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Abstract

This dissertation gives an overview and insight in the structure and the scien-
tific algorithms of a system designed for the automatic analysis of human faces.
Thereby, Face Analysis addresses the goal to extract as much abstract informa-
tion as possible from a face. The applied methods of statistical shape and texture
models base on the idea of Active Appearance Models (AAM). An Appearance
Model for face analysis describes the variations in shape and texture of human
faces derived from a careful selection of photographs showing different persons
with different facial expressions and head poses in various lighting conditions de-
pending on the specific focus of the analysis. During the analysis of a human face
within a video or a picture, the Appearance Model is used to re-synthesize this
face as optimal as possible. Apart from an introduction to AAMs with a unified
mathematical notation, this document describes the various optimizations and
modifications on several steps of the basic algorithm.

While the recognition and interpretation of faces is comparatively lightweight
for the human visual cortex, this task requires computer vision approaches of high-
est computational complexity. Thus, this thesis not only fights the challenge of
most accurate face analysis, but also the difficulties of building up an integrated,
fully automatic software system which provides a high computational efficiency
plus techniques for the extensive exploitation of modern standard hardware.

The evaluations compare the different developed algorithms with respect to
the quality of the re-synthesized face, computational complexity, and pattern
recognition tasks, such as the determination of e.g. the gender, age, head pose,
and facial expression of a person.
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Chapter 1

Introduction

1.1 The Challenge

In human-human interaction the visual communication channel contributes im-
mensely to the efficiency and quality of the communication [76], since the nuances
are indeed transported via the tune of the voice but primarily by the facial ex-
pression, the body pose, head pose, and gestures. For a good understanding the
context is essential. As O. Wiio humorously states in his laws (“Communication
usually fails, except by accident”), a working communication requires the partners
to ideally have the same context or at least know the context of their opponent.
The exchange of pure verbal content regularly leads to mis-interpretations and
mis-understandings. Thus, for modern and future technical applications which
strive to analyze human-human communication and improve human-computer
interaction, the analysis of faces is mandatory where already basic difference in
gender and age can give identical words a totally different meaning. Finally a
human face itself provides various information about the person: gender, age,
ethnic origin, ametropia, and identity. The extraction of as much information
as possible from a face at high computational speed is the overall target of this
thesis.

However, the task of face analysis with whatever scope is characterized by
highly complicated conditions. In the first place, the natural appearance of human
faces varies in their outer shape, the relative spatial position of facial features
(eyes, brows, nose, mouth, chin), the shape of the facial features, and the skin
color and texture.

Due to the high complexity of face recognition and interpretation, the evolu-
tion even dedicated an own area of the human visual brain cortex to this task
[59].

Therefore, human face analysis constitutes one of the greatest challenges in
the modern computer vision area. Our face analysis technology utilizes the basic
idea of the Active Appearance Model [26] approach: A statistical model describes
the variations in shape and texture of human faces derived from a careful selection
of photographs showing different persons with different facial expression and in
various lighting conditions. During the analysis of a human face within a video or



2 1.2 The Background

a picture, the Appearance Model is used to re-synthesize this face as optimal as
possible. Finally, this technology provides an extremely compact parametrization
of the analyzed face by setting between 20 and 60 numeric parameters. This
delivers a highly compact encoding of the face properties which can be decoded
by subsequent statistical classification methods.

1.2 The Background

This thesis was accomplished at the Institute of Human-Machine Communica-
tion at the Technische Universität München during my employment as scientific
employee from January 2004 to January 2008. Several projects and networks
funded by the European Union and industrial partners influenced and motivated
the research work.

The EU-FP6 Integrated Projects AMI and AMIDA (Augmented Multi-party
Interaction with Distance Access) [38] target computer enhanced multimodal in-
teraction in the context of business meetings. AMI(DA) aims at substantially
advancing the state-of-the-art, within important underpinning technologies such
as human-human communication modeling, speech recognition, computer vision,
multimedia indexing, and retrieval. They also produce tools for offline and online
browsing of multimodal meeting data, including meeting structure analysis, social
analysis, and summarizing functions. The projects also make recorded and anno-
tated multimodal meeting data widely available for the European research com-
munity, thereby contributing to the research infrastructure in the field. Thereby
Face Analysis plays a major role in the automatic analysis of meetings as it can
provide information for instance about the identity, gender, age, facial expression,
and head pose of the meeting participants. The behavioral analysis via facial ex-
pression and head pose allows for conclusions about the mental stage, e.g. stress,
boredom, satisfaction, dissatisfaction, of the participants in each phase of the
meeting. This information can be valuable especially for statistical evaluations of
the meeting quality in a company, division, or project course. Similar tasks are
addressed by the EU-FP6 Network of Excellence HUMAINE (Human-Machine
Interaction Network on Emotion) [39] where 33 partners deal with the description,
recognition, and evaluation of human emotions. Thereby, the visual component
and as a matter of fact the Face Analysis makes a considerable contribution.

Furthermore, the industrial project cUser in collaboration with the Toyota
Motor Corporation aims at an audiovisual approach to the recognition of sponta-
neous human interest. For a most robust estimate, information from four sources
were combined by a synergistic and individual failure tolerant early feature fusion:
Firstly, speech is analyzed with respect to acoustic properties based on a high-
dimensional prosodic, articulatory, and voice quality feature space plus the lin-
guistic analysis of spoken content by speech recognition and bag-of-words vector
space modeling. Secondly, visual analysis provides patterns of the facial expres-
sion and of the movement activity by eye tracking. Experiments were carried out
on a video database of 10.5h of spontaneous human-to-human conversation col-
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lected throughout the project. Multiple levels of interest were annotated within a
rich transcription. Experiments aimed at person-independent and robust real-life
usage and showed the high potential of such a multimodal approach.

Throughout my time at the institute, the research in Face Analysis was always
supported by a strong team of students. As appreciation of their contribution,
the plural form we is henceforth used in this thesis.

1.3 FEASy – a FacE Analysis System

During the research of this thesis a software application eventually named the
FacE Analysis System FEASy emerged. Face analysis is a just as complex as
valuable component of systems for human behavior analysis or for improving the
attractiveness and usability of Human-Machine-Interfaces. This falls directly in
the research of the Institute of Human-Machine Communication of the Technische
Universität München where this thesis has been conducted. Thus, a considerable
amount of manpower was invested in the implementation of a usable, widely con-
figurable, extendable, and high-performance software system in order to allow
for our research findings having an effect in larger systems addressing a higher
semantic level. Since the entire system was developed by a team of programmers
and currently provides the selection of 12 algorithmic variants with permutations
and the adjustment of 76 relevant algorithmic parameters, not to mention the
compatibility with a bunch of input data options, a well structured software ar-
chitecture with several abstraction layers, object-orientation, and modularization
is mandatory [33, 46].

Therefore, FEASy is built as modular processing chain in the multi-threading
framework MMER Lab (see chapter 2) and consists of the following components:

• Image Source:
Image-Files, video files, and cameras can serve as input. Multiple image
formates (JPEG, TIFF, BITMAP, Portable formats), video codecs (several
Microsoft and Intel codecs, DivX, Cinepak, etc.), and all cameras with
DirectX drivers for MS Windows or Linux drivers are supported [46]. In
case of camera or video file sources, each frame is provided as single image
to the subsequent processing chain.

• Head- and Eye-Tracking:
Presuming that there is a face with both eyes visible to the camera in
each image, this module localizes the position of the face in a first step.
Thereby an algorithm is used which applies an AdaBoost feature selection
and classification approach on Haar-Wavelet features [116]. This method is
known for its low computational complexity, robustness against illumination
variations, and its applicability to all ethnic groups with a single model.
However, it shows weaknesses when it comes to horizontal head rotation or
rotations in the image plane. Relying on the head localization, a localization
of both eyes is performed, again applying an AdaBoost algorithm. For the
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purpose of a precise eye localization we add Gabor-Wavelet features which
are more computationally intensive but showed higher localization accuracy.
Details about the research, the applied algorithms, and evaluations are given
in chapter 3. The output ports of this module provide the absolute pixel
coordinates of the head and both eyes which is required as initialization of
the subsequent face re-synthesis.

• Face Re-synthesis:
This module constitutes the core of the system in several ways. Initially, it
generates over 90% of the computational costs. Further, the topic of this
thesis evinces that also from the algorithmic point of view this is the crucial
and most challenging part of the system where most research efforts were
invested. The chapters 4 and 5 address the starting basis and enhancements
of the applied algorithms in statistical shape and texture models while chap-
ter 6 shows possible applications with evaluation results. The implemented
approach relies on the generation of statistical models of the appearance,
i.e. the shape and texture, of a face. Such Appearance Models allow the
synthesis of a variety of instances of faces by adjusting a set of scalar co-
efficients. The analysis is performed by a re-synthesis of an unknown face
via multivariate optimization of the model coefficients.

The optimized coefficient values constitute a low-dimensional representation
of the analyzed face for further processing and are provided as output of
the module.

• Classification modules:
The low dimensional representation of the face to be analyzed serves as
feature vector for the again statistical recognition of facial properties. In
context of this thesis we target on abstract information about the gender,
age, identity, head pose, or facial expression of a person. In accordance
to research works in the area of statistical classification we could confirm
that Support Vector Machines (abbrev. ’SVM’) provide the best recogni-
tion performance at comparably low computational complexity during the
recognition and with limitations of sparse data [102]. For each desired recog-
nition task, a classification module must be dedicated with the according
SVM models.

• Display:
For demonstration purposes e.g. of the shape and texture generated by the
face re-synthesis module, the avatarization of the analyzed face with foreign
face textures, or of the classification results, this module can visualize the
input and results of FEASy.

• Communication:
If the system is run as a component e.g. of a multi-modal system where
possibly speech or sensor data provide additional information about a per-
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son [38], this module broadcasts the results of the visual analysis via socket
connections.

The configuration of FEASy can be conducted at runtime via the Graphical
User Interface of MMER Lab, or a-priori by loading a correspondingly edited
XML configuration file. Apart from the remarkable accuracy in face analysis (see
chpater 6), our system features high computational efficiency due to the applica-
tion of hardware optimized mathematic libraries and the involvement of the latest
graphic card platforms at the adequate steps in the algorithm (refer to section
5.4). While FEASy constitutes the basis of our evaluations of the developed face
analysis algorithms, it proved its value as impressive demonstration application
at several occasions [81, 82].

1.4 The Thesis in a Nutshell

The structure of this thesis follows the layout of the FacE Analysis System de-
scribed above. Since the framework MMER Lab constitutes the basis of the
implementation and allows for the flexibility and computational performance of
FEASy it is introduced at the beginning in chapter 2. Since automatic face
analysis naturally requires a preceding localization of the face, this is presented
in chapter 3. Chapter 4 describes the theoretic starting basis of our develop-
ments, the Active Appearance Model approach while chapter 5 presents a selection
of algorithmic enhancements to the basic algorithm. Finally, a comprehensive,
comparative evaluation on various databases is given in chapter 6 followed by a
summary of the thesis and an outlook. The Appendix provides an overview on
the typesetting, mathematical notation, and the symbol table.





Chapter 2

A Multi-Threading Framework
for Signal Processing Systems

The target software application of this thesis on real-time face analysis constitutes
a representative example of a digital signal processing system. It is serially as-
sembled from various processing technologies, shows highest computational com-
plexity on large data streams, and shall blend in larger software applications, at
an adequate state of maturity. These characteristics demand for comprehensive
solutions for the distributed software development process in teams, the system
design sensitive to hardware exploitation and memory consumption, as well as
for the experiencability and reliability of the implemented systems.

With MMER Lab a software framework is available, which addresses a sim-
plified system development process, re-usability of code, exploitation of modern
multi-core CPU architectures, and user friendliness, all under utmost preserva-
tion of flexibility and computational performance. This is mainly achieved by
a software architecture with multi-layered abstraction, the encapsulation of a
multi-threading environment behind a clear Application Programming Interface
(abbrev. ’API’), a system scheme of modules and synchronized data cables, and
a scriptable as well as a graphical user interface for all levels of system developers
to pure users. MMER Lab proved its capabilities as basis of multiple systems of
the Institute for Human-Machine Communication of the Technische Universität
München.

The following section contemplates the current conditions in the development
process of software based Signal Processing Systems (sec. 2.1). Section 2.2 intro-
duces several attempts to support this process. The mentioned conditions and the
specific properties of our face analysis system originate a set of requirements (sec.
2.3), which guided the concepts (sec. 2.4) and implementation of MMER Lab.
Section 2.5 presents different application scenarios, system setups, and an evalu-
ative comparison to a competitive software framework. Finally, this invokes the
conclusions of section 2.6.
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2.1 Conditions for the development of Signal

Processing Systems

The development process of large software based Signal Processing Systems (ab-
brev. ’SPS’) is characterized by the following general properties.

Most SPSs can be described by flow charts of a data stream which is provided
by a source, processed by several different filter modules, and finally disembogues
into a sink. Thereby, multiple data streams may derive from different sources and
are fused or flow into several sinks correspondingly. The source, filter, and sink
modules are predominantly serial connected, although they may contain feedback
loops in certain cases.

Furthermore, especially systems for audio, visual, or multi-modal signal pro-
cessing, require expert knowledge from numerous different areas. This factor as
well as the considerable programming effort for the build-up of large SPSs de-
mands for the collaborative software development of researchers in teams. Con-
sequently, the management of the development process with software engineering
techniques, such as architecture concepts, interface definitions, testing, and main-
tenance gets mandatory or even necessary.

While SPS engineering requires a deep insight in the comprised technical areas,
the integration of existing libraries from the world-wide community of program-
mers saves own man-power substantially, instead of re-inventing the wheel over
again.

When it comes to latest signal processing methods in particular on speech-,
image-, and video-data, immense amounts of data have to be handled leading
to the corresponding computational effort. While, the hardware industry has
been fighting the 4 GHz frontier of CPU clock speeds for years, the common
approach points toward parallel processing with currently dual-, in near future
multi-core CPU architectures. Unfortunately, standard implementations of serial
SPSs can hardly benefit from this tendency since there is still no perceivable suc-
cess in parallelized execution of source code by adequate compilers. On the other
hand, parallelization can be realized via internal parallelization of algorithms,
predominantly by separating logically independent functions such as large ma-
trix operations, which often comes with an expensive and difficult reworking of
the algorithms.

The main conditions and problems of the development of software based Signal
Processing Systems are summarized under the following bullets:

• Size, technical diversity, and complexity demand for team collaboration and
software engineering.

• The integration of a large amount of existing libraries makes re-implementations
obsolete.

• The benefit from multi-core hardware can only be realized via parallel ex-
ecution of the modules within mostly serial processing chains.
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2.2 Other works

Several academic and industrial R&D teams have published systems, which try
to provide support and solutions for a well-organized and effective software de-
velopment process under the conditions mentioned in section 2.1.

The probably most established and spread framework is MATLAB (R) from
MathWorks Inc. featuring a simple programming interface and numerous exten-
sion packages for various kinds of signal processing, simulation, and evaluation.
This rapid prototyping software product is easy to learn and especially valu-
able for feasibility tests. The flexibility of the programming interface however
comes with an remarkable overhead of mid-level code during execution time. To-
gether with a sub-optimal memory management of MATLAB(R)’s Java back-end,
the runtime performance of algorithms are way from native, even non-optimized
C/C++ implementations. Beneficially, MATLAB(R) code is cross-platform com-
patible, which is important to be accepted by all, Windows(R), Linux, and MacOS
users.

Another upcoming but cost intensive application is LabVIEW(R) from Na-
tional Instruments Corporation. This commercial framework comes with a great
variety of modules for a high range of signal processing tasks and the support
of diverse external sensors or devices. It’s interface for pure “graphical program-
ming” allows for a system design without the barriers of code programming for
all common operating systems. Although a large amount of functions and sig-
nal processing algorithms are already available, the addition and extension of
modules requires a deep understanding of the flexible, though complex API of
LabVIEW(R). The latest version 7.1 of LabVIEW(R) supports threading tech-
niques for hyper-threaded and multi-core CPU hardware with an incorporated
queuing system for the thread communication.

The most elaborated non-commercial framework for exploitation of PC clus-
ters in high-end networks was developed by the National Institute for Standards
and Technology (NIST), and is published as Smartflow 2 (abbrev. ’SF2’) [78].
It is designed to distribute computationally intensive SPSs on a set of comput-
ers and uses socket communication for the data exchange of system components.
Furthermore, SF2 also implements a multi-threading concept when several mod-
ules are started at a single PC. This concept is derived from MMER Lab and
was successfully integrated in SF2 [33] by one of the MMER Lab authors Lukas
Diduch [31]. One of the principles of SF2 is the decoupling of data types from
data processing and flow. Thus, the framework is applicable to any kind of data,
although it was meant for audio-visual processing.

Apart from these commercial systems several other parties build up their
own solutions. ParleVision [96] is a framework for computer vision programming
on Windows only. This framework allows to build processing chains, based on
filters which support modularity. It has a very good performance in sequential
processing but does not support parallelization in any way.

The two other systems, Fermus [75] and Smartflow [78] for network distributed
computing applications are process-based utilizing IPC techniques as socket com-
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2.3 Requirements of a Software Framework for High-Performance

Signal Processing Systems

munication and shared memory. These systems, designed to work on networks,
support modularity and the usage of multiple processors very well. However, con-
text switching on standalone computers using multi-tasking decreases the perfor-
mance compared to multi-threaded architectures. This is because multi-tasking
systems operate within their own virtual address space. Processes are protected
by the operating system from interference by other processes. A user process can
not communicate with another process unless it makes use of IPC mechanisms.

Passing the data between computers also comes with network latencies which
can affect real time high bandwidth computations such as video processing. The
main advantage of these systems is the enormous computing power of a cluster
versus the network latency and intercommunication time.

2.3 Requirements of a Software Framework for

High-Performance Signal Processing Sys-

tems

The multi-threaded MMER Lab was designed as a flexible system that can em-
bed, combine and demonstrate computing intense algorithms. Mainly algorithms
from the field of pattern recognition and signal processing (audio and video) were
considered. It is of course also possible to embed algorithms from other scientific
disciplines, but the base set of modules, which is distributed with the framework,
was emphasized on the first field.

In the first place, the framework is used to provide a system for emotion recog-
nition based on visual and statistical data utilizing AAMs and a classifier based
on SVMs. Since the visual data emerging from a single source is less significant
than data derived from multiple sources (e.g., additional audio sources), the sys-
tem should be embeddable into a multi-modal and multiuser context for future
research tasks.

To meet these requirements, the main idea was to develop a modular signal
processing framework, providing sources, filters and sinks, and to embed this
system into a multi-threaded environment. These sources, sinks and filters are
represented as modules, which can be combined with each other. Each module
has a computation core and a fixed interface. Multi-threading provides a natural
way in expressing asynchronous signal processing systems. This helps in modeling
real world problems.

Besides this core application, several side requirements also needed to be met:

• Multi-platform capabilities, which means that UNIX and Windows plat-
forms can be used. This is an important feature, because it allows using
the framework on a large number of computers.

• The ability to embed every kind of software library written in C
or C++ into the system architecture to provide flexibility and adaptation
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in coding. As an example, high performance libraries for mathematical
computation can be used instead of slow standard solutions.

• A graphical user interface (GUI) for control, as well as for editing and
demonstration tasks. The GUI should be intuitively designed, to allow
people to work with it after a short amount of time.

• The possibility to automatize tasks via scripting. This would allow any
user to access the whole functionality of the framework without the need to
actually control it in real time. Another requirement was that framework
setups (i.e., networks of modules) should be able to be generated by scripts.

• The possibility to log and monitor results. In a multi-threaded environ-
ment, where various algorithms run in parallel, it is very important to keep
track of what happens when, and to save the final results for later use or
evaluation.

2.4 Concepts of MMER Lab

‘If you have an application that can benefit from parallel processing, make thread-
ing a priority in your company. The benefits can be enormous.[...]Plan for multi-
core environments - not just dual-core. Assume there will be 4, 8, and even 16
cores in the future.’

Inspired by this citation from Intel(R) Software Insight magazine, issue on
Multi-core capability [56](p.7), we started to conceptualize and implement the
software framework MMER Lab (lab.mmer-system.eu) in order to benefit from
the new computational performance of the upcoming multi-core CPU and multi-
CPU architectures in modern and future computer systems. In general this ben-
efit can only be exploited via internal parallelization of algorithms mainly by
separating logically independent functions such as large matrix operations. This
often comes with an expensive and difficult re-implementation of the algorithms.
For many systems with certain properties, however, there is an opportunity to
profit from parallel computational power without re-implementation. In particu-
lar, Signal Processing Systems with several, mostly serial-connected components
show a great potential for acceleration via porting into MMER Lab framework.
(Please note: We distinguish between framework and the system which runs in
the framework.)

Frame-based video processing systems constitute an ideal example: Imagine
a simple video analysis system consisting of four modules: a video source, a head
localization and tracking module, a face-based person recognition module and a
video display for demonstration. Such system can be parallelized by executing
each module in its own thread. Thus, the person recognition module can perform
its recognition task for frame number n on CPU-core 1, while the head tracking
module already localizes the head(s) in frame m with m > n using CPU-core 2.
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However, threading requires considerable skills in programming. MMER Lab
is designed to be of benefit for all levels of software developers up to pure users.
Thereby, module developers are not bothered by the problems and barriers of
multi-threading implementation, since the embedding of algorithms is performed
by usage of MMER Lab’s interfaces. Thanks to the Graphical User Interface
(GUI), casual users can instantly load implemented modules, connect them to
a complete system, and execute it via mouse clicks for ad-hoc demonstration or
education purposes. Advanced users benefit from the scripting facilities and can
perform numerous iterations and evaluations, e.g. of system parameter settings,
in a batch processing style.

Our framework is developed cross platform for Linux and Windows operating
systems and independent of the bit- architecture (32 or 64). This is achieved by
purely gcc-compliant C/C++ programming code and usage of the Tcl/Tk [89]
script interpreter. Furthermore, every kind of software library written in C and
C++ can be applied for the implementation of modules for any signal processing
system.

Thus, our framework provides an efficient opportunity to quickly transfer
existing signal processing systems into multi-threaded applications with a full
exploitation of the parallel clock speed of current and future multi-core architec-
tures.

In the subsequent sections we explain and discuss the concepts of MMER Lab
for multi-threading, module structures and data flow, followed by application
scenarios. Moreover we discuss our design decisions for MMER Lab and give a
conclusion.

The framework structure is based on the following three main concepts: A
multi-threaded environment, a Tcl script interpreter with a Tk GUI, plus the
underlying flexible and modular software architecture.

In the Multi-Threaded Environment (figure 2.1) modules are executed
quasi parallel, depending on the number of available processors. Herein, the
system modules embed algorithms and work like stand-alone processors with a
fixed interface. Each module core runs as a thread with an additional thread for
the modules communication interface. These are connected with cables (queues)
for the transport of content (data, memory pointers, parameters, or commands).
The state of both, cables and modules is protected by mutexes (short for mu-
tual exclusion)[51]. Furthermore, conditions assume the synchronization of both
object classes. This does not only avoid useless polling (a mechanism for status
requests of a resource) from within the threaded functions, but also provides a
powerful technique to synchronize the data flow and split the execution onto mul-
tiple processors. Sources push data into a cable, while filters and sinks pull the
data from a cable. A source module stops automatically to produce content, if
the outgoing cable buffer is full, and continues when the cable buffer is depleted.
A sink module automatically stops to pull content from the incoming cable buffer
if it is empty and continues as long as the cable buffer is filled with content. A
filter module is a combination of both behaviors. The main synchronization part
is implemented inside the cable and module classes using the monitor pattern
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Figure 2.1: Schematic view of the framework concept

[101]. Multiplexers inside the modules interface are used for data dispatching
with round robin or priority based methods.

The second important concept is the embedded Tcl interpreter including
the Tk GUI (Fig. 2.1). The interpreter has been extended by new objects,
like module and cable objects and a set of Tcl procedures to manipulate them.
Firstly, this provides a user interface for communication with the multi-threaded
environment. Note that the Tcl interpreter is the only facility of the MMER Lab
which runs as the main procedure in the executed framework process. The inter-
preter itself is not multi-threaded or uses threading in any way. This is mentioned
here, because Tcl can be compiled with threading support as well which would
allow the execution of multiple Tcl interpreters in their own thread. We do not
use this feature in order to maintain performance. Secondly, by using the Tcl
scripting language [89], we can also create a high level framework language: A
large set of control command wrappers, helper functions and Tk procedures for
GUI control have been implemented this way.

This approach has several advantages: The Tcl/Tk language can be used to
natively perform interface handling, common scripting tasks, and computations.
Examples are file handling, creation of pipes to processes, computing numeric
parameters for the system/module setup, and managing socket ports for dis-
tributed cluster processing. The script interpreter is also extremely helpful to
configure module/cable setups for simplified loading and starting frequently used
systems. No recompilation or restart is needed for setup modifications or com-
pletely different setups. During demonstration, practical courses and lectures this
opportunity turned out to be very valuable. Additionally, a great variety of freely
available Tcl/Tk packages can be used by the framework. Exemplarily, we load
a plot-package for automatic generation of signal course or evaluation diagrams.

One important feature is the efficiency of plugging module packages into the
system at runtime. Thus, memory and performance can be saved, because the
module code (C/C++) is stored in a shared library which will only be loaded
into memory on demand, including the dependent shared libraries. MMER Lab



14 2.4 Concepts of MMER Lab

is per se started with no functionality except for instantiating and controlling
cables and modules.

As mentioned above the front-end to the framework is implemented as a Tk
GUI. However a GUI is not required to run the framework. It can be run in
a mode only using scripts for setup and control. This feature is useful to gain
utmost performance or hide the framework interface if desired.

The last core concept is a flexible Software Architecture which is explained
in detail within the following section. Based on this architecture, the software
developer is able to embed every existing library written in C/C++ into the
modules’ API. Thus, useless and laborious re-implementation of standard func-
tionality becomes dispensable.

2.4.1 Software Architecture

The underlying software architecture of MMER Lab consequently follows the
concepts of procedural and data abstraction [4]. Four fixed layers of abstraction
have been established to provide access from low level functions (libraries) up to
high level procedures (modules).

The lowest system layer (libraries) contains all basic external code libraries
used in the framework and in most of our systems. This includes standard libraries
like the C++ stdlib, Xlib, OpenCV, OpenGL and Boost [61] or ATLAS, C-BLAS
and GSL, high performance and high precision mathematical libraries compiled
optimized for the dedicated processor architecture in Fortran, assembler and C.

The mid level system layer (core functions) is used to implement high level
procedures as well as core framework functions by wrapping the basic libraries
low level functionality. In this layer the abstraction techniques have been applied
utmost. Here it is possible to adapt the function calls of the layer below to a
unified notation of the architecture. Due to this concise abstraction interface it is
possible to easily exchange an external library below without adapting the layers
above the core functions.

The next layer (module functions) provides high level functions to be called
inside the MMER Lab modules. The base class hierarchy (i.e. module, cable,
and framework class) is implemented on this layer in C++ with the advantages of
object orientation. Wrappers of framework procedures are also located here using
Tcl/Tk. This is the primary layer for the researcher and developer who wants
to embed algorithms into MMER Lab. Due to the object oriented structures in
C++ and the high abstraction level, other developers can easily re-use the basic
algorithms in their modules.

The top layer (modules) consists of module implementations used directly in
MMER Lab. The modules are derived from the base classes of the layer below and
implement only function calls, not computations. A Tcl interface to the C++
classes is part of each module. The C/C++ code is stored in shared libraries
(.dll/.so) and loaded on demand at runtime.
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2.4.2 Design Decisions

Modularity, cross platform usability and performance issues led to several crucial
decisions which have been made in the design phase of MMER Lab. With these
three requirements in mind a few existing software systems have been examined
regarding the implementation possibilities of video processing algorithms.

ParleVision [96] is a framework for computer vision programming on Windows
only. This framework allows to build processing chains, based on filters which
support modularity. It has a very good performance in sequential processing but
does not support parallelization in any way.

The two other systems, Fermus [75] and Smartflow [78] for network distributed
computing applications are process-based utilizing IPC techniques as socket com-
munication and shared memory. These systems, designed to work on networks,
support modularity and the usage of multiple processors very well. However, con-
text switching on standalone computers using multi-tasking decreases the perfor-
mance compared to multi-threaded architectures. This is because multi-tasking
systems operate within their own virtual address space. Processes are protected
by the operating system from interference by other processes. A user process can
not communicate with another process unless it makes use of IPC mechanisms.

Passing the data between computers also comes with network latencies which
can affect real time high bandwidth computations such as video processing. The
main advantage of these systems is the enormous computing power of a cluster
versus the network latency and intercommunication time.

A multi-threaded implementation on a multi-core computer addresses this
flaws. Multiple processors are used to distribute the computing tasks and the
hardware architecture provides a high-performance platform for exchanging data
between the processors. Data can be passed using pointers and mutexes between
threads. The context switch of a thread-ed system is lightweight, since the threads
all run in a single process and share the same state.

MMER Lab was chosen to be implemented in this way providing performance
and using an API for modularity and a carefree application of multi-threading.
If desired, the framework can be extended to work in a distributed network envi-
ronment by using a middle-ware as Smartflow.

Our multi-threaded approach also supports the tight integration of graphic
processors into the framework. With MMER GPU and MMER Lab GPUs and
CPUs can perform different computations in parallel. (gpu.mmer-systems.eu)

2.5 Application Examples and Evaluation

To demonstrate the capabilities of the framework, we instance a concrete video
processing and pattern recognition application. It performs the training of a
Support Vector Machine (SVM) classifier with feature vectors provided by an
Active Appearance Model (AAM) for the automatic recognition of four facial
expressions (e.g. neutral, smile, frown, scream) based on a training set of example
images. (Fig. 2.2)
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HeadNEyeLocalisator AAM Search SVM TrainingImageSourceStringData

NumClassData

Figure 2.2: Training a SVM with AAM Parameter Data

An ’image source’ module is directly connected to a ’head and eye localization’
module. The output of the localizer provides a set of four signals (image frame,
head region, left-/right-eye position). These dataflows are connected directly to
the AAM module for an improved initialization. The output of the AAM module
contains the facial feature vector obtained via AAM analysis. This vector data is
connected with the first port of the ’SVM’ module. The second port is used for
the class identifier of the corresponding facial expression.

To begin the SVM training process the system requires two items: the file-
names of the training images (for the image source) and their corresponding class
assignment (for the SVM module). After the initialization of all modules we use
a script to fetch directory content, parse the filenames (which contain the class
information) and feed both modules with this data (filename/class pairs).

