
Technische Universität München
Zentrum Mathematik

Modified Sparse Approximate Inverses (MSPAI)
for Parallel Preconditioning

Alexander Kallischko

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Peter Rentrop
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Thomas Huckle

2. Univ.-Prof. Dr. Bernd Simeon
3. Prof. Dr. Matthias Bollhöfer,

Technische Universität Carolo-Wilhelmina
zu Braunschweig
(schriftliche Beurteilung)

Die Dissertation wurde am 15.11.2007 bei der Technischen Universität eingereicht und durch
die Fakultät für Mathematik am 18.2.2008 angenommen.

ii

iii

Abstract

The solution of large sparse and ill-conditioned systems of linear equations is a central task
in numerical linear algebra. Such systems arise from many applications like the discretiza-
tion of partial differential equations or image restoration. Herefore, Gaussian elimination
or other classical direct solvers can not be used since the dimension of the underlying co-
efficient matrices is too large and Gaussian elimination is an O

(
n3
)

algorithm. Iterative
solvers techniques are an effective remedy for this problem. They allow to exploit sparsity,
bandedness, or block structures, and they can be parallelized much easier. However, due to
the matrix being ill-conditioned, convergence becomes very slow or even not be guaranteed
at all. Therefore, we have to employ a preconditioner.

The sparse approximate inverse (SPAI) preconditioner is based on Frobenius norm mini-
mization. It is a well-established preconditioner, since it is robust, flexible, and inherently
parallel. Moreover, SPAI captures meaningful sparsity patterns automatically. The deriva-
tion of pattern update criteria for complex valued systems of equations, the reformulation
and extension of a nonsingularity result, and the investigation of SPAI’s regularization qual-
ities are our first original contributions to research. Furthermore, we investigate the effect
of a fill-in-reducing graph algorithm for pattern updates in FSPAI, which is the factorized
variant of SPAI. Additionally, a theoretical result for the SPAI and FSPAI of M-matrices is
presented.

As the main contribution to ongoing research, we develop the new modified sparse approx-
imate inverse preconditioner MSPAI. On the one hand, this is a generalization of SPAI,
because we extend SPAI to target form. This allows us also to compute explicit matrix ap-
proximations in either a factorized or unfactorized form. On the other hand, this extension
enables us to add some further, possibly dense, rows to the underlying matrices, which are
then also taken into account during the computation. These additional constraints for the
Frobenius norm minimization generalize the idea of classical probing techniques, which are
restricted to explicit approximations and very simple probing constraints. By a weighting
factor, we force the resulting preconditioner to be optimal on certain probing subspaces rep-
resented by the additional rows. For instance, the vector of all ones leads to preservation of
row sums, which is quite important in many applications as it reflects certain conservation
laws. Therefore, MSPAI probing can also be seen as a generalization to the well-known
modified preconditioners such as modified incomplete LU or modified incomplete Cholesky.
Furthermore, we can improve Schur complement approximations, which are the original ap-
plication area of classical probing. Given factorized preconditioners can also be improved
relative to a probing subspace. For symmetric linear systems, new symmetrization tech-
niques are introduced. The effectiveness of MSPAI probing is proven by many numerical
examples such as matrices arising from domain decomposition methods and Stokes problems.

Besides the theoretical development of MSPAI probing, an efficient implementation is pre-
sented. We investigate the use of a linear algebra library for sparse least squares problems in
combination with QR updates and compare it to standard dense methods. Furthermore, we
implement a caching strategy which helps to avoid redundant QR factorizations especially
for the case of highly structured matrices. The support for maximum sparsity patterns
rounds up our implementation. Various tests reveal significantly lower runtimes compared
to the original implementation of SPAI.

iv

v

Zusammenfassung

Die Präkonditionierung großer, dünnbesetzter und schlecht konditionierter linearer Glei-
chungssysteme ist eine der zentralen Aufgaben der numerischen linearen Algebra. Solche
Systeme treten in vielen Anwendungen wie z.B. der Diskretisierung partieller Differentialglei-
chungen oder der Bildrekonstruktion auf. Gauß Elimination oder andere klassische direkte
Verfahren für allgemeine Gleichungssysteme sind dafür nicht mehr geeignet, weil die Koef-
fizientenmatrizen viel zu hohe Dimensionen erreichen und z.B. der Gauß Algorithmus eine
Komplexität von O

(
n3
)

aufweist. Abhilfe schaffen hier iterative Löser. Diese ermöglichen
es, spezielle Strukturen in Matrizen wie Dünnbesetztheit und Band- und Blockstrukturen
effizient auszunutzen. Außerdem ist die Parallelisierung unproblematischer. Trotzdem kann
Konvergenz bei zu schlechter Kondition der Koeffizientenmatrix nur sehr langsam oder auch
gar nicht erreichbar sein. In diesem Fall bietet sich die Möglichkeit der Präkonditionierung.

Der SPAI (sparse approximate inverse) Präkonditionierer berechnet dünnbesetzte Näherun-
gen der Inversen einer Matrix und basiert auf Frobenius-Norm-Minimierung. Durch seine
Robustheit, Flexibilität und intrinsische Parallelität stellt er ein gängiges Verfahren zur
Präkonditionierung großer linearer Gleichungssysteme dar. Außerdem verfügt SPAI über
die Möglichkeit, eine vorgegebene Besetztheitsstruktur (sparsity pattern) automatisch um
sinnvolle Einträge zu erweitern, um die Approximation der Inversen zu verbessern. Die er-
sten Beiträge dieser Arbeit zur aktuellen Forschung behandeln die Herleitung von Kriterien
zur Erweiterung des Besetztheitsmusters im Fall komplexwertiger Gleichungssysteme, die
Neuformulierung und Erweiterung eines Regularitätsbeweises, sowie die Untersuchung, in-
wiefern sich SPAI als Regularisierungspräkonditionierer bei Bildrekonstruktionsproblemen
eignet. Weiterhin wird die Auswirkung eines fill-in-reduzierenden Graphenalgorithmus auf
die Erweiterungsschritte im Besetztheitsmuster des FSPAI Präkonditionierers untersucht,
der faktorisierten Variante von SPAI für symmetrisch positiv definite Matrizen. Außerdem
wird eine theoretische Aussage über SPAI und FSPAI für M-Matrizen bewiesen.

Der größte Beitrag dieser Arbeit besteht aus der Entwicklung des MSPAI (modified sparse
approximate inverse) Präkonditionierers. Zum einen stellt MSPAI durch die Erweiterung
auf Targetform eine Verallgemeinerung von SPAI dar. Dadurch lassen sich sowohl inverse
als auch explizite Approximation, sowohl in faktorisierter, als auch unfaktorisierter Form
berechnen. Andererseits können durch diese Erweiterung weitere (womöglich dichtbesetzte)
Zeilen an die zugrunde liegenden Matrizen angehängt werden, die dann ebenfalls bei der
Berechnung des MSPAI mit berücksichtigt werden. Diese zusätzlichen Nebenbedingungen
an die Frobenius-Norm-Minimierung verallgemeinern auch das Prinzip des klassischen Pro-
bings. Mittels eines Gewichtsfaktors wird erreicht, dass der entstehende Präkonditionerer
auf bestimmten Unterräumen optimal agiert. Beispielsweise führt der Vektor, der dicht mit
1 besetzt ist, zur Erhaltung der Zeilensummen, was in vielen Anwendungen sehr wichtig
ist, spiegelt es schließlich diverse Erhaltungssätze wider. In dieser Hinsicht kann MSPAI
auch als Verallgemeinerung der Klasse der modifizierten Präkonditionierer wie z.B. der mo-
difizierten unvollständigen LU-Zerlegung angesehen werden. Zusätzlich lassen sich durch
MSPAI auch Näherungen von Schur Komplementen verbessern, worin die ursprüngliche
Anwendung des klassischen Probings besteht. Auch von anderen Methoden erzeugte fak-
torisierte Approximationen lassen sich mittels MSPAI und Probing-Nebenbedingungen in
ihrer Qualität verbessen. Für lineare Gleichungssysteme mit symmetrischer Koeffizien-
tenmatrix werden überdies neue Techniken zur Symmetrisierung eingeführt. Die Wirk-

vi

samkeit von MSPAI wird an einigen numerischen Beispielen wie Gebietszerlegung und
Stokes-Problemen nachgewiesen.

Neben der theoretischen Entwicklung des MSPAI thematisiert diese Arbeit auch eingehend
dessen effiziente Implementierung. Zunächst werden dünnbesetzte Verfahren zur Lösung von
Least-Squares-Problemen in Verbindung mit QR-Updates untersucht und mit den bisheri-
gen Standardmethoden verglichen. Außerdem wird eine Caching-Strategie eingeführt, die
dabei hilft, redundante QR-Zerlegungen im Fall hochstrukturierter Matrizen einzusparen.
Schließlich rundet die Unterstützung maximaler Oberpattern für die Dünnbesetztheitsstruk-
turen die Implementierung ab. Laufzeittests beweisen die Effektivität dieser Maßnahmen
in Form von deutlich reduzierten Laufzeiten im Vergleich mit der aktuellen Standardimple-
mentierung von SPAI.

vii

Contents

Introduction 1

1 Numerical Solution of Systems of Linear Equations 5
1.1 Gauss Algorithm and LU Factorization . 6

1.1.1 Triangular Systems . 6
1.1.2 LU Decomposition by Gaussian Elimination 7
1.1.3 Cholesky Decomposition . 8
1.1.4 Iterative Refinement . 9

1.2 Condition Number of Systems of Linear Equations 9
1.3 Sparse Matrices . 13

1.3.1 Sparse Storage Schemes and Basic Matrix Operations 14
1.3.2 The Graph Related to a Matrix . 16
1.3.3 Approximate Minimum Degree Reordering 17

1.4 Iterative Solution Methods . 18
1.4.1 Basic Algorithms . 18
1.4.2 Krylov Subspace Methods . 20

1.5 Preconditioning . 22
1.5.1 Forward Preconditioners . 24
1.5.2 Inverse Preconditioners . 25

2 SPAI and FSPAI 27
2.1 SPAI . 27

2.1.1 Solution of the Least Squares Problems 29
2.1.2 Pattern Updates . 31
2.1.3 Sparsity Patterns . 33
2.1.4 Theoretical Properties of SPAI . 36
2.1.5 Example Application: SPAI in Image Restoration 38

2.2 FSPAI . 42
2.2.1 Computation of FSPAI for Fixed Pattern 43
2.2.2 Pattern Updates . 45
2.2.3 Effect of Approximate Minimum Degree Reordering on FSPAI 46

2.3 M-Matrices . 47

3 Modified SPAI 49
3.1 Probing . 50
3.2 Modified Incomplete Factorizations . 50
3.3 Generalized Form of Frobenius Norm Minimization and Probing 51

3.3.1 Sparse Approximate Inverses and Probing 52
3.3.2 Explicit Approximation and Probing 52
3.3.3 Explicit Factorized Approximation and Probing 53
3.3.4 Approximating a Factorization of A−1 54

viii Contents

3.3.5 Application to Schur Complements . 54
3.4 Probing Vectors . 55

3.4.1 Standard Choices of Probing Vectors 55
3.4.2 Graph Based Identification of Probing Vectors 57

3.5 Theoretical Results for MSPAI . 58
3.6 Symmetrization Techniques . 64

3.6.1 Unfactorized Symmetrization by Frobenius Norm Minimization 65
3.6.2 Symmetrization by Combining two Basic Iteration Steps 66
3.6.3 SPAI Acceleration . 68
3.6.4 Symmetrization for Factorized Approximations 70

4 Efficient Implementation 75
4.1 Solution of SPAI-type Least Squares Problems 75

4.1.1 QR Decomposition with Householder Reflections 78
4.1.2 Sparse Least Squares Problems . 79
4.1.3 QR Updates and Sparse QR Updates 81
4.1.4 Single Precision QR Decomposition 84

4.2 Caching Algorithm . 87
4.3 Maximum Sparsity Pattern . 89
4.4 Comparison of MSPAI 1.0 and SPAI 3.2 . 90

4.4.1 Features of MSPAI 1.0 . 91
4.4.2 Runtimes . 92

5 Numerical Examples 95
5.1 Example from Statics’ Simulation . 95
5.2 Effect of AMD on FSPAI Pattern Updates . 97
5.3 Numerical Examples for MSPAI Probing . 98

5.3.1 MSPAI Probing for Domain Decomposition Methods 98
5.3.2 MSPAI Probing for Stokes Problems 102
5.3.3 MSPAI Probing for Dense Matrices . 103
5.3.4 Comparison ILU and MILU with MSPAI Probing 104
5.3.5 Consecutive Probing Steps . 107

Conclusions and Future Work 109

Bibliography 111

1

Introduction

Mathematicians are not faced with the problem of solving systems of linear equations for
only the last two centuries — this task is much older and, to our knowledge, the first solution
technique goes back to the third century. Liu Hui, e.g. (≈ 220 AD to ≈ 280 AD) was a
chinese mathematician who tried to solve mathematical problems in everyday life. His main
contribution are comments to “The nine books on Arithmetic” [70], which he published
in 263 AD. There, he suggested 3.14 as an approximation for π, derived formulas for the
volumes of tetrahedrons, pyramids, cones, and other geometric primitives. He was also the
first to describe a method for solving systems of linear equations. It is the method today
known as Gaussian elimination.

Without computers or calculators, the solution of large systems still was impossible. In the
1880s, it took about 7 weeks to solve a linear system Ax = b of dimension n = 29. Hereby,
people had to use logarithm tables. In 1951, it still took over 3 hours to solve a system
of dimension 17 [56]. On an Intel Centrino with 1600 MHz, MATLAB nowadays needs 0.6
seconds to compute the solution for n = 1000. Despite this enormous raise in computation
power, Gaussian elimination is only suitable for systems up to n ≈ 10000, since it is an
O
(
n3
)

algorithm. In order to solve much larger systems, iterative methods were developed.
They can also take into account sparsity or certain band or block structures, which makes
them usually highly efficient and the methods of choice today. These iterative approaches
enable us to solve the large linear systems which arise in many numerical applications such
as the discretization of partial differential equations or image restoration problems.

Even these highly elaborate iterative techniques can be prohibitively slow if the coefficient
matrix A of the system is ill-conditioned. Then, either convergence can not be achieved at
all or a huge number of steps becomes necessary. In order to accelerate the solution process,
preconditioning techniques have been investigated since the early 1970s. Hereby, the linear
system is transformed into an equivalent one with much lower condition number leading to
considerably lower iteration counts and thus reduced solution time. In Scientific Computing,
it is common knowledge that the choice of a good preconditioner is even more important
than the actual choice of the iterative solver.

Many preconditioning techniques were developed so far [25]. Among the most robust and
flexible ones is the class based on Frobenius norm minimization. Extending this approach,
Grote and Huckle [48] developed the sparse approximate inverse (SPAI) preconditioner which
is able to update a given start sparsity pattern automatically. Furthermore, SPAI is inher-
ently parallel, since its computation splits up into independent least squares problems, one
for each column. There is also the factorized variant FSPAI [62] for symmetric positive
definite matrices. Another important group of preconditioners are the modified incomplete
factorizations [4, 49]. They yield preconditioners which preserve the row sums, i.e. the
action on the vector of all ones. In many applications, this leads to a significantly improved
convergence behavior. Another type of preconditioners, which are constructed such that
they are optimal with respect to some given subspace, is classical probing [24]. However,

2 Introduction

modified factorizations and classical probing are very limited in the choice of probing sub-
spaces. Moreover, they are difficult to parallelize. Our main contribution to ongoing research
is therefore the extension of SPAI to more general approximations and the development of
the modified sparse approximate inverse (MSPAI) preconditioner. MSPAI is still based on
Frobenius norm minimization, but allows us to add any number and any type of probing
information to the preconditioner. Hence, we can optimize it subject to any subspace which
seems adequate for the actual system of equations. Inherent parallelism and adaptivity of
the sparsity pattern are preserved. Besides many numerical test results proving MSPAI’s
effectiveness in terms of faster convergence, we also present an efficient implementation of
MSPAI.

Chapter 1 will provide the numerical basics to face the topic. We start off with the classic
Gaussian elimination, the solution of triangular systems, and the Cholesky factorization for
symmetric positive definite systems. We mention these methods as they are also the funda-
mentals behind some frequently employed preconditioning techniques such as the incomplete
LU factorization. The second section gives the mathematical background for the term condi-
tion number of a linear system of equations. The matrices we are focussing on in this thesis
usually have a rather low number of nonzero entries compared to their dimension. Such ma-
trices are called sparse matrices, and we present some standard techniques for storing and
using them efficiently. In this context, we also explain the use of graph algorithms operating
on the matrix’s adjacency graph related to the sparsity structure. We lay special focus on
the approximate minimum degree algorithm and present some new results based on this ap-
proach in Chapter 2. Afterwards, the emphasis will be on iterative solvers. We explain both
a few basic standard methods and give insight into Krylov subspace approaches. The most
well-known representative of this class is the conjugate gradient method. The last section
describes preconditioning techniques starting with forward preconditioners such as incom-
plete LU factorization. This is followed by a short overview about inverse preconditioners,
which directly leads to the main topic of this thesis.

Chapter 2 is devoted to the sparse approximate inverse preconditioner (SPAI) by Grote and
Huckle [48] and its factorized variant FSPAI [62] for symmetric positive definite matrices.
The underlying Frobenius norm minimization splits up to the solution of independent least
squares problems, one for each column in the preconditioner. This property also gives SPAI
a great inherent parallelism which is nowadays a topic of constantly increasing importance.
We also explain in detail the use of the QR decomposition to solve the least squares problems.
After the discussion of the meaningful choice of sparsity patterns for the SPAI preconditioner
including the idea of maximum sparsity patterns, we also provide some theoretical properties
of SPAI. Furthermore, SPAI can not only be computed for a fixed sparsity pattern, but it
can also start with an arbitrary sparsity structure and then automatically enlarge it by
identifying and adding the most appropriate entries reducing the error. The same holds for
FSPAI, where we compute an approximation to the Cholesky factor of the inverse. This
is also done column-wise and hence completely in parallel. Like SPAI, FSPAI can perform
pattern updates and thereby increase its approximation quality automatically. This chapter
already contains some pieces of original research. We derive a formulation of the SPAI
pattern update criteria for complex valued systems of equations. Up to now, this was only
done for the real valued case. We give a more compact reformulation of a nonsingularity
result for SPAI and extend it. Furthermore, we investigate SPAI’s regularization properties
in image restoration. To our knowledge, this is also a new field of application. For FSPAI
pattern updates, we investigate the effect of an approximate minimum degree preordering.

3

Finally, we state a theorem considering SPAI and FSPAI for M-matrices, a class of matrices
frequently arising from the discretization of partial differential equations.

Chapter 3 starts off with the description of the classical probing technique and the group
of modified preconditioners. Both have in common that they do not only yield explicit
approximations to the system matrix, but also include additional information in the precon-
ditioner, hereafter referred to as probing information. Typically, probing and modified-type
preconditioners are restricted to the conservation of row sums in the preconditioner. More-
over, classical probing can only compute very sparse approximations with simple structures,
since people have to invert them in every iteration of the iterative solver. Additionally, these
methods are hard to parallelize. To overcome these restrictions and drawbacks, we general-
ize, in the third section, the class of Frobenius norm minimization based preconditioners to
target form [57]. Furthermore, we extend the idea from n×n to rectangular m×n matrices.
Thus, we gain inherent algorithmic parallelism due to the Frobenius norm minimization.
Moreover, we can add several rows to the input matrices which contain the probing infor-
mation in form of probing vectors. Here is the next gain in generality: we can add as many
probing vectors of any type we consider as meaningful for the actual application. We also
benefit from the other advantages, which we have already seen for SPAI. The computation is
not restricted to a special sparsity pattern, and we can perform automatic pattern updates.
Since it is based on modified preconditioners, we call this formulation modified sparse ap-
proximate inverse (MSPAI). With this, we can compute inverse approximations like SPAI,
adding probing information. However, we can also get direct approximations of a matrix,
for instance a sparser one which acts on certain subspaces as the original matrix does. For
both inverse or direct approximations, we also derive formulations of MSPAI for factorized
approximations. This allows improving any given factorized preconditioner by adding prob-
ing information. Another application is the MSPAI probing of Schur complements, which
is the application domain classical probing was designed for. Which concrete probing vec-
tors can or should be chosen for MSPAI is discussed in Section 3.4. For this purpose, we
provide a theoretical basis, i.e. a purely structural condition considering probing vectors’
sparsity structure and the sparsity structure of the preconditioner. The final section in this
chapter derives several symmetrization techniques, since matrices resulting from Frobenius
norm minimization processes are usually unsymmetric. However, for symmetric and even
symmetric positive definite input matrices, we want to have a preconditioner reflecting these
properties. We present one method based on Frobenius norm minimization and another ap-
proach involving two consecutive iteration steps. A symmetrization technique for factorized
preconditioners concludes the chapter.

Chapter 4 gives insight to a topic which is crucial for every numerical algorithm: its efficient
implementation. MSPAI can only be employed and tested efficiently if we provide a fast code.
We review the use of sparse methods for the solution of least squares problems and combine
them with the idea of QR updates [17, 46]. The latter arise in SPAI-type computations
involving pattern updates. An experiment will also evaluate the potential of single precision
QR methods for our purpose. Section 4.2 introduces the idea of a caching algorithm for
MSPAI computation. It is based on the observation that in highly structured matrices, we
perform many redundant factorizations. With a caching strategy holding already computed
factorizations, we try to exploit these redundancies to reduce the overall computation time.
After that, we investigate the benefit from a maximum sparsity pattern [61] in parallel
computing environments — an idea which was already discussed theoretically in Chapter
2. A profound comparison of the current standard SPAI implementation SPAI 3.2 and our
MSPAI 1.0 code rounds up the chapter. For each single improvement, we provide detailed

4 Introduction

runtime test results. To our knowledge, the use of sparse methods, the combination with
QR updates, the caching approach, and the maximum sparsity pattern were not investigated
before for SPAI-like preconditioners.

Chapter 5 contains numerical examples, whereas the previous chapter focused on efficient
implementation. First, we demonstrate the application of sparsification steps in an example
application arising from statics’ simulation. The main system of equations there is dense.
Hence, in order to compute an FSPAI preconditioner for it, we determine a thinner sparsity
pattern. The second section gives more examples for the effect of approximate minimum de-
gree graph algorithms on FSPAI pattern updates. We mention positive semidefinite matrices
arising from Navier-Stokes discretizations. The concrete application of all MSPAI variants
and symmetrization techniques is presented in Section 5.3. We start with the employment of
all variants in domain decomposition problems. Then, we investigate MSPAI’s use in precon-
ditioning Stokes problems. Sparse spectrally equivalent approximations of dense matrices
are also used for several tests. A comparison of incomplete modified factorizations and fac-
torized MSPAI probing is also presented. Finally, we demonstrate the effect of consecutive
probing steps.

A conclusion summarizing the results of this thesis closes the discussion.

5

Chapter 1

Numerical Solution of Systems of Linear
Equations

This introductory chapter is devoted to both the classical direct methods for solving systems
of linear equations and also more recent iterative algorithms. We start off with the probably
most common algorithm, the Gaussian algorithm and its specialization for symmetric pos-
itive definite (spd) problems, the Cholesky decomposition. We mention these techniques,
because methods such as forward and backward substitution or the Gaussian algorithm itself
build the basis for some preconditioning approaches as well.

After that, we will take a closer look at the theoretical properties of linear systems and thus,
the problems which may emerge when solving them. More precisely, we will focus on the
term condition number in the context of matrices, which correspond to the linear systems.

With these basics in mind, we continue with an introduction to sparse matrices including
common data structures and basic algorithms which exploit the sparsity. For larger problem
sizes, direct methods are not efficient. Iterative methods are used, instead. We will explain
some basic iterative techniques and also the most commonly used Krylov subspace solvers.

If the system matrix is very ill-conditioned, the convergence of iterative solvers can be
prohibitively slow or even not be guaranteed at all. Preconditioning techniques often provide
a widely used remedy for this problem. In the last section, we focus on a few well-known
methods and conclude this chapter with a brief review of inverse-type preconditioners. This
leads to the main topic of this work, namely the preconditioning of large sparse systems of
equations using the sparse approximate inverse preconditioner SPAI.

Starting point of all the approaches presented here is the objective to find a solution of the
system of n linear equations

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
...

...
...

...
an1x1 + an2x2 + . . . + annxn = bn

(1.1)

as it arises for instance in the discretization of partial differential equations or image restora-
tion problems. For the sake of a more compact notation, we will further denote (1.1) as

Ax = b, (1.2)

6 1 Numerical Solution of Systems of Linear Equations

where A = (aij)i,j=1,...,n ∈ Rn×n is the coefficient matrix, the vector b = (bi)i=1,...,n ∈ Rn

the right-hand side, and x = (xi)i=1,...,n ∈ Rn the solution we want to compute. Throughout
the whole thesis, we will use MATLAB-style colon notation

y(k : `) or yk:`

for vectors when we refer to the components yi of a vector y ∈ Rn corresponding to the
indices i = k, . . . , `, and

A(:, k)

for matrices, if we want to address the k-th column of the matrix A, respectively.

1.1 Gauss Algorithm and LU Factorization

Gaussian elimination is the most efficient method among the class of classical solution meth-
ods for systems of linear equations [35]. The idea is to transform the original general system
(1.2) into upper triangular form. We can solve systems of equations with triangular coeffi-
cient matrix quite easily, as we will see in the first section. The LU decomposition allows
the efficient solution of the system with many different right-hand sides. The presentation
here follows mainly [35, 46], but can also be found in [5, 18, 51, 93]. For the theoretical
background in linear algebra, we refer to [41].

1.1.1 Triangular Systems

In the special case of A having an either lower or upper triangular pattern, the solution
process is much easier than in the general dense and unstructured form. By pattern we refer
to the set of row and column indices, where A has entries which are nonzero. Therefore, A
is called lower triangular matrix, if

A =


× 0 · · · 0

× ×
. . .

...
...

. . . × 0
× · · · × ×

 i.e. aij

{
= 0 if i < j
6= 0 if i ≥ j

,

and analogously upper triangular matrix, if

A =


× × · · · ×

0 ×
. . .

...
...

. . . × ×
0 · · · 0 ×

 i.e. aij

{
= 0 if i > j
6= 0 if i ≤ j

.

A solution to a system such as (1.2) with lower triangular matrix A can be obtained quite
easily using

xi =
1
aii

(
bi −

i−1∑
k=1

aikxk

)
, i = 1, . . . , n, (1.3)

1.1 Gauss Algorithm and LU Factorization 7

starting with x1 = b1
a11

and then computing x2, . . . , xn one after another. This is called
forward substitution. Similarly, one obtains the components of the solution vector x in the
upper triangular case, but now in different order, beginning with xn = bn

ann
. This backward

substitution process continues with calculating the components xn−1, . . . , x1 via

xi =
1
aii

(
bi −

n∑
k=i+1

aikxk

)
, i = n− 1, . . . , 1.

The computational effort of both versions is

O
(
n2
)

floating point operations (flops) and thus entails about the same amount of work like a
matrix-vector product.

Forward and backward substitution are not only used in the context of direct solution
of general dense systems of equations, but also in iterative solvers. If we have a factorized
preconditioner of triangular form which approximates A explicitly, we apply it in the iterative
solver using forward and backward substitution.

1.1.2 LU Decomposition by Gaussian Elimination

In order to use the substitution methods of the previous section, we first have to compute
triangular factors of A. This transformation is performed column-wise, starting with matrix
A = A(1), which is transformed into matrix A(k) (k = 2, . . . , n − 1) and so on until matrix
A(n) has the desired upper triangular form. In the k-th elimination step, we transform
the subdiagonal elements in column k to a vector of zeros by subtracting an appropriate
multiple of row k− 1 to the k-th row. Following [35], we can denote these elimination steps
by multiplication of matrix A(k) from the left with a matrix

Lk =



1
. . .

1

−`k+1,k
. . .

...
. . .

−`n,k 1


,

where `ik = a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n. This matrix is called Frobenius matrix. Its inverse is

given simply by changing the signs of the values `ik. So we have

Ln−1 · . . . · L1A =: U ⇐⇒ A = L−1
1 · . . . · L

−1
n−1︸ ︷︷ ︸

=:L

U

with lower triangular matrix L and upper triangular matrix U . L has the special property
that it has a main diagonal of all ones. After setting y = Ux, we obtain the solution by
solving Ly = b using forward substitution and then solving Ux = y by backward substitution.

8 1 Numerical Solution of Systems of Linear Equations

The dominant part of the solution process is the Gaussian elimination with applying the
matrices Lk, k = 1, . . . , n − 1 to A and then forming the lower triangular matrix L. The
computational costs for that are

#flops .=
2
3
n3 = O

(
n3
)

and thus outweigh the costs of the two substitution steps. Once having computed the LU
decomposition of A, we can cheaply compute the solution for different right-hand sides b.

Pivoting

For nonsingular matrices A, the LU decomposition exists and is unique (for proofs see e.g.
[35, 41, 46]). Nevertheless, there exist quite simple counterexamples with nonsingular A,
where the Gaussian elimination fails. Consider the matrix

A =
(

0 1
1 0

)
,

which has det (A) = −1 6= 0, but L1 cannot be formed due to `11 = a11
a11

and a11 = 0.

The element a
(k)
kk in general is called pivot element. Gaussian elimination fails if the pivot

element is zero, and in practical numerical implementations even if it is “too small”. But
the situation changes if the rows in A are swapped. So for general matrices, it may be
necessary to permute rows in a way such that the entries with biggest absolute value are at
the pivot position. This strategy is called row pivoting and involves another at most O

(
n2
)

operations. On the other hand, one can also apply this strategy to the columns of A, thus
getting column pivoting or a combination of both, which is then called total pivoting. The
latter is of O

(
n3
)

and therefore almost never used.

It can be shown theoretically (see [35]) that for every nonsingular matrix A there exists a
permutation matrix P such that a triangular factorization

PA = LU

is possible. Note that this is a constructive proposition for the existence of the factorization
and its feasibility via Gaussian elimination.

1.1.3 Cholesky Decomposition

If A is symmetric positive definite (spd), the Gaussian elimination process can be simplified
exploiting these properties.

Theorem 1.1 For every spd matrix A there exists a uniquely determined factorization of
the form

A = L̄DL̄T ,

where L̄ is a unit lower triangular matrix (with ones on the main diagonal) and D a positive
diagonal matrix.

Proof See [35]. �

1.2 Condition Number of Systems of Linear Equations 9

Since D = diag (di) has only positive entries, we can define L := L̄D
1
2 and obtain the

Cholesky factorization of A as
A = LLT ,

where D
1
2 = diag

(√
di

)
. Due to the positive definiteness and the inertia theorem of

Sylvester, Gaussian elimination on A leads to a sequence of remainder matrices A
(k)
k:n,k:n,

which are again spd. Therefore, no pivoting strategy is necessary for computing the Cholesky
factorization. Through exploiting the symmetry of A, we arrive at an algorithm with

#flops .=
1
3
n3 = O

(
n3
)
,

which is half the amount of Gaussian elimination in general matrices. After having com-
puted the Cholesky factor L, the system is solved, again, by applying one step of forward
substitution with L and one step of backward substitution with LT .

1.1.4 Iterative Refinement

The representation of floating point numbers in computers is only accurate up to the so-called
machine precision. So the results which we obtain from the implementation of numerical
algorithms can be inaccurate or even worthless. Gaussian elimination can also be affected
by these roundoff errors. To overcome this problem, one could compute the solution using a
higher machine precision, which can be simulated with certain software packages and entails
a huge additional effort.

Conversely, a rather cheap remedy for improving the accuracy of a computed solution is
iterative refinement. Let x be the exact solution of the linear equation Ax = b and x0 the
solution obtained by Gaussian elimination. Then, we can explicitly evaluate the residual

r0 := b−Ax0 = A(x− x0) = A∆x0,

which satisfies the corrector equation

A∆x0 = r0. (1.4)

Because the LU decomposition of A is already given, (1.4) can be solved cheaply involving
only a forward and a backward substitution step and we get the approximate correction
∆̃x0. The approximate solution

x1 := x0 + ∆̃x0

is then supposed to be more accurate than x0. This refinement step can be repeated, until an
“acceptable accuracy” is reached. Indeed, Skeel showed in [90] that for Gaussian elimination,
one single step of iterative refinement is sufficient to gain an acceptably accurate solution.
Moreover, if it is carried out using column pivoting, Gaussian elimination followed by one
refinement step is backward stable.

1.2 Condition Number of Systems of Linear Equations

Due to the floating point representation of numbers in today’s computer architectures, real
numbers (R) cannot be stored exactly in the sense of arbitrary precision unless they are

10 1 Numerical Solution of Systems of Linear Equations

integers. The accuracy of a floating point number is restricted to the machine precision ε.
Despite these technical errors, which affect numerical computations, also errors resulting
from the implementation of numerical algorithms have to be taken into account. For in-
stance, the realization of the elementary operations +,−, ·, / also leads to rounding errors
in the result.

b

P
g

h

(a) Well-conditioned problem.

b
b

b

P = ?

g
h

(b) Rather ill-conditioned setting.

Figure 1.1: Two graphical examples for finding the intersection point P of two lines g and h.

A kind of measure for how strongly perturbations of input variables influence the result,
independently of the choice of the algorithm, is given by the condition number of the problem.
Figure 1.1 illustrates two settings for finding the intersection point P of two lines. When
the angle between the two lines is large enough we can determine P quite easily. Conversely,
if the lines are nearly parallel, it is hard to find the exact location of P . To define the term
condition number precisely, we formulate our numerical problem (f, x), following [35], as a
function which maps the set of input data into an output set

f : U ⊂ Rn → Rm,

where U is an open subset of Rn and x, x̃ ∈ U . Additionally, we define δ as the precision of
which the input data is perturbed. Here, x is the “exact” input and x̃ the perturbed input.
At first, we consider normwise precision, which can be formulated in an absolute

‖x̃− x‖ ≤ δ

with 0 < δ ∈ R or in a relative way:

‖x̃− x‖
‖x‖

≤ δ.

The absolute output error is given by f(x̃)−f(x), and the relative output error by ‖f(x̃)−f(x)‖
‖f(x)‖ ,

respectively. This leads to

Definition 1.1 (Absolute Normwise Condition Number) The absolute normwise con-
dition number of the problem (f, x) is the smallest number κabs such that

‖f(x̃)− f(x)‖ ≤̇ κabs ‖x̃− x‖ for x̃→ x.

Accordingly, the smallest number κrel such that

‖f(x̃)− f(x)‖
‖f(x)‖

≤̇ κrel
‖x̃− x‖
‖x‖

for x̃→ x

is called the relative normwise condition number of (f, x).

1.2 Condition Number of Systems of Linear Equations 11

κabs and κrel are therefore measures on how strongly the absolute and relative errors increase.
If a problem (f, x) has small condition numbers, it is said to be well-conditioned, otherwise
ill-conditioned. Furthermore, we speak of an ill-posed problem, if such numbers do not exist
or if κ. =∞.

