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Zusammenfassung

Positiv-definite Funktionen treten in verschiedenen Fragestellungen in der reinen
und angewandten Mathematik auf, wie zum Beispiel im Bereich der orthogonalen
Polynome, der numerischen Quadratur, sowie der Zeitreihenanalyse. In diesen Ge-
bieten liegt dem Begriff der positiven Definitheit üblicherweise eine Gruppen- bzw.
Halbgruppenstruktur zugrunde. Wir verallgemeinern zentrale Sätze über positiv-
definite Funktionen auf allgemeinere algebraische Strukturen, die von polynomialen
Folgen induziert werden. Insbesondere zeigen wir, dass jede solche positiv-definite
Funktion die Transformierte eines positiven endlichen Borel-Maßes auf den reellen
Zahlen ist, und finden Voraussetzungen, unter denen die Beschaffenheit des Trägers
dieses Maßes genauer bestimmt werden kann. Zur Veranschaulichung und An-
wendung der Ergebnisse werden stationäre Folgen und bestimmte nicht-autonome
lineare Volterra-Differenzengleichungen betrachtet. Im letzteren Fall erhalten wir
Aussagen über die Existenz unbeschränkter Lösungen.

Abstract

Positive definite functions arise in various areas in pure and applied mathematics,
such as orthogonal polynomials, numerical integration, and time series analysis. In
these applications, the notion of positive definiteness is depending on an underlying
group or semigroup structure. We extend some central results on positive definite
functions to more general algebraic structures, which are induced by polynomial
sequences. In particular, we show that every positive definite function of this type
is the transform of a positive finite Borel measure on the reals, and find conditions
which yield more information on the character of the support of this measure. For
illustration and application of our results, we consider stationary sequences and
certain nonautonomous linear Volterra difference equations. In the latter case,
statements on the existence of unbounded solutions are obtained.
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Introduction

Positive definite sequences arise in various classical questions in pure and applied
mathematics, such as the moment problem and time series analysis. These fields
share the problem that a measure representing the positive definite sequence is
required. In the theory of orthogonal polynomials and the moment problem, this
measure is the orthogonalizing measure, in the theory of stationary sequences, it is
the spectral measure. We will deal with both areas.

Positive definiteness is depending on the underlying algebraic structure on N0 or
Z. For example, the group (Z, +) can be studied, occurring in time series analysis,
cp. [BD02], or the semigroup (N0, +), as in the theory of orthogonal polynomials and
the moment problem, cp. [BCR84]. We will concentrate on polynomial hypergroups
(N0, ω) and more general structures on N0 defined by polynomial sequences, which
contain the semigroup (N0, +) as a special case.

For instance, in time series analysis, the covariance function of a weakly stationary
stochastic process

(
Xn

)
n∈Z satisfies

ψ(m,n) := Cov(Xm; Xn) = Cov(Xm−n; X0).

Hence ψ : Z × Z → C is only depending on the value of m − n. The abbrevi-
ated covariance function ϕ : Z → C, h 7→ ψ(h, 0) is positive definite and can be
represented by Herglotz’s theorem, compare [BD02, Theorem 4.3.1], by

ϕ(h) =

∫

(−π;π]

eihν dF (ν),

ψ(m,n) =

∫

(−π;π]

ei(m−n)ν dF (ν).

We will extend this theorem to the previously mentioned algebraic structures on
N0. This establishes the possibility to analyze more general data.
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Introduction

The following question is commonly known as the moment problem: Does there
exist a positive measure µ such that a given sequence

(
µn

)
n∈N0

, µn ∈ R, can be
represented as

µn =

∫

R
xn dµ ∀n ∈ N0?

This question can be answered positively if and only if
(
µn

)
n∈N0

is a positive definite

sequence, see [Cho69, 34.9 Theorem]. If the monomials are substituted by a more
general polynomial sequence – for example an orthogonal polynomial sequence –
this question is called modified moment problem. It is of certain interest in numer-
ical analysis and time series analysis with appropriate covariance properties. For
the purposes of numerical integration, modified moments lead to a stabilization of
the Chebyshev algorithm, cf. [CZ93], which computes the recurrence coefficients of
the orthogonal polynomials corresponding to the underlying measure.

In the context of polynomial hypergroups and signed polynomial hypergroups an
approach to the representation of positive definite functions has already been made.
An orthogonal polynomial sequence

(
Rn

)
n∈N0

with the properties

Rn(1) = 1 ∀n ∈ N0,

g(m,n; k) ≥ 0 ∀m,n ∈ N0, |m− n| ≤ k ≤ m + n,
(P)

where g(m,n; k) denote the linearization coefficients of the product RmRn, namely

RmRn =
m+n∑

k=|m−n|
g(m,n; k)Rk,

induces a polynomial hypergroup (N0, ω). The convolution ω is defined via the lin-
earization coefficients. Bochner’s theorem characterizes the bounded positive def-
inite functions on the polynomial hypergroup as transforms of a positive measure
supported on the set of all real bounded characters of (N0, ω), which is homeomor-
phic to the set

D := {x ∈ R : |Rn(x)| ≤ 1 ∀n ∈ N0} ⊆ [−1; 1].

For corresponding reference on hypergroups and the Bochner theorem see for ex-
ample [BH95].

Since orthogonal polynomials always obey a three-term recurrence relation, there
is a close relationship to the theory of difference equations. We will show that
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Bochner’s theorem yields conditions for the boundedness or unboundedness of so-
lutions of time-depending linear difference equations.

Property (P) is a very strong condition, which we would like to loosen. Hence we
are interested in positive definite functions, where the convolution is not necessarily
induced by a polynomial hypergroup but by a polynomial sequence which is as
general as possible. This generalization enables us to understand the anatomy
of Bochner’s theorem for polynomial hypergroups. Since our approach does not
depend on positivity and orthogonality assumptions any more, we will be be able
to make statements on a wider class of linear difference equations and stationary
sequences than with polynomial hypergroups.

The outline of this thesis is as follows: In Chapter 1 we introduce polynomial hy-
pergroups and the Bochner theorem as well as some measure theoretical notation
and the spectral theorem for unbounded normal operators.
Chapter 2 is devoted to the representing measures of Pn-positive definite sequences.
Existence and uniqueness questions will be treated. As the assumptions of Bochner’s
theorem are rather strong, we are interested in the question, which assumptions are
actually necessary in order to obtain single statements of the theorem. A large step
in this direction has already been made by Margit Rösler [Rös95]. She was able to
show that replacing assumption (P) by

m+n∑

k=|m−n|
|g(m,n; k)| ≤ C ∀m,n ∈ N0, (S)

where C ≥ 0, leads to a very similar theorem, where only the set D has to be
replaced by

{x ∈ C : sup
n∈N0

|Rn(x)| < ∞}.

In order to analyze the different parts of the Bochner theorem, we will start with
a general polynomial sequence, which satisfies only weak properties. After that
we will gradually add to the assumptions. As a next step, we characterize those
functions which can be represented by a singular or absolutely continuous measure.
Finally, Stieltjes’ and Haviland’s modified moment problem will be solved, i.e. we
provide a sufficient and necessary condition for Pn-positive definite sequences such
that a representing measure exists which is supported on [0;∞) and [−1; 1], respec-
tively.
Chapter 3 comes up with various examples of Pn-positive definite functions. As
in the case of the monomials on the unit circle, the Pn-positive definite functions
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Introduction

can be characterized as covariance functions of weakly stationary processes. We
discuss certain aspects of those processes, such as spectral measure, generator and
imaginary part. We conclude the chapter with some specific examples.
In our last chapter we turn towards an application of our results to nonautonomous
linear difference equations and certain Volterra difference equations.

A number of people supported and encouraged me over the past three years.
Prof. Dr. R. Lasser gave me the inspiration and possibility to work on this topic
at the Institute of Biomathematics and Biometry at the GSF in Neuherberg. My
colleagues there have been a constant support. I owe a lot to Prof. Dr. R. Szwarc,
who helped me to ask the right questions during my four-weeks stay at Wroclaw
University, Poland. I had a very inspiring time there. Dr. C. Pötzsche was a big
help by proofreading this thesis and eliminating tons of typos. Last but not least,
I could always rely on my family and friends, especially on my parents Klaus and
Ingrid, Karola, and Christian. Thanks a lot to all of you!

Neuherberg, September 2007 Kristine Ey
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1 Preliminaries

In preparation of our results in the following chapters, we provide some mathemat-
ical tools. Apart from two lemmata in Section 1.2 no proofs will be given, since
all results are well-known from the literature. Before we present the necessary
theorems, we define some important vector spaces and sets.

Throughout the thesis, we abbreviate the complex, real, and natural numbers with
C, R, and N, respectively. The integers will be written as Z and N0 := N ∪ {0}.
We will denote the polynomials of exact degree n ∈ N0 with real and complex
coefficients by Pn[R] and Pn[C], respectively. Polynomials of arbitrary degree will
be denoted by P[R] resp. P[C]. We will abbreviate the most important sequence
spaces on N0 in the following way:

• the space of all sequences

`(N0) := {x : N0 → C} ,

• the space of all bounded sequences

`∞(N0) :=

{
x ∈ `(N0) : sup

n∈N0

|x(n)| < ∞
}

,

which becomes a Banach space with the supremum norm

‖x‖∞ := sup
n∈N0

|x(n)| ∀ x ∈ `∞(N0),

• the space of all absolutely summable sequences

`1(N0) :=

{
x ∈ `(N0) :

∞∑
n=0

|x(n)| < ∞
}

,
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1 Preliminaries

which becomes a Banach space with the norm

‖x‖1 :=
∞∑

n=0

|x(n)| ∀ x ∈ `1(N0),

• the space of all square summable sequences

`2(N0) :=

{
x ∈ `(N0) :

∞∑
n=0

|x(n)|2 < ∞
}

,

which becomes a Hilbert space with the scalar product

〈x; y〉 :=
∞∑

n=0

x(n)y(n) ∀x, y ∈ `2(N0)

and the norm

‖x‖2 :=
√
〈x; x〉 ∀ x ∈ `2(N0).

1.1 Measure Theory and Representation

Theorems

For our representation theorems, we need suitable sets of bounded measures sup-
ported on closed subsets of the real line. Hence the appropriate σ-Algebra is the
Borel σ-Algebra B. We will call a measure µ : B → C, where −∞ ≤ a < b ≤ ∞,

• positive Borel measure on [a; b], if there exists a bounded monotonously in-
creasing right-continuous function F : [a; b] → [0;∞) with

lim
x↘a

F (x) = 0

such that dµ(x) = dF (x), namely µ
(
(c; d]

)
= F (d)−F (c) for all a ≤ c ≤ d ≤

b. We denote the space of all positive Borel measures on [a; b] by M+([a; b]).

