan one
(op-1, lines 32–42) wraps with-auxiliary-goals around the original, but already in
subparts modified, plan. In the perform part a monitoring component observing opened
containers is added and in the clean-up part steps to close these containers in the end are
added.

So far the transformation rule always generates exactly one new output plan. But when
several subplans match, it is not always clear if every subplan should be transformed. In
a later example we will see a transformation rule searching for subplans using the con-
struct for-all and expanding it to a sequence. Should every occurrence of for-all be
expanded now or only occurrence two and six, for instance, or any other combination?
The control command 〈branch〉 allows to specify a branching, where each branch gener-
ates a separate output plan in the end. The example in Listing 5.2 generates the power
set of all for-all goals found, unifies each element of the power set with the variable
?for-all-goals-set and the branch is only accepted if the length of the subset is at
least one. A transformation rule containing this branch would generate 2n− 1 output
plans, where n is the length of the variable ?for-all-goals.

Each input schema can have either one 〈branch〉 command or one 〈for-each〉 com-
mand. The difference is that 〈branch〉 generates new output plans, whereas 〈for-each〉
performs the transformations on the same output plan.

Another example of an input schema is presented in Section 5.4.3 on page 94.

Listing 5.2 Example of using :branch inside a input schema definition.

:branch (:generate (power-set ?for-all-goals)
:unify ?for-all-goals-set
:cond (> (length ?for-all-goals-set) 0))
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Summary of Contributions

We have mentioned XFRML as the predecessor of our plan transformation rules. However,
the syntax for our system allows the specification of more sophisticated transformation
rules in several ways.

First, the structure of the rules clearly separates the syntactical plan matching and se-
mantical conditions of the applicability from the transformation part. The separation of
applicability and transformation commands doesn’t only add clarity to the transformation
rule, but makes nested and branching transformation rules possible. In contrast, XFRML
doesn’t distinguish between applicability conditions and transformation. Instead, it relies
on specifying complicated Prolog rules in what is called the condition part of the transfor-
mation rule.

The second main difference to XFRML lies in the specification of the input schema.
With the sophisticated pattern matching syntax, our plan transformation rules can handle
cases of matching a plan in several ways and allow to specify the desired outcome by
either applying the rule to one or several matches or producing more than one output plan.
Also our representation allows incomplete paths or unknown path positions.

Finally, the transformation rules of XFRML were designed for an abstractly simulated
world, where a robot is to move objects from fields in a grid to other fields. The plans nec-
essary for our kitchen robot are more complex. Only the additional power of the TRANER

transformation rules allows sophisticated transformation procedures and the specification
of very general rules that can be applied to a wide variety of concurrent reactive plans.

5.3 Transformation Procedure

As mentioned in the previous section every definition part (applicability, input-schema,
transformation, and output-plan) of a transformation rule is a list of the same length. If
the length of each list is exactly one, then the basic transformation procedure is straightfor-
ward and in accordance with the structure of the rules. In the first step the plan is matched
to the input schema and the rule variables are bound to the respective plan parts. Before
starting the transformation, the applicability condition is checked, optionally binding new
variables. Only when the rule is applicable for the valid input match the transformation
is performed using the previously defined variables. The output is then composed by
accessing all the variables, particularly those set in the transformation step.

A moot point in this procedure is whether to apply the applicability condition or the
input matching first. Both are needed to decide if the rule can be used for a given plan.
From a declarative point of view this question should be unimportant, because the rule
is applied if both the syntactic input matching and the behavioral applicability condition
hold. From the implementational point of view the order of execution can affect the effi-
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ciency of the whole transformation. In our current implementation the syntactical check
comes first and the applicability is tested afterwards.

This simple procedure gets more complicated when nested plans and transformations
on the subplans are involved. One intricacy is the treatment of subplans with respect to the
overall plan: Particularly the order of how each element of the definition lists is processed
is a little bit tricky. The left hand side of Figure 5.8 shows an abstract transformation
rule having n definitions in each list. Two input schemas have a control command in-
cluded. A :branch command is specified in is2, and in isn−1 a :for-each command is
declared. The right side of the figure shows the order of how each element is called and
how branching takes place.

For the input schema and the applicability, the matching works alternating from the
top-level plan towards subplans. This is necessary, because subplan matches can often be
defined in terms of parent plans. For the composition of the transformation result, how-
ever, the subplans must be assembled first, so that their transformation results are included
into the final plan and are not discarded by using their original versions. This reverse order
is reflected in the definition of transformation rules. Input schema and applicability define
their elements from 1 to n, whereas transformation and output plan elements go from n
to 1.

If an input schema defines a :for-each command, some special treatment is neces-
sary. Usually following input schema and applicability definitions can access the variables
bound in previous definitions. But since a looping is performed over the content of the
variable specified, it is not clear from which iteration a binding should be kept. For this
reason all new variables in every iteration are local and can’t be accessed by other itera-
tions or following definitions.

Another subtle point is the transformation of one plan to several output plans by ap-
plying one rule. If a branch command is declared new branches are generated, which are
completely independent. The following matching and transformation steps are executed
for each branch. If a later input schema defines another branch, then in every branch
new branches are defined which leads to many new output plans at the leaf nodes of the
transformation tree. Following :for-each commands can have different lengths, since
the length depends on previously defined variables. In Figure 5.8 the left branch length of
the :for-each command is k, whereas the right branch has length j.

The last difficult aspect to note is when the transformation starts. First the last in-
put match is transformed by trn and the part of the plan specified by the path in the
input schemas is replaced with the resulting output plan opn. Since some variables may
be bound incorrectly due to the modification of the plan a rematch of the previous input
schemas (is1 . . .isn−1) is necessary. During a rematch every branch command (branches
are already defined) and for-each command (binds only local variables) is ignored. Af-
ter the rematch the next transformation and plan modification is performed. In the case
of a for-each command, in every iteration the rematching, the transformation and the
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Figure 5.8 The left side shows the definition of a transformation rule, having n elements
in each list. A :branch is defined in is2 and a :for-each in isn−1. The right side shows
the processing order of each element of the definition lists.
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replacement are performed as a group. Sometimes it is possible that transformations of
subplans modify the plan in a way that during rematching previously successful conditions
return false. To detect if a rematch is performed inside a condition, there is a predicate
rematch-p5 returning false for the first match and returning true for every rematch. With
this predicate it is possible to write the condition appropriately.

5.4 Transformation Rule Library
Similar to plans, the transformation rules are organized in a library. In the following we
describe several transformation rules, which are categorized in six general classes. Some
instance rules of these classes are introduced on the basis of a running example, the plan
for setting the table.

Listing 5.3 The default plan for setting the table. An example for calling the plan is
(achieve (table-set ’(:alvin :simon :theodore))).

1 (define-plan (achieve (table-set ?persons))
2 (for-all
3 (lambda (person)
4 (with-designators
5 ( (table ’(some entity (type table)
6 (used-for meals)))
7 (seating-location ‘(some location (at ,table)
8 (preferred-by ,person)))
9 (plate ‘(some entity (type plate)

10 (status unused)
11 (status clean)
12 (preferred-by ,person)))
13 (cup ‘(some entity (type cup)
14 (status unused)
15 (status clean)
16 (preferred-by ,person))) )
17 (achieve (entity-on-entity plate table)
18 :location ‘(some location (on ,table)
19 (matches (entity-location ,plate))
20 (matches ,seating-location)))
21 (achieve (entity-on-entity cup table)
22 :location ‘(some location (on ,table)
23 (matches (entity-location ,cup))
24 (matches ,seating-location)))))
25 ?persons))

5Listing 5.4 on page 96 shows an example usage of the predicate rematch-p and the listing is explained
on page 95.
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5.4.1 Example Default Plan

The default plan for setting the table is shown in Listing 5.3. Lines 4–16 define the im-
portant designators of the plan. First the table is described as an entity of the type table
which is used for meals. Second the designator seating-location describing the loca-
tion where a person prefers to sit at the table is defined. The last two designators specify
the plate and the cup to be placed on the table.

Lines 17–24 specify the steps the robot has to take to reach the goal. By calling
the goal entity-on-entity the plate and the cup are placed on the table. The posi-
tion on the table is given by additional designators describing the location on the table
where to put the object depending on the type of the object (entity-location) and the
seating-location of the person.

Section 4.2.3 described that entity-on-entity calls entity-placed-at-location,
which itself first calls entity-picked-up and then entity-put-down. The pick-up plan
searches for the object described by the designator, navigates to a location where it can
grip it and finally picks it up. Putting down the object includes navigating to a suitable put
down position and placing it on the table. These plans are implemented in a robust way
and can recover from local failures, like losing the object during navigation.

Normally more than one person attends a meal. By using the construct for-all
(line 2) the steps of defining the appropriate designators for a person and placing the

needed objects on the table are repeated for every person.

for-all
w-desigs
eoe p→t
eoe c→t

PdefaultMost of the transformation rules presented in the following operate
on this plan. For an easier illustration of the modifications a trans-
formation rule performs on the plan, the simplified representation on
the right is used. Pdefault gives the name of the plan, w-desigs means
with-designators, and eoe e1→e2 is the short version of calling the
goal entity-on-entity for placing entity e1 on entity e2. Instances of e1 and e2 are p, c,
t and s, meaning plate, cup, table and a stack.

5.4.2 Transformation Rule Classes

The plan for setting the table shows potential for improvement, since bringing the nec-
essary objects to the table one by one for every person takes a lot of time. By applying
a small number of transformation rules, the behavior can be enhanced significantly. In
the following we introduce the set of transformation rules we have defined for the kitchen
robot and group them with regard to their effects.

Although our running example is setting the table, the transformation rules presented
here are not designed specifically for this tasks. They apply equally to the preparing pasta
scenario and can be expected to be useful in optimizing other household tasks.
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First of all, we give an overview of the classes of transformation rules we have iden-
tified and introduce some instances of these classes. Figure 5.9 on page 93 depicts how
the application of the transformation rules affects the performance of the table setting plan
and shows the search tree for the best plan. This example will be explained in more detail
in the next sections, but we already provide references to the identifiers of the rules used
in the figure.

Based on their effects, we group our transformation rules into different classes. In this
section we explain the general effect by which a class is identified and give examples of
transformation rules belonging to it. The groups we are using are the following:

o syntactical transformations,
o reordering of plan steps,
o usage of external resources,
o usage of robot resources,
o modification or introduction of auxiliary goals,
o optimization of free time.

Syntactical Transformations are ones that don’t affect the robot’s behavior, but only
change the syntax of the plan. Here we differentiate between two subclasses of rules:
code beautifiers and code restructuring rules. Examples of code beautifiers include the re-
placement of seq commands by implicit sequencing, for example inside a let construct.
Similarly, a sequence of several seq commands can be combined to one seq containing all
subinstructions. Removing no-op instructions is another instance of this class. Code beau-
tifiers are applied on already transformed plans. Plan transformations sometimes generate
code that works, but lacks compactness and readability. For example, in the local context
of a plan transformation rule it might make sense to add an extra sequencing command,
but in the context of the whole plan, this command can be superfluous and should be re-
moved to make the plan better readable and therefore more easily transformable by other
rules. As the transformation rules rely on the syntactic structure and assume a sensible
coding style, code beautifiers play an important role to make chains of plan transforma-
tions possible.