Here the synchronization abilities become apparent: We provide one filename
to the image source (StringData at the head of the chain), and one class to the
SVM (NumClassData at the end of the chain) within one step. The ’NumClass-
Data’ cable buffers the information until the SVM module gets a facial feature
vector from the AAM. Due to the fact that the SVM-module is built to pull
exactly one instance from each of the input cables, it is ensured that the class
identifier matches with the AAM feature vector of the correct image file.

A simpler application setup was used for evaluation purposes (Tab. 2.1). We
use a serial module chain, composed of a video source, an adaptive haar-wavelet
head localizer and a display to measure the frame rate (fps) of the localizer
algorithm (’one’). This setup is extended to have two localizers in serial (’serial’)
or in parallel with two displays (’par’). We compare the MMER Lab system setup
using multi-threading (one process, 3-5 threads) with a ’direct’ implementation in
OpenCV (one process) and an implementation using the NIST Smartflow (’SF’)
system [78] (3-5 processes). All tests ran on a 320x240 test video. For the series
’one’ we used a single core AMD 3700+, 2GB RAM computer with Linux Fedora
Core 5 (FC5). The series ’serial’ and ’par’ were executed on a dual core Intel
Pentium4 3.0 GHz, 1GB RAM and FC5. The results show that even for this
simple setup the performance of a serial system increases already by one third
due to the MMER Lab based implementation. In comparison with Smartflow,
MMER Lab achieved a higher performance throughout the evaluation, due to the
minimized framework overhead of our concept.
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System Single Core Dual Core
one serial par one serial par

Direct 59.38 34.84 31.16 51.47 27.00 32.26
MMER 56.40 32.73 30.75 54.2 36.16 31.20
SF 54.63 30.69 29.17 48.72 35.36 30.10
Direct 100% 100% 100% 100% 100% 100%
MMER 94.9% 93.9% 98.7% 105.3% 133.9% 96.7%
SF 92.0% 88.1% 93.6% 94.6% 130.9% 93.3%

Table 2.1: Evaluation results

2.6 Conclusion

When developers strive to exploit the parallel computational power of modern
hardware, it is mandatory to separate systems and its components into multi-
ple threads. Since threaded implementation constitutes an own field in software
development and requires considerable experience in programming, we built up
MMER Lab as framework to provide a multi-threading environment where the
threading and all its difficulties are encapsulated behind interfaces. Due to the
module concept of MMER Lab with the necessity to define interfaces after all,
the re-usability of modules is ensured and the system development process within
research teams is constructively supported by our framework. MMER Lab is es-
pecially appropriate for systems with high data flow between components, since
it allows the handover of memory pointers on whatever kind of data structure.
MMER Lab is in our daily application for development, evaluation and demon-
stration of systems from the areas of image and video processing or pattern recog-
nition. This validates, that the actualized concepts of MMER Lab constitute a
practical exemplar for generic and flexible environments to identify new design
paradigms and to be prepared for the highly parallel hardware architectures of
the near future.





Chapter 3

Object Localization with
AdaBoost Variants on Haar- and
Gabor-Wavelet Features

Many face analysis systems exist which perform accurate face analysis based on
manual initialization, demanding for the user to manually set landmark points
around and/or in the face [3]. This requirement disqualifies any system from real-
life application. When it comes to automatic face analysis, as it is the target for
a system like FEASy, a precise automatic localization of the face is mandatory.
We therefore developed and implemented algorithms for a robust localization of
faces and eyes and made it available as a module in MMER Lab (see chapter 2).
This module is also a crucial part of the FacE Analysis System (see section 1.3).

The localization of the face and the eyes is carried out in two steps: First
the face is localized by means of a bounding box around it. Hence the algorithm
localizes both eyes within the face bounding box.

The localization of objects in general or faces and eyes in our case is confronted
with the known problems of a great variance in the appearance due to differences
in ethnic origin, age, gender, rotation, scale, illumination, and camera properties
(see section 1.1).

One approach to this problem is the extraction of an extremely high number
of local features from an image and performing a binary classification in “object
present at current position” or not. As local features we applied wavelet filters
of two kinds, Haar-like [116] and Gabor [67] as trade-off between computational
complexity and the capability to characterize the image texture. It can be as-
sumed that the presence of a specific object leads to a characteristic response of
specific filters in a certain layout. Hence, the detection of such pattern shall be
recognized via the AdaBoost algorithm [42] which samples the image at various
positions with windows of variable size in order to cope with scaling effects. In
each sample window a set of filter responses is evaluated applying a simple clas-
sifier such as Decision Stump separately on each filter. In several cascades the
likelihood of the presence of an object is measured. The set of filters, their spe-
cific responses, and the cascades are learned during an extensive training phase
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with thousands of example faces and non-faces. To the well known algorithm
of Viola and Jones [116], which is sketched above, we added the Gabor-Wavelet
features and examined various other single feature classifiers instead of the De-
cision Stump. The developments and conducted experiments are described in
detail in [125]. It turned out that Gabor-Wavelet features lead to a significantly
increased localization accuracy of eyes and that a 1D clustering into 16 adaptive
areas is superior to the Decision Stump without implicating an unreasonably in-
crease of training effort. Furthermore, this approach can be applied to the visual
distinction of few strong facial expressions.

The subsequent sections gives a short introduction to Haar- and Gabor-
Wavelet features, the AdaBoost algorithm and variants, and the performed eval-
uations.

3.1 Haar-like and Gabor-Wavelet features

3.1.1 Haar-like features

The first wavelet reported in literature was suggested from the German mathe-
matician Alfred Haar. It constitutes the simplest mother wavelet, since it consists
in just one step. Its equation can be written as

Ψ(x) =


1 for 0 6 x < 1

2
,

−1 for 1
2
6 x < 1,

0 else.

(3.1)

Further is ∫ ∞
−∞

Ψ(x)dx = 0,

∫ ∞
−∞
|Ψ(x)|2 dx = 1 (3.2)

The Fourier Transform of ψHaar is obtained from

Ψ̂(α) =
1√
2π

(∫ 1/2

0

e−iαxdx−
∫ 1

1/2

e−iαxdx

)
(3.3)

=
i√
2π

sin2(α/4)

α/4
e−iα/2. (3.4)

The plot in figure 3.1 visualizes the band-pass character of Haar-Wavelets
since the Fourier Transform is zero for α = 0 and α→∞.

In Image Processing band-pass show strong responses on edges with low noise
sensitivity. As those Haar-Wavelet responses can be efficiently computed using
the integral image [125], they constitute the first choice for object detection tasks.
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Figure 3.1: 1D Haar-Wavelet spectrum

Figure 3.2: 2D-Haar-like Wavelets filters

3.1.2 Gabor-Wavelets

Another adequate feature for object detection is the Gabor-Wavelet or a set of
Gabor-Wavelets respectively. This wavelet has physiological relevance in the hu-
man vision process which takes place in the primary cortex of the brain. Three
kinds of the neurons involved are distinguished: simple, complex, and hypercom-
plex cells. Those neurons serve as feature extractors while each neuron indicates
the presence of a specific geometric feature via micro-impulses. Simple Cells re-
spond to stimuli of a certain orientation and polarity. Complex Cells behave
like Simple Cells while they show no separation in inhibiting and inciting areas.
Therefore, the position of a stimulus in the receptive field is irrelevant. Hyper-
complex Cells respond to stripes, edges, or angles of a certain length which move
in a specific direction over a receptive field [93]. Most of the Simple Cells are
combined pairwise whereas the cells show different orientations and symmetries.
This can be expressed mathematically via the combination of a sine and a cosine
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function to a complex plane wave form:

ejkx = cos (kx) + j sin (kx) (3.5)

Jones und Palmer [58] showed that the receptive fields of the Simple Cells can
be modeled by two-dimensional Gabor-Functions.

Daugmann [28] introduced a two-dimensional Gabor-Filter which provides
locality and the spatial frequency with the lowest loss of information at the same
time. It can be formulated as follows:

G (x, y) =
1

2πσβ
· exp

(
−π

[
(x− x0)

2

σ2
+

(y − y0)
2

β2

])
· exp (j [ξ0x+ ν0y]) (3.6)

Equation 3.6 describes the multiplication of a Gauss function with a complex
plane wave. Hereby, the origin (x0, y0) describes the center of the receptive field
in the spatial domain and (ξ0, ν0) denotes the optimal spatial frequency in the
frequency domain. The parameters σ and β determine the standard deviation of
the elliptic Gauss function in x- and y-direction [67].

From these considerations a set of Gabor-Wavelets is derived, taking into
account the mentioned neuro-physiologic findings:

Ψi (x) =
‖ki‖2

σ2
· exp

(
−‖ki‖

2 ‖x‖2

2 · σ2

)
·
[
exp (jkix)− exp

(
σ2

2

)]
(3.7)

Equation 3.7 consists of the following terms:

‖ki‖2
σ2 Compensation of the frequency dependent power

spectrum in natural images

exp
(
−‖ki‖2‖x‖2

2·σ2

)
Gauss function for spatial limitation of the wave

exp (jkix) Complex plane wave

− exp
(
σ2

2

)
Factor for elimination of the constant component

reducing the sensitivity to the illumination of the image.

The shape of the filter can be modified via the standard deviation σ of the Gauss
function and the vector ki which is defined by

ki =

(
kix
kiy

)
=

(
kν cos Θµ

kν sin Θµ

)
(3.8)

We can vary the scale with

kν =
kmax
f ν

(3.9)
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and the orientation with
Θµ = µ · π

8
(3.10)

The parameters used for our purposes follow [70] and [112] and are listed in
the following equations.

σ = π (3.11)

kmax =
π

2
(3.12)

f =
√

2 (3.13)

ν = 0 . . . 4 (3.14)

µ = 0 . . . 7 (3.15)

The selection of ν and µ determines one of 5 scales and 8 orientations. Conse-
quently the applied filter set consists in 40 Gabor filters (i = 1 . . . 40).

With x0 and y0 being the center of a filter kernel equation 3.7 results in

Ψi (x, y) =
‖ki‖2

σ2
· exp

(
−‖ki‖2 ·

(x− x0)
2 + (y − y0)

2

2 · σ2

)

·
[
exp (j (kix · x+ kiy · y))− exp

(
σ2

2

)]
. (3.16)

Figure 3.3 displays the real part of a Gabor filter kernel whereas figure 3.4
shows the whole family of the 40 Gabor filters applied to feature extraction for
object detection.

Figure 3.3: Real part of a Gabor filter kernel
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Figure 3.4: Family of Gabor-Wavelet filters

3.2 Feature Selection and Classification with

AdaBoost and Variants

The AdaBoost algorithm bases on the idea of Boosting which is in general the con-
structive combination of a set of weak classifiers to a single strong classifier. The
advantages of AdaBoost are the low complexity with respect to implementation
and runtime plus the very limited number of algorithmic parameters abridging
the evaluation procedure for novel problems. Hence, solely the number of train-
ing iterations and weak classifiers T need to be adjusted. Furthermore, it is
compatible with virtually all classification and learning methods (see 3.2.4).

For object detection we strive to find an ensemble of weak classifiers on basis
of single features (Haar-like or Gabor-Wavelets) via AdaBoost. Thereby, the
weak classifiers (abbrev. ’WC’) need to have a classification performance just
above random selection. Due to the effective combination of several WCs, a very
high detection accuracy can be achieved. Therefore the training of an AdaBoost
performs feature selection and learning of a classifier in one. Since we deal with
feature spaces of dimensionality ≈ 106 for object detection and apply several
thousand example images for training, this algorithm constitutes a very good
trade-off between computational complexity and accuracy.

3.2.1 Notation

For the description of the AdaBoost algorithm the following notation is commonly
used [42]:

• x: feature vector, x ∈ X

• y: class assignment y ∈ Y = {−1; +1}
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• M : number of feature vectors in the training dataset

• (x1; y1) ; . . . ; (xM ; yM): training dataset

• ω(i): weight of the feature vector xi

• T : number of iterations of the AdaBoost algorithm

• f(x): weak classifier (abbrev. ’WC’)

• F (x): strong classifier (abbrev. ’SC’)

3.2.2 The Standard AdaBoost Algorithm

The basic variant of the AdaBoost algorithm can be described compactly in the
following way:

• Start with the weights ω1(i) = 1/M , i = 1, 2, . . . ,M

• Initialize the final strong classifier F (x) = 0

• Repeat for all iterations t = 1, 2, . . . , T :

1. Train the WC ft : X → Y according to ωt.

2. Determine the confidence of the WC αt ∈ R.

3. Update F (x) = F (x) + αt · ft (x)

4. Update the weights:

ωt+1(i) =
ωt(i)exp(−αtyift(xi))

Zt
(3.17)

while Zt is a normalization factor leading to a distribution ωt+1.

• Final strong classifier:

F (x) = sign

[
T∑
t=1

ct · ft (x)

]
(3.18)

The learning algorithm for the weak classifier ft : X → Y operates in corre-
spondence to the weight distribution ωt. In the simplest case ft falls in a binary
domain of {−1; +1}. Hence the weak classifier minimizes the error

εt =
∑

i|ft(xi)6=yi

ωt(i) (3.19)

Once the rule of the weak classifier ft is determined, the parameter αt ∈ R
indicates the confidence of ft. For binary problems αt is adjusted to
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αt =
1

2
ln

(
1− εt
εt

)
. (3.20)

Likewise, non-logarithmic confidence measures provide for a higher numerical
stability.

The distribution ωt is updated by decreasing the weight of correctly classified
training vectors and increasing the weight of erroneously classified training vectors
according to the optimal WC of the current iteration. The following equation
describes this methodology.

ωt+1(i) =
ωt(i)exp(−αt · yi · ft(xi))

Zt
(3.21)

Thus, the AdaBoost sets the focus on those vectors hard to classify for subsequent
training iterations. After the update, the weights are normalized by the cofficient
Zt:

M∑
i=1

ωt+1(i) = 1. (3.22)

The resulting strong classifier consists in the weighted sum of T weak classifiers,
whereas αt constitutes the weight of the WC ft.

F (x) = sign

(
T∑
t=1

αtft(x)

)
(3.23)

3.2.3 Gentle AdaBoost

Various variants and extensions to the standard AdaBoost have been introduced.
One of the first variant constitutes the Discrete AdaBoost [43]. Hereby, a constant
represents the confidence of a WC during the update of the training vectors. This
further enhances the weight of false classified instances.

Another variant is the Real AdaBoost [123]. Unlike for the Discrete Ad-
aBoost the estimation of the WC confidence is refined herein. The confidence is
determined on the training set for both classes separately. The adaptation of the
training sample weights is performed dependent on the strength of the confidence.
When a sample is correctly classified but with a low confidence, for instance, its
weight is less decreased. This leads to a way better adaptation of the weight
distribution than with the Discrete AdaBoost.

Finally, the Gentle AdaBoost constitutes an extension of the Real AdaBoost.
Here, so called confidence rated predictions are determined instead of single
weights for the current weak classifier ft. Thus sign(ft(x)) [100] denotes the
class and |ft(x)| denotes a confidence measure of the decision for the class. Con-
sequently, one advantage of the Gentle AdaBoost is the reduced influence of
outliers due to application of adaptive Newton-Stepping during the assembly of
the strong classifier [43].
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The update of the strong classifier F (x) is explained via

ft(x) = Pω(y = 1|x)− Pω(y = −1|x)with ft ∈ [−1,+1] (3.24)

Due to the limitation of the domain of ft numerical instability can be avoided.
In several practical investigations the Gentle AdaBoost turned out to be equal
or often superior to the other mentioned AdaBoost variants [43]. Therefore, the
Gentle AdaBoost was applied in this work for the detection of heads and eyes
throughout.

The major difference lies in the process of assembling the final strong classifier:

F (x) =
T∑
t=1

ft (x) (3.25)

whereas F (x) denotes the assigned class and |F (x)| the corresponding confidence.

3.2.4 Weak classifiers

Still the question of learning a weak classifier has not been addressed so far. While
usually the approach of Decision Stump (abbrev. ’DS’) classification is applied
[43], we investigated several other low-level 1D-classification methods in [125].
Evaluations showed that the DS has difficulties especially for eye localization and
was thus replaced by a clustering technique leading to multiple thresholds per
feature. The other methods covered interval classifiers with fixed and adapted
thresholds determined by clustering techniques. For details please refer to [125].

The Decision Stump approach operates on a single feature, i.e. it deals
with a one-dimensional feature space. A DS is described by the parameter set
(k, v, cleft, cright). The classification error is minimized with the threshold v on
the space of feature k and provides a confidence for the domain below (cleft) and
for the domain above (cright) the threshold. The sign of the confidence values
indicates the assigned class in a two-class problem.

Let y denote the class label, xk the value of feature k, j the current positive
class, vj the threshold for class j, and ω(i, j) the weight of the training vector
number i in respect of the class j. Hence, the Decision Stump is explained by

n11(j) =
M∑
i=1

ω(i, j) · I{(yi = j) ∧ (xk 6 vj)} (3.26)

n21(j) =
M∑
i=1

ω(i, j) · I{(yi 6= j) ∧ (xk 6 vj)} (3.27)

(3.28)

n12(j) =
M∑
i=1

ω(i, j) · I{(yi = j) ∧ (xk > vj)} (3.29)

n22(j) =
M∑
i=1

ω(i, j) · I{(yi 6= j) ∧ (xk > vj)} (3.30)
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with the binary function I:

I{Decision} =

{
1 if decision correct

0 if decision false
(3.31)

In consideration of
2∑

u=1

2∑
v=1

nuv(j) = 1,∀j. (3.32)

the following equation determines the classification error of the Decision Stump.

εj = min {n11(j) + n22(j), n12(j) + n21(j)} (3.33)

The accumulated Error of a feature over all classes results in

ε =
J∑
j=1

(min {n11(j) + n22(j), n12(j) + n21(j))} (3.34)

The probabilities for a correct classification in respect to the threshold are
saved as confidence values of the classifier. For each threshold two confidences
exist which are determined by

cleft(j) =

{
n11(j)

n11(j)+n21(j)
if n11(j) + n22(j) > n12(j) + n21(j)

− n21(j)
n11(j)+n21(j)

else.
(3.35)

cright(j) =

{
− n22(j)
n12(j)+n22(j)

if n11(j) + n22(j) > n12(j) + n21(j)
n12(j)

n12(j)+n22(j)
else.

(3.36)

Figure 3.5: Structure of the threshold classifier

Figure 3.6 illustrates the determination of the Decision Stump threshold with
an exemplary feature value distribution over the training set.

In figure 3.7 the continuation of the single threshold Decision Stump is dis-
played leading to adaptive interval placement with a more precise measurement
of the classification performance of a single feature. This strategy is referred to
as SPLIT throughout the evaluation section.
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Figure 3.6: Exemplary threshold determination

3.2.5 Cascaded AdaBoost Classification

In order to increase the computational efficiency of object detection tasks, the
strong classifier is divided in several stages or cascades. These cascades are trained
separately with the target to reject as many as possible sample windows which do
not contain the queried object. The positive objects however shall pass all stages
and remain as object detections finally (see figure 3.8). Thus, all samples that can
be dropped in the first stage do not have to be processed in the subsequent stages
which immensely reduces the computational complexity to a fraction. Only for
the few positive classified samples, all features and stages have to be computed
and evaluated. In the training phase the stages on second or later position are
trained only with those samples which have been assigned to the positive class
by the directly preceding stage. This covers the actual positive samples plus the
false positives which still passed the previous cascades.

A single stage (see figure 3.9) consists in a trained classifier designed to reject
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Figure 3.7: Determination of intervals with the SPLIT strategy

e.g. at least 50% of the false positive samples. At a cascade of ten stages the false
positive rate falls at least below 1

1024
while the detection rate holds at 0.99510 =

0.95.

Although each single stage classifier can base on any classification method,
we applied the AdaBoost algorithm to create a high-performance face and eye
localizer with respect to accuracy and speed.

3.3 Evaluation of Localization Performance

This section presents the results of our face and eye localization algorithm which
bases on the technologies mentioned above in 3.2. Apart from the databases
and evaluation setup, related findings from our research work in this area are
presented in short.
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Figure 3.8: Structure of cascades for object detection

Figure 3.9: Single stage of a cascade

3.3.1 Databases

We included several image databases in order to obtain a rich set of faces, eyes,
and non-faces. Approximately 10.000 sample windows were extracted from the
do-it-yourself store picture set of the NI-Face (see section 6.2.2) database as neg-
ative face examples. This set is especially valuable since it shows many variants
of heavily cluttered background. A set of 5052 faces and accordingly 10104 eyes
were extracted from the face images of the NI-Face, the AR (see section 6.2.1),
and the FERET database [94].

The latter contains a large set of faces from many different persons in a bal-
anced arrangement of gender, ethnic origin, facial expression, and head poses.
The database consists of overall 14051 gray scale images and was collected for
the training and evaluation of face recognition algorithms.

3.3.2 Head and Eye Localization Results

For initialization of the face analysis with statistical shape and texture models (see
section 1.3) primarily a precise eye localization is required. As target localization
accuracy, a deviation of less than 5 pixels of Euclidean distance to the eye center
shall be achieved. This constitutes the basis for the performance evaluations
in table 3.2. The appearance of faces show a significantly higher complexity
compared to eyes. Therefore, the localization of faces can be performed much
more efficiently and accurately.

The described approach of a cascaded AdaBoost classifier on Haar-like fea-
tures performs a head recognition with 100% detection rate of faces and single
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(a) Eyes (b) Faces

Figure 3.10: Images of the FERET database and positive material for the eye
localization

false detections in 2 out of 118 pictures of the non-face corpus of the NI-Face
database. Due to this performance, in our system the initialization bases on an
eye localization which requires a preceding face localization. The latter provides
a bounding box of the detected face with width wbb and height hbb.

During the eye localization process the detected face bounding box is scaled
to wbb × hbb = 90 × 120 pixels in order to bring the eyes to the specified size of
20 × 10 pixels. This bounding box is divided in 4 horizontal stripes of height
1/4hbb = 30. The eyes are assumed to be in the second stripe from the top.

Within this stripe the eyes are localized with a specially trained AdaBoost in
six cascades based on Haar-like and Gabor-Wavelet features (see section 3.1). It
turned out that a separated training and classification of left and right eyes leads
to a lower accuracy than a combination of both types. This might be due to
high similarity of both eyes in the features space and the loss of positive training
material when separated. All training samples are resized to 20 × 10 pixels.
The rest of the face bounding boxes in the training material serves as negative
data samples. Each stage of the AdaBoost cascade is required to achieve a false
acceptance rate lower than 50% and a positive detection rate of minumum 99.5%.

The evaluation of the created cascade is tested on a separate evaluation dataset
of the FERET-Database with 908 frontal faces. The position of a localization is
determined when at least 8 windows with an absolute translation of less than
6 pixels agglomerate at a certain point in the search area. The eye position
constitutes the centroid of the average of the 8 or more windows.

3.3.3 Feature selection

The number of selected features for eye localization is relatively high when train-
ing an AdaBoost cascade. In order to measure the (computational) efficiency
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H G H+G

overall # average # overall # average # overall # average # G#

STUMP 796 53,6 1418 41,1 1216 37,8 131
LUT 8 1041 24,6 4163 104,8 753 21,5 41
LUT 16 705 19,7 1601 45,9 533 19,2 85
LUT 32 520 16,01 880 36,5 427 16,5 53
SPLIT 8 1450 32,7 1586 84,2 989 34,3 49
SPLIT 16 757 26 921 47 683 25,9 54
SPLIT 32 603 19,2 742 30,8 456 18,3 104

Table 3.1: Number of required features (overall #) and average number of com-
puted features per sampled window on the test dataset (average #), as well as
the number of Gabor features at application of both feature types (H+G) (G #)

however it is more expressive to compare the average number of computed fea-
tures during the localization on a dataset. Table 3.1 shows that the overall
number of selected features is not conform with the number of computed fea-
tures. A highly complex classifier, such as LUT8, a look-up table with 8 bins on
basis of Haar-like features, requires 1041 selected features. The average number
of evaluated features however is just 24.6.

3.3.4 Localization Performance

H G H+G

HR (%) average # HR(%) average # HR(%) average #

STUMP 95,15 53,6 96,92 41,1 97,14 37,8
LUT 8 98,02 24,6 94,71 104,8 98,35 21,5
LUT 16 98,24 19,7 95,36 45,9 98,13 19,2
LUT 32 97,79 16,0 94,93 36,5 97,47 16,5
SPLIT 8 98,02 32,7 97,03 84,2 98,13 34,3
SPLIT 16 98,46 26 96,70 47,0 98,46 25,9
SPLIT 32 97,36 19,2 96,15 30,8 98,35 18,3

Table 3.2: Hit rate (HR) and average number of computed features per window
on the test dataset (average #)

The evaluation of the trained eye localization cascades does not show extreme
differences in the hit rate. All methods provide remarkably good results. The
essential difference lies in the number of computed features, i.e. the efficiency of
the approach. We must not forget to mention that the computation of Gabor
wavelet features is up to 20 times computationally more expensive than Haar-like
features derived from the integral image. The combination of Haar and Gabor
features provides for a slightly increased computation time, but leads to the best
recognition results.
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HWK GWK H+G

STUMP 219 601 182
LUT 8 185 2219 153
LUT 16 164 1743 193
LUT 32 193 1452 215
SPLIT 8 177 3797 225
SPLIT 16 165 2004 189
SPLIT 32 154 3070 238

Table 3.3: Average duration of the eye localization per face (in ms) regarding the
used weak classifier

For the problem of eye localization it becomes obvious that the Decision Stump
is too simple for modeling the present feature spaces. The best results could be
achieved with the Split method. With the developed approach, 98.5% of the eyes
are located with less than 5 pixels deviation from the center with in average just
25.9 computed features. This documents a very fast and accurate eye localization
technique.

Apart from object detection we successfully applied a multi-class extension
of the Gentle AdaBoost to facial expression analysis and head pose recognition.
Thereby, the four expressions frown, smile, scream, and neutral or the poses
frontal, 45, and 90 degrees left and right were distinguished respectively [125, 77].
Although this algorithm is not capable to discriminate objects with just small
differences (e.g. frown vs. neutral expression), it constitutes a valuable approach
for a granular and computationally cheap recognition of object variants.

3.4 Conclusion

In our FacE Analysis System FEASy (section 1.3) the localization of a face and
its eyes serves as necessary initialization of the subsequent analysis based on
shape and texture models. Hence, we apply an algorithm following the approach
presented by Viola and Jones [116] for the face localization. This localization
algorithm is based on a sampling of an image with windows of variable size. From
each sample window visual Haar-like wavelet features are extracted. Thereby
a Decision Stump as weak classifier operates on single features. These weak
classifiers are combined by a Gentle AdaBoost [43] which tries to reject windows
without a face at early stages of a cascade. The localization of the eyes runs on
a narrowed area within the face region provided by the face localization.

We developed several improvements to the standard Viola-Jones algorithm for
a more accurate eye localization. It turned out that the addition of Gabor wavelet
features and the replacement of the Decision Stump as weak classifier by an
adaptive interval classifier leads to a localization at higher efficiency and smaller
spatial deviation. Finally, according to our evaluations 98.5% of the eyes in
pictures with frontal human faces can be localized with less than 5 pixel Euclidean
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deviation from the actual eye center when the face is scaled to a size of 90× 120
pixels based on the automatic face localization. The software implementation
runs more than 5 times real-time on images of double VGA resolution. Therefore,
the developed improvements provide a reliable basis of our fully automatic face
analysis system.





Chapter 4

The Theory of Active
Appearance Models

This chapter gives an introduction to the mathematical and implementation back-
ground of Active Appearance Model (abbrev. ’AAM’) algorithm as it was origi-
nally proposed by Cootes et al. [27], however with a unified mathematical nota-
tion. Minimal modifications of the algorithm are already introduced here with a
special notification, while chapter 5 describes the manifold variations, extensions,
and optimization developed during the research for this thesis.

The approach of AAMs is based on the generation of statistical models of the
appearance, i.e. the shape and texture, of a given object class. AAMs base on the
assumption that the two-dimensional appearance of an object in a digital image
is influenced by several widely independent sources. The target for the genera-
tion of an Appearance Model (abbrev. ’AM’) is to eliminate the variance (see fig.
4.1) induced by the camera view (translation, rotation, scale), illumination con-
ditions, and the capturing device (brightness, intensity). Thus, the AM focuses
on the independent modeling of the shape and texture in a first step and finally
combines the two sources again to model the influences of shape variations on the
texture. Furthermore, an AM allows the synthesis of a variety of instances of the
same object class by adjusting a set of scalar AM coefficients. Therefore, AAMs
can be applied to the visual analysis of unknow objects of the given class. The
analysis is performed via the best possible re-synthesis of the object by solving
the optimization problem of the automatic adjustment of the Appearance Model
coefficients. The originally proposed AAM algorithm limits the computational
effort of the optimization by following a predicted gradient. This prediction is ob-
tained from an averaged sampling of the search space which is performed a-priori
under the assumption that the search space is similar for all targeted objects.
The optimized coefficient values constitute a low-dimensional representation of
the analyzed object for further processing, e.g. in Pattern Recognition tasks. In
context of this thesis the targeted visual objects are human faces which shall be
analyzed with respect to the gender, age, identity, head pose or facial expression
of a person (see chapter 6).
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(a) (b) (c) (d)

Figure 4.1: Variance in the appearance of human faces [1]

4.1 Preparation of Training Data

4.1.1 Alignment and Normalization of Landmarks

In the first step of the AM generation, the pure shape information in the training
data, i.e. face images, must be extracted.

Let P be a set of images and S a set of corresponding shapes which are used
to build a shape model, a texture model and finally a combined model.

The training images pi ∈ P with 0 6 i < p have to be annotated, producing
a set of p corresponding landmark vectors si ∈ S where si is the ith landmark
vector defined as the concatenation of all 2D landmark coordinates

si = (x0, y0, x1, y1, . . . , x(L/2)−1, y(L/2)−1)
T (4.1)

See figure 4.2 for example annotations with L/2 = 72 landmarks.

(a) (b) (c) (d)

Figure 4.2: Annotation scheme for faces with 72 landmarks

All the meshes defined by the landmarks in the p training images usually face a
high deviation in translation, rotation, and scaling. Since a shape is considered as
the relative spatial position of all landmark points, the vectors si ∈ S are aligned
to each other and normalized in order to remove Euclidean transformations and
scaling and to minimize the variance to the deformation of the shapes.
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The algorithm of the alignment strives to determine a mean shape s which
minimizes the accumulated Euclidean distance of all landmarks of all shapes to
their reference landmark of the mean shape. The initial estimation of the mean
shape ŝ is usually chosen as one of the training shape vectors si and hence updated
in an iterative algorithm.