• signed Borel measure on [a; b], if there exist µ+, µ− ∈ M+([a; b]) with µ =
µ+−µ−. We denote the space of all signed Borel measures on R by M([a; b]).

2



1.1 Measure Theory and Representation Theorems

• complex Borel measure on [a; b], if <µ and =µ are signed regular Borel mea-
sures on [a; b]. We denote the space of all complex Borel measure on [a; b] by
MC([a; b]).

Note that M+([a; b]) ⊂ M([a; b]) ⊂ MC([a; b]), since we postulate µ(R) < ∞
for all positive measures. For a complex Borel measure µ, we define its variation
|µ| ∈ M+(R) for all B ∈ B by

|µ|(B) := sup

{ ∞∑
n=1

|µ(Bn)| : Bn ∈ B,

∞⋃
n=1

Bn = B, Bn pairwise disjoint

}

There exists a Borel measurable function f with |f(x)| = 1 for all x ∈ R, such
that |µ|(B) =

∫
B

f dµ for all B ∈ B. |||µ||| := |µ|(R) is called total variation of
µ. Note that the total variation every complex Borel measures is finite. In fact,
(MC(R), ||| · |||) is a Banach space. We define the support supp µ of a complex Borel
measure µ ∈MC([a; b]) by

supp µ :=
{

x ∈ [a; b] : |µ|([x− ε; x + ε]
)

> 0 for all ε > 0
}

.

A positive Borel measure µ induces several function spaces. We will abbreviate for
1 ≤ p < ∞ the space of all Borel measurable p-integrable functions by

Lp
(
[a; b], µ

)
:=

{
f : [a; b] → C : f measurable,

∫

[a;b]

|f |p dµ < ∞
}

.

Unfortunately, the mapping f 7→
(∫

[a;b]
|f |p dµ

) 1
p

is only a seminorm for many

choices of positive measures µ, since it is not necessarily positive definite. In order
to avoid this problem, we define the equivalence relation

f ∼ g :⇐⇒ µ
({

x ∈ [a; b] : f(x) 6= g(x)
})

= 0 ∀ f, g ∈ Lp([a; b], µ),

and the equivalence class

[f ] := {g ∈ Lp([a; b], µ) : f ∼ g} ∀ f ∈ Lp([a; b], µ).

Now we are able to define the Banach space of all p-integrable equivalence classes

Lp
(
[a; b], µ

)
:=

{
[f ] : f ∈ Lp

(
[a; b], µ

)}
,

3



1 Preliminaries

which is equipped with the norm

∥∥[f ]
∥∥

p
:=

(∫

[a;b]

|f |p dµ

) 1
p

.

In particular, the space L2([a; b]; µ) is a Hilbert space with the scalar product

〈f ; g〉 :=

∫

[a;b]

fg dµ ∀ f, g ∈ L2([a; b], µ).

Strictly speaking, we would always have to denote the elements of Lp([a; b], µ) by
[f ] for f ∈ Lp([a; b], µ). For abbreviation, we will simply refer to them by f .

In Chapter 2, we will compare complex measures µ and ν on the measurable space
(Ω,A), where Ω is a set – usually a subset of R – and A a σ-algebra on Ω. For
that, we need the following notions:

(i) We call µ absolutely continuous with respect to ν, if for every measurable set
A ∈ A holds

ν(A) = 0 =⇒ µ(A) = 0.

We abbreviate µ ¿ ν.

(ii) We say that µ and ν are mutually singular , if there are two sets Aµ, Aν ∈ A
with Aµ ∩ Aν = ∅ and Aµ ∪ Aν = Ω, such that

µ∣∣Aν
≡ 0 ≡ ν∣∣Aµ

.

We abbreviate µ⊥ν.

Theorem 1.1 (Radon-Nikodym and Lebesgue’s decomposition theorem):
Let (Ω,A, ν) be a finite measure space and µ a σ-finite complex measure on Ω.
Then there exist two σ-finite measures µs and µac such that

µ = µs + µac µs⊥ν, µac ¿ ν.

Moreover, there exists a function f ∈ L1(Ω, µ) such that dµac = f dν.

A proof of this theorem can be found e.g. in [Lan93, Thm. VII.2.4]. Note that
for ν ∈ M+(R), this theorem can be applied to all µ ∈ MC(R), since we assume
ν(R), |µ|(R) < ∞.

4



1.1 Measure Theory and Representation Theorems

We now turn to a representation theorem by Choquet which will be the main basis
for our results in Chapter 2. Let X be a locally compact Hausdorff space and
C(X,K) the vector space of continuous maps f : X → K, K = R,C, and C+(X,R)
the cone of nonnegative continuous functions X → R, i.e.

C+(X,R) := {f ∈ C(X,R) : f ≥ 0} .

Let Y be a subspace of C(X,R) and abbreviate Y + := Y ∩ C+(X,R). The space
Y is called adapted, if

1. Y = Y + − Y +,

2. for all x ∈ X there is a f ∈ Y + such that f(x) > 0,

3. for every f ∈ Y + and ε > 0 there exists some g ∈ Y + and a compact set
C ⊆ X such that

f(x) ≤ εg(x) ∀x ∈ X \ C.

We point out that P[R] ⊂ C(R,R) is an adapted space. Recall the identity P[R]+ =
P[R]2 + P[R]2, cf. [BCR84, 2.1 Lemma]:

Lemma 1.2: Let P ∈ P[R]+, i.e. P (x) ≥ 0 for all x ∈ R. Then there exist
Q1, Q2 ∈ P[R] with P = Q2

1 + Q2
2.

Now we have prepared the necessary vocabulary for Choquet’s representation the-
orem, see e.g. [Cho69, 34.6 Thm.]:

Theorem 1.3 (Choquet’s representation theorem): Let X be a locally com-
pact Hausdorff space and Y ⊆ C(X,R) an adapted space. Suppose Φ: Y → R is
a positive linear functional, i.e. Φ(Y +) ⊆ [0;∞). Then there exists a µ ∈ M+(X)
such that

Φ(f) =

∫

X

f dµ ∀ f ∈ Y

and every f ∈ Y is µ-integrable. Here, M+(X) denotes the set of all positive –
possibly unbounded – Borel measures on X.

5



1 Preliminaries

As we will see in Section 1.3, this theorem provides the solution of the moment
problem.

On a compact set, continuous functions can be uniformly approximated by poly-
nomials, cf. [Lan93, Thm. III.1.1]:

Theorem 1.4 (Weierstraß’ approximation theorem): Let B ∈ B be compact
and f ∈ C(R,C). For every ε > 0 there exists a polynomial Pε ∈ P[C] such that

sup
x∈B

∣∣f(x)− Pε(x)
∣∣ ≤ ε.

1.2 Linear Operators on Hilbert Spaces

In this section, we introduce the basic notation of linear operators and present some
necessary tools from spectral theory. We use [Con90] as basic reference. Let (Ω,A)
be a measurable space – again Ω is a set and A a σ-algebra on Ω – and H a Hilbert
space equipped with the scalar product 〈·; ·〉. A linear operator A : H → H on H
will be called bounded if

‖A‖ := sup
x∈H

‖Ax‖
‖x‖ < ∞.

We denote the densely defined linear and bounded linear operators on H by L(H)
and B(H), respectively. For A ∈ L(H), we denote the dense domain of A in H by
D(A) and the range of A by R(A). We abbreviate the graph of A ∈ L(H) by

Γ(A) := {(x,Ax) ∈ H ×H : x ∈ D(A)} .

We call A ∈ L(H) closed, if Γ(A) is closed in H × H. If A,B ∈ L(H) with
D(A) ⊆ D(B) and Ax = Bx for all x ∈ D(A), we abbreviate this by A ⊆ B.
Define

D(A∗) := {y ∈ H : 〈Ax; y〉 = 〈x; y∗〉 for some y∗ ∈ H and all x ∈ D(A)} .

The linear operator defined by A∗ : D(A∗) → H, y 7→ y∗ is called adjoint of A. We
call A ∈ L(H)

• symmetric, if A ⊆ A∗, in particular

〈Ax; y〉 = 〈x; Ay〉 ∀ x, y ∈ D(A),

6



1.2 Linear Operators on Hilbert Spaces

• self-adjoint, if A and A∗ are symmetric, in particular A = A∗,

• normal, if A is closed and AA∗ = A∗A.

Note that if A ∈ B(H) – and in particular D(A) = H, then A is symmetric if and
only if A is self-adjoint.

If for some A ∈ L(H) there exists a bounded operator B ∈ B(H), such that

B : H → D(A), AB = id, BA ⊆ id,

then A is called boundedly invertible. We define the spectrum σ(A) of A by

σ(A) := {λ ∈ C : A− λ id is boundedly invertible} .

A spectral measure on (Ω,A,H) is a function E : A → B(H) such that

(i) for every A ∈ A, E(A) is an orthogonal projection,

(ii) E(∅) = 0 and E(Ω) = idH,

(iii) E(A ∩B) = E(A)E(B) for all A,B ∈ A,

(iv) for any sequence
(
An

)
n∈N of pairwise disjoint sets in A and all x ∈ H holds

E

( ∞⋃
n=1

An

)
x =

∞∑
n=1

E(An)x.

For a spectral measure E and x, y ∈ H we define the function Ex,y : A → C by
Ex,y(A) := 〈E(A)x; y〉. Ex,y is a complex measure on A with total variation less or
equal to ‖x‖‖y‖, cf. [Con90]. Integration with respect to a spectral measure can be
defined pointwise as we will see in the following theorem.

Theorem 1.5 (Spectral Theorem): Let N ∈ L(H) be a normal operator, H a
Hilbert space. Then there exists a unique spectral measure E on (C,B,H) such that

(i) N =
∫

z dE(z),

7



1 Preliminaries

(ii) E(A) = 0 if A ∩ σ(N) = ∅,

(iii) if U is an open subset of C and U ∩ σ(N) 6= ∅, then E(U) 6= 0.

For every Borel function f : σ(A) → C a densely defined linear operator Nf ∈ L(H)
can be defined by

〈Nfx; y〉 =

∫
f dEx,y

for all x, y ∈ D(Nf ), where

D(
Nf

)
:=

{
x ∈ H :

∫
|f |2 dEx,x < ∞

}
.

We abbreviate Nf :=
∫

f dE. The spectrum of Nf satisfies

σ(Nf ) = f
(
σ(N)

)
.

It remains to remark that for N ∈ L(H) normal and every polynomial P ∈ P[C]
holds

P (N) ⊆
∫

P dE = NP .

If A is self-adjoint and P ∈ P[R], then

P (A) =

∫
P dE = AP .