The second class of syntactical transformations — code restructuring rules — alter the
syntax of a plan without changing its behavior in order to enable subsequent plan trans-
formations. One such rule (named T7 in Figure 5.9) converts a for-all instruction to a
sequence of instructions. This gives subsequent transformations more freedom in decid-
ing on the order in which all the steps are executed. On the other hand, the plan gets more
specific with respect to the number of instances for which the plan is executed. Whereas
for-all can be parameterized for which objects the subplan is to be achieved, the se-
quence is expanded into a fixed number of steps. This is like replacing a loop command
in a normal program by a sequence of instructions. Another code restructuring rule (T1)



5. Plan Transformation 91

moves designator bindings outside the main plan code. This means that instead of bind-
ing designators inside a for-all instruction, for instance, the bindings are already defined
outside of for-all. This is important for keeping designator bindings intact when the plan
is transformed. A third example of code restructuring is to replace a seq or par command
by a partial-order instruction, in the first case by representing the complete sequenc-
ing order in the partial order constraints, in the second by omitting all partial ordering
constraints. Although this doesn’t change the behavior of the plan, the partial-order
command provides more flexibility in removing or adding constraints on the execution
order. This means that subsequent transformations can transform a fixed sequence to one
where some of the steps can be executed in parallel.

Reordering of Plan Steps does affect the behavior of a plan, but is usually another
introductory step for other transformations. In many cases, the order of plan steps doesn’t
change the overall result or performance of the plan. For instance, the order of steps is
irrelevant when bringing a cup and a plate to the table. Therefore, in many cases, the
reordering of plan steps is very similar to a syntactical transformation, the visible robot
behavior being only modified slightly and the final state being equal.

The rule named T2 in Figure 5.9 converts a for-all command containing n substeps
to n for-all commands containing one substep each. For example, when the plan con-
tains the instruction to achieve the steps (1) bringing a plate to the table, and (2) bringing
a cup to the table, both to be performed for four people, the plan can be converted to the
two instructions (1) to bring a plate to the table for each of the four people and (2) to bring
a cup to the table for each person. The overall result of the plan is not changed by this
transformation. However, it enables subsequent stacking of the plates and usage of both
arms or the tray to bring the cups to the table. When performing this transformation, it
is important to take care of the designator bindings. If the bindings were declared inside
the original for-all, the resulting plan might be flawed, because not all designators are
bound correctly in the new for-all instructions. Therefore, the syntactical transforma-
tion moving the designator bindings outside (T1) should have been applied before this
rule.

Another instance of reordering plan steps is simply to swap the execution of two steps.
This is an instance of the more general rule to change, add, or delete constraints of a
partial-order instruction. As we said before, a sequential or parallel execution can be
transformed to a partially ordered one. The combination of the two rules is a powerful
tool to modify the execution order.

In some cases, it is reasonable to order plan steps by a certain execution criterion, for
example the order in which the robot acts in different locations. By grouping the steps
where the robot works at one location, navigation steps can be removed or the execution
can be enhanced by using external or robot resources, for example by using a tray.



92 5.4 Transformation Rule Library

Using External Resources like containers can significantly enhance a robot’s perform-
ing when executing a plan, mainly by reducing the number of navigation tasks. One
example is the stacking of objects. In this case, the robot uses the bottom object of the
stack as a tool to move the other objects. The stacking rule comes in two variants, depend-
ing on the syntactical structure of the plan (Rule T3 and T4). If the moving commands
for the objects are combined in a seq instruction, rule T3 can be used, whereas T4 takes
care of commands inside a for-all command. When using transformations, all plans
could be transformed by resolving the for-all to a seq instruction and then using rule
T3. However, as mentioned before, this restricts the plan application to a certain number
of objects or people. Leaving the for-all in place results in a more general plan.

The stacking of objects can be regarded as an instance of the more general rule of
using containers. The container can be a tray, a bucket, a pot, or a plate. When the objects
inside the container are of the same kind as the container itself — like plates on a plate —
the objects are stacked. An even more general formulation than using containers is using
tools to fulfill a given task. Instead of opening a package of milk with its grippers and
running the risk of spilling the milk, the robot should rather use a pair of scissors.

Using Robot Resources is another way of optimizing the behavior of a plan. Robot
resources include its arms and the integrated tray on top of the robot. Similar to the two
rules for stacking objects depending on whether the plan steps are grouped sequentially or
by a for-all command, there are two rules for using both arms when carrying objects.
Rule T5 works on a sequence of carrying instructions, whereas rule T6 modifies the mov-
ing of all objects in a for-all. Another option is to use the robot’s built-in tray in the
same way as an external container to move several objects at a time.

Modification or Introduction of Auxiliary Goals is very important for making the
overall robot behavior successful. As we explained in Section 4.3 on page 66, auxil-
iary goals are indispensable for showing reasonable long-term behavior. However, it is
extremely difficult to include auxiliary goals at the appropriate places in a plan. Plan
transformations are a good way to discard unnecessary auxiliary goals by summarizing
some of them or to introduce auxiliary goals at appropriate places in the plan.

One instance of removing superfluous auxiliary plan steps is the closing of cupboards
as already explained in Sections 5.2.1 and 5.2.2 (page 79ff). As a default, the robot closes
a cupboard as soon as it has taken an object out of it. In the overall context of the plan, this
can end in the robot opening and closing a cupboard several times subsequently. The trans-
formation rule first removes the closing actions and then makes the robot notice which
cupboards it opens during the plan execution. At the end of the main task, all open cup-
boards are closed. A similar transformation is necessary to handle the retraction of the
slidable boards inside the cupboards.
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Figure 5.9 Transformation graph of optimizing the default plan for setting the table.
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Depending on the context of the whole plan, auxiliary plan steps might be unnecessary
altogether. Usually when the robot stirs the content in a pot, it lays down the spoon
afterwards. When several stirring actions are necessary and the robot doesn’t need its
hand resource for other actions, the spoon should be kept in the gripper. On the other hand,
sometimes auxiliary goals are not taken care of by the subplans, but should be added when
these plans are executed in a wider context. Again, when the robot has finished stirring,
it might be appropriate to clean up the spoon or to put it at some place where it is needed
afterwards.

Optimization of Idle or Waiting Time works on a high level of abstraction. It opti-
mizes high-level activities so that they can be executed in parallel like setting the table
while preparing pasta. These transformations need a lot of knowledge about the execu-
tion of the plans involved, especially the duration of plan steps. The steps can then be
intertwined by reordering transformations.

The transformations presented here are general in that they can be applied to a variety
of kitchen tasks. In the following sections, instances of all classes of transformation rules
are explained in more detail in the context of our running example of setting the table.

5.4.3 Using Containers

Often the robot has to carry objects during its daily operation. Using containers is usually
useful when many objects must be transported to similar locations, carrying steps are
performed consecutively in plans, or when objects can easily be lost like in the case of
cutlery. The type of container to be used can be very diverse. For example, the robot can
use a tray, a pot or even one of the objects it has to carry. The transformation rules have
to add new plan steps for loading the container, thereby stacking the individual objects if
possible, and unloading it. In this section we concentrate on the transformation rule class
for using containers, which is a subclass of using external resources. In particular, the
case where the container is the bottom object of a stack is discussed.

Figure 5.10 shows a general description of how instances of the transformation rule
class for using containers are implemented. The input matching has to find subplans for
carrying groups of objects and the applicability checks if the carried objects can be stacked
or loaded on a container. The transformation part computes additional steps for choosing
an appropriate container, loading, carrying, and unloading the container. The new output
plan contains the additional and adapted carrying subplans.

The next two paragraphs present two instances of this general description (Rules T3
and T4) where the new plans stack objects before carrying and unstacking them. One
question here is where to place the stack before it is unloaded, a good choice being the
final location of the bottom object. After the transformation the robot needs to navigate
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less than in the original plan, or in the best case not at all. For stacking and unstacking the
higher-level goals entities-stacked and entities-unstacked are used as described
in Section 4.2.3.

Figure 5.10 General description of how instances of the transformation rule class for using
containers are implemented.

(1) compute additional subplans:
choosing, loading, carrying, and unloading of a container

(2) modify original carrying subplans

find grouped carrying subplans in plan

plan with additional and adapted carrying subplans

carried objects are loadable or stackable
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Pstack-seq-1

T3
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T3 stack-entities-seq. The default plan6

for setting the table places a plate and a
cup on the table for each person. A possi-
ble transformation is to stack the cup on the
plate, place the stack (i.e. the plate at the
bottom) on the table (Figure 5.11(a)) and
unstack it by placing the cup on the table. The most interesting part of this transfor-
mation rule is the input schema shown in Listing 5.4. The transformation and output plan
parts are straightforward.

The input schema consists of three match-plan commands (lines 1, 31 and 34), the
first is the most complicated, particularly the condition part. The rematch-p predicate
(line 4, see page 88) is needed because when the plan is rematched after transforming
subplans the transformation rule would fail to find a sequence of entity-on-entity
goals. This sequence is matched by the inner match-plan called by set-of (lines 6–
17). Here the specification of the path with :at (line 9) is crucial. The outer match-plan
(line 1) already performs a search over all paths of the plan and binds the current path
in every search node to the variable ?path. The inner match-plan performs another
search, but this time the search is not over the whole plan. Instead, only all direct sub-
plans of the path bound in ?path are checked whether they fulfill the unification condition

6From now on, every time a transformation rule is explained, an excerpt depicts the part of the transfor-
mation graph of Figure 5.9 described in the paragraph. The left part shows the input plan and the right part
the transformed output plan.
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(achieve (entity-on-entity ...)). The path of each direct subplan is bound to the
variable ?eoe-path. The unified variables, ?eoe-path and ?eoe-plan are collected as tu-
ples in the variable ?eoe-all-tuples. Finally the condition part of the first match-plan
(lines 18–20) extracts all found subpaths using the predicate unify-tuples->lists7 and

Listing 5.4 Input schema of transformation rule stack-entities-seq.

1 ( ((match-plan
2 :at ?path
3 :plan ?plan
4 :cond (or (rematch-p)
5 (and
6 (set-of (?eoe-path ?eoe-plan ?top-entity
7 ?bottom-entity ?location)
8 (match-plan
9 :at ( !?path ?eoe-path )

10 :plan ?eoe-plan
11 :cond (unify (achieve
12 (entity-on-entity
13 ?top-entity
14 ?bottom-entity)
15 !?location)
16 ?eoe-plan))
17 ?eoe-all-tuples)
18 (unify-tuples->lists
19 ?eoe-all-tuples (?eoe-all-paths !?_))
20 (is-sequence ?eoe-all-paths))))
21 :branch (:generate (power-set ?eoe-all-tuples)
22 :unify ?eoe-tuples
23 :cond (and (lisp-pred > (length ?eoe-tuples) 1)
24 (unify-tuples->lists
25 ?eoe-tuples
26 (?eoe-paths ?eoe-plans ?top-entities
27 ?bottom-entities ?locations))
28 (unify
29 (?eoe-paths-first !?eoe-paths-rest)
30 ?eoe-paths))))
31 ((match-plan
32 :at ( !?path ?eoe-paths-first )
33 :plan ?eoe-first-plan))
34 ((match-plan :at ( !?path ?eoe-path-no-op ))
35 :for-each ?eoe-paths-rest :unify ?eoe-path-no-op) )

7The predicate unify-tuples->lists has two arguments. If the first one has the structure ( (a1 b1 ...
x1) (a2 b2 ... x2) ... (an bn ... xn) ) then the second argument has to be of the form ( (a1 a2 ... an) (b1 b2 ... bn)
... (x1 x2 ... xn) ).
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checks if the paths are a sequence.
The :branch command (lines 21–30) defines how many new output plans should be

generated. The power-set function returns all possibilities of combining the elements of
the sequence. The condition part of the :branch command checks if the sequence has
at least a length of two and binds variables needed for the last two match-plans. The
second match-plan (lines 31–33) chooses the first element of the generated set of paths
and during transformation the new steps for stacking and unstacking are generated using
the variables bound in the :branch command. The last match-plan (lines 34–35) iterates
over the rest of the found paths and the transformation part will replace these subplans
with (no-op), which code beautifier transformations later remove completely.