It adjusts the parameters of the similarity transformation T defined as

T : t(x) =

(
a −b
b a

)
x +

(
tx
ty

)
(4.2)

in order to transform the landmarks of si so that the square distance between
the aligned shape s′i and ŝ is minimized.

Let s be an arbitrary shape vector and ŝ[n] the current estimation for the
mean shape in iteration n. Define xl = (si2l , si2l+1

)T = (xl, yl)
T as the lth

landmark from the ith shape vector si and x′l = (ŝ[n]2l , ŝ[n]2l+1
)T = (x′l, y

′
l)
T as

the lth landmark from the current estimation of the mean shape ŝ[n]. Then the
transformation parameters a, b, tx and ty shall minimize the square distance

E(a, b, tx, ty) =
L−1∑
k=0

‖t(xl)− xl′‖2 (4.3)

The task can be simplified by translation of all shape vectors into their center of
gravity (tx = ty = 0). In this special case

a =
s . ŝ[n]

‖s‖2
(4.4)

b =
L

‖s‖2
L−1∑
l=0

xly
′
l − ylx′l (4.5)

is a solution for an arbitrary shape vector s and the current estimation of the
mean shape ŝ[n]. Consequently, the updated estimations ŝn+1 converge against
the actual s. The algorithm terminates when ∆ŝ = |ŝ[n] − ŝ[n−1]| = 0.

Finally, we set ŝ[n] = s and obtain a set S ′ of aligned shape vectors s′i.

Projection into Tangent Space The generation of an AM provides for sub-
space methods like Principal Component Analysis (abbrev. ’PCA’) or Non-
negative Matrix Factorization (abbrev. ’NMF’) in order to achieve a high in-
formation reduction and a compact description of the training data. However,
PCA and NMF try to explain only linear correlations in the data set. The tan-
gent space coordinate transformation eliminates the non-linear properties of the
shape set and thus improves the modeling of the shape variance [27].

The projection into tangent space (abbrev. ’TS’) is simply achieved by apply-
ing the following transformation to each aligned shape vector s′i ∈ S ′:

si
TS =

1

s′i · s
(4.6)
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These aligned shape vectors are arranged in the shape matrix S with

S =
[
s0

TS | s1
TS | · · · | sp−1

TS
]
∈ RL×p (4.7)

Still, the mean shape s is defined as the mean of all shape vectors in S. For
improved readability, the term shape and the symbol si henceforth references the
column vectors of S.

4.1.2 Warping

In context of this thesis, the warping transformation W (p, s) cuts out the inner
regions of the shape s from the image p and deforms it to the mean shape s. This
operation is performed in two different occasions within the AAM algorithm:

1. During AM generation: The texture variance of all training images is re-
duced by the warping of all textures inside the shapes si to the mean shape
(see section 4.1.3.

2. During AAM coefficient optimization: A shape is placed on an image to
be analyzed. For estimation of the quality of the current re-synthesis, the
texture inside the shape must also be warped to the mean shape (see section
4.3.1.

The approach of the deformation of a polygon, such as the mesh of a shape, re-
quires a simplification of the problem by dividing the region into a set of triangles
ψj ∈ 	. An inexpensive divide-and-conquer method to calculate a triangulation
	 for a set of scattered multi-dimensional points is described by Paolo Cignoni
et al. in [16]. See figure 4.3 for an illustration.

pi

si

ψ

(a)

s

ψ′

(b)

Figure 4.3: (a) Source image with source shape si and triangle ψ - (b) position
and shape of the target triangle ψ′ in the mean shape s

Eventually, the image warping consists in the mapping of textures within
corresponding triangles of a complex polygon.
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Let M be a transformation operation that maps an input triangle ψj ∈ 	 to
the corresponding transformed triangle ψ′j in the destination area. When M is
applied to a triangle, in a first step it is applied to each of the vertices of the
triangle defined by the respective landmark coordinates. The pixels in the image
pi ∈ P covered by the source triangle are then projected into the destination
region accordingly, using linear interpolation.

The transformation M is now applied to all triangles ψj ∈ 	. The final result
of this operation is a deformed image in the destination area. If all landmarks are
placed correctly on the faces and the warping transformation W (p, s) is applied
to all p images, the facial features (eyes, brows, nose, mouth, etc.) are warped
always to the same location within the mean-shaped texture. This is crucial for
the generation of a statistical model of the texture variation as described in 4.2.2.
Foley et al. give a comprehensive explanation of the theory of texture mapping
and pixel transformation in [41]. On the one hand the task of triangle-based
warping shows an extreme computational complexity due to the extremely high
number of pixels and color values and their linear interpolation during texture
mapping. For instance, the warping into a texture of a mean face with maximal
x- and y-dimensions of 128 × 128 requires the computation of approx. 40 · 103

values assuming three color channels per pixel. On the other hand, warping is one
of the highly optimized core operations of modern graphics hardware. Thus, our
implementation of Active Appearance Model exploits this computational power
by performing the warping task on the GPU. More details will be given in section
5.4.

4.1.3 Normalization of Textures

The normalization of the textures from the p training images pi comprises the
warping of all pixel areas within the corresponding shapes si to the mean shape
s plus the normalization to an average brightness and intensity of all training
textures.

The texture within the annotated shape si of each training image is warped
by the warping transformation W to fit the mean shape s. This produces a
shape-free representation ti, 0 6 i < p of the original texture in the training
image.

ti = W (pi, si) (4.8)

The warping transformation W is discussed in section 4.1.2.

For the generation of the texture model, we store the obtained set of textures
ti ∈ T as vectors column-wise in the texture matrix T

T = [t0 | t1 | · · · | tp−1] ∈ Rcχ×p (4.9)

where c is the total number of pixels in each texture and χ is the number of
(color-) channels. For grayscale textures the number of channels is χ = 1, for
interleaved RGB color textures it is χ = 3.
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In order to eliminate the texture variance caused by brightness and contrast
disparities (see fig. 4.1) and for the computation of a mean texture t, an iterative
image alignment algorithm is applied.

The brightness bi of a texture ti describes the mean over all color values of all
pixels:

bi =
1

cχ
|ti| (4.10)

For further processing each texture ti is freed from its specific brightness level bi
resulting in texture vectors t′i ∈ T ′.

Beside the additive brightness, digital images differ in contrast disparities cap-
tured by the multiplicative scaling factor describing the intensity m . Therefore,
a texture t of a training image can be represented by its mean-free color values
t′, the brightness, and the intensity as follows:

t′i = (ti + bi) ·m (4.11)

In order to determine a mean texture t̂ over all training textures, the
brightness-free texture vectors are iteratively scaled and aligned. An initial mean
texture t̂[0] can either be a specific texture from within T or calculated as the
mean over all textures ti ∈ T , 0 6 i < p by evaluating

t̂[0] =
1

p

p−1∑
i=0

ti (4.12)

Then the estimated mean texture t̂[0] is freed from its brightness and scaled to
unit length. The actual normalization of the textures is an iterative adjustment
of aligned textures t′i ∈ T ′ on the basis of the current estimation for the mean
texture t̂[n] and then calculating t̂[n+1] for the next iteration.

At the beginning of each iteration, every texture t′i ∈ T ′ is made mean-free
and scaled to the length of t̂[l] using a value a[l]:

a[l] =
1

t̂[l].t
′
i

(4.13)

The re-estimation of the new mean texture t̂[l+1] is calculated on the modified
texture vectors by evaluating

t̂[l+1] =
1

p

p−1∑
i=0

t′i (4.14)

The iterative algorithm will continue as long as the mean square error between the
old estimation for the mean texture t̂[l] and the new estimation t̂[l+1] is greater
than a given error threshold. In this case we can assume that the algorithm
converged and that t̂[l+1] ≈ t for an l large enough. Finally we get a set T ′ of
normalized and aligned texture vectors t′i. For improved readability, the term
texture and the symbol ti henceforth references the aligned texture vectors stored
column-wise in the matrix T .
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Thus, the influence of the overall lighting conditions and camera sensitivity is
widely reduced. This allows for a statistical modeling which focuses on the actual
variance in the texture of an object class widely independent from the capturing
scenario.

4.2 Generation of an Appearance Model

4.2.1 Shape Model

The shape model is built by applying a PCA to the shape matrix S, i.e. an
Eigenvalue Decomposition of the Covariance Matrix over all shapes si. The
obtained Eigenvectors constitute the shape basis Φs, whereas basis vectors are
sorted in descending order of their corresponding Eigenvalue λsi. Information
reduction is achieved by only selecting the top µs “most important” basis vectors,
discarding those which correspond to principal axes bearing few variance of the
data. Evaluations showed throughout that the remaining basis vectors should
explain 98% of the total variance. Since the size of the Eigenvalue λsi indicates
the variance explained by the ith Eigenvector, µs can easily be determined by∑µs−1

i=0 λsi∑L−1
i=0 λsi

!

> 0.98 (4.15)

The same method is applied for the texture and combined model. A new shape

-2.5
√
λsi +2.5

√
λsi

1st principal component ϕs1

2nd principal component ϕs2

Figure 4.4: Effect of the first shape model components

s can be synthesized by the linear combination

s = s+ Φshs (4.16)

whereas hs contains the shape coefficients that control the deformation of the
shape model. Note that a zero coefficient vector relates to the mean shape s. As
Φs defines an orthonormal basis, the new representation hsi of the known shape
si in the PCA space can be obtained by

hsi = Φs
T (si − s) (4.17)
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4.2.2 Texture Model

The texture model is built by applying another PCA to the texture matrix T . Note
that the covariance matrix 1

cχ
TT T would consist of cχ rows and columns which is

highly problematic in respect of memory consumption and runtime complexity of
the Eigenvalue Decomposition. However, T fulfills the same conditions as known
from the Eigen-Face approach [114]. The Eigenvectors of the covariance matrix
1
cχ
TT T ∈ Rcχ×cχ can also be obtained by determination of the Eigenvectors of

1
p
T TT ∈ Rp×p. Those Eigenvectors Φ′t require an additional projection back

in the correct space applying an orthonormal normalization to Φt = Φ′tT . A
detailed description of this well-known memory and runtime optimization for
PCA analysis is given in [114]. The result is a texture basis Φt, whereas basis
vectors are sorted in descending order of the corresponding Eigenvalues λt0 <
λt1 < . . . < λtµt−1. Again, the first µt Eigenvectors ϕt are preserved, while the
“least important” Eigenvectors of Φt are discarded according to eq. 4.15.

A new texture t can be synthesized in the shape-free space by

t = t+ Φtht (4.18)

with ht containing the texture coefficients to manipulate the synthesized texture.
Note that a zero coefficient vector relates to the mean texture t. As Φt defines
an orthonormal basis, the new representation hti of the known texture ti in the
PCA space can be obtained from

hti = Φt
T (ti − t) (4.19)

4.2.3 Combined Model

In order to finally generate the Appearance Model, shape and texture correlations
are recovered from the so far independent shape and texture models. Let ci be the
ith vector which contains the concatenated shape and texture coefficient vectors
hsi and hti for each of the 0 6 i < p training samples

ci =

(
Khsi
hti

)
(4.20)

K is a diagonal matrix of reasonable weights to equalize unit differences between
the shape and the texture model. As Cootes and Taylor [27] suggest, a reasonable
approach is to set K = kI where k is the ratio of the total intensity variance of
the textures to the total shape variance and can be written as

k =

∑µt−1
i=0 λti∑µs−1
i=0 λsi

(4.21)

The vectors ci form the matrix of concatenated coefficient vectors C =
[c0 | . . . | cp−1] and is defined as

C =

[
KΦs

T [S − s1T ]
Φt

T [T − t1T ]

]
(4.22)
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where 1 is the vector containing all ones and 1 ∈ RL or 1 ∈ Rcχ respectively.
Since the shape coefficients hsi and texture coefficients hti are already mean-free
so is C.

Another PCA is applied to the matrix C producing the combined basis Φc,
whereas basis vectors are sorted in descending order of the corresponding Eigen-
value λci, again discarding the “least important” basis vectors according to eq.
4.15.

A coefficient vector c for the shape and texture models can be synthesized by
evaluating

c = Φchc (4.23)

where hc contains the AM coefficients. As the matrix Φc can be split into the
shape and texture relevant parts Φcs and Φct

Φc =

[
Φcs

Φct

]
(4.24)

it is possible to express a new shape s and texture t directly as function of hc by
combining eq. 4.22 with eq. 4.16 and 4.18:

s(hc) = s+Qshc , Qs = ΦsK
−1Φcs (4.25)

t(hc) = t+Qthc , Qt = ΦtΦct (4.26)

-3.0
√
λc,i mean +3.0

√
λc,i

Texture of 1st principal component ϕc,1

Texture of 2nd principal component ϕc,2

Figure 4.5: Effect on the texture of the first two combined model components of
an AM built from the FG-NET Aging Database [1]

4.3 Coefficient Optimization

The application of Active Appearance Models on the analysis of faces in the first
place consists in re-synthesizing an unknown face in a video or picture. In other
words, the analysis task requires an automatic adjustment of the AM coefficient
in order to find a synthesized face which is as similar as possible to the analyzed
face. Thus, the AAM coefficient optimization problem can be interpreted as
a multivariate, vector-valued optimization task. By minimizing the difference
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between the re-synthesized face and the original one, a locally optimal coefficient
vector can be found by an iterative optimization algorithm. Since transformations
in the image plane as well as intensity and brightness have been eliminated during
AM training, they have to be integrated again during the optimization process.

4.3.1 Objective Function

This section deals with the objective function which is subject to the multi-variate
optimization of the AM coefficients.

Let the error energy E(h) be defined as

E(h) =
1

2
||r(h)||

2

(4.27)

where r(h) is the difference image between the re-synthesized face and the original
face, as described in eq. 4.30. The goal is to minimize E(h) in respect to an
extended coefficient vector h such that

argmin
h

1

2
||r(h)||

2

(4.28)

The coefficient vector h is obtained by extending the AM coefficient vector hc by
additional pose and texture coefficients. These are used to optimize the position
(tx, ty)

T scaling s and rotation r of the shape model in the image plane as well as
the intensity m and brightness b of the texture model. Let the extended coefficient
vector h be

hT = (tx | ty | s | r | m | b | hcT ) ∈ Rv (4.29)

Difference image The difference image r(h) can be written as

r(h) = A ◦W (p, s(hc))− t(hc) (4.30)

This equation is essential for all coefficient optimization algorithms. We focus
on the minimization of the difference between the two textures A ◦W (p, s(hc))
and t(hc). Hereby, A ◦W (p, s(hc)) corresponds to the linearized representation
of the warped and aligned texture that is gained from the original image p. The
synthesized shape s(hc) (see eq. 4.25) and the pose coefficients tx, ty, s, and r
define a region in p. This region is warped from p and into the mean shape s
using the warping transformation W defined in section 4.1.2. An AAM texture
synthesis yields t(hc) (see eq. 4.26).

Texture alignment The values of the warped texture and the synthesized
texture are defined in completely different intervals. A synthesized texture is very
close to a normalized vector, containing very small values, while a warped texture
contains values between (0..255). Hence the texture alignment transformation
A is necessary to project the values of the warped texture into the range of
the synthesized texture. This is of great numerical importance. Otherwise the
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warped texture would dominate the difference between warped and synthesized
texture. Furthermore, the quality of the entire optimization would suffer from
limited computational accuracy, due to the multi-digit mantissa.

Therefore the warped texture is aligned to the mean texture t by the texture
alignment transformation A to project it into the AAM texture domain, resulting
in the aligned texture t′. The texture alignment transformation A is defined as

A : t′ =

(
t− 1

t · 1
|t|

)
· 1

t · t
(4.31)

Here · denotes the scalar product of two vectors and 1 a vector containing all
ones. The texture t is aligned to the mean texture t by liberation from the mean
and then scaling with 1/

(
t · t
)
.

Pose transformation As s is synthesized in the normalized PCA space using
the combined model coefficient vector hc, it must be transformed properly into the
pixel coordinate space of the image that is to be analyzed applying the translation
(tx, ty), the scaling sr and the rotation θ to it (see fig. 4.6 for an illustration).
Translations are applied to the face coordinate space so that a translation tx is
performed along the face x-axis and a translation of ty along the face y-axis.

Initialization Usually AAMs require a good start estimation. The system for
face analysis described in this thesis provides a good-natured initial estimation
by automatically locating the head and the eyes within the face image 3. The
initial coefficient vector h[0] is set to the zero vector which corresponds to an
synthesis where s(hc[0]) = s and t(hc[0]) = t with zero translation, an actual
scaling factor of 1 and no rotation. It is characteristic for the Active Appearance
Model that a synthesis given a zero coefficient vector always results in the mean
shape s and the mean texture t. To preserve the linear nature of the model for
the pose and texture coefficients likewise and get the identity transformation for
a zero extended coefficient vector h it is necessary to define these coefficients
specifically. The scaling s is defined as

s = sr cos θ − 1 (4.32)

and the rotation r is chosen to be

r = sr sin θ (4.33)

so that tx = 0, ty = 0, s = 0 and r = 0 result in the identity transformation with
no translation, a scaling sr = 1 and a rotation θ = 0. sr is the actual scaling
applied to the shape and θ the actual rotation. It can be shown that

sr =
√

1 + 2s+ s2 + r2 (4.34)

θ = sign(r) · arccos

(
1 + s

sr

)
(4.35)
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Figure 4.6: Transformations during AAM coefficient optimization

are solutions for the equations 4.32 and 4.33 solved for sr and θ.
The same argumentation applies to the texture coefficients intensity m and

brightness b. The adjusted texture t′ is defined as

t′ = (m+ 1)t+ b (4.36)

As both, the texture as well as the shape, depend on the extended coefficient
vector h, it is obvious that a minimal difference image r(h) and hence a minimal
error energy E(h) imply a locally “optimal” configuration of h.

4.3.2 Offline Prediction

This section describes an offline optimization approach where the gradient re-
quired for optimization is estimated a-priori during AM training [27]. This heavily
reduces the amount of operations during the application of the AAM.

A first order Taylor expansion of r(h) around h in h+ δh leads to

r(h+ δh) = r(h) + Jδh (4.37)

where J = ∂r
∂h

is the Jacobian matrix of r(h). The element in the ith row and

jth column is defined as J i,j = ∂ri
∂hj

.

To minimize the error energy E(h) from eq. 4.27 it is desired to determine a

proper value for δh so that 1
2
‖r(h+ δh)‖2 !

= 0.
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By setting r(h+δh) = 0, applying the pseudo inverse of J , and finally solving
equation 4.37 for r(h) the solution

− r(h) = Jδh

−JTr(h) = JTJδh

δh = −Rr(h) (4.38)

is obtained whereR = (JTJ)−1JT . R can be pre-calculated once during training
and used to predict the gradient during coefficient optimization.

The Jacobian matrix J can be numerically estimated by generating a number
of sample faces and displacing each coefficient slightly from its calculated opti-
mum. The weighted sum of all differences forms the estimated partial gradient
for a specific coefficient (se section 4.3.3).

A major drawback of the offline prediction approach is that a good start
estimation of the face on the original image is required because this method
can even out only minor deviations from the optimum. The primary advantage
is its low computational complexity. As such a-priori prediction it is a good
compromise between speed and quality.

4.3.3 Numerical Estimation of the Jacobian Matrix

The Jacobian matrix J is calculated by building left/right differences. Each
coefficient hi of the coefficient vector h is displaced by a small amount for a
number of d randomly generated sample faces. The results are summed up and
smoothed by an appropriate normalized Gaussian kernel w. Thus one element of
the Jacobian matrix in the ith row and jth column J i,j = ∂ri

∂hj
can be numerically

approximated by

∂ri
∂hj

=
d−1∑
k=0

w(δvkj)(ri(h+ δvkjej)− ri(h)) (4.39)

where ej is a unit vector with a 1 at position j and all other elements set to
zero. Therefore, the scalar δvkj is only added to the jth coefficient of vector h.
The value for δvkj is a fixed or random displacement for the kth sample and jth
coefficient.

Known sample faces can be generated by randomly initializing a set V of d
coefficient vectors hi, 0 6 i < d. These vectors will later be used to synthesize
random faces with the model. Optimally the first six elements of these vectors,
representing the pose and texture coefficients (see equation 4.29) are set to zero
and the sub-vector hc, representing the combined model coefficient vector is ini-
tialized with values up to three times the standard deviation σi =

√
λc,i in the

corresponding PCA dimension. In this case the substitution of 4.30 into 4.39
evaluates to

∂ri
∂hj

=
d−1∑
k=0

w(δvkj) (torig(h+ δvkjej)− tsynth(h+ δvkjej) (4.40)
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−torig(h) + tsynth(h))

=
d−1∑
k=0

w(δvkj) (torig(h+ δvkjej)− tsynth(h+ δvkjej)) (4.41)

because as we already use synthesized images for torig and obtain tsynth(h) −
torig(h) = 0. See listing 4.1 for a pseudo code example of the estimation al-
gorithm and figure 4.7 for an illustration. The first column of the figure shows
two randomly generated examples used during the numerical estimation of the
Jacobian matrix. In the first row the translation coefficients tx is modified, in
the second row the rotation coefficient r is varied. The last image in each row
visualizes the numerical estimation of the gradient ∂r

∂hj
for the jth coefficient.

t(hc) =̂ tsynth W (t(hc), s(hc))=̂p W (p, s̃) =̂ torig r(h) ∂r
∂hj

Figure 4.7: Numerical Estimation of the Jacobian matrix

From left to right the first image in each row shows randomly synthesized
textures t(hc). These textures are warped into a synthesized shape s(hc) (second
image). Herein, we introduced an modification of the standard AAM algorithm:
The background of the images in column two and three shows pixels of white
noise. Thus, during the analysis of a face image the optimization especially of
the pose parameters becomes independent of the image background. The third
image is perturbed because it has been warped from a slightly “mispositioned”
source shape s̃ over the second image to the mean shape s resulting in textures
torig. Here very large displacement values δvkj have been chosen for a better
visualization. The fourth image shows the difference between torig and tsynth
(here tsynth = t(hc) because no model coefficients are modified, only the pose
coefficients tx and r). Eventually, the last image visualizes the estimated gradient
∂r
∂hj

.

Listing 4.1: Jacobian matrix numerical estimation algorithm

1 // Se t a l l e l emen t s o f t h e Jacob ian to z e r o
2 J = (0 | . . . | 0)
3
4 // I n i t i a l i z e s e t V wi t h random samp le s hk ∈ Rv
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5 V = {h0, . . . ,hd−1})
6
7 for each hk ∈ V do {
8
9 // S y n t h e s i z e a t e x t u r e and a shape

10 t = synthTexture(hk)
11 s = synthShape(hk)
12
13 // Warp t h e s y n t h e s i z e d t e x t u r e t from
14 // t h e mean shape s t o t h e shape s
15 t = warp(t, s, s)
16
17 // Loop over each c o e f f i c i e n t
18 for j = 0 to v − 1 do {
19
20 // D i s p l a c e c o e f f i c i e n t j by δvkj
21 h′k = hk + vkjej
22
23 // Synth . a t e x t u r e and shape w i t h d i s p l a c e d c o e f f .
24 s̃ = synthShape(h′k)
25 tsynth = synthTexture(h′k)
26
27 // Warp t h e s y n t h e s i z e d t e x t u r e t from th e
28 // s y n t h e s i z e d shape s̃ t o t h e mean shape s
29 torig = warp(t, s̃, s)
30
31 // Ca l c u l a t e t h e we i g h t e d sum
32 J∗,j = J∗,j + w(vkj)(torig − tsynth)
33 }
34 }

4.3.4 Iterative Optimization

For a graphical illustration of the AAM coefficient optimization refer to figure 4.8.
The optimization starts with an initial coefficient vector h[0] = 0 which is used
to synthesize a shape s(hc[n]) and a texture t(hc[n]), where i is the index of the
current iteration with i ∈ {0, . . . , n − 1}. During each iteration the synthesized
shape is positioned on the input image p, respecting the pose coefficients tx[n],
ty [n], s[n], and r[n]. The image region below the synthesized shape is warped to
the mean shape s producing a texture t. The texture alignment transformation A
aligns t to the mean texture t to project it into the AAM texture synthesis domain
and produces values that lie in the same interval like those of the synthesized
texture t(hc[n]). Additionally the texture adjustment coefficients m[n] and b[n]

are applied to adapt the intensity and brightness of the warped texture to the
intensity and brightness of the synthesized texture. Finally the difference r(h[n])
between these two textures is optimized iteratively by applying the update rule
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from eq. 4.42. The algorithm terminates after a specific number of iterations
or the error difference ∆ E(h) between two consecutive iterations falls below a
defined threshold.
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Figure 4.8: Schematic illustration of the AAM coefficient optimization algorithm

The update rule for h[n] at iteration n can in general be written as

h[n+1] = h[n] + α[n]δh[n] (4.42)

The algorithm starts with an initial estimation h[0] and a step width α. Thereby,
δh[n] can directly represent a difference vector of the current position in the
search space h[n] to the new position h[n+1] where a minimization of the objective
function is performed. In this case of Sampling of the search space is α[0] = α[n] =
1. In case of a Gradient Descent approach, δh[n] constitutes a gradient consisting
in a direction and a steepness. The previously described Offline Prediction, as it
is proposed by the standard AAM algorithm, provides a predicted gradient. It
is further suggested to update α[n] between two consecutive iterations applying
a decay term. One example multiplies α with a fixed factor β < 1 after each
iteration so that α[n] = α · βn. Another approach to update the step size α[n] is
setting α[n] = α

(1+n·γ) with γ > 0. Our experiments have shown that the AAM
shows generally better convergence with the first decay term and an initial step
width α[0] ≈ 1.5 and β ≈ 0.7.



Chapter 5

Derivatives and Advancements of
Active Appearance Models

5.1 A Survey on Active Appearance Models and

Variants

AAMs have originally been introduced by Edwards et al. in [37], and have later
been expanded by Cootes et al. in [21] and [19]. Since their introduction, AAMs
have found many applications in a variety of areas where one desires to align,
track, or interpret images of deformable objects, and various variations of the ba-
sic AAM algorithm have been developed. See [22] for an experimental comparison
of some important AAM variations.

After the introduction of the original algorithm, Edwards et al. have in-
troduced an extension to the basic algorithm to handle color images, and also
provided an enhanced search algorithm that is more robust against occlusions
[35]. In [25], Cootes et al. have shown that multiple AAMs can be used to
model human faces from any view point and that these models can be used to
track faces and estimate head poses. Cootes et al. have also shown that prior
information, such as initial estimates about the locations of the eyes, can be used
to constrain AAM search to obtain more reliable results [23]. In [24], Cootes et
al. have demonstrated that using a linearly transformed representation of the
edge structures at each pixel instead of the pixel values provides more accurate
matching of the model to the target image and, in [20], they have proposed sub-
sampling techniques to speed up AAM convergence for the expense of loosing
some accuracy.

Baker et al. have proposed to use an inverse compositional approach to match
the AAM to the target image, instead of the additive approach used in the basic
AAM algorithm [6]. They consider an Appearance Model where the shape and
texture coefficients are not combined into appearance coefficients and show that
their approach provides increased efficiency during the matching procedure. Their
formulation for the matching algorithm requires the warp functions to satisfy
certain properties, which are not satisfied by the warps used in AAM. Therefore,
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they use first-order approximations of the inversion and composition operators.

AAMs have been extensively applied to medical image processing. Mitchell et
al. have developed a multistage hybrid AAM to automatically segment left and
right cardiac ventricles from magnetic resonance (MR) images [79]. Their hybrid
approach combines AAMs with Active Shape Models (ASMs) to achieve more
robustness against the risk of being trapped in local minima. Bosch et al. have
extended AAMs to Active Appearance Motion Models (AAMMs) that enhance
AAMs by including time dependent information. Their goal is to automatically
segment echo cardiographic image sequences in a time continuous manner. There-
fore, they consider the whole image sequence as a single shape-intensity pattern,
and construct a single AAM that can describe both the appearance of the heart
at a certain time and its dynamics throughout the cardiac cycle. This provides
a time continuous segmentation, and eliminates the need for constructing differ-
ent AAMs to segment the heart at different phases of the cardiac cycle. They
also propose a nonlinear intensity normalization technique to deal with the non-
Gaussian nature of the distribution of the intensity values in ultrasound images,
which is shown to provide a significant improvement in performance. Mitchell et
al. have proposed a three-dimensional AAM to segment volumetric cardiac MR
images and echo cardiographic image sequences [80]. This 3-D extension of AAM
provides a successful segmentation of 3-D images in a spatially and temporally
consistent manner.

Motivated by the AAM algorithm, Hou et al. have developed Direct Appear-
ance Models (DAMs) where they use the texture to directly predict the shape
during the iterations of the parameter updates [53]. This approach no longer com-
bines the shape and texture parameters into appearance parameters like AAM
does. Li et al. have later extended this approach for multi-view face alignment
by training multiple models for different poses of the human face [69]. In relation
to his work, Yan et al. have developed texture-constrained ASMs (TC-ASMs),
where the shape update predicted by an ASM is combined with the shape con-
straint provided by a global texture model like the one in AAM [127]. They show
that such an approach performs better than ASM or AAM alone.

Stegmann and Larsen propose to generalize the concept of texture in AAM
to include any measurement over the target image selected according to the par-
ticular class that is being modeled [107]. For the specific case of human faces,
they propose a representation that includes the intensity value, the hue, and the
edge strength and show that an AAM which uses this representation provides a
better result than an AAM that works only on gray scale intensities. In [108],
Stegmann et al. propose a few extensions to AAM that include an enhancement
to the shape modeling, an initialization scheme to make the system fully au-
tomated, and a simulated annealing approach to fine tune the AAM parameters
after the basic algorithm has converged. In [36], Edwards et al. use AAMs for face
recognition, and in [5], Ahlberg uses AAMs to track faces and to automatically
extract MPEG-4 facial animation parameters. In [106], Stegmann demonstrates
that AAMs can be used for general object tracking.

Furthermore, Butur and Hayes proposed an adaptive AAM where they aban-
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don the fixed gradient matrix approach of the basic AAM, and replace it with
a linearly adaptive matrix that is updated according to the composition of the
target texture [8]. Their approach starts with the observation that a fixed gra-
dient matrix inevitably specializes to a certain region of the texture space and
does not work well as the target image’s texture moves away from this region. In
general, the gradient matrix depends on both the shape and the texture of the
target image. Since the gradient is computed in a normalized frame where the
shape is normalized to the mean shape, one fixed matrix is a good estimate for
the gradient matrices at different shapes. However, the same desirable property
does not hold for different textures [9].