We sketch proofs of the next two lemmata in order to emphasize that they are not
depending on the Spectral Theorem. Later, we will use these lemmata together with
a representation theorem to obtain the Spectral Theorem for bounded self-adjoint
operators.

Lemma 1.6: Let H be a Hilbert space, P ∈ P[C], and N ∈ B(H) normal. Then

σ
(
P (N)

)
= P

(
σ(N)

)
.

8



1.2 Linear Operators on Hilbert Spaces

Proof. Let λ ∈ C and denote the n zeros of P − λ by z1, . . . , zn. Then

P (N)− λ id = c

n∏

k=1

(N − zk id) is invertible

⇐⇒ N − zk id is invertible for all 1 ≤ k ≤ n

⇐⇒ zk 6∈ σ(N) for all 1 ≤ k ≤ n

⇐⇒ there is no z ∈ σ(N) such that P (z) = λ.

Lemma 1.7: Let H be a Hilbert space and A ∈ B(H) self-adjoint. For any
P ∈ P[C] with ‖P‖σ(A) ≤ 1 holds ‖P (A)‖ ≤ 1.

Proof. For any complex polynomial P holds σ
(
P (A)

)
= P

(
σ(A)

)
by the preceding

lemma. Since P (A) is a normal element of the C∗-algebra B(H), the spectral radius
and the norm of P (A) coincide and hence ‖P (A)‖ ≤ 1.

If N ∈ L(H) is a normal operator, then a vector x0 ∈ H is called cyclic vector for
N if for all m,n ∈ N0 we have x0 ∈ D(N∗mNn) and

H = span {N∗mNnx0 : m,n ∈ N0} .

Every normal operator that possesses a cyclic vector is “similar” to a multiplication
operator, cf. [Con90, X.4.18 Thm.]. We will state this theorem for self-adjoint
operators only, since we are only interested in measures which are supported on the
real line.

Theorem 1.8: Let A ∈ L(H) be self-adjoint and x0 ∈ H a cyclic vector for A.
Then there exists a positive measure µ ∈ M+(R) with P[C] ⊂ L2(R, µ) and an
isomorphism U : H → L2(R, µ) with Ux0 = 1 and UNU−1 = Mµ, where

Mµ : D(Mµ) ⊆ L2(R, µ) → L2(R, µ), f 7→ xf

and

D(Mµ) :=
{
f ∈ L2(R, µ) : xf ∈ L2(R, µ)

}
.

In particular µ = Ex0,x0 and supp µ = σ(A), where E denotes the spectral measure
of A.

9



1 Preliminaries

1.3 Orthogonal Polynomials

As basic reference on orthogonal polynomials we used [Sze67, Chi78].

For any positive Borel measure µ ∈M+(R) there exists a sequence of real polyno-
mials

(
Rn

)
n∈N0

with deg Rn = n and

∫

R
RmRn dµ = αnδm,n

for all m,n ∈ N0, where αn ≥ 0. If µ has infinite support, the parameters αn are
positive. We call

(
Rn

)
n∈N0

an orthogonal polynomial sequence with respect to µ.

According to Favard’s theorem, a polynomial sequence
(
Rn

)
n∈N0

is an orthogonal
polynomial sequence with respect to a positive Borel measure µ with infinite support
if and only if

(
Rn

)
n∈N0

satisfies a three-term recurrence relation

xRn(x) = AnRn+1(x) + BnRn(x) + CnRn−1(x) ∀n ∈ N0,

where R−1 ≡ 0, R0 ≡ A−1 > 0 and Bn ∈ R, An · Cn+1 > 0 for all n ∈ N0.

A famous example for an orthogonal polynomial family are the Jacobi polynomi-
als which are depending on two parameters α, β > −1. They are given by the
recurrence relation

P
(α,β)
1 (x) =

α + β + 2

2
x− β − α

2
, P

(α,β)
0 (x) = 1,

xP (α,β)
n (x) =

2(n + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
P

(α,β)
n+1 (x)

+
β2 − α2

(2n + α + β)(2n + α + β + 2)
P (α,β)

n (x)

+
2(n + α)(n + β)

(2n + α + β)(2n + α + β + 1)
P

(α,β)
n−1 (x).

They satisfy P
(α,β)
n (1) = (α+1)n

n!
, where (a)n := a·(a+1) · · · (a+n−1), n ∈ N, denotes

the Pochhammer symbol. The Jacobi polynomials form an orthogonal polynomial
family with respect to the measure (1 − x)α(1 + x)β dx. The leading coefficient of

the Jacobi polynomials equals (n+α+β+1)n

2nn!
and the following important asymptotic

formula is valid, cf. [Sze67, Thm 8.21.8]:

10



1.3 Orthogonal Polynomials

Theorem 1.9: Let α, β > −1 and 0 < θ < π. Then

P (α,β)
n (cos θ) = n−

1
2 k(θ) cos(Nθ + γ) + fn(θ),

where

k(θ) = π−
1
2

(
sin

θ

2

)−α− 1
2
(

cos
θ

2

)−β− 1
2

, N = n +
α + β + 1

2
, γ = −(α + 1

2
)π

2

and fn : (0; π) → R satisfy supn∈N |fn(θ)| ·n 3
2 < ∞ for all θ ∈ (0; π). The bound for

this error term holds uniformly on [ε; π − ε] for every ε > 0.

An asymptotic formula for x ∈ R\[−1; 1] is the following, cf. [Sze67, Thm 8.21.7]:

Theorem 1.10: Let α, β > −1. Then for all x ∈ R \ [−1; 1]

P (α,β)
n (x) ' |x− 1|−α

2 |x + 1|−β
2

[√
|x + 1|+

√
|x− 1|

]α+β

· (2πn)−
1
2 (x2 − 1)−

1
2

[
x + (x2 − 1)

1
2

]n+ 1
2
,

where the positive branches of the roots are chosen. an ' bn denotes

bn 6= 0 and

∣∣∣∣
an

bn

∣∣∣∣
n→∞−→ 1.

An important special case of the Jacobi polynomials are the Chebyshev polynomials
of first kind

(
Tn

)
n∈N0

, which correspond to α = β = −1
2
. For convenience, they are

usually normalized by Tn(1) = 1. In particular we have

Tn(x) :=
n!(
1
2

)
n

P
(− 1

2
,− 1

2)
n (x) ∀n ∈ N0.

For x = cos θ ∈ [−1; 1] they can be represented as

Tn(cos θ) = cos(nθ) ∀n ∈ N0.

From this formula one can easily see that Tn has n distinct real zeros, namely

Tn(cos θ) = 0 ⇐⇒ θ ∈
{

(k − 1
2
)π

n
: k = 1, . . . , n

}
.

11



1 Preliminaries

The minima and maxima attain the values −1 and 1, respectively. The leading
coefficient of Tn is 2n−1. The Chebyshev polynomials of first kind are of great
importance for polynomial inequalities, since they are extremal in many ways,
cf. [BE95].

Lemma 1.11: Choose P ∈ Pn[R] for some n ∈ N. For all x ∈ R \ [−1; 1] holds

|P (x)| ≤ |Tn(x)| · sup
x∈[−1;1]

|P (x)|.

Equality holds if and only if P = cTn for some c ∈ R \ {0}.

1.3.1 The Moment Problem

The moment problem is a classical question which is closely related to orthogonal
polynomials since its answer provides the existence of the desired orthogonalizing
measure.

The I-moment problem: Let I ⊆ R be a closed generalized interval and ϕ ∈
`(N0) be an arbitrary sequence. Which condition is necessary and sufficient for the
existence of a positive Borel measure µ ∈M+(R) such that

ϕ(n) =

∫

I

xn dµ ∀n ∈ N0?

Under which conditions is this solution unique?

This question was first posed – and answered – by Stieltjes in 1894 for the case
I = [0;∞). Hence the [0;∞)-moment problem is also known as Stieltjes moment
problem. In 1919–21, Hamburger generalized this approach to I = R. Conse-
quently, the R-moment problem is today known as Hamburger moment problem,
which possesses a solution if and only if ϕ is a real sequence and

det (ϕ(i + j))i,j=0,...,n ≥ 0 ∀n ∈ N0.

This follows from Choquet’s representation theorem, cf. Theorem 1.3, and the iden-
tity P[R+] = P[R]2 + P[R]2, cf. Lemma 1.2, since P[R] is an adapted space. There
exists a solution of Stieltjes’ moment problem if and only if

det (ϕ(i + j))i,j=0,...,n ≥ 0 and det (ϕ(i + j + 1))i,j=0,...,n ≥ 0 ∀n ∈ N0.

12



1.3 Orthogonal Polynomials

If I is bounded, the uniqueness of µ follows by the Weierstraß approximation the-
orem, cf. Theorem 1.4. Otherwise, this question is not easily answered. If

∞∑
n=1

(
ϕ(2n)

)− 1
2n = ∞ (1.3.1)

the solution of the moment problem is unique. Equation (1.3.1) is called Carleman’s
criterion.

1.3.2 Polynomial Hypergroups and Bochner’s Theorem

For a proof of the following results on polynomial hypergroups and hypergroups,
see [Las83, BH95].

In the following, we suppose Rn(1) = 1 for all n ∈ N0. In this case,
(
Rn

)
n∈N0

satisfies the three-term recurrence relation

R0 ≡ 1, R1(x) =
1

a0

(x− b0),

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x),
(1.3.2)

where an, cn > 0, bn ∈ R and a0 + b0 = 1, an + bn + cn = 1. By the orthogonal-
ity of the polynomial sequence it follows immediately that there exist coefficients
g(m,n; k) ∈ R with

Rm(x)Rn(x) =
m+n∑

k=|m−n|
g(m,n; k)Rk(x).

Suppose g(m,n; k) ≥ 0 for all m,n, k ∈ N0 and define

ω : N0 × N0 → `1(N0)

(m,n) 7→
m+n∑

k=|m−n|
g(m,n; k)δk,

where δk =
(
δkn

)
n∈N0

and δkn denotes the Kronecker symbol. For abbreviation,

ω(m,n) is often denoted by m ∗ n. Then the pair (N0, ω) is called the polynomial
hypergroup generated by

(
Rn

)
n∈N0

and we say that
(
Rn

)
n∈N0

induces a polynomial

13



1 Preliminaries

hypergroup. Polynomial hypergroups are special cases of discrete hypergroups, cf.
[Las05].
An example for a polynomial hypergroup is provided by the Jacobi polynomials.

Normalizing p
(α,β)
n (x) := P

(α,β)
n (x)

P
(α,β)
n (1)

= n!
(α+1)n

P
(α,β)
n (x), the Jacobi polynomials induce

a polynomial hypergroup if β ≤ α and α + β + 1 ≥ 0.

Define the sets

D :=
{

z ∈ C :
(
Rn(z)

)
n∈N0

∈ `∞(N0)
}

, Ds :=D ∩ R.