For differentiable f , the mean value theorem yields the condition numbers

κabs = ‖f ′(x)‖ and κrel =
‖x‖
‖f(x)‖

‖f ′(x)‖ . (1.5)

Hereby, ‖f ′(x)‖ is the operator norm of the Jacobian f ′(x) ∈ Rm×n.

Componentwise Condition Number

Up to now, we have only defined the term condition number in a normwise sense. However,
we can also define it in a componentwise way, starting with the absolute componentwise
precision

|x̃i − xi| ≤ δ, (i = 1, . . . , n).

Consequently, the relative componentwise precision is defined as

|x̃i − xi|
|xi|

≤ δ, (i = 1, . . . , n).

With that in mind, we arrive at the

Definition 1.2 (Relative Compononentwise Condition Number) The relative com-
pononentwise condition number of the problem (f, x) is the smallest number κrel ≥ 0 such
that

max
i

|fi(x̃)− fi(x)|
|fi(x)|

≤̇ κrel max
i

|x̃i − xi|
|xi|

for x̃→ x, (i = 1, . . . , n).

Just as in the normwise case before, we can exploit the differentiability with respect to x
and the mean value theorem in order to obtain the result

κrel =
‖|f ′(x)| |x|‖∞
‖|f(x)|‖∞

.

Condition Number of a Linear System Ax = b

For our purpose, the analysis of the conditioning of a system of linear equations Ax = b
with nonsingular A, we formulate (f, x) as

f : Rn → Rn, b 7→ f(b) := A−1b.

In other words, we first regard the right-hand side vector b as the input. With f ′(b) = A−1

and (1.5), we obtain

κabs =
∥∥A−1

∥∥ and κrel =
‖b‖
‖A−1b‖

∥∥A−1
∥∥ =

‖Ax‖
‖x‖

∥∥A−1
∥∥ .

12 1 Numerical Solution of Systems of Linear Equations

Due to the submultiplicativity of the matrix norm ‖.‖, we can estimate the relative condition
number by

κrel ≤ ‖A‖
∥∥A−1

∥∥ . (1.6)

In the next step, we keep b fixed and formulate f as a function in A:

f : Gl(n) ⊂ Matn(R)→ Rn, A 7→ f(A) = A−1b,

which is again differentiable but not linear anymore. For the derivative of f with respect to
A, we obtain (see [35])

f ′(A)C = −A−1CA−1b = −A−1Cx for C ∈ Rn×n.

This leads directly to the condition numbers

κabs = ‖f ′(A)‖ = sup
‖C‖=1

∥∥A−1Cx
∥∥ ≤ ∥∥A−1

∥∥ ‖x‖ ,

κrel =
‖A‖
‖x‖
‖f ′(A)‖ ≤ ‖A‖

∥∥A−1
∥∥ . (1.7)

Because of (1.6) and (1.7), we define the condition number of the matrix A as

κ(A) := ‖A‖
∥∥A−1

∥∥ . (1.8)

κ(A) contains the relative condition number for all right-hand sides b ∈ Rn. So, the relative
error in the solution x can be up to κ(A) times the relative error in the input values A and
b. In general, (1.8) can also be formulated as

κ(A) :=
max
‖x‖=1

‖Ax‖

min
‖x‖=1

‖Ax‖
,

which can additionally be determined for both singular and rectangular matrices A. The
following three properties hold:

• κ(A) ≥ 1,

• κ(αA) = κ(A) ∀ α ∈ R \ {0},

• A 6= 0 is singular ⇐⇒ κ(A) =∞.

The definition of the condition number of A also depends on the choice of the underlying
norm ‖.‖, which is usually indicated via subscript:

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2

=
σ1(A)
σn(A)

,

where σ1 denotes the greatest and σn the smallest singular value of A. Thus, κ2(A) can
be interpreted as the elongation of the hyperellipsoid {Ax : ‖x‖2 = 1}. In the following
chapters, we will refer to κ2(A) by κ(A) or just κ.

Remark 1.1 If we apply the concept of componentwise condition number to systems of
linear equations, we get analogously (b regarded as input)

κrel =

∥∥∣∣A−1
∣∣ |b|∥∥∞

‖|A−1b|‖∞
=

∥∥∣∣A−1
∣∣ |b|∥∥∞

‖|x|‖∞
. (1.9)

1.3 Sparse Matrices 13

Skeel introduced this number in [89]. If we further apply the same idea of keeping b fixed
and analyze the effect of perturbations in A now, it follows for the componentwise relative
condition number:

κrel =
‖|f ′(A)| |A|‖∞
‖|f(A)|‖∞

=

∥∥∣∣A−1
∣∣ |A| |x|∥∥∞
‖|x|‖∞

. (1.10)

Altogether, using (1.9) and (1.10), we get the value for the condition number of the combined
problem

κrel =

∥∥∣∣A−1
∣∣ |A| |x|+ ∣∣A−1

∣∣ |b|∥∥∞
‖|x|‖∞

≤ 2

∥∥∣∣A−1
∣∣ |A| |x|∥∥∞
‖|x|‖∞

.

If we further set now x = e = (1, . . . , 1), it follows that

1
2
κrel ≤

∥∥∣∣A−1
∣∣ |A| |e|∥∥∞
‖|e|‖∞

=
∥∥∣∣A−1

∣∣ |A|∥∥∞ ,

and we finally define
κC(A) :=

∥∥∣∣A−1
∣∣ |A|∥∥∞

as Skeel’s condition number. κC(A) satisfies the same properties as κ(A) before. Addi-
tionally, for a diagonal matrix D, which implies a completely decoupled system, it holds
κC(D) = 1. This result is intuitively much clearer than the potentially arbitrary large value
of κ(D).

1.3 Sparse Matrices

So far, we did not take into account special structures of the system matrix A. The algo-
rithms and theoretical results of the last few sections can be applied to any general matrix.
But in many practical applications such as the numerical solution of partial differential equa-
tions (PDEs) the matrices which arise have some special properties like only a small number
of nonzero entries compared to the dimension and they are highly structured. Such matrices
are called sparse matrices. They enable us to construct numerical methods which profit
extensively from the sparsity structure, both in terms of efficient storage in memory and in
terms of fast algorithms and data structures. However, there is no strict definition whether
a matrix is sparse or not. In general, a matrix is called sparse if the storage of only the
nonzero entries and the application of specially adapted algorithms lead to a computational
advantage compared to full (dense) storage. One little more formal characterization, which
is commonly used, says that a matrix is sparse, if

nnz(A) = O (n) ,

where the number of nonzeros is denoted by nnz and n is the dimension of A. Another
rule of thumb defines A to be sparse, if there is a number p � n such that every row and
column of A has at most p nonzero entries. A further term connected with the notion of
sparsity is the density of a matrix, which is given by nnz

n2 . The pattern of a matrix or vector
consists of the indices (i, j) of the nonzero entries and thus, reflects the sparsity structure.
We will denote it by P (A) or P (b) for a matrix A or a vector b, respectively. Moreover,
|P (A)| = nnz(A).

When a matrix has no or only quite “few” zero entries, it is called dense. In this thesis, we
will also use the terms sparser and denser, or thinner and thicker, respectively, if we speak
of a matrix which has less or more nonzero entries than another one.

14 1 Numerical Solution of Systems of Linear Equations

1.3.1 Sparse Storage Schemes and Basic Matrix Operations

Following [83], we present here a few well-established storage schemes. One of the most
straightforward ideas for storing a sparse matrix is the coordinate format. Hereby, the
matrix entries are stored in triplets, one integer for the number of the row, one integer for
the column index, and a double (or float) variable for the matrix entry. Altogether, one
needs three arrays for storing all the nonzero entries, each of length nnz. For an example,
consider the matrix

A =


1.1 0 −2.2 0 0
0 3.3 4.4 0 0
0 0 −5.5 −6.6 0

7.7 −8.8 0 9.9 0
0 0 0 0 10.1

 , (1.11)

which has n = 5, nnz(A) = 10. In coordinate form, we store it in the three arrays

AA = { 1.1, −2.2, 3.3, 4.4, −5.5, −6.6, 7.7, −8.8, 9.9, 10.1 },
IR = { 1, 1, 2, 2, 3, 3, 4, 4, 4, 5 },
IC = { 1, 3, 2, 3, 3, 4, 1, 2, 4, 5 }.

AA contains the values in either single or double precision and the integer arrays hold the
row (IR) and column (IC) indices, respectively. So, the coordinate format requires storing
3 · nnz(A) numbers. This is not optimal, but it has the advantage of a great flexibility
when we want to insert or delete entries. Note that the values can be stored in completely
arbitrary order, which can also be seen in the pseudo code implementation of Algorithm 1.1.

Algorithm 1.1 Matrix-vector product c← Ab in coordinate format.
Require: b,AA,IR,IC
1: c← 0
2: for j = 1 : nnz(A) do
3: c(IR(j)) + = AA(j) · b(IC(j))
4: end for

Probably the most popular storage scheme is the compressed sparse row (CSR) scheme. It
further reduces the memory consumption by avoiding redundancies in the index arrays. The
matrix entries are stored row-wise. The first index array JA contains the column index of
each corresponding matrix entry, i.e. the value AA(j) is in column JA(j) in A. A second
integer array IA contains the start indices of the rows relative to AA. So, the values of the
k-th row of A are stored in AA(IA(k)), . . . , AA(IA(k + 1)). Matrix (1.11) from above would
be saved in

AA = { 1.1, −2.2, 3.3, 4.4, −5.5, −6.6, 7.7, −8.8, 9.9, 10.1 },
JA = { 1, 3, 2, 3, 3, 4, 1, 2, 4, 5 },
IA = { 1, 3, 5, 7, 10, 11 }.

IA contains as last entry IA(1)+nnz, which stands for the symbolic beginning of row n+1.
Compared to coordinate form, the costs for storage are reduced to 2 · nnz(A) + n + 1. The
implementation (see Algorithm 1.2) also entails indirect addressing, which leads to slower
access times to the entries compared to direct addressing in a standard array. There are

1.3 Sparse Matrices 15

Algorithm 1.2 Matrix-vector product c← Ab in CSR format.
Require: b,AA,JA,IA
1: c← 0
2: for i = 1 : n do
3: for j = IA(i) : IA(i + 1)− 1 do
4: c(i) + = AA(j) · b(JA(j))
5: end for
6: end for

many variations and extensions to the CSR format. The most common one is to store A
column-wise, which yields the compressed sparse column (CSC) format.

If a numerical method requires fast and frequent access to diagonal entries, the main diagonal
is stored explicitly in the modified compressed sparse row (MSR) format. Here, the main
diagonal of A is stored in the first n entries of AA, followed by an empty entry AA(n+1) and
then the row-wise ordered non-diagonal entries. The index arrays JA and IA are combined
to one index array JA. The first n + 1 entries are the pointers to the starting positions of
the rows in AA. For j = n + 2, . . . , nnz + 1, JA(j) yields the column index of element AA(j):

AA = { 1.1, 3.3, −5.5, 9.9, 10.1, ∗, −2.2, 4.4, −6.6, 7.7, −8.8 },
JA = { 7, 8, 9, 10, 12, 12, 3, 3, 4, 1, 2 }.

The implementation only changes slightly compared to the original CSR method, see Algo-
rithm 1.3.

Algorithm 1.3 Matrix-vector product c← Ab in MSR format.
Require: b,AA,JA
1: for i = 1 : n do
2: c(i) = AA(i) · b(i)
3: for j = JA(i) : JA(i + 1)− 1 do
4: c(i) + = AA(j) · b(JA(j))
5: end for
6: end for

The computational costs for the matrix-vector products in the three storage schemes pre-
sented here are all of order O (nnz(A)) and only differ in the access times due to the indirect
addressing and possible caching side effects.

There are many more possibilities to store a sparse matrix efficiently. The actual application
always determines which method is the best. For instance, it depends on whether access
should be fastest column- or row-wise. The SPAI preconditioner is usually computed column-
wise. Therefore, we need fast access to the columns of A and hence, we would choose the
CSC format. Further details and a few more storage schemes can be found in [83].

16 1 Numerical Solution of Systems of Linear Equations

1.3.2 The Graph Related to a Matrix

Graph theory provides quite powerful tools for representing the sparsity structure of a matrix
by investigating the adjacency graph G related to a matrix A. In general, a graph G is defined
by two sets: the set of vertices

V = {v1, . . . , vn}
and the set of edges

E ⊆ V × V .

In the context of sparse matrices, the adjacency graph G = (V ,E) of A ∈ Rn×n consists
of n vertices corresponding to the n unknowns of the linear system and the set of edges E ,
which represents the relation

∃ edge from node i to node j ⇐⇒ aij 6= 0.

This graph is directed for general matrices and undirected in the case of a symmetric pattern.
The latter are represented using undirected edges. As an example, both the sparsity struc-
ture and the corresponding adjacency graph of the example matrix (1.11) are depicted in
Figure 1.2. The loops for the diagonal elements aii, which correspond to the edges (vi, vi) in

b b

b b

b b

b b b

b

(a) Sparsity pattern of matrix (1.11).

1 2

3
4

5

(b) Adjacency graph of (1.11).

Figure 1.2: Sparsity pattern of a matrix and corresponding graph G = (V , E).

G , are usually omitted. In all discussed examples here, we assume that matrices have nonze-
ros in their diagonal. When we try to solve linear systems arising from the discretization
of PDEs, the adjacency graph of the system matrix is often identical to the discretization
mesh of the domain, where the PDE is solved.

There are many graph algorithms applied to matrices for different purposes. They all de-
termine row and/or column permutations or certain partitionings of the original matrix.
For instance, there are special fast algorithms for band matrices which clearly outperform
general methods. The Cuthill-McKee or the reverse Cuthill-McKee algorithm [30] produce a
permutation that minimizes the bandwidth of a matrix to make these fast methods applica-
ble. Another issue is parallelization, namely partitioning a matrix in such a way that it can
be solved in a parallel computing environment, minimizing the communication overhead.
The hypergraph partitioning package hMetis by Karypis [72] can be used for such applica-
tions. For symmetric indefinite systems of equations, Hagemann and Schenk [50] presented
a graph-based method which improves the solution process in direct sparse solvers.

1.3 Sparse Matrices 17

The Gaussian elimination process often leads to a large amount of fill-in in L and U . This
makes computations more costly and leads to higher memory usage. In this case, graph
algorithms can help to find a permutation of A such that the fill-in is reduced. We briefly
describe one of the most commonly used methods for the case of structurally symmetric
matrices, the Approximate Minimum Degree (AMD) algorithm by Amestoy, Davis, and
Duff [2].

1.3.3 Approximate Minimum Degree Reordering

One possibility to reduce fill-in during factorization is to consider the elimination graph.
The elimination graph G k = (V k,E k) represents the pattern of the remaining submatrix
after the k-th elimination step. One obtains G k from G k−1 by removing the k-th pivot
vertex p and adding edges to E k−1 such that the vertices in G k−1 form a fully connected
subgraph (called a clique). The edges which are added represent the new entries, namely
the fill-in. In order to reduce this fill-in, it makes sense to choose a pivot vertex p with
minimum degree. The degree of a vertex v ∈ V is defined as |{u ∈ V : {u, v} ∈ E }|, i.e. the
number of vertices u ∈ V which are connected to v through an edge e ∈ E . This method
uses a non-optimal greedy heuristic. Moreover, note that according to [104], the optimal
solution is NP complete.

The drawback of the employment of elimination graphs is the unpredictable number of added
edges and thus, unpredictable memory usage. Therefore, a different graph model is used, the
quotient graph. Its storage never exceeds the storage of the original graph and it exploits the
economic storage of cliques which can simply be represented by its vertices. The vertices,
which were already removed from the graph are called elements, the uneliminated variables.
Variables vi with the same degree are grouped into supervariables Si with one principle
variable. If a supervariable is selected to be eliminated, all variables in the supervariable are
eliminated. For the elimination, we choose now the supervariable with minimum external
degree, i.e. with minimum value ti−|S |+1, where ti is the degree of the principal variable in
S . The exact computation of the external degrees requires too much computational effort.
In the AMD algorithm [2], we only estimate an upper bound for the external degree, which
entails considerably fewer operations.

Considering the symmetric example matrix bcsstk14 [77] with dimension n = 1806, we
observe a great reduction of nnz in the Cholesky factor. Without preordering, we have
190791 nonzeros, whereas using approximate minimum degree results in nnz = 108947.
This is a reduction of over 42%. Hence, the storage consumes less memory and operations
such as matrix-vector products or forward as well as backward substitutions are carried out
much faster.

In Chapter 2, we will investigate the effect of AMD on the factorized sparse approximate
inverse preconditioner (FSPAI). Furthermore, AMD is used in order to accelerate the so-
lution of least squares problems within the computation of the sparse approximate inverse
preconditioner (SPAI). For a more detailed review of graphs and graph algorithms, see
[43, 83, 92].

18 1 Numerical Solution of Systems of Linear Equations

1.4 Iterative Solution Methods

As seen in Section 1.1, the explicit solution of dense linear systems requires operations in the
order of O

(
n3
)
. This is only applicable for problem sizes up to about n = 10000. For larger

ones, Gaussian elimination cannot be efficient anymore and the solution process would take
too much time. In such cases, iterative methods can help to reduce the costs by exploiting
certain properties of the matrices and profit from sparsity structures and specially adapted
efficient data structures.

All the methods presented here start with an initial guess x0 for the solution of Ax = b and
compute a sequence of vectors x0 → x1 → . . .→ xk, until the error of k-th iterate is under
a user-provided bound ε. Hereby, we distinguish between the absolute residual

rabs :=
∥∥b−Axk

∥∥
2

=
∥∥rk
∥∥

2

and the relative residual

rrel :=

∥∥b−Axk
∥∥

2

‖b−Ax0‖2
=

∥∥rk
∥∥

2

‖r0‖2
.

The vector ri := b−Axi is called residual vector. Often, the initial guess is chosen as vector
of zeros. Then, the relative residual reduces to

rrel =

∥∥b−Axk
∥∥

2

‖b‖2
=

∥∥rk
∥∥

2

‖b‖2
.

1.4.1 Basic Algorithms

We start off reviewing the most basic iterative solution methods for systems of linear equa-
tions. Our representation is mainly influenced by [83]. The methods can also be found in
many other books about numerical mathematics, e.g. [35, 46, 94]. The Jacobi iteration
computes the next iterate by annihilating the i-th component ri of the residual vector

ri =
(
b−Axk+1

)
i

!= 0 ⇐⇒ aiix
k+1
i = −

n∑
j=1
j 6=i

aijx
k
j + bi

which yields the compononentwise form of the Jacobi iteration

xk+1
i =

1
aii

bi −
n∑

j=1
j 6=i

aijx
k
j

 , i = 1, . . . , n. (1.12)

All the components xk+1
i together form the next iterate xk+1. Considering the matrix

splitting A = D −E − F , where D is a diagonal matrix, E is strict lower triangular matrix
and F is of strict upper triangular form, we can reformulate (1.12) as

xk+1 = D−1(E + F)xk + D−1b. (1.13)

1.4 Iterative Solution Methods 19

By imposing an order in which the components of x are determined and thus, the components
of the residual are annihilated, the Gauss-Seidel iteration also involves the components of
xk+1, which are already computed. Since the order is i = 1, 2, . . . , n, the iteration is

xk+1
i =

1
aii

− i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j + bi

 , i = 1, . . . , n.

Again, this can be rewritten using A = D − E − F from above:

xk+1 = (D − E)−1Fxk + (D − E)−1b. (1.14)

In every Jacobi step (1.13), we only have to multiply with the inverse of a diagonal matrix,
which results in a quite cheap scaling step. For a Gauss-Seidel step (1.14), however, we
have to solve a system with lower triangular matrix D−E using forward substitution (1.3).
Choosing the reversed computation order i = n, n − 1, . . . , 1, we arrive at the backward
Gauss-Seidel iteration:

(D − F)xk+1 = Exk + b.

In general, the two methods presented so far are based on matrix splittings A = M − N
with M = D for Jacobi, and M = D −E for forward Gauss-Seidel. An iterative method of
the form

Mxk+1 = Nxk + b = (M −A)xk + b

can be formulated for any splitting A = M −N , as long as M is nonsingular. Introducing
a relaxation parameter ω such that

ωA = (D − ωE)− (ωF + (1− ω)D),

we obtain, as corresponding iterative method, the so-called Successive Over Relaxation
(SOR):

(D − ωE)xk+1 = (ωF + (1− ω)D) xk + ωb.

The actual choice of the relaxation parameter ω is strongly dependent on the spectral prop-
erties of A and therefore also on the underlying PDE, which has been discretized. Literature
is full of optimal estimates for ω, for instance, see [83, 94]. Combining one step of SOR and
one of backward SOR, we get the recurrence

xk+1 = Gωxk + fω,

with

Gω = (D − ωF)−1(ωE + (1− ω)D)(D − ωE)−1(ωF + (1− ω)D)
fω = ω(2− ω)(D − ωF)−1D(D − ωE)−1b.

This combination is called Symmetric Successive Over Relaxation (SSOR).

The answer for the question, in which cases these basic methods presented here will converge,
can partially be given by a quite general convergence theorem:

Theorem 1.2 The fixed-point method xk+1 = Gxk + f with G ∈ Rn×n converges for each
starting vector x0 if and only if for the spectral radius ρ(G) = maxj |λj(G)| holds:

ρ(G) < 1,

where the eigenvalues of G are denoted by λj.

20 1 Numerical Solution of Systems of Linear Equations

See for instance [35] for the proof. There are numerous further proofs and deeper analyses
of convergence for these basic iterative methods. Here, we restrict ourselves to only one for
a quite important class of matrices.

Definition 1.3 (Diagonal dominant matrix) A matrix A is called

• weakly diagonally dominant if

|aii| ≥
n∑

i=1
i 6=j

|aij | , j = 1, . . . , n

• strictly diagonally dominant if

|aii| >
n∑

i=1
i 6=j

|aij | , j = 1, . . . , n

• irreducibly diagonally dominant if A is irreducible and weakly diagonally dominant,
where strict inequality holds for at least one j.

Strictly and irreducibly diagonally dominant matrices are nonsingular, which follows im-
mediately applying Gershgorin’s theorem. Another consequence is the following theorem.

Theorem 1.3 If A is a strictly diagonally dominant or irreducibly diagonally dominant
matrix, then the associated Jacobi and Gauss-Seidel iterations converge for any initial guess
x0.

For the proof, see [83].

Nowadays, the main application area of these basic methods is not anymore solving linear
systems. They are mostly employed as so-called smoothers in multigrid methods [98]. There,
the relaxed Gauss-Seidel and relaxed Jacobi are used for damping the high-frequency parts
in the error on the fine (original) grid, whereas the computationally expensive operations
are carried out on coarser grids with only few unknowns left.

1.4.2 Krylov Subspace Methods

The most frequently used and fastest iterative solvers can be found in the class of Krylov
subspace methods. The most popular representative is the method of conjugate gradients
(cg), which was developed by Hestenes and Stiefel in 1952 [55]. Although it is restricted to
spd matrices, we will use it to present the basic notion of Krylov subspace methods.

The historical origin of the cg method lies in the minimization of the function

φ(x) =
1
2
〈x,Ax〉 − 〈x, b〉 , (1.15)

which is equivalent to the solution of the linear system arising from the gradient

∆φ(x) = Ax− b
!= 0.

1.4 Iterative Solution Methods 21

Geometrically, Equation (1.15) describes a hyperparaboloid, of which we try to find the
absolute minimum. Starting off at some “position” x0, the initial guess for the minimum,
the direction of steepest descent given by the negative value of the gradient

−∆φ(xk) = b−Axk = rk.

rk could be taken as search direction to approach the solution x. This leads to a sequence
of optimal line search problems

φk(αk+1) = φ(xk + αk+1x
k)

with solution

αk+1 =
〈rk, rk〉
〈rk, Ark〉

.

But from formula ∣∣φ(xk)− φ(x)
∣∣ ≤ (1− 1

κ2(A)

) ∣∣φ(xk−1)− φ(x)
∣∣ ,

we can identify the condition number κ2(A) as a measure for the “distortion” of the level
sets {x : φ(x) = c}, c ≥ 0 from spheres to ellipsoids. Precisely, the smallest eigenvalue
λ1(A) and the largest eigenvalue λn(A) are the lengths of the smallest and largest semiaxis
of {φ(x) = 1}, see Figure 1.3. Therefore, the higher the condition number κ2(A) = λn(A)

λ1(A)

becomes, the more the level sets differ from spheres and thus, many of the search directions
of steepest descent run in parallel, and convergence can be extremely slow.

b

(a) Level sets for well-conditioned A.

b

λ1

λn

(b) Elliptic shaped level sets due to big
κ2(A).

Figure 1.3: Spectral condition number κ2(A) as measure for distortion of level sets.

A solution for this problem is the choice of different search directions. The cg method uses
A-conjugate projections of rk denoted by pk, which means

〈
pk, Apk

〉
= 0. Many authors

use the definition 〈x, y〉A := 〈x,Ay〉 and the corresponding norm ‖x‖A =
√
〈x, y〉A, which

is called energy norm. The subspace

Uk = span{r0, Ar0, . . . , Ak−1r0},

on which the error xk − x is projected, is called Krylov subspace. The first search direction
is p0 = r0, and the following directions for the consecutive steps are computed using Gram-
Schmidt orthogonalization. Therefore, the search directions build an orthogonal basis and
thus, pk+1 can be obtained via pk+1 = rk+1 + βkpk. βk is given by

βk+1 =

〈
rk+1, rk+1

〉
〈rk, rk〉

.

22 1 Numerical Solution of Systems of Linear Equations

In order to minimize φ(x) in direction of pk, the minimum value for αk is given by

αk = −
〈
rk, rk

〉
〈pk, Apk〉

.

Due to this construction process, the dimension of the underlying Krylov subspace is at
most n and in precise arithmetic, the cg method converges in at most n iterations. The

Algorithm 1.4 Conjugate Gradient Method (cg).
Require: A, b, initial guess x0, tolerance for relative residual TOL
1: p0 = r0 = b−Ax0

2: for k = 0 : kmax do

3: αk = − 〈r
k,rk〉

〈pk,Apk〉
4: xk+1 = xk − αkpk

5: rk+1 = rk − αkApk

6: if relative residual < TOL then
7: STOP
8: end if
9: βk+1 = 〈r

k+1,rk+1〉
〈rk,rk〉

10: pk+1 = rk+1 + βk+1p
k

11: end for

complete cg method is shown in Algorithm 1.4. The dominating part of the computational
effort is the cost for the matrix-vector product Apk in each of the k iterations needed until
convergence:

#flops(cg) .= k ·#flops(Apk).

So, when the number of iterations k is sufficiently small and the matrix-vector product
exploits the sparsity structure, the computational cost for the cg method is O

(
n2
)
. The

connection between convergence behavior and the condition number of the coefficient matrix
A is drawn by the following estimate by Axelsson and Barker [6]:

∥∥x− xk
∥∥

A
≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k ∥∥x− x0
∥∥

A
.

The cg method will converge more rapidly as the condition number of the system matrix
tends to 1.

For the much more general case of nonsymmetric matrices A 6= AT , there exist also many
algorithms. In this thesis, we will mainly present results using the cg method and, for
general matrices, the BiCGSTAB [102] or GMRES [84] algorithm. The former is a stabilized
extension of the conjugate gradient method and the latter is based on Arnoldi iterations.
For detailed descriptions see [46, 83].

1.5 Preconditioning

The term preconditioning was initially introduced by Alan Turing in a paper published
already in 1948 (see [99]). There, Turing describes preconditioning as a process to improve

1.5 Preconditioning 23

the condition number of systems of linear equations. But the term did not come into popular
use until the early 1970s.

As we can see for instance in the convergence estimate of the cg algorithm, the condition
number κ(A) of the coefficient matrix A is crucial for the rate of decrease in the error,
and hence also for the number of iterations an iterative solver will need. Thus, we try to
transform Ax = b into an equivalent system using a matrix M ∈ Rn×n such that the overall
condition number is reduced significantly. The matrix M is then called preconditioner.

Generally, the main goal is to minimize the overall solution time, which consists of the setup
time for the preconditioner and the time needed by the solver. We will distinguish between
forward and inverse preconditioners. Two main constraints emerge for the computation of
both types:

• It should be possible to compute M fast and additionally, the application of M should
also be as cheap as possible. For both types, forward and inverse, the latter imposes
an upper bound for the number of nonzeros in M .

• The quality of the preconditioner in terms of reducing the overall condition number
requires a higher computational effort and usually leads to a denser M .

Algorithm 1.5 Preconditioned Conjugate Gradient Method (pcg).
Require: A, b, M , initial guess x0, tolerance for relative residual TOL
1: r0 = b−Ax0

2: q0 = Mr0

3: for k = 0 : kmax do

4: αk = − 〈r
k,rk〉

〈qk,Aqk〉
5: xk+1 = xk − αkqk

6: rk+1 = rk − αkAqk

7: if relative residual < TOL then
8: STOP
9: end if

10: βk+1 = 〈r
k+1,Mrk+1〉
〈rk,Mrk〉

11: qk+1 = Mrk+1 + βk+1q
k

12: end for

The application of the preconditioner in an actual algorithm does of course not employ the
explicit calculation of the matrix-matrix product AM , but is carried out by two consecutive
matrix-vector products (in the inverse case). Algorithm 1.5 shows the preconditioned conju-
gate gradient method for an inverse preconditioner M . It involves one more matrix-vector
product than the unpreconditioned cg method. Note that in this case, M has to be an spd
matrix, as well. The algorithm described here deals with real matrices. The variation for
the complex case is presented in detail in [25].

24 1 Numerical Solution of Systems of Linear Equations

1.5.1 Forward Preconditioners

Forward type or explicit or direct preconditioners yield approximations to A such that

M ≈ A and thus, κ(AM−1)
!
� κ(A). The corresponding left preconditioned system then

reads
M−1Ax = M−1b. (1.16)

We perform right preconditioning by the substitution y = Mx and thus solve

AM−1y = b =⇒ x = M−1y.

The combination of these two methods leads to

M−1
1 AM−1

2 y = M−1
1 b =⇒ x = M−1

2 y.

Examples for forward preconditioners were already shown implicitly in the previous section.
The basic iterative solvers can be interpreted as preconditioned systems of linear equations
of the form (1.16) with the preconditioners

MJacobi = D,

MGauss-Seidel = D − E,

MSOR =
1
ω

(D − ωE),

MSSOR =
1

ω(2− ω)
(D − ωE)D−1(D − ωF).

Another quite commonly used forward type class is the class of incomplete factorizations.

Incomplete Factorizations

One of the most well-known and intensively investigated group of forward preconditioners is
the class of incomplete factorizations. The method is based on some heuristics such as the
observation that in the inverse of a matrix, entries with relatively small absolute value occur
at positions where the original matrix has zero entries. The simplest variant is the incomplete
LU factorization (ILU). Here, an LU decomposition is performed, which is incomplete in
the sense that only the entries for a small given sparsity pattern are computed. This is the
ILU(0) method. The 0 states that no fill-in is allowed outside the pattern (0-level fill-in).

There are methods which allow more levels of fill-in (ILU(1), ILU(2), . . .) but are not robust
enough and do not yield reliable convergence behavior. A more promising variation of the
basic ILU(0) method is ILU(p, τ). Here, we prescribe a fixed number p of nonzero elements
and a threshold τ for dropping smaller elements.

Whereas ILU yields preconditioners for general matrices, the equivalent method for spd
matrices is called incomplete Cholesky (IC). Here, the basic idea is to perform an incomplete
Cholesky decomposition and, again, there exist many variants for controlling the fill-in. For
a fixed pattern, it is called IC(0), accordingly.

A drawback of incomplete factorizations is instability which can lead to breakdown. Chow
and Saad [28] reported failure either in the factorization process itself or during backward
substitution. This can occur when ILU is applied to strongly nonsymmetric or indefinite

1.5 Preconditioning 25

systems. More recent results can be found in [20, 73]. We also want to mention that there
exist incomplete factorization approaches not based on LU decomposition, but on orthogonal
factorizations [8].

Another major disadvantage of forward type approaches might potentially be that in each
step of an iterative solver, a linear system in M has to be solved. This must not be more
costly than solving the original system. As a consequence, forward preconditioners have
to be constructed in a way that allows easy and fast inversion of M , for instance diago-
nal or triangular form. This is a constraint, from which the second category, the inverse
preconditioners, does not suffer.

1.5.2 Inverse Preconditioners

Inverse preconditioners are constructed from approximations to the inverse A−1 of the system
matrix such that

κ(AM)
!
� κ(A).

Just like in the forward case, they can be applied as left preconditioners

MAx = Mb,

or as right preconditioners
AMy = b, x = My

or even as a combination of both techniques

M1AM2y = M1b, x = M2y.

Due to the inverse approximation character of M , we do not need to apply M via solving a
linear system, but by simply performing a matrix-vector product. Therefore, there are no
restrictions to the sparsity pattern of M .

Benzi and Tůma [14] provide a comparative overview of sparse approximate inverse precon-
ditioners. A large group thereof are polynomial preconditioners, see [23, 37, 69]. The idea is
to approximate A−1 by a polynomial in A of low degree. These preconditioners are applied
only via matrix-vector products, which makes this type well-suited for parallel computing
environments. On the other hand, they are less effective than e.g. incomplete factorizations
as far as reducing the condition number and hence the number of iterations is concerned.
The additional matrix-vector products outweigh the reduction of the number of iterations.

Also in the class of inverse preconditioners, there are factorized approaches such as AINV
(see [13, 15]) or FSAI by Kolotilina and Yeremin [74, 75]. AINV computes approximations

A−1 ≈ ZD−1WT

with unit upper triangular matrices Z and W , as well as the diagonal matrix D. Z approx-
imates U−1 and W ≈ L−T . The factors are computed using incomplete biconjugation, i.e.
a conjugate Gram-Schmidt process. The vectors are thinned-out using a drop tolerance in
order to assure sparsity. AINV does not require an imposed sparsity pattern. It is applicable
to general sparse matrices. Robustness is only proven for special types of matrices such as
H-matrices, see [12]. Also, parallelization of this method is a quite difficult task, involving
graph algorithms for optimal preorderings.

26 1 Numerical Solution of Systems of Linear Equations

Finally, there are two sparse approximate inverse preconditioners, which are able to capture
the best sparsity pattern for M itself: on the one hand, the SPAI preconditioner and on the
other hand its factorized variant, FSPAI. In contrast to the other approaches presented here,
they are robust, yield competitive preconditioners, and are inherently parallel. Both form
the fundamentals for the rest of this thesis. They are introduced in the following chapter.

