
Efficient MSE Balancing for the Multi-User
MIMO Downlink

Raphael Hunger, Michael Joham, and Wolfgang Utschick

41st Asilomar Conference on Signals, Systems and Computers
Pacific Grove, USA

November 4th — November 7th, 2007

c©2007 IEEE. Personal use of this material is permitted. However, per-
mission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Technische Universität München
Associate Institute for Signal Processing

http://www.msv.ei.tum.de



Efficient MSE Balancing for the Multi-User MIMO
Downlink

Raphael Hunger, Michael Joham, and Wolfgang Utschick
Associate Institute for Signal Processing, Technische Universität München, 80290 Munich, Germany

Telephone: +49 89 289-28508, Fax: +49 89 289-28504, Email: hunger@tum.de

Abstract— A novel MSE balancing paradigm is presented
which is based on the unweighted sum-MSE minimization with
individual power constraints in conjunction with an adaptive
power allocation. By means of a counter-example, we show that
even the two-user MSE region may be nonconvex in case of multi-
antenna users which is in contrast to the predominant opinion.
Any algorithm utilizing the weighted sum-MSE minimization
hence cannot achieve the complete MSE region for any channel
realization. This resulting gap due to the nonconvex dent is
closed by the presented approach. For the unweighted sum-MSE
minimization with individual power constraints which represents
the core of the balancing algorithm, we come up with an
extremely fast converging alternating optimization outperforming
all hitherto existing approaches.

I. INTRODUCTION

Balancing is known, on the one hand, from rate applications
where a common rate, namely the symmetric capacity, is
allocated to every user [1] and on the other hand from SINR
balancing for single antenna receivers [2], [3]. In the latter
case, SINR balancing is basically equivalent to balancing the
individual users’ mean square errors (MSEs). While there ex-
ists only a single balancing level for single antenna receivers,
multiple levels arise when MIMO receivers are allowed. As
a consequence, only local optimality is ensured in general by
most of the existing algorithms covering this topic. Interest-
ingly, only few contributions focus on the multi-antenna case.
In [4], the authors tackle the multi-antenna problem by means
of an alternating optimization (AO) switching between uplink
and downlink. A weighted sum-MSE minimization approach is
given in [5]. Both approaches need not necessarily converge to
the global optimum. In this paper, we present a new balancing
paradigm which is applicable not only to mean square error,
but also to rate applications. It is based on adaptive individual
power constraints and optimizes either the unweighted sum-
MSE or the unweighted sum-rate. Therefore, this part of the
algorithm has a very advantageous convex structure.

II. SYSTEM MODEL AND DUAL UPLINK PROBLEM

We focus on the downlink of a cellular system where K
users are served by a base station with N transmit antennas.
Based on a new sort of duality theory in [3], [5], we construct
an equivalent problem formulation in the virtual dual uplink
featuring the same MSE region under a sum-power constraint
as the downlink. This dual uplink has the nice property that
common inverses arise in the individual users’ mean square
error expressions leading to a reduced complexity during the

optimization. Instead of balancing the MSEs in the downlink,
we solve the balancing problem in the virtual dual uplink and
afterwards transform the solution to the downlink making use
of the uplink-to-downlink conversion rules from the duality in
[3], [5].

Let Tk ∈ C
rk×Bk denote the precoding matrix of user k in

the dual uplink that maps its Bk streams onto its rk antennas.
Then, the transmit covariance matrix reads as

Qk = TkT
H
k ∈ C

rk×rk , (1)

where we assumed that the zero-mean symbol vector sk ∈
CBk has pairwise uncorrelated unit-variance entries. With
Hk ∈ CN×rk representing the channel matrix of user k,
η ∈ C

N being the uncorrelated noise with variance σ2
η of

each entry, and Gk ∈ CBk×N denoting the receive filter, the
mean square error εk of user k in the virtual uplink can be
expressed as

εk = tr
(

IBk − TH
k H

H
k X

−1HkTk
)

, (2)

where we optimally chose Gk = TH
k H

H
k X

−1 to be the
MMSE receiver and

X = σ2
ηIN +

K
∑

`=1

H`T`T
H
` H

H
` (3)

is the covariance matrix of the received signal. Note that
the dual uplink has a sum-power constraint

∑K

k=1 ‖Tk‖2F =
∑K
k=1 tr(Qk) ≤ PTx as well as the downlink which follows

from the MSE duality in [3].