While our implementation of AM generation and the offline predicted gradient
for AAM optimization already incorporates several of the proposed improvements
mentioned above, we investigate novel techniques for the generation and the op-
timization process. The following sections introduce shape and texture models
which base on the data modeling technique of Non-negative Matrix Factorization
(section 5.2.1). Due to our computationally efficient implementation and the re-
cent developments in processing power of modern CPUs and GPUs (see section
5.4) we applied online optimization methods to face analysis with AAMs (section
5.3). For a reliable comparison of the different approaches, we present evaluation
measures following human perception (section 5.5).

5.2 Appearance Models based on Non-negative

Matrix Factorization

The standard AAM algorithm described in chapter 4 strives to reduce the vari-
ance in the appearance of objects to the shape and texture. Thereby, the shape
and texture variance is modeled by several Principal Component Analyses in a
holistic way. However, for complex objects like human faces we can assume a
wide independence in the appearance of separated object parts, i.e. the shape
and texture of the eyes is independent from the mouth and vice versa. There-
fore, a parts based representation of the training images would lead to a higher
flexibility of the model in generation of a wider range of face instances.

The Non-negative Matrix Factorization (abbrev. ’NMF’) has shown this be-
havior in the works of Lee and Seung [65] in 1999. However, localized data is
a by-product of NMF and as shown in [34] it depends on properties of the data
corpus, whether the result is spatially localized or not. Hence from various sites
additional constraints were introduced which provide localness in NMF image
analysis, e.g. Local NMF [118]. In LNMF the cost function is changed, in or-
der to maximize the sparseness of the coefficient matrix H , the expressiveness,
and the orthogonality of the basis Φ which spans the conical NMF vector space.
Therefore, the update rules took suitable modifications. Furthermore, for imple-
mentation of the so called non-smooth NMF (abbrev. ’nsNMF’) Hoyer [54] and
Pascual-Montano et al. [91] tried to make both matrices W and H sparse by
application of additional sparseness constraints.
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Hence NMF and its variants found a broad range of applications in image
processing tasks, such as face recognition [119], facial expression recognition with
LNMF [13] and low-resolution brain electromagnetic tomography with nsNMF
[91]. With the formulation of statistical shape and texture models based on the
Non-negative Matrix Factorization, this thesis presents a fully novel advancement
of the traditional AAM methodology.

The following section gives a comprehensive introduction in the NMF algo-
rithm, since the common publications on Non-negative Matrix Factorization omit
crucial steps in the mathematical argumentation and proof [65] [66] [34]. Further
the formulation of the NMF-based generation of Appearance Models is given with
the consequences for the NMF-AAM object analysis.

5.2.1 Data Modeling with Non-Negative Matrix Factor-
ization

We seek a decomposition of the matrixD ∈ Rc×p into the two matricesW ∈ Rc×r

and H ∈ Rr×p. The columns of matrix D consist of data vectors representing
a data set to be transformed in a new r-dimensional, conical coordinate system.
The data vectors may constitute the pixel arrays of (face-) images, AM-shape
vectors, or frequency coefficients of digital sound files. The decomposition with
the non-negative constraint reads as follows

D = WH +U Di,j,W i,µ,Hµ,j > 0 (5.1)

with 0 6 i < c − 1, 0 6 j < p − 1 and 0 6 µ < r − 1 and U being the residual
error. First we have to define a proper cost function, measuring the error between
the original data D and the approximation WH , then we must find a way of
minimizing this cost function in respect to W and H .

The NMF is actually a conical coordinate transformation. See figure 5.1 for a
graphical interpretation. The two basis vectors w1 and w2 describe a cone which
encloses the dataset D. Due to the non-negative constraints only points within
this cone can be re-constructed through linear combination of these basis vectors:

d′ = (w1,w2) · (h1, h2)
T (5.2)

The factorization ofD ≈WH is not necessarily unique. For example one can
apply the following transformation using the arbitrary matrix A and its inverse
A−1:

WH = WAA−1H (5.3)

If the two matrices Ŵ = WA and Ĥ = A−1H are positive semi-definite then
another factorization D ≈ Ŵ Ĥ exists. Such a transformation is always possible
if A is an invertable non-negative monomial matrix. A matrix is called monomial
if there is exactly one element different from zero in each row and column. If A
is a non-negative monomial matrix the result of this tranformation is simply a
scaling and permutation of the original matrices.
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Figure 5.1: Graphical illustration of NMF: Non-negative matrix factorization as
conical coordinate transformation

5.2.1.1 Cost Functions

Lee and Seung propose two different cost functions to be optimized [66]. The
first is the square Euclidean distance

argmin
W ,H

||D −WH||2 =
∑

06i<c, 06j<p

(Di,j − (WH)i,j)
2 (5.4)

the second is the Kullback-Leibler divergence

argmin
W ,H

DKL(D||WH) =
∑

06i<c, 06j<p

Di,j log
Di,j

(WH)i,j
−Di,j + (WH)i,j (5.5)

that is also sometimes known as information gain, relative entropy or information
divergence for

∑
i,jDi,j =

∑
i,j (WH)i,j = 1.

Both measures are suitable as cost functions because ||D−WH||2, DKL(D||WH) >
0 for D 6= WH and ||D −WH||2, DKL(D||WH) = 0 for the optimal case
D = WH . Within this report only the square Euclidean distance is discussed.
For an in-depth study of the Kullback-Leibler divergence please refer to the work
of Lee and Seung [66].

5.2.1.2 Proof of Convergence

Theorem 5.2.1 It can be shown, that the square eculidian distance measure as
proposed in section 5.2.1.1 is non-increasing under the following iterative update
rules:

Haµ ←Haµ
(W TD)aµ

(W TWH)aµ
W ia ←W ia

(DHT )ia

(WHHT )ia
(5.6)

for 0 6 a < r, 0 6 µ < p and 0 6 i < c.

These update rules can be interpreted as diagonally rescaled gradient descent.
A standard gradient descent would require a learning rate α that is sufficiently
small. The updates rules above in contrast correspond to a rather large learning
rate. It is interesting that the algorithm still converges into a local minimum.
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It can already be noted, that the quotient in both equations converges against
one ifWH ≈D. This means that a local minimum has been reached. In practice
the algorithm terminates if the change of the respective matrix is sufficiently
small.

The proof of convergence is quite similar to that of the Expectation Maxi-
mization (abbrev. ’EM’) [30][124] algorithm. As the cost function F cannot be
minimized directly, an auxiliary function G is defined that can be minimized an-
alytically. The idea is that minimizing the auxiliary function will minimize the
real cost function F. This is only shown for the first update rule that iteratively
updates H . The proof for W works exactly the same way and thus is not shown.

First the definition for auxiliary functions is introduced, next an auxiliary
function for the square Euclidean distance measure is defined and proven an
auxiliary function for this specific cost function. We finally minimize the auxiliary
function to derive update rules for the minimization of the cost function.

Determination of an Auxiliary Function

Definition 5.2.1 The function G(h,h[t]) is an auxiliary function for F(h) if

(a) G(h,h[t]) > F(h) and

(b) G(h,h) = F(h)

With definition 5.2.1 the following theorem can be shown:

Theorem 5.2.2 If G(h,h[t]) is an auxiliary function for F(h), minimizing
G(h,h[t]) in respect to h minimizes F(h). The cost-function F(h) is monotoni-
cally decreasing under the following update rule:

h[t+1] = argmin
h

G(h,h[t]) (5.7)

Later the cost function F will be the square euclidean distance measure as
introduced in equation 5.4 and G will be set to an appropriate auxiliary function
that can be minimized analytically in respect to h. We derive the update rules
of equation 5.6 directly from equation 5.7.

Proof Per definition 5.2.1 it is F(h[t+1]) 6 G(h[t+1],h[t]). According to equa-
tion 5.7, h[t+1] minimizes G(h,h[t]). Thus G(h[t+1],h[t]) is less or equal than
G(h[t],h[t]), which equals F(h[t]) in line with definition 5.2.1. The following equa-
tion summarizes the steps above:

F(h[t+1])
def.

6 G(h[t+1],h[t])
min

6 G(h[t],h[t])
def.
= F(h[t]) (5.8)

See figure 5.2 for an illustration. �
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h

G(h,h[t])

F(h)

h[t]h[t+1] hmin

Figure 5.2: Illustration of theorem 5.2.2

Furthermore one can easily assure that there exists a sequence h[0] · · ·hmin so
that

F(h[0]) > · · · > F(h[t]) > F(h[t+1]) > · · · > F(hmin) (5.9)

converges into an approximated local minimum of F(h).
To prove that the multiplicative update rules introduced in equation 5.6 con-

verge into a local optimum, one must first define a proper auxiliary function G
for the square Euclidean cost-function

F(h) =
1

2
||d−Wh||2 (5.10)

Here the vector d represents an arbitrary vector from the matrix D and h is its
corresponding encoding. By minimizing the auxiliary function G, update rules
for the minimization of the cost function F can be derived according to equation
5.7. However, first it must be shown, that the defined auxiliary function fulfills
the conditions of definition 5.2.1.

Lemma 5.2.3 The function

G(h,h[t]) = F(h[t]) + (h− h[t])T∇F(h[t]) +
1

2
(h− h[t])TK(h[t])(h− h[t]) (5.11)

is an auxiliary function for the cost function

F(h) =
1

2
||d−Wh||2 (5.12)

=
1

2

∑
06i<c

(
di −

∑
06a<r

W i,aha

)2

(5.13)

if K is the diagonal matrix

Ka,b(h
[t]) = δa,b(W

TWh[t])a/h
[t]
a , 0 6 a, b < r (5.14)

with δa,b being the Kronecker-Delta function

δa,b =

{
1 , a = b
0 , a 6= b

(5.15)
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Equation 5.11 is a slightly modified second order taylor expansion of the cost
function F. Comparing equation 5.11 with the second order taylor expansion of
F near the point h[t]:

F(h) = F(h[t]) + (h− h[t])T∇F(h[t]) +
1

2
(h− h[t])TW TW (h− h[t]) (5.16)

shows, that both eqations only differ in the last term.

Proof To show, that G(h,h[t]) is an auxiliary function for F(h), one must prove
that according to definition 5.2.1 G(h,h) = F(h) and G(h,h[t]) > F(h). The
first case is rather trivial as

G(h,h) = F(h) + (h− h)︸ ︷︷ ︸
=0

T∇F(h) +
1

2
(h− h)︸ ︷︷ ︸

=0

TK(h) (h− h)︸ ︷︷ ︸
=0

(5.17)

= F(h) (5.18)

In order to show that G(h,h[t]) > F(h), the auxiliary function G(h,h[t]) is re-
placed by equation 5.11 and the cost function F(h) by its second order taylor
expansion as shown in equation 5.16. Both equations only differ in the last term
so G(h,h[t]) > F(h) is equivalent to:

G(h,h[t])− F(h) = (h− h[t])TK(h[t])(h− h[t])− (h− h[t])TW TW (h− h[t])(5.19)

= (h− h[t])T (K(h[t])−W TW )(h− h[t]) > 0 (5.20)

Now it must be shown, that equation 5.20 is greater or equal zero. This is
the case, if the matrix K(h[t]) −W TW is positive semi-definite, meaning that
K(h[t])−W TW > 0.

Definition 5.2.2 . A matrix M is positive semi-definite, if it can be shown that
vTMv > 0 for an arbitrary vector v.

To prove positive semi-definiteness, Lee and Seung [66] rescale K(h[t])−W TW
with vector h and define the matrix M such that the element in the a-th row
and b-th column can be written as follows:

M a,b = h[t]
a (K(h[t])−W TW )a,bh

[t]
b (5.21)

Rescaling the matrix will later help to prove that it is positive semi-definite. This
kind of rescaling is permitted as it does not violate the definition of positive semi-
definiteness. We can easily show this by element-wise multiplication of the vector
v from definition 5.2.2 and the vector h so that (v � h)TM (v � h) > 0. This
actually gives a new vector v′ = v�h for which v′TMv′ > 0 is also true. Moving
the elements of h into the matrix M results in equation 5.21.
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If it can be shown, that M is positive semi-definite, than K(h[t]) −W TW
is and thus equation 5.20 holds. According to definition 5.2.2 positive semi-
definiteness of the matrix M can be verified as follows:

vTMv =
∑

06a,b<r

vaM a,bvb (5.22)

=
∑

06a,b<r

vah
[t]
a (K(h[t])−W TW )a,bh

[t]
b vb (5.23)

=
∑

06a,b<r

vah
[t]
a Ka,b(h

[t])h
[t]
b vb − vah

[t]
a (W TW )a,bh

[t]
b vb (5.24)

=
∑

06a,b<r

vaδa,b(W
TWh[t])ah

[t]
b vb︸ ︷︷ ︸

=0 for a6=b

−vah[t]
a (W TW )a,bh

[t]
b vb (5.25)

=
∑

06a,b<r

v2
ah

[t]
a (W TWh[t])a︸ ︷︷ ︸

=
∑

06b<r(W
TW )a,bh

[t]
b

−vah[t]
a (W TW )a,bh

[t]
b vb (5.26)

=
∑

06a,b<r

h[t]
a h

[t]
b (W TW )a,b · (v2

a − vavb) (5.27)

=
∑

06a,b<r

h[t]
a h

[t]
b (W TW )a,b · (

1

2
v2
a +

1

2
v2
b − vavb) (5.28)

=
1

2

∑
06a,b<r

h[t]
a h

[t]
b (W TW )a,b · (va − vb)2 (5.29)

> 0 (5.30)

For explanation of some of the above transformations: From equation 5.24
to 5.25, K(h[t]) is substituted and h[t]

a can be canceled in the first summand.
Due to the Kronecker-Delta function the first summand is always zero for a 6= b.
Therefore from equation 5.25 to equation 5.26 each occurrence of the index b can
be replaced by a within the first summand. Next the expression (W TWh[t])a in

equation 5.26 is rewritten as sum (W TWh[t])a =
∑

06b<r(W
TW )a,bh

[t]
b . As the

parameter b runs over the same interval this sum can be merged with the outer
sum. Furthermore h[t]

a h
[t]
b (W TW )a,b is factored out resulting in equation 5.27.

Let 0 6 a, b < r. Generally v2
a can be written as v2

a = 1
2
v2
a + 1

2
v2
a. For a = b this

is equivalent to v2
a = 1

2
v2
a + 1

2
v2
b . For a 6= b there will always exist two cases for

which h[t]
a h

[t]
b (W TW )a,b = h

[t]
b h

[t]
a (W TW )b,a due to the symmetry of W TW :

· · ·+ h[t]
a h

[t]
b (W TW )a,b · (

1

2
v2
a +

1

2
v2
a − vavb) + · · ·+ h[t]

b h
[t]
a (W TW )b,a · (

1

2
v2
b +

1

2
v2
b − vbva) + · · · (5.31)

This can be subsumed to

· · ·+ h[t]
a h

[t]
b (W TW )a,b · (

1

2
v2
a +

1

2
v2
b − vavb +

1

2
v2
b +

1

2
v2
a − vbva) + · · · (5.32)

and summands can be exchanged so that

· · ·+ h[t]
a h

[t]
b (W TW )a,b · (

1

2
v2
a +

1

2
v2
b − vavb) + · · ·+ h[t]

b h
[t]
a (W TW )b,a · (

1

2
v2
b +

1

2
v2
a − vbva) + · · · (5.33)
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Re-sorting the summands in the described manner leads to equation 5.28. Now it
is possible to apply the second binomial formula which finally results in equation
5.29.

As h[t]
a > 0, (W TW )a,b > 0 and (va − vb)2 > 0 for 0 6 a, b < r, this

proves positive semi-definiteness for M . Therefore K(h[t]) −W TW is positive
semi-definite and thus is (h − h[t])T (K(h[t]) −W TW )(h − h[t]) > 0. As this
is equivalent to G(h,h[t]) > F(h) as shown before in equation 5.20 and with
the additional knowledge, that G(h,h) = F(h) as denoted by equation 5.18, the
function G(h,h[t]) is an auxiliary function for the cost function F(h).

�

Minimization the Auxiliary Function As proposed in theorem 5.2.2, min-
imizing G(h,h[t]) in respect to h will lead to an update rule for h[t+1]. Setting
G(h,h[t]) to

G(h,h[t]) = F(h[t]) + (h− h[t])T∇F(h[t]) +
1

2
(h− h[t])TK(h[t])(h− h[t]) (5.34)

for which it has been shown in lemma 5.2.3 that it is a proper auxiliary function
for F(h) and minimizing it by setting its gradient to zero finally produces the
update rules that are seeked for:

∂G(h,h[t])

∂h
= ∇F(h[t]) +K(h[t])(h− h[t])

!
= 0 (5.35)

Solving equation 5.35 for h results in

∇F(h[t]) +K(h[t])(h− h[t]) = 0 (5.36)

K(h[t])(h− h[t]) = −∇F(h[t]) (5.37)

h = h[t] −K(h[t])−1∇F(h[t]) (5.38)

According to equation 5.7 this is equivalent to

h[t+1] = argmin
h

G(h,h[t]) (5.39)

= h[t] −K(h[t])−1∇F(h[t]) (5.40)

Derivation of the Update Rule Now equation 5.40 will be rewritten. For
this, the inverse of K(h[t]) is required. As K is a diagonal matrix the inverse
K−1 takes the form:

K−1
a,b(h

[t]) = δa,b
h[t]
a

(W TWh[t])a
(5.41)
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Furthermore we need the partial derivatives ∂F

∂h
[t]
a

of the function F(h[t]
a ):

∂F

∂h[t]
a

= −
∑

06i<c

(
di −

∑
06j<r

W i,jh
[t]
j

)
W i,a (5.42)

= −(d−Wh[t])Twa (5.43)

= −(wa
Td−waTWh[t]) (5.44)

= (W TWh[t])a − (W Td)a (5.45)

with wa being the a-th column of matrix W . Replacing K−1(h[t]) in equation
5.40 with equation 5.41 and writing the a-th element of vector h[t] explicitly
results in:

h[t+1]
a = h[t]

a − δa,b
h[t]
a

(W TWh[t])a
∇F(h[t]) (5.46)

Due to the Kronecker-Delta function δa,b only the a-th partial derivative of

∇aF(h[t]) = ∂F

∂h
[t]
a

is selected so by replacing ∇aF(h[t]) accordingly with the right

hand side of equation 5.42, equation 5.46 can be transformed into:

h[t+1]
a = h[t]

a −
h[t]
a

(W TWh[t])a

∂F

∂h[t]
a

(5.47)

= h[t]
a

(
1− (W TWh[t])a − (W Td)a

(W TWh[t])a

)
(5.48)

= h[t]
a

(W Td)a

(W TWh[t])a
(5.49)

Equation 5.49 represents the update rule for the a-th element of one column of
matrix H . As each column of matrix H can be handled independently equation
5.6 holds and thus theorem 5.2.1 has been shown for H . By reversing the roles
of W and H theorem 5.2.1 can also be proven for the matrix W . �

5.2.1.3 Algorithm Pseudocode

See listing 5.1 for the pseudocode of the NMF algorithm. As one can see, the
implementation is fairly simple. The algorithm gets the raw non-negative data
matrix D and the reduced r as input parameters and iteratively updates the ma-
trices W and H according to equation 5.6. The algorithm assumes convergence,
if the changes of W and H are sufficiently small. The method preprocess() in
line 5 scales the values of each data vector to the range [0; 1]. This methodology
turned out to produce good results in practice. Typically r is chosen so that
r < nm

n+m
.

Our C/C++ implementation exploits the BLAS/ATLAS [10] [120] hardware
optimizations as the NMF algorithm primarily requires linear algebra operations.
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Listing 5.1: Pseudocode of the NMF Algorithm

1 function NMF(in data matrix D ∈ Rc×p, in reduced dimension r)
2 returns base images W ∈ Rc×r, encoding H ∈ Rr×p {
3
4 W ,H ← randomly initialize with values w, h ∈ [0..1]
5 D ← preprocess(D);
6
7 while (not converged) {
8 WH ← calculate matrix-matrix product once

9 // Update e l emen t s o f H
10 for (a = 0; a < r; a++) {
11 for (µ = 0; µ < p; µ++) {

12 Haµ ←Haµ
(W TD)aµ

(W TWH)aµ

13 }
14 }
15 // Update e l emen t s o f W
16 for (i = 0; i < c; i++) {
17 for (a = 0; a < r; a++) {

18 W ia ←W ia
(DHT )ia

(WHHT )ia

19 }
20 }
21 }
22
23 }

5.2.1.4 Experiments

Within this section we will present some experimental results on a qualitative
basis. These results compare the capabilities of NMF and PCA. Note, that some
images are scaled into the visible range for visualization purpose and may not
resemble the original results exactly. Still, the same scaling factor is used for both
methods so the images are still comparable.

Datasets NMF and PCA are applied to different datasets. Our MMER AAM
Toolbox [32] provides the PCA implementation. The first dataset has mainly
been created to illustrate the partial based approach of the NMF. It consists of
six abstract square images, the first four (5.3(a) through 5.3(d)) show one white
half-circle on black ground, differently oriented. The last two (5.3(e), 5.3(f)) can
theoretically be composed from two of the four previous images respectively. See
figure 5.3 for an illustration of the dataset Dcirc.

The second dataset Dface has been created from the IMM face database [86].
This database consists of about 240 annotated color face images. These images
have been normalized in shape using the MMER AAM Toolbox [32] and cropped
so only the main face region is visible. The shape-normalization is an important
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(a) (b) (c) (d) (e) (f)

Figure 5.3: Abstract dataset Dcirc

pre-processing step to make sure that each facial feature is located exactly in the
same position in the pixel domain. Some example images are shown in figure
5.4. These images are the result of shape normalization and cropping. Visual
distortion results from shape normalization.

(a) (b) (c) (d) (e) (f)

Figure 5.4: Face dataset Dface

Base Images We apply a PCA as well as the NMF algorithm to both datasets.
For the first dataset Dcirc the reduced r was set to r = 4 and also incorporated
only the first four principal axes in case of the PCA. The assumption was that
the NMF algorithm would most likely discover the inherent characteristics of the
dataset and outperform the PCA in terms of re-construction quality. The result
can be seen in figures 5.5 for the PCA and 5.6 for the NMF.

(a) (b) (c) (d)

Figure 5.5: Base images of dataset Dcirc after applying the PCA

The NMF obviously discovered, that the last two images of the dataset Dcirc

can be constructed from simpler parts and thus only the four most integral half cir-
cles are present in the base images. This allows a pretty intuitive re-construction.
The results of the PCA are less intuitive and hard to interpret as PCA allows
subtractive combination of base images as well.
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(a) (b) (c) (d)

Figure 5.6: Base images of dataset Dcirc after applying the NMF

(a) (b) (c) (d) (e) (f)

Figure 5.7: Base images of dataset Dface after applying the PCA

(a) (b) (c) (d) (e) (f)

Figure 5.8: Base images of dataset Dface after applying the NMF

For the second datasetDface the reduced r was set to r = 30 and incorporated
only 30 principal axes respectively. The figures 5.7 and 5.8 show the computed
base images for PCA and NMF.

Again the holistic approach of the PCA generates a global, distributed repre-
sentation of the datasets principal characteristics. However, the NMF succeeds
in finding local structures like eyes, nose, mouth etc.

Reconstruction The reconstructed images are illustrated in figures 5.9 and
5.10. The NMF based reconstructions are obviously better than those of the
PCA. The reason for this is most likely that the PCA implements a holistic,
rather global approach where the NMF gains its advantage from identifying local
structures. Where the PCA fails to re-construct the original images without a
noticeable error the NMF prevails.

For the second dataset both methods, PCA and NMF, succeed to reconstruct
the original images but the result of the NMF is slightly sharper. For a direct
comparison refer to figure 5.11. Notice the area around the eyes and the skin.
The NMF produces a far more detailed result.
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(a) (b) (c) (d) (e) (f)

Figure 5.9: Reconstructed images (PCA)

(a) (b) (c) (d) (e) (f)

Figure 5.10: Reconstructed images (NMF)

(a) PCA (b) NMF

Figure 5.11: Face reconstruction

5.2.1.5 Conclusion

PCA and NMF are studied and compared to each other in a qualitative manner,
the NMF algorithm is discussed in detail. Two datasets have been created to
compare both algorithms and point out similarities as well as differences. Both
methods provide good information reduction quality where the PCA follows a
holistic and the NMF a part-based approach. This has advantages and disadvan-
tages. PCA on the one hand can be calculated pretty fast with a definite result,
where NMF is based on a diagonally rescaled gradient descent that suffers from
well known problems that are typical for high dimensional optimization problems
(local minima vs. global minima). The implementation is straightforward but
computationally expensive. PCA is an orthogonal coordinate transformation,
NMF finds a conical representation for the dataset. The drawback of this conical
representation, that is rooted in the non-negative constraints, is the disability to
construct data points that lie outside the cone. However, these theoretical limita-
tions are practically negligible if one assumes that only a small range of variation
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in a specific domain has to be modeled. Depending on the quality and variance of
the dataset itself, NMF will not always find an optimal part-based representation
[34]. Recently methods came up, such as the Non-smooth Non-negative Matrix
Factorization (nsNMF) [92], or the NMF with sparseness constraints [55], that
tend to find local structures even better.

Possible Applications The field of possible applications ranges from general
knowledge discovery and data mining tasks over computer vision and object recog-
nition (e.g., face recognition) to bio-medical imaging. Both PCA and NMF are
sophisticated yet computationally intense methods that reduce dimensionality
without losing too much information. Both method allow to build a statistical
model from a given training set e.g., facial images. This model is parameterizable
through the encoding h which can be interpreted as parameter vector. Through
automatic optimization the parameter vector h is chosen ’optimally’ so that a
synthesized image best resembles a given real image. The parameter vector h can
be conceived as the low-dimensional representation of the rather high-dimensional
face. It can be used for further classification (age, gender, ethnic group, emotion,
etc.). Cootes et al. describe an interesting approach concerning deformable mod-
els of shape and texture [27].

NMF is not only suitable for computer vision tasks. It has already been used
for semantic analysis [65] and can by applied to other data such as audio signals.

Outlook A major drawback of PCA based face recognition is its instability in
the case of partial occlusion. One reason for this is the distributed, holistic repre-
sentation of the dataset. Fully deformable NMF based models for face recognition
should theoretically be relatively insensitive to partial occlusion.

5.2.2 Generation of Appearance Models with NMF

Starting from the standard PCA-AAM algorithm formulated in chapter 4, the
Principal Component Analysis is replaced by the Non-negative Matrix Factoriza-
tion in each step of the model generation process.

5.2.2.1 Shape Model

Analog to section 4.2.1 we apply the statistical analysis and information reduction
on the matrix S ∈ Rc×p of all aligned and normalized shape vectors in the training
set. In case of NMF this means a factorization of S into the shape basis Φs ∈
RL×µs and the matrix of coefficient vectors Hs ∈ Rµs×p.

S ≈ ΦsHs (5.50)

However, S is required to contain only positive values or zeros. This is en-
sured by adding the minimum of all x and the minimum of all y coordinates as
offset to each landmark position prior to the factorization. This corresponds to
a translation of all landmarks into the first quadrant.
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After an NMF analysis of S a new shape can be synthesized analog to eq.
4.16:

s = Φshs (5.51)

Unlike the PCA variant, the new coordinate space Φs is not mean-free. Neverthe-
less, for the generation of the shape-free textures of the matrix T and during the
AAM coefficient optimization, the mean shape s is required. It can be generated
by application of the coefficient vector hs. For its determination the average of
each line in Hs is computed.

hs =
1

p
Hs · 1 (5.52)

1 ∈ Rp is a vector containing all ones.
Furthermore, the specific computation of the representation of all training

shape vectors si in the new space can be skipped, since the NMF analysis already
provides the coefficient vector hsi of shape si in the ith column of Hs.

5.2.2.2 Texture Model

Again, the AM generation provides for the triangulation of the mean shape and
the warping of all training textures in the shape-free space. Since the matrix of
shape-free textures T contains (color-)intensity values in the range of [0; 255] the
non-negativity requirement is naturally met. The application of NMF on T leads
to a decomposition

T ≈ ΦtHt (5.53)

with the following matrix dimensionalities: Φt ∈ Rn×µt , Ht ∈ Rµt×p.
The representation of the training textures in the new basis allows for the

synthesis of a texture by evaluating t = Φtht.

5.2.2.3 Combined Model

The combination of shape and texture to a combined model reads simpler than
eq. 4.22, since the NMF bases are not mean-free.

C =

[
KHs

Ht

]
(5.54)

K is equal to the weight matrix in eq. 4.20. The combined matrix is again
subject to an NMF decomposition:

C ≈ ΦcHc (5.55)

Further, the upper µs lines of Φc pertain to the shape model, the lower µt lines
to the texture model. Thus Φc can be written as

Φc =

[
Φcs

Φct

]
(5.56)
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We can therefore express a shape s and a texture t as function of hc as follows:

s = Qshc , Qs = ΦsK
−1Φcs (5.57)

t = Qthc , Qt = ΦtΦct (5.58)

Finally, with the equations 5.50 to 5.57 the generation of an AM based on the
Non-negative Matrix Factorization is fully specified. Although we find a uni-
fied notation for the description of both AAM variants, the actual differences in
representation has several consequences as described in the following section.

5.2.2.4 Algorithmic Differences of PCA- and NMF-AAMs

Similar to the PCA modeling, the data reduction parameters µs, µt, and µc have
high impact on the quality of the NMF result as described in 5.2.1. Unlike PCA,
the ideal values have to be determined by running the NMF with different settings
and evaluating the result. Objective quality measures are e.g. the residual error
U = D − ΦH (compare eq. 5.1) or the target application in terms of pattern
recognition results. The data reduction parameters of an PCA Appearance Model
can be adjusted by the rate of the explained data variance to the absolute data
variance after the PCA. The explained data variance can be measured by equation
5.61. Unfortunately, it is hard to determine the absolute data variance especially
for the generation of the combined NMF model. For a NMF-AAM, e.g. built
on a set of 50 images with distinctive facial expressions, we suggest to set the
reduction parameter values in the range of µs ≈ 28, µt ≈ 36, and µc ≈ 30.