27

Chapter 2

SPAI and FSPAI

Approximate inverse preconditioners are known to be robust methods for general problems
Ax = b. This chapter introduces the idea of Frobenius norm minimization in order to
obtain such approximate inverses and explains, how they are computed. The first section
will describe the sparse approximate inverse (SPAI) preconditioner by Grote and Huckle [48]
in detail. After having discussed the solution of the arising least squares (LS) problems, we
will focus on SPAI’s specialty, which lets SPAI clearly stand out of the other approximate
inverse preconditioners. SPAI can autonomously identify new promising entries for the
sparsity pattern of the preconditioner. The new entries are chosen such that the residual
is minimized. We also present a formulation of criteria for pattern updates when the linear
system Ax = b is complex (A ∈ Cn×n, x, b ∈ Cn). This was not yet topic in literature. This
is followed by a discussion about sparsity patterns for inverse preconditioners in general
containing an overview of recent approaches to effectively predict sparsity structures. After
repeating some well-known theoretical properties of SPAI and reformulating a rather recent
further result on the nonsingularity of SPAI, we conclude the section with an example
application from image restoration. This use of SPAI as a regularizing preconditioner is also
a new field of application.

Especially for symmetric positive definite (spd) problems, we want to have a preconditioner
which preserves these properties. Therefore, the second part of this chapter explains the
factorized sparse approximate inverse (FSPAI) preconditioner, which computes a triangular
inverse factor of the coefficient matrix. For spd problems, it performs considerably better
than the unfactorized SPAI. This will be demonstrated by an example simulation. The
specialty of FSPAI is again the automatic pattern update ability. It enables us to use it as a
black box algorithm. In contrast to SPAI, FSPAI is not invariant under permutations. The
effect of minimum degree algorithms on many other matrix factorizations was extensively
investigated by many authors. According to that, we present the influence of the AMD
reordering on the FSPAI pattern update steps.

A new proof considering the SPAI and FSPAI of M-matrices, respectively, will round off
the overview about approximate inverse preconditioners which automatically capture their
sparsity pattern.

2.1 SPAI

Sparse approximate inverses M ≈ A−1 computed via Frobenius norm minimization were
initially used for preconditioning by Benson and Frederickson [11]. The key idea is to
construct a sparse matrix either from a sparse or even thinned out dense matrix A, so

28 2 SPAI and FSPAI

that the matrix-vector products in the iterative solver do not become too expensive. The
minimization

min
M
‖AM − I‖2F (2.1)

with matrix A ∈ Rn×n and n-dimensional unity matrix I leads to the sparse approximate
inverse M ∈ Rn×n with M ≈ A−1. Here, we concentrate on right preconditioning. For a left
preconditioner, we only have to apply the formulation for the right preconditioner inserting
AT instead of A and we get an M so that MA ≈ I. By Figure 2.1(c), we can see how AM
approximates the identity: AM contains many very small entries near 0 (blue) and on its
diagonal values near to 1 (yellow).

 0 100 200 300 400 500 600 700 800

 0
 100

 200
 300

 400
 500

 600
 700

 800

-300000

-200000

-100000

 0

 100000

 200000

 300000

A(i,j)

i

j

A(i,j)

(a) A.

 0 100 200 300 400 500 600 700 800

 0
 100

 200
 300

 400
 500

 600
 700

 800

-0.018
-0.016
-0.014
-0.012

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002

A(i,j)

i

j

A(i,j)

(b) SPAI M ≈ A−1.

 0 100 200 300 400 500 600 700 800

 0
 100

 200
 300

 400
 500

 600
 700

 800

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

A(i,j)

i

j

A(i,j)

(c) AM ≈ I.

Figure 2.1: 3D matrix plots of example matrix orsirr2 after reverse Cuthill-McKee reordering, SPAI M
and preconditioned AM . The yellow line in Figure 2.1(c) indicates the values near 1 on the
main diagonal, whereas all other values are near 0.

The aspect which gives SPAI a clear advantage over other preconditioners as far as its
implementation and calculation on modern supercomputers or clusters is concerned is its
inherent parallelism. It is based on a property of the Frobenius norm that allows us to split
it up into a sum of Euclidean norms

‖AM − I‖2F =
n∑

k=1

‖(AM − I)ek‖22 (2.2)

=
n∑

k=1

‖Amk − ek‖22 (2.3)

where mk and ek denote the k-th columns of M and I, respectively. Each summand in (2.3)
represents a least squares (LS) problem for exactly one column mk of M and can be solved
completely independently from the others:

min
mk

‖Amk − ek‖2 , k = 1, . . . , n. (2.4)

2.1 SPAI 29

J

J





















× × × × × ×

× × ×

× × ×

× ×

× × × × ×

× ×

× ×









































×

×

×

×





















A mk

I=⇒





















× × ×

× ×

× × × ×

× ×

× ×





























×

×

×

×









A(., J) m̂k













× × ×

× ×

× × ×

×

×





















×

×

×

×









=⇒

Â m̂k

Figure 2.2: Â is defined by the index sets J and the shadow I thereof (here is J = {2, 4, 5, 7} and
I = {2, 4, 5, 6, 7}).

2.1.1 Solution of the Least Squares Problems

The degrees of freedom in the LS problems (2.4) are defined by the sparsity pattern of mk.
Let J be the set of indices where the pattern of mk has nonzero entries

J := {j : mk(j) 6= 0, j = 1, . . . , n},
q := |J |.

Then J also contains the column indices of A which are needed (see Figure 2.2) when we
evaluate a matrix-vector product with the reduced vector mk(J). The accordingly reduced
matrix A(.,J) usually has a lot of zero rows due to its sparsity. So we further denote the
set of indices of nonzero rows in A(.,J) with I :

I :=

i :
∑
j∈J

|aij | 6= 0, i = 1, . . . , n

 , (2.5)

p := |I |.

I is also called the shadow of J . With the definitions

Â := A(I ,J) ∈ Rp×q,

m̂k := mk(J) ∈ Rq×1,

êk := ek(I) ∈ Rp×1,

the LS problems (2.4) are reduced to the much smaller problems

min
m̂k

∥∥∥Âm̂k − êk

∥∥∥
2
, k = 1, . . . , n, (2.6)

30 2 SPAI and FSPAI

with much smaller dimensions p and q compared to the original dimension n. Because of
this, current implementations of such algorithms employ math libraries such as LAPACK
[76] or ATLAS [3] for dense matrices to solve these minimizations. They are all based on the
computation of the QR decomposition via Householder transformations, which is an O

(
n3
)

algorithm. Therefore, the use of sparse methods will be examined in Chapter 4.

Remark 2.1 Barnard and Grote also introduced a block SPAI variant in [9]. There, the LS
problems are not formulated column-wise, but block-wise, thus using block QR methods. A
is not partitioned by columns anymore, but by blocks. Moreover, the pattern update criteria
change slightly. On the one hand, the block approach is faster to compute, but on the other
hand the scalar SPAI leads to more accurate LS solutions and thus to a more effective
preconditioner M .

There are several other ways to solve (2.6) such as methods for normal equations, Gram-
Schmidt or the Modified Gram-Schmidt method. If A is nonsingular, Â has full column rank
q. Thus we can use the QR decomposition of Â = QR, Q ∈ Rp×p, R ∈ Rp×q. This implies
that the nonzero entries of mk are computed as

ĉ := QT êk,

m̂k = R−1
1:q,:ĉ1:q.

Since we apply QT only once on one vector, we do not need to build Q explicitly, which
would be computationally quite expensive. The action of QT on a vector can be calculated
using the Householder vectors from the QR decomposition step. This will be described in
detail in Chapter 4.

Remark 2.2 If we prescribe a simple diagonal pattern, we can give an analytical solution
for the n entries mkk, k = 1, . . . , n of M . The LS problem for one column is

min
mkk

∥∥∥Âmkk − ek

∥∥∥
2
. (2.7)

Because of mkk ∈ R, Â reduces to one single column ak ∈ Rn and ek ∈ Rn. So, using the
inner product, we have

‖akmkk − ek‖22 = m2
kk 〈ak, ak〉 − 2mkk 〈ak, ek〉+ 〈ek, ek〉 .

Differentiation with respect to mkk yields the solution of (2.7)

2mkk 〈ak, ak〉 − 2 〈ak, ek〉
!= 0

⇔ mkk =
〈ak, ek〉
〈ak, ak〉

=
akk

‖ak‖22
,

where akk is the diagonal element of the k-th column of A. M with diagonal pattern is called
optimal diagonal SPAI or SPAI-0.

Remark 2.3 Bröker, Grote, Mayer, and Reusken have shown in [22] that the optimal di-
agonal SPAI yields an attractive alternative to standard smoothers in multigrid methods.
They observed a better smoothing behavior compared to a damped Jacobi, but it is com-
pletely parameter free. According to [22], a static SPAI with the pattern of A behaves mostly
like a Gauss-Seidel smoother. Moreover, it has the advantage of inherent parallelism in
its computation. Where local adaptivity is needed, it is possible to perform pattern updates
automatically as it will be shown in the following section.

2.1 SPAI 31

As stated above, the dimension of Â is defined by the sparsity pattern for M . The actual
choice of these patterns will be subject of Section 2.1.3, whereas the automatic determination
thereof is shown in the following.

2.1.2 Pattern Updates

Once a preconditioner M is computed as stated in the previous section for a given start
pattern, SPAI has the special ability to update this sparsity structure autonomously by
identifying the most profitable new indices. We explain this process by showing how the
update of one single column mk is computed. Figure 2.3 depicts an example for two update
steps.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

886x886, nnz=886, maxnz=1, 0.1%

(a) Diagonal start pattern.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

886x886, nnz=3369, maxnz=8, 0.4%

(b) Pattern after 1 update step.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

886x886, nnz=6402, maxnz=19, 0.8%

(c) Pattern after 2 update steps.

Figure 2.3: Pattern update steps for matrix orsirr2 (see [77]) with parameters ε = 0.2 and a maximum of
5 new entries added in each update step.

At first, we calculate the residual vector r for the k-th column of M :

r = Amk − ek.

If r is a vector of all zeros, then mk is already the k-th column of the exact inverse A−1.
We denote by L the set of indices of the nonzero entries in r:

L := {` : r(`) 6= 0} ∪ {k}.

Now, for every ` ∈ L we can specify a set N`, which consists of the nonzero indices of the
`-th row in A

N` := {j : a`j 6= 0}.
Only these column indices of the `-th row are potential new candidates, because the others
would vanish when performing the sparse matrix-vector product. The union J̃ of the sets
N` (∀` ∈ L) yields the complete set of indices, which can be added in order to improve
‖r‖2:

J̃ :=
⋃

`∈L

N`

with J ∩ J̃ = ∅. For the identification of the indices, which lead to the most profitable
reduction of ‖r‖2 we can solve the 1D minimization problem for every j ∈ J̃

min
µj

‖A(mk + µjej)− ek‖2 = min
µj

‖r + µjAej‖2

32 2 SPAI and FSPAI

and, using Aej = aj , obtain the term

min
µj

‖r + µjaj‖22 = µ2
j ‖aj‖22 + 2µj 〈r, aj〉+ ‖r‖22 .

After differentiation with respect to µj , we obtain

2µj ‖aj‖22 + 2 〈r, aj〉
!= 0

and finally the solution

µj = − rT aj

‖aj‖22
. (2.8)

Instead of one-dimensional minimization, we could also use multivariate minimization as
proposed by Gould and Scott in [47]. This approach sometimes recovers sparsity structures of
the inverse in a better way than the univariate method, but suffers from higher computational
costs. A comparison for banded matrix structures can be found in [62].

In order to see which µj lead to the smallest residual ‖r‖2, we can calculate the new residuals
we would achieve when we add the index j to J and denote it by ρj :

ρ2
j := ‖r + µjaj‖22 = ‖r‖22 − 2

〈
r,

rT aj

‖aj‖22
aj

〉
+

∥∥∥∥∥ rT aj

‖aj‖22
aj

∥∥∥∥∥
2

2

= ‖r‖22 − 2
rT aj

‖aj‖22
rT aj +

(rT aj)2

‖aj‖42
‖aj‖22

= ‖r‖22 −
(rT aj)2

‖aj‖22
. (2.9)

Implementations of the SPAI algorithm always provide a parameter for the number of new
indices that shall be added to the current pattern in one update step. SPAI then takes this
number of indices corresponding to the smallest values of ρj . However, there are many other
variants and heuristics for determining how many indices should be added. If, for instance,
we try to obtain a preconditioner M which has only few nonzero entries, we only add few
entries per step and do not perform many subsequent update steps. As another approach,
we can compute the mean value ρ̄ of all ρj and then only add the indices with ρj ≤ ρ̄.
But also for this criterion, an upper bound for the number of indices must be imposed in
order to ensure a certain low degree of sparsity. The most wide-spread and most commonly
used SPAI implementation of Stephen Barnard (see [10]) works with this method. Our
implementation of the MSPAI algorithm, see Chapters 3 and 4, chooses new indices in this
way, too. For a more compact notation, we define:

Definition 2.1 (Update parameter Υ) By Υα,β, we denote the parameter for SPAI-like
algorithms such that a maximum of α pattern update steps is performed, each adding exactly
β new indices to the pattern of one column (unless all positions in that column are already
set). Ῡα,β indicates that only indices are added which correspond to the values ρj ≤ ρ̄.

Let J̃ be the set of new indices which are added to J . Consequently, Ĩ is the potentially
enlarged set of nonzero rows in A(.,J ∪ J̃). Then, we again have to solve the LS problem
(2.6), but now with larger submatrix

Ā := A(I ∪ Ĩ ,J ∪ J̃) ∈ R(p+p̃)×(q+q̃),

2.1 SPAI 33

where p̃ := |Ĩ | and q̃ := |J̃ |. Since we have already computed the QR factorization of Â,
we do not have to perform a complete factorization of Ā. Nonzero entries in rows Ĩ can
only occur in columns J̃ . So we can find row and column permutations such that

Ã =
(

Â A(I , J̃)
0 A(Ĩ , J̃)

)

=
(

Q
Ip̃

)R QT
1 A(I , J̃)

0 QT
2 A(I , J̃)

0 A(Ĩ , J̃)

 =
(

Q
Ip̃

)(
R B1

0 B2

)
.

The only remaining task now is to compute the QR decomposition of B2 ∈ R(p̃+p−q)×q̃. A
detailed review of these QR updates can be found in Section 4.1.3.

As long as ‖r‖2 is bigger than a certain user provided tolerance ε, and the number of nonzeros
of the current pattern is smaller than a second parameter, the update step is repeated until
one of the criteria is fulfilled. The latter one assures, if chosen meaningful that M does not
become too dense.

Remark 2.4 In the case of complex valued problems Ax = b with A ∈ Cn×n, x, b ∈ Cn, the
computation of M for a fixed pattern is just the same as in the real case. It only involves the
use of complex LAPACK [76] methods for solving the LS problems. However, in the pattern
update steps, the formulas for the computation of µj ∈ R (2.8) and accordingly ρj ∈ R (2.9)
differ slightly. Using the properties of the complex inner product, we get

‖r + µjaj‖22 = |µj |2 ‖aj‖22 + 〈r, µjaj〉+ 〈µjaj , r〉+ ‖r‖22
= µ2

j ‖aj‖22 + µ̄j 〈r, aj〉+ µj〈r, aj〉+ ‖r‖22
= µ2

j ‖aj‖22 + 2µjRe
(
rHaj

)
+ ‖r‖22

with minimum value

µj = −
Re
(
rHaj

)
‖aj‖22

.

Using this to derive the formula for ρj, we arrive at

ρ2
j = ‖r‖22 + µ̄j 〈r, aj〉+ µj〈r, aj〉+ ‖µjaj‖22

= ‖r‖22 − 2
Re
(
rHaj

)
‖aj‖22

Re
(
rHaj

)
+

Re
(
rHaj

)2
‖aj‖42

‖aj‖22

= ‖r‖22 −
Re
(
rHaj

)2
‖aj‖22

.

We use this criterion in our MSPAI 1.0 implementation (see Chapter 4) in case of complex
matrices.

2.1.3 Sparsity Patterns

Due to the fact that for most even sparse matrices A the exact inverse A−1 is usually dense,
the approximation of M ≈ A−1 is improved by allowing more entries in the sparsity pattern

34 2 SPAI and FSPAI

of M . In the case of SPAI, this can immediately be seen from (2.9), because the residual
norm ‖r‖2 can only be reduced if the pattern update adds the j-th entry to the pattern.
However, the computation time increases with the size of Â. So the sparsity pattern which
we provide for the preconditioner M is crucial as far as approximation quality is concerned.
Moreover, the time to compute it is equally important. Furthermore, a sparse approximate
inverse preconditioner with more entries will lead to fewer iteration steps when it is employed
within an iterative solver such as GMRES or the preconditioned conjugate gradient method
(pcg). Each single iteration will take more time, because the matrix-vector products within
one iteration become more expensive. So one has to balance these factors. We need patterns
that are thick enough to produce sufficiently small residuals ‖AM − I‖F . Furthermore, the
patterns should also be thin enough, so that the computation time of M itself and therefore
the time needed by one iteration does not grow too high.

As we have seen in Section 2.1.2, SPAI has the special ability to start with an arbitrary
sparsity pattern and update it adaptively with respect to certain optimality aspects. Nev-
ertheless, these update steps can be quite costly, as for the identification of possible new
entries (index set N`), we have to perform many set operations. Having identified the po-
tential new entries, the computation of the reduction ρj of the residuals involves many inner
products. We will address the problem of an improved implementation in Chapter 4 as we
will be investigating the effect of sparse QR methods and caching on the runtimes of SPAI.

From the theoretical point of view, it makes sense to look for promising start patterns for
this process in order to have less or no pattern updates at all. Thus, we put more effort on
finding good start patterns for the Frobenius norm minimization. Based on the Neumann
representation for the inverse A−1 of a matrix

(I −A)−1 =
∞∑

j=0

Aj , (2.10)

the powers of A can provide quite straightforward and promising nonzero structures for
M . A drawback is that these patterns become quite dense as j increases. As a solution,
it is possible to apply thinning-out steps and sparsify Aj again. These thresholds are very
problem-dependent and can lead to singular matrices if chosen improperly. A prescaling step
can help to make it easier to determine meaningful drop tolerances. We present in Section
5.1 an example for the successful employment of a sparsification strategy. To overcome the
difficulties, Chow proposed in [27] a method based on the graph related to the sparsity
structure of a matrix. The basic idea of his approach is to guarantee that in each column of
the pattern still at least two entries remain. In terms of graph algorithms, this means that
after sparsifying, there is at least a fixed number of edges to or from each vertex. In practice,
the algorithm chooses, for each column, the diagonal entry and the indices corresponding
to the two or more biggest values in the column. Chow then computes the powers of this
matrix, which can be sparsified again and so on. Preconditioners (2.1) calculated with
these patterns lead to convergence behavior in iterative solvers of equal quality as the ones
computed by an adaptive SPAI. Usually, the former are denser and therefore the single
iterations take more time, whereas the latter are chosen very carefully with respect to the
residual minimization. On the other hand, this clearly takes more time.

Huckle presented in [61] the idea of providing a small bounded maximum pattern for SPAI,
which combines the advantages of the two approaches. Starting point is the Neumann series
(2.10) and the characteristic polynomial of a matrix (Cayley-Hamilton theorem). By that,

2.1 SPAI 35

we observe that the sparsity pattern P
(
A−1

)
of the inverse A−1 is contained in the pattern

of (I + |A|)n−1:
P
(
A−1

)
⊆P

(
(I + |A|)n−1

)
.

Then, Huckle applies this argument to B = AT A, which yields

P
(
A−1

)
⊆P

(
(|A|T |A|)n−1 |A|T

)
.

It can also be advisable to include the pattern of AT into the approximation of P
(
A−1

)
.

Hence, we replace (I + |A|) by (I + |A|+ |A|T) and arrive at

P
(
(I + |A|+ |A|T)n−1 |A|T

)
as a good approximation for P

(
A−1

)
. These estimates are computed under the assumption

that A has only nonnegative entries, but for general matrices, they hold as well. For the
actual employment, we do not compute the algebraic powers of (|A|T |A|)n−1 or (I + |A|+
|A|T)n−1 completely, but only up to a small m � n − 1. This can then be done efficiently
by the use of graph algorithms. So, the patterns we prescribe as maximum sparsity patterns
are

P
(
(|A|T |A|)m |A|T

)
or (2.11)

P
(
(I + |A|+ |AT |)m |A|T

)
. (2.12)

Huckle further shows that (2.11) is an upper bound for the pattern which can occur by
computing the SPAI pattern updates. Moreover, in some cases, P

(
(|A|T |A|)m |A|T

)
and

the pattern recovered by SPAI are identical. (2.11) can get quite dense when we increase
m, whereas (2.12) allows a more sensitive increase in the number of nonzeros.

Two advantages immediately emerge from the use of such maximum patterns:

• The number of indices which have to be tested (the determination of the index sets
N`) decreases significantly and therefore the computation time for the preconditioner.

• In parallel environments, we precisely know in advance which parts of A each processor
will need at most. So we can distribute the data in the beginning, and no further
(expensive) communication will be needed until the end of the computation, where
the resulting matrix M is gathered from all the computing nodes. This should also
lead to a considerably good load balancing in terms of CPU computation time, because
the pattern estimates are quite precise upper bounds for the patterns found by the
SPAI algorithm.

The maximum patterns can be applied for general unsymmetric matrices, as well as for
triangular or symmetric ones. In the triangular case, one should not include AT in the
pattern, but use P (|A|m) for small m, instead. For spd matrices, Huckle extends the
notion of maximum patterns also for the FSPAI pattern update approach (see Section 2.2)
applying the same arguments as for nonsymmetric problems.

The actual runtime improvements by the use of maximum sparsity patterns are investigated
in Sections 4.3 and 4.4.

36 2 SPAI and FSPAI

2.1.4 Theoretical Properties of SPAI

In [48], Grote and Huckle also present theoretical properties of SPAI, focussing on the
spectrum of AM and the difference between A and M in certain norms.

Theorem 2.1 Let p = max1≤k≤n{number of nonzero elements of rk}. rk is the residual
vector of the k-th column and satisfies ‖rk‖2 < ε. Then

‖AM − I‖F ≤
√

nε,

‖AM − I‖2 ≤
√

nε,

‖AM − I‖1 ≤ √
pε.

Furthermore ∥∥M −A−1
∥∥

F
≤

∥∥A−1
∥∥

2

√
nε,∥∥M −A−1

∥∥
2
≤

∥∥A−1
∥∥

2

√
nε,∥∥M −A−1

∥∥
1
≤

∥∥A−1
∥∥

1

√
pε.

Corollary 2.1 If
√

pε < 1, then M is nonsingular.

Theorem 2.2 Let p = max1≤k≤n{number of nonzero elements of rk}. Then, the eigenval-
ues λk of AM are clustered at 1 and lie in a circle of radius

√
pε. Furthermore, if

√
pε < 1,

then λmax and λmin satisfy ∣∣∣∣λmax

λmin

∣∣∣∣ ≤ 1 +
√

pε

1−√pε
.

Theorem 2.3 The singular values of AM are clustered at 1 and lie inside the interval
[1− δ, 1 + δ], with δ =

√
nε(2 +

√
nε). Furthermore, if δ < 1, then the condition number of

AM satisfies

κ2(AM) ≤
√

1 + δ

1− δ
.

The proofs to these theorems can be found in [48].

Another rather recent theoretical result was published by Wang, Lawlor, and Kale in [103].
It is a result concerning the nonsingularity of a computed SPAI M . Here we present both
the theorem and the proof in a more compact reformulation:

Theorem 2.4 Let M be the SPAI of a nonsingular matrix A ∈ Rn×n and define C :=
AM − I with C = (cij)i,j=1,...,n. The pattern of M shall include the main diagonal entries.
If

n∑
k=1

|ckk| < 1,

then
‖AM − I‖F < 1,

and M is nonsingular.

Proof We regard one column m̂k of the solution of the index reduced LS problem

min
m̂k

∥∥∥Âm̂k − êk

∥∥∥2

2
,

2.1 SPAI 37

which also satisfies the corresponding normal equation

ÂT Âm̂k = ÂT êk. (2.13)

Setting D := AM with D = (dij)i,j=1,...,n, we can observe that

m̂T
k ÂT êk = dkk. (2.14)

Multiplying (2.13) from the left with m̂T
k and inserting (2.14) directly yields

dkk = m̂T
k ÂT êk = m̂T

k ÂT Âm̂k = ‖dk‖22

=
n∑

j=1

d2
jk. (2.15)

By construction, we obtain

djk =
{

cjk for j 6= k
cjk + 1 for j = k

. (2.16)

With (2.16) and (2.15), the following holds:

ckk = dkk − 1 =
n∑

j=1

d2
jk − 1 =

n∑
j=1
j 6=k

d2
jk + d2

kk − 1

=
n∑

j=1
j 6=k

c2
jk + (ckk + 1)2 − 1 =

n∑
j=1
j 6=k

c2
jk + c2

kk + 2ckk − 1 + 1

=
n∑

j=1

c2
jk + 2ckk

and consequently

ckk = −
n∑

j=1

c2
jk. (2.17)

Now, let
∑n

j=1 |ckk| < 1. With (2.17) follows∣∣∣∣∣
n∑

k=1

ckk

∣∣∣∣∣ =
∣∣∣∣∣−

n∑
k=1

ckk

∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
k=1

n∑
j=1

c2
jk

∣∣∣∣∣∣ = ‖C‖2F = ‖AM − I‖2F < 1.

According to [83], AM is then nonsingular, and thus M is nonsingular. �

Remark 2.5 We can check the condition
∑n

j=1 |ckk| < 1 quite easily by computing

n∑
j=1

|ckk| =
n∑

k=1

|dkk − 1| =
n∑

k=1

|akmk| − n

with ak being the k-th row of A and mk the k-th column of M . Since this involves the
evaluation of n sparse dot products, it causes considerably less computational effort than
evaluating the matrix-matrix product AM explicitly.

38 2 SPAI and FSPAI

A few details in the proof of Theorem 2.4 allow us to formulate another thereoretical result
on AM .

Corollary 2.2 The diagonal entries dkk (k = 1, . . . , n) of AM satisfy

0 ≤ dkk ≤ 1.

Proof Equation (2.15) implies 0 ≤ dkk. The second inequality follows by equations (2.16)
and (2.17):

ckk = dkk − 1 ≤ 0 ⇐⇒ dkk ≤ 1.

�

Example 2.1 Consider matrix (1.11) from Section 1.3:

A =


1.1 0 −2.2 0 0
0 3.3 4.4 0 0
0 0 −5.5 −6.6 0

7.7 −8.8 0 9.9 0
0 0 0 0 10.1

 .

A static SPAI for A with pattern P (A) leads to an M such that

AM = D =


0.062 0.424 0.124

0.314 −0.162 −0.247
0.201 −0.386 0.701 −0.247
0.134 −0.257 −0.061 0.835

1.000


with diagonal entries dkk ∈ [0, 1] (k = 1, . . . , 5) as predicted by Corollary 2.2.

Since we will have a closer look on the effect of graph reordering algorithms on the factorized
SPAI later on, we wish to mention that SPAI is permutation invariant. If permutation
matrices P1 and P2 are applied to a matrix A, we get P1AP2 and as a preconditioner the
SPAI PT

2 MPT
1 instead of M if M ≈ A−1.

2.1.5 Example Application: SPAI in Image Restoration

As a new field of application for SPAI we want to present its regularization property in
image restoration. This was joint work with David Flade [42]. We address the problem
of reconstructing blurred images which are additionally perturbed by noise. Blur can have
many origins such as atmospheric turbulence blur in astronomical image processing or out-
of-focus problems. Mathematically it is modelled using the so-called point spread function
(PSF). The PSF describes the blur for every point of the image. If it is not given explicitly,
it is determined in several experiments using point sources of light. For simplicity, we assume
a PSF which blurs the points of an image independently from the position within the image,
i.e. generating spatially invariant blur. Moreover, we assume the blur to be isotropic which
means that it has the same effect in all directions. An example for an anisotropic distortion
would be motion blur.

Following [80], the image deblurring problem is given by the linear system

Hx = g + η, (2.18)

2.1 SPAI 39

where H is the blur matrix, x the original “unblurred” image, which we want to reconstruct,
g the given image, and η the additional noise. H is constructed using the PSF. For 1D
reconstruction problems, x is a signal and the convolution g = h ∗ x with the blurring
function

h = (. . . , 0, h−m, h−m+1, . . . , h0, . . . , hm−1, hm, 0, . . .)T

applied to
x = (. . . , x−m+1, . . . , x0, . . . , xn, xn+1, . . . , xn+m, . . .)T

yields the given blurred signal g = (g1, . . . , gn)T . The entries gj are then given by

gj =
∞∑

k=−∞

hj−kxk.

So g is not only determined by x1, . . . , xn, but also by x−m−1, . . . , x−1 and xn+1, . . . , xn+m.
Hence, the deblurring problem (2.18) in the 1D case can be formulated as the linear system


hm . . . h0 . . . h−m

hm h0 h−m

.
hm h0 h−m

hm . . . h0 . . . h−m





x−m+1

...
x1

...
xn

xn+1

...
xn+m


=

g1

...
gn

 . (2.19)

Since (2.19) is underdetermined, we make additional assumptions on the values x−m+1, . . . , x0

and xn+1, . . . , xn+m. This can be interpreted as the definition of boundary conditions on the
problem. For our purposes, we impose Dirichlet boundary conditions, i.e. x−m+1 = . . . =
x0 = xn+1 = . . . = xn+m = 0. Other choices are possible, such as Neumann or reflective
boundary conditions, periodic or anti-reflective types. Due to the choice of the boundary
conditions, the resulting blur matrix H falls into certain classes of structured matrices. In
our Dirichlet case, we obtain a Toeplitz matrix. Tensor arguments yield the respective blur
matrices for the 2D case.

The blur matrices H, which are constructed this way, are usually very ill-conditioned or even
singular or indefinite. Additionally, the noise η on the blurred image g turns the setting into
an ill-posed problem. Thus, already a small amount of noise completely corrupts solutions
if they are computed in a straightforward way. The small eigenvalues of H amplify the
noise level extremely and make the solution useless. To overcome this effect, we can either
use regularization techniques or the regularizing properties of iterative solvers. Among the
former is the quite well-known method of Tikhonov regularization [97], which transforms
(2.18) into a minimization problem. We minimize

‖Hx− (g + η)‖22 + µ ‖x‖22

with respect to x. µ ≥ 0 is a small constant parameter and the solution is computed by
solving

(HT H + µI)x = H(g + η).

40 2 SPAI and FSPAI

(a) Original image. (b) Blurred image with noise of order 10−2.

(c) Unpreconditioned BiCGSTAB result after 1
iteration.

(d) Best unpreconditioned BiCGSTAB result af-
ter 17 iterations.

(e) SPAI preconditioned BiCGSTAB after 1 it-
eration.

(f) Optimal preconditioned BiCGSTAB after 1
iteration.

Figure 2.4: Example for image deblurring.

2.1 SPAI 41

µ has to be chosen carefully: large enough so that it has a regularization effect and small
enough such that the difference to the original deblurring problem does not become too
significant.

The second remedy is to exploit the inherent regularizing property of iterative solution
methods (see, for instance [52, 54]). Additionally, they suit very well for large-scale problems
and parallel computing environments. For spd blur matrices, we can use the cg method
and in the general unsymmetric case BiCGSTAB, for instance. The usual observation in
connection with ill-posed problems is a reduction of the residual in the beginning of the
solution process. There, the residual is of larger magnitude than the noise, such that it does
not affect the solution, yet. By stopping the solver at the point where the residual attains its
minimum value, we can obtain acceptable results. If the solution process progresses on, the
noise is taken into account more and more, and the solution deteriorates up to divergence
in the end. This effect is called semi-convergence [53]. If we consider the singular value
decomposition

H = UΣV T

with orthonormal matrices U, V ∈ Rn×n and Σ = diag (σ1, . . . , σn), then H−1 = V Σ−1UT

holds, and the exact solution can be formulated as

x = H−1(g + η) =
n∑

k=1

(
uT

k g

σk
+

uT
k η

σk

)
vk.

Since blur matrices are typically ill-conditioned, there are huge eigenvalue clusters around
zero. For a small index k, we can assume σk �

∣∣uT
k η
∣∣ so that the second summand containing

the noise η vanishes. But for bigger indices k the situation changes and the summand uT
k η
σk

becomes more significant and finally contaminates the solution. Therefore, it is important
to have a good stopping criterion. There are some methods which analyze the so-called
L-curve [68], i.e. the curve we get when we plot the points (log

∥∥g −Hxk
∥∥

2
,log

∥∥xk
∥∥

2
) has

usually the shape of an “L”, and the sharp bend point then implies a good stopping index.
For an overview of stopping criteria, e.g. see [68].

In order to accelerate the solution process, we can use a preconditioner. This leads to
fewer iterations of the Krylov subspace method at the beginning. There it acts on the
large eigenvalues which do not correspond to the noise part of the right-hand side (noise is
usually connected with high frequencies). In the optimal case, a preconditioner has no effect
on the smaller eigenvalues at all and therefore does not amplify the noise. SPAI is such a
preconditioner, since it is more effective in treating large eigenvalues than small ones. In
order to achieve minM ‖AM − I‖F < 1, SPAI primarily has to work on large eigenvalues.
For small eigenvalues, ‖AM − I‖F is already small for M ≈ 0. The objective of our work
was to investigate the regularization property of SPAI in this context. Our numerical tests
revealed that both the structure and the density of the sparsity pattern prescribed for the
SPAI are crucial for the quality of the result. If we choose a pattern with too many entries,
the resulting SPAI M approximates the inverse H−1 of the blur matrix too exactly, i.e.
the small eigenvalues, which correspond to the noise, are also clustered instead of being
untouched. For carefully chosen sparser patterns, we get exactly the effect we need for
regularization, namely a clustering of the large eigenvalues of HM and no changes in the
small ones.

Figure 2.4 shows an example for the regularizing effect. Without preconditioning, we obtain a
quite acceptable solution after 17 steps of BiCGSTAB (Figure 2.4(d)). In the preconditioned

42 2 SPAI and FSPAI

cases, semi-convergence was reached already after 1 iteration. Using SPAI as preconditioner
(Figure 2.4(e)), the result is both of the same quality as the best unpreconditioned solution
and also competitive to an alternative preconditioning method (Figure 2.4(f)). This reference
method is a truncated version of the superoptimal circulant preconditioner presented in [36].
For a more detailed description of the test parameters and further results, we refer to [42].

2.2 FSPAI

The SPAI algorithm discussed in the previous section computes an approximate inverse
preconditioner for general matrices A. Even if A is symmetric, the resulting SPAI precon-
ditioner M will in general be unsymmetric. Hence, we cannot employ it in iterative solvers
for symmetric linear systems of equations such as pcg. The consequence would be to solve
the system with a method for unsymmetric systems, which have usually a much higher com-
putational complexity. Symmetrization approaches could be a way out (see Chapter 3), but
it cannot be assured that the resulting matrices are positive definite.

This section is devoted to a method which allows us to compute factorized sparse approxi-
mate inverses (FSPAI) for the special purpose of preconditioning symmetric positive definite
(spd) matrices A. The FSPAI algorithm [62] is also able to find enlarged sparsity patterns
and yields positive definite preconditioners.