III. PROBLEM STATEMENT AND OPTIMALITY CONDITIONS

The MSE balancing problem is based on equating the
weighted mean-square errors of all users at a minimum
common level with a fixed amount of available power. This
approach is already known from rate balancing in [1] and
single-antenna SINR balancing in [2], [5]. For the MSE,
however, the weights w1, . . . , wK ∈ R+,0 may not be chosen
arbitrarily, since feasibility of the problem cannot always
be guaranteed. In particular, the MSE εk of user k cannot
exceed Bk and cannot drop below a minimum possible value
εmin,k > 0. Thus, not all weight ratios wk/w` = εk/ε` are
supported. The balancing problem can be stated as

min
{α,T1,...,Tk}

α s.t.:
εk
wk

= α and
K
∑

k=1

‖Tk‖2F ≤ PTx. (4)



For the single antenna case with rk = Bk = 1 ∀k, the cost
function α becomes redundant as the constraints εk = wkα
have only a single solution under the assumption of MMSE
receivers and the complete dissipation of the maximum power.
This follows from the fact that due to the structure of the MSE
expression in (2) not all MSEs can simultaneously decrease
under a fixed sum-power. In the MIMO case, however, several
balanced levels α may exist and we seek for the smallest one.

From the KKT conditions of the nonconvex problem (4),
we can infer that any candidate for a local minimum, i.e., any
stationary point of (4) complies with the KKT conditions of
the weighted sum-MSE minimization problem

min
{T1,...,TK}

K
∑

k=1

µkεk s.t.:
K
∑

k=1

‖Tk‖2F ≤ PTx. (5)

Unfortunately, the weights µ = [µ1, . . . , µK ]T ∈ RK+,0 are
not known in advance as they correspond to the Lagrangian
multipliers of (4) ensuring the equality of the MSE levels.
This problem structure suggests finding the solution for (4)
by means of a weighted sum-MSE minimization where the
weights µ are adaptively chosen to satisfy the MSE equality
as in [5] similarly to the rate-balancing algorithm in [1],
where the weighted sum-rate is maximized in combination
with an ellipsoid method. However, the structure of the MSE
region sometimes prevents the possibility of reaching every
point on the border of the MSE region by means of the
weighted sum-MSE minimization problem. More precisely,
we give a counterexample to the statement made in [6] that
the MSE region is convex in case of multi-antenna receivers.
The proof presented in [6] testifies that any two points on
the border of the MSE region that are connected by a line
with −45◦ slope have no nonconvex dent between them.
Nonetheless, convexity of the MSE region does not follow
from this, all possible slopes have to be checked instead to
show convexity. Evidently, any standard weighted sum-MSE
minimization algorithm may fail to find the balanced level
(even if the optimum weights were known in advance) if the
optimum individual MSEs should turn out to lie on such a
nonconvex segment. Algorithms as in [5] adapting the weights
µ according to a subgradient approach which increases the
weight for the sum-MSE minimization of a specific user if its
MSE level is too high or decreases it if its MSE is too small,
therefore tend to oscillate between two points if the balanced
level lies on such a dent. As mentioned before, the desired
balanced level, i.e., the desired MSE tuple fulfills the KKT
conditions of (5), even in a dent. Yet, such an MSE tuple
represents a stationary point (local minimum or saddle-point)
of the Lagrangian associated to the optimization in (5) which
is not globally optimum and hence, extremely hard to find by
an iterative algorithm. In order to come up with a convex MSE
region for multi-antenna receivers, time-sharing would have to
be applied to obtain the convex hull of the nonconvex region.
But then, computationally complex ellipsoid methods would
have to be employed to find a balanced level on the convex
hull part which has curvature zero in at least one dimension.

In [4], the authors propose an alternating optimization
approach repeatedly switching between uplink and downlink
as the receive filters in the respective link are MMSE receivers.
However, a stream-wise MSE duality is used although the total
MSEs per user are balanced leading to a high complexity for
switching from one link to the other in the alternation.