Figure 5.11 Examples of plan executions after applying stacking transformation rules.

(a) Plates and one cup stacked. (b) Stacking of cups fails.
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T4 stack-entities-for-all. The previous trans-
formation rule searched for the consecutive oc-
currence of the goal entity-on-entity as a
sequence in a plan. If the goal is the single
step of a for-all then the for-all can be re-
solved by first stacking all top entities, placing
the stack at a suitable location and unstacking
it. The necessary input plan Preorder for the transformation is constructed from the default
plan by applying the two transformation rules for moving designator bindings to a higher
level and reordering plan steps as explained in the next section.
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The input schema searches for all occurrences where a for-all contains a single
entity-on-entity step. The plan Preorder contains two matches. Since it is not clear if
both matches or only one should be transformed, a :branch command is defined in the
input schema generating a power set of the possible matches (see Listing 5.2). For Preorder
there are three8 possible output plans (see Figure 5.12), but only one plan is successful
when the plans are tested. The successful plan only stacks plates, the other two try to
stack the cups which fails in simulation (Figure 5.11(b)) and so the plans are discarded.

Actually the input schema shown in Listing 5.4 for transformation rule T3 is more
complicated. If a plan contains more than one sequence of entity-on-entity goals,
then the same branching as in this transformation rule must also be performed in T3. This
means that two nested set-ofs are necessary and the number of generated output plans is
much higher.

Figure 5.12 Applying transformation rule T4 on plan Preorder results in three output plans.
The two plans on the right fail, when tested in simulation

w-desigs
for-all
eoe p→t

for-all
eoe c→t

Preorder

w-desigs
stack ∀p
eoe s→t
unstack s→t
stack ∀c
eoe s→t
unstack s→t

Pstack-plates-and-cups

w-desigs
stack ∀p
eoe s→t
unstack s→t
for-all
eoe c→t

Pstack-plates

w-desigs
for-all
eoe p→t

stack ∀c
eoe s→t
unstack s→t

Pstack-cups

T4

5.4.4 Syntactical Transformations and Plan Reordering
In the previous section transformation rule T4 relied on input plan Preorder. To get to this
plan from Pdefault the two transformation rules T1 and T2 must be applied.

8If n is the number of matches, then 2n−1 output plans are generated.
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for-all
w-desigs
eoe p→t
eoe c→t

Pdefault

w-desigs
for-all
eoe p→t
eoe c→t

Pbindings
T1

T1 for-all-desig-bdgs-outside. T1 belongs to
the class of code restructuring rules. A precon-
dition for the reordering performed by rule T2
is that the for-all steps don’t depend on lo-
cal variables defined inside the for-all com-
mand. To be more precise, local variables are only a problem if they themselves depend
on the arguments of the for-all lambda definition. In the running example shown in
Listing 5.3 on page 88 the only lambda argument is person (line 3) and the designators
seating-location, plate and cup depend on this argument. The effect of T1 will be to
swap the order of the designator definitions and the for-all command.

The problem is how to move designator binding definitions outside of the for-all
command, although the definitions depend on variables only available inside the for-all
command. To this end we extended the designators to support the specification of un-
bound variables. We call designators with unbound variables partial designators. The
unbounded variables are constrained later when the local definition is known. Partial
designators ensure that they are unique when constrained to the same values. Unbound
variables are indicated by a dollar sign as a prefix.

The transformation part of T1 first searches for designators depending on arguments
of the for-all lambda definition. The lambda arguments are replaced with unbound
variables inside the designator specification (e.g. person becomes $person). Inside the
for-all command all references to now partial designators are replaced with a call to
constrain partial designators with the values of the lambda variables.

w-desigs
for-all
eoe p→t
eoe c→t

Pbindings
w-desigs
for-all
eoe p→t

for-all
eoe c→t

Preorder

T3

T2 reorder-for-all-steps. After having moved
the designator bindings outside of the for-all
command this transformation rule is very sim-
ple. T2 reorders the substeps of a for-all com-
mand by regrouping them. There are many pos-
sibilities of how to reorder the substeps. How-
ever, T2 doesn’t change the order of the substeps, but a reordering is achieved by grouping
the substeps and adding a for-all step around each group. For example if there are five
substeps then possible groupings are [(1) (2) (3) (4) (5)], [(1 2 3) (4) (5)], or [(1 2) (3)
(4 5)], but not allowed is [(2 5) (1 3 4)]. If there are n substeps, the number of possible
groups9, is 2n−1−1. In our running example n is 2, so the only possible output plan is the
one shown. Now first all plates and then all cups are placed on the table. When the default
plan is extended to place cutlery (knifes, forks, and spoons) on the table, this rule plays

9If n is the number of steps, there are n−1 possibilities where a separator can be inserted. The power
set of these n− 1 separators except the empty set (2n−1− 1) gives all possibilities how the steps can be
partitioned.
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an important role for finding general plans where, for example, plates are stacked and the
cups and the cutlery are transported using both arms.

The input schema of T2 searches for every occurrence of a for-all command con-
taining only a sequence of achieve steps. Again the power set function is used to generate
branches for every possibility of which combination should be transformed. The power
set function is combined with the function for generating all possible groups. In the end
we get (2n−1)∗ (2n−1−1) output plans. The transformation and the output plan part are
straightforward.

Another solution to get Preorder from Pdefault could have been to skip T1 completely and
to copy the designator definitions for every newly created for-all command. This has
some disadvantages, like that designators are created more than once, that equally con-
strained designators are not unique any more, and that it is more complicated to recognize
the designators used in the plan and to transform the plan further.

w-desigs
for-all
eoe p→t
eoe c→t

Pbindings w-desigs
eoe p→t
eoe c→t
eoe p→t
eoe c→t
...

Pexpanded-1

T7

T7 expand-for-all. So far the transformed plans
reordered the plan steps, stacked one cup on one
plate or stacked all plates. Another possibility to
stack the objects is to stack all plates and one cup
on top of it (Figure 5.11(a)). To achieve this the
for-all command has to be expanded by unrolling
the loop to a sequence. The length of the sequence
depends on the minimum value of lengths of the for-all input arguments. This means,
for example, that the resulting plan for three people attending a meal looks different from
one for four people, although the original plan is the same for both cases, containing the
number of people in a variable. The resulting plans are now very specific and work only
with the correct argument length, whereas the other presented transformations cope with
every length. This may seem to be a disadvantage, but only after applying this transfor-
mation further adapted plans can be generated and evaluated.

As shown in Figure 5.9 on page 93 T7 can be applied to many of the already trans-
formed plans. The resulting plans are then transformed further, particularly with rule T3
for stacking objects and rule T5 for using both of the robot’s arms as presented in the next
section. With this combination of transformation rules we got two interesting plans setting
the table for four persons. The first plan places one cup on top of four stacked plates and
carries the remaining three cups by first placing two cups on the table and then the last
one. The second plan only stacks two plates and one cup and places the objects on the
table. The remaining two plates and one cup are stacked again and placed on the table.
Finally the last two cups are carried to the table. Which of these two plans performs better
is not clear a priori and can only be evaluated by executing the plans in simulation (see
Chapter 7 for results).
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5.4.5 Using Robot Resources

For the plates a more efficient way of bringing them to the table is to stack them, but for
the cups this fails. One possibility to be more efficient could be to use a tray, either as an
external resource or if available as a robot’s resource if a tray is mounted on top of the
robot (Figure 5.13(a) on the following page). Another alternative for cups is to carry two
cups at the same time, since for carrying cups only one arm is required (Figure 5.13(b)).
The behavior of the last alternative is produced by the transformation rules T5 and T6.
Like T3 and T4 for stacking objects they differ in the way the input plan has to look like.

w-desigs
for-all
eoe p→t

for-all
eoe c→t

Preorder

w-desigs
for-all
eoe p→t

eoe-both-arms ∀c→t

Puse-both-arms
T6

1/3

T6 use-both-arms-for-all. Like T4
this transformation rule searches for
the goal entity-on-entity occur-
ring as a single step of a for-all and
replaces the for-all with steps car-
rying two objects using both arms. In
the figure on the right and on page 93 eoe-both-arms represents these steps. If the table
is to be set for an uneven number of persons, then in the last step only one cup is picked
up and placed on the table.

Again, if more than one for-all is found in the plan a branch using the power set
function is generated. The figure on the right shows the only valid plan, since two plates
can only be carried in a stack and not by holding one plate in each hand. The robot needs
both hands to grip and carry one plate.

T5 use-both-arms-seq. Again this transformation rule searches for the goal
entity-on-entity occurring consecutively as a sequence in the plan. The input schema
and the branching is the same as shown in Listing 5.4 and described in Section 5.4.3.
Only the transformation and the output plan parts differ, but here like in T6 the original
plan steps are replaced with steps for carrying two objects at a time using both arms.

We have now explained all the transformation rules of the example in Figure 5.9. Note
that Pstack-plates-and-use-both-arms can be obtained from Preorder by either applying rule T4 and
then T6 or by applying first T6 and then T4. Similarly, the plan Pstack-seq-2 results from
the default plan by applying any order of the rules T1 and T3. The following rules can
enhance the example plan further, but are ignored in the figure for the sake of a clearer
presentation.

Using the Built-in Tray. When the robot is equipped with a tray on top of its base
interesting new alternatives arise for setting the table. For example when setting the table
for three persons, two cups can be placed on the tray and one cup on the stack of plates,
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then the robot must only navigate to the table once. The transformation rule for using
the tray searches for the occurrence of an entity-on-entity goal in a sequence of steps,
generates plan alternatives where placing the object on the tray is performed at all possible
previous steps in the sequence. The original call to the entity-on-entity goal is kept,
because when the goal is executed the object is taken from the tray and placed at the
desired location.

Figure 5.13(a) shows an instance of where the robot uses its built-in tray. This rule
yields especially impressive performance gains when used with cutlery, because the dan-
ger of losing such objects is reduced.

Figure 5.13 Robot using its own resources more effectively.

(a) Robot using its built-in tray. (b) Robot using both arms to carry objects.

5.4.6 Further Transformation Rules

We have described in detail transformation rules operating on our running example. The
following transformation rules present some more rules operating on the plans from the
plan library.