If
(
Rn

)
n∈N0

induces a polynomial hypergroup, then

D = {z ∈ C : |Rn(z)| ≤ 1 for all n ∈ N0} .

For m ∈ N0, we define a translation operator Tm by

Tm : `(N0) → `(N0)

(
ϕ(n)

)
n∈N0

7→



m+n∑

k=|m−n|
g(m,n; k)ϕ(k)




n∈N0

.

A function ϕ : N0 → C is called character of (N0, ω), if

ϕ(m)ϕ(n) = Tmϕ(n) ∀m,n ∈ N0.

The following characterization of these functions can be found e.g. in [BH95].

Lemma 1.12: Let
(
Rn

)
n∈N0

induce a polynomial hypergroup. A function ϕ is a

character of (N0, ω) if and only if there exists a z ∈ C such that

ϕ(n) = Rn(z) ∀n ∈ N0.

In particular, the set of all bounded characters is homeomorphic to D.

Now we introduce a central notion for this thesis. A function ϕ : N0 → C is called
positive definite with respect to

(
Rn

)
n∈N0

– or short Rn-positive definite, if for all
n ∈ N0, c0, . . . , cn ∈ C holds

n∑

k=0

n∑
j=0

ckcjTkϕ(j) ≥ 0.

14



1.3 Orthogonal Polynomials

In the group case (Z, +) positive definiteness implies boundedness, but this is not
the case on the semigroup (N0, +) or for Rn-positive definiteness. The following
theorem characterizes the bounded Rn-positive definite functions.

Theorem 1.13 (Bochner’s theorem): Let
(
Rn

)
n∈N0

be a polynomial sequence

which induces a polynomial hypergroup and choose ϕ ∈ `∞(N0). The function ϕ is
positive definite with respect to

(
Rn

)
n∈N0

if and only if there exists a positive Borel

measure µ ∈M+(Ds) such that

ϕ(n) =

∫

Ds

Rn dµ ∀n ∈ N0.

In particular, ‖ϕ‖∞ = ϕ(0).

We already mentioned in the introduction that there exists a generalization of this
theorem, which involves signed hypergroups, cf. [Rös95]. Signed hypergroups are a
generalization of hypergroups mainly in the sense that the convolution does not need
to map positive measures on positive measures. In this context, the assumptions

g(m,n; k) ≥ 0 and Rn(1) = 1

are replaced by
m+n∑

k=|m−n|
|g(m,n; k)| ≤ C ∀m,n ∈ N0

for some C > 0. The proof of these theorems in the context of hypergroups and
signed hypergroups is based on harmonic analysis. As we will see in Chapter 2, this
result can be achieved by exploiting solely the structure of the polynomial sequence
and we will be able to drop the orthogonality condition.

15



1 Preliminaries

16



2 Representation of Pn-positive
definite Sequences

In the first place, this chapter is devoted to generalizing the solution of the mo-
ment problem to more general polynomial sequences than monomials. Since the
monomials do not induce a signed polynomial hypergroup, Bochner’s theorem is
not applicable. Still, there is a result which is equivalent to Bochner’s theorem,
cf. [BCR84, 2.8 Thm.]:

Suppose ϕ is the moment sequence of a positive Borel measure µ ∈ M+(R) and
hence a positive definite function on the semigroup (N0, +). Then ϕ is bounded if
and only if supp µ ⊆ [−1; 1].

We want to understand where the common basis of these two theorems lies and
which steps are necessary to achieve the whole result. For this purpose, we extend
the definition of positive definiteness to polynomial sequences which satisfy only
weak properties.

In the following, we always assume
(
Pn

)
n∈N0

to be a real polynomial sequence with

Pn ∈ Pn[R], P0 ≡ 1. For abbreviation, we will call such a polynomial sequence(
Pn

)
n∈N0

a real polynomial family. There exist real coefficients g(m,n; k) with

Pm(x)Pn(x) =
m+n∑

k=0

g(m,n; k)Pk(x).

For m ∈ N0, we define a translation operator Tm by

Tm : `(N0) → `(N0)

ϕ 7→
(

m+n∑

k=0

g(m,n; k)ϕ(k)

)

n∈N0

.

17



2 Representation of Pn-positive definite Sequences

Having this available, we denote a function ϕ as positive definite with respect to(
Pn

)
n∈N0

– or short Pn-positive definite, if for all n ∈ N0, c0, . . . , cn ∈ C
n∑

i=0

n∑
j=0

cicj Tiϕ(j) ≥ 0.

In case the inequality is strict for all (c0, . . . , cn) 6= 0, we call ϕ strictly positive
definite with respect to

(
Pn

)
n∈N0

. These definitions are analogous to the case where(
Pn

)
n∈N0

induces a polynomial hypergroup. In this chapter, we want to characterize
the convex cone of positive definite functions.
For any sequence ϕ ∈ `(N0), we define the linear functional Φϕ by

Φϕ : P[C] → C, P =
N∑

n=0

anPn 7→
N∑

n=0

anϕ(n).

As {Pn : n ∈ N0} is a basis of P[C], this functional is well-defined. Note that the
definition of Tm, Φϕ and the notion of positive definiteness are strongly dependent
of the choice of the real polynomial family

(
Pn

)
n∈N0

.
The functional Φϕ and the translation operators Tn are connected via the following
lemma.

Lemma 2.1: Let
(
Pn

)
n∈N0

be a real polynomial family and ϕ ∈ `(N0). Then the
translation operator Tn and the functional Φϕ satisfy

Tnϕ(k) = Φϕ(PnPk) and TmTnϕ(k) = Φϕ(PmPnPk) (2.0.1)

for all m,n, k ∈ N0.

Proof. From the relation

Tnϕ(k) =
n+k∑
j=0

g(n, k; j)ϕ(j)

=
n+k∑
j=0

g(n, k; j)Φϕ(Pj)

= Φϕ(PnPk)

18



we see that the first part of equation (2.0.1) is true. Second part follows from

TmTnϕ(k) =
m+k∑
j=0

g(m, k; j)Tnϕ(j)

=
m+k∑
j=0

g(m, k; j)Φϕ(PnPj)

= Φϕ(PmPnPk).

Now we are able to show a convenient property of translation operators:

Proposition 2.2: Let
(
Pn

)
n∈N0

be a real polynomial family. Then the translation
operators satisfy

Tn = Pn

(
P−1

1 (T1)
)

= Pn

(
a0T1 + b0

) ∀n ∈ N0, (2.0.2)

where a0 and b0 are given by P1(x) = 1
a0

x− b0
a0

.

Proof. We abbreviate T := P−1
1 (T1) = a0T1 + b0 and show the claim via induction.

For n = 0, 1 equation (2.0.2) is straightforward. Now suppose it has already been
shown for 0 ≤ k ≤ n ∈ N and let ϕ ∈ `(N0), m ∈ N0. Then with equation (2.0.1)
and Lemma 2.1

g(n, 1; n + 1)Pn+1(T )ϕ(m) = P1(T )Pn(T )ϕ(m)−
n∑

k=0

g(n, 1; k)Pk(T )ϕ(m)

= T1Tnϕ(m)−
n∑

k=0

g(n, 1; k)Tkϕ(m)

= Φϕ(P1PnPm)−
n∑

k=0

g(n, 1; k)Φϕ(PkPm)

= g(n, 1; n + 1)Φϕ(PmPn+1) = g(n, 1; n + 1)Tn+1ϕ(m)

gives us the claim for n + 1, as g(n, 1; n + 1) 6= 0 for all n ∈ N due to the ascending
degrees of the polynomials.

Let
(
Rn

)
n∈N0

be an orthogonal polynomial family, which induces a polynomial
hypergroup. As already discussed in Section 1.3.2, there exists a representation
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2 Representation of Pn-positive definite Sequences

theorem for positive definite functions with respect to
(
Rn

)
n∈N0

. Therefore, the
orthogonal polynomial sequence has to satisfy the rather strong condition that
all linearization coefficients g(m,n; k) are nonnegative. Since this condition is in
general not easily verified, we are interested in dropping this assumption. This
leads us to the following theorem:

Theorem 2.3: A function ϕ : N0 → C is positive definite with respect to
(
Pn

)
n∈N0

if and only if there exists a µ ∈M+(R) with

ϕ(n) =

∫

R
Pn dµ ∀n ∈ N0.

In this case, we call µ a representing measure of ϕ. Since µ is not necessarily
uniquely determined, there might be a whole class of representing measures. We
will refer to the elements of this class by ϕ̂. We point out that µ ∈ M+(R) is a
representing measure of a Pn-positive definite function if and only if all moments
of µ are finite, namely ∫

R
xn dµ < ∞ ∀n ∈ N0,

as in this case all polynomials are µ-integrable. Since µ ∈ M+(R) guarantees
µ(R) < ∞ only, not every positive measure is a representing measure.

The proof of this theorem follows the same a idea as in [BR02], where the same
assertion is shown for the case of a real polynomial family inducing a polynomial
hypergroup. In this paper, the correspondence between the polynomial hypergroup
(N0, ω) and the semigroup (N0, +) is exploited, so that the moment problem yields
the existence of the desired measure.

Proof. Suppose ϕ is positive definite. By Choquet’s representation theorem 1.3, it
suffices to show that for any nonnegative polynomial Q ∈ P[R], i.e. Q(x) ≥ 0 for
all x ∈ R, holds Φϕ(Q) ≥ 0, since P[R] is an adapted space.
If Q ∈ P[R] is nonnegative on R, by Lemma 1.2 there exist real polynomials Q1, Q2

such that Q = Q2
1 + Q2

2, where

Qi =
n∑

j=0

cijPj, i = 1, 2,
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with coefficients cij ∈ R. This implies

Q =
n∑

i,j=0

c1ic1jPiPj +
n∑

i,j=0

c2ic2jPiPj

=
n∑

i,j=0

c1ic1j

i+j∑

l=0

g(i, j; l)Pl +
n∑

i,j=0

c2ic2j

i+j∑

l=0

g(i, j; l)Pl,

and therefore

Φϕ(Q) =
n∑

i,j=0

c1ic1j

i+j∑

l=0

g(i, j; l)Φϕ(Pl) +
n∑

i,j=0

c2ic2j

i+j∑

l=0

g(i, j; l)Φϕ(Pl)

=
n∑

i,j=0

c1ic1jTiϕ(j) +
n∑

i,j=0

c2ic2jTiϕ(j) ≥ 0.

For the converse direction, let µ ∈M+(R) be a representing measure of ϕ, n ∈ N0

and c0, . . . , cn ∈ C. Then

n∑
i,j=0

cicjTiϕ(j) =
n∑

i,j=0

cicj

∫

R
PiPj dµ

=

∫

R

(
n∑

i=0

ciPi

)2

dµ ≥ 0

gives us the Pn-positive definiteness of ϕ.