IV. A NOVEL BALANCING PARADIGM: INDIVIDUAL

POWER CONSTRAINTS AND UNWEIGHTED OPTIMIZATION

The complete MSE region including its interior consists of
the union of all individual MSE tuples from (2) achieved by
all positive semidefinite transmit covariance matrices Qk < 0

satisfying the sum-power constraint
∑K

k=1 tr(Qk) ≤ PTx.
Equivalently, we can say that the region is spanned by the
union of all MSE tuples generated by covariance matrices
Qk < 0 with individual power constraints tr(Qk) ≤ pk.
Clearly, the union is also taken over all nonnegative pow-
ers p = [p1, . . . , pK ]T, summing up to at most PTx, i.e.,
∑K

k=1 pk ≤ PTx. While almost all balancing algorithms
apply the weighted sum-MSE/sum-rate optimization in order
to achieve balanced levels (e.g. [1], [5]), we come up with the
following new paradigm.

A. The Basic Idea

Instead of adapting the weights of a weighted sum-
MSE/sum-rate optimization under a sum-power constraint, we
impose individual power constraints to the covariance matrices
and adapt the distribution of the available power over the
respective users. The structure of the covariances is then
optimized by the slightly restricting property that they follow
from the unweighted sum-MSE minimization with individual
power constraints. Obviously, this reduced set of precoders
will fail to cover the complete MSE region. However, this
approach has several advantages: First, the unweighted sum-
MSE minimization problem is a convex minimization (in
contrast to the weighted sum-MSE minimization), for which
fast and efficient solutions exist, see for example the fixed
point Picard iteration in [7], [8]. In addition, we will present a
novel, computationally even less complex method to solve this
problem in the following. Second, the MSE region obtained
from the union of the MSE tuples generated by the unweighted
sum-MSE minimization and all individual power distributions
touches the complete (possibly nonconvex) MSE region at
least K+ 1 times. Once, when all MSE weights are identical,
and K times, when the complete power PTx is allocated to a
single user. Moreover, the curvature of both regions is almost
the same around the touching point where all weights are
identical. So at least in the local vicinity, this approximation
is very good. Simulation results reveal that, depending on
the channel and the current signal-to-noise ratio, there is a
very good match between the complete MSE region and the
one obtained by the sum-MSE minimization with different
individual power allocations. Third, no step-size adaptations
are required for the update of the individual power distribution
p to the users as this would be the case for the weights µ in
a weighted sum-MSE minimization.



B. Unweighted Sum-MSE Minimization with Individual Power
Constraints

From the definition of the individual MSEs in (2), we
can express the sum MSE ε which is jointly convex in all
covariance matrices via

ε =
K
∑

k=1

εk =
K
∑

k=1

Bk −N + σ2
η tr(X−1), (6)

where the total receive covariance matrix X is defined in (3).
The optimization reads as

min
{Q1,...,QK<0}

ε s.t.: tr(Qk) ≤ pk ∀k. (7)

It can easily be shown that each user has to transmit with
full power pk. In [9], the authors treat the individual links
from each user to the base station as single-user point-to-
point systems with colored noise (interference plus noise)
and iteratively optimize one covariance matrix after another
keeping all others fixed. While this procedure is provably
optimum for the rate maximization with individual power
constraints [10], it’s suboptimum for sum-MSE minimization
since the KKT conditions look different. Indeed, they read as

σ2
ηH

H
k X̌

−2Hk = λkIrk − Λ̌k and Q̌kΛ̌k = 0 ∀k, (8)

where Λ̌k ensures that Q̌k is positive semidefinite and is
positive semidefinite itself, and λk is the Lagrangian multiplier
associated to the power constraint of user k. Checked variables
denote that they fulfill the KKT conditions. After several
transformations, we find under the assumption of a full rank
solution (Λ̌k = 0)

Q̌k =λk
[(

HH
kX̌
−1
k Hk

)−1
σ2
ηH

H
kX̌
−2
k Hk

(

HH
kX̌
−1
k Hk

)−1] 1

2

−
(

HH
k X̌

−1
k Hk

)−1

(9)
which is optimum only if Q̌k � 0, and λk is chosen such that
tr(Q̌k) = pk. Note that the right hand side does not depend
on Q̌k since