Starting point is the spd matrix A = LT
ALA with unknown Cholesky factor LA. Our concern

is to find a sparse approximate Cholesky factor L of the inverse

M = LLT ≈ A−1 or L ≈ L−1
A .

According to Kolotilina and Yeremin [75], L can be obtained via Frobenius norm minimiza-
tion

min
L
‖LAL− I‖F

and then normalized such that diag
(
LT AL

)
= I. This minimization problem reduces to a

linear system in a submatrix of A. Additionally, the sparsity pattern of L is restricted to
lower triangular form by definition. So, L can be computed without actually knowing the
Cholesky factor LA.

Kaporin [71] presented another equivalent method by minimizing the Kaporin functional

K :=
1
n tr
(
LT AL

)
det (LT AL)

1
n

. (2.20)

2.2 FSPAI 43

A =





















× ×

× ×

× ×

× × × ×

× ×

× × × ×

× ×





















, P (L3)
!
=





















0
0
×

×

0
×

×





















J3

J̃3

A(J̃3, 3)

=⇒ A(J̃3, J̃3) =





× × 0
× × ×

0 × ×





Figure 2.5: A(J̃k, J̃k) is defined by the index sets Jk and J̃k (here is J3 = {3, 4, 6, 7} and J̃k =
{4, 6, 7}).

2.2.1 Computation of FSPAI for Fixed Pattern

According to [62], we denote the k-th column of L by Lk and the allowed nonzero pattern
in Lk by Jk (where J̃k := Jk \ {k}), and get

tr
(
LT AL

)
det (LT AL)

1
n

=
∑n

k=1 LT
k ALk

det (A)
1
n (L11L22 · · ·Lnn)

2
n

=
∑n

k=1 L2
kkAkk + 2LkkLk(J̃k)T A(J̃k, k)

det (A)
1
n (L11L22 · · ·Lnn)

2
n

+
Lk(J̃k)T A(J̃k, J̃k)Lk(J̃k)

det (A)
1
n (L11L22 · · ·Lnn)

2
n

. (2.21)

We obtain the unknowns Lk(Jk) (see also Figure 2.5) through the derivatives of (2.21) with
respect to J̃k as

Lk(J̃k) = −LkkA(J̃k, J̃k)−1A(J̃k, k),

L2
kk =

1
Akk −A(J̃k, k)T A(J̃k, J̃k)−1A(J̃k, k)

.

44 2 SPAI and FSPAI

Here we can see that L can be computed column-wise in parallel, since the unknowns for
each column k are completely independent of each other. The actual solution takes three
steps:

yk = A(J̃k, J̃k)−1A(J̃k, k), (2.22a)

Lkk =
1√

Akk −A(J̃k, k)T yk

, (2.22b)

Lk(J̃k) = −Lkkyk. (2.22c)

The small submatrix A(J̃k, J̃k) of A is symmetric positive definite, too, so we can solve
the linear system (2.22a) using Cholesky decomposition. This is the dominating part of
the computational effort, when we compute an L for one fixed pattern, since Cholesky
factorization is O

(
n3
)
. For the FSPAI L, we also do not need an additional normalization

step as in [75], because diag
(
LT AL

)
= I by construction. Kolotilina [74] proposed several

strategies for prescribing promising sparsity patterns in order to statically compute of a
factorized sparse approximate inverse factor. These approaches can also be applied to static
FSPAI or can give valuable start patterns for the dynamic case, which involves pattern
updates.

Remark 2.6 If we only prescribe a diagonal sparsity pattern for a static FSPAI, we obtain,
by equation (2.22b), a diagonal matrix with entries Lkk = 1/

√
Akk, k = 1, . . . , n. Hence,

diagonal FSPAI preconditioning LT AL is equivalent to a symmetric Jacobi preconditioner.

Remark 2.7 In [60], Huckle investigated FSPAI’s smoothing properties for a finite differ-
ence discretization of a 2D elliptic PDE. FSPAI is much easier to parallelize than an ILU
preconditioner employed as a smoother, whereas ILU showed the best smoothing results in
that test.

For large sparse spd matrices, FSPAI provides a much better preconditioning method than
SPAI. The submatrices which occur in FSPAI are smaller and faster to factorize than the
ones in the SPAI algorithm. Moreover, FSPAI can use Cholesky decomposition, which is
faster by a factor of 4 than QR decomposition in the SPAI case. FSPAI also computes
a triangular factor L, which halves the costs for storing compared to a SPAI with equal
sparsity pattern. All these advantages can be seen in the following example.

Example 2.2 The matrix bcsstk14, which is taken from Matrix Market [77], has dimension
n = 1806. The condition number is κ(A) ≈ 1.19 · 1010 and nnz(A) = 63454. We compute a
static SPAI M and a static FSPAI L with the pattern P (A) of the original matrix and the
lower triangular part of P (A), respectively. This test has been performed in MATLAB on a
1600 MHz Intel Centrino laptop. Table 2.1 shows the simulation results. FSPAI needs only
half the memory of SPAI and produces a better approximation as far as Frobenius norm
minimization and condition number of the preconditioned system are concerned. The setup
time for the SPAI is of more than factor 9 higher than for FSPAI. Moreover, we need to use
BiCGSTAB for SPAI, because we cannot ensure positive definiteness, not even symmetry
for M . On the one hand, this leads to more expensive iterations and, due to the lower
approximation quality, also to more than twice as many iterations as the FSPAI. The total
simulation time using FSPAI is less by a factor of more than 7.7 compared to SPAI. For this
test, no pattern updates were performed.

2.2 FSPAI 45

Table 2.1: Comparison of SPAI and FSPAI for the test matrix bcsstk14. Solution of Ax = b with random

right-hand side b and a relative residual of 10−6 as stopping criterion in the iterative solver.

SPAI FSPAI
nnz 63454 32630
memory usage ([Bytes]) 768748 398788
‖AM − I‖F resp.

∥∥LT AL− I
∥∥

F
17.21 12.83

κ(AM) resp. κ(LT AL) 4.31e+03 4.02e+02
setup time for M/L ([s]) 5.62 0.62
solver time for BiCGSTAB/pcg ([s]) 1.26 0.27
total time ([s]) 6.88 0.89
iterations 115 54

A further example application for the use of FSPAI with a static pattern is given in Section
5.1. The sparsity pattern has been determined through prescaling and sparsification steps
applied to the underlying matrix which arose in statics’ simulation.

2.2.2 Pattern Updates

Analogously to SPAI, FSPAI’s specialty lies in identifying new promising entries for an
augmented sparsity pattern. The approaches in the two methods are quite similar and lead
to a 1D minimization problem for each new index in the pattern (see [62]). We define

L
(j)
k := Lk + λjej

with the j-th unit vector ej . Solving

min
λj

1
n tr
(
(LT + λjekeT

j)A(L + λjeje
T
k)
)

det
(
(LT + λjekeT

j)A(L + λjejeT
k)
) 1

n

yields the minimum value

λj = −
AT

j Lk

Ajj
.

Just as in the SPAI method, we observe the reduction of the functional (2.20)

1
n

det (A)
1
n (L11 · · ·Lnn)

2
n

· τj

and identify a factor τj for each λj :

τj =
(A(j, Jk)Lk(Jk))2

Ajj
.

The bigger the value of τj is, the more the Kaporin functional will be reduced, when the
j-th entry is added to the pattern Jk. We do not need to compute τj for every j = 1, . . . , n.
Graph algorithms working on the graph representing the sparsity structure of A enable us
to find indices j such that

A(j, Jk)Lk(Jk) 6= 0.

46 2 SPAI and FSPAI

Thus, the number of candidates for which we have to compute τj in general reduces sig-
nificantly due to the sparsity of A. The candidates with the biggest τj-values can then
be added to Jk. In order to keep the density of L low, we can also add only the indices
which correspond to the τj which are larger than the mean value of all τj . This criterion
was already proposed for SPAI in Section 2.1.2. And again, just like for SPAI, we do not
have to compute the Cholesky factorization of the enlarged A(J̃k, J̃k), but we can perform
Cholesky updates (see, for instance [46, 62]). The pattern update steps are carried out until
the maximum value of all τj is lower than a user provided tolerance ε.

We can also identify new candidates for the pattern of L by multivariate minimization
instead of the 1D ansatz above. Besides higher computational costs, we cannot observe a
better recovery of the inverse of A as it was observed for SPAI. For a comparison, refer to
[62].

2.2.3 Effect of Approximate Minimum Degree Reordering on FSPAI

The sparse approximate inverse preconditioner SPAI is invariant under permutations, as we
have seen in Section 2.1. This is not the case for FSPAI. Here, graph reorderings do have
influence on the result. In Section 1.3.3, we have already seen that reorderings of minimum-
degree-type substantially decrease the height of the elimination tree in direct factorization
methods. This leads to sparser matrix factors. Benzi and Tůma also proposed the use
of minimum degree reorderings in [13] and performed a deeper analysis thereof in [15],
considering the AINV preconditioner. For the AINV algorithm, Benzi observes a significant
decrease in the nnz of the inverse factors. He refers to that as inverse fill-in. Sparsification
steps during the biorthogonalization lead to this reduction and due to the preordering, more
entries are dropped and set to zero than without preordering.

Table 2.2: Comparison of FSPAI for AMD preordered and unpreordered test matrices arising from Navier-
Stokes equations. FSPAI was computed with ε = 0.2 and the pcg algorithm iterated up to a
relative residual of 10−6 as stopping criterion.

without preordering AMD preordering
n #iter. nnz(L) #iter. nnz(L̂) nnz(L̂)

nnz(L)

216 20 2547 20 2454 0.96
512 27 7181 26 6467 0.90
1000 37 15631 42 13857 0.89
2197 54 37981 48 32935 0.87
4097 67 75397 68 64574 0.86

We concentrate on the approximate minimum degree (AMD) algorithm, which has already
been described in Section 1.3.3. Our test matrices arise from a 3D discretization of the
Navier-Stokes equations. The discretization is done on cartesian grids and preserves both
energy and impulse. After a Chorin projection (see [26]), we obtain symmetric semidefinite
matrices. The geometry is a channel which is divided into nx · ny · nz = n cells in the
three spatial dimensions. Thus, the discretization matrices are of size n. This number grows
rapidly as we refine the discretization grid in order to increase accuracy.

With these matrices of different dimensions, we investigate the effect of an AMD preordering
step on the FSPAI pattern updates. As a parameter, we take a tolerance ε = 0.2 for the
accuracy in each column. The start pattern is diagonal, and we add one new entry per

2.3 M-Matrices 47

column in each update step. As we can see in Table 2.2, the AMD preordering has only little
influence on the iteration numbers of the pcg, because symmetric orderings are represented
by orthonormal permutation matrices and do not affect the condition number. But in the
last column, we see that the density of the FSPAI L̂ in the preordered case is reduced up to
nearly 15%, i.e. the tolerance ε is achieved after fewer update steps in each column. Thus,
an AMD preordering leads to sparser factorized approximate inverses and therefore to lower
computation times in each iteration of the solver. Additionally, the FSPAI computation
time reduces due to the saving of pattern update steps. This observation coincides with
Benzi’s results on a reduced inverse fill-in.

The test matrices in Table 2.2 arise from simulations of an empty channel. We provide a
more detailed review of our results involving different settings with obstacles in the channel
in Section 5.2.

2.3 M-Matrices

To conclude this chapter, we want to mention a property, when the coefficient matrix A
belongs to an important special class of matrices, the so-called M-matrices:

Definition 2.2 (M-Matrix) A matrix A ∈ Rn×n is called M-matrix if it is nonsingular,
if non-positive values are exclusively off the main diagonal, i.e.

aij

{
> 0 for i = j,
≤ 0 for i 6= j

, i, j = 1, . . . , n,

and if the inverse A−1 has only non-negative entries.

Moreover, for an M-matrix A and x, y ∈ Rn we have inverse monotony, i.e.

Ax ≤ Ay =⇒ x ≤ y, (2.23)

where the relation ≤ is taken componentwise. Using the properties of M-matrices, we can
formulate the following theorem:

Theorem 2.5 For an spd M-matrix A ∈ Rn×n, the FSPAI L has only non-negative entries,
i.e.

L ≥ 0,

where ≥ is used componentwise.

Proof We restrict the proof to the k-th column Lk of L, k = 1, . . . , n. According to Section
2.2.1, Jk denotes the set of indices in the prescribed pattern for Lk and J̃k = Jk \ {k}.
In the computation of Lk, we first solve A(J̃k, J̃k)yk = A(J̃k, k), see (2.22a). Since A is
an M-matrix, the spd submatrix A(J̃k, J̃k) is also an M-matrix. Moreover, J̃k does not
contain the diagonal index k. Hence, A(J̃k, k) is a vector with only non-positive entries,
and inverse monotony (2.23) induces

A(J̃k, J̃k)yk = A(J̃k, k) ≤ 0 =⇒ yk ≤ 0.

From (2.22b), we see that Lkk = 1/
√

Akk −A(J̃k, k)T yk > 0 and equation (2.22c)

Lk(J̃k) = −Lkkyk ≥ 0

completes the proof. �

48 2 SPAI and FSPAI

This property does not hold for SPAI, as the following counter-example shows. Consider
the M-matrix

A =


10 −1 −4
−1 10 −1 −4
−4 −1 10 −1 −4

−4 −1 10 −1
−4 −1 10

 .

For the (static) SPAI M with tridiagonal pattern, the numerical solution we obtain is

M =


0.0859 0.0056
0.0032 0.0859 −0.0028

0.0035 0.0741 0.0035
−0.0028 0.0859 0.0032

0.0056 0.0859

 ,

which has two negative entries, whereas the exact inverse may only have non-negative com-
ponents. However, the FSPAI L for the same pattern yields a completely non-negative
solution

L =


0.3178
0.0318 0.3178

0.0318 0.3178
0.0318 0.3178

0.0318 0.3162

 .

49

Chapter 3

Modified SPAI

In this chapter, we will combine some well-known preconditioning techniques to the Modified
Sparse Approximate Inverse (MSPAI). At first, we review the idea of probing, a rather
simple approach to generate explicit matrix approximations with respect to some additional
constraints such as preservation of the row sum. Another type of preconditioners with this
property builds the class of modified factorizations. The disadvantages are the restriction to
explicit factorizations on the one hand and the restriction to the vector of all ones (1, . . . , 1)T

as probing information on the other hand.

In order to overcome these restrictions, we generalize the SPAI-like Frobenius norm mini-
mization from the previous chapter in Section 3.3 by extending it to target form [57] and
then adding probing constraints. This modification then allows us to add an arbitrary num-
ber of arbitrary probing vectors to the preconditioner. By a weighting factor, we control how
strongly they are taken into account during the computation. Therefore, this MSPAI probing
can be regarded as both a generalization of the modified preconditioners and as a regulariza-
tion of the classic probing technique. Moreover, our MSPAI method is still embarrassingly
parallel, whereas parallelization is a quite demanding task for modified preconditioners in
general due to their sequential nature.

We present formulations for explicit and inverse approximations, as well as factorized and
unfactorized variants, and the application to Schur complements. The latter is of particular
interest, since Chan and Mathew [24] developed the probing technique especially for precon-
ditioning Schur complements which arise in domain decomposition methods. Furthermore,
the factorized variants allow us to add probing information to any given factorization and
presumably improve them.

Section 3.4 will then give answers to the question which probing vectors can or should be
chosen in order to get improvements. After that, we provide some theoretical results in
Section 3.5, namely an analytic solution for a special MSPAI setting which allows to state
a purely structural requirement for the probing vectors and the prescribed sparsity pattern.

The final section deals with the problem of symmetrizing given preconditioners. The ones
from Frobenius norm minimization are in general unsymmetric, so we need to symmetrize
them in order to be able to use iterative solvers for symmetric coefficient matrices. We state
both unfactorized and factorized methods addressing this task.

The whole chapter presents original research, and parts of it were published in [63].

50 3 Modified SPAI

3.1 Probing

The probing technique was introduced for preconditioning interface matrices in domain
decomposition methods (see Chan and Mathew [24], Axelsson [7], or more recently Siefert
and Sturler [88]). There, the interface matrix is a Schur complement S, whose condition
number needs to be improved. As a preconditioner for S one defines e.g. a band matrix
M that shows the right behavior on certain subspaces or probing vectors ej . This results
in Mej = Sej (j = 1, ..., k). As probing vectors one has to choose very special vectors, e.g.
e1 = (1, 0, 0, 1, 0, 0, 1, ...)T , e2 = (0, 1, 0, 0, 1, 0, 0, 1, ...)T , and e3 = (0, 0, 1, 0, 0, 1, ...)T , which
are collected in E = (e1, e2, e3). This choice results in simple equations for computing the
preconditioner M :

M · E =


m11 m12

m21 m22 m23

m32 m33 m34

.

 ·


1 0 0
0 1 0
0 0 1
1 0 0
...

...
...

 =


m11 m12 0
m21 m22 m23

m34 m32 m33

m44 m45 m43

...
...

...

 . (3.1)

From this equation one can read off the entries of M by comparison with the prescribed
vectors Mej = Sej such that

M · E != S · E.

Note that the resulting M will usually be unsymmetric and that the probing equation
Mej = Sej will not be satisfied in view of the band structure of M , e.g. the first component
in Se3 may be not zero. In the special case of only one probing vector and M being a
diagonal matrix, we get M = diag (Se).

Axelsson and Polman have improved this approach by introducing the method of action
[7], which leads to an spd preconditioner in some cases. The advantage of these methods
is that without explicit knowledge of the problem it is possible to obtain a preconditioner
that imitates the behavior of the original problem on certain subspaces. The disadvantages
are that one has to choose special probing vectors that lead to an easy-to-solve system for
M ; furthermore, it is difficult to ensure special properties such as symmetry or positive
definiteness.

3.2 Modified Incomplete Factorizations

The modified incomplete factorizations (see also Section 1.5.1) were introduced by Gustafs-
son [49] and by Axelsson [4] as an improvement of the ILU algorithm. In the ILU method,
the Gaussian elimination process is restricted to a certain sparsity pattern. Therefore, new
entries appearing on certain not allowed positions in U are deleted. The result is an approx-
imate factorization A = LU + R, where R contains the neglected entries. The aim of the
modified approach is again to imitate the action of the given matrix on a certain subspace.
In this case, the subspace is generated by the vector of all ones. In PDE examples, this
vector plays an important role in the sense that the discretized problem leads to a matrix
where A · (1, 1, ..., 1)T is zero up to the boundary conditions. Hence, this vector can be used
as an approximation of the subspace to small eigenvalues. If we force the preconditioner

3.3 Generalized Form of Frobenius Norm Minimization and Probing 51

to coincide with the given problem on this subspace, we expect to improve the condition
number of the preconditioned system.

In order to maintain the action of the preconditioner relative to the vector of all ones, we
try to preserve the row sum of the triangular factors in the ILU method. Therefore, in
the modified ILU (MILU) algorithm, we do not delete the entries on not-allowed positions.
Instead, we add them to the related main diagonal entry, thereby maintaining the row sum.
For PDE problems such as the 2D Laplacian this MILU improves the condition number
significantly [5]. As a disadvantage, this approach is restricted to the vector of all ones, and
the method is not very robust for more general problems.

3.3 Generalized Form of Frobenius Norm Minimization and
Probing

As we have seen in the previous sections, it is worthwhile to introduce a probing or modified
approach for more general problems. With this intention, we consider a SPAI-like Frobenius
norm minimization in the most general form. This new form allows the approximation of an
arbitrary rectangular matrix B, replacing the identity matrix I in SPAI form ‖AM − I‖F
(compare the target matrix SPAI form in [57]). Furthermore, we can replace the matrix A
by any rectangular matrix C. Here, B and C should be sparse matrices, but we also allow a
small number of dense rows in C and B. The matrix M , which we want to compute, has a
prescribed sparsity pattern (it is also possible to update the sparsity pattern dynamically, e.g.
by a SPAI-like approach, but we do not consider this dynamic method here). Technically,
this causes no difference in the implementation compared with the original SPAI algorithm.
Thus, for given matrices C,B ∈ Rm×n, we want to find a matrix M ∈ Rn×n by solving the
MSPAI minimization

min
M
‖CM −B‖2F . (3.2)

Analogously to SPAI-type algorithms, we solve the minimization (3.2) completely in parallel,
by still computing M column-wise. Another property inherited from SPAI is the ability to
prescribe an almost arbitrary sparsity pattern for M . Note that a meaningful pattern for M
should take into account the sparsity structure of C and of B as well. This new approach
also allows one to consider lower or upper triangular matrices for M , C, and B.

As the main advantage of this general formulation, we can add further conditions to a given
Frobenius norm minimization. This allows the inclusion of probing constraints in the general
computation of a preconditioner. Consider the given minimization problem

min
M
‖C0M −B0‖2F

e.g. with C0 = A and B0 = I for approximating A−1, or C0 = I and B0 = A for approx-
imating A. Then for any given set of probing vectors collected in the rectangular matrix
e ∈ Rn×k, we can add probing conditions minM ‖eT (C0M − B0)‖2 = minM ‖gT M − hT ‖2
with gT := eT C0 and hT := eT B0 in the form

min
M

∥∥∥∥(C0

ρgT

)
M −

(
B0

ρhT

)∥∥∥∥2

F

, 0 ≤ ρ ∈ R (3.3)

with a weight ρ. The number ρ determines whether to emphasize the original norm mini-
mization or to the additional probing condition. The k probing vectors, stored in e, are added

52 3 Modified SPAI

row-wise to the corresponding matrices C0 and B0 in form of the matrices g, h ∈ Rn×k. This
can be regarded as a generalization of a Frobenius norm approximation trying to improve
the preconditioner on a certain subspace given by e.

Likewise, this can be seen as a regularization technique for a general probing approach. In
standard probing, we are only able to consider probing vectors and sparsity patterns of M
that lead to easy-to-solve linear systems for computing the entries of M from the probing
conditions. In this new approach, we can choose any probing vectors e and sparsity patterns
of M that also lead to under- or overdetermined linear systems due to the embedding of the
probing method into the general matrix approximation setting.

In the given original problem minM ‖C0M − B0‖F , it is also possible to replace the Frobe-
nius norm by any other norm, e.g. by adding a weight matrix (as considered in [75])
minM ‖W (C0M −B0)‖F . By choosing the rectangular matrix

W :=
(

I
ρeT

)
(3.4)

as weight, we end up with the same generalized MSPAI norm minimization (3.3).

3.3.1 Sparse Approximate Inverses and Probing

As a first application, we use the method described above to add some probing information
to a SPAI, i.e. an unfactorized approximation of the inverse A−1 of a given matrix A ∈ Rn×n:
We choose C0 = A in (3.3), and the n-dimensional identity matrix I for B0. Here, h becomes
the given probing vector e, and accordingly g = eT A. With that, we obtain the MSPAI
Frobenius norm minimization

min
M

∥∥∥∥(A
ρeT A

)
M −

(
I

ρeT

)∥∥∥∥2

F

= min
M
‖W (AM − I)‖2F (3.5)

with weight matrix (3.4). The result of this method is an approximation M to the inverse
A−1, which satisfies

gT = eT A
M≈A−1

=⇒ gT M ≈ eT .

In many applications, the matrix A is not given explicitly but only via a sparse approximation
Ã. Nevertheless, we assume to be able to compute gT = eT A exactly. In this situation, we
modify the above minimization to

min
M

∥∥∥∥(Ã
ρeT A

)
M −

(
I

ρeT

)∥∥∥∥2

F

. (3.6)

Then probing is used to derive a sparse approximate inverse M for Ã ≈ A with respect
to the exact probing conditions eT AM = eT , where Ã is an approximation of the original
matrix A.

3.3.2 Explicit Approximation and Probing

With our approach, we can not only add constraints to the approximation of the inverse
A−1 of a given matrix, but also to explicit approximations of A. This can be used if A is

3.3 Generalized Form of Frobenius Norm Minimization and Probing 53

(almost) dense in order to get a sparse approximation on A. In contrast to the last section,
we set C0 = I and B0 = A with probing vector g = e. Consequently, we choose hT = eT A.
Altogether, this yields

min
M

∥∥∥∥(I
ρeT

)
M −

(
A

ρeT A

)∥∥∥∥2

F

= min
M
‖W (M −A)‖2F (3.7)

with the above weight matrix W (3.4). Now, we get a sparse approximation M of A which
also tries to reflect the properties of A on certain vectors:

hT = eT A ≈ eT M.

In many cases, A is again only given implicitly or (almost) dense, and we have to use a
sparse approximation Ã. This leads to the MSPAI problem

min
M

∥∥∥∥(I
ρeT

)
M −

(
Ã

ρeT A

)∥∥∥∥2

F

. (3.8)

Note that this explicit approach only makes sense if linear equations in M can be solved
easily, as the inverse of M has to be used for preconditioning.

3.3.3 Explicit Factorized Approximation and Probing

The MSPAI probing approach does not only allow one to improve unfactorized methods,
but also preconditioners which are computed in a factorized form such as ILU or incomplete
Cholesky. Here, we assume an already computed factored approximation A ≈ LU , e.g.
given by ILU or the Gauss-Seidel method. The aim is to improve the factors with respect to
the given probing conditions. Thereby, we keep one factor (L or U) fixed and recompute the
other factor. That means, we set in (3.3) B0 = A, C0 = L and for the probing constraints
gT = eT L, hT = eT A. In order to get an upper (respectively lower) triangular factor, we
restrict the pattern for M to upper (lower) triangular form. Altogether, we solve

min
Ũ

∥∥∥∥(L
ρeT L

)
Ũ −

(
A

ρeT A

)∥∥∥∥2

F

= min
Ũ

∥∥∥W (LŨ −A)
∥∥∥2

F
. (3.9)

Having computed this improved version Ũ of U , we consider A ≈ LŨ with Ũ fixed. We
obtain the ansatz for the improved lower triangular factor L̃ through transposition:

min
L̃

∥∥∥∥(ŨT

ρeT ŨT

)
L̃T −

(
AT

ρeT AT

)∥∥∥∥2

F

= min
L̃

∥∥∥W (ŨT L̃T −AT)
∥∥∥2

F
. (3.10)

The probing constraints have to be adapted as well to gT = eT Ũ and hT = eT AT . The
result of these probing steps are the improved factorizations

A ≈ LŨ , and A ≈ L̃Ũ .

Note that the initial factorization A ≈ LU can be produced by any preconditioning tech-
nique, which yields factorized approximations of A.

54 3 Modified SPAI

As an important special case, we have to deal with the problem that A may only be given
implicitly through an approximation Ã. We assume to be able to compute the exact values
for eT A and eT AT . Then we have to modify the minimization to the form

min
Ũ

∥∥∥∥(L
ρeT L

)
Ũ −

(
Ã

ρeT A

)∥∥∥∥2

F

, (3.11)

or

min
L̃

∥∥∥∥(ŨT

ρeT ŨT

)
L̃T −

(
ÃT

ρeT AT

)∥∥∥∥2

F

. (3.12)

3.3.4 Approximating a Factorization of A−1

In contrast to the section above, we start with a given sparse factorized approximation of
the inverse A−1 ≈ UL or UAL ≈ I. U and L may result from some algorithm like AINV or
FSPAI. Again, we add the probing conditions and substitute B = I, C = UA, gT = eT UA
and hT = eT in formula (3.3) from above. This gives the following MSPAI probing problem:

min
L̃

∥∥∥∥(UA
ρeT UA

)
L̃−

(
I

ρeT

)∥∥∥∥2

F

= min
L̃

∥∥∥W (UAL̃− I)
∥∥∥2

F
.

To ensure that L̃ has lower triangular sparsity pattern, we restrict the pattern to that form.
Again, the result is an enhanced new factor L̃. As in the explicit factorized case before,
we apply the same method once again to the transposed problem, in order to obtain an
improved Ũ :

min
Ũ

∥∥∥∥(LT AT

ρeT LT AT

)
ŨT −

(
I

ρeT

)∥∥∥∥2

F

= min
Ũ

∥∥∥W (LT AT ŨT − I)
∥∥∥2

F
.

For an implicitly given matrix A, we again have to use an approximation Ã and arrive at

min
L̃

∥∥∥∥(UÃ
ρeT UA

)
L̃−

(
I

ρeT

)∥∥∥∥2

F

.

3.3.5 Application to Schur Complements

The MSPAI probing approach is especially interesting for preconditioning Schur comple-
ments. Therefore, we consider the Frobenius norm minimization method more deeply. Given
a matrix

H =
(

A B
C D

)
,

we consider preconditioning the Schur complement SD = D − CA−1B. In a first step, we
need approximations of SD which avoid the explicit computation of this matrix. In order to
achieve this, we use different methods, e.g. factorized SPAI or SPAI for approximating A−1

by some M̃ and computing the sparse approximation S̃D = D−CM̃B, or using SPAI with
target matrix for a sparse approximation of A−1B by minM ‖AM −B‖F . This also leads
to a sparse approximation for the Schur complement. Based on S̃D we employ the probing

3.4 Probing Vectors 55

approach to define a sparse approximation on S̃D or S̃−1
D which is improved with respect to

a collection of probing vectors relative to the exact Schur complement.

A second approach can be derived by observing that the lower left block in the inverse of
matrix H is the inverse of the Schur complement SD:

H−1 =
(

S−1
A −A−1BS−1

D

−D−1CS−1
A S−1

D

)
.

Therefore, we modify the general probing approach (3.3) to

min
MB ,MD

∥∥∥∥∥∥
A B

C D
0 ρeT SD

 · (MB

MD

)
−

 0
I

ρeT

∥∥∥∥∥∥
2

F

. (3.13)

Then the computed MD gives an approximation to S−1
D , because the last columns of H−1

are approximated by MB and MD.

We formulate another method for computing MD based on the weight matrix W . By using
the equation

(
ρuT ρeT

)
·
(

A B
C D

)
·
(
−A−1BS−1

D

S−1
D

)
= −ρeT CA−1BS−1

D + ρeT DS−1
D = ρeT ,

with an additional vector u, we again arrive at the probing minimization

min
MB ,MD

∥∥∥∥(I
ρuT ρeT

)
·
[(

A B
C D

)
·
(

MB

MD

)
−
(

0
I

)]∥∥∥∥2

F

, (3.14)

with MD as approximate inverse for the Schur complement. Note that for uT = −eT CA−1

(3.13) and (3.14) are identical. Hence, problem (3.14) is more general, but in the following,
we will only consider (3.13).

Box 3.1 on page 56 gives a concise overview of the several MSPAI probing variants above.
The employment in numerical examples is presented in Chapter 5, whereas efficient imple-
mentation approaches take place in Chapter 4.

3.4 Probing Vectors

The actual choice of the probing vectors is crucial for the quality of the resulting precon-
ditioner. We have to carefully choose the subspaces, on which the preconditioner should
coincide with the action of the given matrix. This question is closely related to the origin
of the given problem, and further a priori knowledge may be helpful.

3.4.1 Standard Choices of Probing Vectors

As possible choices for the probing vectors, which are also used in the numerical examples
in Chapter 5, we present three different variants.

56 3 Modified SPAI

MSPAI Probing Variants

Basic formulation for general matrices C0, B0 ∈ Rn×n, probing vectors e ∈ Rn×k, and
weight ρ ≥ 0 in order to obtain MSPAI M ∈ Rn×n:

min
M

∥∥∥∥(C0

ρeT C0

)
M −

(
B0

ρeT B0

)∥∥∥∥2

F

=⇒ C0M ≈ B0

eT C0M ≈ eT B0
,

which is equivalent to minM ‖W (C0M −B0)‖2F with weight matrix W =
(

I
ρeT

)
.

Sparse Approximate Inverse Probing

min
M

∥∥∥∥(A
ρeT A

)
M −

(
I

ρeT

)∥∥∥∥2

F

=⇒ M ≈ A−1

eT AM ≈ eT .

If A is not given explicitly, set C0 = Ã, where Ã is some sparse approximation to A,
but still compute eT A exactly. For given approximate inverse factorization UAL ≈ I
or UL ≈ A−1:

min
L̃

∥∥∥∥(UA
ρeT UA

)
L̃−

(
I

ρeT

)∥∥∥∥2

F

=⇒ UAL̃ ≈ I

eT UAL̃ ≈ eT .

Obtain the corresponding probed upper triangular factor Ũ through transposition.

Explicit Probing

min
M

∥∥∥∥(I
ρeT

)
M −

(
A

ρeT A

)∥∥∥∥2

F

=⇒ M ≈ A
eT M ≈ eT A

.

Again, for implicitly given A substitute B0 by some sparse approximation Ã, but provide
eT A exactly. In case of given explicit factorization LU ≈ A:

min
Ũ

∥∥∥∥(L
ρeT L

)
Ũ −

(
A

ρeT A

)∥∥∥∥2

F

=⇒ LŨ ≈ A

eT LŨ ≈ eT A
.

Transposition yields probed lower triangular factor L̃.

Schur Complement Probing

MSPAI probing for block matrix H =
(

A B
C D

)
:

min
MB ,MD

∥∥∥∥∥∥
A B

C D
0 ρeT SD

(MB

MD

)
−

 0
I

ρeT

∥∥∥∥∥∥
2

F

=⇒ MD ≈ S−1
D

eT MD ≈ eT ,

where S−1
D denotes the lower right block of H−1.

Box 3.1: Employment of MSPAI probing for different applications, where A in general denotes the coeffi-
cient matrix in Ax = b and I the unity matrix with the respective dimension.

3.4 Probing Vectors 57

• KP0: For a given k we define

em(j) = 1 for j = m, k + m, 2k + m, ..., and m = 1, ..., k.

Then, we normalize the vectors em such that they are of length 1. For k = 1, this
leads to the probing vector e = (1, 1, ..., 1)T /

√
n, and for k = 2 to e = (e1, e2)/

√
n/2

with e1 = (1, 0, 1, 0, 1, 0, ...)T and e2 = (0, 1, 0, 1, 0, 1, ...)T . This choice is motivated by
PDE examples, by MILU, and by the usual probing vector approach.

• KP1: k vectors from a set of orthogonal basis vectors, e.g.√
2

n + 1

(
sin
(

πjm

(n + 1)

))
j=1,...,n

for m = 1, ..., k. (3.15)

This is motivated by the close relation between the Sine Transform and many examples
from PDE or image restoration. Similarly, for 2D problems we can define the Kronecker
product of these 1D vectors.

• KP2: Computing k eigenvector approximations relative to the largest and/or small-
est eigenvalues (or singular vectors). This is some kind of black box approach when
there is no a priori knowledge at hand. In this case, we have additional costs for
computing eigenvector approximations. In most cases, however, very rough and cheap
approximations are sufficient. Moreover, too exact approximations would make the
preconditioner act on only one eigenvalue. A rough approximation is partly “blurred”
and thus, acts not only on the one eigenvalue connected to it, but also on the eigen-
values located closely around. In the following, we choose eigenvectors to the smallest
eigenvalues only. This may be a bad choice for instance in image restoration problems,
as we have seen in Section 2.1.5. Here, we would need a preconditioner which acts
in an optimal way on the large eigenvalues, because the small ones are related to the
noise which corrupts the solution.