For initialization of the AAM coefficient optimization, it appears to be rea-
sonable [27] to start with the mean shape s and the mean texture t. In case of
the PCA-AAM this translates into hc being the zero vector due to the mean-free
property of PCA. However, for NMF the values of hc describing the mean shape
and texture via equations 5.57 and 5.58 have to be computed [52]. This can be
performed on basis of the matrix Hc of the combined model coefficients:

hc =
1

p
Hc · 1 (5.59)

Furthermore, during the optimization the search space for the ith coefficient hc,i
should be limited to the range[

hc,i − 3
√
σ2
c ,i ; hc,i + 3

√
σ2
c ,i

]
(5.60)

where σ2
c ,i denotes the variance of the ith coefficient over the training set:

σ2
c ,i =

1

p

p−1∑
j=0

(
Hci,j − hc,i

)2
(5.61)
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While the Eigenvalue λc,i of the PCA analysis already matches with the variance
σ2
c ,i of the ith basis vector, this has to be additionally computed from Hc for

NMF-AAMs. On the one hand a specific computation of the mean and variance is
necessary for NMF-AAMs, on the other hand they instantly provide the coefficient
matrices Hs, Ht, and Hc, whereas those have to be determined explicitly in the
PCA case.

A further difference exists in the way of the implementation of the texture
model. For an Appearance Model of a texture resolution of 128 × 128 pixels,
the dimensionality of T is approximately 40 · 103 × p. The PCA on T requires
a detour mentioned in 4.2.2. Thus, an unbearable computational effort of the
Eigenvalue Decomposition of a covariance matrix in R40,000×n is avoided whereas,
the NMF can directly operate on T . However, this still constitutes the most
computationally expensive step in AM generation.

The constraints of the NMF regarding the non-negativeness of the shape, tex-
ture, and combined matrices are either naturally met (T ) or can be assured by
transformation of all normalized shapes into the first quadrant in the 2D landmark
space. As explained in section 5.2.1 the data representation in the NMF space
bases on additive linear combination of the basis vectors. This would prohibit
negative values in the coefficient vector hc. However, the subsequent optimiza-
tion algorithms assume the mean shape and texture to be in the origin of the
optimization space. In order to preserve the compatibility of the NMF model
with the implementation of the coefficient optimization, in each iteration n the
mean coefficient vector hc is added to hc[n] obtained from the optimization algo-
rithm (see section 4.3). Likewise the mean shape s (eq. 5.52) must be subtracted
from the generated shape of equation 5.57 before the warping transformation
W can be correctly applied on the original texture of the analyzed image (see
section 4.3.1). Therefore, with the mentioned compatibility requirements of the
NMF-AAM implementation the equations 5.57 and 5.58 now read

s = Qs

(
hc + hc

)
− s (5.62)

t = Qt

(
hc + hc

)
(5.63)

Although the NMF based Appearance Model is described by the same param-
eters (Qs,Qt, s, t) with the same semantic content, the algorithmic parameters
of the optimization strategies require an extensive adaptation to the NMF-AM.
This is mainly caused by the uniformer distribution of the explained variance
over the basis vectors in the NMF space and the different codomain of the model
coefficients. Details are given in the work of [52].

5.2.3 Conclusion

In this section we were able to retrace the relevant steps in the mathematical
argumentation provided in commonly available publications on the Non-negative
Matrix Factorization (abbrev. ’NMF’) [66] [65]. Based on this theoretical under-
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standing, exemplary experiments confirmed the reported behavior of NMF ap-
plied on image data [34], where a NMF decomposition of a set of images showing
objects of a specific class tends to provide a localized and parts based represen-
tation. This property allows for an independent modeling and synthesis of parts
of complex objects like a face with relatively independent eyes, nose, and mouse
variants. Thus, we developed and formulated the model generation process of
Appearance Models based on NMF instead of Principal Component Analysis for
the first time. Thereby, especially the non-negative constraints of NMF entail sev-
eral differences in the preprocessing and representation of the shape and texture
data. Despite the differences, a NMF-AM was formulated fully compatible with
the subsequent coefficient optimization routines which are originally designed for
PCA based AMs.

The presented experiments as well as the evaluation results (see chapter 6)
show the capability of the NMF for a more precise representation of the training
data at a greater dimensionality reduction compared to PCA. The limitation of
the required dimensions is a great advantage, since it heavily decreases the com-
putational effort of basically all coefficient optimization strategies. Unfortunately,
the PCA still delivers a statistical data model with enhanced generalization abil-
ities. Although this was not explicitly evaluated in this thesis, we suggest to
apply NMF based AAMs for the more precise and more compact, hence compu-
tationally cheaper, analysis of objects with a low variance, such as person-specific
AAMs.

5.3 Online Optimization of AAM Coefficients

Several experiments [47] have shown, that the offline gradient prediction scheme
of the standard AAM algorithm described in section 4.3.2 fails to optimize Ac-
tive Appearance Models under adverse circumstances. The discussed approach
shows sensitivity to unbalanced or insufficient illumination conditions with bad
brightness and contrast. In general, differences between the training samples
for the gradient prediction and the analyzed images are problematic and lead to
unsatisfactory results of the AAM re-synthesis and parametrization. Above all,
the gradient used during optimization is the estimated mean of several gradients
calculated during the training phase (refer to section 4.3.2). This procedure relies
on the assumption that the search space is similar for all faces and environmen-
tal conditions. Cootes et al. show that the a-priori predicted gradient is only a
good approximation of the real gradient for consistent training and application
scenarios and within a limited range from the optimum [27].

This assumption was introduced in order to achieve a remarkable reduction
of the computational effort. An online optimization scheme would require a com-
parably dense sampling of the actual multi-dimensional search space to find a
deep local or ideally global optimum. Although this online coefficient optimiza-
tion is a computationally intensive process, the quality of the convergence can
be drastically increased by using the “real” gradient. Additionally, the advances
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in CPU and GPU developments within the last decade, equip modern consumer
hardware with sufficient computational power to perform this task in reasonable
time scales - assuming a correspondingly optimal software implementation.

This section will cover several approaches to an online AAM coefficient op-
timization. For a proper introduction in the principles and theory of non-linear
optimization strategies please refer to [57].

Each of the online coefficient optimization algorithms tries to minimize E(h) =
1
2
||r(h)||2 (see eq. 4.27) in respect to the AAM coefficient vector h. In this

thesis we implemented and evaluated three different basic approaches, namely
Gradient Descent, Grid Sampling, and the Nelder-Mead algorithm [84], which
are presented in the following sections. Note that according to our experiments
[32] it is strongly suggested to normalize each search space dimension i to its
specific variance, i.e. λc,i for PCA-AAMs and σ2

c ,i (eq. 5.61 for NMF-AAMs).
Since the range of reasonable values for the AAM coefficients was found to be
within a deviation of three times the standard deviation from the global mean
(see section 4.2.3), the search space has a co-domain of ±3 in each dimension.
This is helpful to get a relation for the values of step width α and the sampling
densities.

5.3.1 Gradient Descent

The update rule in a Gradient Descent optimization approach for h[n] at iteration
n can in general be written as

h[n+1] = h[n] + α[n]δh[n] (5.64)

The algorithm starts with an initial estimation h[0] and a step width α. Hereby
δh[n] constitutes a multi-variate gradient consisting in a direction and a steepness.
The optimization task strives to find the global minimum with as few iterations
as possible. Furthermore it should be able to avoid getting stuck in local minima.
Due to the high dimensionality of the optimization problem (h ∈ Rµ

c with µc ≈
30) and the high computational costs of performing one iteration (esp. texture
synthesis and warping), we implemented the estimation of the gradient δh[n] at
the position h[n] as follows.

In accordance to the offline optimization described in section 4.3.4 it is sug-
gested to update α[n] between two consecutive iterations with one of the following
decay terms. One example multiplies α with a fixed factor β < 1 after each iter-
ation so that

α[n] = α · βn (5.65)

Another approach to update the step size is setting

α[n] =
α

(1 + n · γ)
with γ > 0 (5.66)

Our experiments have shown that the AAM shows generally better convergence
with the decay term of equation 5.65 and an initial step width α[0] ≈ 1.5 and
β ≈ 0.65.
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5.3.1.1 Independence of Dimensions

Firstly, we assume an independence of each dimension in the search space, apart
from the objective function of course. Thus, each AAM model coefficient is
optimized independently:

h[n+1],(i+1) = h[n],(i) + α[n]δh[n],(i+1) (5.67)

According to this equation, the gradient δh[n],(i+1) is estimated only for
the dimension (i + 1). The coefficient vector h[n+1],(i+1) of the next itera-
tion [n + 1] is instantly updated with δh[n],(i+1). In this approach the vectors
h[n+1],0, h[n+1],1, · · · , h[n+1],i, · · · , h[n+1],(µc−1) are computed successively.
Hence, the estimation of the gradient in the dimension (i + 1) profits by the
incorporated knowledge about the previous dimensions. This is especially supe-
rior to a single update by a multi-variate gradient per iteration, since the first
dimensions with the highest Eigenvalues λc,0 > λc,1 > · · · > λc,i > · · · > λc,(µc−1)

cover high variances and entail correspondingly significant changes in the search
space of an PCA-AAM.

5.3.1.2 Interval Sampling

For the gradient estimation as well as for the Grid Sampling (see section 5.3.2)
there are several methods of sampling the surrounding of the current position
h[n] in the dimension i with P sample points.

In the first variant, i.e. an equal distribution of the sample points, their

positions h
(p)
[n],i are obtained from

h
(p)
[n],i = h[n],(i−1) + τ (p) (5.68)

where

τ (p) = p ·
γ[n]

P
p ∈ N ∩

[
−P

2
;
P

2

]
\{0} (5.69)

An exponential distribution of the sample points can be implemented by

τ (p) = sign(p)

[(
γ[n] + 1

) 2|p|
P − 1

]
(5.70)

Unlike the equal distribution, this allows on the one hand a more dense search
space sampling in the direct surrounding of the current position and on the other
hand a more loose sampling of remote areas with the same amount of sample
points. However, this behavior is solely advantageous at high numbers of sample
points, e.g. P > 8, and large γ values, e.g. γ > 1.5.

As third possibility we implemented and tested a random distribution of P
sample points within an interval of

[
−γ[n]/2; γ[n]/2

]
which finally turned out to

produce the best results.
In accordance with the step width α[n], the interval size γ[n] should also be

updated with a decay term. Here, we implemented the same approaches as for
α[n] (see equations 5.65 and 5.66).
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5.3.1.3 Gradient Estimation

For each of the P sample points h
(p)
[n],i around h[n],(i−1) a difference quotient in

dimension i can be computed as approximation of the gradient by

∇E
(p)
i ≈

E
(
h[n],(i−1) + τ (p)

)
− E

(
h[n],(i−1)

)
τ (p)

(5.71)

Instead of these one-side differences, it can be numerically more stable to rely
on central differences. This would require twice as much warping and synthe-
sis operations per coefficient. However, here the symmetry of the sample point
distribution of equations 5.68 and 5.69 can be exploited. The central difference
quotient provides an estimation of the gradient by

∇E
(p)
i ≈

E
(
h[n],(i−1) − τ (p)

)
− E

(
h[n],(i−1) + τ (p)

)
2τ (p)

(5.72)

Based on these two variants we obtain a difference quotient for each of the P
sample points. Hence, we investigated several variants for the estimation of the
gradient from the difference quotients, i.e. an averaging over the entire interval,
an independent averaging on both sides of the sampling interval, and a maximum
search. The averaging is usually conducted in order to smooth high-frequency
noise in the search space. Our experiments [32] discovered that the error function
E(h) and hence the search space of the AAM coefficient optimization shows just
a negligible jitter. With this knowledge it is not surprising that the simplest
approach, i.e. maximum search, lead to the best results.

The termination condition for the Gradient Descent optimization bases on the
change of the minimal error function value

∆ E
(
h[n+1]

)
= E

(
h[n]

)
− E

(
h[n+1]

)
(5.73)

If

0 6 ∆ E
(
h[n+1]

)
< ε (5.74)

the algorithm is considered to be converged and terminates.

5.3.2 Grid Sampling

From the implementation view, the Gradient Descent and Grid Sampling ap-
proaches are very similar. The major difference consists in the neglect of the
multiplication of the delta vector δh[n] with the step width α[n] in equation 5.64.
Thus, this equation reads

h[n+1] = h[n] + δh[n] (5.75)
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Still, γ[n] is relevant for the determination of the sampling interval and the sam-
pling points as described in section 5.3.1.2. Grid Sampling provides for selection

of the best of the P sample points h
(p)
[n],i which leads to the minimal error energy.

Hence, unlike Gradient Descent, the updated coefficient vector h[n],i lies directly
on one of the sampled search space positions. Therefore, the values for P , γ[0],
and β are in a different codomain for the Grid Sampling algorithm. This ap-
proach requires a higher number of sample points, wider sampling intervals, and
a softer decay of the interval size.

The Grid Sampling incorporates the same termination condition as the Gra-
dient Descent as described by the equations 5.74 and 5.73.

Again in contrast to the Gradient Descent algorithm, the exponential dis-
tribution of the sample points in the search interval is superior to an equal or
random distribution, whereas a considerable number of points is required.

5.3.3 Nelder-Mead or Simplex Optimization

At both approaches mentioned above, Gradient Descent and Grid Sampling, the
error function E(h) has to be evaluated P · µc times per iteration n with typical
values of P ≈ 10 and µc ≈ 30. This corresponds to a number of P · µc calcula-
tions of the difference image r(h) = A ◦W (p, s(hc))− t(hc) which requires the
computationally expensive tasks of texture warping from the original image and
texture synthesis (see section 4.3.1). However, finally just the information of µc
sample points, i.e. ∼ 10% of the gained knowledge about the search space, is
actually saved for the next iteration.

This is the decisive advantage of the Simplex Optimization introduced by J.A.
Nelder and R. Mead in [84] as it is described in the following. Let the optimization
search space be defined in Rd+1. In case of AAMs the dimensionality adds up to
d = µc + 1, i.e. µc coefficients in h plus the one dimensional objective function
E(h). Although in our case d = µc holds, we stick to the notation with d for an
improved readability.

The central element of this method constitutes a d-Simplex which is a (d+ 1)
dimensional analogue of a triangle. In general, a simplex is the convex hull of a
set of (d+ 1) affinely independent points in some Euclidean space of dimension d
or higher. Illustratively, affinely independent points are a set of points such that
no m-plane contains more than (m + 1) of them. Such points are said to be in
general position.

The initial d-simplex is positioned with the initial estimation h[0] as its center
of gravity and vertices of a distance of 1 from the center. In our case, the (d+ 1)
vertices are described by the coefficient vectors h(p). According to our experi-
ments the construction of the initial simplex has just marginal influence on the
convergence properties as long as it is not chosen too small. Since the simplex is
predominantly contracted during the optimization run, the initial simplex should
not fill less than one fifth of the search space dimensions.

Now, at each vertex of the simplex the objective function is evaluated. Hence
they are ordered by the value of their objection function in ascending order:
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E
(
h(0)

)
6 E

(
h(1)

)
6 · · · 6 E

(
h(d)

)
(5.76)

Let h be the center of gravity of all points except the worst h(d). Subsequently,
the point h(d) is reflected at h according to

hr = h− ρr
(
h(d) − h

)
(5.77)

We compute the error function at the new position E (hr).
This stage requires a case differentiation:

• E (hr) < E
(
h(0)

)
, i.e. the new point is “better” than all vertices of the

simplex. In this case an expansion is performed (see equation 5.78).

• E
(
h(p)

)
6 E (hr) < E

(
h(p+1)

)
with p > 1∨p < d, i.e. the overall position

of the simplex was improved but no new “best” sample point could be found.
In this case a contraction is performed (see equation 5.80).

• If the new point hr is worse than all vertices before, a shrink is performed
(see equation 5.81).

Since in the first case the reflection of the worst vertex leads to a new mini-
mum, it is assumed that the direction of the reflection could point to the searched
minimum. Thus, the new simplex is expanded in this way to the point he by

he = hr + ρe
(
hr − h

)
(5.78)

If E (he) < E (hr) the new simplex is described with the vertices(
he,h

(0),h(1), ...,h(d−1)
)

(5.79)

Otherwise, hr would be applied instead of he. A re-ordering of the vertices in
accordance with equation 5.76 prepares the vertex for the next iteration.

In case of the new point hr queues within the other vertices with respect to
its error function, this indicates that the performed reflection does not point in
the direction of the minimum. Therefore, the simplex is contracted by

hc = h+ ρc

(
h− h(d)

)
(5.80)

Again, if E (hc) < E (hr) the new simplex is described with the vertices(
hc,h

(0),h(1), ...,h(d−1)
)

, otherwise applying hr. The iteration is finalized with

the re-ordering following equation 5.76.
When the result of the reflection shows an even higher error function E (hr),

it can be assumed that the currently best vertex h(0) of the simplex lies close to
or at least in the direction of the minimum. Hence the entire simplex is shrunken
around this point and all other d points are re-computed:
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h(i)
s = h(0) + ρs

(
h(i) − h(0)

)
(5.81)

Unfortunately, after a shrink step the objective function must be evaluated
for all moved vertices. Consequently this is the most computationally expensive
possibility. Luckily, it is required very rarely according our experience during
AAM coefficient optimization. It can appear especially at the end of the process,
when the simplex converges around the minimum.

Eventually, the ordering of the vertices with respect to the objective function
is performed again. Each Nelder-Mead iteration ends with the validation of the
termination condition:

∆h(d) =
∥∥∥h(d)

[n−1] − h
(d)
[n]

∥∥∥2

< ε (5.82)

Here, h(d) denotes the center of gravity of the entire simplex in contrast to h
where only the best (d − 1) vertices are involved. During the Nelder-Mead op-
timization, the simplex tends to collapse around the found minimum. If finally
the displacement of the center between two consecutive iterations falls under a
certain threshold ε, the simplex got so small that a performed contraction or
shrink had just marginal influence on the centroid of the simplex and thus no
relevant impact on the found minimum. Since the displacement fell under the
threshold, it is assumed that accordingly the error energy does not face further
improvement and the optimization algorithm is considered to be converged.

The co-domain of all relevant factors ρ is ]0; 1[. These factors are valuable for
the adjustment of the simplex behavior in the search space. For all ρ, a value
close to 1 leads to a rough sampling and an agile simplex while a value close to
0 performs a denser sampling of the search space and keeps the simplex starchy.
Please note that the factors ρe and ρc are directly dependent on ρr. Typical
values are ρr = 1, ρe = ρr = 1, ρc = 0.5ρr = 0.5, and ρs = 0.5.

Eventually, the Nelder-Mead or Simplex Optimization algorithm is capable to
preserve and incorporate the knowledge about the search space gained from the
sample point from iteration [n] to iteration [n+1], except for the rare shrink case.
Since each sampling point is highly valuable not just with respect to its infor-
mation but especially with respect to its computational effort, the Nelder-Mead
is highly superior in comparison to all other previously introduced approaches.
However, its convergence properties around the minimum thwart this algorithm.
An increase of the ∆-threshold ε as countermeasure however instantly delivers
inferior optimization quality than a Grid Sampling with random sample point
distribution.

A comprehensive discussion of the Nelder-Mead optimization strategy is given
by K.E. Vurgin in [117]. He covers the convergence properties, and the well-
known combination with the Simulated Annealing approach for search spaces
with distinctive local minima.
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5.3.4 Conclusion

The three introduced optimization strategies primarily differ in the computa-
tional complexity of an optimization run. The Gradient Descent as well as the
Grid Sampling usually require 5 to 10 sample points for each dimension whereas
the evaluation of each sample point needs an AAM synthesis. Consequently, the
update of the complete coefficient vector with about 30 dimensions invokes up
to 300 AAM syntheses. In contrast to these approaches, the Simplex algorithm
updates the entire coefficient vector in each iteration and is therefore approxi-
mately 10 times faster than the other strategies. The only expensive operation
is the shrink step of the Simplex. This appears when the Simplex melts into
the found minimum and reduces the computational advantage against the Grid
Sampling. The evaluations in chapter 6 show clearly that the Nelder-Mead or
Simplex algorithm constitutes the best trade-off between computational effort
and re-synthesis quality. Throughout, this optimization strategy is significantly
superior to the standard optimization based on a predicted gradient.

5.4 GPU-Accelerated Active Appearance Mod-

els

The previous section has already given examples for the runtime complexity of
several AAM coefficient optimization algorithms. We have identified the objective
function from eq. 4.27 as most critical section of the algorithm. Basically there
are two major aspects worthwhile to be discussed: the warping transformation
W and the AM texture synthesis. Besides these two expensive operations the
texture alignment A and difference energy calculation also have a serious impact
on the overall runtime of the AAM coefficient optimization algorithm. Our goal
is to optimize these aspects of AAMs by accelerating our implementation via
GPU-based routines.

5.4.1 Warping

This section discusses the warping transformation W as introduced in section
4.1.2. We incorporate GPU-accelerated rendering operations based on OpenGL
2.0 [103] and multiple extensions to the standard. This section covers the theory
and concepts behind our software module “WarpingEngine2” [85] which provides
a broad interface and allows a comfortable integration in arbitrary C/C++ ar-
chitectures.

5.4.1.1 Geometry

The goal of a warping operation is to geometrically deform an arbitrary region
of an image and morph it from one set of scattered 2D vertices X to another set
of scattered 2D vertices X ′. These vertices are represented as 3D homogeneous
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coordinates. A shape deformation on a texture in this context requires several
items:

• A source image p that is downloaded to GPU texture memory.

• |X | source vertices X = {xi = (x0i , x1i , 0, 1)T | 0 6 i < |X |}, defining the
2D geometry of an arbitrary region on the source image p, that shall be
geometrically deformed.

• The same number of |X | destination vertices X ′ = {x′i = (x′0i , x
′
1i
, 0, 1)T | 0 6

i < |X |} which define the shape the image region shall be warped into.

• A triangle index list 	 that describes the geometry itself. One triangle
ψi ∈ 	, 0 6 i < |	| is defined as 3-element vector ψi = (ψ0i , ψ1i , ψ2i)

T

with ψ0i , ψ1i , ψ2i ∈ {0, . . . , |X | − 1} and ψ0i 6= ψ1i 6= ψ2i correspond to
the three indices of the vertices which describes the triangle ψi. Triangles
are generated using a modified DeWall triangulation algorithm [32]. This
algorithm generates a planar set of triangles 	 for a given set of scattered
vertices in 2D space each triangle holding the Delaunay criterion [29].

The geometry of a shape rendered by an OpenGL pipeline is made up of the
source vertices xi ∈ X , the vertex color χi = (χ0i , χ1i , χ2i , χ3i)

T ∈ χ, the normals
ni = (n00 , n10 , n20)

T ∈ N , and the destination vertices x′i ∈ X ′. All of these
values are stored interleaved in the OpenGL vertex array b which is defined as

b = (x00 , x10 , 0, 1︸ ︷︷ ︸
x0

, χ00 , χ10 , χ20 , χ30︸ ︷︷ ︸
χ0

, 0, 0, 0︸ ︷︷ ︸
n0

, x′00
, x′10

, 0, 1︸ ︷︷ ︸
x′0

, . . . , (5.83)

x0|X|−1
, x1|X|−1

, 0, 1︸ ︷︷ ︸
x|X|−1

, χ0|X|−1
, χ1|X|−1

, χ2|X|−1
, χ3|X|−1︸ ︷︷ ︸

χ|X|−1

, 0, 0, 0︸ ︷︷ ︸
n|X|−1

, x′0|X|−1
, x′1|X|−1

, 0, 1︸ ︷︷ ︸
x′|X|−1

)T

The vertex normals ni ∈ N are unused and set to zero as they are only important
for lighting calculation which is not required for straight warping. The order
of the elements in the vertex buffer are optimized for the OpenGL rendering
pipeline and accessed via a vertex buffer object [68, 50] as interleaved vertex
array [104]. Figure 5.12 illustrates the rendering pipeline of the WarpingEngine2.
An arbitrary number of k shapes can be combined to produce one warping result
in the framebuffer.

The source vertices X directly correspond to the AAM landmarks si defined
on the input image pi and are loaded as texture coordinates into the OpenGL
pipeline.

The destination vertices are loaded as 2D-geometry into the OpenGL pipeline
and define the object that is going to be rendered. Parts of the source image p
(defined by the source vertices) are mapped as texture onto the geometry defined
by the destination vertices.



5.4.1 Warping 81
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Figure 5.12: WarpingEngine2 rendering pipeline

The bounding box 1 of the destination vertices is later used to adjust the
projection so it perfectly fits the destination vertices (see figure 5.13).

(xbb, ybb)
T

wbb

hbb

Figure 5.13: The bounding box of an AAM shape s (destination vertices)

5.4.1.2 Projection

As 2D warping is desired only, it is reasonable to set an orthographic projection,
eliminating perspective artifacts and keeping parallel lines parallel after projec-
tion. It is not distinguished between objects which are near to the camera or far
away from the observer – except that their rendering order is determined by their
z-coordinate.

Identity For a graphical illustration of the scene setup see fig. 5.14. The
observer is viewing the scene into the positive z-axis direction. The origin is
located in the lower left corner of the framebuffer. The viewing frustrum is

1The bounding box of a scattered set of vertices is the minimal rectangular box that contains
all of the vertices. The bounding box is perpendicular to the x and y axis of the coordinate
system
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visualized as a gray box where areas outside are clipped away. The near clipping
plane is located at z = ν and the far clipping plane at z = ϕ.

Observer

Near clipping plane ν Far clipping plane ϕ

hfb

wfb

hbb

wbb

0
x

y

z

Framebuffer Viewing frustrum

Figure 5.14: WarpingEngine2 scene setup: viewport, projection and viewing frus-
trum

The viewport is adapted to fit the extends of the framebuffer and the projection
is modified so the observer (camera) perfectly covers the bounding box of the
destination vertices X ′. Assuming it has a width of wbb and a height of hbb
units and its position is (xbb, ybb)

T within the world coordinate system. If the
framebuffer has a resolution of wfb × hfb pixels, with ν and ϕ corresponding to
the near and far clipping planes, the initial projection assuming that the left
bottom origin is set to (0, 0)T is defined as

2
wfb

0 0 −1

0 2
hfb

0 −1

0 0 − 2
ϕ−ν −

ϕ+ν
ϕ−ν

0 0 0 1

 (5.84)

This projection is scaled by
wfb
wbb

in x-direction,
hfb
hbb

in y-direction and respectively

translated by (−xbb,−ybb)T . The final projection matrix P can be calculated by
applying these transformations to the matrix defined in eq. 5.84, producing

P I =


2
wbb

0 0 −w2
bb+wfb
wbb

0 2
hbb

0 −h2
bb+hfb
hbb

0 0 − 2
ϕ−ν −ϕ+ν

ϕ−ν
0 0 0 1

 (5.85)

The projection transformation P I is applied during rendering operations to make
sure that the destination vertices optimally fill out the whole framebuffer.

Translation, Rotation, and Scaling It is equivalent to either transform the
projection or instead transform the geometry applying the inverse transforma-
tion. The projection transformation is only used to adapt the camera to the
bounding box of the geometry. Section 5.4.1.5 explains how the location, scaling
and rotation of the geometry itself is modified.
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5.4.1.3 Source image

The source image p is stored in the GPU texture memory as 2D texture. The
OpenGL 2.0 standard normally requires textures to have power-of-two dimen-
sions. This limitation is eliminated by using the ARB texture non power of two

[99] extension. This extension has several advantages over the ARB texture rectangle

or NV texture rectangle extensions which implement a very similar concept [62]:
Usage is natively supported, no special texture type is introduced and all ad-
vanced texture features such as filtering or texture borders are available.

As texture allocation is an expensive operation, texture memory is recycled
where applicable. The texture layout and usage scenario is shown in fig. 5.15. To
re-use texture memory, a rectangular virtual region is mapped onto a physical area
in texture memory. Initially a texture is always generated exactly matching the
requested resolution. Successive iterations may re-use the allocated memory area
if it is large enough to hold the texture data, allowing to use only a subregion of it.
If the physical texture is not large enough to hold the new texture, it is enlarged.
Thus we must always assume, that virtual and physical texture dimensions differ,
with the virtual texture resolution being equal or less than the physical.

5.4.1.4 Source vertices

The source vertices xi ∈ X are mapped on normalized texture coordinates x̂i ∈
X̂ . One has to distinguish between physical and virtual texture coordinates where
both have their origin in the upper left corner of the texture. Physical texture
coordinates are always normalized in respect to the physical texture size of wt×wh
where wt and wh are measured in pixels. Furthermore a region of interest (abbrev.
’ROI’) can be defined on the image p that has a dimensionality of wr × hr pixels
and its origin at (xr, yr)

T pixels. A region of interest is essential for all AAM
optimization algorithms for pose adjustments being calculated relative to the
size of the head. This makes the whole AAM coefficient optimization algorithm
resolution independent. For instance, a translation of −0.5 in x-direction moves
the texture coordinates (the source vertices) half the width of the head.

As transformations shall be applied relative to the source image ROI, a map-
ping between the ROI and the physical texture coordinates has to be found,
completely hiding the virtual texture paradigm from the programmer.

Identity The source vertices X given in pixel coordinates relative to the upper
left corner (xr, yr)

T of the source image ROI have to be normalized. Setting the
texture identity transformation to

TI =


1
wt

0 0 xr
0 1

wh
0 yr

0 0 1 0
0 0 0 1

 (5.86)
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(0, 0)T

(1, 1)T
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y

wt

wh
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(xr, yr)
T

wr

hr

Figure 5.15: WarpingEngine2 texture setup: virtual and physical texture

transforms the source vertices xi = (x0i , x1i , 0, 1)T ∈ X into the normalized
texture coordinates x̂i ∈ X̂ with

x̂i = Txi (5.87)

=

(
x0i

wt
+ xr,

x1i

wh
+ yr, 0, 1

)T
(5.88)

Translation To translate the normalized texture coordinates x̂i ∈ X̂ relative
to the size of the source image ROI by (tx, ty, tz)

T , the following transformation
must be applied:

x̂i
′ = S−1LSx̂i (5.89)

with L being a default translation matrix and S a scaling matrix that scales by
(wr, hr, 1)T . The final translation matrix can then be written as

Tt =


1 0 0 tx

wr

0 1 0 ty
hr

0 0 1 tz
0 0 0 1

 (5.90)

Rotation, Scaling To rotate or scale the source vertices X on the source im-
age p default homogeneous coordinate transformations are applied. Prerequisites
such as translation of the texture coordinate space origin into the center of rota-
tion must be met accordingly.

5.4.1.5 Destination vertices

The destination vertices X ′ are passed into the OpenGL pipeline as specified. The
projection is adapted to fit their bounding box (see fig. 5.13), so no modification
of the model identity transformation MI = I is necessary.
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To achieve resolution and model independent translation relative to the size
of the bounding box of the destination vertices by (tx, ty, tz)

T , the scaled model
translation matrix Mt is defined as

Mt =


1 0 0 txwbb

w2
fb

0 1 0 txhbb
h2
fb

0 0 1 tz
0 0 0 1

 (5.91)

Rotation and scaling is applied unmodified by either a general rotation matrix
R or a scaling matrix S.