Modification or Introduction of Auxiliary Goals

The issue of auxiliary goals has been discussed in several places of this work (Sec-
tions 2.2.2, 3.4.2, 4.3). One instance of this problem is the opening and closing of doors
(see Figure 5.6 on page 79, Listing 5.1 on page 83 and their explanations). Our default
plans use the simple heuristic of closing cupboard doors every time an object has been
taken out or has been placed in the cupboard. This leads to suboptimal behavior. Our
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transformation rule transforms the plan so that the cupboard doors are opened as in the
original plan, but the closing is postponed as the last step of the plan.

This rule is very general. It can be applied to every intermediate plan resulting from
a transformation in the running example of Figure 5.9. A similar rule takes care that the
boards inside the cupboards are retracted only in the end.

Optimize Locations

In Section 3.4.2 we have introduced the construct at-location, which takes care that the
robot stays at a certain location while performing another task. This construct allows to
identify subplans where the robot performs actions at the same place. By grouping these
subplans, the robot navigates to the location only once and then stays there to perform all
the tasks of the subplans. This is another rule of the class “Reordering of Plan Steps”.

Optimizing Free Time

The last rule to be presented here transforms two plans so that they can be executed con-
currently by using free time in one plan to perform steps of the other. As input plan this
rule accepts any combination with seq, par or partial-order of two activity or higher-
level manipulation plans. The output is a partial ordering of the plan steps contained in
these two plans.

This rule differs slightly from the other rules in our library. First, because it is less
general in that it works only on activities or higher-level manipulation plans. Second, it is
more complex as it uses a two-step approach for transformation.

When the combination of plans is to be transformed, a first transformation modifies
the combined plan so that special execution traces are monitored during plan execution.
This traces contain information about the duration of all direct subplans and idle times
contained in both plans. This transformed plan is then executed in simulation. Its behavior
has not changed, therefore it must be transformed like the original plan. But this time, the
monitoring is already included in the plan, so that a second transformation rule is chosen.

This rule breaks up the separation of the two plans and produces a new plan containing
the direct subplans of the two original plans. The partial ordering of these new plan steps
is determined by a scheduling algorithm based on the data observed during the simulated
plan execution, that is the duration of each plan step and the available free time. This
second transformation rule is special in that it uses dynamically acquired data for the
transformation.
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5.5 Related Work on Transformational Planning
TRANER can be viewed as a modern version of Sussman’s Hacker (1973; 1977). Like
Hacker, TRANER aims at learning plan libraries by debugging the flaws of default plans.
Unlike Hacker, which worked in the idealized blocks world domain, TRANER applies to
real-world robot control.

Other transformational planners are Chef (Hammond 1990) and Gordious (Simmons
1988). The main difference between these systems and TRANER is that TRANER reasons
about concurrent robot control programs while Chef and Gordious reason about plans
that are sequences of plan steps. Another difference is that they try to produce correct
plans while TRANER adapts plans to specific environments and corrects failures during
execution. Bothelho and Alami (2000) show how robots can enhance plans cooperatively
by merging partially ordered plans using social rules.

TRANER is most closely related to more recent variants of transformational planning
techniques. Most notably, to McDermott’s (1992b) XFRM planner that performs improv-
ing transformations on an idealized grid world agent. Beetz (1997; 2000; 2001; 2002a)
successfully applies transformational planning mechanisms to autonomous robot control,
in particular office delivery tasks for a robot without manipulators. Transformational plan-
ning, however, is particularly promising and challenging if the robot’s tasks are the ma-
nipulation of objects. This is what TRANER does. Still, several of TRANER’s methods
for plan representation and specifying transformation rules are inspired by the work of
McDermott and Beetz and have been further extended (for details see pages 80 and 85).

5.6 Summary
The chapter starts by motivating and introducing the syntax of transformation rules and
their processing. In contrast to other transformational planners TRANER’s plan language
is very rich and represents all levels of abstraction, not just the most abstract one. This
makes the matching of plans to transformation rules a lot more difficult. The syntax for
the rules takes this complexity into account, while still providing an easy-to-understand
representation.

Furthermore, the rules are structured clearly into syntactical and semantical appli-
cation criteria. They make the transformation steps explicit and plainly show what the
resulting plan will look like.

After specifying the structure of the transformation rules, we have demonstrated how
the procedure of transforming plans takes place. When a transformation rule matches a
plan in several ways, there can be several output plans, depending on the specification in
the rule. In complex transformations several such branches can occur.

After that, we have described in detail our transformation rule library with a running
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example showing which transformations applied to the default plan lead to which resulting
plans. The transformation rules can be classified into syntactical transformations, ones
that reorder plan steps, use external or robot resources, integrate or modify auxiliary goals,
and ones optimizing the concurrent execution of plans. All our rules are general in the
sense that they are applicable to a wide range of different plans, which is also shown in
Figure 5.9 where some transformation rules apply to multiple plans.





Chapter 6

Plan Execution and Evaluation

In the previous chapters, we have presented how plans are represented and organized in a
plan library and how they are enhanced by plan transformations. It is now time to explain
how these components work together in the TRANER system (as shown in Figure 6.1).
Therefore, in this chapter we show how the plan execution and monitoring works and how
TRANER decides if a plan is superior to another.

First we present our execution environment and argue why a realistic simulation of the
robot is necessary for the TRANER system to work. Then we show how we monitor the
plan execution and how the monitoring results can be combined in an evaluation function.
Finally, we discuss the general applicability of this procedure to arbitrary plans.

Figure 6.1 Part of TRANER described in this chapter.
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6.1 Plan Execution

It is now time to provide more detail on our simulated environment, which we have already
described briefly in Chapter 2 and close the gap between the basic goals described in
Chapter 4 and the low-level functionality provided by our environment.

Figure 6.2 shows our software architecture. The higher levels consist of the plan li-
brary from Chapter 4, using perceptual data. The perception and plan layer communicates
with a program called Player. This layer provides percept data and receives control com-
mands. Player abstracts away from the underlying hardware. This means that the control
program doesn’t know if it is running on a real robot or a simulation. In our case, the hard-
ware layer consists of a simulator implemented with the Gazebo simulation environment,
which in its turn is based on the physics engine provided by ODE.

Figure 6.2 Software architecture of our system.
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6.1.1 The Environment

Our simulated environment (see Figure 2.1 on page 16) consists of a kitchen with several
pieces of furniture such as cupboards, a table and a work top and solid objects such as
plates, cups, pots, sieves, and cutlery. Our robot is a simulated B21 with two arms and a
camera. We have already argued in Chapter 2 that this simulation is very realistic. In the
following we describe some intricacies and details of the simulation.

Beside the solid objects, an important ingredient for kitchen work is water. Unfortu-
nately, ODE only simulates solid objects and their interaction. Therefore, we implemented
a separate Gazebo process, which handles (solid) water objects and hides or shows them
when necessary. This means that when the robot opens the tap, water objects fall out of
it. If no container is provided to catch them, the water cubes disappear in the sink, or if
the tap is opened over the worktop the water cubes stay there. For boiling pasta not every
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noodle is modeled, instead pasta is modeled as solid cuboids with a certain weight, even
after boiling.

The manipulation tasks in a kitchen can be quite intricate. For example, for opening
cupboards, the robot must grasp the handle very accurately and provide a sophisticated
interaction between arm movement and robot navigation (because the robot must move out
of the way of the door). Also the grasping of objects inside cupboards is not easy, because
the free space is very restricted. In our work, however, we are not interested in precise
arm control. Therefore, we equipped the simulated kitchen with devices that are usually
not found in an average kitchen, but could easily be built in any normal kitchen without
too much effort. Such devices include automatically opening and closing doors, a remote
controlled tap, a remote controlled cooker, and automatically extending and retracting
boards inside the cupboards to make grasping of objects easier. The robot can control
these devices by wireless communication.

Our robot is built after a B21, which originally comes without arms. We added two
arms, which are constructed along the Stäubli RX90 (Figure 6.3) robot arm1, used in
industrial environments. To make the arms more agile and expand their operating region,
we added four more joints: two joints in the shoulder and two slider joints in the upper
and lower arms. The additional shoulder joints make the arms more agile and enable a
more natural movement. The slider joints make the arms extendable, so that the robot’s
work space gets bigger as shown in Figure 6.3.

Figure 6.3 The original Stäubli RX90 (left) and our robot’s extendable arms (right).

1It is a successor of the Unimation PUMA 560
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The robot is equipped with a pan-tilt-zoom camera mounted on top of the robot. With
this camera, the robot perceives all objects in its field of view. Actually we have no vision
algorithms running for detecting objects, instead we take the ground truth positions from
Gazebo and implemented the possibility to add noise to the data for getting a realistic
simulation. In the future it is planned to learn the accuracy of the state estimation in order
to get a more realistic simulation.

6.1.2 Basic Functionality

In the last section we have described the hardware layer of Figure 6.2. Now we give a
brief overview of the basic control functionality we implemented in the abstraction layer
(the Player interface). This comprises navigation, arm control, and the camera.

For navigation we implemented two P-controllers, one for the translational velocity
and one for the rotational velocity, which are assumed to be independent. Only when
the robot’s angle towards its target point is too large, it first turns on the spot and then
switches to the P-controllers. For small distances (below 1 m), the robot has the option to
move backward instead of forward. The choice is based on how much turning is involved
in the forward and backward trajectories.

We designed the arms along the Stäubli RX90 robot, so that we could use its inverse
kinematics. The four joints we added are not taken into account in this calculation. They
are controlled by approximation methods. This means that when the arm is to move to
a position, a heuristic determines the positions of the four additional angles, for example
to extend the forearm. This changes the parameters of the Stäubli RX90 arm, by setting
the length of the forearm to the new length for instance. Then the normal Stäubli RX90
inverse kinematic is applied. The opening position of the gripper is controlled by a P-
controller.

The camera’s pan and tilt are also adjusted by P-controllers. Moreover, there is the op-
tion to follow an object with the camera (the robot cannot perceive objects outside its field
of view). This is particularly useful when the robot is picking up or putting down objects.
This functionality can be used with the programming construct (with-camera-tracking
body) inside the plans.

6.1.3 The Need of Simulation

The architecture in Figure 6.2 doesn’t address the question whether to work in simulation
or on a real robot. However, for the whole process of plan transformation to work, a sim-
ulation is always necessary. In our case, the execution environment and the simulation are
identical. When working with a real robot, an additional simulation of this environment is
needed. There are three arguments supporting this claim: safety, efficiency, and reliability.
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Although a kitchen is not the most dangerous place, there are still myriads of ways
to perform plans with unwanted effects like braking objects or setting the house on fire.
For the sake of safety, plans should always be tested in simulation before being tried in
the real household. By using simulation even syntactically invalid plans can be tested
(the controller aborts and the robot doesn’t do anything afterwards) and can therefore be
evaluated. This makes the design of plan transformation more feasible. Specifying good
transformations only ensures that not too many garbage plans are generated.

Even if we were bold enough to let the robot try its newly transformed plans in the
real kitchen directly, for some activities only a very small number of plans could be tested.
For example, when the robot has transformed the plan for making a cake. In simulation,
it can test this plan several times, but who would need dozens of cakes (or the remains of
unsuccessful tries) only because the robot is practicing a new plan.