From this theorem follow some properties of Pn-positive functions which are valid
for every choice of the real polynomial family.

Corollary 2.4: Let
(
Pn

)
n∈N0

be a real polynomial family and ϕ 6= 0 a Pn-positive

definite function. Then ϕ(0) > 0 and for all n ∈ N0

ϕ(n) ∈ R, ϕ(n)2 ≤ Tnϕ(n) · ϕ(0).

In particular, if ϕ is unbounded, then Tnϕ is unbounded, too.
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2 Representation of Pn-positive definite Sequences

Proof. Let µ be the measure given by Theorem 2.3. Then by the Cauchy-Schwartz
inequality

ϕ(0) =

∫
1 dµ = µ(R) > 0,

ϕ(n) =

∫

R
Pn dµ ∈ R,

ϕ(n)2 =

(∫

R
Pn dµ

)2

≤
∫

R
P 2

n dµ ·
∫

R
1 dµ = Tnϕ(n) · ϕ(0).

Using Theorem 2.3, we can characterize the strictly Pn-positive definite functions
as well. The following corollary is a slight generalization of the main theorem in
[Las84].

Corollary 2.5: A function ϕ : N0 → C is strictly positive definite with respect to(
Pn

)
n∈N0

if and only if there exists a µ ∈M+(R) with infinite support and

ϕ(n) =

∫

R
Pn dµ ∀n ∈ N0.

Proof. Suppose ϕ is strictly Pn-positive definite. By Theorem 2.3, there exists a
representing measure µ ∈M+(R) of ϕ. If supp µ = {x1, . . . , xN} is finite, then

∫

R

N∏
n=1

(x− xn)2 dµ = 0.

We abbreviate

P (x) :=
N∏

n=1

(x− xn) =
N∑

n=0

cnPn(x),

where cn ∈ C are uniquely determined and not all equal to zero as {Pn : n ∈ N0} is
a basis of P[R]. In particular, Φϕ(P 2) = 0 and hence

∑

k,j

ckcjTjϕ(j) =

∫

R
P 2 dµ = 0,

which contradicts the strict Pn-positive definiteness of ϕ.
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Suppose µ has infinite support. Choose N ∈ N0 and (c0, . . . , cN) ∈ CN+1 \ {0}
arbitrarily, and define a polynomial by

P :=
N∑

n=0

cnPn ∈ P[C].

As we have ∑

k,j

ckcjTkϕ(j) =

∫

R
P 2 dµ > 0,

the function ϕ is strictly Pn-positive definite.

By dropping some of the assumptions for the real polynomial family and the bound-
edness of ϕ, we loose an important property of any representing measure µ, namely
the characterization of the support of µ. In Section 2.1, we are going find conditions
under which supp µ is bounded.

Remark 2.6: In general, the representing measure of a Pn-positive definite func-
tion ϕ is not unique. The problem is equivalent to solving the moment problem
for the sequence

(
Φϕ(xn)

)
n∈N0

, cf. [BR02]. If the sequence
(
Φϕ(xn)

)
n∈N0

is positive

definite, there exists either exactly one or uncountably many solutions µ ∈M+(R),
cf. [Akh65]. Some of them – the so-called N-extremal solutions – have the conve-
nient property that the polynomials P[C] are dense in L2(R, µ). If ϕ is strictly
Pn-positive definite, the Gram-Schmidt process applied to {xn : n ∈ N0} yields an
orthonormal polynomial sequence

(
Qn

)
n∈N0

with respect to Φϕ, cf. [Sze67]. We

denote the sequence space of all finite sequences on N0 by `00(N0), i.e.

`00(N0) := {x ∈ `(N0) : x(n) = 0 for almost all n ∈ N0}

The linear symmetric operator

A : `00(N0) ⊂ `2(N0) → `2(N0),

δn 7→ Φϕ(xQnQn+1)δn+1 + Φϕ(xQnQn)δn + Φϕ(xQnQn−1)δn−1

plays a central role in the analysis of the moment problem. This kind of tridiagonal
operator is usually called Jacobi operator in the literature, cf. [Tes99]. It turns
out that the N-extremal solutions of the moment problem correspond to the self-
adjoint extensions of A in the following sense: A solution µ of the moment problem
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2 Representation of Pn-positive definite Sequences

is N-extremal if and only if there exists a self-adjoint extension Ã of A such that
µ = Eδ0,δ0(Ã)ϕ(0), i.e.

〈Pn(Ã)δ0; δ0〉 · ϕ(0) =

∫

σ(Ã)

Pn dEδ0,δ0(Ã) = ϕ(n),

where E(Ã) is the spectral measure of Ã, cf. [Sim98, Prop. 4.15]. Since δ0 is a cyclic
vector for Ã, we have σ(Ã) = supp Eδ0,δ0(Ã). If A is a bounded operator, then it
can be extended in a unique way to `2(N0) and the moment problem possesses the
unique solution Eδ0,δ0(A)ϕ(0).
It remains to remark that in case ϕ is not strictly Pn-positive definite there exists
a finite orthonormal polynomial system and a symmetric matrix with the same
properties as above can be found in the same way.

2.1 Regaining properties of Bochner’s theorem

Paying tribute to our weak assumptions in Theorem 2.3, we lost all information on
the support of the representing measure in the case of ϕ ∈ `∞(N0) in comparison to
Theorem 1.13. We need some further definitions in order to regain this information
step by step.

For an arbitrary real polynomial family
(
Pn

)
n∈N0

we define the sets

D∞ :=
{
z ∈ C : (Pn(z))n∈N0

∈ `∞(N0)
}

,

Dα :=
{

z ∈ C :
∥∥(Pn(z))n∈N0

∥∥
∞ ≤ α

}
∀α > 0.

If α ≤ β, then Dα ⊆ Dβ is obvious. Since all measures in this section are supported
on the real line, we are interested in the intersections D∞

s := D∞ ∩ R and Dα
s :=

Dα ∩ R. Due to

Dα =
∞⋂

n=0

{z ∈ C : |Pn(z)| ≤ α} ,

Dα resp. Dα
s are compact in C resp. R. For our first result on bounded Pn-positive

definite functions, we need the interior of Dα
s :

Uα
s := {x ∈ Dα

s : (x− ε; x + ε) ⊂ Dα
s for some ε > 0} ,

U∞
s :=

⋃
α≥1

Uα
s .
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2.1 Regaining properties of Bochner’s theorem

As U∞
s is the union of open sets, U∞

s is open, too. These sets play a crucial role in
our analysis because they provide criteria for the boundedness or unboundedness
of a Pn-positive definite function.

Proposition 2.7: Let
(
Pn

)
n∈N0

be a real polynomial family and µ ∈ M+(R) a
positive measure with finite moments. Define a Pn-positive definite function ϕ by

ϕ(n) :=

∫

R
Pn dµ ∀n ∈ N0.

Then we have:

(i) If supp µ ⊆ Dα
s for some α ≥ 1, then ϕ is bounded and ‖ϕ‖∞ ≤ αϕ(0).

(ii) If supp µ ⊂ U∞
s is compact, then there exists a constant α ≥ 1 with

supp µ ⊂ Uα
s ⊂ Dα

s and ‖ϕ‖∞ ≤ αϕ(0).

Proof. The first assertion follows immediately from

|ϕ(n)| ≤
∫

Dα
s

|Pn| dµ ≤ α

∫

Dα
s

1 dµ = αϕ(0) ∀n ∈ N0.

We proceed to the second claim. Since supp µ ⊆ U∞
s , the family

{
Un

s : n ∈ N}
is

an open cover of supp µ. As supp µ is compact, there exists N ∈ N with

supp µ ⊆
N⋃

n=1

Un
s = UN

s ⊂ DN
s .

Now ‖ϕ‖∞ ≤ Nϕ(0) follows from (i).

There are classical real polynomial families such that Dα
s ( D∞

s for all α > 0, and
D∞

s is bounded.
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2 Representation of Pn-positive definite Sequences

Example 2.1: Consider the Jacobi polynomials p
(α,β)
n which are depending on two

parameters α, β > −1. They are given by the recurrence relation

p
(α,β)
1 (x) =

α + β + 2

2(α + 1)
x− β − α

2(α + 1)
, p

(α,β)
0 (x) = 1,

p
(α,β)
1 p(α,β)

n (x) =
(n + α + β + 1)(n + α + 1)(α + β + 2)

(2n + α + β + 2)(2n + α + β + 1)(α + 1)
p

(α,β)
n+1 (x)

+
α− β

2(α + 1)

[
1− (α + β + 2)(α + β)

(2n + α + β + 2)(2n + α + β)

]
p(α,β)

n (x)

+
n(n + β)(α + β + 2)

(2n + α + β + 1)(2n + α + β)(α + 1)
p

(α,β)
n−1 (x).

By definition, cp. Section 1.3, they satisfy p
(α,β)
n (1) = 1 for all n ∈ N0 and hence

we have 1 ∈ D1
s . We assume −1

2
< α < β. Since

(−1)np(α,β)
n (−1) =

n∏

k=1

β + k

α + k
∼ nβ−α ∀n ∈ N0,

cf. [Sze67, p.58f], we have |p(α,β)
n (−1)| → ∞ as n → ∞ and thus −1 6∈ D∞

s . Here,

an ∼ bn denotes |an|
|bn| → C > 0 as n → ∞ for complex sequences

(
an

)
n∈N,

(
bn

)
n∈N.

For all x ∈ (−1; 1), Theorem 1.9 yields

p(α,β)
n (x) =

n!

(α + 1)n

P (α,β)
n (cos θ) ∼ n−α− 1

2 k(θ) cos(Nθ + γ) + n−αfn(θ)

= n−α− 1
2

(
k(θ) cos(Nθ + γ) + n

1
2 fn(θ)

)
n→∞−→ 0.

Thus x ∈ D∞
s for all x ∈ (−1; 1). Since the convergence is uniform on bounded

subintervals of (−1; 1), we have x ∈ U∞
s . By Theorem 1.10,

p(α,β)
n (x) ∼ n−

1
2
−α

[
x + (x2 − 1)

1
2

]n+ 1
2 ∼ n−

1
2
−αxn

and hence x 6∈ D∞
s for all x ∈ R \ [−1; 1].

Summing up, D∞
s = (−1; 1] is not closed, yet bounded, and U∞

s = (−1; 1). In
particular, given a positive measure µ the function n 7→ ∫

Pn dµ is bounded if
supp µ ⊆ (−1; 1).