5.4.1.6 Warping

The warping process takes the destination vertices X ′ as geometry and maps the
source image as texture onto it while it is being rendered. The source vertices
X define the texture coordinates and thus control how the texture is going to be
mapped onto the rendered geometry.

During rendering several blending attributes may influence how the final frag-
ments are combined. Let χt ∈ R4 be the texel color, χf ∈ R4 the fragment color,
and χv ∈ R4 the interpolated vertex color. The operator � is the element-wise
vector multiplication. In this case each of the vector elements is simply multiplied
with the scalar s. Generally a color is described by a 4-element vector, contain-
ing one element red, green, blue, and an alpha transparency value, respectively.
Then the final fragments color is calculated by χf = χt � χv which modulates
the texture color by the vertex color χv of the shape. This allows for blending
the rendered shape with other shapes beneath or with the background.

Currently triangles are not sorted back to front so it might occur that they
overlap and produce artifact as shown in figure 5.16. In the future this could
be solved by either manually or automatically adding depth information to the
destination vertices. However, as the vertices of a human face in an Appearance
Model usually do not produce such artifacts or only under extreme conditions, it
can be ignored.

Figure 5.16: Incorrectly warped texture with overlapping triangles on the right
edge of the face
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5.4.2 Coefficient Optimization

This chapter describes fundamental concepts and algorithmic design issues of
GPU-AAMs. Implementation specific details, data structures, and how GPU-
AAMs are actually implemented can be found in [32].

AAM coefficient optimization necessitates many costly operations. It is pri-
marly any texture related task that renders the overall method expensive. This
is why we emphasize out efforts on optimizing these costly operations.

5.4.2.1 Minimizing traffic

If only warping is performed on the GPU as in previous implementations [32],
it is necessary to transfer the warped texture back into CPU memory for each
iteration during coefficient optimization. Assuming an RGB color texture with
a resolution of 128 × 128px these are about ∼ 192KB for each warped texture.
If doing n = 10 Gauss-Newton iterations ∼ 1.875MB have to be transferred for
optimizing one image frame. Besides the occurring traffic it is also necessary to
synchronize with the OpenGL pipeline as all OpenGL rendering operations must
be finished, before the resulting frame can be read back from device into host
memory. This destroys any asynchronism. Hence it is important to minimize
traffic between host and device memory.

Figure 5.17 illustrates the CPU-based coefficient optimization. In this context
the term CPU-based is not really correct, as warping is already performed on
the GPU but as most of the optimization algorithm (texture synthesis, difference
image calculation, error energy calculation) is performed by the CPU, we call this
approach CPU-based AAM coefficient optimization. This demands a permanent
read-back of the warped texture from device to host memory, indicated by the
double arrow.

Evaluator Vertex
Processor Rasterizer Fragment

Processor

Geometry Texture
Memory

Pixel
Operations Framebuffer

Figure 5.17: Schematic illustration of CPU-based coefficient optimization

In contrast to the CPU-based optimization our GPU-based approach is il-
lustrated by figure 5.18. Most of the texture related, expensive operations are
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performed by the device, like warping, texture synthesis and difference image
calculation. Only the shape synthesis is performed by the host.

Image Source AAM SVM

Input Feature Extraction Classification

Image Coefficent vector

Figure 5.18: Schematic illustration of GPU-based coefficient optimization

The image that shall be optimized is downloaded only once to device memory
and remains there during all iterations. The texture synthesis as well as the
difference image calculation is performed by the device, eliminating the necessity
for reading back the warped result into host memory. The texture difference and
energy calculation is also performed by the device and only one float value – the
texture difference energy – is read back to host memory.

Especially sampling algorithms that calculate their gradient online highly
profit from this strategy, as they require at least one sequence of warping-
synthesis-difference per AAM coefficient per iteration which sums up to a huge
number of warping, synthesis and texture difference energy calculations. For in-
stance, a gradient descent with n = 10 iterations, a grid sampling with P = 10
samples for about |h| ≈ 30 coefficients, requires 3000 single warping, texture and
difference energy calculations per image.

5.4.2.2 Texture synthesis

The texture synthesis as introduced in eq. 4.26 is very expensive, as the ma-
trix Qt is huge. Assuming that a RGB color model with a texture resolution
of 128 × 128px is used, the texture basis Qt is defined as Qt ∈ R49152×µc . The
matrix-vector product and vector sum in t(hc) = t + Qthc can largely benefit
from the parallelism made available by GPUs. Hence, it is promising to do tex-
ture synthesis completely on the GPU. The matrix Qt has only to be downloaded
once to GPU memory and only the coefficient vector hc which is very small (usu-
ally µc ≈ 30) compared to a whole texture has to be transferred each iteration.
The result of the texture synthesis can directly reside in device memory used as
operand during texture difference calculation to gain r(h) and finally calculate
the energy E(h). The texture synthesis is implemented via the CUBLAS SGEMV
operation [87, 88]. The result resides in CUDA address space.

5.4.2.3 Warping and texture alignment

The geometric deformation of the original image texture p into the shape given
by the mean shape s is also done by the GPU. The implementation package
WarpingEngine2 is used to perform any warping operations during AAM coeffi-
cient optimization. The result of warping is rendered into texture memory and



88 5.4 GPU-Accelerated Active Appearance Models

is left there for further processing. It is used as second operand during texture
difference calculation to gain r(h).

The warped result is mapped into CUDA address space as by now it is only
available in OpenGL texture memory. It is copied into a PBO and mapped
into CUDA accessible memory. The copy operation is acceptable as it is only a
device-device copy that largely benefits from ultra-fast device memory2.

As the warped texture tw = W (p, s(hc)) lies in a different domain than the
synthesized texture t, it is necessary to align the warped texture tw to the mean
texture t, applying the texture alignment transformation A from eq. 4.31. As the
warped texture is available in CUDA after mapping, the alignment is implemented
in CUBLAS.

5.4.2.4 Difference energy

The objective function E(h) = 1
2
||A ◦W (p, s(hc))− t(hc)||

2
that shall be opti-

mized depends on the difference image between warped and synthesized texture.
On this difference image the energy is calculated to finally produce a single float-
ing point value that measures the convergence quality and is the target value of
optimization.

Both operands, the warped as well as the synthesized texture are available in
CUDA address space. Thus the difference and error energy is calculated using
CUDA/CUBLAS.

5.4.3 Conclusion

Due to the very large amount of data and the resulting computational complexity
of the image processing operations in AAMs, we developed strategies to transfer
the most consuming tasks to the graphics processor (abbrev. ’GPU’). We have
identified the objective function from eq. 4.27 as most critical section of the
algorithm. Basically there are two steps which deserve the best possible accel-
eration: the warping transformation W and the AM texture synthesis. Besides
these two expensive operations the texture alignment A and difference energy
calculation also have a serious impact on the overall runtime of the AAM coeffi-
cient optimization algorithm. In this section we have presented the required data
structures and routines allowing for a efficient processing of the AM data by the
GPU plus a minimization of the data exchange traffic between the GPU memory
and the CPU RAM. Depending on the resolution of the Appearance Model, our
GPU based implementation provides an accelerated face analysis by factor 4 to 7.
While the benefit is less significant at the offline optimization, strategies such as
the Simplex (see section 5.3.3) with their high number of required face syntheses
are boosted by GPU involvement.

2The NVIDIA G8x chipset has a peak memory transfer rate of about ∼ 80GB/sec.
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5.5 Evaluation Measures for the Quality of

AAM Re-synthesis

When it comes to the application of Active Appearance Models for the
parametrization of faces, two scenarios shall be considered herein.

• Face re-synthesis: The target is to find an optimal reconstruction of the
face by the AAM coefficients emphasizing a correct placement of the land-
marks. Commercial applications for instance use the original face image
with the automatically positioned landmarks to generate a Talking Head
[15]. The quality of the re-synthesis is determined by the displacement of
the automatically acquired landmarks from their ideal positions. However
a comparison would require a manual annotation of the analyzed image.
Finally, the quality is measured subjectively from the degree of realness of
the re-synthesis by human perception.

• Information extraction: Here, the parametrization of the unknown face by
AAM coefficients shall serve as features with high entropy for a subsequent
recognition of relevant properties of the face. The quality of re-synthesis is
directly correlated with the recognition performance as we will see later on.
However, the recognition performance is influenced by too many additional
parameters, such as the chosen classification algorithm, its parameter set-
ting, the data corpus, etc., and does not pay for a reliable quality measure.

After all, the quality of the AAM re-synthesis is subject to the human per-
ception. Thus, an automatically computable measure shall be identified which
emulates the perception of quality. Furthermore it should be independent from
the number of landmarks and the resolution of the model in order to preserve
comparability over different AAM parameter settings. Based on the most suit-
able measure, the re-synthesis performance of our implemented AAM variants is
evaluated in section 5.5.3.

At first, a test set of images was created. Based on this set four different
quality measures were implemented and evaluated. These are: error energy,
spatial error energy, and inner vector product.

5.5.1 Dataset Annotation

We performed a random selection of 200 images from three different image
databases: AR Database [72], FG-Net Aging Database [1], NI-Face Database
[2]. These databases are described in section 6.2. Let the set of 200 images be
denoted by PQ. The re-synthesis of the images pq,i ∈ PQ was conducted using
the standard AAM approach with predicted gradient optimization (see section
4.3.2). For each database a specific AAM is applied which does not contain any
images of PQ. Thus all analyzed images are unknown to the model. The quality
of the re-synthesis was annotated by four persons in the scale of 1 (very good)
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to 5 (very bad). The inter-annotator agreement measured by the Fleiss’ Kappa
coefficient [40]

κ =
P − Pe
1− Pe

(5.92)

resulted to κ = 0.7. It indicates the inter-annotator agreement with respect to
the agreement to be expected by chance relative to the frequency of the class
occurrences.

The annotation results for table 5.1 were gained by cropping of the best and
the worst rating and computing the rounded average value out of the remaining
two annotators. Table 5.5.1 shows the distribution of annotation classes.

Class number 1 2 3 4 5
Occurrences 23 27 53 51 46

Table 5.1: Distribution of convergence quality annotation from 1 (very good) to
5 (very bad)

Hence, we regard the task of finding a suitable quality measure as classification
problem. The functions described in the following sections serve as features for a
C4.5 Decision Tree which strives to find optimal thresholds as decision functions
for classification.

5.5.2 Quality Measures

In the following sub-sections, various measures are introduced which all describe
different properties of the similarity between the synthesized texture and the
shape normalized original image (see section 4.3). In the subsequent section, all
measures are applied and selected as features in a classification task to resemble
the human perception as discussed above in 5.5.1.

5.5.2.1 Error Energy

All strategies for the AAM coefficient optimization described in this thesis include
termination criteria which base on the final change of the error energy falling
beyond a given threshold.

This error energy is obtained from equation 4.27. Independence from the
model resolution is ensured by a normalization to the number of pixels c (compare
equation 4.9). Thus, the relative error energy results to

E(h) =
1

2 · c
||r(h)||2 (5.93)

However, measuring the quality of convergence by examining the pure difference
texture is suboptimal, as it does not ensure that the AAM actually found the
correct location of the face within the input image [47]. Especially, the difference
texture reveals only indirectly the placement of the shape landmarks.
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Furthermore it averages over the entire texture. Therefore, a re-synthesis
which for instance widely matches the eye region but fails the mouth region
may produce the same error energy as a re-synthesis where for example the x-
translation places the face too far aside. Additionally, a difference image showing
a texture deviation over the entire face will again lead to a similar value of the
error energy.

Considering these properties of the error energy as evaluation measure the
poor classification result shown in section 5.5.3 is not astonishing.

5.5.2.2 Spatial Error Energy Distribution

Figure 5.19: Example of an AAM difference image

In order to overcome the drawbacks of the pure error energy function (eq.
5.93) we investigated different similarity measures which explain the spread, ac-
cumulated coverage, and intensity, of areas with high texture difference values.
For this purpose the difference image is converted to a binary image applying a
difference threshold λ by means of all pixels with a difference > λ are labeled
with 1, all others with 0.

A “blob detection” algorithm is applied on the binary difference image. This
delivers a set of connected areas (blobs) of 1-pixels . Hence, for each blob bi
the x- and y-dimension bx,i and by,i of the framing rectangle as well as the size
in number of pixels |bi| is computed. In order to avoid noise effects, all blobs
with a size |bi| < 1% · c are neglected for further considerations, where c is the
number of pixels of the AAM texture. Let a number of I blobs be kept in this
way. The average compactness of all blobs is determined by γ = 1

I

∑
i
|bi|

bx,i∗by,i .

The accumulated relative coverage of all blobs is obtained from |B| =
∑

i |bi|/c.
Further the averaged error energy over all blob-pixels and the relative sum of
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all blob pixels normalized by c is computed. Finally, the overall maximum pixel
error value (i.e. brightest pixel in r(h)) is determined.

Eventually six additional parameters for the description of the difference image
and thus of the re-synthesis quality have been extracted.

5.5.2.3 Inner Product

The previously presented measures exclusively operate on the difference image
r(h) between the synthesized texture and the shape normalized original image,
as expressed in equation 4.30 and repeated here:

r(h) = A ◦W (p, s(hc))− t(hc) (5.94)

As known from geometry the length and orientation of two vectors can be
compared by the Inner Product or Dot Product or Scalar Product as equivalents.
We can consider the textures t(hc) and A ◦W (p, s(hc)) as vectors of the same
high-dimensional space but with possibly different orientations [111]. In order to
obtain the angle Θ between the vector we must compute the Inner Product:

Θ = arccos
[A ◦W (p, s(hc))] · t(hc)
|A ◦W (p, s(hc))| |t(hc)|

(5.95)

Unfortunately, due to the in average low error values and the high dimension-
ality of the space on the other hand, the angles Θ lie in a range too close to zero
considering the computational accuracy. Thus, we neglect the arccos and instead
set the quotient to the power of ν = 30 to obtain a meaningful stretching in the
domain between 0 and 1.

ΩT =

(
[A ◦W (p, s(hc))] · t(hc)
|A ◦W (p, s(hc))| |t(hc)|

)ν
(5.96)

As the results presented in the subsequent section show, this measure resem-
bles best the human perception of re-synthesis quality. Therefore, this measure
is henceforth referred to as Texture Similarity with the notation ΩT . The ideal
re-synthesis would result in a value of ΩT = 1. The worse the similarity is, the
more will the value decrease against 0.

The same procedure can be applied for measuring a shape deformation ΩS.
Here ΩS is computed by the Inner Product of the mean shape s (see section 4.1.1)
and the shape synthesized during optimization by s(hc) = s +Qshc (compare
equation 4.25). It indicates the deviation of the synthesized shape from the mean
shape. In practice this measure is less adequate to resolve very good and good
re-synthesis quality but rather for detection of divergence of the AAM during
coefficient optimization. Thus we applied this measure as additional termination
or restart condition for the optimization strategy. It also allows for weeding out
images with an exceedingly high shape deformation for a subsequent classification
task, since such analysis will not provide an accurate parametrization of the
analyzed object.
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5.5.3 Evaluation of Quality Measures

The preceding sections introduced a considerable set of descriptors for the quality
of AAM re-synthesis. All these measures were evaluated separately and as feature
set. The target is to find measures and decision rules which are able to reproduce
best the results of the human perception experiment in section 5.5.1. For this
purpose a C4.5 decision tree [95] training and evaluation was performed in WEKA
[122]. Applying the C4.5 on a single feature basically results in a set of n intervals
for an n-class problem. The confusion matrices and the mean accuracy for the
set of overall eight features are shown in table 5.2 (a). The classification accuracy
of the error energy E(h) alone lead to poor 42%. The best single feature and just
2% below the set recognition performance turned out to be the Texture Similarity
ΩT which widely confirms the studies in [111].

1 2 3 4 5
1 7 9 4 3 0
2 3 20 4 0 0
3 1 3 39 8 2
4 1 0 1 5 4
5 0 2 2 3 29

Mean acc.: 70%

(a)

1 2 3 4 5
1 5 12 2 3 0
2 2 18 0 5 2
3 0 5 41 12 0
4 0 1 2 42 6
5 0 3 0 13 30

Mean acc.: 68%

(b)

Table 5.2: Confusion matrices for C4.5 re-classification of all quality measures
(a) and Texture Similarity only (b)

Due to the low computational effort compared to the spatial error energy
measures, the Texture Similarity was chosen to be the basis for all evaluations
addressing the re-synthesis quality of the AAM analyses.

5.6 Summary

Apart from a detailed overview of the activities and research results in the area of
Active Appearance Models, this chapter introduced an excerpt of the developed
variants and improvements during our research. The contributions address all
stages of the Active Appearance Model algorithm, namely the model generation,
the coefficient optimization, and the evaluation of the re-synthesis quality. Addi-
tionally, the aspects of an efficient implementation based on GPU involvement are
covered. When it comes to real life applications an implementation accelerated
by graphics programming is mandatory to handle the immense computational
effort. With the Non-negative Matrix Factorization a completely novel variant
of Appearance Model generation is presented which can be subject of multiple
further research activities. Standard AAMs suffer under the widely unrealistic
precondition that the search space of AAMs is similar for all target objects under
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the whole range of variations in initializations, illuminations, and views. In or-
der to overcome this constraints, we investigated several optimization strategies
which operate without prediction schemes about the search space. Thereby, the
Simplex strategy turned out to be powerful with respect to the computational
efficiency and the quality of the re-synthesis. With this AAM extension the way
to new applications and the fast acquisition of (semi-)automatically annotated
training material is open.



Chapter 6

Application of Active
Appearance Models to Face
Analysis

All methodologies, theoretically introduced in the chapters 4 and 5 were imple-
mented during numerous research works in conjunction with this thesis. The
engineering and implementation of the FacE Analysis System FEASy (see sec-
tion 1.3) attached great importance to the provision of an interface which allows
for the application of all described AAM variants and the setting of virtually
all corespondent algorithmic parameters. For instance, this XML-based interface
provides the opportunity to perform an AAM generation at different resolutions,
with PCA or NMF, for arbitrary image sets, and applying one of the various
optimization strategies plus the setting of the specific parameters influencing the
behavior of selected sub-methods. This demands for a multi-layered, object ori-
ented, and highly flexible software architecture with a correspondingly high design
and implementation effort.

After all, this is the basis for the manifold investigations of the peculiarities
and capabilities of the Active Appearance Model algorithm and its derivatives.
Still the evaluations presented in this chapter are a cutout of the possible issues
to be examined around AAM performance. We try to clarify basic questions
regarding, e.g. the coherencies of different parameters, the applicability to face
analysis, and computational speed of the standard AAM, approach as well as the
the novel abilities aroused by various parametric and algorithmic variations and
extensions. This is conducted on the basis of several image databases for the
generation of AAMs and the testing of the performance with respect to pattern
recognition tasks on human faces. We consider person specific attributes such
as the gender, identity, and age plus short-time variable properties like facial
expression and head pose [64].
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6.1 Classification Based on Results of the AAM

Optimization

This section discusses the so far unaddressed issue of tangible utilization of the
results obtained from an AAM analysis on an unknown image. Assuming that
the AAM optimization provides a precise object re-synthesis and thus a specific
parametrization by its model coefficients condensed in the coefficient vector hc,
it is still subject to research how the information, extracted and represented in
this highly compact manner, shall be exploited to obtain relevant properties of
the analyzed object.

Thereby, two possible approaches become apparent:

• Comparison of the re-synthesis quality of class specific AAMs:
For each of the targeted classes a separate AAM is generated. The class
assignment is performed by a maximum search over the four Texture Simi-
larities produced by the four different AAM analyses.

• Statistical classification of the edited AAM coefficient vector:
A statistical classifier is learned by edited coefficient vectors obtained from
AAM analyses of a number of example images for the targeted classes. This
trained classifier performs the class assignment on the edited coefficient
vector of unknown images which have been analyzed by the AAM.

6.1.1 Classification based on class specific AAMs

As mentioned above this approach bases on the assumption that an AAM, gen-
erated from images of a certain class, will be capable to re-synthesize unknown
images better than AAMs for other classes. To depict the procedure, imagine e.g.
a facial expression recognition task with the four classes Smile, Frown, Yell, and
Neutral. In this case four different AAMs must be generated for the four classes.
Hence the analysis of one unknown image requires a processing applying those
four AAMs. Finally the AAM showing the best re-synthesis with respect to a
quality measure such as the Texture Similarity (see section 5.5.2.3) determines
the class assigned to the image.

This approach faces multiple disadvantages regarding annotation and compu-
tational effort not to mention the classification performance: In order to allow
for an adequate generalization, a considerable number of images is required for
AAM training to cover differences in human faces like gender, ethnic origin, illu-
mination, and individual appearance (see section 6.6.2.1) which are not linked to
the class specific properties. Thus up to four times as many images need to be
annotated manually. Furthermore, the time-consuming AAM analysis has to be
performed four time for one image. Regarding the classification performance, it
suggests itself that for a proper classification performance, the aimed classes need
to show dramatic differences in the appearance such as a head turned to the left
versus a head turned to the right. For the problems of gender, facial expression,
or even age recognition this method is strongly expected to fail.
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Consequently, due to the intractable annotation and computational effort in
combination with the expectedly poor classification performance this approach
was widely neglected. However, since the annotation effort did not increase
due to vertical image mirroring, we successfully applied this procedure to a pre-
recognition of the side to which a head might be turned (see section 6.6 Head
Pose Recognition).

6.1.2 Statistical classification based on AAM coefficients

As described in section 4.2.3, the coefficient vector hc in conjunction with the Ap-
pearance Model explains the appearance of an unknown object to a large extent,
supposing a sufficiently accurate re-synthesis. Consequently the information on
numerous facial properties is encoded within hc. In Pattern Recognition language
Active Appearance Model analysis can be considered as a feature extraction al-
gorithm. The “decoding” of the information in the coefficient vector shall be
performed by a classifier which assigns one label out a pre-defined set of labels or
classes to the object on hand. For this scenario a static and statistical classifier is
the choice. In a training phase a set of images with manually assigned classes is
analyzed by an AAM and an edited version of the coefficient vector hc per image
is presented to the statistical classifier.

Thereby, the editing of hc comprises basically two post-processing steps. On
the one hand the coefficients can be represented by their absolute values or nor-
malized to the basis vector specific variance.

hc,i =
hc,i
σ2
c ,i

(6.1)

Here σ2
c ,i denotes the variance of the training data in the direction of the ith

basis vector (see section 5.2.2.4) which corresponds to the ith Eigenvalue λc,i for
PCA-AAMs. On the other hand we can reconstruct the information about the
pure shape from hc applying equation 4.25 repeated here:

s(hc) = s+Qshc , Qs = ΦsK
−1Φcs (6.2)

The shape in s(hc) is originally represented in Cartesian coordinates. Addi-
tionally, the landmark positions of the shape can be transformed to polar coordi-
nates for a better modeling of the variations especially in facial expressions and
head pose [7].

The statistical data modeling and optimization of decision instructions for
classification is an own area of research. The target is to automatically transform
and/or describe the feature spaces created from preferably few training samples
and find ways to generalize from the training data to arbitrary unknown data so
that the classification performance is accordingly high. For many applications
the approach known as Support Vector Machines proved to be best method for
classification of static “signals” [102]. In the context of this thesis Kriegel [64]
has shown that this fact is also valid for features space of AAM coefficients.
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6.1.3 Support Vector Machines

Support Vector Machines (abbrev. ’SVM’) as introduced by Vapnik, 1995 [115]
and discussed by Burges in [14] are linear and in the general case non-linear
classifiers that try to separate positive and negative examples of a training set by
a hyperplane. Apart from their classification performance they are also renowned
for the low computational costs of the classification, while the training can be
comparably lengthy [18].

Let the AM coefficient vector hc be a test example and hc,i the ith training
example with 0 6 i < k. The classes are labeled with y ∈ {−1; 1} where yi is the
class label of the ith training example respectively. Finally K(hc,hc,i) is a kernel
function and γ = (γ0, . . . , γk−1)

T the model parameters [85]. The SVM training
algorithm minimizes the objective function

Q(γ) = −
k−1∑
i=0

γi +
1

2

k−1∑
i=0

k−1∑
j=0

γiyiγjyjK(hc,i,hc,j) (6.3)

in respect to γ preserving the constraints

k−1∑
i=0

γiyi = 0 with 0 6 γi 6 C (6.4)

C denotes the Complexity of the SVM.
For classification the following decision function has to be solved:

y = sign

(
k−1∑
i=0

γiyiK(hc,hc,i) + b

)
(6.5)

b represents the bias or offset of the separating hyperplane.
For classification two different kernel functions are most common and provided

by most implementations of Support Vector Machines [122, 18]. Firstly, the
Radial Basis Function (abbrev. ’RBF’) kernel

KG(hc,i,hc,j) = e−ρ
2||hc,i−hc,j ||2 with ρ ∈ R (6.6)

or secondly a homogeneous polynomial kernel:

KP (hc,i,hc,j) = (hc,i · hc,j)d (6.7)

Both kernels are used to project a linearly non-separable dataset into a higher,
linearly separable domain, essentially by splitting the training dataset nonlinearly.
The application of the optimal kernel function and its parameters should be
determined evaluatively. Throughout this thesis the polynomial kernel showed
best performance and is therefore the basis of all evaluation results except stated
differently.
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It might have caught the attention that SMVs are designed for two-class prob-
lems only. When it comes to tasks dealing with multiple classes, two approaches
are commonly implemented [102]: The Multi-layer SVM constitute a kind of de-
cision tree with single SVMs at the junctions. For the mentioned example of
our four class facial expression problem this could read like fusing the classes
(neutral, frown) and (yell, smile) for distinguishing these on the top layer. The
final decision would be drawn by SVMs which then separate between neutral and
frown or yell and smile respectively on the second layer.

The second and even more spread approach is the creation of “one-against-all”
SVMs. This means that for the mentioned case four different SVMs are trained,
e.g. smile as class y1 = 1 and (neutral, frown, yell) as class y0 = −1. For this pur-
pose the term of equation 6.5 is computed providing the orientation and distance
of the test sample hc to the separating hyperplane which can be interpreted as
confidence. Finally, the SVM with the highest confidence determines the class
decision.

Many implementations are freely available, that implement Support Vector
Machines. We use the machine learning platform WEKA for our evaluation and
the open source library Torch3 for online classification integrated to the FacE
Analysis System FEASy (see 1.3) [122, 18, 46].

6.1.4 N-fold Cross-Validation

Face analysis, just like most pattern recognition problems, suffers from data
sparseness, i.e. the situation that the number of available test samples (images)
is low compared to the dimensionality of the features spaces. For any evaluation
a set of images for classifier training and a disjunctive set for testing is required.
Thereby, both sets should be representative, i.e. they should individually cover
the whole range of characteristics which can be observed in real life scenarios.
However, even large image databases consisting of some thousand images can
hardly meet this requirement, even less when they are divided in test and train-
ing sets. Thus an evaluation of pattern recognition systems, mainly assembled
by feature extraction and classification modules, can only be an estimation of the
system capability of generalization from a training set to an arbitrary test set as
it would be necessary for real life applications.

In order to overcome the data sparseness and still provide a sophisticated
estimation of the system performance, the methodology of n-fold cross-validation
is applied [63]. This means that the dataset is split in n subsamples. Depending
on the problem these n datasets should be disjunctive. For instance at all tasks,
except person identification, all sets should be person disjunctive, i.e. the images
of one person appears exclusively in one of the n datasets. Again this simulates
the real application scenario, where most likely no previously known faces will be
analyzed.

From the n subsamples, a single subsample is retained as validation data for
testing the classification and the remaining (n−1) subsamples are used as training
data. The cross-validation process is then repeated n times, while each of the
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subsamples is used exactly once as validation data. The n results from the folds
can be combined, e.g. averaged, to give a single estimation after all.

6.2 Image Databases

In order to get adequate databases for the different recognition problems, various
face databases were utilized for the AAM generation and the evaluation of the
AAM (Active Appearance Model) search algorithm. Before improving an algo-
rithm, it is necessary to ensure that the training data used is optimal. If the
training data is not selected carefully, the algorithm might show poor results no
matter how good the improvements may be. Therefore, depending on the eval-
uation problem, a small subset (between 1.5% and 10%) from the AR Database
[74], NIFace1 Database [2], FG-NET Aging Database [1] or MMI Face Database
[90] is selected for training the AAM. Then the complete database or a large
subset of it is used to evaluate the AAM search algorithm. Table 6.1 gives an
overview over the attributes and (subjective) quality of images from the various
face databases introduced in this chapter. All databases except for the FG-NET
Aging Database consist only of color images.

Database name Dimensions Format Subjective quality
AR Database 768×576 BMP good
NIFace1 Database 640×480 PNG medium
FG-NET Aging Database avg. 400×500 JPEG bad, partly black/white
MMI Face Database 1200×1600 JPEG very good

Table 6.1: Comparison of face databases

6.2.1 The AR Database

The AR Database [74] which was created by Aleix Martinez and Robert Be-
navente in the Computer Vision Center (CVC) at the U.A.B (Universitat
Autònoma de Barcelona) includes 3315 pictures of 135 people. The images fea-
ture frontal view faces with different facial expressions, illumination conditions,
and occlusions (sun glasses and scarf). Each person participated in two sessions,
separated by two weeks (14 days) time. The same pictures were taken in both
sessions.

For the classification of gender, facial expression and face identification in this
work only a subset of the AR Database is used. This subset consists of pictures
which feature neither different illumination conditions nor occlusions (sun glasses
and scarf). This results in a set of 1020 pictures (564 male, 456 female) including
up to 8 pictures per person with different facial expressions (neutral, smile, anger,
scream) taken in the two sessions. An example of the 4 facial expressions is shown
in figure 6.1.
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neutral smile anger scream

Figure 6.1: Example of different expressions from the AR Database

6.2.2 The NIFace1 Database

The NIFace1 Database [2] was created at the Faculty of Computer Science and
Automation of the Ilmenau University of Technology. This database includes
2610 images of 90 people with neutral facial expression, different illuminations
and small deviations in head pose. Here head pose refers to the direction of head
orientation. Identities are equally distributed in the age range between 10 and 60
and equally distributed over genders. The 15 different poses as shown in figure
6.2 are composed of 5 different horizontal angles αH ∈ {30◦, 15◦, 0◦,−15◦,−30◦}

Figure 6.2: Example of different head poses from the NIFace1 Database

from left to right and 3 different vertical angles αV ∈ {20◦, 0◦,−20◦} from bottom
to top. This database is used for classification of head pose.