Xk =X −HkQkHH
k = σ2

ηIN +
∑

`6=k

H`Q`H
H
`

does not depend on Qk. By means of the matrix inversion
lemma, complexity can drastically be reduced: First, we can
replace Xk by X in the first summand of (9) as this does not
change its value. Second, we can exploit the equality

(HH
k X

−1
k Hk)

−1 = (HH
k X

−1Hk)
−1 −Qk

to transform the second summand and therefore never have to
compute all K inverses X−1

k , k ∈ {1, . . . ,K}.
Under the assumption of a rank-one precoder, the covariance

matrix reads as Q̌k = ǔkǔ
H
k with ǔk being the only nonzero

column of the precoder Ťk. The optimality condition
( 1

pk
Irk +HH

k X̌
−1
k Hk

)−1

HH
k X̌

−2
k Hk · ǔk = γ · ǔk (10)

reveals that ǔk is the eigenvector with norm
√
pk correspond-

ing to the largest eigenvalue γ of (p−1
k Irk +HH

k X̌
−1
k Hk)

−1.

Thus, we can completely solve the nonlinear KKT conditions
of problem (7) by means of the alternating optimization (AO)
technique for the extremely interesting case where at most
rk = 2 antennas are deployed at the mobile terminals. For
mobile terminals with more than two antennas, the algorithm
in [9] could be used, since the case where the optimum
precoding covariance matrix has neither rank one nor full rank
might occur.

The individual power constraints allow for an AO [11], [12],
[13], where the covariance matrices are optimized separately
one after another keeping all other covariances fixed. During
iteration n + 1, the optimum covariance matrix Q(n+1)

1 of
user 1 follows from (9) if the result is positive definite or
otherwise from (10) (each without the check sign) where
Q

(n)
2 , . . . ,Q

(n)
K from the previous iteration n are held constant.

Since (9) or (10) return the optimum covariance Q(n+1)
1

for fixed interference, this procedure is called minimization
mapping. Depending on whether Q(n+1)

1 is already taken
into account for the computation of Q(n+1)

2 , . . . ,Q
(n+1)
K or

not, we distinguish two cases: Parallel connection uses all
other covariances {Q(n)

1 , . . . ,Q
(n)
K } \Q

(n)
` from the previous

iteration n for the update of Q(n+1)
` exploiting the fact that

the inverse of X(n) has to be computed only once per
iteration and not K times. Serial connection incorporates the
updates Q(n+1)

1 , . . . ,Q
(n+1)
`−1 for the computation of Q(n+1)

`

and therefore features a better performance than the parallel
connection at the price of a higher computational complexity.

C. Power Updating Rule

The simple heuristic power update rule for iteration n+1

p
′(n+1)
k = p

(n)
k

ε
(n)
k

wk

p
(n+1)
k = PTx

p
′(n+1)
k

∑K
i=1 p

′(n+1)
i

(11)

features good convergence properties and is equivalent to the
Picard fixed point iteration with subsequent power normal-
ization in the single antenna case. In the first step, user k
experiences a larger power gain than user ` if its individual
level ε(n)

k /wk is larger than the level ε(n)
` /w` of user `. In

the optimum, the individual levels of all users are identical
and therefore, all users experience the same power gain. In a
second step, all powers are rescaled to meet the sum power
constraint.

D. The Complete Algorithm

In order to find balanced MSE levels, we alternately iterate
the sum-MSE minimization for fixed power allocations in
Section IV-B and the power updating rule in Section IV-C,
until all MSEs are balanced. The iterative part in Section IV-B
need not run to completion, a single iteration suffices because
of the fast convergence. Both parallel and serial connection
can be implemented.
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Fig. 1. Sum MSE versus iteration number for different unweighted sum-
MSE minimization algorithms with K = 4 users, N = 8 receive antennas,
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η
= 1 and p = [5, 10, 20, 40]T.