Another aspect to be considered is that newly transformed plans should be tested sev-
eral times, not only once. Consider the behavior of plans in the light of failures. Not every
failure causes the whole plan to fail and some failures are intrinsic in the lower-level plans,
not in the plan to be tested. For assessing the importance of failures that have occurred
during testing, it is necessary to test a plan several times and then decide if a failure is
intrinsic in the plan (if it occurs several times) or has been observed as an instance of
the uncertainty in the environment (if it is observed infrequently). In all, when plans are
transformed, each transformed plan must be tested several times against several versions
of other transformed plans achieving the same goal. This can only be done in simulation.

Our architecture provides the possibility to use the real robot and a simulation at the
same time. For obtaining a good simulation of an environment, a Gazebo model of the
environment can be defined. This can be further refined by learned models of the world’s
dynamics. The simulation environment has to be realistic but not perfect. Successfully
validated plans in simulation are also validated when executed in the real world, to see if
the new plans really have a performance gain. This ensures that differences between the
real and the simulated world are detected and can be learned.

6.2 Monitoring
For evaluating a plan’s performance we need data about its execution, for example on
resource usage. An important requirement for monitoring a plan that might have been
transformed or still is to be transformed is that the monitoring is defined and performed
outside the plan. We simply don’t want any special monitoring code inside the program,
although this would be the most straightforward way to get data out of a program. But
if we added the monitoring code to the plan, the transformations would be a lot more
complicated.

For monitoring plan execution from the outside we use RoLL (Robot Learning Lan-
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guage) (Kirsch and Beetz 2007), a language extension of RPL that embeds learning into
control programs. RoLL allows a simple definition of experiences for learning, which we
use here for acquiring our data. Without explaining the details of RoLL, we show how we
can define the data we want with the example shown in Figure 6.4.

Figure 6.4 Raw and abstract experience definitions for monitoring the table setting plan.

set the table
navigation left arm moving right arm moving

set the table/navigate/left arm moving/right arm moving begin→timestep
set the table/navigate/left arm moving/right arm moving end →timestep
navigate interval →robot position
left arm moving interval →left arm position
right arm moving interval→right arm position

(a) Raw experience definition.

set the table
navigation left arm moving right arm moving

set the table begin→duration
navigate/left arm moving/right arm moving begin→duration, count, distance covered

(b) Abstract experience definition.

The definition of monitoring data (or as it is called in RoLL, an experience), is based on
the concept of hybrid automata. A hybrid automaton is a tool for modeling discrete as well
as continuous behavior of a system. By defining an automaton we tell the system when to
be attentive to interesting data. RoLL supports a hierarchical nesting of hybrid automata,
so that a fine granularity of data can be defined. Figure 6.4(a) shows an automaton for
acquiring data while executing the set the table plan. The highest-level automaton is the
one that corresponds to the plan “set the table”. It contains three subautomata, which
are active when the subplans for navigation, moving the right arm and moving the left
arm respectively are called. There is no ordering constraint on when the subautomata can
be active. More importantly, the definition doesn’t specify how often a subautomaton is
active. So the navigation plan is registered every time it is active in the course of executing
one table setting plan.

By only specifying interesting time periods in the form of hybrid automata, we haven’t
said anything about the data we are interested in. For each automaton we can specify data
to be acquired at the beginning and end of each automaton activity or data to be recorded
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continually while the automaton is active. The data can originate from global variables or
local variables in any RPL task. In the example in Figure 6.4(a) we record the time step of
the beginning and end of the high-level automaton as well as its subautomata. Besides, for
the subautomata we want to know more about the robot’s movements. Therefore, when
the navigation plan is active, the robot’s position is recorded continuously. Similarly, the
positions of the robot’s arms are logged.

With the automaton definition of Figure 6.4(a) the system automatically monitors the
data we have specified. But the information gathered is not quite what we want. We aren’t
really interested at what exact time a navigation plan started and when it ended, but rather
how long the plan execution lasted. RoLL offers the concept of abstract experience, which
allows to transform a raw experience (the data acquired with a definition like the one in
Figure 6.4(a)) to more abstract concepts.

The definition of abstract experiences is analogous to raw experiences. Figure 6.4(b)
depicts the automaton definition of the abstract data extracted from the raw experience.
The automaton hierarchy is the same. Only the data associated with it is calculated from
the data of the raw experience. For all plans we calculate their duration. For the subplans
for navigation and arm movement, we additionally store the number of occurrences of the
respective subplan and the distance traveled, for the navigation plan this is the distance
the robot has moved, for the arm movement the trajectory of the arm.

With the definitions of the raw and abstract experiences RoLL automatically collects
the desired data each time the table setting plan is performed. The plan itself doesn’t
contain any traces of the data gathering process. Some results of monitoring the plan are
presented in Figure 6.5. The table shows the data of five executions of the table setting plan
(these plans aren’t identical, some of them have been transformed from the original plan).
It tells us that the first (the original) plan needs 216.41 s for completing its task. During
the plan execution, the robot navigated 8 times covering a total distance of 16.36 m in a
total time of 95.04 s. We can further see that the right arm was used much more often than
the left one.

Figure 6.5 Monitoring data for table setting plans.

duration navigation left arm right arm
1 216.41 s 95.04 s 8 16.36 m 44.39 s 26 5.10 m 86.26 s 50 11.36 m
2 219.02 s 96.27 s 8 16.38 m 43.29 s 26 4.99 m 86.51 s 50 11.19 m
3 194.06 s 86.11 s 8 13.67 m 34.80 s 22 3.50 m 76.78 s 46 9.54 m
4 210.28 s 94.28 s 8 14.11 m 69.39 s 39 8.87 m 63.76 s 37 7.60 m
5 186.06 s 86.30 s 8 11.40 m 58.84 s 34 7.13 m 55.39 s 34 6.03 m
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6.3 Evaluating Plans
The data acquired in the monitoring step (Figure 6.5 and 2.3 on page 24) is then used
to calculate a performance value for comparing different plans. The criteria used in this
function can vary depending on the application and on the plan. The plans, whose data is
depicted in Figure 6.5 can be compared along several lines. One criterion is the overall
time needed. Here Plan 5 is the clear winner. But if we prefer the robot to reduce arm
movement, Plan 3 pips Plan 5 both in the total time the arms are moving (111.58 s com-
pared to 114.23 s of Plan 5) and the distance covered by the arms (13.04 m compared to
13.16 m). Such criteria can be combined arbitrarily.

In our current approach we define the monitored data and evaluation function manually
for each plan. However, this is only feasible for a restricted number of plans and cannot be
used as a general solution. Besides, when plans are transformed, other data might become
available and the evaluation criteria might change. For example, in the original table
setting plan all plates are carried one by one. One transformation is to stack the plates.
The average number of stacked plates can be used as an evaluation criterion, whereas this
doesn’t make sense in the original plan where the stacking idea isn’t used at all.

For a general approach, common evaluation criteria for all plans must be defined.
Since they are independent of the individual plan, they can only take into account aspects
of the robot and the environment. Such evaluation aspects are the duration of the plan, the
distance traveled, the usage of the arms, the number of objects moved, number of failures
or user satisfaction.

6.4 Summary
The execution and evaluation part of TRANER assumes that a simulation of the world the
robot is acting in is present. In our case the simulation and the real world are identical.
We use a simulated B21 robot, which is supplemented by two arms designed after the
Stäubli RX90 robot, with four additional joints. Using the Gazebo simulator we have a
sophisticated tool for physical simulation and a 3D graphical display.

The Player interface provides an abstraction layer, which enables the use of different
robots with the same program. Besides, low-level routines for navigation and manipula-
tion can be implemented efficiently in Player.

For plan evaluation, the execution of the plans must be observed. In order to get hold
of all relevant information without changing the control program itself, we use the data
recording facilities of RoLL, a robot control language that integrates learning into control
programs. The RoLL constructs allow an abstract description of the data needed and can
record all local variables within the program.

The evaluation takes place by applying a performance measure to the recorded data
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and comparing the computed value to some reference value. In this work we use the dura-
tion of activities as the main performance measure. Other possibilities are also discussed
in Section 7.1.1 on page 120.





Chapter 7

Evaluation

We have explained in great detail our approach of transforming default plans to adapt to
specific environments. In this chapter we proof empirically the necessity of transforming
plans instead of hand coding them for every situation.

In Chapter 5 we have already demonstrated that our transformation rules are general in
the sense that they apply to different plans. Thus, the number of plans and transformation
rules that have to be specified is less than the number of plans that are generated and used
by the robot.

In the following we demonstrate not only that the robot performance improves signif-
icantly with the transformed plans, but also that for different situations and environments
different plans are to be preferred. This second point is very important. It shows that it is
impossible to implement one set of plans that works perfectly in all environments. How-
ever, we can develop default plans that work in all situations, but suboptimally. Only by
adapting the behavior using empirical evidence about which plan is to be preferred, the
robot can show the desired performance.

The default plans need to be robust, general, transformable and enable cognitive be-
havior as argued in Section 3.1. During the experiments the execution was very robust.
The plans monitor eight kind of failures and the robot always recognized if a failure oc-
curred. 86 % of the failures could be recovered from, otherwise the robot could at least
explain the type of failure. Flexibility and reliability also require synchronized concurrent
activity: on average 10–15 threads of activity are executed concurrently. During one run
of the table setting plan approximately 700 conditions (perceptual changes, failures) are
tested.

For the different experimental settings the default plans worked without modifications.
This was ensured by the plan library presented in Chapter 4 which consists of 2 activities,
22 higher-level manipulations plans and 12 basic-manipulation plans using 27 different
types of parameter designators. Together with the concept of object designators the plans
showed to be general. The hierarchy of both activities is 7–9 levels deep when executed.
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The experiments will show, that the performance of the plans can be improved by trans-
formations up to 45 % in the best case.

We have conducted several experiments in the context of table setting and one where
both activities, setting the table and boiling pasta, are involved.

7.1 Setting the Table

In the following experiments, the task is always to set the table. There are four people
(Alvin, Theodore, Simon, Dave). The table is to be set for all four or only some of the
persons. The combinations we used in our experiments are shown in Figure 7.1. We only
used nine out of the 15 possible combinations of setting the table for one to four people,
where all persons have their fixed seat. We selected these cases, because they cover all
interesting combinations of how the robot positions itself at the table.

Figure 7.1 The combination of persons for which the robot had to set the table in our
experiments. The letters (first letter of a name) below a table indicate the mnemonic used
in the results tables later.
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Figure 7.2 Views of our two households. A, T, S and D denote the preferred seating
locations at the tables of Alvin, Theodore, Simon and Dave respectively.

kitchen living-room

A S
T

D
A S

T

D

(a) Household A with one table in the kitchen and one table in the living-room.

T D

S

A

(b) Household B with one table in the kitchen.
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In our simulation we have two different households. Household A (see Figure 7.2(a))
is composed of a kitchen in which people can eat and a living room, where the meals can
also be served. In household B (see Figure 7.2(b)) there is only a kitchen table. Most of
the experiments use household A.

Not only the environment, also the robot’s abilities can change. The basic version of
the robot can only transport objects with the grippers. An advanced feature, which can be
installed in addition, is a tray on top of the robot. Most experiments use the basic version,
but we also examine the plans used when the tray is present in experiment 4.

Moreover, all experiments compare the same set of plans (except the one with the tray,
which allows additional transformations). Most of these plans were explained at length
in Chapter 5 and occur in Figure 5.9 on page 93. Table 7.1 summarizes all the plans that
are used in the following evaluation with a textual description of what they do. For better
readability the plans are numbered and have an additional symbolic description in all the
tables of the experiments.