6.2.3 The FG-NET Aging Database

The FG-NET Aging Database [1] contains 1002 pictures of 82 persons at different
ages. It has been generated as part of the European Union project FG-NET (Face
and Gesture Recognition Research Network). Figure 6.3 shows example images
of different persons at different ages. These images feature faces with different
head poses, illuminations, facial expressions, glasses and hats. The age histogram
ranging from 0 to 69 years is shown in figure 6.4. The average age of the FG-
NET Aging Database is 15.84 (the median is 13). This means that the database
consists of a lot of images with people at young age.
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0 6 21 31 43

Figure 6.3: Example of different ages from the FG-NET Aging Database

Figure 6.4: histogram of the age variation

The database includes black and white as well as color images. If you train an
AAM on both of these image types, the performance will be suboptimal due to the
fact that the AAM will extract a lot of variation on the color. This information
is not important for the age classification. Therefore we only used the 811 color
images when evaluating the age of a person.
The FG-NET Aging Database already contains annotations (process of placing
landmarks on a face image) of all images. An example of the annotations with
68 landmarks is shown in figure 6.5.

6.2.4 The MMI Face Database

The MMI Face Database [90] was created at the Delft University of Technology
in the Man-Machine Interaction Group. This database includes 740 images of 19
persons with varying facial expressions and poses (frontal and profile view). We
only applied the MMI Face Database for training the AAM which was used for
the gender, facial expression and face identification classification.
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Figure 6.5: Example of the FG-NET Aging annotations with 68 landmarks

6.3 Gender Recognition

6.3.1 Dataset

The evaluation of gender recognition was run on a subset of the AR Database
[74], as described in section 6.2.1.

The gender evaluation was performed using an AAM generated from a set of
50 images from the AR Database and 9 images from the MMI Face Database
[90] together with 78 landmarks (see [32]). This set includes images from 10 male
persons (25 images) and 13 female persons (34 images).

6.3.2 Results

The subset of 1012 pictures (557 male, 455 female) is evaluated using FEASy.
We evaluated the 2-class problem using the Support Vector Machines (abbrev.
’SVM’) [14] as classifier, performing a 10-fold cross validation. Setting the ex-
ponent for the polynomial kernel to 6, we received a recognition rate of 94.6%
on AAM coefficients extracted by the offline optimization approach. Recognition
rate in this work is defined as the percentage of correctly classified objects to
total objects. We also performed the same evaluation on only 72 landmarks as
introduced in figure 4.2(a) and the best result was a recognition rate of 92.2% for
SVM with an exponent of 3. The six additional landmarks were introduced to
obtain a better symmetry of the shape model. They were placed on the forehead
and on back of the nose. This shows that the additional six landmarks improve
the result by about 2.2%.

However when using the 10-fold cross validation implemented in WEKA [122],
there is no guarantee that training set and dataset of one single fold do not both
include pictures from the same person. If this was the case, a person from the
dataset would already be known and thus a better recognition rate is possible.
Therefore we implemented a 5-fold cross validation where the 5 datasets were
person-disjunctive. Each dataset contained about the same amount of male and
female pictures. A 5-fold cross validation means that 80% of the faces are used
for training and 20% are used for testing. With the SVM and an exponent of
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2 the recognition rate resulted in 87.5%. The confusion matrices and evaluation
results for both classifications are summarized in table 6.2. Class M refers to
male, F to female subjects.

M F
M 525 32
F 23 432

Total error: 5.4%

(a)

M F
M 485 72
F 54 401

Total error: 12.5%

(b)

Table 6.2: Cross-classification confusion matrices and error rates for gender eval-
uation; (a) non person-disjunctive and (b) person-disjunctive

The confusion matrices show that in both cases male faces are classified as
female more often than female faces as male. One reason is that this dataset
contains more pictures of male faces. But also the ratio of incorrectly classified
men to women is higher than the actual ratio of men to women in the dataset.
This indicates that women are classified correctly more often. For the person-
disjunctive case, the recognition rate for women is 88.1% and about 1% higher
than the recognition rate for men. For the non person-disjunctive evaluation the
recognition rate for women is only about 0.7% higher.

6.3.2.1 Comparison of Online Optimization Strategies

For the 5-fold, person disjunctive dataset we performed an evaluation applying
the online optimization techniques. Table 6.3 shows the results.

Method # Face syntheses Texture similarity Recognition rates
Offline 28.3 .928 87.5%
Gradient descent 3750 .904 85.1%
Montecarlo sampling 3110 .954 92.4%
Simplex 299 .963 93.2%

Table 6.3: Comparison of different optimization methods

The results show clearly the correlation between the texture similarity and
the recognition rate. Furthermore, the Simplex algorithm showed the best results
regarding re-synthesis and classification. Additional evaluations [85] confirmed
this observation. Since the Simplex is characterized by a multiple higher efficiency,
it is used as benchmark for all further evaluations.

6.3.2.2 Selection of Images with Best Representation

Now we perform the same person-disjunctive 5-fold cross validation sorting out
images with bad AAM representation. To evaluate which input images can be
analyzed best we use the Texture Similarity (abbrev. ’TS’) measure suggested
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in equation 5.96. In figure 6.6 top, a histogram of the TS values for the gender
problem is shown.

percentage of images 100% 75% 50% 25%
male 557 351 209 92

female 455 408 297 161

recognition rate 87.5% 89.6% 87.9% 90.1%

Figure 6.6: Texture Similarity histogram and evaluation results

When choosing images with a TS larger than 0.85, 0.90 or 0.94, we received a
corresponding subset consisting of the best represented 75%, 50% or 25% of the
images. Figure 6.6 bottom summarizes the amount of male and female images
and the resulting recognition rates for the original 5-fold cross validation and
these 3 database reductions. The histogram shows that most of the images have
a TS value closer to 1 than to the minimum of 0.5. Therefore choosing the 75%
images represented best by the AAM with a TS value larger than 0.85, improves
the recognition rate by about 2%. Since the TS values of the remaining images are
not widely spread, the recognition rate is not significantly improved any further.
For the best 50% of the images, the recognition rate even worsens.
Also the amount of pictures decreases relatively less for female pictures when
decreasing the percentage. In other words female pictures can be represented
better. The reason for this could be that male faces have more variations like
beards and glasses (more men than women wear glasses) and also women faces
are more consistent due to makeup.

6.3.3 State-of-the-Art

There are several other studies which tried to solve the gender recognition prob-
lem. Table 6.4 shows our recognition rate in comparison to state-of-the-art recog-
nition rates of different gender recognition systems. None of these studies talks
about a person-disjunctive evaluation although all the databases used contain
several images per person. So we can use our non person-disjunctive result for
comparison. Additionally our other result is also stated in the table.

Kembhavi’s [60] experiment, which is based on Support Faces [83], yielded a
recognition rate of 96.66% using a subset of 240 images (120 male and 120 female)
from the AR Database. Buchala [12] used a subset of the FERET Database [94].
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study face databases recognition rates
Shunting inhibitory convolution FERET 97.2%
neural networks 2006 [113] BioID 86.4%
Support faces 2005 [60] AR 96.66%
Support faces 2002 [83] FERET 96.62%
FEASy offline AR 94.6%
AAM MLP 2005 [121] NIFace2 (own) ∼ 93%
FaceIt 2001 [49] FERET ∼ 90.6%

AR ∼ 87.5%
PCA-LDA 2005 [12] FERET 86.43%

Table 6.4: Comparison of our result with state-of-the-art gender recognition rates

Gross [49] compared the recognition rates for men and women and also detected a
higher recognition rate for women for the AR as well as for the FERET database.
In his study, he only states the results for men and women individually. We
took the mean of both results. The recognition rate for the FERET database
is about 3% higher than for the AR Database which indicates that the gender
recognition for FERET has a better classification. Wilhelm [121] achieved the
best result with a Multi Layer Perceptron classifier which was still worse than our
result. The newest study [113] based on neural networks has a result for FERET
which is almost 3% better than our result but for the BioID database the result
is clearly below ours. Overall our gender recognition system is highly comparable
or superior to current gender recognition systems.

6.4 Facial Expression Recognition

6.4.1 Dataset

For evaluating the facial expression of a person, a subset of the AR Database [74]
was used, as described in section 6.2.1. This subset included 1020 images with
the facial expressions neutral, smile, anger and scream. During this evaluation,
class N refers to neutral, S to smile, A to anger, Y to yell (or scream). These
expressions are shown in figure 6.1.

The facial expression evaluation was performed using the same AAM as for
the gender problem generated from a set of 50 images from the AR Database and
9 images from the MMI Face Database [90].

6.4.2 Results

Again we performed the facial expression classification using both a 10-fold cross
validation (implemented in WEKA [122]) and the same person-disjunctive 5-fold
cross validation provided for the gender problem (see section 6.3.2) on an SVM
with an exponent E of 1 and a complexity parameter C of 1. The confusion
matrices and evaluation results are summarized in table 6.5.
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N S A Y
N 182 6 60 4
S 12 230 7 5
A 83 3 164 5
Y 3 12 5 231

Total error: 20.3%

(a)

N S A Y
N 180 11 56 5
S 12 229 4 9
A 89 4 155 7
Y 5 12 8 226

Total error: 21.9%

(b)

Table 6.5: Cross-classification confusion matrices and error rates for facial ex-
pression evaluation; (a) non person-disjunctive and (b) person-disjunctive

Contrary to the gender problem the recognition rates for the non person-
disjunctive and the person-disjunctive case are very similar here. This indicates
that for expression classification of a person it does not make a big difference if
the person is already known to the training data. The reason for this is that here
class variance (different facial expressions) is already included within one person.
The confusion matrices mainly show that the classifier has difficulties to distin-
guish between the angry and neutral expression. Both expressions differ in very
few aspects (see figure 6.7) and therefore the coefficient vector space of these 2
classes of the AAM falls into the same region.

Figure 6.7: Comparison of neutral (top) and anger (bottom) expression

We conducted a survey where 15 persons were required to label all 1020
database images according to the facial expression. The average recognition rate
was poor 84.6%. In the light of this human classification performance, the results
of the automatic analysis are even more satisfying.

Therefore a good classification is difficult. When reducing this 4-class problem
to a 3-class problem by leaving out images of class A (anger), the recognition rate
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for the non person-disjunctive case results in 93.3%. When applying the Simplex
optimization, we obtained 81.9 % recognition rate for the 4-class problem and
very good 95.1% for the three-class problem.

The recognition rates could not be improved any further by selecting only
images with good AAM representation.

6.4.3 State-of-the-Art

Again, when comparing our result to results of other studies none of these talk
about a person-disjunctive evaluation although all the databases used contain
several images per person. Therefore, table 6.6 shows both of our non person-
disjunctive recognition rates in comparison to state-of-the-art recognition rates
of different facial expression classification systems.

study face databases recognition rates
FEASy Simplex, 3 classes AR 95.1%
FEASy Offline, 3 classes AR 93.3%
line-based Caricatures 2003 [45] AR 86.6%
Cootes AAM [7] AR 84.4%
single training sample PCA 2003 [73] AR ∼ 84%
FEASy Simplex, 4 classes AR 81.9%
Cascaded AAM 2006 [97] AR 79.9%
FEASy offline, 4 classes AR 79.7%
ICA NN 2005 [121] NIFace2 (own) ∼ 73%

Table 6.6: Comparison of our result with state-of-the-art facial expression recog-
nition rates

All studies used the AR Database except for Wilhelm’s AAM MLP [121].
But his classification was performed on 8 different facial expressions. Saatci’s
[97] Cascaded AAM result for a 4-class expression classification with a preceding
gender recognition is equal to our 4-class result. He first classified the gender
of a person and then performed the facial expression recognition separately for
each gender. This improved the performance of his system by 3.5% (from 76.4%)
whereas using this approach on our system lead to a worse result. Diduch [31] who
performed similar evaluations only used a very small subset of the AR Database
(200images) and therefore his result is better but less representative. Also Basili
[7] only used 384 images. Martinez [73] and Gao [45] both implemented an
expression evaluation of 3 classes by discarding one of the classes which is difficult
to recognize (neutral and anger). Their results were significantly worse than our
3-class recognition rate.
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6.5 Person identification

6.5.1 Dataset

For face identification, a subset of the AR Database [74], as described in section
6.2.1, was used. However only persons who participated in both sessions (14 days
apart) were relevant for this face identification. An example of images taken from
a person at both sessions is shown in figure 6.8.

1st session 2nd session

Figure 6.8: Example of images (smile) taken 14 days apart

The first session of these 120 persons formed the training set (478 images)
whereas the images from the second session were used as dataset (475 images).
This setup means that the face of a person should be recognized on a training set
consisting of images taken 14 days earlier.

The face identification was performed using the same AAM as for the gender
and facial expression problem generated from a set of 50 images from the AR
Database and 9 images from the MMI Face Database [90].

6.5.2 Results

The face identification was performed applying K* [17], an instance-based clas-
sifier (implemented in WEKA [122]), with a global blending parameter of 95 to
the training set.
The recognition rate for the face identification of the 120 subjects resulted in
58.3%. However we reduced the dataset to 100 subjects by eliminating the 20
subjects with worst face identification. Now 67.9% of the faces were classified
correctly. These results are summarized in table 6.7.

number of subjects 120 100
recognition rate 58.3% 67.9%

Table 6.7: Results for the face identification
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6.5.3 State-of-the-Art

Table 6.8 shows our face identification rate in comparison to state-of-the-art recog-
nition rates of different face identification systems.

study face databases recognition rates
SOM-Wavelet Networks HMM 2005 [128] ORL 91.36%
HE+LN Algorithm 2005 [126] AR 87.1%
FEASy offline AR 67.9%

Table 6.8: Comparison of our result with state-of-the-art face identification rates

Yang Zhi used SOM-Wavelet Networks [128] on 50 persons from the ORL
Database [98] whereas Xie [126] implemented an algorithm to recognize 121 sub-
jects from the AR Database. These classifications were performed on images
taken at the same session. However our system performance for face identifica-
tion on 100 persons is poor compared to these other systems.

6.6 Head Pose Recognition

6.6.1 Dataset

30|-20 15|-20 0|-20 -15|-20 -30|-20

30|0 15|0 0|0 -15|0 -30|0

30|20 15|20 0|20 -15|20 -30|-20

Figure 6.9: Different classes for the head pose evaluation

For evaluating the head pose of a person, the NIFace1 Database [2] (see sec-
tion 6.2.2) was used. When utilizing FEASy the AAM search requires both eye
positions. The NIFace1 Database contains only head pose angles of a maximum
of 30 degrees and therefore both eye positions are still mostly visible. The ET
(Head and Eye-Tracking Module) only had problems to find the ROI information
of about 100 images from the complete database. In figure 6.9 the classes used
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in this work are listed above the corresponding image. The first number refers to
the horizontal angle whereas the second number after the “|” refers to the vertical
angle of the head pose.

6.6.2 Results

All the evaluations for the head pose recognition were performed using a 10-fold
cross validation on an SVM with an exponent E of 1 and a complexity parameter
C of 1 implemented in WEKA [122] if not stated differently.

6.6.2.1 Image Selection for AAM Generation

When selecting the training AAM for the head pose evaluation, we only consid-
ered images from the left side. With left side we refer to images with a horizontal
angle αH ∈ {30◦, 15◦, 0◦} represented by the left 9 poses in figure 6.9. Here the
optimization of the left side AAM is performed whereas in subsection 6.6.2.3 a
method is introduced how we can apply this model to all head poses. The set
of images annotated for the different AAMs always included an equal number of
images of all 9 left positions and 2 additional images from the AR database. Only
pictures with an artificial illumination were selected because these pictures were
generally more focused.

In some of the images the points where the landmarks would usually be set are
not visible due to the different head poses. These landmarks were set along the
texture edge assuming where the actual positions of these points are. Figure 6.10
shows an example of an annotated image of class 30|-20. The rightmost point
of the the left eye (corresponding to landmark 33) is covered by the nose and
therefore this landmark is set along the nose assuming where this point actually
is.

Figure 6.10: Example of an annotated image from the NIFace1 Database

The different AAMs used to evaluate all images with artificial illumination
from the left side consisted of 20, 38, 47, 56 and 65 images. An AAM for training
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should be made from images with lots of variance so they can represent the
applied dataset well. The images we used for the model contained variations like
beards, glasses and poses. After choosing 20 images with different variations for
the first model, we performed an evaluation on this model. Then we selected
images with a bad TS value for the next 18 images which we added to the model.
This procedure was repeated to obtain the additional images we added for the
models with 47, 56 and 65 images. The mean TS values and the recognition rates
for these models after AAM search are listed in table 6.9.

number of images 20 38 47 56 65
mean TS 0.769 0.820 0.832 0.858 0.850

recognition rate 52.0% 58.8% 58.1% 60.2% 58.9%

Table 6.9: TS values and recognition rates for different amounts of images for
AAM training

The AAM consisting of 56 images gave the best results for mean TS and
recognition rate.

20 images 38 images 56 images

Figure 6.11: Improvement of the AAM during AAM Search

Figure 6.11 shows how the AAM improved during AAM Search for the models
with 20, 38 and 56 images. The AAM with 56 images converges pretty well to
the actual face shape during the AAM search. A further increase of the number
of model images resulted in a worse evaluation performance. This leads to the
assumption that the size of approximately 60 images is a good size when choosing
the AAM because also for the AR database the model consisted of 59 images.
The AAM with 56 images will be used for the remaining evaluations if not stated
differently. The confusion matrix for classification with this model is listed in
table 6.10.

The confusion matrix indicates that the classifier has difficulties to distinguish
between the different vertical angles but not so much between the horizontal an-
gles. When reducing the 9-class problem to two 3-class problems by combining
the classes (new SVM classification), the recognition rate for horizontal differen-
tiation results in 92.1% but for vertical differentiation it is only 75.0%.

The confusion matrices for these 3-class problems are listed in figure 6.11. The
confusion matrices indicate that our system has problems to distinguish between
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0|20 0|0 0|-20 15|20 15|0 15|-20 30|20 30|0 30|-20
0|20 55 21 2 5 2 0 0 0 0
0|0 18 43 20 0 3 1 0 0 0

0|-20 2 17 58 0 3 4 0 0 1
15|20 4 1 0 55 21 1 2 0 0
15|0 1 1 1 12 56 11 2 0 1

15|-20 0 1 2 2 22 50 1 1 4
30|20 0 0 1 3 4 0 54 15 4
30|0 0 0 0 1 5 2 16 37 20

30|-20 0 0 0 1 2 4 4 21 36

Total error: 39.8%

Table 6.10: Cross-classification confusion matrix and error rate for head pose
evaluation with a 56 image AAM

0 15 30
0 484 36 1

15 19 470 27
30 1 36 451

Total error: 7.9%

(a)

20 0 -20
20 403 97 9
0 78 350 89

-20 16 92 391

Total error: 25.0%

(b)

Table 6.11: Cross-classification confusion matrices and error rates for the 3-class
head pose problem; (a) horizontal angles and (b) vertical angles

images with different vertical head poses. The reason for this is that the AAM
does not change as much for vertical as it does for horizontal head movement.
Fig 6.12 shows the AAMs for the 3 different horizontal and vertical head poses.

6.6.2.2 Parameter Optimization

The AAM trained on 56 images will now be optimized by varying different pa-
rameters.

Combined Percentage Parameter Our first approach suggests to reduce the
combined percentage parameter of the PCA. This parameter controls the number
of Eigenvectors selected for the Shape and Texture PCA for the final AAM as
described in chapter 4. Only the combined Eigenvectors whose corresponding
Eigenvalue’s cumulative sum is below this percentage of the total sum are used.
These Eigenvalues are called principal components.

Figure 6.13 shows that the Eigenvector corresponding to the first principal
component of our head pose AAM represents the horizontal head movement (σ
is the standard deviation). The second Eigenvector describes the vertical head
movement. Therefore, the first 2 principal components already include the main
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Figure 6.12: AAMs for different head poses

information for the head pose problem. Now we assumed that decreasing the
number of principal components would lead to a better result. The results for
the reduction of the default combined percentage parameter (0.98) are listed in
table 6.12. The recognition rate and the mean TS value both decreased and thus
the combined percentage parameter remained 0.98 for the additional head pose
evaluations.

combined percentage 98% 95% 90%
mean TS 0.858 0.845 0.828

recognition rate 60.2% 57.7% 55.1%

Table 6.12: TS values and recognition rates for different combined percentages

Combined Model and Euclidean Parameters Our next approach was to
vary the combined model parameter deviation p and the Euclidean parameters
tx, ty, s and r (introduced in chapter 4). The AAM is trained to vary these
parameters according to their selected value during AAM Search. Due to the
fact that our image database includes various head poses, allowing the AAM
Search to perform more translation, scaling, rotation and deviation should give
a better result. Figure 6.14 shows the mean TS values and the recognition rates
for varying these 5 parameters.

The default parameter values form the starting point of the figure. These
are then individually multiplied by a Parameter Factor which is listed along the
x-axis. The results for these different AAMs were evaluated and are listed along
the y-axis. Multiplying the scaling parameter s by 4 (s = 0.4) leads to the best
recognition rate of 65.4% and a mean TS value of 0.870. When further increasing
s, the mean TS also ligthly increases although the recognition rate worsens. This
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+2.5 σ mean value -2.5 σ

1st Eigenvector

2nd Eigenvector

Figure 6.13: Effect of the first 2 AAM principal components

indicates that we do not always have a dependency between the mean TS value
and the recognition rate.

When increasing ty, both results quickly decline. In this case the search area
is allowed to query areas outside the picture.

So far, we only incremented these 5 parameters separately. But now we want
to combine setting s to 0.4 (the best result from above) with individually adjusting
each of the 4 remaining parameters to the values where we received the best
individual recognition rate. This means multiplying the default value of tx by 2,
ty by 3, r by 2 and p by 3. The results for these 4 combinations (in boldface) are
compared to our best result for the individual parameter optimization in table
6.13. The last row shows our result before parameter optimization.

s tx ty r p mean TS recognition rate
0.4 0.1 0.15 0.03 2.0 0.870 65.4%
0.4 0.2 0.15 0.03 2.0 0.870 63.9%
0.4 0.1 0.45 0.03 2.0 0.861 63.4%
0.4 0.1 0.15 0.06 2.0 0.869 62.8%
0.4 0.1 0.15 0.03 6.0 0.875 64.2%
0.1 0.1 0.15 0.03 2.0 0.858 60.2%

Table 6.13: TS values and recognition rates for different parameter combinations

The recognition rate was worse for these 4 combinations than for only opti-
mizing the scaling parameter s. This indicates that these 5 parameters depend
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on each other. The recognition rate could not be improved anymore by further
optimizing these parameters.

These evaluations were only performed on images with artificial illumination.
When applying the AAM with s = 0.4 and the other parameters set to default
values on the images with artificial and natural illumination, the recognition rate
results in 67.1% for the 9-class problem. Using an exponent of 2, this result could
be optimized to 68.9%.

6.6.2.3 Different Systems for the 15-Class Problem

Until now, the system only classified different poses from the left side. Therefore
we want to classify the 15-class problem of all poses with 2 different systems.
The first system basically uses an AAM including all 15 pose variations, the
second applies our left side AAM twice on all images and on all images flipped
horizontally (along the vertical median axis of the image) and selects the image
with better convergence.

15-Class System For the first system we used the annotations performed by
Störmer [110] [111] which consist of 132 landmarks as shown in figure 6.15. First
we trained an AAM on 45 images (s = 0.4) selected from the left side.

These images were chosen according to the criteria mentioned in subsection
6.6.2.1. The recognition rate on all images from the left side amounted to 66.4%
(with C=3) which is only 2.4% less than for our AAM with 56 images (anno-
tated with fn78 landmarks). Additional 30 images with αH ∈ {−15◦,−30◦} were
added to this model, to form an AAM consisting of 75 images including all 15
different pose variations. When classifying all images from the NIFace1 database
on this AAM, the recognition rate for this problem resulted in 60.5% (complexity
parameter of 3).

9-Class Mirrored System For our second system we applied the left side
56 images AAM (s = 0.4) twice. First we applied it to all images from the
image database although the AAM can only represent head poses where αH ∈
{−15◦,−30◦} rather badly. Next we flipped all images in horizontal direction and
again performed the AAM search on all these flopped images. Hereby the images’
head orientation to the right were mirrored so that the pose was now towards the
left. Due to this horizontal flip, our AAM does not need to model the additional
variance of the head poses with angle αH ∈ {−15◦,−30◦}.

Side Pre-selection We implemented a side pre-selection by comparing the TS
value for the original and flipped image and selecting the image with the larger TS
value. This pre-selection decides, if an image has a left or right head orientation.
If the TS of the original image was higher, then we would classify it as image from
the left side, otherwise as image from the right side. For images with αH = 0◦ it
did not matter which TS was higher. The total error rate for this pre-selection
amounted to 1.1%.
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Then the classification was performed on the 9 different head positions of the
left model which together with the pre-selection formed the 15-class problem.
Taking the pre-selection error into account, the recognition rate was 68.1% with
a complexity parameter of 3 and only 0.8% lower than for the 9-class problem
with the same AAM. This indicates that images with angles αH ∈ {−15◦,−30◦}
are more accurate which was verified by a subjective examination of the images.
Table 6.14 summarizes the results for the 2 different systems. The 9-class mirrored
system definitely is the better approach to solve the head pose problem. The
recognition rate for evaluating the 5 horizontal head poses resulted in 89.8% and
for the 3 vertical poses in 75.6%. If the system has to distinguish between the
poses left, center and right the recognition rate amounts to 94.8%.

15-Class 9-Class Mirrored
recognition rate 60.5% 68.1%

Table 6.14: Results for different 15-class problem systems

Selection of Images with Best Representation Again, we select different
subsets of images which can be represented well by the AAM. The recognition
rates for choosing the best 75%, 50% and 25% images are summarized in table
6.15. The number of images with αH ∈ {15◦,−15◦} and αV = 0◦ was significantly
higher than for other head poses when reducing the amount of images.

percentage of images 100% 75% 50% 25%
amount of images 2468 1851 1234 617

recognition rate 68.1% 69.5% 72.1% 72.3%

Table 6.15: Evaluation results for images with best representation

These 2 poses (normal and mirrored) represent the center of the left AAM.
The result shows that a better recognition rate is obtained by choosing images
with good AAM representation.

6.6.2.4 Manual ROI Input of AAM search

The ET (Head- and Eye-Tracking Module) has problems to recognize the ROI
(region of interest) when applying images with different head poses. Thus we
want to evaluate if a manual input of the ROI information would also improve
our results. Hence, FEASy was initialized without the ET. The AAM search still
needs the information about the ROI to perform an AAM search. Therefore the
ROI was calculated for images annotated by Störmer [110] [111] and manually
put into the AAM re-synthesis. The Störmer annotations where performed for
221 images of whereas 151 are images from the left side.
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The ROI information is given by 3 bounding boxes, one for the head (h),
the left eye (l) and the right eye (r). Each bounding box is described by 4
parameters: x- (x) and y-coordinate (y) of the upper left point and the height
(h) and width (w) of the box. Mathematically, the ROI was approximated from
the 132 landmarks {(x0, y0), . . . , (x131, y131)} of the 221 annotated images by the
following formulas (e.g. hh is the height of the bounding box for the head):

hx = min(x0, x8, x108)− 10 (6.8)

hy = min(y102, y118)− 30 (6.9)

hh = max(y12, y8, y108)− hy + 10 (6.10)

hw = hh (6.11)

lx = x82 − 4 (6.12)

ly = y82 − 2 (6.13)

lh = 8 (6.14)

lw = 4 (6.15)

rx = x99 − 4 (6.16)

ry = y99 − 2 (6.17)

rh = 8 (6.18)

rw = 4 (6.19)

We used our 45-image and 75-image AAMs mentioned in 6.6.2.3 to classify
the 151 left side pose and the 221 total pose pictures. This classification was
performed with the ET as well as without the ET and manually providing the
AAM search with the ROI values calculated for each image from the equations
above. The results are listed in table 6.16.

Eyetracker manual ROI input
45-image AAM (left side) 54.3% 58.9%

75-image AAM (all poses) 38.8% 43.8%

Table 6.16: Recognition rates with and without Head and Eye-Tracking Module

For both AAMs the recognition rate was improved significantly. This indicates
that the different recognition rates for the head pose problem would be higher
for a better performing ET.

6.6.3 State-of-the-Art

It is difficult to compare our head pose recognition rates to the results of other
studies. The reason is that there are many different head pose problems with
different angles and different amounts of classes. Tables 6.17 and 6.18 compare
our results for horizontal and vertical differentiation to the results of other studies.
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study face databases recognition rates
Coarse Head Pose 2002 [11] CMU PIE 96%
Geodesic Distance SVM 2006 [71] CAS-PEAL 90.71%

FERET 78.79%
FEASy offline NIFace1 89.8%
Neural Networks 2004 [109] Pointing 04 58.0%

Table 6.17: Comparison of our 5-class horizontal result with other horizontal head
pose recognition rates

Brown [11] in her Coarse Head Pose approach achieves a recognition rate of
96% on 5 different horizontal classes [105], where the angles of these classes are
αH ∈ {90◦, 45◦, 0◦,−45◦,−90◦}. Bingpeng [71] applies a Geodesic Distance SVM
on two databases, manually labeling the eye positions. For classification 7 classes
(same angles as our 5 classes and additional angles of 45◦ and −45◦) are utilized.
The recognition rate applying the CAS-PEAL Database [44] is better than our
result which could be improved by also manually inputing the eye positions (see
subsection 6.6.2.4).

study face databases recognition rates
FEASy offline NIFace1 75.6%
Neural Networks 2004 [109] Pointing 04 66.0%

Table 6.18: Comparison of our 3-class vertical result with other vertical head
pose recognition rates

Stiefelhagen [109] uses the Pointing 04 Database [48] to classify 13 horizontal
and 7 vertical angles. However the results stated in the tables are the recognition
rates of the same 5 horizontal and 3 vertical (±30◦ instead of ±20◦) classes as in
our problem. The confusion matrices from Stiefelhagen were reduced to receive
the stated results.

6.7 Age Recognition

6.7.1 Dataset

For age classification the color images from the FG-NET Aging Database [1] (see
section 6.2.3 were used. This work concentrates on 2 different age evaluation
problems. First the database is divided into 4 age groups. Class 0 refers to
images with persons at the age of 0-19, class 20 to 20-29, class 30 to 30-39 and
class 40 to 40-69. The database contains many images of persons at young age.
Due to the fact that for a realistic classification the amount of images per class
should be about equal, this evaluation could only be performed on 260 images (65
per class) which were randomly selected. Furthermore the database was divided
into different 2-class problems separating the database at the age thresholds of
10, 14, 18, 20 and 30.
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6.7.2 Results

All the evaluations for the age recognition were performed using a 10-fold cross
validation on a SVM with an exponent E of 1 and a complexity parameter C of
1 implemented in WEKA [122].