V. SIMULATION RESULTS

Different algorithms for the unweighted sum-MSE mini-
mization with individual power constraints are compared in
Fig. 1, where the sum-MSE ε is plotted versus the number
of iterations in a K = 4 users scenario with N = 8
antennas at the base station and a power allocation vector
p = [5, 10, 20, 40]T. Every user is equipped with r = 2
antennas. The square marker curve corresponds to the fixed
point approach of Serbetli et al. in [8], which has a rather slow
convergence to the global optimum. This originates from the
circumstance that no minimization mapping is applied during
the iterations and instead of the covariances, the precoders are
optimized. The single-user approach of Tenenbaum et al. in
[9] (circle marker) features a quick convergence. However, it is
suboptimum as the transmit covariance matrix of every user is
optimized treating the link between the respective user and the
base station as a single-user point-to-point system with colored
noise due to interference. In contrast to rate applications, this
procedure is suboptimum when applied to MSE minimization.
Our new covariance based algorithm presented in Section IV-B
features excellent convergence properties: Only a single itera-
tion is required to reach the global optimum when the alternat-
ing optimization uses serial connection (point marker). Even
more surprisingly, the parallel connection (rhomb marker) also
exhibits the extremely fast convergence. Its performance per
iteration almost coincides with the one of the serial connection
but the complexity per iteration is much lower for the parallel
connection.

When the unweighted sum-MSE minimization algorithm
from Section IV-B is combined with the power updating
rule from Section IV-C, we obtain the complete balancing
algorithm. Its performance is displayed in Fig. 2. Again,
K = 4 two-antenna receivers are served by a base station
with N = 8 antennas. Given the same total power PTx = 75
as in Fig. 1, the individual levels εk/wk are plotted over the
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Fig. 2. Speed of convergence for the balancing algorithm with K = 4 users,
N = 8 receive antennas, and r = 2 transmit antennas per user. σ2

η
= 1,

PTx = 75, and w = [1, 2, 3, 4]T.

iteration index for a weight vector w = [1, 2, 3, 4]T. After
three iterations, a common balancing level α ≈ 0.834 has
been reached for all users. In every iteration, an unweighted
sum-MSE minimization as in Fig. 1 is executed in combination
with the power adaptation from Section IV-C.

Fig. 3 shows the boundary of the MSE region obtained by
the weighted sum-MSE minimization algorithm (solid line) by
sweeping different weights and the boundary obtained from the
unweighted sum-MSE minimization with different individual
power constraints (dashed curve). We observe that both curves
almost merge, so we have to face only a slight performance
degradation when we restrict the covariances to result from
the unweighted sum-MSE minimization. The AO approach of
Shi et al. [4] is dotted and performs slightly worse when being
close to the origin and slightly better for small MSEs of user
one.

While the MSE region in Fig. 3 is convex, this need not
be the case for all channel realizations and transmit powers.
A counter-example is depicted in Fig. 4, where a part of
the MSE region entailing a nonconvex dent is shown. MSE
pairs that can be achieved by means of the weighted sum-
MSE region are represented by the discontinuous curve. Due
to the nonconvexity, there is a gap between ε1 ≈ 0.53 and
ε1 ≈ 1.12, i.e., the weighted sum-MSE minimization cannot
return a point inside this interval. The true MSE region has
been obtained by evaluating the MSE expressions (2) of all
users for an exhaustive number of random covariance matrices
in conjunction with setting accumulation points inside the
nonconvex gap in order to verify that it is not possible to
find MSE pairs lying on the convex hull that is plotted by
the dashed curve. Utilizing the presented balancing algorithm
yields the curve with the circle marker. In fact, the nonconvex
gap is closed and MSEs inside the gap can be reached that are
infeasible for the weighted sum-MSE minimization algorithm.
We observe a perfect match between the true MSE region
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Fig. 3. MSE region obtained from weighted sum-MSE minimization and
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and the one obtained by the presented balancing algorithm
for MSEs outside the nonconvex gap. At the price of a slight
performance degradation, MSE pairs with 0.53 ≤ ε1 ≤ 1.12
can be achieved.

VI. CONCLUSION

In this paper we introduced a novel concept for the MSE
balancing problem which does not utilize the weighted sum-
MSE approach to obtain points lying on the border of the
MSE region. Instead, adaptively regulated individual power
constraints are used to control the MSE tuple that results
from the unweighted sum-MSE minimization problem. For
latter optimization, we came up with a quickly converging
algorithm for the case where the individual users have up
to two receiving antennas. This algorithm outperforms all
hitherto existing ones in terms of speed of convergence and
closes the nonconvex gap the weighted sum-MSE approach
inherently suffers from. In addition, a counter-example falsi-
fied the common assumption that the two-user MSE region is
convex in case of multi-antenna receivers.
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