With the different combinations of persons, rooms and plans each experiment exam-
ines between 168 and 336 runs of plan execution. Depending on the experiment setting,
an average plan execution run needs between 5.4 min and 6.5 min. The total time of exe-
cuting plans for the experiments was approximately five days.

7.1.1 Experiment 1: Plates and Cups Inside one Cupboard
In our first experiment the plates and cups are stored away in one cupboard. The plates
are stacked on one board, the cups are arranged next to one another (see Figure 7.3(a)).
The robot had to set the table for each combination of persons shown in Figure 7.1.

Figure 7.3 Initial settings of experiments 1 and 2. The plates are stacked on one board
and the cups are on another board, either in the same cupboard or in a second one.

(a) Experiment 1. (b) Experiment 2.
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Table 7.1 Plans used in setting the table experiments. The names of plans as they appear in
Figure 5.9 on page 93 are given in brackets. The mnemonic for each plan shows if plates
are stacked (several lines) or carried separately (single line), if cups (filled rectangles) are
stacked on a plate, carried with both arms (symbolized by two rectangles) or carried one
by one. A number in brackets specifies if the plan is adapted to a specific number of
persons to lay the table for.

Plan Description
Plans introduced in Section 5.4 on page 88

P0 Default plan. Carry all plates and cups one by one. [Pdefault]
P1 For each pair of plate and cup stack the cup on the plate and carry them

together. [Pstack-seq-1]
P2 Stack all plates and move the whole stack, carry cups one by one.

[Pstack-plates]
P3 Move plates one by one, carry cups two at a time, one in each hand.

[Puse-both-arms]
P4 Stack plates and use both arms. [Pstack-plates-use-both-arms]

Plans for a fixed number of persons generated by applying T7 and then T3 and T5

P5 [2] The table is to be set for two persons. Stack both plates and one cup on
top of the plates and carry the last cup separately.

P6 [3] The table is to be set for three persons. Stack all plates and one cup on
top of the plates and carry the last two cups one by one.

P7 [3] The table is to be set for three persons. Stack all plates and one cup on
top of the plates and carry the last two cups together by using both arms.

P8 [4] The table is to be set for four persons. Stack all plates and one cup on
top of the plates and carry the last three cups one by one.

P9 [4] The table is to be set for four persons. Stack all plates and one cup on
top of the plates. Then carry two cups together by using both arms and
the last one separately.

P10 [4] The table is to be set for four persons. Stack two plates and one cup and
carry them to the table. Then stack the remaining two plates and one
cup. Carry the last two cups separately.

P11 [4] The table is to be set for four persons. Stack two plates and one cup and
carry them to the table. Then stack the remaining two plates and one
cup. Carry the last two cups together by using both arms.
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Beside the plans listed in Table 7.1, this set-up allows the additional transformations of
optimizing the auxiliary goals for opening and closing the cupboard doors and extending
and retracting the boards inside the cupboards. As these transformations can be applied to
any of the plans of Table 7.1, they are denoted with superscripts. Plan Pd

n is obtained by
applying the door optimizing transformation to plan Pn. Similarly, Plan Pb

n results from
the board optimizing transformation applied to Pd

n (optimizing boards only makes sense
when the doors aren’t closed after every gripping action).

Performance Measures

For all combinations of person set-ups and plans we recorded several possible perfor-
mance indicators. Table 7.2 shows an excerpt for the case where the table is to be set

Table 7.2 Experiment 1: Data to be used for different performance measures when setting
the table for Theodore and Dave. The main aspects are the duration to complete the plan,
the usage of navigation and each of the arms, and the usage of the cupboards. For the robot
resources (navigation, left arm, right arm) we give the total time where these resources are
used, the number of times they are applied, and the total distance traveled (either by the
robot or the arm). The same parameters are given for the cupboard doors and boards,
except the distance.

plan duration navigation left arm right arm doors boards
1 Pb

4 196.7 s 52 s 8 6 m 60 s 34 8 m 62 s 34 9 m 9 s 2 11 s 4
2 Pd

4 208.3 s 54 s 8 6 m 59 s 34 8 m 62 s 32 9 m 10 s 2 19 s 6
3 Pb

2 227.0 s 73 s 8 9 m 60 s 34 8 m 62 s 34 9 m 10 s 2 13 s 4
4 P4 227.4 s 45 s 8 6 m 54 s 32 7 m 62 s 34 9 m 42 s 6 19 s 6
5 Pb

5 [2] 234.6 s 52 s 11 6 m 74 s 42 9 m 60 s 36 6 m 10 s 2 11 s 4
6 Pd

2 238.7 s 76 s 8 9 m 59 s 34 8 m 60 s 34 9 m 10 s 2 19 s 6
7 Pb

3 241.9 s 78 s 8 9 m 75 s 41 11 m 78 s 41 11 m 10 s 2 11 s 4
8 Pd

5 [2] 244.7 s 56 s 10 6 m 76 s 42 9 m 51 s 31 6 m 10 s 2 24 s 8
9 P2 253.3 s 64 s 8 9 m 58 s 34 8 m 55 s 32 8 m 41 s 6 18 s 6

10 Pd
3 260.7 s 81 s 8 9 m 73 s 41 11 m 75 s 40 11 m 10 s 2 25 s 8

11 Pb
1 269.0 s 53 s 13 6 m 79 s 46 10 m 92 s 48 10 m 9 s 2 11 s 4

12 P5 [2] 273.2 s 47 s 10 6 m 72 s 43 11 m 50 s 30 6 m 55 s 8 26 s 8
13 Pb

0 281.5 s 98 s 9 13 m 106 s 58 15 m 54 s 28 7 m 9 s 2 11 s 4
14 Pd

0 288.6 s 99 s 8 13 m 73 s 41 11 m 75 s 40 11 m 10 s 2 25 s 8
15 P3 288.9 s 67 s 8 9 m 64 s 39 10 m 73 s 41 11 m 56 s 8 25 s 8
16 Pd

1 322.1 s 57 s 14 6 m 67 s 38 9 m 111 s 64 12 m 10 s 2 38 s 12
17 P0 324.4 s 86 s 9 13 m 97 s 56 14 m 52 s 30 8 m 56 s 8 25 s 8
18 P1 377.7 s 46 s 14 6 m 73 s 41 11 m 114 s 63 13 m 82 s 12 36 s 12



7. Evaluation 123

for Theodore and Dave. The plans are ordered by the time it took to complete them.
This means when the duration is used as performance measure, the plan where plates are
stacked and cups are carried in both hands (Pb

4, line 1) is the best. Interestingly, the worst
plan is not the default plan, but the one where pairs of cups and plates are carried together
(P1, line 18), because the cupboard doors and boards are manipulated excessively often.
However, with optimized boards Pb

1 (line 11) shows a better performance than Pb
0 (line 13).

Although we use the duration of the plan execution as our performance measure
throughout the rest of the experiments, we should point out that other performance mea-
sures can result in the preference of other plans. Table 7.2 indicates that the duration is
closely linked to the time needed for navigation, unless the manipulation tasks, especially
the opening and closing of cupboards requires an undue amount of time. The way covered
by the robot relates very closely to the time needed, whereas the number of navigation
tasks doesn’t provide much information.

Usually, the most expensive part of the robot are its arms. Therefore, one goal might
be not to overuse the arms. The added duration of using both arms is minimal for the
plan in line 4 with only 116 s compared to 187 s with the plan in line 18. Or it might be
desirable to use both arms equally instead of overusing one and sparing the other. Here
the plan in line 5 wins with a difference of 1 s in arm usage versus a maximum of 52 s
when using the plan in line 13. Depending on the robot hardware, when the arms are of
different value and dexterity, the opposite criterion might be interesting. For example, if
the left arm is to be used as rarely as possible, the plan in line 4 would prevail.

We could find more aspects for evaluating the different plans including parameters
outside the robot like the frequency of manipulating cupboard doors. Moreover, the dif-
ferent criteria can be weighted and combined to more complex performance measures.
The question of finding a perfect performance measure is outside the scope of this work.
However, with regard to the examples we have given, we observe that the duration is not
a bad choice as a performance measure. No matter which criterion we apply, the best plan
is always among the top 5 plans when sorted by duration and the worst plans can be found
at the bottom of the list. Besides, in our simulation, there is no need to preserve specific
parts of the robot hardware.

Performance Enhancement

Table 7.3 shows the duration of all plans when setting the table for three persons (the three
combinations contained in our set-ups of Figure 7.1) either in the kitchen or in the living
room of household A. The plans where boards are optimized are not listed, because the
robot loses the cup after it collides with a board (see Figure 7.4(a) on page 126) and the
plans fail1.

1The collisions only occur for three and four persons, because the robot has to reach deeper into the
cupboard for gripping the cups.
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Table 7.3 Experiment 1: Comparison of durations of all successful plans for different
experiment set-ups.

kitchen table living-room table
plan A,T,S A,T,D T,S,D A,T,S A,T,D T,S,D

P0 489.5 s 502.9 s 473.6 s 625.7 s 632.7 s 634.5 s
Pd

0 447.4 s 458.2 s 424.3 s 570.0 s 580.7 s 583.8 s
P1 573.8 s 568.5 s 544.0 s 625.3 s 621.9 s 611.9 s
Pd

1 463.7 s 448.1 s 476.8 s 530.4 s 528.8 s 516.6 s
P2 402.3 s 395.2 s 360.6 s 482.5 s 475.9 s 468.2 s
Pd

2 378.4 s 370.5 s 335.8 s 455.3 s 448.5 s 441.1 s
P3 500.1 s 499.5 s 451.3 s 584.3 s 566.9 s 573.5 s
Pd

3 434.8 s 440.2 s 400.4 s 530.4 s 519.4 s 517.9 s
P4 410.8 s 381.9 s 336.7 s 440.9 s 413.1 s 405.8 s
Pd

4 369.6 s 356.1 s 309.7 s 408.1 s 382.6 s 377.2 s
P6 [3] 442.6 s 411.5 s 385.2 s 478.7 s 462.6 s 455.5 s
Pd

6 [3] 382.9 s 366.6 s 344.9 s 441.7 s 418.1 s 409.1 s
P7 [3] 419.5 s 399.6 s 371.4 s 457.4 s 437.7 s 414.0 s
Pd

7 [3] 372.5 s 354.6 s 327.2 s 411.3 s 404.6 s 365.4 s

Table 7.4 Experiment 1: Summary of best plans when using the duration as performance
measure for all combinations of persons and both rooms in household A.

Household A
persons kitchen table living-room table

T Pb
0 -2.2 % Pb

1 -11.4 %
A,T Pb

4 -23.9 % Pb
4 -30.1 %

T,D Pb
4 -39.4 % Pb

4 -45.3 %
T,S Pb

4 -30.2 % Pb
4 -36.9 %

A,S Pb
4 -31.5 % Pb

4 -33.4 %
A,T,S Pd

4 -24.5 % Pd
4 -34.8 %

A,T,D Pd
7 [3] -29.5 % Pd

4 -39.5 %
T,S,D Pd

4 -34.6 % Pd
7 [3] -42.4 %

A,T,S,D Pd
4 -32.0 % Pd

4 -42.7 %
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The table clearly shows that the difference in performance varies greatly for different
plans. For example, the best plan for serving Theodore, Simon and Dave in the living room
only requires 365.4 s (Pd

7) compared to the default plan needing 634.5 s, which corresponds
to an enhancement of 42.4 %.