The weight ρ used in the probing Frobenius norm minimization is usually chosen ρ > 1.
In cases where it is well known that the standard probing approach works accurately, large
values for ρ lead to good preconditioners. So the choice of ρ indicates whether we consider the
given problem as a regularized least squares problem related to given probing vectors (large
ρ) or whether the minimization is used for a slight modification of a given preconditioner (ρ
close to 1).

Sometimes it is impossible to satisfy the probing condition sufficiently. For the unfactorized
or factorized approximate inverse approach, the probing vector e = (1, ..., 1)T leads to a
sparse vector gT = eT A, e.g. for the discretization of the Laplace operator or other elliptic
PDE problems. Therefore, for a sparse pattern of M , the vector gT M will be also sparse
and cannot be a good approximation to the given dense vector e. In such cases, the above
approach is only efficient for approximating A itself. For A−1 one has to choose ρ carefully.
Otherwise, a slight improvement in the probing condition by selecting a much larger ρ will
spoil the matrix approximation and result in a bad preconditioner. Section 3.5 will provide
a deeper insight into this effect.

3.4.2 Graph Based Identification of Probing Vectors

The original probing method by Chan an Mathew [24] computes banded approximations
which recover the largest entries in Schur complements without forming them explicitly.

58 3 Modified SPAI

These matrices arose from 1D interfaces in 2D non-overlapping domain decomposition meth-
ods. The key to the success of this banded approach lies in the special decay properties of
these matrices. The largest values are located on the main diagonal and on the inner
band, respectively. Thus, a banded approach clearly makes sense. However, there are
many more general cases such as Navier-Stokes or metal deformation problems, where a
simple band structure does not cover the largest values, which lie outside the band. For
this class of problems, Siefert and Sturler [88] proposed a graph based approach to both
determine a meaningful sparsity pattern and compute the adequate probing vectors. This
algorithm of structured probing for a matrix A ∈ Rn×n and an a priori chosen sparsity
pattern P ∈ {0, 1}n×n consists of five steps (see [88]):

1. Compute a graph G derived from P .

2. Color the graph G to obtain a mapping φ : {1, . . . , n} 7→ {1, . . . , p}, where p is the
number of colors. The color for vertex i is then given by φ(i).

3. Generate the matrix of probing vectors e ∈ {0, 1}n×p such that

eij =
{

1 if φ(i) = j,
0 otherwise.

4. Compute W = Ae.

5. Read off the entries of the approximation M by

mij =
{

Wi,φ(j) if pij = 1,
0 otherwise.

The choice of P requires some knowledge about A, but not too detailed. Helpful information
could be the structure of an underlying discretization mesh or just some indicators where
large matrix entries lie. Large matrix entries are often related to locality on some graph.
For the coloring of the graph related to the structure of P , Siefert and Sturler suggest, on
the one hand, considering the adjacency graph and perform a distance-2 coloring or, on the
other hand, using the column intersection graph in connection with a distance-1 coloring.
In general, the latter graph type entails more computational effort to color it. Hence, one
should use the adjacency graph. For the actual coloring, the authors present a few heuristics,
e.g. a simple greedy distance-2 coloring algorithm, a balanced variant thereof, and a more
elaborate prime divisor distance-2 coloring. The colored graph and the resulting mapping
φ allow then to read off the entries of W = Ae and put them into the correct positions
in M . The numerical results in [88] show a much better recovery of large off-inner-band
components than banded probing does. Hence, structured probing yields more accurate
approximations and provides valuable alternatives for probing vectors in MSPAI.

3.5 Theoretical Results for MSPAI

We present a theoretical result for MSPAI probing considering the case ρ→∞ in the explicit
factorized formulation. It establishes the basis for more general considerations in terms of
a suitable choice of probing vectors and prescribing meaningful sparsity patterns for the
preconditioner.

3.5 Theoretical Results for MSPAI 59

Theorem 3.1 Let

A =


2 −1

−1 2
. . .

. −1
−1 2


be a standard three-point stencil discretization of the 1D Laplacian with dimension n, and L
the lower triangular part of A. For the resulting bidiagonal upper triangular matrix U from
factorized explicit probing (3.9)

lim
ρ→∞

ρeT LU = eT A

holds for all probing vectors

e ∈ Rn×1 :

ej−1

ej

ej+1

 6∈ span


1

2
4

 for j = 2, . . . , n− 1 and (en−1, en) 6= (0, 0), (3.16)

i.e. LU satisfies the probing condition exactly.

Proof We explicitly compute the entries of U column-wise. The minimization problem
reads

min
U

∥∥∥∥(L
ρeT L

)
U −

(
A

ρeT A

)∥∥∥∥2

F

=

min
U

∥∥∥∥∥∥∥∥∥∥∥∥


2
−1 2

.
−1 2

ρeT L


(

u11 u12

.

)
−



2 −1

−1 2
. . .

. −1
−1 2

ρeT A



∥∥∥∥∥∥∥∥∥∥∥∥

2

F

=: min
U
‖HU −K‖2F .

The first column U1 of U consists only of u11, so we minimize ‖HU1 − k1‖22 with solution

u11 = hT
1 k1

‖h1‖22
= hT

1 h1

‖h1‖22
= 1. Therefore, eT LU1 = eT a1 with a1 being the first column of A.

For the columns j = 2, . . . , n− 1, we define

N := ‖HUj − kj‖22 = 〈HUj ,HUj〉 − 2 〈HUj , kj〉+ ‖kj‖22 . (3.17)

Using

Uj =



0
...

uj−1

uj

...
0


=⇒ LUj =



0
...

2uj−1

−uj−1 + 2uj

−uj

...
0


,

60 3 Modified SPAI

we obtain

ρeT LUj = ρ

(2ej−1 − ej︸ ︷︷ ︸
=:s1

)uj−1 + (2ej − ej+1︸ ︷︷ ︸
=:s2

)uj

 (3.18)

and thus

〈HUj ,HUj〉 = (5 + ρ2s2
1)u

2
j−1 + (5 + ρ2s2

2)u
2
j + (2ρ2s1s2 − 4)uj−1uj . (3.19)

In the next step, we define

gj := ρ(−ej−1 + 2ej − ej+1︸ ︷︷ ︸
=:ḡ

) =⇒ kj =



0
...
−1
2
−1
...
gj


and compute

〈HUj , kj〉 = (ρ2ḡs1 − 4)uj−1 + (ρ2ḡs2 + 5)uj . (3.20)

Inserting (3.19) and (3.20) into (3.17) yields

N = (5 + ρ2s2
1)u

2
j−1 + (5 + ρ2s2

2)u
2
j + (2ρ2s1s2 − 4)uj−1uj

+(8− 2ρ2ḡs1)uj−1 + (−10− 2ρ2ḡs2)uj + ‖kj‖22 .

In order to obtain the minimizers uj−1, uj , we consider the Jacobian of N :

∆N
!= 0 =⇒

(
10 + 2ρ2s2

1 2ρ2s1s2 − 4
2ρ2s1s2 − 4 10 + 2ρ2s2

2

)(
uj−1

uj

)
=
(

2ρ2ḡs1 − 8
10 + 2ρ2ḡs2

)
The determinants for the solution are∣∣∣∣ 10 + 2ρ2s2

1 2ρ2s1s2 − 4
2ρ2s1s2 − 4 10 + 2ρ2s2

2

∣∣∣∣ = 20ρ2(s2
1 + s2

2) + 16ρ2s1s2 + 84, (3.21)∣∣∣∣ 2ρ2ḡs1 − 8 2ρ2s1s2 − 4
10 + 2ρ2ḡs2 10 + 2ρ2s2

2

∣∣∣∣ = ρ2ḡ(20s1 + 8s2)− 16ρ2s2
2 − 20ρ2s1s2 − 40,∣∣∣∣ 10 + 2ρ2s2

1 2ρ2ḡs1 − 8
2ρ2s1s2 − 4 10 + 2ρ2ḡs2

∣∣∣∣ = ρ2ḡ(8s1 + 20s2) + 20ρ2s2
1 + 16ρ2s1s2 + 68.

Hence, we arrive at

uj−1 =
ρ2ḡ(5s1 + 2s2)− 4ρ2s2

2 − 5ρ2s1s2 − 10
5ρ2(s2

1 + s2
2) + 4ρ2s1s2 + 21

, (3.22a)

uj =
ρ2ḡ(2s1 + 5s2) + 5ρ2s2

1 + 4ρ2s1s2 + 17
5ρ2(s2

1 + s2
2) + 4ρ2s1s2 + 21

. (3.22b)

These values only exist if the Jacobian of N is nonsingular. For the analysis, we consider
the determinant (3.21) as a function of s1 and s2:

f(s1, s2) := 20ρ2(s2
1 + s2

2) + 16ρ2s1s2 + 84.

3.5 Theoretical Results for MSPAI 61

The Jacobian of f(s1, s2) is (
40ρ2 16ρ2

16ρ2 40ρ2

)
,

which is spd and hence nonsingular. Thus, f(s1, s2) has a unique minimum at (s1, s2) =
(0, 0) with f(0, 0) = 84. Therefore, the Jacobian of N never becomes singular. Nevertheless,
a problem occurs if (s1, s2) = (0, 0), because then, all the terms involving ρ vanish in (3.22).
This is the case for (see the Definitions (3.18) of s1 and s2)

s1 : ej = 2ej−1,

s2 : ej+1 = 2ej = 4ej−1,

i.e. if ej−1

ej

ej+1

 ∈ span


1

2
4

 .

In this case, eT L is zero at the indices j−1 and j. Hence eT LUj = 0, whereas eT aj = −1 for
probing vectors e of that subspace. Thus, the probing condition cannot be satisfied exactly
in the current column j, since it does not take probing information into account at all. The
structure of e and L annihilates the action of uj−1 and uj . The following computations are
carried out excluding this case.

Equations (3.22) allow us to determine the limits for ρ→∞:

ũj−1 := lim
ρ→∞

uj−1 =
ḡ(5s1 + 2s2)− 4s2

2 − 5s1s2

5(s2
1 + s2

2) + 4s1s2
, (3.23a)

ũj := lim
ρ→∞

uj =
ḡ(2s1 + 5s2) + 5s2

1 + 4s1s2

5(s2
1 + s2

2) + 4s1s2
. (3.23b)

We observe that Ũj = (0, . . . , ũj−1, ũj , . . . , 0)T satisfies the probing conditions exactly (for
(s1, s2) 6= (0, 0)):

eT LŨj = s1ũj−1 + s2ũj

=
(5(s2

1 + s2
2) + 4s1s2)ḡ

5(s2
1 + s2

2) + 4s1s2

= ḡ = −ej−1 + 2ej − ej+1 = eT aj .

For the last column Un, we get ḡ = −en−1 + 2en and(
s1

s2

)
=
(

2 −1
0 2

)(
ej−1

ej

)
,

i.e. (s1, s2) = (0, 0)⇐⇒ (ej−1, ej) = (0, 0). Thus, we can use equations (3.23) and conclude
eT LŨn = eT an, which completes the proof. �

The proof for Theorem 3.1 also provides deeper insight into the requirements for both the
probing vectors and the prescribed sparsity pattern. If they are not concerted, MSPAI
probing cannot satisfy the probing conditions in every column. In the proof, s1 and s2 must
satisfy (s1, s2) 6= (0, 0). This is a purely structural requirement, if we believe that involving
probing information in every column is useful for the preconditioner. We can even generalize
the result:

62 3 Modified SPAI

Theorem 3.2 Consider the general MSPAI probing ansatz

min
M

∥∥∥∥(C0

ρeT C0

)
M −

(
B0

ρeT B0

)∥∥∥∥2

F

with k probing vectors collected in the matrix e ∈ Rn×k. In the computation of the j-th
column mj of M , the error Ej :=

∥∥eT C0mj − eT B0(:, j)
∥∥

2
in the probing conditions can

only be reduced if and only if P (mj) satisfies

Pe ∩P (mj) 6= ∅, (3.24)

where

Pe :=
k⋃

j=1

P
(
e(:, j)T C0

)
. (3.25)

Furthermore, let J denote the indices j such that Pe∩P (mj) = ∅ and consequently define
B̂ = B0(:,J). Then, the overall error E :=

∥∥eT (C0M −B0)
∥∥

F
in the probing constraints

has a lower bound

E ≥
∥∥∥∥ 1√

k
eT B̂

∥∥∥∥
F

. (3.26)

We have E ≥ 0 if and only if J = ∅.

Proof The pattern condition (3.24) follows directly by the structural considerations in the
proof of Theorem 3.1. The condition (s1, s2) 6= (0, 0) is straightforward to extend to the
general case discussed here. The union Pe of the k column patterns in e and the prescribed
pattern of mj must coincide in at least one nonzero position. For the lower error bound
(3.26), we define M̂ = (:,J), I as the complementary set of J , and thus M̃ = M(:,I)
and B̃ = B0(:,I). Using the norm inequality ‖x‖22 ≥

1
k ‖x‖

2
F for x ∈ Rk, we immediately

get

E2 =
∥∥eT (C0M −B0)

∥∥2

F
=

n∑
j=1

∥∥eT (C0M(:, j)−B0(:, j)
∥∥2

2

≥ 1
k

n∑
j=1

∥∥eT (C0M(:, j)−B0(:, j)
∥∥2

F
=

1
k

∥∥eT (C0M −B0)
∥∥2

F

=
1
k

(∥∥∥eT (C0M̃ − B̃)
∥∥∥2

F
+
∥∥∥eT (C0M̂ − B̂)

∥∥∥2

F

)
≥

∥∥∥∥ 1√
k

eT B̂

∥∥∥∥2

F

.

�

Theorem 3.2 gives explanations to many effects. For instance, the explicit unfactorized
MSPAI probing for the probing vector e = 1/

√
n(1, . . . , 1)T is always well-posed as far as

satisfying the probing conditions is concerned. eT C0 = eT I is always a full vector, and
hence, the intersection Pe ∩P (mj) (j = 1, . . . , n) never results in the empty set for any
arbitrary non-empty pattern of M .

Also, the problems we faced in the proof of Theorem 3.1 with special probing vectors of type
(3.16) are caused by the violation of (3.24). E.g. adding a third entry uj−2 in the pattern

3.5 Theoretical Results for MSPAI 63

of Uj would yield a simple remedy and probing information of type (3.16) could be fulfilled
in every column. Furthermore, the error E has then lower bound 0 according to (3.26).

The situation changes for inverse probing. If |Pe| is small and the prescribed pattern for M
is very sparse, the pattern condition (3.24) is quite likely to be violated. The only ways out
are different choices of probing vectors or a more carefully determined P (M). The following
example demonstrates the deterioration in the probing constraints. Note that we only regard
the accuracy in probing constraints here, and not how this affects the preconditioning effect
of M .

0 5 10 15 20 25 30 35
−0.05

0

0.05

0.1

0.15

0.2

column

| e
T
 A

 m
j −

 e
j |

(a) ρ = 0.

0 5 10 15 20 25 30 35
−0.05

0

0.05

0.1

0.15

0.2

column

| e
T
 A

 m
j −

 e
j |

(b) ρ = 25.

0 5 10 15 20 25 30 35
−0.05

0

0.05

0.1

0.15

0.2

column

| e
T
 A

 m
j −

 e
j |

(c) ρ = 50.

0 5 10 15 20 25 30 35
−0.05

0

0.05

0.1

0.15

0.2

column

| e
T
 A

 m
j −

 e
j |

(d) ρ = 100.

Figure 3.1: Componentwise errors
˛̨
eT Amj − ej

˛̨
(blue “x”s) for columns j = 1, . . . , 36. Red circles mark

the columns where P
`
eT A

´
∩P (mj) = ∅.

Example 3.1 We apply unfactorized inverse probing (3.7) with e = 1
6 (1, . . . , 1)T to the

standard five-point stencil discretization of the 2D Laplacian with dimension n = 36,
P (M) = P (A), and analyze the componentwise error

∣∣eT Amj − ej

∣∣ (j = 1, . . . , 36) in
the probing constraints. In Figure 3.1, we depict these error components for different prob-
ing weights ρ ∈ {0, 25, 50, 100}. Since eT A has 16 zero values, condition (3.24) is violated for
the indices J = {15, 16, 21, 22}. Hence, the error in these components remains untouched,
whereas the error is reduced and nearly annihilated in the other columns. In Figure 3.2, we
see that the predicted value for the lower error bound is 0.3333, which is nearly achieved with

64 3 Modified SPAI

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ρ

||
eT

 A
M

 −
 e

T
 ||

F

E

Figure 3.2: The errors in the constraints tend to the predicted lower bound E as ρ gets larger.

the numerical value 0.3355 for ρ = 100, i.e. for the indices j 6∈J , the probing constraints
are satisfied exactly as ρ→∞.

Remark 3.1 The pattern conditions here only give requirements for the choice of probing
vectors and for the pattern of M if we want to assure that probing conditions are taken
into account in every column of M . They do not imply whether this is meaningful for the
actual problem, i.e. if the fulfillment of the probing conditions improves the preconditioner
and leads to a lower condition number. Especially in the inverse probing case, this can spoil
the preconditioner completely. This can be seen by the tridiagonal 1D Laplacian in Theorem
3.1. If additional entries in the pattern of U would be introduced, probing constraints could
be satisfied in every column. However, this would also make the “main” approximation
minU ‖LU −A‖F less accurate.

3.6 Symmetrization Techniques

For the SPAI algorithm as well as the generalized problem (3.2), the solution matrices M are
usually nonsymmetric. Nevertheless, for (positive definite) symmetric matrices A we would
like to have a (positive definite) symmetric preconditioner such that it is still possible to
use e.g. the preconditioned conjugate gradient method (pcg). Otherwise, one has to rely on
iterative methods for nonsymmetric problems, such as BiCGSTAB or GMRES which have
higher computational costs. To overcome this problem, we present three symmetrization
techniques for preconditioners, e.g. for M of the previous sections. The first approach is
based on MSPAI Frobenius norm minimization. In the second method, we combine two
iteration steps writing the resulting iteration as one step with a symmetric preconditioner.
Based on that approach, we can derive a special type of unfactorized symmetrization for spd
matrices. Finally, we also provide techniques for resymmetrizing factorized approximations.

3.6 Symmetrization Techniques 65

3.6.1 Unfactorized Symmetrization by Frobenius Norm Minimization

First, we consider M derived by the MSPAI minimization relative to symmetric matrices
C0 and B0, and a set of general probing vectors collected in e. We want to derive a sym-
metrization of M with a similar sparsity pattern. We start with the trivial symmetrization

M̄ := M + MT .

We can improve this matrix by returning to the initial minimization problem allowing ad-
ditional changes on the main diagonal entries. Hence we define

M̂ := α
(
M + MT

)
+ D = αM̄ + D (3.27)

with a scaling factor α ∈ R and a diagonal correction D ∈ Rn×n. Obviously, M̂ is symmetric
by construction. We determine α and D in two steps. In order to find an optimal value for
α, we insert αM̄ into the basic problem (3.3):

min
α

∥∥∥∥∥∥∥∥∥
(

C0

ρgT

)
︸ ︷︷ ︸

=:C

αM̄ −
(

B0

ρhT

)
︸ ︷︷ ︸

=:B

∥∥∥∥∥∥∥∥∥
2

F

= min
α

∥∥αCM̄ −B
∥∥2

F
. (3.28)

For the analytic solution, we consider the inner product (denoted as 〈., .〉F), which, for
general A and B, is defined by the Frobenius norm:

〈A,B〉F = ‖AB‖2F = tr
(
AT B

)
. (3.29)

In these minimizations, the trace of the product of two matrices can be evaluated by sparse
dot products and only a few possibly dense dot products:

tr (AB) =
N∑

j=1

aT
j bj (3.30)

with the j-th row aj of A and bj the j-th column of the matrix B.

With formula (3.29), we can solve (3.28) for α, using standard properties of the inner
product: ∥∥αCM̄ −B

∥∥2

F
=

〈
αCM̄ −B,αCM̄ −B

〉
F

= α2
〈
CM̄, CM̄

〉
F
− 2α

〈
CM̄, B

〉
F

+ 〈B,B〉F .

The derivative of the last term with respect to α leads to the solution, namely the optimal
α which minimizes the Frobenius norm in (3.28):

2α
〈
CM̄, CM̄

〉
F
− 2

〈
CM̄, B

〉
F

!= 0

⇐⇒ α =

〈
CM̄, B

〉
F〈

CM̄, CM̄
〉

F

=
tr
((

CM̄
)T

B
)

∥∥CM̄
∥∥2

F

.

Note that α is quite cheap to compute, because all occuring matrices are sparse (possibly
up to a few full rows in C and B). Furthermore, for spd A in our examples with C0 = A,

66 3 Modified SPAI

B0 = I or vice versa, α will always be positive. Often (not very surprisingly) it will be near
1
2 .

The second summand of the symmetrized M̂ is the diagonal correction D with diagonal
entries dk (k = 1, . . . , n). The computation of each dk is similar to the computation of the α
above, resp. to the standard SPAI approach. So we present only the ansatz and the result.
We insert the whole expression for M̂ with known optimal α into (3.2). With the substitute
matrices C and B from above, we get:

min
D

∥∥C (αM̄ + D
)
−B

∥∥2

F
= min

D

∥∥∥∥∥∥∥CD −
(
B − αCM̄

)︸ ︷︷ ︸
=:F

∥∥∥∥∥∥∥
2

F

= min
D

n∑
k=1

‖Cdk − fk‖22

By exploiting the representation of the Frobenius norm as a sum of Euclidean norms, each
summand represents a least squares problem for exactly one dk. For every k ∈ {1, . . . , n}
we have a dot product representation, which can be derived with respect to dk. We obtain

dk =
cT
k fk

‖ck‖22
,

with ck being the k-th column of C and fk the k-th column of F . CM̄ has already been
computed when determining α, so the computation of K and subsequently of D does not
lead to exceeding computational efforts compared to the whole MSPAI process.

Note that these computations are fast because of the sparsity of the underlying matrices and
the low rank of the possibly dense submatrices g and h. But in general, this symmetrization
technique does not necessarily yield a positive definite preconditioner.

3.6.2 Symmetrization by Combining two Basic Iteration Steps

A second approach for a symmetrization of M considers two basic iterative steps: one with
preconditioner M , the second one with MT . Here, we consider M as approximation of
the inverse of A, so the first step is related to the iteration matrix I − AM , the second to
I −AMT . The two consecutive steps are described by the iteration matrix

(I −AMT) · (I −AM) = I −AMT −AM + AMT AM

= I −A(M̄ −MT AM).

Hence, the resulting symmetric preconditioner is given by M̄−MT AM . To add an additional
degree of freedom, we consider the damped iteration with preconditioner αM . This leads to

(I − αAMT) · (I − αAM) = I − αAMT − αAM + α2AMT AM

= I − αA(M̄ − αMT AM)

and the symmetrized preconditioner

M̂α := M̄ − αMT AM. (3.31)

3.6 Symmetrization Techniques 67

This preconditioner is denser than M , but may lead to a reduction of the error comparable
with two steps based on αM . To be sure that the two iteration steps lead to an improved
approximate solution, we need ‖I − αAM‖ < 1.

Theorem 3.3 Let us assume that λ(AM) > 0 holds for all eigenvalues of AM . Then for

0 ≤ α <
2

λmax(AM)
,

we get ‖I − αAM‖ < 1 in the spectral norm. The optimal α, which leads to a minimum
norm of I − αAM , is given by

α =
2

λmax(AM) + λmin(AM)

with

‖I − αAM‖ ≈
∣∣∣∣λmax(AM)− λmin(AM)
λmax(AM) + λmin(AM)

∣∣∣∣ < 1.

Proof In order to get the minimal condition number, we have to determine the optimal α
such that the maximum values of

1− αλmin(AM) and 1− αλmax(AM)

are minimized. This is fulfilled for α satisfying

1− αλmin(AM) = − (1− αλmax(AM)) .

Therefore, we compute for the optimal α:

α =
2

λmin(AM) + λmax(AM)
<

2
λmax(AM)

.

Furthermore, for this α holds

‖I − αAM‖ ≤ λmax(AM)− λmin(AM)
λmax(AM) + λmin(AM)

.

�

Remark 3.2 To derive this optimal α, one needs approximations for the extreme eigenval-
ues of AM . In most cases, quite rough approximations are sufficient.

This symmetrization with M̄ and M̂α does not include an additional probing condition.
Fortunately, we can show that this symmetrization process preserves the probing property
for slightly modified preconditioners:

Theorem 3.4 Assume that M is a preconditioner that satisfies the probing condition eT AM =
eT exactly. For M̃ := M + MT − αMAMT with α < 2 (e.g. α = 0 and M̄) the Rayleigh
quotient for vector Ae is given by

(eT A)M̃(Ae) = (2− α)(eT A)A−1(Ae) = (2− α)(eT A)M(Ae) ,

and therefore the range of values of the preconditioned matrix with M̃ is nearly unchanged
relative to the probing space.

68 3 Modified SPAI

Proof The following holds:

(eT A)M̃(Ae) = (eT A)(M + MT − αMAMT)(Ae)
= eT Ae + eT Ae− αeT Ae = (2− α)eT Ae ,

(2− α)eT Ae = (2− α)(eT A)A−1(Ae) ,

(2− α)eT Ae = (2− α)(eT AM)Ae = (2− α)(eT A)M(Ae) .

�

Remark 3.3 For α = 1, M̃ satisfies the probing condition exactly:

eT AM̃ = eT A(M + MT − αMAMT) = eT + eT AMT − αeT AMT = eT .

3.6.3 SPAI Acceleration

Until now we have only derived symmetric preconditioners, but often for spd A, we need an
spd preconditioner. So now we consider only spd matrices A. If M̄ is symmetric indefinite,
the above methods will not lead to an spd preconditioner. So let us assume that M̄ =
M +MT is positive definite. If this is not true, we could replace M̄ by M̄ +βI with small β.
Note that for a good approximation M , M̄ should be nearly positive definite, and therefore
we expect to find such a small β > 0 .

Proposition 3.1 Let A and M̄ be symmetric positive definite. Then M̂α = M̄ −αMT AM
will also be positive definite as long as α < λmin(M̄, MT AM), the minimum eigenvalue of
the generalized positive definite eigenvalue problem M̄ = λMT AM .

Remark 3.4 Therefore, we have to choose α such that it satisfies the inequalities

α ≤ min
{

2
λmax(AM) + λmin(AM)

, λmin(M̄, MT AM)
}

=: αopt.

We can derive a deeper analysis by considering the preconditioner M̄ −αM̄AM̄/4, which is
the result of applying the above symmetrizing construction on M̄/2.

Theorem 3.5 (SPAI Acceleration) Let A and M̄ be spd. Then, for M̄ −αM̄AM̄/4, the
optimal α is given by

2
λmax(AM̄/2) + λmin(AM̄/2)

.

With this choice we get a new improved condition number of the preconditioned system. The
condition is improved by a factor

λ + 2µ

4λ
≈ 1

4
.

Proof The minimum eigenvalue of the preconditioned system is given by 2λµ
λ+µ and the

maximum eigenvalue by λ(λ+2µ)
2(λ+µ) with λ and µ the maximum, resp. minimum eigenvalues of

M̄A/2. �

The acceleration part of the name refers to the improvement of the overall condition number
by a factor of 1

4 . Note that we can also sparsify M̄ − αMT AM carefully in order to avoid
a preconditioner that would be too dense. Furthermore, we can sometimes save costs in

3.6 Symmetrization Techniques 69

computing M̂α or AM̂α. In SPAI for example, we have already computed R = I −AM and
we may now use this information, e.g. in the form

M + MT − αMT AM = M + MT (I − αAM) = M + MT (1− α + αR) .

In case we want to symmetrize a preconditioner M that is an approximation of A itself, we
can apply the same method on M−1 and get

M−1 + M−T − αM−T AM−1 (3.32)

as a symmetric approximation for A. When M is the upper or lower triangular part of
A — the Gauss-Seidel-preconditioner — this symmetrization approach is closely related to
SSOR-type preconditioners. Hence, we can find efficient implementations similar to the
Eisenstat trick [39].

In general, we can apply this symmetrizing method if AM has only positive eigenvalues,
and for spd A we derive an spd preconditioner if M̄ is spd. The effectiveness of these
symmetrization techniques emerges in the following examples.

Example 3.2 For the case of explicit approximations of A, we choose an A := LLT , where
L comes from an IC(0) factorization of the 5 point discretization of the 2D Laplacian,
and therefore is of block tridiagonal structure. This example is completely artificial and

Table 3.1: Condition numbers for no preconditioning I, unsymmetrized preconditioner M , M̄ , M̂ and M̂α

employed as explicit approximative preconditioners AM−1.

n I M M̄ M̂ M̂α

100 12.061 8.288 8.255 8.155 2.604
400 13.849 7.085 7.055 7.017 2.302
1600 14.436 5.759 5.759 5.759 1.984

its only purpose is to demonstrate the result of a symmetrization step. We probe it with
e = 1/

√
n(1, . . . , 1)T and ρ = 20 with a tridiagonal prescribed sparsity pattern and obtain

a preconditioner M . This M is then symmetrized both to M̂ using the αM̄ + D approach
(3.27) and to M̂α from (3.31). As shown in Table 3.1, this ansatz yields symmetric precondi-
tioners with nearly unchanged condition numbers, which can then be employed in iterative
solvers for spd matrices, e.g. the pcg method. Furthermore, in this example M̂α leads to a
condition number improved by nearly a factor 1

4 — as expected. Note that, in the explicit
approximation, we use M−1 in the symmetrization via M̂α (3.32). In all examples, the
simple and cheap symmetrization (M + MT)/2 is sufficient to obtain a symmetric precon-
ditioner of the same quality as the original nonsymmetric M . Hence, the computation of
optimal α and D in M̂ is often unnecessary. For the symmetrization of an approximate

Table 3.2: Condition numbers for no preconditioning I, unsymmetrized preconditioner M , M̄ , M̂ and M̂α

employed as approximative inverse preconditioners AM .

n I M M̄ M̂ M̂α

100 48.374 8.448 8.459 8.463 2.638
400 178.064 30.706 30.713 30.720 8.194
1600 680.617 117.031 117.035 117.050 29.773

inverse preconditioner, we compute M by SPAI applied to the 2D Laplacian with the static

70 3 Modified SPAI

pattern of A2. The condition numbers of the symmetrized versions are shown in Table 3.2.
Note that in this second example, we do not apply probing. We only want to display the
symmetrization aspect. Again, the cheap symmetrization M̄ is sufficient, and M̂α leads to
a condition number which is reduced by a factor of nearly 1

4 .

3.6.4 Symmetrization for Factorized Approximations

If the given matrix A is symmetric positive definite, we can generate a symmetric factoriza-
tion based on e.g. incomplete Cholesky or FSPAI, resulting in a triangular matrix L such
that A ≈ LLT or LT AL ≈ I. Then, the methods of the previous two sections enable us to
add probing conditions and replace LT by another factor Ũ := L̃T for fixed L . But then
we lose symmetry, because of the two different factors L and Ũ for the preconditioner LŨ .
To regain symmetry, we set

Lα := Lα(L, L̃) := L + α(L̃− L), α ∈ [0, 1], (3.33)

as a convex combination of both factors. An optimal α can be computed by inserting Lα

into the original MSPAI minimization problem

min
α
‖W (LαLT

α −A)‖F , (3.34)

or
min

α
‖W (LT

αALα − I)‖F (3.35)

in the approximative inverse case. This leads to a polynomial of degree 4 in α of the form∥∥WR + αWH + α2WK
∥∥2

F
= tr

(
RWT WR

)
+ 2αtr

(
HWT WR

)
+

+ α2tr
(
HWT WH + 2KWT WR

)
+

+ 2α3tr
(
KWT WH

)
+ α4tr

(
KWT WK

)
. (3.36)

For (3.34) the matrices H, K, and R are given by

R := LLT −A , K := (L̃− L)(L̃− L)T , H := (L̃− L)LT + L(L̃− L)T , (3.37)

and for (3.35) by

R := LT AL− I , K := (L̃− L)T A(L̃− L) , H := (L̃− L)T AL + LT A(L̃− L) . (3.38)

We compute the minima of these polynomials and choose the solution with minimum norm
for α. Therefore we only have to compute the trace of products of sparse matrices. Note
that if in Lα both L and L̃ satisfy the probing condition, then also Lα satisfies the probing
condition.

The substitute matrix K contains the difference L̃ − L in second order. This difference is
supposed to be quite small by construction. So, we can simplify (3.36) by dropping the
coefficients which contain K. The result is a polynomial in α of second order:∥∥WR + αWH + α2WK

∥∥2

F
≈ tr

(
RWT WR

)
+ 2αtr

(
HWT WR

)
+

+α2tr
(
HWT WH

)
. (3.39)

3.6 Symmetrization Techniques 71

Equation (3.39) has one unique minimum, which can be computed directly by using the
derivative with respect to α and evaluating one trace and one Frobenius norm. Due to the
structure of W , the evaluation of the traces is quite cheap. For instance, tr

(
HWT WR

)
can

be computed exploiting WT W = I + ρ2eeT and properties of the trace:

tr
(
HWT WR

)
= tr

(
HR + ρ2HeeT R

)
= tr (HR) + ρ2tr

(
(eT R)(He)

)
.

We compute both summands using (3.30) without evaluating the matrix-matrix products.

Note that it is not advisable to add an additional diagonal correction in Lα, because this
would result in the minimization of a function of degree 4 in the diagonal entries d1, ..., dn.
However, it is possible to add a diagonal correction by neglecting the probing part and
choosing the diagonal correction only with respect to the matrix approximation problem in
order to generate all ones on the main diagonal positions. So after having computed Lα as
above, we can choose a diagonal matrix D by

diag
(
DLT

αALαD
)

= (1, . . . , 1) (3.40)

and replace Lα by LD := LαD.

For an unknown matrix A, we again have to replace the weight matrix W and consider the
minimization problem

min
α

∥∥∥∥(LαLT
α − Ã

ρeT LαLT
α − eT A

)∥∥∥∥2

F

or min
α

∥∥∥∥(LT
αÃLα − I

ρeT LT
αALα − eT

)∥∥∥∥2

F

in order to determine the optimal value for α.

Altogether, let us assume that starting with a factor L, we have generated an approximation
Ũ by probing. With fixed Ũ we can compute a new factor L̃ by the transposed minimization.
Then, we have the following choices for symmetrizing one or two approximate factors:

• take factors Ũ and ŨT , e.g. A ≈ ŨT Ũ or ŨAŨT ≈ I,

• take the symmetrization relative to L and Ũ , either by exact minimization based on
the polynomial of degree 4, denoted by Lα,4(L, ŨT), or by approximate minimization
denoted by Lα,2(L, ŨT),

• use L̃ and L̃T as factorization,

• use Lα,m(L̃, ŨT) with exact (m = 4) or approximate (m = 2) minimization.