6.7.2.1 Image Selection for AAM Generation

The FG-NET Aging Database contains many variations like head poses, blurry
pictures and different illuminations. Therefore it was important to include all
these variations during training of the AAM. The performance of the AAM was
verified by applying the 4-class age problem.

Annotations First the annotations provided by the database were manually
improved for a subset of 110 images. This means that the positions of the 68
landmarks from an image are corrected if necessary. The results for classifying
the 4 age groups on AAMs using the provided and improved annotations are com-
pared in table 6.19. When using manually improved annotations, the recognition
rate for the AAM consisting of 100 images was increased by 6.3%.

annotations FG-NET Aging manually improved
50 images AAM 36.3% 38.3%

100 images AAM 40.8% 47.1%

Table 6.19: Recognition rates with and without manually improved annotations

Image Amount Selection The manually improved annotations are now used
to select the amount of images for the AAM. These results for different amounts
of images are listed in table 6.20. When applying the AAM consisting of 100
images to the AAM Search algorithm, the age recognition rate achieved the best

number images per AAM 50 74 92 100 110
mean TS 0.863 0.872 0.883 0.869 0.896

recognition rate 38.3% 35.4% 40.4% 47.1% 42.5%

Table 6.20: TS values and recognition rates for different amounts of images for
AAM training

result. Interestingly the mean TS value for this model is worse than for the AAMs
(with worse recognition rates) trained on 74, 92 and 110 images. This leads to the
assumption that selecting images with good AAM representation is no indicator
for a better classification performance. The reason, why the amount of images for
the best AAM here is clearly higher than for the AAMs of the other evaluation
problems, could be that the FG-NET Aging Database contains more variation.
For this setup, blurry images are very important to be included into the AAM.
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6.7.2.2 Parameter Optimization

Due to a lot of variation in the database, the same parameter optimizations
were performed as for the head pose problem (see subsection 6.6.2.2). Neither
the reduction of the combined percentage parameter nor the variations of the
combined model parameter deviation p and the Euclidean parameters tx, ty, s
and r resulted in a better classification.

6.7.2.3 Feature Selection

For evaluating the age of a person, information about rotation, skin color and
glasses is not important and might lead to a worse classification result. Some
features (here principal components) are supposed to contain this unimportant
information. Therefore we performed a Feature Selection (abbrev. ’FS’) on the
2-class and 4-class problems to improve the performance.

2-Class Problem For this problem the color subset of the database is divided
into 2 classes at an age threshold (e.g. 0-19 and 20-69). For the age thresholds
10, 14, 18, 20 and 30 this dataset is reduced so that the number of images per
class is equal. The amount of images in these datasets and the recognition rates
before and after FS are shown in figure 6.16.

For all these different 2-class problems the features (both combined parameter
and variance) number 0, 1, 4, 6 and 7 were removed. These features refer to the
combined Eigenvectors ϕc,0, ϕc,1, ϕc,4, ϕc,6 and ϕc,7 which contain information
about the largest variance. The recognition rates could be improved for all 5 age
thresholds. This shows that some parts of largest variance are not relevant for
the age evaluation whereas all the information about little variance is important.

4-Class Problem When removing 18 features, the recognition rate for the 4-
class problem can be improved by 5% to 52.1%. The confusion matrix (see table
6.21) shows that age recognition is not an easy task. Class 0 (age group 0-19)
is recognized fairly well (71.7%) whereas for all other classes at least 50% of the
images are classified incorrectly.

0 20 30 40
0 43 6 7 4

20 16 24 10 9
30 8 15 27 9
40 8 16 7 31

Total error: 47.9%

Table 6.21: Confusion matrix and error rate for the 4-class age evaluation
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6.7.2.4 Selection of Images with Best Representation

Again, we select different subsets of images which can be represented well by the
AAM. Here the recognition rates cannot be improved by selecting only images
with a good TS value. Figure 6.17 shows an example of an image which is
warped and synthesized. The image in the middle describes the error between
these images. Although the TS value (0.97) is very high, the subjective AAM
representation is not very good. The shape of glasses is visible in the synthesized
image even though the person does not wear any glasses. This indicates that
a good AAM representation is difficult for a database like the FG-NET Aging
Database with many variations.

6.7.3 State-of-the-Art

Again, it is difficult to compare our age recognition rates to the results of other
studies. Up to now, very little work was reported on age estimation from image
data. Table 6.22 compares our 4-class result with the result of Wilhelm [121].

study face databases recognition rates
FEASy offline FGNET-A 52.1%
AAM MLP 2005 [121] NIFace2 ∼ 43%

Table 6.22: Comparison of our 4-class result with state-of-the-art age recognition

study face databases recognition rates
PCA-LDA 2005 [12] FERET 91.5%
FEASy offline FGNET-A 76.0%

Table 6.23: Comparison of our 2-class result with state-of-the-art age recognition

Wilhelm distinguishes between 5 classes also including an age group of 50
years and older on a dataset of 490 images. The database we used does not
allow such a classification because the number of persons above 50 is very low
(see figure 6.4). Taking into account that our result consists of 4 classes, the
recognition rates are comparable.

Table 6.23 compares our 2-class result with the result made by Buchala [12].
The PCA-LDA recognition system, which performed worse for the gender recog-
nition in comparison to our system (see subsection 6.3.3), is better for age recog-
nition. However Buchala classifies the two age groups 20-39 and 50-60+, leaving
a gap of 10 years. This simplifies the recognition task. Here our result is stated
for the age groups of 0-29 and 30-69 which are more difficult to classify.

6.8 Comparison with NMF-AAMs

The NMF variant of the AAM algorithm was implemented by Michael Höchstetter
[52] as part of the MMER Project. The same evaluation setups described in
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the sections before were used to obtain the results stated in table 6.24. For all
NMF evaluations the SVM parameters were optimized. As for the PCA variant
also a feature selection was performed for the age problems reducing the 2-class
problem by 10 features and the 4-class problem by 18 features. For the 2-class
age recognition we used the age threshold of 20.

problems classes PCA NMF
gender recognition 2 94.6% 92.5%
facial expression 4 79.7% 74.8%
head pose 15 68.1% 48.8%
age 4 52.1% 46.1%
age 2 71.5% 68.7%

Table 6.24: Comparison of the PCA and NMF variant

The evaluations of the NMF variant were a first test and demonstration of
the capabilities of this variant. The AAM parameters and the algorithm can be
optimized to perform better (see [52]).
Nevertheless these results show that the NMF is a comparable alternative to the
PCA as an AAM variant and shall be subject to future research.

6.9 Conclusion

In this chapter we presented the application and evaluation of different Active
Appearance Model variants on several well established fields of face analysis,
namely the recognition of gender, age, identity, head pose, and facial expression
of a person in a digital image. We present a methodology for the selection of
appropriate images for the generation of an Appearance Model. The following
findings were drawn from our evaluations:

• In general the analysis of faces performs best, when the feature space of
a statistical classification consists in the AAM coefficients (absolute values
and values normalized to the dimension specific variance or Eigenvalues)
plus the landmark positions in polar coordinates with the shape centroid
as origin.

• There is a direct correlation between the quality of the re-synthesis mea-
sured by the texture similarity and the classification performance in pattern
recognition tasks.

• In general the recognition rates based on AAM features can be increased
by a preceding feature selection, since some tasks (e.g. age) require mainly
AAM coefficients of dimensions with low variance and others with high
variance (e.g. head pose).
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• The best result for gender classification observed in our person disjunctive
setup was 93.1%, while the facial expression recognition on the three classes
smile, scream, and neutral showed 95.1% accuracy. The gender recognition
on databases with persons from east-asia turned out to be more challenging
than for caucasians.

• Unlike other analysis tasks, the AAMs could not keep up nor outperform
the state-of-the-art algorithms in person identification.

• The head pose recognition performs best when an AAM is generated which
covers only head poses to one side. Hence, this AAM is applied to the target
image and its flipped version. Based on a better re-synthesis quality, the
head pose is evaluated by the corresponding AAM features.

• The evaluations for age recognition ran on the challenging FG-Net Aging
database. On this set recognition rates of 52.1% for 4 classes and 76.0% for
2 classes could be achieved.

• The Active Appearance Model based on Non-negative Matrix Factorization
showed its functionality and applicability. The NMF allows for a more
compact representation of the data variance and should therefore in further
research efforts be applied to tasks with low global variance.

• The Nelder-Mead or Simplex algorithm was the most accurate optimization
strategy under the investigated algorithms. However, in comparison to the
offline predicted optimization a time factor of 10 lies in between and does
therefore not meet real-time requirements any more.

According to our evaluations Active Appearance Model as one single approach
proved to be equal or superior to state-of-the-art approaches especially developed
for certain face analysis tasks. Solely person identification still seems especially
challenging to AAMs. Since all the functionality is available in our software sys-
tem FEASy, e.g. high level systems in human-machine interaction can exploit
these analysis results provided that they are endued with the necessary compu-
tational power.
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Figure 6.14: Mean TS values and recognition rates for different parameter varia-
tions (default values in brackets)
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Figure 6.15: Example of the Störmer annotations with 132 landmarks
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warped image error image synthesized image

Figure 6.17: Example of synthesis of an image with a Texture Similarity value of
0.97





Chapter 7

Summary

This dissertation introduced a software system for fully automatic face analysis
called FEASy (sec. 1.3). The development of such system requires the workforce
of a team of programmers and researchers. Therefore, the framework MMER Lab
was implemented which allows for a distributed development process on the one
hand and a high-performance system execution at the other hand. These features
were realized by a modular system structure and a multi-threading support for
hardware optimized routines. On hardware architectures with dual-core CPUs an
acceleration by 1/3 of serial signal processing systems could be observed (chapter
2).

Before it comes to the analysis of a face, its reliable localization is mandatory.
Thus, a highly efficient and accurate method was developed and implemented
which is based on a sampling of an image with windows of variable size. From
each sample window visual Haar-like wavelet features are extracted. Thereby a
Decision Stump as weak classifier operates on single features. These weak classi-
fiers are combined by a Gentle AdaBoost which tries to reject windows without
a face at early stages of a cascade. For initialization of our face analysis step
a localization of the eyes runs on a narrowed area within the face region. It
turned out that the addition of Gabor wavelet features and the replacement of
the Decision Stump as weak classifier by an adaptive interval classifier leads to a
localization at higher efficiency and smaller spatial deviation. Finally, according
to our evaluations, 98.5% of the eyes in pictures with frontal human faces can be
localized with less than 5 pixel Euclidean deviation from the actual eye center.
The software implementation runs more than 5 times real-time on images of dou-
ble VGA resolution. Therefore, the developed localization methodology provides
a reliable basis of our fully automatic face analysis system (chapter 3).

Eventually, chapter 4 gives an introduction to the mathematical and im-
plementation background of the standard Active Appearance Model (abbrev.
’AAM’) algorithm which constitutes the basis for the face analysis. An Appear-
ance Model statistically describes the variations in shape and texture of human
faces derived from a careful selection of photographs. Depending on the specific
application focus of the analysis these pictures should show different persons with
different facial expressions and head poses in various lighting conditions. AAMs
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base on the assumption that the two-dimensional appearance of an object in a
digital image is influenced by several widely independent sources. The target for
the generation of an Appearance Model is to eliminate the variance induced by
the camera view (translation, rotation, scale), illumination conditions, and the
capturing device (brightness, intensity). Thus, the Appearance Model focuses
on the independent modeling of the shape and texture in a first step and finally
combines the two sources again to model the influences of shape variations on
the texture. During the analysis of a human face within a video or a picture,
the Appearance Model is used to re-synthesize this face as optimal as possible by
adjustment of a set of scalar model coefficients.

Chapter 5 describes the variations, extensions, and optimizations which have
been presented over the years as well as those which have been developed during
the research for this thesis. The contributions address all stages of the Active
Appearance Model algorithm, namely the model generation, the coefficient opti-
mization, and the evaluation of the re-synthesis quality. Additionally, the aspects
of an efficient implementation based on GPU involvement are covered. With
the Non-negative Matrix Factorization a completely novel variant of Appearance
Model generation is presented which can be subject of multiple further research
activities. Standard AAMs suffer under the widely unrealistic precondition that
the search space of the AAM coefficients is similar for all target objects under the
whole range of variations in initializations, illuminations, and views. In order to
overcome this constraints, several optimization strategies which operate without
prediction schemes about the search space are investigated whereas the Nelder-
Mead strategy turned out to be the best with respect to computational efficiency
and quality of the re-synthesis.

Finally, the improved standard AAM algorithm plus the developed variants
were applied to several well established fields of face analysis, namely the recogni-
tion of gender, age, identity, head pose, and facial expression of a person. Besides
a methodology for the selection of appropriate images for the generation of Ap-
pearance Models, several further findings were drawn. These mainly regard the
optimal algorithmic variant of AAMs, the preparation of AAM coefficients for
classification, and the impact of the re-synthesis quality on the recognition per-
formance. The evaluations showed that, apart from person identification, our
single Active Appearance Model approach is equal or superior to other task spe-
cific state-of-the-art face analysis systems.

Since all the functionality is available in our software system FEASy, e.g.
high level systems in human-machine interaction can exploit these analysis results
provided that they are endued with the necessary computational power.

Further research may focus on strategies for the generation of Appearance
Models which cover the entire range of ages, facial expressions, and ideally head
poses of a single ethnic origin. Apart from image selection, an improved modeling
of independent facial features will lead the way. Since Appearance Models with
such variance are expected to show increasingly difficult search spaces, hybrid
optimization methods which perform a rough minimum search followed by a fine-
tuned local optimization will be required.
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Appendix A

Conventions

A.1 General Typesetting

For better readability we used specific standards for typesetting math symbols,
functions or code fragments throughout this document.

A.1.1 Indexing

All indices for accessing sequences, ordered sets, vectors or matrices are zero
based. For example let vector v with |v| = n be defined as

v = (v0 v1 . . . vn−1)
T

A.1.2 Sets

Sets are formatted in capital calligraphic letters

H = A ∪ B

and members of a set are normally choosen so that letters match like

a ∈ A, b ∈ B

A.1.3 Scalars

Scalar values are written in lower-case letters like

a = 5, b = 3, α = λ · π

A.1.4 Sequences

The index of sequences (which might be defined recursively) is always set in
brackets

f[0] = 0, f[1] = 1, f[n] = f[n−1] + f[n−2]

indicating that we are talking about the same f varying in discrete steps over
time or over a number of iterations.
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A.1.5 Functions

Functions are formatted either in (non-bold non-italic) lower-case or upper-case
letters:

F(x) = x2, f(x) = 2x

A.1.6 Transformations

Transformations are typesetted just like functions:

T : t(x) =

(
a b
c d

)
x

A transformation is applied (in this example to a vector x) by

T{x}

Transformations can also be concatenated by the ◦ operator:

T2 ◦ T1{x}

In this case, first transformation T1 is applied to the vector x, and then T2 is
applied to the result of the first transformation.

A.1.7 Vectors

Vectors are typesetted in bold lower-case letters

v = µu

where µ is a scalar value. If a distinctive vector is mentioned, its index is format-
ted in bold as well:

bs = some distinctive vector

In the case we want to access a scalar element of a vector we write

b = bsi, c = cj

where b is the ith element of vector bs and c is the jth element of vector c. Please
note that all vectors mentioned in this document are column vectors unless stated
otherwise. Data consisting of several vectors is normally arranged column-wise
in a matrix.
If we want to concatenate several vectors vi, 0 6 i 6 n to form another vector c,
we write

cT = (v0
T | . . . | vnT )
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A.1.8 Matrices

Matrices are formatted in bold capital letters

v = αAx+ βb

where A is a matrix, x and b are vectors and α and β are scalars. If a distinctive
matrix is mentioned, its index is formatted in bold as well:

Qs = some distinctive matrix

In the case we want to access a scalar element of a matrix we write

q = Qsi,j, d = Dk,l

where q is the element in the ith row and jth column of matrix Qs and d is the
element in the kth row and lth column of matrix D. Sometimes we want to select
a row or column vector of a matrix. In this case, the following notation is used:

u = Ai,∗, v = A∗,j

where u is the ith row vector of matrix A and v its jth column vector. If we
want to point out clearly that the matrix M is made up of column vectors µivi,
0 6 i < n, we write

M = (µ0v0 | µ1v1 | . . . | µn−1vn−1)

A.1.9 Code

Code fragments within the text are always written in typewriter font, for ex-
ample to refer to the function foo() below. Listings are presented in a special
environment like this:

1 foo() {
2 x=2
3 y=3
4 return x+y
5 }

A.1.10 Text Substitution

A variable string is usually enclosed into %...%. For example, %DIRECTORY% can
name the system dependent folder where the application app can be found, like
this:

%DIRECTORY%/bin/app
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A.2 Symbols

For better syntactical understanding each mathematical symbol is only used once
in a distinctive context throughout this document. See tables A.1 to A.5 for a
list of all used symbols and their meaning.

Table A.1: Generic symbols

L Number of landmarks
p Number of all samples in the training

set
d Number of synthesized samples used for

predictor matrix training
f One-to-one mapping (bijective) func-

tion to associate images and their re-
spective landmarks

E Error function
T Similarity transformation
e Unit vector
I Identity matrix
C Covariance matrix
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Table A.2: Shape model symbols

x Annotation landmark (a tuple (x, y))
s Shape vector in pixel space (containing

interleaved coordinates)
S Set of original annotation point vectors
s′ Shape vector in normalized space (con-

taining interleaved coordinates)
S ′ Set of aligned annotation point vectors
ŝ Estimation for mean shape vector
s Mean shape vector in normalized space
S Matrix of normalized shape vectors
Cs Shape covariance matrix
µs Number of used shape parameters
λs Vector of shape model eigenvalues
Φs Matrix of shape model eigenvectors

(column-wise)
hs Shape model parameter vector
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Table A.3: Texture model symbols

p Vector containing an original training
image (in row-major-order)

P Set of training images
χ Number of channels in an image
e Triangulation edge
E Set of triangulation edges
	 Set of triangles
t Warped and masked texture vector

(column vector)
T Set of warped and masked textures
c Number of masked pixels
t′ Normalized warped and masked tex-

ture vector (column vector)
T ′ Set of normalized warped and masked

texture vectors

t̂ Estimation of mean texture vector
t Mean texture vector
T Matrix of normalized warped and

masked texture vectors
Ct Texture covariance matrix
µt Number of used texture parameters
λt Vector of texture model eigenvalues
Φt Matrix of texture model eigenvectors

(column-wise)
ht Texture model parameter vector
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Table A.4: Combined model symbols

Cc Combined model covariance matrix
µc Number of used combined parameters
λc Vector of combined model eigenvalues
Φc Matrix of combined model eigenvectors

(column-wise)
Φcs Shape relevant sub-matrix of Φc

Φct Texture relevant sub-matrix of Φc

Qs Eigenvectors used for shape synthesis
(column-wise)

Qt Eigenvectors used for texture synthesis
(column-wise)

C Matrix containing concatenated shape
and texture parameter vectors for each
sample

c Column vector of C
hc Combined model parameter vector
k Shape weight
K Diagonal matrix containing the shape

weight
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Table A.5: Predictor matrix calculcation symbols

V A set of concatenated parameter vec-
tors containing pose and texture pa-
rameters as well as the combined model
parameter vector

h Concatenated parameter vector con-
taining pose and texture parameters as
well as the combined model parameter
vector

v Dimension of vector h
R Predictor matrix
J Jacobian matrix
r Texture difference function
w Gaussian kernel
sr Scale factor
θ Rotation
tx Pose parameter for translation along

the X axis
ty Pose parameter for translation along

the Y axis
s Pose parameter controlling scale
r Pose parameter controlling rotation
b Texture parameter for texture bright-

ness
m Texture parameter for texture intensity
α Step width for gradient descent
β Step width multiplier for gradient de-

scent
ε Termination criterion for search algo-

rithm
Tp Pose similarity transformation
Tg Global similarity transformation



List of Figures

2.1 Schematic view of the framework concept . . . . . . . . . . . . . . 13
2.2 Training a SVM with AAM Parameter Data . . . . . . . . . . . . 16

3.1 1D Haar-Wavelet spectrum . . . . . . . . . . . . . . . . . . . . . . 21
3.2 2D-Haar-like Wavelets filters . . . . . . . . . . . . . . . . . . . . . 21
3.3 Real part of a Gabor filter kernel . . . . . . . . . . . . . . . . . . 23
3.4 Family of Gabor-Wavelet filters . . . . . . . . . . . . . . . . . . . 24
3.5 Structure of the threshold classifier . . . . . . . . . . . . . . . . . 28
3.6 Exemplary threshold determination . . . . . . . . . . . . . . . . . 29
3.7 Determination of intervals with the SPLIT strategy . . . . . . . . 30
3.8 Structure of cascades for object detection . . . . . . . . . . . . . . 31
3.9 Single stage of a cascade . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Images of the FERET database and positive material for the eye

localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Variance in the appearance of human faces [1] . . . . . . . . . . . 38
4.2 Annotation scheme for faces with 72 landmarks . . . . . . . . . . 38
4.3 (a) Source image with source shape si and triangle ψ - (b) position

and shape of the target triangle ψ′ in the mean shape s . . . . . . 40
4.4 Effect of the first shape model components . . . . . . . . . . . . . 43
4.5 Effect of the first two combined model components . . . . . . . . 45
4.6 Transformations during AAM coefficient optimization . . . . . . . 48
4.7 Numerical Estimation of the Jacobian matrix . . . . . . . . . . . 50
4.8 Schematic illustration of the AAM coefficient optimization algorithm 52

5.1 Graphical illustration of NMF . . . . . . . . . . . . . . . . . . . . 57
5.2 Illustration of theorem 5.2.2 . . . . . . . . . . . . . . . . . . . . . 59
5.3 Abstract dataset Dcirc . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Face dataset Dface . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Base images of dataset Dcirc after applying the PCA . . . . . . . 65
5.6 Base images of dataset Dcirc after applying the NMF . . . . . . . 66
5.7 Base images of dataset Dface after applying the PCA . . . . . . . 66
5.8 Base images of dataset Dface after applying the NMF . . . . . . 66
5.9 Reconstructed images (PCA) . . . . . . . . . . . . . . . . . . . . 67
5.10 Reconstructed images (NMF) . . . . . . . . . . . . . . . . . . . . 67
5.11 Face reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 67



142 LIST OF FIGURES

5.12 WarpingEngine2 rendering pipeline . . . . . . . . . . . . . . . . . 81
5.13 The bounding box of an AAM shape s (destination vertices) . . . 81
5.14 WarpingEngine2 scene setup: viewport, projection and viewing

frustrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.15 WarpingEngine2 texture setup: virtual and physical texture . . . 84
5.16 Incorrectly warped texture . . . . . . . . . . . . . . . . . . . . . . 85
5.17 Schematic illustration of CPU-based coefficient optimization . . . 86
5.18 Schematic illustration of GPU-based coefficient optimization . . . 87
5.19 Example of an AAM difference image . . . . . . . . . . . . . . . . 91

6.1 Example of different expressions from the AR Database . . . . . . 101
6.2 Example of different head poses from the NIFace1 Database . . . 101
6.3 Example of different ages from the FG-NET Aging Database . . . 102
6.4 histogram of the age variation . . . . . . . . . . . . . . . . . . . . 102
6.5 Example of the FG-NET Aging annotations with 68 landmarks . 103
6.6 Texture Similarity histogram and evaluation results . . . . . . . . 105
6.7 Comparison of neutral (top) and anger (bottom) expression . . . . 107
6.8 Example of images (smile) taken 14 days apart . . . . . . . . . . . 109
6.9 Different classes for the head pose evaluation . . . . . . . . . . . . 110
6.10 Example of an annotated image from the NIFace1 Database . . . 111
6.11 Improvement of the AAM during AAM Search . . . . . . . . . . . 112
6.12 AAMs for different head poses . . . . . . . . . . . . . . . . . . . . 114
6.13 Effect of the first 2 AAM principal components . . . . . . . . . . 115
6.14 Mean TS values and recognition rates for different parameter vari-

ations (default values in brackets) . . . . . . . . . . . . . . . . . . 125
6.15 Example of the Störmer annotations with 132 landmarks . . . . . 126
6.16 Recognition rates for different age thresholds with and without

Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.17 Example of synthesis of an image with a Texture Similarity value

of 0.97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



List of Tables

2.1 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Number of required features (overall #) and average number of
computed features per sampled window on the test dataset (aver-
age #), as well as the number of Gabor features at application of
both feature types (H+G) (G #) . . . . . . . . . . . . . . . . . . 33

3.2 Hit rate (HR) and average number of computed features per win-
dow on the test dataset (average #) . . . . . . . . . . . . . . . . . 33

3.3 Average duration of the eye localization per face (in ms) regarding
the used weak classifier . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Distribution of convergence quality annotation . . . . . . . . . . . 90
5.2 Confusion matrices for SVM classification of all quality measures

and Texture Similarity only . . . . . . . . . . . . . . . . . . . . . 93

6.1 Comparison of face databases . . . . . . . . . . . . . . . . . . . . 100
6.2 Cross-classification confusion matrices and error rates for gender

evaluation; (a) non person-disjunctive and (b) person-disjunctive . 104
6.3 Comparison of different optimization methods . . . . . . . . . . . 104
6.4 Comparison of our result with state-of-the-art gender recognition

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Cross-classification confusion matrices and error rates for facial

expression evaluation; (a) non person-disjunctive and (b) person-
disjunctive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Comparison of our result with state-of-the-art facial expression
recognition rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Results for the face identification . . . . . . . . . . . . . . . . . . 109
6.8 Comparison of our result with state-of-the-art face identification

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.9 TS values and recognition rates for different amounts of images for

AAM training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.10 Cross-classification confusion matrix and error rate for head pose

evaluation with a 56 image AAM . . . . . . . . . . . . . . . . . . 113
6.11 Cross-classification confusion matrices and error rates for the 3-

class head pose problem; (a) horizontal angles and (b) vertical
angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



144 LIST OF TABLES

6.12 TS values and recognition rates for different combined percentages 114
6.13 TS values and recognition rates for different parameter combinations115
6.14 Results for different 15-class problem systems . . . . . . . . . . . 117
6.15 Evaluation results for images with best representation . . . . . . . 117
6.16 Recognition rates with and without Head and Eye-Tracking Module118
6.17 Comparison of our 5-class horizontal result with other horizontal

head pose recognition rates . . . . . . . . . . . . . . . . . . . . . . 119
6.18 Comparison of our 3-class vertical result with other vertical head

pose recognition rates . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.19 Recognition rates with and without manually improved annotations120
6.20 TS values and recognition rates for different amounts of images for

AAM training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.21 Confusion matrix and error rate for the 4-class age evaluation . . 121
6.22 Comparison of our 4-class result with state-of-the-art age recognition122
6.23 Comparison of our 2-class result with state-of-the-art age recognition122
6.24 Comparison of the PCA and NMF variant . . . . . . . . . . . . . 123

A.1 Generic symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2 Shape model symbols . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Texture model symbols . . . . . . . . . . . . . . . . . . . . . . . . 138
A.4 Combined model symbols . . . . . . . . . . . . . . . . . . . . . . 139
A.5 Predictor matrix calculcation symbols . . . . . . . . . . . . . . . . 140



List of Listings

4.1 Jacobian matrix numerical estimation algorithm . . . . . . . . . . 50
5.1 Pseudocode of the NMF Algorithm . . . . . . . . . . . . . . . . . 64





Bibliography

[1] FG-NET Aging Database. http://www-prima.inrialpes.fr/FGnet/.

[2] NIFace1 Database. http://tu-ilmenau.de/fakia/NIFace1.5255.0.

html?&no_cache=1&sword_list[]=NIFace.

[3] Abate, A., Nappi, M., Riccio, D., and Sabatino, G. 2d and 3d face
recognition: A survey. 1885–1906.

[4] Abelson, Harold, and with Julie Sussman, G. J. S. Structure and
Interpretation of Computer Programs (Second edition). The MIT Press,
1996, pp. –.

[5] Ahlberg, J. Using the active appearance algorithm for face and facial fea-
ture tracking. In Proceedings of the IEEE Conference on Computer Vision
(2001).

[6] Baker, S., and Matthews, I. Equivalence and efficiency of image
alignment algorithms. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2001).

[7] Basili, P. Holistische Mimikerkennung mit Active Apperance Modellen.
Bachelor thesis, Technische Universität München, Institute for Human-
Machine Communication, 2006. Supervisor: Ronald Müller.

[8] Batur, A., and Hayes, M. A novel convergence scheme for active ap-
pearance models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2003).

[9] Batur, A. U., and Hayes, M. H. Adaptive active appearance models.
IEEE Transactions on Image Processing 14 (2005), 1707–1721.

[10] Blackford, L. S., Demmel, J., Dongarra, J., Duff, I., Hammar-
ling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A.,
Petitet, A., Pozo, R., Remington, K., and Whaley, R. C. An
updated set of Basic Linear Algebra Subprograms (BLAS). ACM Transac-
tions on Mathematical Software 28, 2 (June 2002), 135–151.

[11] Brown, L., and Tian, Y. Comparative study of coarse head pose esti-
mation. In Motion02 (Hawthorne, NY 10532, 2002), pp. 125–130.

http://www-prima.inrialpes.fr/FGnet/
http://tu-ilmenau.de/fakia/NIFace1.5255.0.html?&no_cache=1&sword_list[]=NIFace
http://tu-ilmenau.de/fakia/NIFace1.5255.0.html?&no_cache=1&sword_list[]=NIFace


148 BIBLIOGRAPHY

[12] Buchala, S., Davey, N., Gale, T. M., and Frank, R. J. Principal
Component Analysis of gender, ethnicity, age, and identity of face images.
Proceedings of IEEE ICMI 2005 (2005).

[13] Buciu, I., and Pitas, I. Application of non-negative and local non neg-
ative matrix factorization to facial expression recognition. In Proc. of the
17th Int. Conf. on Pattern Recognition (Aug. 2004), vol. 1, pp. 288–291.

[14] Burges, C. J. C. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery 2, 2 (1998), 121–167.

[15] Charamel GmbH. mocito - application & content server for mobile ser-
vices. https://www.mocito.com, 10 2007.

[16] Cignoni, P., Montani, C., and Scopigno, R. DeWall: A fast divide &
conquer Delaunay triangulation algorithm in Ed. Computer-Aided Design
30, 5 (1998), 333–341.

[17] Cleary, J. G., and Trigg, L. E. K*: An instance- based learner
using an entropic distance measure. In Proceedings of the 12th International
Conference on Machine learning (1995), pp. 108–114.

[18] Collobert, R., Bengio, S., and Mariéthoz, J. Torch: a modular
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