Although the difference is not always that striking, the difference between the best and
worst plan for a set-up is in most cases more than 20 %. In Table 7.4 for each combination
of persons and each room in household A the best plan is listed together with the relative
change compared to the default plan.

Selecting the Best Plan

The third point we want to emphasize in this experiment is that — irrespective of the
performance measure — the best plan for a task depends on the parameterization of the
plan.

The shaded fields in Table 7.3 indicate the best value for each combination of persons
and rooms. The best plan is either the plan where the plates are stacked and the cups are
carried with both arms, which works regardless of the number of persons to attend the
meal, or the plan tailored to three persons, where first all plates are carried with one cup
on top and the last two cups are carried using both arms.

The preference of which plan to use varies both in the combination of persons and in
the room where the meal is served. So when Alvin, Theodore and Dave are to have the
meal in the kitchen a different plan should be chosen as to when they decide to eat in the
living room. In the same way, the plan for setting the table in the kitchen varies when
Simon attends the meal instead of Alvin.

Table 7.4 shows more instances of different plans being preferable in different situ-
ations. When setting the table for only one person the stacking of plates doesn’t help.
Therefore, these cases require different plans, either the default plan or the one where the
cup is stacked on the plate.

7.1.2 Experiment 2: Plates and Cups Inside two Cupboards

We now regard a slight variation of experiment 1, where the plates are kept in one cup-
board and the cups in another as shown in Figure 7.3(b). The results for plan improvement
and that different situations require different plans are comparable to the ones of the last
experiment. Here we want to emphasize the robot’s behavior in the light of failures.

In the previous experiment we mentioned that the plans where the handling of the
boards is optimized fail for three or four persons. In this case, where the plates and cups
are stored in two adjacent cupboards, the optimization of the boards always leads to a
failure (see Figure 7.4(b)).
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The recognition of failures works very reliably in TRANER. To achieve reliability and
flexibility our plans monitor eight types of failures. None of the plans failed without the
robot knowing which failure occurred. In many cases, the failures can be repaired by
the robot. In 86 % of the cases where a failure was detected, the top-level plan could
be accomplished nevertheless. This level of reliability is very impressive in the robotics
domain. Nonrecoverable failures include ones where an object falls out of the robot’s
gripper to a position where the robot cannot retrieve it. An instance of this problem is
when plates are lying upside-down. The robot’s grippers aren’t dexterous enough to grip
the plates from these positions.

Figure 7.4 Failures occurring when boards are kept slided out.

(a) Cup gripped in right arm collides with board
and falls down.

(b) Robot knocks over the stack of plates while
turning.

7.1.3 Experiment 3: Dishwasher
As a further variation we considered the case when the dishes aren’t stored in the cup-
boards, but have to be taken out of the dishwasher. Simulating a fully equipped dishwasher
is complicated, because the rack for keeping the dishes would have to be modeled to great
detail, a work we haven’t done. The set-up of our experiment as shown in Figure 7.5(a)
on page 128 models the dishwasher scenario by placing the dishes on the worktop without
stacking them, because the robot would have to take the plates out of the dishwasher one
by one.

Table 7.5 shows the best plan for each combination of persons in households A and B.
Let’s compare these results to the one in Table 7.4, the analogous table for experiment 1.
The first observation is that this time other plans are preferred for the same combination of
persons attending the meal in the same room. For example, when setting the living room
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table for Alvin and Simon, the robot should stack each cup on a plate and carry the two
covers separately. In contrast, when the plates are already stacked in the cupboard, the
plan carrying the stack and then the two cups with both arms is to be preferred.

Also the variance in the plans to be chosen is higher in this experiment. Whereas the
winning plan in experiment 1 is either Pd

4 or Pd
7 when more than two persons are involved,

the best plan can be any of P1, P4, P5, P7, P9 or P10. Moreover, plan P1 once even showed
worse performance than P0 in experiment 1 (see Figure 7.2, line 18), but shows the best
performance in several cases in this experiment. This means that there is no best plan for
all situations and that it is hard to tell from an analytical point of view which plan to use.

The second observation when compared to the results of experiment 1 is the smaller
gain in performance by the plan transformations. For the living room table we still get
performance enhancements of more than 30 %, but there are other cases, where even the
default plan is chosen as in the case of setting the table for one person in kitchen B. The
reason is that the plates are already stacked in experiment 1, whereas the stacking takes
time in this experiment. In the case of laying the kitchen table in household B for Alvin,
Theodore and Simon it is even best to carry the plates one by one. Besides, the potential
for optimization is especially high when auxiliary goals are involved as in the case of
leaving the cupboard doors open.

In sum, this experiment confirms our observations of experiment 1 that plan transfor-
mations improve the performance significantly and that the choice of the best plan depends
on the specific task and environment. We have further shown that the state the environ-
ment is in (the plates being in the cupboard or in the dishwasher) greatly influences the
performance of plans and leads to different preferences of plans.

Table 7.5 Experiment 3: Summary of best plans for all combinations of persons and rooms
in households A and B.

Household A Household B
persons kitchen table living-room table kitchen table

T P1 -11.0 % P1 -26.7 % P0 -0.0 %
A,T P5 [2] -6.2 % P5 [2] -23.3 % P5 [2] -6.8 %
T,D P4 -17.7 % P4 -30.6 % P4 -13.6 %
T,S P4 -14.6 % P1 -28.8 % P4 -14.6 %
A,S P4 -12.3 % P1 -25.7 % P4 -13.2 %

A,T,S P1 -11.4 % P7 [3] -29.3 % P3 -3.3 %
A,T,D P4 -12.7 % P7 [3] -27.5 % P4 -9.3 %
T,S,D P7 [3] -12.9 % P7 [3] -34.2 % P4 -13.2 %

A,T,S,D P9 [4] -10.5 % P9 [4] -30.7 % P10 [4] -12.3 %
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7.1.4 Experiment 4: Using the Built-in Tray
We repeated the last experiment with a robot that has been equipped with an additional
tray on top of it (see Figure 7.5(b). This new resource makes other plan transformations
possible, producing more plans to choose from. Table 7.6 shows a list of additional plans
and their descriptions.

Although one might expect to open new ways of gaining performance, the impact of
using a tray is relatively small. In the kitchen of household A the fastest plan never makes
use of the tray. Table 7.7 shows the result for all combinations of two people to be served
in the living room. Here the plan P18 performs better than the plans without tray in two
cases. Still, without the tray, the performance would only be worse by 12.6 s and 6.2 s
respectively.

The explanation of this phenomenon has already been hinted at in the last experiment,
where the performance gain was less striking than in experiment 1, because of the time
needed for the stacking operation. In the current state of the art, robot navigation has been
examined in much more detail than robot manipulation. Therefore, manipulation tasks are
much slower compared to human manipulation than the navigation. Thus, the only cases
where a tray should be used are ones where the navigation paths are very long, the ones
into the living room. When operating in the kitchen, the robot is faster when navigating
frequently, but avoiding complex manipulation tasks.

The effect of this imbalance can be lessened by changing the performance measure in
a way that frequent navigation is punished. This might be necessary when many people
are present in the environment and the robot bothers people by driving around all the
time. Besides, it is probable that robot manipulation will be more efficient in the future,

Figure 7.5 Robot setting the table.

(a) Initial setting of experiments 3 and 4. (b) Robot additionally using its tray for carrying
cups in experiment 4.
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Table 7.6 Additional plans obtained by plan transformations that take into account the
presence of the built-in tray. The mnemonic for each plan is the same as in Listing 7.1.
Additionally a rectangle containing cups specifies how many cups are carried on the tray.

Plan Description
P12 [2,3,4] Carry the plates in a stack and at most one cup on the tray, carry the

other cups one by one.
P13 [3,4] Carry the plates in a stack and at most one cup on the tray, carry the

other cups using both arms.
P14 [2,3,4] Carry the plates in a stack and at most two cups on the tray, carry the

other cups one by one.
P15 [4] Carry the plates in a stack and at most two cups on the tray, carry the

other cups using both arms.
P16 [3,4] Carry the plates in a stack and at most three cups on the tray. If there

is a cup left, carry it in the gripper.
P17 [4] Carry the plates in a stack and all four cups on the tray.
P18 [2] The table is to be set for two persons. Carry a stack composed of the

plates and one cup and transport the second cup on the tray.
P19 [3] The table is to be set for three persons. Carry a stack composed of

the plates and one cup, transport the second cup on the tray and come
back for the last cup to be carried in the gripper.

P20 [3] The table is to be set for three persons. Carry a stack composed of
the plates and one cup and transport the other two cups on the tray.

P21 [4] The table is to be set for four persons. Carry a stack composed of
the plates and one cup, transport the second cup on the tray and come
back to carry the last two cups one by one.

P22 [4] The table is to be set for four persons. Carry a stack composed of
the plates and one cup, transport the second cup on the tray and come
back to carry the last two cups using both arms.

P23 [4] The table is to be set for four persons. Carry a stack composed of the
plates and one cup, transport two cups on the tray and come back for
the last cup to be carried in the gripper.

P24 [4] The table is to be set for four persons. Carry a stack composed of the
plates and one cup, transport three cups on the tray.
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getting nearer to the human proportion of manipulation versus navigation performance.
When this happens and our robot is equipped with new manipulation routines, there will
be no need to alter its control program, because it can transform its plans to match the new
conditions.

Table 7.7 Experiment 4: Summary of best plans for all combinations of two persons in
the living room of household A.

Household A
persons living-room table

A,T P5 [2] -23.3 %
T,D P18 [2] -34.2 %
T,S P1 -28.8 %
A,S P18 [2] -27.5 %

7.2 Coordinating Activities
In Chapter 5 on page 103 we have presented a special two-step transformation rule for
interleaving plan steps, so that two plans can be executed concurrently in an efficient
manner. We used this rule to combine the table setting plan and the one for boiling pasta
as presented in Figure 4.7 on page 65.

As a result, the transformation rule found that the time between putting the pot on the
stove and putting the pasta into the water, that is the time until the water boils, can be used
for bringing the plates to the table. Similarly, during the time needed until the pasta is
done the robot should carry the cups to the table.

This plan transformation leads to a significant enhancement in the plan execution. In
our experiment, the plan for boiling pasta took 694 s, and the table setting 213 s. The
sequential execution thus needed 907 s. When the plans are combined in the way just
described, the resulting plan was completed in only 708 s. This means that the execution
of both plans only needs 12 s more than boiling pasta without setting the table. Although
the table setting is fully completed while boiling pasta, the different navigation paths make
the optimized plan a little slower than the boiling pasta plan alone.

7.3 Summary
The evaluation of our approach is mainly performed in the context of setting the table
for one to four persons, the dishes being stored in different places in the kitchen. We
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demonstrated that the choice of the performance measure has an influence on which plan
is preferred. On the other hand, the best plan using one performance measure is usually
also one of the best plans when applying other performance measures.