Box 3.2 on page 73 summarizes the symmetrization approaches of this chapter. Further
numerical examples employing these methods can be found in Chapter 5.

Example 3.3 The MSPAI symmetrization techniques described in the previous section
yield factorized preconditioners, where symmetry is regained. The following examples
demonstrate that symmetrization does not worsen the condition number of the system.
As an example, we take again a 2D Laplacian for different dimensions n. Then we compute
an incomplete Cholesky factor for the explicit case and a static FSPAI with the pattern of A
for inverse preconditioning. Then we apply probing and use the different symmetrization ap-
proaches in order to have a preconditioner which we can use for iterative solvers for symmet-
ric problems. For the explicit approximation, we choose ρ = 50 and e = 1/

√
n ·(1, . . . , 1)T as

probing parameters and combine the incomplete Cholesky factor with the one obtained from

72 3 Modified SPAI

Table 3.3: Condition numbers for no preconditioning I, L from IC(0), Ũ by probing L, Ũ employed together

with L, for Lα = L+α(ŨT −L) with approximated and exact polynomial as explicit factorized
preconditioners.

n I L L, Ũ Lα,2(L, ŨT) Lα,4(L, ŨT)
100 48.374 5.120 3.462 3.177 3.050
400 178.064 16.593 7.650 8.716 7.899
1600 680.617 61.020 41.922 38.475 39.045

Table 3.4: Condition numbers for no preconditioning I, FSPAI L, probed FSPAI L̃ employed together with

L, for Lα = L + α(L̃− L) as inverse approximative preconditioners.

n I LT AL LT AL̃ LT
α,4ALα,4

100 48.374 13.827 13.729 13.722
400 178.064 50.223 50.862 50.400
1600 680.617 191.529 194.574 192.433

probing. To do so, we apply convex symmetrization (3.33) using the exact and the approxi-
mative polynomials. Table 3.3 shows that the condition numbers are preserved throughout
symmetrizing. To save costs, we should use only one step of probing and possibly one
additional step of approximate minimization Lα,2.

For the inverse case with FSPAI, we set ρ = 7 and use the eigenvector which corresponds
to the smallest eigenvalue as probing vector. Because even quite rough approximations are
sufficient here, the computation time for this probing vector is acceptable. The resulting
condition numbers are shown in Table 3.4.

3.6 Symmetrization Techniques 73

Symmetrization Techniques

Unfactorized Symmetrization

By Frobenius Norm Minimization

Compute

M̂ = α(M + MT) + D = αM̄ + D, α ∈ R, D diagonal matrix,

via
min

α

∥∥αC0M̄ −B0

∥∥2

F
and min

D

∥∥C0(αM̄ + D)−B0

∥∥2

F
.

Combination of Two Basic Iteration Steps

The formulation for M ≈ A−1 with M̄ = M + MT is

M̂α = M̄ − αMT AM with αopt =
2

λmax(AM) + λmin(AM)
,

where λmin, λmax denote approximations to the extreme eigenvalues of AM . For M ≈ A,
apply this method to M−1.

SPAI Acceleration

For M ≈ A−1 and spd M̄ = M + MT compute

M̂A = M̄−α

4
M̄AM̄ with αopt = min

{
2

λmax(AM) + λmin(AM)
, λmin(M̄, MT AM)

}
.

The condition is improved by a factor ≈ 1
4 . For A ≈M , see (3.32).

Factorized Symmetrization

Combine the original lower triangular matrix L and probed lower triangular matrix L̃
to

Lα = Lα(L, L̃) = L + α(L̃− L).

For the optimal symmetrization parameter α, minimize either the exact polynomial

α4tr
(
KWT WK

)
+ 2α3tr

(
KWT WH

)
+ α2tr

(
HWT WH + 2KWT WR

)
+2αtr

(
HWT WR

)
+ tr

(
RWT WR

)
,

or its simplified version

α2tr
(
HWT WH

)
+ 2αtr

(
HWT WR

)
+ tr

(
RWT WR

)
,

using the substitute matrices K, W, H,R from (3.37) in the explicit approximation case,
and (3.38) in the inverse setting.

Box 3.2: Overview of the symmetrization techniques developed in this chapter.

74 3 Modified SPAI

75

Chapter 4

Efficient Implementation

The previous chapters were devoted to the theoretical development and presentation of
preconditioners which are all based on Frobenius norm minimizations. Now, we will focus
on the efficient computation of these preconditioners, both serial and in parallel computing
environments. We have already seen that the computation of one column of a SPAI or
MSPAI finally reduces to the solution of a least squares (LS) problem. In principle, SPAI
and the MSPAI variants lead to the same type. Therefore, we restrict ourselves to the SPAI
case.

At first, we address the efficient solution of LS problems, taking into account the special
structures which arise in the computation of sparse approximate inverse preconditioners.
We will refer to these LS problems as SPAI-type LS problems. It is well-known that QR
updates can significantly accelerate the computation of SPAI with many pattern updates.
We will combine this approach with certain sparse solution techniques. Furthermore, we
will investigate the use of float QR implementations, i.e. the QR decomposition is carried
out in single precision arithmetic and then improved by iterative refinement steps. This was
joint work with Andreas Roy [82].

The second part of this chapter will present an improvement for computing the SPAI of
structured matrices for structured sparsity patterns. By caching, we avoid the redundant
computation of identical LS solutions and hence, reduce the overall runtime significantly.
The topic of Section 4.3 will be the effect on the runtimes in parallel environments if we
provide a maximum sparsity pattern as it was discussed theoretically in Section 2.1.3.

The parallel implementation in C++ is a result of joint work with Matous Sedlacek [86, 87].
Insightful comments and ideas by Tobias Weinzierl enhanced the performance significantly.
The comparison of our MSPAI 1.0 implementation and the current standard implementa-
tion SPAI 3.2 [91] in terms of functionality and runtimes will conclude this chapter. All
parallel tests were performed on the InfiniCluster [66] at the chair for “Rechnertechnik und
Rechnerorganisation/Parallelrechnerarchitektur” at Technische Universität München. The
InfiniCluster consists of 32 nodes. Each node has four AMD Opteron 850 processors at 2.4
GHz with 8 GB of main memory. For the communication, the nodes are equipped with two
Gigabit Ethernet ports and with a MT23108 InfiniBand Host Channel Adapter card.

4.1 Solution of SPAI-type Least Squares Problems

In Chapter 2, we have already seen that the computation of a sparse approximate inverse M
of a given matrix A ∈ Rn×n using Frobenius norm minimization results in the independent

76 4 Efficient Implementation

computation of each column mk (k = 1, . . . , n), see equation (2.3). The actual entries of mk

are then the result of the solution of an LS problem

min
m̂k

∥∥∥Âm̂k − êk

∥∥∥2

2
. (4.1)

Â, m̂k, and êk are the reduced forms of the matrix A, the k-th column mk of M , and the
k-th unit vector ek. Hereby, the prescribed sparsity pattern of mk defines the set of nonzero
entries J = P (mk), and I is the set of nonzero rows in A(:,J) according to (2.5).
Moreover, we have already defined p = |I | and q = |J |, and therefore Â = A(I ,J) ∈
Rp×q, m̂k = mk(J) ∈ Rq, and êk = ek(I) ∈ Rp. We can carry over this approach in a
straightforward way to the more general case of MSPAI probing. In Section 3.3, we stated
the general form of MSPAI probing with f probing vectors collected in e ∈ Rn×f as

min
M

∥∥∥∥(C0

ρeT C0

)
M −

(
B0

ρeT B0

)∥∥∥∥2

F

= min
M
‖CM −B‖2F .

With the substitute matrices C,B ∈ R(n+f)×n, we obtain the LS problem for one column
mk

min
mk

∥∥∥Ĉm̂k − b̂k

∥∥∥2

2
, k = 1, . . . , n.

Again, Ĉ, m̂k, and b̂k are the reduced forms of C, mk, and bk according to the sparsity
pattern prescribed for mk. Hence, it is sufficient to discuss the solution methods for one
case, because all MSPAI variants lead to the same type of minimization problem in the end.
For convenience, we choose the classic SPAI formulation (4.1).

Björck [17] characterizes the solutions of a general linear LS problem

min
x
‖Ax− b‖2 , A ∈ Rm×n, b ∈ Rm, x ∈ Rn (4.2)

by the following theorem.

Theorem 4.1 (Theorem 1.1.2 in [17]) Denote the set of all solutions to (4.2) by

S := {x ∈ Rn : ‖Ax− b‖2 = min}.

Then x ∈ S if and only if the following orthogonality condition holds:

AT (b−Ax) = 0. (4.3)

Proof Assume that x̂ satisfies AT r̂ = 0, where r̂ = b − Ax̂. Then for any x ∈ Rn we have
r = b−Ax = r̂ + A(x̂− x) ≡ r̂ + Ae. Squaring this we obtain

rT r = (r̂ + Ae)T (r̂ + Ae) = r̂T r̂ + ‖Ae‖22 ,

which is minimized when x = x̂. On the other hand suppose AT r̂ = z 6= 0, and take
x = x̂ + εz. Then r = r̂ − εAz, and

rT r = r̂T r̂ − 2εzT z + ε2(Az)T Az < r̂T r̂

for sufficiently small ε. Hence x̂ is not a least squares solution. �

4.1 Solution of SPAI-type Least Squares Problems 77

For our purposes, equation (4.3) implies that we can obtain the LS solution m̂k through
solving the corresponding normal equation

ÂT Âm̂k = ÂT êk. (4.4)

ÂT Â is symmetric positive definite if Â has full column rank q. This is guaranteed if the
original matrix A is nonsingular. Hence we can solve the normal equation using Cholesky
decomposition and obtain the unique solution of the LS problem. The drawback of that
method is a higher condition number, since κ(ÂT Â) = κ2(Â). This may cause breakdown
in the Cholesky algorithm for ill-conditioned matrices Â when 1/κ(A) is of the order of the
square root of the machine precision. Then, square roots of negative numbers may occur and
the Cholesky factorization fails. Huckle [59] suggests to iteratively solve normal equation
(4.4) using the cg method. The condition number can be improved by a cheap Jacobi
preconditioning step, and we avoid the explicit evaluation of the product ÂT Â. Moreover,
within the cg method, we perform the matrix-vector products in sparse mode and therefore
exploit sparsity structures in Â. The disadvantage of that method emerges if we have to
solve an enlarged matrix in a further step. The iterative solution of the LS problem cannot
use information from the previous solution process.

If we find a decomposition Â = Q

(
R
0

)
with orthogonal Q ∈ Rp×p and upper triangular

R ∈ Rq×q, we can use it to compute the solution of the LS problem. With (ẽ1, ẽ2)T = QT êk,
ẽ1 ∈ Rq, ẽ2 ∈ Rp−q, we get∥∥∥Âm̂k − êk

∥∥∥2

2
=

∥∥∥QT (Âm̂k − êk)
∥∥∥2

2
=
∥∥∥∥(Rm̂k − ẽ1

ẽ2

)∥∥∥∥2

2

= ‖Rm̂k − ẽ1‖22 + ‖ẽ2‖ ≥ ‖ẽ2‖22 .

Therefore, the LS solution is given by

m̂k = R−1ẽ1.

One way to derive a QR decomposition is Gram-Schmidt orthogonalization, see for instance
[17, 41, 46]. Here we obtain a QR factorization of a matrix Â with orthogonal matrix Q ∈
Rp×p and upper triangular matrix R ∈ Rp×q. We perform the orthogonalization successively
column by column, starting with the first one. We compute the next column through
subtraction of the orthogonal projections on all the columns we computed before and then we
normalize it. Hence, we get an explicit orthonormal matrix Q such that Â = QR. Appending
a new column to Â would only result in performing the orthogonalization step with respect
to the already computed columns and is therefore a straightforward task. But this classical
Gram-Schmidt method is numerically unstable which leads to a loss of orthogonality in Q.
However, we can use the Modified Gram-Schmidt method, which performs the subtractions
of the orthogonalized columns already when they have been computed. This results in a
more reliable algorithm. We have to pay for this increased numerical stability with a higher
computational effort. Moreover, if Â is very ill-conditioned, modified Gram-Schmidt fails
as well if we do not use reorthogonalization. This would further increase the computational
costs.

This leads us to a third way of solving (4.1), namely the implicit QR decomposition. This
class of methods is called implicit because Q is never determined explicitly. We only save a

78 4 Efficient Implementation

set of vectors which enables us to recover the action of Q on a vector quite cheaply. Note that
we omit here other techniques for solving LS problems such as singular value decomposition
or QR decomposition using Givens rotations. We restrict the representation to the most
promising approach, implicit QR decomposition with Householder reflections.

4.1.1 QR Decomposition with Householder Reflections

Given a vector v ∈ Rn. Then, according to [35], a matrix H ∈ Rn×n of the form

H = I − 2
vvT

vT v

is called Householder reflection and v is referred to as Householder vector. H is symmetric
(HT = H), orthogonal (HHT = HT H = I), and idempotent (H2 = I). The action of H on
a vector y ∈ Rm is the reflection of y on a plane perpendicular to v. The application to y is
straightforward

Hy = y − 2
vT y

vT v
v. (4.5)

If we define
v := y − αe1, α := −sgn (y1) ‖y‖2 ,

we can use this construction to derive a reflection of y onto a multiple of the first unit
vector e1. The choice α = −sgn (y1) ‖y‖2 preserves the length of y and avoids numerical
cancellation if y is already near the first unit vector.

We can now use Householder reflections to successively transform the matrix Â of our LS
problem (4.1) to upper triangular form. For that purpose, we reflect the subdiagonal part
of the first column a1 ∈ Rp onto the first unit vector e1 of dimension p:

A→ A(1) : A(1) = H1A =


α1

0
... H1a2, . . . ,H1aq︸ ︷︷ ︸

=:T1

0

 .

Then, we construct orthogonal matrices

Hk+1 =
(

Ik

H̃k+1

)
,

where Ik is the k-dimensional unity, and H̃k+1 is the Householder transformation which
reflects the first column of the remainder matrix Tk onto e1 of dimension p−k. We perform
these successive steps for k = 2, . . . , g with g := min(p− 1, q) and end up with

Hg · · ·H1A =
(

R
0

)
=: R̃

with upper triangular matrix R ∈ Rq×q and

Q = H1 · · ·Hg.

4.1 Solution of SPAI-type Least Squares Problems 79

Since we can reconstruct the Householder transformations Hk quite easily from the House-
holder vectors (see (4.5)), we store the latter efficiently in the lower triangular part of R̃.
We only need one further vector to store the factors αk, k = 1, . . . , g. The costs for the QR
decomposition without the explicit computation of Q are

#flops = 2q2
(
p− q

3

)
.

As stated above, we do not need to know Q explicitly but only the action of Q or QT on a
vector, respectively. For the solution of our SPAI LS problem (4.1), we have to apply QT on
êk. Then, we get the solution m̂k by a simple backward substitution with R. If we append
columns and rows to Â, we do not need to recompute the whole QR decomposition. The
QR update for this case will be the topic of Section 4.1.3. First, we will investigate how to
exploit the potential sparsity structure of Â.

4.1.2 Sparse Least Squares Problems

The current SPAI standard implementation SPAI 3.2 by Barnard and Grote [10, 91] solves
the LS problems (4.1) using LAPACK [76] routines for dense Householder QR decomposi-
tion. This means extracting Â for every column and converting it to the dense LAPACK
storage scheme. The routine dgeqrf computes the QR factorization, dormqr applies QT to
the right-hand side and finally, dtrtrs solves the upper triangular system with backward
substitution. The solution m̂k then overwrites the right-hand side êk. Since we want to
compute a preconditioner with about the same nnz and thus, about the same density as A,
the dimension p×q of Â does not become too large and the use of dense LAPACK functions
is still efficient. However, this algorithm does not take sparsity into account.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

x 10
−3

density [%]

tim
e

[s
]

LAPACK
CSparse
CSparse w. AMD

Figure 4.1: Runtime comparison for increasing density in 100 × 100 random test matrices for implicit
QR decomposition using LAPACK, CSparse without preordering, and CSparse with AMD
preordering (taken from [82]).

The matrices which we try to precondition with SPAI or MSPAI are usually sparse or the
result of a sparsification process. Therefore, we can assume that in certain cases the small
matrices Â related to the reduced LS problem (4.1) are sparse, too.

80 4 Efficient Implementation

Among the several implementations available for sparse QR decompositions we choose the
rather recent library CSparse [29] by Davis [32]. It is designed for solving sparse square
systems of equations for real matrices and also provides sparse Cholesky decomposition
methods as well as QR decomposition using Householder reflections. One can also preorder
the matrices using the approximate minimum degree reordering from Section 1.3.3. Like-
wise for LU decomposition, AMD preordered QR decomposition leads to a sparser upper
triangular factor R (see also [45]). The extension CXSparse [31] to complex problems is also
available, but we will only use CSparse.

For the sparse QR decomposition, CSparse uses Householder reflections. Like many other
direct sparse solvers, it first performs a fill-in reducing column permutation of ÂT Â, followed
by a symbolic QR decomposition in order to determine the sparsity structure of R and of
the Householder vectors. With this precise information about the structures and memory
usage, CSparse carries out the numerical QR decomposition involving a minimum of fill-in
in R. All operations use sparse matrix and vector storage formats and take full advantage
of sparsity.

Clearly, there will be a threshold in the density of the matrices Â from which on the dense
LAPACK QR method will be faster again due to the overhead for administrating the sparse
data structures of CSparse. In order to get an impression where this threshold lies, we
performed several empirical runtime tests with artificially constructed matrices, where we
increased the density step by step. We construct matrices with fixed dimension 100×100 with
random nonzero diagonal and increase the density by inserting random rows and columns
and further diagonals. Then we compute the implicit QR factorization with LAPACK, with
CSparse using no preordering, and CSparse with AMD preordering. In Figure 4.1, we can
see that LAPACK leads to nearly constant runtimes, since it treats the test matrices all as
dense. Moreover, the CSparse variant with the AMD preordering is fastest up to a density
of about 7%, and CSparse without preordering has the lowest runtimes for densities ranging
from about 7% to about 9.5%. Further runtime tests with different matrix dimensions and
sparsity structures revealed that in general it is advisable to use CSparse with approximate
minimum degree preordering up to a density of about 7% and CSparse without preordering
up to about 12%. For matrices which have more entries relative to their dimension, we
recommend using LAPACK QR routines for dense matrices. We also generated sets of test
matrices which arise in concrete SPAI computation for several test matrices from Matrix
Market [77] to achieve a more realistic picture. For the complete testing results, see [82].
The runtimes we observed there yield the conservative bounds of about 12% and 20%. We
chose this rather small problem size, because the matrices Â arising in the computation
of SPAI or MSPAI typically have dimensions in that order of magnitude. Note that we
measured these runtimes in a C implementation only reading one test matrix after another
from a file and computing the implicit QR decomposition. In a complete SPAI or MSPAI
implementation, these values may vary. This test was performed on an Intel Pentium D 2.8
GHz using LAPACK 3.1.1 and CSparse 2.0.6.

For simplicity, we only employ a switch between sparse and dense QR methods in our
implementation MSPAI 1.0. A second switch involving also CSparse with AMD preordering
will be contained in a future release. Figure 4.2 shows concrete SPAI runtimes using both
LAPACK and sparse QR methods. We increased the threshold for the switch between dense
and sparse from 5% to 30% and observe a minimum runtime for about 12% for the test matrix
orsirr2. In the actual MSPAI implementation, we set the switch to a default value of 15%.
Note that this computation using exclusively LAPACK takes 7.28s — considerably slower

4.1 Solution of SPAI-type Least Squares Problems 81

5 10 15 20 25 30
4.9

4.95

5

5.05

5.1

5.15

density [%]

tim
e

[s
]

Figure 4.2: Runtime comparison for different switch values between LAPACK and sparse QR methods.

SPAI for test matrix orsirr2 with Υ12,7, ε = 10−3, start pattern P (A). Time with LAPACK
QR only: 7.28s.

than with involving CSparse. These runtimes were measured on an Intel Core2Duo with 2
2.4 GHz processors using ATLAS 3.6.0.

4.1.3 QR Updates and Sparse QR Updates

In the above review of LS solution methods, we also mentioned the applicability of several
methods in terms of updating a given QR decomposition. This is a central task in computing
SPAI or MSPAI, since the SPAI-specific pattern updates lead to an enlarged LS problem.
Therefore, we will now investigate how these QR updates result in improved runtimes. This
section follows closely the presentation from [48, 59].

First, we repeat the notation from Section 2.1.2. Let us assume that we have already
computed the LS solution m̂k using the QR decomposition

Â = QR̃ ∈ Rp×q with Q ∈ Rp×p, R̃ =
(

R
0

)
∈ Rp×q, R ∈ Rp×p.

Hereby holds p ≥ q according to the index set of columns J with q = |J |, and the shadow
thereof, the set of indices of nonzero rows I in A(:,J) with p = |I |. If ‖Amk − ek‖2 is
larger than a user provided ε, SPAI performs a pattern update (Section 2.1.2) in order to
increase the accuracy of the approximation. The result is a set of new columns

J̃ , q̃ :=
∣∣∣J̃ ∣∣∣ .

This leads to an increased set of columns J ∪ J̃ and consequently to an enlarged shadow

I ∪ Ĩ , p̃ :=
∣∣∣Ĩ ∣∣∣ .

82 4 Efficient Implementation

Note that Ĩ can also be the empty set, and p + p̃ ≥ q + q̃ holds. Hence, starting with

A(I ,J) = Â =


× × ×
× × ×
× × ×
× × ×
× × ×

 ,

the enlarged submatrix reads

A(I ∪ Ĩ ,J ∪ J̃) =: Ā =



� � × × � ×
� � × × � ×
⊗ ⊗ 0 0 ⊗ 0
� � × × � ×
� � × × � ×
⊗ ⊗ 0 0 ⊗ 0
� � × × � ×


.

� denotes the entries in the new columns and already present rows A(I , J̃), whereas
⊗ stands for the entries in the new columns and new rows A(Ĩ , J̃), respectively. New
columns and rows can occur in any arbitrary position. But we can find a row permutation
Pr and a column permutation Pc such that

PrĀPc =: Ã =



× × × � � �
× × × � � �
× × × � � �
× × × � � �
× × × � � �
0 0 0 ⊗ ⊗ ⊗
0 0 0 ⊗ ⊗ ⊗


=
(

Â A(I , J̃)
0 A(Ĩ , J̃)

)
. (4.6)

The lower left zero block in Ã is SPAI-specific, since I is the shadow of J , i.e. all zero
rows are omitted in A(:,J). Therefore, in new rows Ĩ , there must be zero values in the
columns J . This allows us to employ a simplified version of the standard methods for QR
updates [17, 46]. Furthermore, we only have the case where rows or columns are added.
From one pattern update step to the next, no rows or columns can be deleted. Thus, using
Â = QR̃, we can write

Ã =
(

Q
Ip̃

) R QT
1 A(I , J̃)

0 QT
2 A(I , J̃)

0 A(Ĩ , J̃)

 =
(

Q
Ip̃

)


? ? ? �̃ �̃ �̃
? ? �̃ �̃ �̃

? �̃ �̃ �̃
�̃ �̃ �̃

0 �̃ �̃ �̃
⊗ ⊗ ⊗
⊗ ⊗ ⊗


=

(
Q

Ip̃

)(
R B1

0 B2

)
. (4.7)

The subscript of Ip̃ denotes the dimension of the unity, Q1 and Q2 are defined as Q1 :=
Q(1 : q, :), Q2 := Q(q + 1 : p, :), ? symbolize the entries of R, and �̃ represent the entries of

4.1 Solution of SPAI-type Least Squares Problems 83

QT A(I , J̃). The upper right block B1 has dimension q × q̃. In order to complete the QR
decomposition of Ã, we further have to compute the QR decomposition of the lower right
block B2 with dimension (p + p̃ − q) × q̃. Let therefore denote B2 = QBRB . Then, (4.7)
becomes

Ã =
(

Q
Ip̃

)(
Iq

QB

)(
R B1

0 RB

)
, (4.8)

and we can solve the augmented LS problem for the right-hand side Prek(I ∪ Ĩ). From
the solution m̃k = PT

c mk(J ∪ J̃) of the permuted system, we can recover the solution
components in the correct order by Pcm̃k. We summarize this procedure in Algorithm 4.1.

Algorithm 4.1 QR update for SPAI-like LS problems.

Require: Â, Q, R, J , I , Ā = A(I ∪ Ĩ ,J ∪ J̃)
1: Find row permutation Pr and column permutation Pc, such that PrĀPc = Ã (4.6)
2: Apply QT to A(I , J̃)
3: B1 ← rows (1 : q) from QT A(I , J̃)
4: B2 ← rows (q + 1) : p from QT A(I , J̃) and A(Ĩ , J̃), see (4.7)
5: Compute QR decomposition of B2 = QBRB

6: m̃k ← Solve augmented LS problem via enlarged QR decomposition (4.8) for right-hand
side Prek(I ∪ Ĩ)

7: mk(J ∪ J̃)← Pcm̃k

Instead of computing the full QR decomposition of Ā, we can reduce the computational
costs to that of one application of QT and the QR decomposition of a smaller submatrix
B2, see lines 2 and 5 in Algorithm 4.1.

Example 4.1 We compare the runtimes for the computation of SPAI for orsirr2 [77] with
different update parameters Υ, see Definition 2.1. First, we do not perform QR updates, i.e.
every augmented Ā is completely factorized. Then, we measure the times when we apply
QR updates using LAPACK routines, therefore not taking into account sparsity structures.
Table 4.1 summarizes the result. For the settings Υ8,4, Υ12,9, and Υ108,1 QR updates lead

Table 4.1: Comparison of runtimes for SPAI with (t0) and without (t1) using QR updates. The example

matrix orsirr2 has dimension n = 886 and we start with diagonal pattern and an ε = 10−5,
which is low enough such that a maximum number of pattern updates are carried out.

Υ no QR updates (t0) QR updates (t1) t0
t1

Υ8,4 0.77 0.61 1.26
Υ12,9 10.15 3.10 3.27
Υ108,1 83.20 19.51 4.26
Υ1,108 0.10 0.13 0.77

to a significantly improved runtime. The first two can be seen as a standard setting for
SPAI pattern updates, whereas the third is an extreme one only adding one new entry
to the pattern per update step. In that case, the block B2 consists of only one column.
Thus the factorization is clearly cheaper than factorizing the whole matrix Ā. The other
extreme parameter pair Υ1,108 is only shown for completeness. Υ1,108 means that we apply
only one pattern update step adding 108 new entries. Hence, B2 is nearly as large as Â,
so the overhead of the QR updates outweigh the potentially small savings. However, this

84 4 Efficient Implementation

setting is not advisable in practice, since we should only add a few new entries per update
step. Adding more than one is a heuristic, which performs well up to a “few” new entries.
If we add too many, the resulting preconditioner does not improve the condition number
sufficiently. For Υ108,1, we obtain a condition number of 1.8. Conversely, Υ1,108 leads to
κ = 163.4. This test was run on an Intel Core2Duo processor with 2×2.4 GHz using ATLAS
3.6.0 for the QR decompositions. We used our C++ MSPAI implementation.

Our contribution to the QR update approach is the combination with the sparse techniques
from Section 4.1.2. For our tests [82, 87], we implemented three variants of QR updates:

• QRUP1, Dense-Dense: The initial QR decomposition of Â is carried out with
dense QR LAPACK methods. We also compute the update factorization of B2 in
dense mode.

• QRUP2, Sparse-Sparse: Both the factorization of Â and the factorization of B2

are computed using the sparse routines from CSparse, see Section 4.1.2 and [29, 32].

• QRUP3, Hybrid (Sparse-Dense): When the density of Â is low enough, we deter-
mine its QR factorization by sparse methods, but factorize B2 with LAPACK routines.

The special structure of B2 motivates the hybrid variant QRUP3. By equation (4.7), we can
see that an orthogonal matrix QT is applied to the first p− q rows of B2. Hence, these first
rows are usually dense, i.e. the overall density of B2 is unlikely to be low enough so that
we could benefit from sparse methods. This is also the reason why we omitted the fourth
possible combination “Dense-Sparse”. All three methods require elaborate storage schemes
for the Householder reflectors and the upper triangular matrices. Especially QRUP3 leads
to very complex structures, since it involves both dense and sparse storage types. For the
details on the implementation, we refer to [82].

Now, we want to concentrate on the reduction of runtimes when we use QR updates QRUP1–
QRUP3 for the computation of SPAI. The example above already demonstrated the effec-
tiveness of QRUP1. In Table 4.2 we can see that the other variants also lead to reduced
runtimes. The combination of QR updates and sparse techniques leads to further improve-
ments.

Table 4.2: Comparison of runtimes for SPAI with the various update methods QRUP1–QRUP3, and with-
out using QR updates. Example matrix orsirr2 has dimension n = 886 and we start with
diagonal pattern and an ε = 10−5, which is low enough such that a maximum number of
pattern updates are carried out.

Υ dense QR sparse QR QRUP1 QRUP2 QRUP3
Υ8,4 0.77 1.10 0.61 0.61 0.58
Υ12,9 10.15 5.98 3.10 3.06 3.26
Υ108,1 83.20 49.91 19.51 14.25 19.27
Υ1,108 0.10 0.18 0.13 0.16 0.16

4.1.4 Single Precision QR Decomposition

QR updates are a methodical improvement for SPAI computations. A rather technical ap-
proach to reduce computation times are single precision routines for the QR factorizations.

4.1 Solution of SPAI-type Least Squares Problems 85

The lack of accuracy should then be partially diminished by a few steps of iterative re-
finement. Theoretically, single precision computations are faster by a factor of two than
operations on double precision variables. On special architectures such as the Cell processor
[64], even accelerations of factor ten can be achieved.

The idea is to perform the QR decompositions for our LS problems of the form (4.1) in
single precision to save time. Then, in double precision, we want to improve the accuracy
of the solution using iterative refinement steps. For the LU decomposition, this was already
explained in Section 1.1.4. Björck and Golub formulate the equivalent procedure based on
normal equations in [19]. We follow the representation in [46] and define r := êk − Âm̂k.
When (

Ip Â

ÂT 0

)(
r

m̂k

)
=
(

êk

0

)
, (4.9)

then
∥∥∥Âm̂k − êk

∥∥∥
2

= min, since

r + Âm̂k = êk

ÂT r = 0

}
=⇒ ÂT Âm̂k = êk.

We obtain the j-th refinement step (setting r0 = 0, m0
k = 0) by(

f j

gj

)
=

(
êk

0

)
−
(

Ip Â

ÂT 0

)(
rj

m̂j
k

)
, (4.10a)(

Ip Â

ÂT 0

)(
pj

zj

)
=

(
f j

gj

)
, (4.10b)(

rj+1

xj+1

)
=

(
rj

xj

)
+
(

pj

zj

)
.

Given the QR decomposition Â = QR̃ = Q

(
R
0

)
, we can formulate (4.10b) as follows:

 Iq 0 R
0 Ip−q 0

RT 0 0

 h
f2

z

 =

f1

f2

g

 .

f1, f2 are the first q and p − q rows of QT f , respectively. h consists of the rows (1 : q) of
QT p. Hence, we can calculate p and z by solving the triangular systems

RT h = g,

Rz = f1 − h,

and setting p = Q

(
h
f2

)
. The advantage of this refinement method is that it does not only

update the solution m̂j
k iteratively, but also the residual rj . Björck and Golub emphasize

that the residuals (4.10a) must be computed in a higher precision than the factorization of
Â if they should lead to improvements.

Example 4.2 For our numerical test of this type of refinement, we compute static SPAI
preconditioners M with P (M) = P (A) for a few test matrices from [77, 101]. Additionally,
we compute static SPAI preconditioners, where we determine the QR decompositions via

86 4 Efficient Implementation

Table 4.3: Comparison of iteration counts for double precision SPAI and SPAI computed using single
precision QR decomposition and 5 steps of iterative refinement. Both are computed statically
without pattern updates and with P (A), unless stated differently. We use BiCGSTAB as solver
up to a relative residual of 10−6. If no right-hand sides were provided by [77, 101], we used
random right-hand sides.

Matrix double precision SPAI SPAI using iterative refinement QR
orsirr2 90.5 93.5
bcsstk14 259.5 257.5
pores1 (P

(
A2
)
) 5.5 5.5

pores2 (P
(
A2
)
) 328.5 390.5

pores3 127.5 122.5
raefsky1 77.5 77.5
raefsky2 100.5 100.5
raefsky3 68.5 68.5
raefsky4 3 3
raefsky5 2 2
raefsky6 17 17
sherman1 48.5 48.5
sherman2 0.5 0.5
sherman3 139.5 136.5
sherman4 33.5 33.5
sherman5 62.5 62.5
fidap015 (P

(
A3
)
) 83.5 no convergence

single precision LAPACK methods. The resulting LS solutions are then refined with 5
steps of iterative refinement presented above. In Table 4.3, we can see that in many cases,
the quality of SPAI computed with iterative refinement in terms of iteration number in
BiCGSTAB is identical to the preconditioning effect of SPAI computed completely with
double precision QR. However, even in this rather small collection of test problems, there
are test matrices where the refinement SPAI leads to a considerably increased iteration
count. For fidap015, not even convergence was observed. A meaningful comparison of
runtimes would require a pure C implementation and cannot be provided by our MATLAB
test.

This example shows that SPAI-type preconditioners which are computed with single preci-
sion QR and iterative refinement can yield results of equal quality, but there is no guarantee
for that. If this approach behaves differently for every input matrix, the routines in SPAI
or MSPAI for the LS solutions lose their black box character. This is the reason why we
omitted single precision QR in our current MSPAI implementation. However, Demmel et al.
[33, 34] recently presented approaches which allow to compute the residuals in extra-high
precision, e.g. in double-double precision. Moreover, they employ several algorithms for
estimating condition numbers within their computations and they developed strategies to
detect convergence in the iterative refinement steps. They also propose to add special much
more elaborate routines for extra-precise iterative refinement to LAPACK. Therefore, we
recommend to test these new functions for future versions of MSPAI as soon as they are
officially contained in LAPACK.

4.2 Caching Algorithm 87

4.2 Caching Algorithm

Beside efforts in improving the runtime of LS solutions, we also consider optimizations on
a higher algorithmic level. The computation of a static MSPAI for a matrix A ∈ Rn×n

involves QR decompositions of n smaller submatrices Â, one for each column (see Section
2.1.1). In case of dynamic pattern updates, we need to factorize again n submatrices and
so on. However, matrices arising from PDE discretizations are typically very structured.
For instance, they have a band structure or block structures. In terms of computing an
MSPAI for such matrices, we can therefore assume that many Â are identic. Hence, many
QR decompositions are carried out redundantly without reusing the previously computed
factors. We define the ratio

σ := 1− # pairwise different Â

dimension of A
.