On the other hand it is possible to find a real polynomial family with D∞ = C.
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2.1 Regaining properties of Bochner’s theorem

Example 2.2: Define Pn(x) := xn

nn , n ∈ N. Then for all z ∈ C holds

|Pn(z)| =
( |z|

n

)n

≤
{

1 n ≥ |z|
|z|n n < |z|.

Hence |Pn(z)| is bounded by 1 for large n and thus D∞ = C.

By this example, we also see that the size of D∞ and D∞
s is largely influenced by

the leading coefficients of the real polynomial family. We will take a closer look at
this dependence. Unfortunately, there does not exist a lower bound for D∞

s which
depends only on the leading coefficients, as D∞

s can be empty for every choice of
those. An upper bound can be given with help of the following theorem.

Theorem 2.8: Let P ∈ Pn[C] for some n ∈ N. Denote the leading coefficient of
P by `n(P ) 6= 0 and let α > 0. Then

λ ({x ∈ R : |P (x)| ≤ α}) ≤ 4 n

√
α

2|`n(P )| ,

where λ denotes the one-dimensional Lebesgue measure. Equality holds if and only

if P (x) = αTn

(
n

√
2|`n(P )|

α
· x

2
+ c

)
for some c ∈ R.

Proof. We assume `n(P ) > 0 w.l.o.g and denote for k = 1, . . . , n the complex zeros
of P by ak + ibk, ak, bk ∈ R. As

n∏

k=1

|x− ak − ibk| =
n∏

k=1

√
(x− ak)2 + b2

k ≥
n∏

k=1

|x− ak| ∀ x ∈ R

we can assume that bk = 0 for all k. In particular, this assumption implies P ∈ P[R].
Suppose {x ∈ R : |P (x)| ≤ α} consists of two or more disjoint intervals – there
can be at most n of them. We want to move the zeros of P in a convenient
way in order to close the gaps. For this purpose, we assume a1 ≤ · · · ≤ an and
{x ∈ R : |P (x)| ≤ α} =

⋃n
k=1[ck; dk] with ak ∈ [ck; dk] =: Ak for k = 1, . . . , n. By

assumption there exists some j with Aj ∩Aj+1 = ∅, i.e. cj+1− dj =: εj > 0. Define
a polynomial Q ∈ Pn[R] by

Q(x) := `n(P ) ·
j∏

k=1

(x− ak) ·
n∏

k=j+1

(x− (ak − εj)).
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2 Representation of Pn-positive definite Sequences

It is straightforward to see that |Q(x)| < α for all x ∈ A1, . . . , Aj and for all
x ∈ Aj+1 − εj, . . . , An − εj. In particular, we have

λ ({x ∈ R : |P (x)| ≤ α}) < λ ({x ∈ R : |Q(x)| ≤ α})

and the gap between Aj and Aj+1 is closed. Since we can close all gaps in this
manner we can assume that {x ∈ R : |P (x)| ≤ α} = [a; b] for some a, b ∈ R.
Since

|P (x)| ≤ α ⇐⇒
∣∣∣∣
P (x)

`n(P )

∣∣∣∣ ≤
α

`n(P )
,

we define

P̃ :=
P

`n(P )
and α̃ =

α

`n(P )

and examine
{
x ∈ R : |P̃ (x)| ≤ α̃

}
instead of {x ∈ R : |P (x)| ≤ α}. In particular

λ
({

x ∈ R : |P̃ (x)| ≤ α̃
})

= λ ({x ∈ R : |P (x)| ≤ α}) .

Note that P̃ is monic. For convenience we want to get rid of α̃, hence we define

P̂ (x) :=
2

α̃
P̃

(
n

√
α̃

2
x

)
∀ x ∈ R,

which is again a monic polynomial. We have the identity

n

√
2

α̃
· λ

({
x ∈ R : |P̃ (x)| ≤ α̃

})
= λ

({
x ∈ R : |P̂ (x)| ≤ 2

})
.

Now suppose that b−a = 4+2ε for some ε > 0. We can assume [a; b] = [−2−ε; 2+ε]
w.l.o.g. and define Q(x) := 1

2
P̂ ((2 + ε)x). Since |P̂ (x)| ≤ 2 for all x ∈ [−2−ε; 2+ε],

we have |Q(x)| ≤ 1 for all x ∈ [−1; 1]. By Lemma 1.11, we have |Q(x)| ≤ |Tn(x)|
for all x ∈ R \ [−1; 1]. But this is a contradiction, since the leading coefficient of Q

equals (2+ε)n

2
, whereas the leading coefficient of Tn equals 2n−1. In particular

4 ≥ λ
({

x ∈ R : |P̂ (x)| ≤ 2
})

=
n

√
2

α̃
λ

({
x ∈ R : |P̃ (x)| ≤ α̃

})

=
n

√
2

α̃
λ ({x ∈ R : |P (x)| ≤ α}) .
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2.1 Regaining properties of Bochner’s theorem

It remains to show that equality only holds for P̂ (x) = 2Tn

(
x
2

)
. Consider the

polynomial R(x) := 2Tn

(
x
2

) − P̂ (x). Denote the extremal points of Tn(x
2
) by

xn−1 < xn−2 < · · · < x1. We know that 2Tn(xk

2
) = (−1)k−12. In each interval

[2xk; 2xk−1] lies a zero of R. If xk is a zero of R for some k, then P̂ has an extremal
point at xk, too, and the zero xk has at least multiplicity 2. Hence R has at least
n− 2 – counting multiplicities – zeros in the interval [xn−1; x1]. Together with the
two zeros at −2 and 2 the polynomial R has at least n zeros. Since deg R = n− 1,
this implies R = 0. Resubstitution yields

2Tn

(x

2

)
= P̂ (x) =

2

α̃
P̃

(
n

√
α̃

2
x

)
=

2

α
P

(
n

√
α̃

2
x

)
.

Now an upper bound for the size of Dα
s and D∞

s – and hence for the size of Uα
s

and U∞
s – is straightforward. The size of D∞ and Dα is of less importance in our

setting, since all representing measures are supported on R.

Corollary 2.9: Let α ≥ 1, a > 0, and
(
Pn

)
n∈N0

be a real polynomial family.

(i) If |`n(Pn)| ≥ an for all n ∈ N0, then λ(Dα
s ) ≤ 4

a
min

{
α
2
; 1

}
and λ(D∞

s ) ≤ 4
a
.

(ii) If n
√
|`n(Pn)| → a as n →∞, then λ(Dα

s ) ≤ λ(D∞
s ) ≤ 4

a
.

Proof. (i) By Theorem 2.8 we know

λ ({x ∈ R : |Pn(x)| ≤ α}) ≤ 4 n

√
α

2`n(Pn)
≤ 4

a
n

√
α

2
=: an

for all n ∈ N0. For 1 ≤ α ≤ 2 the sequence
(
an

)
n∈N0

is increasing, hence

λ(Dα
s ) ≤ inf

n∈N
an = a1 =

2α

a
.

If α ≥ 2, then the sequence
(
an

)
n∈N is decreasing and we have

λ(Dα
s ) ≤ inf

n∈N
an = lim

n→∞
an =

4

a
.

As D∞
s =

⋃
α≥1 Dα

s and Dβ
s ⊆ Dα

s if β ≤ α we have

λ(D∞
s ) ≤ sup

α≥1
λ(Dα

s ) ≤ 4

a
.
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2 Representation of Pn-positive definite Sequences

(ii) As n

√
2
α
→ 1 as n →∞, we have

n

√
2

α
|`n(Pn)| n→∞−→ a. (2.1.1)

If N

√
2
α
|`N(PN)| ≥ a for some N ∈ N, then by Theorem 2.8

λ(Dα
s ) ≤ λ ({x ∈ R : |PN(x)| ≤ α}) ≤ 4 N

√
α

2|`N(PN)| ≤
4

a
.

Hence we can assume n

√
2
α
|`n(Pn)| < a for all n ∈ N. Then for every ε > 0 there

exists some N ∈ N such that

0 < a− N

√
2

α
|`N(PN)| < ε.

This leads to

λ(Dα
s ) ≤ λ ({x ∈ R : |PN(x)| ≤ α}) ≤ 4 N

√
α

2|`N(PN)| <
4

a− ε
.

Since λ(Dα
s ) < 4

a−ε
for all ε > 0 and α ≥ 1, we have λ(Dα

s ) ≤ λ(D∞
s ) ≤ 4

a
.

We want to remark that the second inequality is sharp, since equality holds in case
of the Jacobi polynomials

(
p

(α,β)
n

)
n∈N0

, where −1
2

< α < β. From Example 2.1 we

know that D∞
s = (−1; 1], hence λ(D∞

s ) = 2. The leading coefficients are given by

`n(p
(α,β)
n ) = (n+α+β+1)n

2n(α+1)n
and satisfy

n

√
`n(p

(α,β)
n ) → 2 as n →∞. Thus the preceding

corollary gives 2 as an upper estimate of the size of D∞
s .

For a polynomial hypergroup (N0, ω) Theorem 2.8 also yields some information on
the interdependence between the leading coefficients of the underlying polynomial
sequence and the set D∞

s , which corresponds to the set of real bounded characters.

Corollary 2.10: Let
(
Rn

)
n∈N0

be an orthogonal polynomial sequence which satisfies

property (P) and hence induces a polynomial hypergroup. The following hold:

(i) If the leading coefficients satisfy `n(Rn) ≥ an for all n ∈ N and some a > 0,
then

λ(D∞
s ) = λ(D1

s) ≤
2

a
.
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2.1 Regaining properties of Bochner’s theorem

(ii) If λ(D∞
s ) = λ(D1

s) ≥ 4
a
, then an

2
≥ `n(Rn) ≥ qn for some 0 < q ≤ a and all

n ∈ N0.

Proof. (i) As D∞
s = D1

s for every polynomial hypergroup, the claim follows from
Corollary 2.9 (i).

(ii) If `N(RN) > aN

2
for some N ∈ N, then by Theorem 2.8

λ(D1
s) ≤ λ ({x ∈ R : |RN(x)| ≤ 1}) ≤ 4 N

√
1

2`N(RN)

< 4
N

√
1

aN
=

4

a
,

which is a contradiction to λ(D1
s) ≥ 4

a
. Hence `n(Rn) ≤ an

2
for all n ∈ N0.

We turn to the second inequality. One can show via induction

`n(Rn) =
1

an
0

n−1∏

k=1

1

ak

∀n ∈ N0,

where the coefficients ak are defined as in (1.3.2). Since
(
Rn

)
n∈N0

satisfies

property (P), we have 0 < ak = g(1, k; k + 1) < 1 for all k ∈ N. In particular,

`n(Rn) =
1

an
0

n−1∏

k=1

1

ak

≥ 1

an
0

=: qn.

As a next step, we will specify the location of Dα
s and supp ϕ̂ for bounded ϕ.