We could further demonstrate that our plans are very robust with respect to failures.
Both failure detection and recovery are extremely reliable, the recovery being restricted
to the robot dexterity in finding and retrieving lost objects. Moreover, the experiments
show that state-of-the-art robots perform much better when navigating as compared to
manipulating. Therefore, the saving of manipulation times outweighs the gain in fewer
navigation tasks.

Most importantly, our experiments prove that the performance of robot plans can be
greatly enhanced by plan transformations. Even more significant is the observation that
different situations and environments require different plans for the robot to show the best
performance. This supports our claims in Chapter 2 that the best plan for a robot acting
in real-world domains cannot be determined analytically and that an adaptation to the
circumstances at hand is vital.





Chapter 8

Conclusion

We conclude this work by summarizing our approach on transformational planning and
pointing out the benefits of our TRANER system. After that we give directives on possible
future work.

8.1 Transformational Planning in Everyday
Environments

This work has presented in detail our approach of transforming plans in the context of
everyday environments. We will now briefly recall the intricacies of household scenarios
from Chapter 2, followed by a discussion of how our approach handles these challenges.

8.1.1 The Household Scenario
Plan-based control and transformational planning for a robot performing household chores
is an interesting and challenging task. This is the case, because the problem includes
(1) complex object manipulations (2) in a human, semi-structured environment and ex-
amines (3) planning of everyday activities in an area where humans perform especially
well, because this environment requires adaptability, reliability, foresight, and handling of
unforeseen events.

First of all, a household robot is confronted with a wide range of diverse tasks. On
the one hand this requires the robot to be equipped with complex, powerful manipulators
with a large number of DOFs. On the other hand, a large set of plans is necessary to fulfill
the tasks. Therefore, the development effort for plans must be kept as small as possible,
allowing the robot itself to perform optimizing adaptations.

Beside the complexity of the manipulation tasks, the robot must deal with surround-
ings that are adapted to human needs, not to that of the robot. One problem is the state
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estimation. Not just the image processing and laser analysis, but especially the object
descriptions on a higher level must be able to differentiate between necessary object prop-
erties for a task and those that are irrelevant. For example, when a plan tries to find a
particular blue cup and cannot find it, the robot should find a suitable substitution. De-
pending on the situation, a red cup might be a good choice (when the cup is to be used
as a container). In contrast, a blue plate is probably not a good choice for substitution,
although it also shares the property of being blue with the original object.

Since a household robot is exposed to the presence of humans, it must show the kind
of behavior people would expect it to show. This feature is often referred to as cognitive
capabilities. It doesn’t suffice to perform actions efficiently, but to act in a way that hu-
mans recognize as reasonable. This doesn’t mean that a robot must necessarily imitate
humans, but a robot navigating in an unforeseeable manner makes people feel uncomfort-
able, because they never know where the robot will move next. A robot showing cognitive
behavior should also be able to explain what it is doing and why. This makes it easier for
humans to find flaws in the robot’s behavior and to comprehend its course of action. An-
other important aspect of cognitive behavior is the execution of auxiliary goals. A robot
that leaves all the cupboard doors open and starts cleaning the dishes only when they are
needed (and the leftovers of the last meal are dried) is not what a human would call an
intelligent home help. Another challenge lies in the presence of failures. A household
robot must anticipate and deal with failures just as humans do.

8.1.2 Summary of the Approach
We propose a transformational planning approach with reactive plans for tackling the
challenges just discussed. In our TRANER system predefined default plans are adapted
to a specific environment by plan transformations and plan evaluation on the basis of a
simulation.

For implementing the default plans we propose an extended version of the reactive plan
language RPL. The extensions comprise parameter and object designators as symbolical
descriptions of objects in the world and parameters in the control program, as well as
semantic annotations of plans for highlighting code pieces that perform failure recovery,
make the robot perform actions at a certain location, specify designators, and declare
plan steps as auxiliary goals. Besides, the default plans all follow a similar hierarchical
plan structure using the programming constructs for semantic annotations. This approach
leads to general, robust default plans that exhibit cognitive capabilities and can easily be
transformed.

The plans are organized in a plan library. Here we distinguish four classes of plans
or goals: basic goals for low-level control like navigation and simple arm movements,
basic manipulation goals including gripping and simple object handling, higher-level ma-
nipulation goals for more sophisticated object manipulation, and activities representing
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user commands like setting the table or boiling pasta. The categories group plans sharing
the same characteristics with respect to transformability, failure handling, constraining
and instantiating designators and auxiliary goals. Usually plans call other plans from the
same or a lower level. In the context of interacting plans we have identified two kinds
of challenges. The first question is when to instantiate designators in a hierarchical plan
structure. The second deals with the accommodation of auxiliary plans in sequential plan
interactions. Both issues can be dealt with by plan transformations.

Plan execution in TRANER requires an efficient monitoring mechanism observing the
execution without modifying the plan code. When a plan is chosen from the library certain
performance criteria are recorded, which are afterwards evaluated with a performance
measure. Depending on the outcome of this evaluation, the plan is transformed or kept
in the plan library as it is. After a plan transformation the same process of execution and
evaluation is required. To make the whole procedure feasible and unperilous, a realistic
simulation of the environment is necessary.

The core of TRANER are plan transformations, which create new plans out of a plan
and a matching transformation rule. The structure of our rules allows the specification of
complex, yet general, transformation rules in the rich language we use for representing
our plans. We have presented a detailed example showing the evolution of a default plan
by applying several transformation rules from our transformation rule library. The rules
include syntactical transformations preparing the plan for subsequent transformations, re-
ordering of plan steps, the usage of external and robot resources, the handling of auxiliary
goals, and the optimization of free time by parallel execution of several plans. The rules
are general enough to be applied to a wide range of plans.

8.1.3 Discussion
We have evaluated our approach in a realistically simulated kitchen with a B21 robot
equipped with two arms. Using two activities — setting the table and preparing pasta —
we could show the feasibility of our approach and prove the necessity of plan adaptation
to specific environments by plan transformation.

Our experiments have clearly shown that plan performance is improved significantly
by plan transformations. While the same result for a specific high-level plan in a spe-
cific environment could have been achieved by manually programming all the necessary
plans, our approach only needs a small number of unoptimized, but robust default plans
and a set of transformation rules. Considering the number of activities required from a
household robot, TRANER reduces the development effort significantly and thus enables
an economical development of more sophisticated robots.

The results show that TRANER needs an expressive and extendable plan representation
for concurrent reactive and failure aware robot control together with a powerful transfor-
mation language.
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Contrarily to most approaches in robot planning and control, we assume that the par-
ticulars of a specific environment and the circumstances at hand greatly influence the
overall performance. We could show that this assumption holds in domains as complex as
kitchens. The best plan can’t be determined analytically, rather it has to be decided which
plan performs better by prediction or simulation. The preferred plan for setting the table
greatly differs depending on the number of persons to attend the meal, the room in which
the meal is to be served, and the household the robot is working in.

Most other works on planning assume that the behavior of the robot can be deducted
directly from the plan. We have shown, however, that this assumption doesn’t hold in
complex everyday environments. Therefore, our approach examines the actual behavior
the plan produces by running it in an accurate simulation in order to ensure robust and
flexible performance.

8.2 Prospects on Future Work
This work presents a fully functional system for a simulated robot. In future research
activities it should be extended to decrease the development effort for plans and transfor-
mation rules and to narrow the search for the best plan. Besides, ongoing efforts are aimed
at running the system on a real robot and in other application domains.

8.2.1 Plan Generation

In the current system, the default plans are coded by hand. Because household activities
are very diverse and the demands on the default plans regarding optimality are low, the
plans could also be generated from abstract descriptions of household activities.

Such knowledge can be found in the knowledge base Cyc and on websites like
ehow.com, where household activities like setting the table for special events and recipes
are provided. Such descriptions, however, are often inaccurate and leave out plan steps.
For example, a recipe usually doesn’t mention that the oven must be turned off. Most of
the times, the missing activities are auxiliary goals that are taken for granted by humans,
but must be complemented for a fully functional plan description.

8.2.2 Inspiration from Human Behavior

For displaying cognitive capabilities a robot needn’t imitate human behavior, but often the
observation of people acting in a household can provide a good guideline for a robot how
to perform a plan efficiently and to find out if its behavior is acceptable for humans.

First, the observation of people can serve as a performance value for evaluating the
robot’s plans, giving indications when transformations are reasonable. This can be the
duration of an activity, but also the resources used during a course of action.
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Second, human behavior can give directions as to which transformation rule to use
and thus narrowing the search space for the best plan. For example, when a robot has
observed that people are faster in setting the table, it can analyze the difference in the
plans, the human stacking plates whereas the robot carries objects one by one. In the next
step, the robot can apply a transformation rule that makes its own behavior more similar
to that of its human role model.

8.2.3 Application on Real Robots
Ongoing research aims at aligning the simulation used in this work with a real B21 robot.
Figure 8.1(a) shows the robot in a kitchen, which corresponds to household B in our
evaluation (cp. Figure 7.2 on page 119) To facilitate the state estimation, the kitchen is
equipped with sensors like cameras and lasers. The cupboards can provide information
about them being open or closed and what objects they contain by tagging objects with
RFID chips and the cupboards with adequate readers. Also the kitchen devices provide
additional sensors. An example is the knife shown in Figure 8.1(b), which is equipped
with a pressure sensor.

The full functionality of a robot in a real kitchen still offers many challenging ques-
tions. First of all there is the state estimation. Although the environment can provide
some information, the robot still has to perform sophisticated image processing. Besides,
when humans are present, an additional complexity is the prediction of the movement of
the people in the kitchen. Second, robot control in a real environment is harder than in
simulation. Although our simulation mimics non-determinism, it is very reliable and the
execution of activities can be repeated frequently. The development process on real robots
is considerably slower. Finally, the hardware for robot arms is still very complex and ex-
pensive. Our current robot uses two Amtec PowerCube arms with grippers. Reaching and
manipulating objects with these simple tools is extremely challenging.

8.2.4 Extension of the Kitchen Scenario and Other Applications
Parallely to carrying over the current abilities of our simulated kitchen robot to a real one,
we will extend the repertoire of tasks the robot can perform. This includes the ability to
prepare a wider variety of meals, cleaning tasks, and the interaction with humans (Beetz
et al. 2007; Beetz, Buss, and Wollherr 2007).

We further intend to demonstrate the generality of our approach and how it enhances
the development of competent robots by using it for a completely different application.
Currently a cognitive factory is under development, where all devices have information
about their state, capacity and utilization. Using this information and the plan transforma-
tion mechanisms provided by TRANER, the processes in the factory can be enhanced by
dynamically adapting the production process (Zäh et al. 2007).



138 8.2 Prospects on Future Work

The demonstration scenario is a flexible manufacturing system consisting of two CNC
machines, an assembly robot, a material handling robot, an automatic storage unit, a com-
puter controllable conveyor belt, and a quality measuring unit, which is further enhanced
with sensor networks and high performance 3D laser sensors. Cognitive mechanisms
enable the factory system to learn situation-specific models of production steps and to
estimate the state of manufacturing processes. TRANER will allow to adapt individual
production steps to react to perceived disturbances and respond to dynamically changed
objective functions.

Figure 8.1 Real robot and kitchen environment with sensors.

(a) Real (left) and simulated (right) robot and kitchen.

(b) Excerpt of sensors used in the kitchen.
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