Therefore, σ roughly indicates the ratio of how many QR decompositions could be saved, see
Table 4.4. Note that σ does not contain information about the size of the identic Â, i.e. σ
does not necessarily give a reliable measure about possible runtime improvements. However,

Table 4.4: Number of pairwise different submatrices Â for several test matrices from [77] when we compute
a SPAI M with a static pattern P (M) = P (A). Matrices CFDxxx arise from computational
fluid dynamics, see Section 5.2. Matrix laplace100 is a standard five-point stencil discretization
of the 2D Laplace equation.

Number Matrix dimension # different Â σ
1 orsirr1 1030 920 10.7%
2 orsirr2 886 776 12.4%
3 cavity03 317 107 66.2%
4 mahindas 1258 881 30.0%
5 bcsstk25 15439 14752 4.4%
6 bcsstk16 4884 3773 22.7%
7 bcsstm25 15439 5239 66.1%
8 fidap011 16614 11399 93.1%
9 fidap014 3251 3169 2.5%
10 fidapm29 13668 10839 20.7%
11 s2rmq4m1 5489 5123 6.7%
12 CFD8x8x8o 512 145 71.7%
13 CFD8x8x8o24 512 328 35.9%
14 CFD16x16x32o24o210 8192 385 95.3%
15 CFD16x16x16o24 4096 349 91.5%
16 laplace100 10000 24 99.8%

saving all previously computed factorizations would lead to uncontrollable and, even worse,
unpredictable memory usage. Therefore, we only save a fixed number of factorizations: we
use a cache.

In Algorithm 4.2, we see how caching works. If Â and the factorization thereof is already
in the cache, we use it to compute the current m̂k. When the cache element additionally
contains the same right-hand side b̂k, we can directly extract the solution m̂k from the cache.
However, if Â cannot be found in the cache, we determine its QR decomposition and put
it into the cache together with the right-hand side b̂k and the solution m̂k. In case the

88 4 Efficient Implementation

Algorithm 4.2 Caching for MSPAI.

Require: Â, b̂k, Cache size cs
1: if Â ∈ cache then
2: if b̂k ∈ cache then
3: extract previously computed solution m̂k

4: else
5: compute m̂k using cached Â = QR
6: put m̂k into cache
7: end if
8: increase access count of this QR by 1
9: else

10: compute QR decomposition of Â
11: solve for m̂k

12: put QR = Â, b̂k, and m̂k into cache
13: if cache size cs is exceeded then
14: replace cache element with lowest access count by QR = Â, b̂k, and m̂k

15: end if
16: end if
17: return m̂k

maximum cache size cs is reached, we replace the cache element with lowest access count,
namely the element which is accessed most rarely, by the new QR decomposition, the new
right-hand side, and the new LS solution. This ensures a limited memory consumption.
Furthermore, we employ the last recently used principle (LRU) [96]. As a consequence,
elements which are required more frequently stay longer in the cache (i.e. have a higher
access count), whereas less frequently needed ones (low access count) drop out. Moreover,
elements are stored in a sorted way according to their access count in order to be accessed
fastest. Hence, the choice of the cache size cs plays an important role. If chosen too small,
not even frequently arising Â are kept in the cache long enough and drop out too early.
Conversely, if cs is too large, the times for searching Â in the cache increase and lead to an
overhead. Moreover, the cache contains too many “unimportant” Â, thus wasting memory.
More detailed information on our implementation of MSPAI caching such as data structures
and hashing via superkeys is given by [87].

As shown in Figure 4.3, MSPAI caching leads to significant runtime improvements in the case
of structured matrices. In other cases, where not as many or only smaller Â can be cached
and reused, MSPAI caching does not lead to significantly higher runtimes. Therefore, we
can employ it as default method. When the structure of a matrix A allows us to profit from
avoiding redundant QR decompositions, MSPAI caching will profit thereof. Conversely, if
A is unstructured, our caching approach will not increase the runtimes. According to our
tests, which are reported in a more detailed way in [87], we set the default cache size to
60. For unstructured matrices with few redundant Â, this value should be chosen smaller.
For highly structured matrices, a higher cache size will lead to even larger savings. Thus,
knowledge about the structure of the underlying matrix allows a more meaningful choice of
the cache size than the default value and so to optimize the runtimes. When we run MSPAI
in a parallel environment, each computing node has its own cache. Therefore, caching does
not cause further communication overhead between the nodes.

4.3 Maximum Sparsity Pattern 89

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

200

matrix

re
la

tiv
e

ru
nt

im
e

[%
]

Figure 4.3: Runtime comparison for the test matrices from Table 4.4 with default cache size 60. SPAIs
involving pattern updates were computed using different parameter settings.

4.3 Maximum Sparsity Pattern

As a further runtime improvement, we also implemented support for maximum sparsity
patterns in our MSPAI 1.0 code which were explained in Section 2.1.3. The user can provide
an additional file with the maximum pattern which MSPAI may use for pattern update steps.
Since we are more interested here in the runtimes than in the choice of meaningful maximum
patterns, we precomputed SPAIs with several pattern update steps and took the pattern of
the resulting matrices as maximum patterns for our tests. Thereby, we guarantee that the
results are identical in both cases.

First, we test the performance with no prefetching, i.e. if one computing node needs a
column of A, it only requests this single column. As we can see in Table 4.5, this already
leads to considerable runtime reductions. The reason for this effect are the savings in the
pattern update steps. On the one hand, less set operations have to be performed and less
ρj have to be computed (see Section 2.1.2). On the other hand, this also affects the amount
of communication between the nodes. Since we have to compute less ρj , less columns of A
have to be requested and transferred. Hence, network traffic is reduced.

Table 4.5: Runtime comparisons for computing a SPAI of test matrix fidap011 [77] with dimension n =
16614, diagonal start pattern, and Υ6,8 in a parallel environment with p computing nodes.
“MP” indicates the use of a maximum pattern.

p unrestricted SPAI MP (no prefetching) MP (full prefetching)
16 27.85 19.93 18.71
32 16.68 11.59 10.66
64 10.75 6.95 6.38
128 6.45 4.17 3.97

Huckle [61] proposed to use the maximum pattern from which every processor requests the
columns it needs in the beginning of the computation such that no further communication

90 4 Efficient Implementation

would be needed. We refer to this variant as maximum pattern with full prefetching. With
this strategy we get further rather slight improvements in the runtimes, see again Table 4.5.
After the initialization process, there is still some communication required for the pattern
update steps.

We introduce a third variant where we only prefetch 2k more columns than we actually need,
the k-prefetching. Hereby, when one node needs column j, it requests columns (j−k) : (j+k)
within the maximum pattern. This heuristic is motivated by the assumption that if index j
is added to the sparsity pattern, then it is quite likely that indices near j will be added in
one of the next update steps. Table 4.6 shows increased runtimes for this variant compared
to no and full prefetching (Table 4.5).

Table 4.6: Runtime comparisons for computing a SPAI of test matrix fidap011 [77] using a maximum
pattern with k-prefetching, Υ6,8, and p = 16 computing nodes.

k maximum pattern with k-prefetching
1 20.52
3 20.46
10 20.62
100 20.47
1000 27.15

In the context of maximum sparsity patterns, we made another observation. Since Barnard’s
SPAI implementation shows a perfect scaling behavior in parallel environments [10], we took
over the communication server and the parallel caching strategy from the SPAI 3.2 code.
Parallel caching saves several columns which were previously requested such that another
request for these columns does not result in internodal communication. Instead, they can
just be taken from the local memory. When we switch off this cache, the absolute runtimes
increase dramatically but also the impact of the prefetching strategies is much larger, see
Table 4.7. So, a large part of the effect of maximum patterns is already anticipated by the

Table 4.7: Runtime comparisons for computing a SPAI of test matrix fidap011 [77] diagonal start pattern
and Υ6,8 in a parallel environment with p computing nodes. “MP” indicates the use of a
maximum pattern. Parallel caching is now disabled.

p unrestricted SPAI MP (no prefetching) MP (full prefetching)
16 236.57 90.01 88.13
32 166.26 64.21 63.67
64 116.51 43.66 43.57
128 95.38 32.82 32.90

parallel caching. Nevertheless, these runtimes strongly encourage the use of a maximum
sparsity pattern. Further test data sets can be found in [87].

4.4 Comparison of MSPAI 1.0 and SPAI 3.2

In the previous sections, we presented several optimizations to improve the runtime of
MSPAI. Moreover, it is especially interesting how our MSPAI 1.0 [82, 86, 87] performs com-
pared to the current standard SPAI implementation SPAI 3.2 [91] by Barnard and Grote

4.4 Comparison of MSPAI 1.0 and SPAI 3.2 91

[9, 10]. Of course, we can only compare the unfactorized inverse approximation variant of
MSPAI. First, we will point out the functional advantages of MSPAI such as support for
problems with complex valued matrices and vectors or the flexibility in terms of starting
patterns. In the second part, the focus will be on concrete runtime comparisons.

4.4.1 Features of MSPAI 1.0

The most obvious difference in functionality between MSPAI 1.0 and SPAI 3.2 is the support
for all MSPAI probing variants presented in this thesis (Chapter 3, Box 3.1). However, even
when we restrict our review to unfactorized inverse approximations, our implementation
contains some improvements:

• Templates in the C++ programming language [95] allow us to provide support for
complex problems Ax = b with A ∈ Cn×n, x, b ∈ Cn. Barnard’s code does not cover
this class of problems.

• SPAI 3.2 is tailored to the pure dynamic pattern update version of SPAI, i.e. it always
starts with a diagonal pattern. In contrast to MSPAI 1.0, it is not possible to prescribe
a different start pattern or to compute a static SPAI omitting pattern update steps.

• Our implementation returns the residual matrix R = I −AM , which can be useful for
symmetrization methods such as SPAI acceleration, see Section 3.6.3.

• In MSPAI 1.0, the user can also pass a maximum sparsity pattern, which can lead
to an improved parallel behavior and to a faster determination of new indices in the
pattern update steps.

• The improvements considered in this chapter such as sparse QR methods, QR updates,
and MSPAI caching are further specialties of MSPAI 1.0.

However, in some points, SPAI 3.2 still has a few features which are not yet covered by
MSPAI 1.0, but will be contained in future releases. We did not include MATLAB support
via mex-files in our code, nor an interface to PETSc [81]. Moreover, we restricted our code to
the use of ATLAS (automatically tuned linear algebra software) [3] for solving least squares
problems, whereas SPAI 3.2 users can also employ special libraries for their actual hardware
such as ACML [1] for AMD processors or the Intel MathKernel Library MKL [67]. This
is not a major drawback of MSPAI 1.0, since ATLAS is quite competitive in most cases.
Another feature of SPAI 3.2, which we did not imitate, is the block SPAI approach [9]. A
graph based algorithm to detect (incomplete) block structures in the original matrix could
be useful to determine a meaningful start pattern. This should be equally effective and
much cheaper to compute than block SPAI.

As far as parallelization is concerned, both implementations compared here use the message
passing interface (MPI) [78]. Barnard showed the communication server principle to be
optimal for SPAI-like applications. Parallelization thereof is a quite difficult task, because
one cannot estimate in advance how many pattern update steps will be necessary for each
column. With the communication server, each node which has completed its task requests
further columns from the master node to compute. Hence, the load is distributed as optimal
as possible. Therefore, we took over this principle for our implementation. Barnard’s second
approach to reduce communication between the computing nodes is a parallel cache. A
certain number of columns, which were requested before, are stored locally. If they are

92 4 Efficient Implementation

needed again, they do not have to be transferred over the network but can be taken directly
from the local memory. We also took over this parallel caching idea.

4.4.2 Runtimes

To conclude this chapter about the implementation of the algorithms discussed in this thesis,
we present direct runtime comparisons between SPAI 3.2 and our MSPAI 1.0 implementa-
tion. First, we compare the serial runtimes obtained from including the improvements of
this chapter. After that, we will also compare the performance in a parallel computing
environment.

The test matrix orsirr2 (dimension n = 886) has become one of the standard test matrices
for SPAI. Therefore, we will present the serial runtime comparison for this matrix. We
used both SPAI 3.2 and our MSPAI 1.0 implementation to compute unfactorized inverse
approximations, starting with a diagonal pattern and disabling in both cases the mean
value argument for the augmentation in the pattern update steps (see Section 2.1.2). In
MSPAI, we enabled QR updates and maximum pattern support. Caching was disabled
since it did not show runtime improvements for orsirr2, see Section 4.2. This test was run
on an Intel Core2Duo architecture with two 2.4 GHz processors. As we can see in Table
4.8, our implementation outperforms SPAI 3.2 clearly for different pattern update settings
Υ. In the standard update scenarios Υ8,4 and Υ12,9 the runtime is reduced by factors of

Table 4.8: Serial runtime comparisons between SPAI 3.2 and MSPAI 1.0 for matrix orsirr2. Start with

diagonal pattern and ε = 10−5.

MSPAI 1.0
Υ SPAI 3.2 (t0) QRUP1 QRUP2 QRUP3 (t1) t0

t1

Υ8,4 1.56 0.52 0.51 0.46 3.39
Υ12,9 9.38 2.95 2.90 2.67 3.51
Υ108,1 86.59 17.32 12.50 12.36 7.01
Υ1,108 0.01 0.14 0.16 0.16 0.06

more than 3. In the extreme test case Υ108,1, we can even observe a reduction by a factor
of more than 7. As discussed before in Section 4.1.3, Υ1,108 is only shown for completeness.
Here, QR updates only lead to an overhead. The resulting preconditioner in this case is by
far less effective than in the other pattern update settings.

For the parallel runtime comparison (see Figure 4.4), we consider test matrix fidap014
(dimension n = 3251) from Matrix Market [77]. We prescribe a diagonal start pattern and
ε = 0.01 for MSPAI 1.0 and SPAI 3.2, as well as Υ16,5 as pattern update parameter. The
resulting preconditioners are identical. Computations were carried with a doubled number
of nodes in every step from p = 1 to p = 128. No caching, QR updates or maximum sparsity
patterns were enabled in MSPAI 1.0 such that the focus was completely on the parallel
efficiency. Since we took over the communication server principle and the parallel cache
from Barnard’s implementation [10], MSPAI 1.0 shows the same good scaling behavior as
SPAI 3.2. We omitted the block SPAI approach [9] from SPAI 3.2 in our implementation.
Therefore, MSPAI has considerably less computational overhead and therefore clearly lower
runtimes.

4.4 Comparison of MSPAI 1.0 and SPAI 3.2 93

0 20 40 60 80 100 120 140
10

−1

10
0

10
1

10
2

number of computing nodes

ru
nt

im
e

[s
]

perfect scaling
SPAI 3.2
MSPAI 1.0

Figure 4.4: Parallel runtime comparison for fidap014 (see Table 4.4). MSPAI 1.0 and SPAI 3.2 in parallel
computing environment with nodes p ∈ {1, 2, 4, 8, 16, 32, 64, 128} with Υ16,5 pattern updates,
ε = 0.01, and diagonal start pattern.

94 4 Efficient Implementation

95

Chapter 5

Numerical Examples

After having developed the new MSPAI probing approach including several symmetrization
techniques and having presented an efficient and elaborate implementation in the previous
two chapters, we want to focus on numerical tests of the methods presented in this thesis. At
the beginning, we will demonstrate the preconditioning of dense matrices with sparsification
steps in order to obtain a meaningful sparsity pattern for FSPAI. This first example, which
is taken from statics’ simulation, was joint work with Ralf-Peter Mundani [79]. The focus
of the second section will also be on FSPAI, but now in terms of pattern updates and how
they are influenced by approximate minimum degree preordering, see also Section 1.3.3. The
example matrices considered here arise in computational fluid dynamics and were provided
by Ionel Muntean [21].

Section 5.3 builds the main part of this chapter. We will investigate the effect of MSPAI
probing in domain decomposition methods, as well as for Stokes problems. The computation
of spectrally equivalent sparse explicit approximations of dense matrices will also be con-
sidered. In the next section, we compare classical probing, ILU and MILU preconditioners
with MSPAI probing. These results were published in [63].

Finally, we investigate the effect of consecutive probing steps. This was joint work with
Stefanie Hörmann [58].

5.1 Example from Statics’ Simulation

In order to demonstrate the need to find a good compromise between approximation quality
and computation time for a preconditioner, we present here an example from statics’ simu-
lation. It is part of the of the UNIQA office tower [100] in Vienna (see Figure 5.1) and it is
taken from [79]. The aim is to compute the displacements of the building under its perma-
nent weight. This information is used to determine the stresses and strains in several parts
of the building. The discretization is done with a p-version of the Finite Element Method
[105], which means that higher accuracy is not achieved by finer meshes, but higher poly-
nomial degrees of the ansatz functions. The geometric structure is divided up recursively
by a nested dissection approach [44] and stored in an octree [85]. To solve this system, the
Schur complements are computed in the leaves of the octree and passed up to the root node.
There, they are assembled in the root matrix. The result of this bottom-up process is a quite
dense and ill-conditioned system of linear equations, which we try to precondition and solve
here. The solution is then passed down to the leaves again and we get the displacements.

96 5 Numerical Examples

(a) UNIQA tower.
(b) Two floors of the UNIQA

tower.

Figure 5.1: Finite Element discretization of the UNIQA office building in Vienna (taken from [79]).

We chose an example representing the discretization of two floors of the UNIQA tower.
This leads to a system with about 2500 unknowns and a root matrix A which is symmetric
and very ill-conditioned as it has an (estimated) condition number of about 1026. Without
preconditioning, no convergence of the cg method could be achieved. Furthermore, with a
density of about 50%, it cannot be regarded as sparse anymore. Here, we demonstrate pre-
conditioning with a prescaling step followed by sparsifying the pattern in order to construct
a sparse FSPAI preconditioner.

After a symmetric Jacobi prescaling Ã := DAD with

D =
{ 1√

aij
for i = j,

0 for i 6= j
,

all entries of Ã lie in [−1, 1], which makes it much easier to identify meaningful thresholds
for the sparsification step. With this Ã, the cg method converges after 630 iterations to a
relative residual of 10−8. In our MATLAB implementation, this takes 32s on a 1600 MHz
Intel Centrino laptop.

Now, we thin-out Ã using various drop tolerances (dropTOL) as threshold, which means
dropping entries of Ã, whose absolute values are smaller than dropTOL:

Ãthin,ij :=
{

aij if |aij | > dropTOL,
0 else.

Then, we compute an FSPAI L with the pattern of Ãthin without pattern updates. L is
used as a preconditioner for a symmetrically preconditioned cg method. The convergence
behavior for different drop tolerances is shown in Figure 5.2. The FSPAIs need significantly
fewer iterations to achieve the same accuracy as the Jacobi prescaled matrix. We can also
state that for smaller drop tolerances, which means denser Ãthin and therefore denser FSPAI,
the preconditioning effect is improved. This meets exactly our expectations. In Table 5.1,
we present for different dropTOLs the nnz of Ãthin, the computation times for FSPAI and
the pcg solution process as well as the number of cg iterations. For decreasing dropTOLs,
we get an increasing number of nz in Ãthin and, consequently, higher computation times
for FSPAI. On the other hand, the computation time for cg and the iteration number are

5.2 Effect of AMD on FSPAI Pattern Updates 97

0 100 200 300 400 500 600 700
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

#iterations

re
la

tiv
e

re
si

du
al

jacobi
0.1
0.01
0.008
0.006
0.004
0.002
0.001
0.0001
1e−05

Figure 5.2: Convergence for Jacobi preconditioning and FSPAI for different drop tolerances in the sparsi-
fication step.

reduced. The optimal value lies in the middle as a compromise with a total simulation time
of ≈ 5.9s.

Table 5.1: Densities and timing results for constructing FSPAI and solving pcg.

dropTOL
∣∣∣P (

Ãthin

)∣∣∣ time FSPAI #iter pcg time pcg total time

1.00e-01 14616 0.21 202 10.69 10.90
1.00e-02 47940 0.54 127 6.87 7.41
8.00e-03 53640 0.61 117 6.40 7.01
6.00e-03 61950 0.75 108 5.96 6.71
4.00e-03 76098 0.99 89 4.95 5.94
2.00e-03 107436 1.72 76 4.35 6.07
1.00e-03 150472 3.14 68 4.08 7.22
1.00e-04 449380 29.36 43 3.32 32.68
1.00e-05 998722 151.04 34 3.73 154.77

5.2 Effect of AMD on FSPAI Pattern Updates

In Section 2.2.3, we have already observed that an AMD preordering step reduces the nnz
in an FSPAI with pattern updates significantly. This leads to sparser preconditioners, thus
to lower times for matrix-vector products in an iterative solver, and eventually faster com-
putation times for the FSPAI itself.

As stated before, the matrices for this test arise from energy and impulse preserving dis-
cretizations of the Navier-Stokes equations on cartesian grids. The simulated geometry is
a channel divided into nx · ny · nz = n cells. A Chorin projection [26] leads to symmetric
semidefinite matrices of dimension n. Here, we want to present further simulation results,
also for settings involving obstacles in the channel. The naming convention is “CFD nx x

98 5 Numerical Examples

ny x nz” for free channel simulation matrices, and “CFD nx x ny x nz o p1l1 o p2l2” for
the obstacle setting. pi denotes the location and li the size of the obstacle. Table 5.2 shows
the results for the augmented test set. Again, the AMD preordering step leads to a sparser
dynamic FSPAI.

Table 5.2: Comparison of FSPAI for AMD preordered and unpreordered test matrices arising from Navier-
Stokes equations also involving obstacles. The first group involves one, the second group involves
two obstacles. FSPAI was computed with ε = 0.2, and the pcg algorithm iterated up to a relative
residual of 10−6 as stopping criterion.

without preordering AMD preordering
Matrix n #iter. nnz(L) #iter. nnz(L̂) nnz(L̂)

nnz(L)

CFD8x8x8o23 512 35 6903 34 6397 0.93
CFD8x8x8o24 512 40 6357 43 6091 0.96
CFD8x8x8o25 512 41 6133 41 6020 0.98
CFD8x8x8o34 512 34 6901 32 6458 0.94
CFD10x10x10o23 1000 49 15355 49 13651 0.89
CFD10x10x10o24 1000 53 14760 54 13548 0.92
CFD10x10x10o25 1000 48 14480 55 13280 0.92
CFD16x16x16o23 4096 87 75121 83 64774 0.86
CFD16x16x16o24 4096 107 74526 110 64296 0.86
CFD16x16x16o25 4096 89 74246 88 64187 0.86
CFD8x8x16o23o24 1024 52 14945 52 13867 0.93
CFD8x8x16o23o28 1024 67 13509 74 12869 0.95
CFD8x8x16o23o210 1024 70 12989 79 12600 0.97
CFD10x10x20o23o24 2000 69 32647 71 29108 0.89
CFD10x10x20o24o28 2000 83 31080 86 28387 0.91
CFD10x10x20o24o210 2000 86 30520 91 27874 0.91
CFD16x16x32o23o24 8192 139 155869 144 134394 0.86
CFD16x16x32o24o28 8192 161 154302 171 132284 0.86
CFD16x16x32o24o210 8192 175 153742 175 132160 0.86

5.3 Numerical Examples for MSPAI Probing

In the following, we would like to demonstrate our MSPAI probing methods in several
applications. All the following numerical examples were computed in MATLAB. If iteration
counts are given, we used the pcg method of MATLAB with zero starting vector, random
right-hand sides, and a relative residual reduction of 10−6 as stopping criterion. KP0, KP1,
and KP2 stand for the different types of probing vectors according to Section 3.4.1. k denotes
the number of probing vectors used in the computations.

5.3.1 MSPAI Probing for Domain Decomposition Methods

We consider the five-point stencil discretization of the 2D elliptic problem uxx + εuyy on a
rectangular grid; usually we consider the isotropic problem with ε = 1. After partitioning

5.3 Numerical Examples for MSPAI Probing 99

the matrix to “dissection form”, e.g. by a domain decomposition method with m domains,
we obtain: 

A1 F1

A2 F2

. . .
...

Am Fm

G1 G2 · · · Gm Am+1

 .

We refer to this setting as domain decomposition Laplace. To reduce the linear system in
A to the smaller problems A1, ... Am, we need the Schur complement

S = Am+1 − F1A
−1
1 G1 − ...− FmA−1

m Gm .

Here, S will in general be a dense matrix. To avoid the explicit computation of S we seek
sparse approximations S̃. In a first step, we determine Ãi,inv (i = 1, . . . ,m) approximations
for A−1

i , e.g. by SPAI, and then we compute S̃ = Am+1 − F1A1,invG1 − ...− FmAm,invGm.
In the next step, we try to modify this approximation with respect to some probing vectors
in order to improve the condition number of S̃−1S. First we use the explicit approximation
from Section 3.3.2.

In Tables 5.3 and 5.4 we compare the resulting explicit preconditioners for different choices
of ρ and the probing vectors. k always indicates the number of probing vectors. Again, we
denote with KP0, KP1, KP2 the method of probing vector as stated in Section 3.4.1. In
a first step, we approximate the matrices A−1

i by sparse approximate inverses Mi with the
pattern of Ai. Then, we probe the resulting S̃, keeping the sparsity pattern unchanged. The
result is a tridiagonal pattern in the preconditioner. In a second group of examples, we allow
more entries in Mi and S̃, which leads to a pentadiagonal pattern. In Table 5.5 we compare

Table 5.3: Condition numbers for domain decomposition Laplace with explicit approximate probing for
k = 3 and KP0 probing vectors.

m dim (A) dim (S) κ(SM−1) κ(SM−1
ρ=0) ρ κ(SM−1

ρ)
5 2916 216 83.99 18.2 25 6.34
6 4225 325 118.6 25.7 25 8.83
7 5776 456 159.6 34.6 30 11.4
8 7569 609 206.9 44.8 30 15.8
9 9604 784 260.5 56.4 30 19.3
10 11881 981 320.4 69.4 30 25.4

different iteration numbers for pcg using the symmetrized preconditioner (M + MT)/2. All
Tables 5.3–5.5 show that the preconditioner is improved by probing for a wide range of
choices for probing vectors and ρ. For these examples the best results were achieved for KP0,
k = 3, and ρ ≈ 30. Unfortunately, for the probing with approximate inverses (see Table
5.6), the probing vectors transform into a nearly sparse vector eT S. Hence, also for large ρ
the difference eT (M −S) cannot be reduced significantly, see also Section 3.5. Furthermore,
for large ρ the Frobenius norm of the matrix approximation SM − I gets large, and for
large ρ the preconditioner gets worse. Nevertheless, we can observe a slight improvement
of the condition number also for approximate inverse preconditioners by choosing k, KPx,
and especially ρ very carefully. Tables 5.7, 5.8, and 5.9 display the same behavior for the
explicit factorized approximations and different symmetrizations. This shows that e.g. the
probing vectors KP1 and KP2 are not so efficient for this problem. Nevertheless, probing

100 5 Numerical Examples

Table 5.4: Condition numbers for domain decomposition Laplace with explicit approximate probing for
n = 10, m = 8, different anisotropy, and different sparsity patterns.

sparsity KP k ρ ε κ(SM−1
ρ)

tri 1 3 30 1 15.14
tri 2 3 30 1 16.21
tri 0 3 30 1 15.75
tri 0 1 30 1 15.79
tri 0 2 30 1 16.68
tri 0 4 30 1 22.24
tri 0 3 100 1 23.70
tri 0 3 30 0.1 23.60

penta 0 3 25 1 14.08
penta 0 3 30 1 14.80
penta 0 5 30 1 14.00

Table 5.5: Iteration count for domain decomposition Laplace (ε = 1) with explicit approximate probing
for KP0, k = 3, ρ = 0 or ρ = 30.

m 2 3 4 5 6 7 8 9 10 11
#it, ρ = 0 19 32 39 44 49 56 62 68 74 81
#it, ρ = 30 7 10 12 13 13 15 17 19 22 24

Table 5.6: Condition numbers for domain decomposition Laplace with approximate inverse probing, three
probing vectors KP0, minimization relative to the weighted Frobenius norm.

m κ(S) κ(SMρ=0) ρ κ(SMρ)
5 83.99 32.90 200 27.07
6 118.6 46.47 200 38.26
7 159.6 62.53 200 51.48
8 206.9 81.04 200 66.76
9 260.5 102.0 250 84.03
10 320.4 125.5 250 103.4

and MSPAI symmetrization lead to improved condition numbers and faster convergence,
also in the factorized form.

Table 5.7: Condition numbers for domain decomposition Laplace with explicit approximate factorized prob-
ing, one probing vector KP0 and different symmetrizations.

m S MILU ρ L, Ũ ŨT , Ũ L̃, Ũ L̃, L̃T Lα,4(L̃, ŨT)
5 83.99 18.2 22 7.47 5.74 5.95 6.30 5.97
6 118.6 25.7 28 9.84 8.00 8.13 8.39 8.15
7 159.6 34.6 32 13.5 10.5 10.6 10.9 10.7
8 206.9 44.8 36 17.8 13.4 13.6 13.9 13.6
9 260.5 56.4 42 20.5 16.9 17.1 17.3 17.1
10 320.4 69.4 46 25.8 20.7 20.8 21.0 20.8

In investigating the effect of Schur complement probing, we consider the approximation
of the Schur complement described by (3.13) in Section 3.3.5. Following Table 5.10, the

5.3 Numerical Examples for MSPAI Probing 101

Table 5.8: Condition numbers for domain decomposition Laplace with approximate factorized probing for
m = 8, for different symmetrization variants.

KP k ρ L, Ũ ŨT , Ũ Lα,4(L, ŨT) L̃, Ũ L̃, L̃T Lα,4(L̃, ŨT)
0 1 20 29.6 22.2 15.0 21.8 21.4 21.8
0 1 30 21.5 14.9 13.7 15.2 15.5 15.2
0 1 40 15.8 13.6 17.4 13.8 14.0 13.8
0 1 50 13.3 14.5 29.8 14.9 15.5 14.9
0 1 60 13.4 17.7 43.3 17.5 19.2 17.1
0 1 70 13.7 25.7 53.7 23.9 27.6 22.0
0 2 38 16.8 13.5 16.0 13.7 14.1 13.9
0 3 80 32.2 25.2 23.5 22.3 20.0 16.2
1 3 20 20.3 19.5 36.1 17.6 16.9 17.6
1 3 40 14.7 44.4 52.0 25.2 18.1 25.1
2 3 20 17.6 24.3 63.8 20.5 18.1 20.1
2 1 20 28.3 36.6 67.7 32.3 29.0 32.1

Table 5.9: Condition numbers for domain decomposition Laplace with explicit approximate factorized prob-
ing with optimal symmetrization.

m 2 3 4 5 6 7 8 9 10
ρ 5 9 12 15 18 21 23 26 29
κ 1.69 2.36 3.71 5.48 7.66 10.3 13.3 16.7 20.5

condition number is strongly deteriorated in the case ρ = 0 without including probing.
Only the choice KP0 and large ρ ≈ 100 lead to a condition number reduction. Hence, this
approach is only applicable when combined with probing.

Table 5.10: Condition numbers (κ(SDMD)) for Schur complement preconditioning with probing vectors
based on (3.13) from Section 3.3.5, κ(SD) = 12.67.

ρ 0 1 10 20 50 100 200
KP0, k = 2 376.04 364.51 131.61 64.32 20.87 10.43 28.64
KP2, k = 3 376.04 359.10 173.54 82.37 24.93 17.42 28.99

In the last example in this domain decomposition setting, we compare the classical interface
probing approach based on three vectors with the explicit MSPAI probing to the same
subspace KP0, k = 3. Both methods are applied to the domain decomposition matrix with
m = 8 domains. It turns out that the new MSPAI probing gives much better condition
numbers than the old approach (see Table 5.11). We would also like to emphasize that
classical probing corresponds to the choice of three probing vectors (k = 3), whereas our
new probing method yields much better results with only one probing vector (k = 1). For
small m (number of subdomains), both preconditioners lead to similar results. However, for
large m, MSPAI probing is significantly superior.

102 5 Numerical Examples

Table 5.11: Condition numbers for domain decomposition Laplace with preconditioned Schur complement
S of size 609. The case m = 8, k = 1, κ(S) = 206.89 compared with classic tridiagonal
KP0-style probing Mp (3 probing vectors) with κ(M−1

p S) = 151.26.

kp | ρ 0 5 10 20 50 100
0 44.82 40.45 32.47 21.15 14.56 23.54
1 44.82 39.79 33.40 28.01 36.04 40.48
2 44.82 38.95 33.21 27.88 28.68 22.98

5.3.2 MSPAI Probing for Stokes Problems

We consider the four Stokes examples from IFISS [65] by Elman, Silvester, and Wathen [40].
The stabilized matrices are of the form(

Ast Bst

BT
st −βC

)
with Schur complement Ss := −βC−Bst·A−1

st BT
st; we also consider the unstabilized problems(

A B
BT 0

)
with Schur complement Su = −B ·A−1BT . In a first step, we again approximate A−1 by a

Table 5.12: Iteration count for unstabilized Stokes examples, unfactorized (with KP0, k = 1, ρ = 5)
and factorized (with KP1, k = 2, ρ = 3). LD denotes the preconditioner Lα, diagonally
transformed as described in (3.40).

unfactorized factorized
Example problem 1 2 3 1 2 3 symmetrization
unprec 39 65 78 39 65 78
explicit ρ = 0 20 34 26 20 34 26
explicit ρ = 5 12 17 19 ρ = 3

18 28 26 L̃, L̃T

18 17 26 Lα(L, L̃T)
16 24 15 LD

inverse ρ = 0 25 43 33 28 39 36
inverse ρ = 5 15 24 25 ρ = 3

20 25 31 L̃, L̃T

17 28 17 Lα(L, L̃T)
16 27 16 LD

sparse matrix with the same pattern as A. Then by MSPAI probing with this pattern we get
the preconditioner for the Schur complement. In the unfactorized case, we consider the trivial
symmetrization via M̄ . For factorized preconditioners we also apply the symmetrization
Lα,4, possibly with an additional diagonal scaling D to obtain diagonal elements equal to
1 in the preconditioned system (3.40). We apply this procedure to the following example
settings:

• Example 1: Channel domain with natural boundary on a 16 × 16 grid, Q1-P0, sta-
bilization parameter β = 1/4, and uniform pattern. The condition number of Ss is
12.67.

5.3 Numerical Examples for MSPAI Probing 103

Table 5.13: Iteration count for stabilized Stokes examples, unfactorized (with KP1, k = 3, ρ = 3) and
factorized (with KP1, k = 3, ρ = 3). Problem 4 with ρ = 1.5 in the unfactorized case.

unfactorized factorized
Example problem 1 2 3 4 1 2 3 4 symmetrization
unprec 24 33 74 23 24 33 74 23
explicit ρ = 0 23 34 20 19 23 34 20 19
explicit ρ 16 22 16 17

18 24 19 18 L̃, L̃T

18 24 19 18 Lα(L, L̃T)
16 22 19 18 LD

inverse ρ = 0 18 24 17 16 20 27 23 19
inverse ρ 15 21 21 15

18 23 18 15 L̃, L̃T

16 22 19 16 Lα(L, L̃T)
16 22 18 16 LD

• Example 2: Flow over backward facing step with natural outflow boundary, Q1-P0,
β = 1/4, κ(Ss) = 78.13.