Theorem 2.11: Let ϕ : N0 → C be positive definite with respect to the real poly-
nomial family

(
Pn

)
n∈N0

and ϕ̂ a representing measure of ϕ. Suppose there exists a
constant α > 0 and some n0 ∈ N such that the absolute sums of the linearization
coefficients of PmPn0 are uniformly bounded, i.e.

m+n0∑

k=0

|g(m,n0; k)| ≤ α ∀m ∈ N0.

If ϕ is bounded, then supp ϕ̂ ⊆ P−1
n0

([−α; α]) and |ϕ(n0)| ≤ α · ϕ(0). In particular,
ϕ̂ is uniquely determined and D∞

s ⊆ P−1
n0

([−α; α]).
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2 Representation of Pn-positive definite Sequences

Proof. We assume w.l.o.g. ϕ 6= 0 and recall ‖ϕ‖∞ := supn∈N0
|ϕ(n)| > 0. For all

k ∈ N0 holds ‖T k
n0

ϕ‖∞ ≤ αk‖ϕ‖∞, since via induction

|T k+1
n0

ϕ(m)| =
∣∣∣∣∣
∑

j

g(m,n0; j)
(T k

n0
ϕ
)
(j)

∣∣∣∣∣
≤

∑
j

|g(m,n0; j)| ·
∣∣T k

n0
ϕ(j)

∣∣ ≤ αk+1‖ϕ‖∞.

Now suppose there exists a λ ∈ supp ϕ̂ \ P−1
n0

([−α; α]). Then |Pn0(λ)| > α. Hence
a compact set C can be found with λ ∈ C, C ∩ P−1

n0
([−α; α]) = ∅, ϕ̂(C) > 0, and

|Pn0(x)| ≥ c > α for all x ∈ C. Then

α2k−1‖ϕ‖∞ ≥ |T 2k−1
n0

ϕ(n0)| =
∫

R
P 2k

n0
dϕ̂ ≥

∫

C

P 2k
n0

dϕ̂ ≥
∫

C

c2k dϕ̂ = c2kϕ̂(C).

This is a contradiction, if k is sufficiently large, i.e. for

k >
ln

(
αϕ̂(C)
‖ϕ‖∞

)

ln
(

α2

c2

) .

Note that, if
(
Pn

)
n∈N0

is an orthonormal polynomial sequence, then the sums∑n+1
k=0 |g(n, 1; k)| are uniformly bounded if and only if the support of the orthogo-

nalizing measure ν is bounded. Hence in that case the boundedness of ϕ implies
uniqueness of the representing measure and supp ϕ̂ ⊆ P−1

1 ([−α; α]) for some α > 0.
In particular, supp ν ⊆ P−1

1 ([−α; α]), since n 7→ δn0 is a bounded Pn-positive defi-
nite function.

Bochner’s theorem for signed hypergroups, cf. [Rös95], is – in the polynomial case –
depending on the assumption that

(
Pn

)
n∈N0

is an orthogonal polynomial sequence.
With the help of the preceding Theorem 2.11, we see that this strong property of
the real polynomial family is not necessary.

Theorem 2.12: Let
(
Pn

)
n∈N0

be a real polynomial family, ϕ : N0 → C a Pn-positive
definite function and ϕ̂ a representing measure of ϕ. Suppose that there exists a
uniform bound α ≥ 1 for the absolute sums of the linearization coefficients of PmPn,
i.e.

m+n∑

k=0

|g(m,n; k)| ≤ α ∀m,n ∈ N0. (2.1.2)

Then ϕ is bounded if and only if supp ϕ̂ ⊆ Dα
s . In that case, ϕ is bounded by αϕ(0).
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2.1 Regaining properties of Bochner’s theorem

Proof. Suppose ϕ is bounded. Since the absolute sums of the linearization coeffi-
cients of PmPn are uniformly bounded by α for all n ∈ N and α ≥ 1, we have

supp ϕ̂ ⊆
⋂

n∈N
P−1

n ([−α; α]) ∩ R = Dα ∩ R = Dα
s

by Theorem 2.11. The converse direction is obviously true.

This theorem gives us two corollaries which possess analogs in the hypergroup case.
In the second corollary, we return to signed polynomial hypergroups.

Corollary 2.13: Let
(
Pn

)
n∈N0

be a real polynomial family. Suppose that there
exists a uniform bound α ≥ 1 for the absolute sums of the linearization coefficients
of PmPn, i.e.

m+n∑

k=0

|g(m,n; k)| ≤ α ∀m,n ∈ N0.

Then for all x ∈ R the sequence
(
Pn(x)

)
n∈N0

is either bounded by α or unbounded,
i.e. Dα

s = D∞
s .

Proof. For x ∈ R define a Pn-positive definite function ϕx : N0 → R, n 7→ Pn(x).
By Theorem 2.12, ϕx is either bounded by αϕx(0) = α, if supp ϕ̂x = {x} ⊆ Dα

s , or
unbounded, if supp ϕ̂x = {x} 6⊆ Dα

s .

Corollary 2.14: Let
(
Pn

)
n∈N0

be an orthogonal polynomial family with orthogo-

nalizing measure ν ∈M+(R). Suppose that there exists a uniform bound α ≥ 1 for
the absolute sums of the linearization coefficients of PmPn, i.e.

m+n∑

k=0

|g(m,n; k)| ≤ α ∀m,n ∈ N0.

Then the support of ν is contained in Dα
s , i.e.

supp ν ⊆ Dα
s = D∞

s .

In particular, the support of ν is compact.
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2 Representation of Pn-positive definite Sequences

Proof. Consider the Pn-positive definite function ϕ : N0 → R, n 7→ δn0ν(R) which
has ν as a representing measure. Since ϕ is bounded,

supp ϕ̂ = supp ν ⊆ Dα
s = D∞

s

by Theorem 2.12 and Corollary 2.13. As Dα
s is compact, supp ν is compact, too.

The main difference between polynomial hypergroups and signed polynomial hy-
pergroups is the nonnegativity of the linearization coefficients. Since this property
also leads to a Banach algebra structure, attention has been paid to this question.
A number of criteria have been developed which guarantee g(m,n; k) ≥ 0 for all
m,n, k ∈ N0, cf. [Szw95]. Using the tools developed in this section, we will present
a case in which nonnegativity of the linearization coefficients is impossible.

Corollary 2.15: Let
(
Rn

)
n∈N0

be an orthogonal polynomial sequence with respect

to ν ∈M+(R), where supp ν = [−1; 1], and Rn(1) = 1 for all n ∈ N0. If `N(RN) >
2N−1 for some N ∈ N, then

(
Rn

)
n∈N0

does not admit nonnegative linearization.

Proof. If g(m,n; k) ≥ 0 for all m,n, k ∈ N0, then
(
Rn

)
n∈N0

induces a polynomial

hypergroup and hence supp ν ⊆ D1
s = D∞

s by Corollary 2.14. But this is a contra-
diction to Theorem 2.8, since

2 = λ(supp ν) ≤ λ(D1
s) ≤ λ ({x ∈ R : |RN(x)| ≤ 1}) ≤ 4 N

√
1

2`N(RN)

< 4
N

√
1

2N
= 2.

In particular, g(m,n; k) < 0 for some choice of m,n, k ∈ N0 and hence
(
Rn

)
n∈N0

does not admit nonnegative linearization.

If a real polynomial family induces a polynomial hypergroup, then D∞ = D1. This
implies that all bounded characters of a polynomial hypergroup are bounded by 1.
We are now going to see that this property is due to the uniform boundedness of

the absolute sums of the linearization coefficients, i.e.
m+n∑

k=|m−n|
|g(m,n; k)| ≤ α for

all m,n ∈ N0. Under this assumption, Theorem 2.12 yields D∞ ∩R = Dα ∩R, and
as we will see D∞ = Dα is also true. In the terminology of polynomial hypergroups
this means that every bounded character is bounded by α, if the real polynomial
family satisfies (2.1.2).
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2.2 Stieltjes’ and Haviland’s Modified Moment Problem

Proposition 2.16: Let
(
Pn

)
n∈N0

be a real polynomial family. Suppose that there
exists a uniform bound α ≥ 1 for the absolute sums of the linearization coefficients
of PmPn, i.e.

m+n∑

k=0

|g(m,n; k)| ≤ α ∀m,n ∈ N0. (2.1.3)

Then D∞ = Dα.

Proof. For m ∈ N define a linear operator on the Banach space `∞(N0) by

Am : `∞(N0) → `∞(N0)

(
x(n)

)
n∈N0

7→
(

m+n∑

k=0

g(m,n; k)x(k)

)

n∈N0

.

For all m ∈ N, Am is well-defined, bounded, and ‖Am‖ ≤ α due to (2.1.3). For
λ ∈ D∞, the sequence

(
Pn(λ)

)
n∈N0

is bounded and

Am

(
Pn(λ)

)
n∈N0

=
(
Pm(λ)Pn(λ)

)
n∈N0

.

Hence Pm(λ) ∈ σp(Am) and thus |Pm(λ)| ≤ α for all m ∈ N0.

By the same proof technique one can show the following:

Corollary 2.17: Let
(
Pn

)
n∈N0

be a real polynomial family. Suppose that there
exists a uniform bound α ≥ 1 for the absolute sums of the linearization coefficients
of P1Pn, i.e.

n+1∑

k=0

|g(1, n; k)| ≤ α ∀n ∈ N0.

Then D∞ ⊆ P−1
1 (Bα(0)), where Bα(0) := {z ∈ C : |z| ≤ α}.

2.2 Stieltjes’ and Haviland’s Modified Moment

Problem

Beyond boundedness of the positive definite function and analysis of the real polyno-
mial family, there is another possibility to guarantee the existence of a representing
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2 Representation of Pn-positive definite Sequences

measure with restricted support. Thereto, we will treat Stieltjes’ and Haviland’s
modified moment problem.

For this purpose, we define two functions associated to a a Pn-positive definite
function ϕ : N0 → C by

ϕ(1) : N0 → C ϕ(2) : N0 → C
n 7→ Φϕ(xPn), n 7→ Φϕ(x2Pn).

Now we are able to solve Stieltjes’ and Haviland’s modified moment problem:

Theorem 2.18: Let ϕ be a positive definite function with respect to a real polyno-
mial family

(
Pn

)
n∈N0

. Define a second real polynomial family by Q2n(x) := Pn(x2)

and Q2n+1(x) := xPn(x2) for all n ∈ N0. The following are equivalent:

1. There exists a representing measure µ of ϕ whose support is contained in
[0;∞), i.e.

supp µ ⊆ [0;∞).

2. The function ϕ(1) is Pn-positive definite.

3. The function ψ : N0 → C, n 7→
{

ϕ
(

n
2

)
n even,

0 n odd,
is Qn-positive definite.