• Example 3: Lid driven cavity, regularized on stretched 16 × 16 grid, Q1-P0, β =
1/4, exponential streamlines with singular S, but with essential condition number
λmax(Ss)/λ2(Ss) = 129.6.

• Example 4: Colliding flow on uniform 16×16 grid, Q1-P0, β = 1/4, uniform stream-
lines, with singular S, but essential condition number λmax(Ss)/λ2(Ss) = 6.92.

For the stabilized and unstabilized case we display the iteration count for pcg with factor-
ized and unfactorized preconditioner and simple symmetrizations in Tables 5.12 and 5.13.
Obviously, the MSPAI probing with different probing vectors and appropriate ρ always gives
better results. Following [40], for the above examples one can choose a diagonal precondi-
tioner Q that is given by the underlying Finite Element method. In nearly all examples
presented here this preconditioner is only a multiple of the identity matrix and therefore
does not lead to a comparable improvement of the iteration count.

5.3.3 MSPAI Probing for Dense Matrices

In many applications we have to deal with dense or nearly dense matrices A. To apply a
preconditioner it is helpful to derive a sparse approximation Ã of A. In a first step we can
sparsify the dense matrix by deleting all entries outside an allowed pattern or with small
entries. This gives a first approximation Ã. Here, we consider two examples. In a first
setting we choose a discretization of the 2D Laplacian with a quite thick bandwidth that
should be approximated by a sparser matrix Ap such that A−1

p A has bounded condition. In
Figure 5.3 we display the given thick pattern and the sparse pattern that should be used
for the approximation in Ã and Ap. Again, we compute Ap by explicit probing on Ã and
A. In Table 5.14, the resulting condition numbers are displayed. For large ρ, we see that
the approximation based on probing is much better than the matrix Ã that is obtained by
reducing A to the allowed pattern by simply deleting nonzero entries.

104 5 Numerical Examples

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1104
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Figure 5.3: Sparsity pattern of original matrix A (left) and sparse approximation Ap (right).

Table 5.14: Condition numbers for sparse 2D Laplacian approximations AA−1
p for different ρ, KP0, k = 1.

n A Ã, ρ = 0 10 50 100 500 1000
100 127.95 799.85 3.15 2.86 2.88 2.90 2.90
225 286.45 372.68 68.40 4.25 3.59 3.50 3.50
400 506.06 1204.35 596.67 41.06 4.72 4.17 4.16
625 786.57 6962.76 20016.42 53.35 9.06 4.84 4.81
900 1127.94 3405.30 4251.85 60.03 14.66 5.54 5.47

In a second example we consider a symmetric dense Toeplitz matrix with first row given by

a(1, 1) =
π

2
, a(1, 2j) =

2
π(2j − 1)2

, j = 1, 2,

This matrix is related to the generating function (see [80])

f(x) = |x− π|, x ∈ [0, 2π].

First we replace A by a tridiagonal matrix Ã by deleting all entries outside the bandwidth. In
a second step, we compute the improved tridiagonal approximation Ap by explicit probing.
For n = 1000 the condition number of A is 1.36·103, and the preconditioned system Ã−1A has
condition 150.9. As probing vector we additionally allow the vector e± := (1,−1, 1,−1, ...).
Table 5.15 shows that probing with e± and KP2 leads to a significantly improved condition
number. The choices KP1 and KP0, k = 1 fail, while KP0, k = 2 again gives a better
preconditioner. This is caused by the fact that e± is contained in the probing subspace
related to KP0, k = 2. Note that this example is dense, not related to a PDE problem, and
allows a new probing vector.

Table 5.15: Condition numbers for tridiagonal approximations of the dense Toeplitz matrix to generating
function f(x) = |x− π| for ρ = 1000 and different probing vectors.

e± KP2: k = 2 k = 1 KP0: k = 2 k = 1 KP1: k = 2 k = 1
22.9 18.2 12.7 22.0 113.8 119.2 114.6

5.3.4 Comparison ILU and MILU with MSPAI Probing

In a first example, we compare the direct factorized probing approach with the well-known
modified ILU (MILU) and modified incomplete Cholesky (MIC) preconditioners. We will

5.3 Numerical Examples for MSPAI Probing 105

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

11

12

13

ρ

co
nd

iti
on

 n
um

be
r

Lα,4

Lα,2

IC(0)
MIC(0)

Figure 5.4: Resulting condition numbers for ρ ∈ [0, 100] with symmetrizations Lα,4 (solid dotted) and
Lα,2 (dash-dot) compared to modified incomplete Cholesky (solid) and incomplete Cholesky
(dashed) preconditioner.

show that in cases where MILU is well behaved the more general MSPAI approach leads to
a similar improvement of the condition number. In a second part, we compare the classical
probing with MSPAI probing for the domain decomposition example from Section 5.3.1.
Starting point of the first example is a 2D Laplacian A with n = 225 and a random right-
hand side b. The condition number of A is 103.1, and for the solution of the corresponding
system, we use a preconditioned conjugate gradient method (pcg). At first, we compute an
incomplete Cholesky (IC(0)) preconditioner L with the lower triangular sparsity pattern of
A. This reduces the condition number to κ(L−1AL−T) = 9.961. The solution to a relative
residual of TOL= 10−6 takes 16 iterations (started with a initial vector of all zeros).

Table 5.16: Iteration count for 2D Laplacian with explicit factorized and symmetrized probing with KP0,
k = 1, and different ρ.

ρ 0 20 40 60 80 100
Lα,4 17 13 12 12 12 12
Lα,2 17 13 13 12 12 12

Table 5.17: Iteration count for 2D Laplacian with explicit factorized and symmetrized probing with KP0,
k = 2, and different ρ.

ρ 0 20 40 60 80 100
Lα,4 17 14 13 13 12 12
Lα,2 17 14 13 13 13 13

The modified incomplete Cholesky preconditioner LM (MIC(0)), which preserves the row
sums of A, leads to a condition number κ(L−1

M AL−T
M) = 4.463 and 11 iterations until con-

vergence. In order to demonstrate the effect of our probing approach, we apply the direct
factorized probing ansatz (3.9) to the incomplete Cholesky factor L for the normalized

106 5 Numerical Examples

Table 5.18: Iteration count for Laplace with explicit factorized and symmetrized probing using one sine
basis vector from (3.15) (KP1, k = 1), and different ρ.

ρ 0 20 40 60 80 100
Lα,4 17 14 13 13 14 15
Lα,2 17 14 13 13 13 13

Table 5.19: Iteration count for Laplace with explicit factorized and symmetrized probing with KP2, k = 1,
and different ρ.

ρ 0 20 40 60 80 100
Lα,4 17 14 13 14 17 18
Lα,2 17 14 13 13 14 14

probing vector e = 1√
n
(1, . . . , 1)T and ρ ∈ [0, 100]. The result Ũ is then symmetrized to Lα,

where both (3.36) and (3.39) are used. The former solves the resulting polynomial exactly,
the latter yields an approximation to the optimal symmetrization parameter α. Figure 5.4
shows the resulting condition numbers κ(L−1

α AL−T
α). For increasing ρ the condition number

tends to the condition number of the MIC, which meets our expectations, since the error of
the probing condition eT (LαLT

α −A) decreases, and the MIC satisfies this property exactly.
As a consequence, the iteration numbers also decrease as shown in Tables 5.16–5.19. These
examples also display that the approximative symmetrization approach leads to reasonable
values of α.

Albeit the iteration number is improved only slightly, one advantage over MIC is the inherent
parallelism of the underlying Frobenius norm minimization, which is inherited from SPAI.
Furthermore, MIC is restricted to a single vector (1, . . . , 1)T , whereas we are able to probe
with an arbitrary number of arbitrary probing constraints, see Section 3.4.1.

Note that for the Laplacian the probing approach for deriving an approximate inverse pre-
conditioner cannot be very successful. This is caused by the fact that probing vectors like
e = (1, ..., 1)T will lead to a sparse vector eT A. Hence, we try to approximate a dense vector
eT by a necessarily sparse vector eT AM , which is impossible. Nevertheless, for small ρ a
special choice of probing vectors can improve the condition number of the preconditioned
system in comparison with standard Frobenius norm approximation with ρ = 0. We set
k = 1 and use a rough approximation to the eigenvector to the smallest eigenvalue as prob-
ing vector which can be computed quite fast. Furthermore, we use the symmetrization M̂α.
The resulting condition numbers are shown in Table 5.20. For very carefully chosen ρ, we
can achieve an improved preconditioner also in this case. Here, Theorem 3.4 may give an
explanation for the improved behavior of this symmetrization.

Table 5.20: Iteration count for 2D Laplacian with approximate inverse probing with kp = 2, k = 1,

symmetrization M̂α, and different ρ.

n 100 225 400 625 900
ρ 0 9 12 0 18 22 0 32 36 0 48 52 0 52 56

#it 14 10 23 20 13 22 26 16 36 32 19 42 37 22 23

5.3 Numerical Examples for MSPAI Probing 107

5.3.5 Consecutive Probing Steps

In Section 3.3.3, we already mentioned that in the case of factorized probing, we first improve
one of the two given factors L,U by MSPAI probing and then obtain a second probed factor
by the transposed formulation (3.10). Furthermore, factorized symmetrization gives us
the possibility to combine the two factors to one. Here, we want to investigate whether
it makes sense to combine more than two consecutive probing steps. For this example,
we consider a standard five-point stencil discretization of the 2D Laplacian of dimension
n = 225. We compute an ILU(0) factor L and use it as a starting point for probing. After
the first application of MSPAI probing with probing vector e = 1/

√
n(1, . . . , 1)T , we obtain

a matrix Ũ . The symmetrized preconditioner Lα(L, Ũ) is then employed in pcg to solve the
corresponding system. With Ũ as input, we further apply MSPAI probing to obtain a factor
L̃ and symmetrize it together with Ũ . Finally, a third probing step using L̃ yields ˜̃U .

In Figure 5.5, both the condition numbers and iteration counts for these three consecutive
MSPAI probing steps for the weight ρ ∈ [0, 100] are depicted. Preconditioning with Lα(L, Ũ)
leads to the same picture as it was observed in Section 5.3.4. After the second probing
step, we see that preconditioning with Lα(L̃, Ũ) causes a better condition number for the
exact symmetrization, but this does not lead to a lower iteration count. Moreover, the
interval in which the weight ρ leads to the lowest iteration count becomes smaller. ρ has
to be chosen even more carefully after the third probing step. Inexact symmetrization with
minimizing a polynomial of order 2 does not lead to satisfying results anymore. Also with
exact symmetrization, the condition number for the preconditioner Lα(L̃, ˜̃U) deteriorates if
ρ is chosen to large. Furthermore, in terms of iteration counts, the interval of optimal ρ has
again become smaller.

Therefore, for practical applications, we recommend only one or two consecutive probing
steps, which can lead to improved convergence behavior, but also forces the weight ρ to be
chosen much more carefully.

108 5 Numerical Examples

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

11

12

13

ρ

co
nd

iti
on

 n
um

be
r

Lα,4

Lα,2

IC(0)
MIC(0)

(a) Condition numbers for Lα(L, Ũ).

0 10 20 30 40 50 60 70 80 90 100

11

12

13

14

15

16

17

ρ

ite
ra

tio
n

nu
m

be
rs

 p
cg

Lα,4

Lα,2

IC(0)
MIC(0)

(b) Iteration counts for Lα(L, Ũ).

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

12

13

ρ

co
nd

iti
on

 n
um

be
r

Lα,4

Lα,2

IC(0)
MIC(0)

(c) Condition numbers for Lα(Ũ , L̃).

0 10 20 30 40 50 60 70 80 90 100

11

12

13

14

15

16

17

ρ

ite
ra

tio
n

nu
m

be
rs

 p
cg

Lα,4

Lα,2

IC(0)
MIC(0)

(d) Iteration counts for Lα(Ũ , L̃).

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

ρ

co
nd

iti
on

 n
um

be
r

Lα,4

Lα,2

IC(0)
MIC(0)

(e) Condition numbers for Lα(L̃, ˜̃U).

0 10 20 30 40 50 60 70 80 90 100

11

12

13

14

15

16

17

ρ

ite
ra

tio
n

nu
m

be
rs

 p
cg

Lα,4

Lα,2

IC(0)
MIC(0)

(f) Iteration counts for Lα(L̃, ˜̃U).

Figure 5.5: Condition numbers and iteration counts for consecutive probing steps.

109

Conclusions and Future Work

To round up this thesis, we would like to give a summary of the results and point out a
few ideas for future work. The fundamentals for the whole topic are given in Chapter 1.
In Chapter 2, we elaborated some minor pieces of original research such as SPAI pattern
updates for complex systems of linear equations, and a reformulation and extension of a
nonsingularity result for SPAI. An investigation on SPAI as a regularization method for
image restoration problems showed that SPAI is adequate for this task as well. Furthermore,
we presented the effect of a fill-in-reducing graph ordering algorithm on FSPAI pattern
updates. The resulting FSPAIs are denser and therefore cheaper to compute and apply. A
theoretical result on SPAI and FSPAI for M-matrices proves that the FSPAI of an M-matrix
has exclusively non-negative entries. SPAI does not have this property.

The main contribution to ongoing research is the development of the MSPAI probing ap-
proach in Chapter 3, which combines the advantages of classical probing, application of
modified preconditioners, and Frobenius norm minimizations:

• MSPAI allows us to compute both explicit and inverse approximations in either fac-
torized or unfactorized form.

• Arbitrary factorized preconditioners given such as ILU or AINV, can be improved via
MSPAI, since it adds probing information.

• We can improve approximations to Schur complements by adding probing information.

• It is possible to compute sparse spectrally equivalent approximations to dense or almost
dense matrices.

• Even matrices that are only known implicitly can be used in MSPAI.

• MSPAI shows great versatility in the choice of the probing subspaces. Whereas classical
probing and MILU or MIC are restricted to rather simple probing vectors, we can
choose whatever seems to be accurate for the actual problem as probing vectors.

• MSPAI computations are easier to parallelize than for instance the MILU precondi-
tioners. Due to the underlying Frobenius norm minimization, MSPAI is inherently
parallel.

• Through various symmetrization techniques, we can regain symmetry and sometimes
even positive definiteness in the preconditioner.

Our numerical experiments (Chapter 5) reveal the effectiveness of our method in terms of
lower condition numbers, lower iteration counts, and thus faster convergence compared to
classical probing, classical SPAI, or the modified preconditioners. However, in the inverse
probing case, the weighting factor ρ and the probing vectors are to be chosen carefully
such that the preconditioner does not deteriorate. As a first step for understanding this
phenomenon, we also presented a purely structural condition for the sparsity patterns of

110 Conclusions and Future Work

the probing vectors and the prescribed sparsity pattern for the preconditioner. This condi-
tion helps to ensure the error reduction in the probing constraints. If we adapt the sparsity
patterns such that this structural requirement is fulfilled, the error in the “main” approxima-
tion may grow disproportionately and strongly worsen the condition number. The explicit
probing variants turned out to be the most stable types of MSPAI.

In Chapter 4, we described the design of an MSPAI implementation which clearly outper-
forms the current standard SPAI implementation both in serial applications and parallel
environments. Furthermore, it has a much larger functionality than SPAI 3.2 such as sup-
port for complex coefficient matrices, arbitrarily prescribed start patterns, and maximum
sparsity patterns. Moreover, the residual matrix R = I−AM is returned. Runtime compar-
isons proved the clear raise in efficiency achieved through QR updates, sparse least squares
methods, and the employment of maximum sparsity patterns.

Finally, we suggest a few further promising fields of application for MSPAI probing:

• Image Restoration. By MSPAI probing, we could construct preconditioners which
act stronger on large eigenvalues than for instance SPAI does. Additionally, we can
force the preconditioner to neglect the small and noise-amplifying eigenvalues by prob-
ing with adequate probing vectors. This would extend our tests of SPAI in image
restoration, see Section 2.1.5.

• Smoothers in Multigrid. For multigrid [98] methods, it should be possible to
compute smoothers with improved smoothing properties, again, by optimizing them on
certain parts of the spectrum. SPAI’s smoothing properties were already investigated
in [22].

• Preconditioner Updates. Systems of nonlinear equations solved with Newton-
or Broyden-type methods, often lead to a sequence of linear systems of equations,
which have to be solved. From step to step, these systems do not differ much. Thus,
respective preconditioners are rather similar. For such cases, Tůma [38] proposed not
to recompute the preconditioner in every step, but to update the current one. MSPAI
probing could help here to determine updates of improved quality. Possibly, fewer
preconditioner updates would then be necessary.

• Interior Point Methods in Optimization. Interior point methods for linear,
nonlinear, and quadratic programming lead to saddle point problems with very ill-
conditioned submatrices having special structures. Gondzio et al. [16] therefore inves-
tigated the iterative solution of these systems using preconditioning techniques. The
special structure of the submatrices favors MSPAI-like approaches in order to get rid
of the ill-conditioning.

111

Bibliography

[1] ACML – AMD Core Math Library. http://developer.amd.com/acml.jsp.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree
ordering algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[3] ATLAS – Automatically Tuned Linear Algebra Software. http://
math-atlas.sourceforge.net/.

[4] O. Axelsson, A generalized SSOR method, BIT, 13 (1978), pp. 443–467.

[5] O. Axelsson, Iterative Solution Methods, Cambridge University Press, first ed., 1994.

[6] O. Axelsson and V. Barker, Finite Element Solution of Boundary Value Problems,
Theory and Computation, Academic Press, Orlando, Florida, 1984.

[7] O. Axelsson and B. Polman, Block preconditioning and domain decomposition
methods, J. Comp. Appl. Math., 24 (1988), pp. 55–72.

[8] Z. Z. Bai, I. S. Duff, and A. J. Wathen, A class of incomplete orthogonal factor-
ization methods I, BIT, 41 (2001), pp. 53–70.

[9] S. Barnard and M. Grote, A block version of the SPAI preconditioner, Proc. of
the 9th SIAM conference on Parallel Processing for Scientific Computing, held in San
Antonio, TX, March 1999., (1999).

[10] S. T. Barnard, L. M. Bernardo, and H. D. Simon, An MPI implementation
of the SPAI preconditioner on the T3E, International Journal of High Performance
Computing Applications, 13 (1999), pp. 107–123.

[11] M. W. Benson and P. O. Frederickson, Iterative solution of large sparse linear
systems arising in certain multidimensional approximation problems, Utilitas Mathe-
matica, 22 (1982), pp. 127–140.

[12] M. Benzi, C. D. Meyer, and M. Tůma, A sparse approximate inverse precondi-
tioner for the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–
1149.

[13] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsym-
metric linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[14] , A comparative study of sparse approximate inverse preconditioners, Appl. Nu-
mer. Math., 30 (1999), pp. 305–340.

[15] , Orderings for factorized sparse approximate inverse preconditioners, SIAM J.
Sci. Comput., 21 (2000), pp. 1851–1868.

[16] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems
in interior point methods for optimization, Computational Optimization and Applica-
tions, 28 (2004), pp. 149–171.

http://developer.amd.com/acml.jsp
http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/

112 Bibliography

[17] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996.

[18] Å. Björck and G. Dahlquist, Numerische Methoden, Oldenbourg, second ed.,
1979.

[19] Å. Björck and G. H. Golub, Iterative refinement of linear least squares solutions
by Householder transformations, BIT, 7 (1967), pp. 322–337.

[20] M. Bollhöfer, A robust and efficient ILU that incorporates the growth of the inverse
triangular factors, SIAM J. Sci. Comput., 25 (2003), pp. 86–103.

[21] M. Brenk, H.-J. Bungartz, I. L. Muntean, and T. Neckel, Simulating large
particle movements in drift ratchets using cartesian grids, in Int. Conf. on Computa-
tional Methods for Coupled Problems in Science and Engineering (COUPLED PROB-
LEMS 2007), M. Papadrakakis, E. Onate, and B. Schrefler, eds., Barcelona, May 2007,
International Center for Numerical Methods in Engineering (CIMNE).

[22] O. Bröker, J. Grote, C. Mayer, and A. Reusken, Robust parallel smoothing for
multigrid via sparse approximate inverses, SIAM J. Sci. Comput., 23 (2001), pp. 1396–
1417.

[23] L. Cesari, Sulla resoluzioni dei sistemi di equazioni lineari per approssimazioni suc-
cessivie, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fiss. Mat. Nat., 25 (1937), pp. 422–428.

[24] T. F. Chan and T. P. Mathew, The interface probing technique in domain decom-
position, SIAM J. Mat. Anal. Appl., 13 (1992), pp. 212–238.

[25] K. Chen, Matrix Preconditioning Techniques and Applications, Cambrigde Mono-
graphs on Applied and Computational Mathematics, first ed., 2005.

[26] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22
(1968), pp. 745–762.

[27] E. Chow, A priori sparsity patterns for parallel sparse inverse preconditioners, SIAM
J. Sci. Comput., 21 (2000), pp. 1804–1822.

[28] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite
matrices, J. Comput. Appl. Math., 86 (1997), pp. 387–414.

[29] CSparse – Concise Sparse Package. http://www.cise.ufl.edu/research/
sparse/CSparse/.

[30] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices,
Proc. ACM Nat. Conf., (1969), pp. 157–172.

[31] CXSparse – Extended Concise Sparse Package. http://www.cise.ufl.edu/
research/sparse/CXSparse/.

[32] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[33] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy,
Error bounds from extra precise iterative refinement, ACM Transactions on Mathe-
matical Software (TOMS), 32 (2006), pp. 325–351.

[34] J. Demmel, Y. Hida, X. S. Li, and E. J. Riedy, Extra-precise iterative re-
finement for overdetermined least squares problems, LAPACK Working Notes http:
//www.netlib.org/lapack/lawns/downloads/lawn188.pdf, (2007).

http://www.cise.ufl.edu/research/sparse/CSparse/
http://www.cise.ufl.edu/research/sparse/CSparse/
http://www.cise.ufl.edu/research/sparse/CXSparse/
http://www.cise.ufl.edu/research/sparse/CXSparse/
http://www.netlib.org/lapack/lawns/downloads/lawn188.pdf
http://www.netlib.org/lapack/lawns/downloads/lawn188.pdf

Bibliography 113

[35] P. Deuflhard and A. Hohmann, Numerical Analysis in Modern Scientific Com-
puting. An Introduction, Springer, second ed., 2003.

[36] F. Di Benedetto, C. Estatico, and S. Serra-Capizzano, Superoptimal precon-
ditioned conjugate gradient iteration for image deblurring, SIAM J. Sci. Comp., 26
(2005), pp. 1012–1035.

[37] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue, Approximating the inverse
of a matrix for use in iterative algorithms on vector processors, Computing, 22 (1979),
pp. 257–268.

[38] J. Duintjer Tebbens and M. Tůma, Preconditioner updates for solving sequences
of large and sparse nonsymmetric linear systems, SIAM J. Sci. Comp., 29 (2007),
pp. 1918–1941.

[39] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, Algorithms and data
structures for sparse symmetric Gaussian elimination, J. Sci. Stat. Comp., 2 (1981),
pp. 225–237.

[40] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast It-
erative Solvers: with applications in incompressible fluid dynamics, Oxford University
Press, 2005.

[41] G. Fischer, Lineare Algebra, Vieweg, twelfth ed., 2000.

[42] D. Flade, Numerische Methoden der Bildrekonstruktion mit verschiedenen Regular-
isierungspräkonditionierern, Diploma thesis, Fakultät für Informatik, Technische Uni-
versität München, Dec. 2006.

[43] A. George, Graph Theory and Sparse Matrix Computation, Springer, 1993.

[44] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Num.
Anal., 10 (1973), pp. 345–363.

[45] J. R. Gilbert, Predicting structure in sparse matrix computations., SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 62–79.

[46] G. H. Golub and C. Van Loan, Matrix Computations, The John Hopkins Univer-
sity Press, third ed., 1996.

[47] N. I. M. Gould and J. A. Scott, Sparse approximate-inverse preconditioners using
norm-minimization techniques, SIAM J. Sci. Comput., 19 (1998), pp. 605–625.

[48] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate in-
verses, SIAM J. Sci. Comput., 18 (1997), pp. 838–853.

[49] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), pp. 142–
156.

[50] M. Hagemann and O. Schenk, Weighted matchings for preconditioning symmetric
indefinite linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 403–420.

[51] G. Hämmerlin and K.-H. Hoffmann, Numerische Mathematik, Springer, third ed.,
1992.

[52] M. Hanke, Conjugate Gradient Type Methods for Ill-posed Problems, Longman Sci-
entific & Technical, 1995.

114 Bibliography

[53] M. Hanke and J. G. Nagy, Restoration of atmospherically blurred images by sym-
metric indefinite conjugate gradient techniques, Inverse Problems, 12 (1996), pp. 157–
173.

[54] M. Hanke, J. G. Nagy, and R. Plemmons, Preconditioned iterative regularization
for ill-posed problems, Numerical Linear Algebra, (1996), pp. 141–163.

[55] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stand., 49 (1952), pp. 409–436.

[56] N. Higham, Turing, Wilkinson, and Gaussian elimination. http://www.maths.
manchester.ac.uk/~higham/talks/twge96.ps.gz, 1996.

[57] R. M. Holland, G. J. Shaw, and A. J. Wathen, Sparse approximate inverses
and target matrices, SIAM J. Sci. Comp., 26 (1992), pp. 1000–1011.

[58] S. Hörmann, Entwicklung und Analyse modifizierter unvollständiger LU-Zerlegungen
mittels Probing, Diploma thesis, Fakultät für Mathematik, Technische Universität
München, June 2007.

[59] T. Huckle, Efficient computation of sparse approximate inverses, Numer. Linear
Algebra, 5 (1998), pp. 57–71.

[60] , Factorized sparse approximate inverses for preconditioning and smoothing,
Selçuk J. Appl. Math., 1 (2000), pp. 63–70.

[61] , Approximate sparsity patterns for the inverse of a matrix and preconditioning,
Appl. Numer. Math., 30 (2003), pp. 291–303.

[62] , Factorized sparse approximate inverses for preconditioning, The Journal of Su-
percomputing, 25 (2003), pp. 109–117.

[63] T. Huckle and A. Kallischko, Frobenius norm minimization and probing for
preconditioning, International Journal of Computer Mathematics, 84 (2007), pp. 1225–
1248.

[64] IBM Research Project Cell Processor. http://www.research.ibm.com/
cell/.

[65] IFISS, Software package, incompressible flow & iterative solver software version 2.2.
http://www.maths.manchester.ac.uk/~djs/ifiss/.

[66] InfiniCluster. http://www.lrr.in.tum.de/Par/arch/infiniband/ClusterHW/
cluster.html.

[67] Intel MKL – Intel Math Kernel Library. http://www.intel.com/cd/
software/products/asmo-na/eng/307757.htm.

[68] T. K. Jensen, Stabilization algorithms for large scale problems, PhD thesis, 2006.

[69] O. G. Johnson, C. A. Micchelli, and G. Paul, Polynomial preconditioning for
conjugate gradient calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362–376.

[70] S. K’Ang-Shen, S. Kangshen, and K. Shen, The Nine Chapters on the Mathe-
matical Art: Companion and Commentary, Oxford University Press, 1999.

[71] I. Kaporin, New convergence results and preconditioning strategies for the conjugate
gradient method, Numer. Linear Algebra Appl., 1 (1994), pp. 179–210.

http://www.maths.manchester.ac.uk/~higham/talks/twge96.ps.gz
http://www.maths.manchester.ac.uk/~higham/talks/twge96.ps.gz
http://www.research.ibm.com/cell/
http://www.research.ibm.com/cell/
http://www.maths.manchester.ac.uk/~djs/ifiss/
http://www.lrr.in.tum.de/Par/arch/infiniband/ClusterHW/cluster.html
http://www.lrr.in.tum.de/Par/arch/infiniband/ClusterHW/cluster.html
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm

Bibliography 115

[72] G. Karypis and V. Kumar, Multilevel k-way hypergraph partitioning, VLSI Design,
11 (2000), pp. 285–300.

[73] D. Kay, D. Loghin, and A. J. Wathen, A preconditioner for the steady-state
Navier-Stokes equation, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[74] L. Y. Kolotilina, A. A. Nikishin, and A. Y. Yeremin, Factorized sparse ap-
proximate inverse preconditionings IV: Simple approaches to rising efficiency, Numer.
Linear Algebra Appl., 6 (1999), pp. 515–531.

[75] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse pre-
conditionings I: Theory, SIAM J. Mat. Anal. Appl., 14 (1993), pp. 45–58.

[76] LAPACK – Linear Algebra Package. http://www.netlib.org/lapack/.

[77] Matrix Market. http://math.nist.gov/MatrixMarket/.

[78] MPI – Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/.

[79] R.-P. Mundani, Hierarchische Geometriemodelle zur Einbettung verteilter Simula-
tionsaufgaben, PhD thesis, Fakultät Informatik, Elektrotechnik und Informationstech-
nik, Universität Stuttgart, 2005.

[80] M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, 2004.

[81] PETSc – Portable, Extensible Toolkit for Scientific Computation. http:
//www-unix.mcs.anl.gov/petsc/petsc-as/.

[82] A. Roy, Untersuchung dünnbesetzter QR-Verfahren bei der Berechnung dünnbesetzter
approximativer Inverser, Diploma thesis, Fakultät für Informatik, Technische Univer-
sität München, June 2007.

[83] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, second ed., 2000.

[84] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–
869.

[85] H. Samet, The quadtree and related hierarchical data structures, ACM Computing
Surveys, 16 (1984), pp. 187–260.

[86] M. Sedlacek, Implementierung und Tests von Hashing- und Caching-Strategien bei
Berechnung dünnbesetzter approximativer Inverser (SPAI), sowie einer graphischen
Oberfläche für Anwendung von Bildoperatoren, Systementwicklungsprojekt, Fakultät
für Informatik, Technische Universität München, Dec. 2006.

[87] , Effiziente parallele Implementierung des MSPAI Präkonditionierers unter Ver-
wendung von Caching-Strategien und QR-Updates, Diploma thesis, Fakultät für Infor-
matik, Technische Universität München, Jan. 2008.

[88] C. Siefert and E. Sturler, Probing methods for saddle-point problems, Electronic
Transactions on Numerical Analysis, 22 (2006), pp. 163–183.

[89] R. D. Skeel, Scaling for numerical stability in Gaussian elimination, J. ACM 26, 3
(1979), pp. 494–526.

[90] , Iterative refinement implies numerical stability for Gaussian elimination, Math.
Comp. 35, 151 (1980), pp. 817–832.

http://www.netlib.org/lapack/
http://math.nist.gov/MatrixMarket/
http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/petsc/petsc-as/
http://www-unix.mcs.anl.gov/petsc/petsc-as/

116 Bibliography

[91] SPAI 3.2 – Sparse Approximate Inverses. http://www.computational.unibas.
ch/software/spai/.

[92] A. Steger, Diskrete Strukturen, Band 1: Kombinatorik – Graphentheorie – Algebra,
Springer, first ed., 2001.

[93] J. Stoer, Numerische Mathematik 1, Springer, fourth ed., 1983.

[94] J. Stoer and R. Bulirsch, Einführung in die Numerische Mathematik II, Springer,
second ed., 1978.

[95] B. Stroustrup, Die C++-Programmiersprache, Addison-Wesley, fourth ed., 2000.

[96] A. S. Tanenbaum, Moderne Betriebssysteme, Pearson Studium, second ed., 2002.

[97] A. Tikhonov, Solution of incorrectly formulated problems and the regularization
method, Soviet Math. Dokl., 4 (1963), pp. 1035–1038.

[98] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press,
first ed., 2001.

[99] A. Turing, Rounding-off errors in matrix processes, Quart. J. Mech. and Applied
Math., 1 (1948), pp. 287–308.

[100] UNIQA Tower. http://tower.uniqa.at/.

[101] University of Florida Matrix Collection. http://www.cise.ufl.edu/
research/sparse/matrices/.

[102] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput., 13 (1992),
pp. 631–644.

[103] K. Wang, O. Lawlor, and L. V. Kale, The nonsingularity of sparse approxi-
mate inverse preconditioning and its performance based on processor virtualization,
Technical Report, Department of Computer Science, University of Illinois at Urbana-
Champaign, (2005).

[104] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc.
Meth., 2 (1981), pp. 77–79.

[105] O. C. Zienkiewicz, Methode der finiten Elemente, Carl Hanser Verlag, second ed.,
1983.

http://www.computational.unibas.ch/software/spai/
http://www.computational.unibas.ch/software/spai/
http://tower.uniqa.at/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

	Introduction
	Numerical Solution of Systems of Linear Equations
	Gauss Algorithm and LU Factorization
	Triangular Systems
	LU Decomposition by Gaussian Elimination
	Cholesky Decomposition
	Iterative Refinement

	Condition Number of Systems of Linear Equations
	Sparse Matrices
	Sparse Storage Schemes and Basic Matrix Operations
	The Graph Related to a Matrix
	Approximate Minimum Degree Reordering

	Iterative Solution Methods
	Basic Algorithms
	Krylov Subspace Methods

	Preconditioning
	Forward Preconditioners
	Inverse Preconditioners

	SPAI and FSPAI
	SPAI
	Solution of the Least Squares Problems
	Pattern Updates
	Sparsity Patterns
	Theoretical Properties of SPAI
	Example Application: SPAI in Image Restoration

	FSPAI
	Computation of FSPAI for Fixed Pattern
	Pattern Updates
	Effect of Approximate Minimum Degree Reordering on FSPAI

	M-Matrices

	Modified SPAI
	Probing
	Modified Incomplete Factorizations
	Generalized Form of Frobenius Norm Minimization and Probing
	Sparse Approximate Inverses and Probing
	Explicit Approximation and Probing
	Explicit Factorized Approximation and Probing
	Approximating a Factorization of A-1
	Application to Schur Complements

	Probing Vectors
	Standard Choices of Probing Vectors
	Graph Based Identification of Probing Vectors

	Theoretical Results for MSPAI
	Symmetrization Techniques
	Unfactorized Symmetrization by Frobenius Norm Minimization
	Symmetrization by Combining two Basic Iteration Steps
	SPAI Acceleration
	Symmetrization for Factorized Approximations

	Efficient Implementation
	Solution of SPAI-type Least Squares Problems
	QR Decomposition with Householder Reflections
	Sparse Least Squares Problems
	QR Updates and Sparse QR Updates
	Single Precision QR Decomposition

	Caching Algorithm
	Maximum Sparsity Pattern
	Comparison of MSPAI 1.0 and SPAI 3.2
	Features of MSPAI 1.0
	Runtimes

	Numerical Examples
	Example from Statics' Simulation
	Effect of AMD on FSPAI Pattern Updates
	Numerical Examples for MSPAI Probing
	MSPAI Probing for Domain Decomposition Methods
	MSPAI Probing for Stokes Problems
	MSPAI Probing for Dense Matrices
	Comparison ILU and MILU with MSPAI Probing
	Consecutive Probing Steps

	Conclusions and Future Work
	Bibliography