Proof. 1.⇒2.: This is clear since ϕ(1) can be represented by the positive measure
xdµ.

2.⇒3.: For some N ∈ N, choose c1, . . . , cN ∈ C. For every odd polynomial Q we
have Φψ(Q) = 0 and thus

N∑
i,j=0

cicjΦψ(QiQj) =
N∑

i,j=0
i,j∈2N0

cicjΦψ(QiQj) +
N∑

i,j=0
i,j∈2N0+1

cicjΦψ(QiQj)

=

[N
2 ]∑

i,j=0

c2ic2jΦϕ(PiPj) +

[N−1
2 ]∑

i,j=0

c2i+1c2j+1Φϕ(xPiPj) ≥ 0.
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2.2 Stieltjes’ and Haviland’s Modified Moment Problem

3.⇒1.: By Theorem 2.3, there exists a measure ν ∈ M+(R) such that for all
n ∈ N0 holds

ψ(2n) = ϕ(n) =

∫

R
Q2n dν,

hence we have

ϕ(n) =

∫

[0;∞)

Pn dµ,

where µ arises by transformation of ν with the function x 7→ x2.

We see that the solution of Stieltjes’ modified moment problem is an extension
of the solution of the classical Stieltjes’ moment problem, compare [BCR84]. The
same holds for Haviland’s modified moment problem.

Theorem 2.19: Let ϕ be a positive definite function with respect to a real polyno-
mial family

(
Pn

)
n∈N0

. The following are equivalent:

1. The support of the unique representing measure µ of ϕ is contained in [−1; 1],
i.e.

supp µ ⊆ [−1; 1].

2. The function ϕ− ϕ(2) is Pn-positive definite.

3. The functions ϕ− ϕ(1) and ϕ + ϕ(1) are Pn-positive definite.

A weaker version of this theorem has already been shown in [Las95]. In this paper,
the author shows that Haviland’s modified moment problem has a solution if and
only if (2) and (3) are satisfied.

Proof. 2.⇒1.: Suppose there exists a representing measure µ of ϕ with supp µ 6⊆
[−1; 1]. Then there exists an interval [a; b] with [a; b]∩ [−1− ε; 1 + ε] = ∅ for some
ε > 0 and µ([a; b]) > 0. Abbreviate

C0 :=

∫

[−1;1]

1− x2 dµ and C1 :=

∫

[a;b]

x2 − 1 dµ > 0.
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2 Representation of Pn-positive definite Sequences

For every n ∈ N0 holds

Φϕ−ϕ(2)(x2n) =

∫

R
x2n(1− x2) dµ

=

∫

[−1;1]

x2n(1− x2) dµ−
∫

R\[−1;1]

x2n(x2 − 1) dµ

≤ C0 −
∫

[a;b]

x2n(x2 − 1) dµ

≤ C0 − C1(1 + ε)2n.

If C0 = 0, then Φϕ−ϕ(2)(x2n) ≤ −C1(1 + ε)2n < 0 for all n ∈ N0. Otherwise choose

some N >
ln

C0
C1

2 ln(1+ε)
. Then Φϕ−ϕ(2)(x2N) < 0, which is a contradiction since x2N ≥ 0

for all x ∈ R.

1.⇒2.: Since (1−x2)dµ is a positive measure on [−1; 1] representing ϕ−ϕ(2), this
function is positive definite.

3.⇒1.: We derive the claim from Theorem 2.18. Since ϕ + ϕ(1) is Pn-positive
definite, there exists a representing measure µ of ϕ with supp µ ⊆ [−1;∞). Now
we assume supp µ 6⊆ [−1; 1]. As in 2. ⇒ 1. there exists an interval [a : b] ⊂ [0;∞)
with [a; b] ∩ [−1; 1 + ε] = ∅ for some ε > 0 and µ([a; b]) > 0. Abbreviate

D0 :=

∫

[−1;1]

1− x dµ and D1 := int[a;b]x− 1 dµ > 0.

For every n ∈ N0 holds

Φϕ−ϕ(1)(x2n) =

∫

[

−1;∞)x2n(1− x) dµ

=

∫

[−1;1]

x2n(1− x) dµ−
∫

(1;∞)

x2n(x− 1) dµ

≤ D0 −
∫

[a;b]

x2n(x− 1) dµ

≤ D0 −D1(1 + ε)2n.
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2.3 Composition of the Support of the Representing Measure

If D0 = 0, then Φϕ−ϕ(1)(x2n) ≤ −D1(1 + ε)2n < 0 for all n ∈ N0. Otherwise

choose some N >
ln

D0
D1

ln(1+ε)
. Then Φϕ−ϕ(1)(x2N) < 0, which is a contradiction to the

Pn-positive definiteness of ϕ− ϕ(1) since x2N ≥ 0 for all x ∈ R.

1.⇒3.: ϕ±ϕ(1) can be represented by the positive measure (1±x)dµ, hence those
functions are positive definite.

Combining Theorem 2.19 with our results in Section 2.1 yields some interesting
implications. Suppose

(
Pn

)
n∈N0

is a real polynomial family with

∞∑
n=0

|g(n, 1; k)| ≤ α

for all n ∈ N0 and some α > 0. Choose a bounded Pn-positive definite function
ϕ : N0 → R. By Theorem 2.11, we have supp ϕ̂ ⊆ P−1

1 ([−α; α]) and in particular

supp ϕ̂ ⊆ [b0 − αa0; b0 + αa0],

where a0 and b0 are given by P1(x) = 1
a0

(x− b0). Then Theorem 2.19 gives us the

Pn-positive definiteness of the functions ϕ(1)−(b0−αa0)ϕ and −ϕ(1)−(b0+αa0)ϕ.

If the real polynomial family
(
Rn

)
n∈N0

induces a polynomial hypergroup with D1
s =

[−1; 1], then a Rn-positive definite function ϕ is bounded if and only if ϕ−ϕ(2) and
ϕ± ϕ(1) are Rn-positive definite functions.

2.3 Composition of the Support of the

Representing Measure

The following results are inspired by the work of R. Doss, cf. [Dos67, Dos68,
Dos71]. For a compact set B ⊂ R, we denote by ‖.‖B the supremum norm over B,
i.e.

‖f‖B := sup
x∈B

|f(x)| ∀ f ∈ C(B,C).

After analyzing size and location of the support of representing measures, we are
now interested in the composition of the support. Since positivity is not essential
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2 Representation of Pn-positive definite Sequences

for these results, we generalize Theorem 2.3 to all sequences ϕ ∈ `(N0) with con-
tinuously extendable Φϕ – which is equivalent to the boundedness of the support
of ϕ̂ – and present a Bochner-Schönberg-Eberlein-type theorem.

The following lemma is well known for the semigroup (N0, +), cf. [ST63, p.103].

Lemma 2.20: Let
(
Pn

)
n∈N0

be a sequence of real polynomials with deg Pn = n and
let ϕ : N0 → R. Suppose there exists a compact set B ⊆ R and a constant A ≥ 0
such that Φϕ is a bounded linear functional on P[R] ⊆ C(B,R) with ‖Φϕ‖B ≤ A,
i.e.

sup
x∈B

∣∣∣∣∣
n∑

k=0

ckPk(x)

∣∣∣∣∣ ≤ 1 ⇒
∣∣∣∣∣

n∑

k=0

ckϕ(k)

∣∣∣∣∣ ≤ A. (2.3.1)

Then there exist Pn-positive definite functions ϕ+, ϕ− : N0 → R with ϕ = ϕ+−ϕ−.

Proof. The linear functional Φϕ can be extended continuously to C(B), we denote
the extension by Φϕ, too. For f ∈ C+(B,R) – where C+(B,R) is defined as in
Section 1.1 – define

Φ+
ϕ (f) := sup

{
Φϕ(h) : h ∈ C+(B,R), h ≤ f

}
.

The existence of the limit follows immediately by

|Φϕ(h)| ≤ A‖h‖B ≤ A‖f‖B ⇒ |Φ+
ϕ (f)| ≤ A‖f‖B. (2.3.2)

It remains to show the linearity of Φ+
ϕ . Let f, g ∈ C+(B,R) and choose some

h, k ∈ C+(B,R) with h ≤ f, k ≤ g. Then the linearity of Φϕ yields

Φϕ(h) + Φϕ(k) = Φϕ(h + k) ≤ Φ+
ϕ (f + g),

hence we can conclude

Φ+
ϕ (f) + Φ+

ϕ (g) ≤ Φ+
ϕ (f + g).

In order to show the opposite order relation, choose h ∈ C+(B,R), h ≤ f + g.
Define for all x ∈ B

p(x) := max{h(x)− g(x), 0} q(x) := min{h(x), g(x)}.
Then p ≤ f, q ≤ g, p + q = h and p, q ∈ C+(B,R). Now follows

Φ+
ϕ (f) + Φ+

ϕ (g) ≥ Φϕ(p) + Φϕ(q) = Φϕ(p + q) = Φϕ(h)

⇒ Φ+
ϕ (f) + Φ+

ϕ (g) ≥ Φ+
ϕ (f + g).
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2.3 Composition of the Support of the Representing Measure

The homogeneity of Φ+
ϕ is straightforward. Φ+

ϕ can be extended in a unique way to
a bounded linear functional Φ+

ϕ : C(B,R) → R. Now define

ϕ+(n) := Φ+
ϕ (Pn), ϕ−(n) := Φ+

ϕ (Pn)− Φϕ(Pn).

Since Φ+
ϕ (P ) ≥ 0 and Φ+

ϕ (P ) ≥ Φϕ(P ) for all P ∈ P[R], P
∣∣
R ≥ 0, ϕ+, ϕ− are

positive definite by Theorem 2.3 and obviously ϕ = ϕ+ − ϕ−.

With help of this result, we can represent every function ϕ : N0 → C which satisfies
the boundedness condition (2.3.1).

Theorem 2.21: Let
(
Pn

)
n∈N0

be a real polynomial family, B ⊂ R a compact set
and ϕ : N0 → C. There exists a unique complex measure µ whose support is con-
tained in B and

ϕ(n) =

∫

B

Pn dµ, ∀n ∈ N0,

if and only if there exists a constant A ≥ 0 such that

sup
x∈B

∣∣∣∣∣
n∑

k=0

ckPk(x)

∣∣∣∣∣ ≤ 1 ⇒
∣∣∣∣∣

n∑

k=0

ckϕ(k)

∣∣∣∣∣ ≤ A. (2.3.3)

Proof. Suppose there exists a measure µ satisfying the assumption. Then for every
P =

∑n
k=0 ckPk ∈ P[C] with ‖P‖B ≤ 1

∣∣∣∣∣
n∑

k=0

ckϕ(k)

∣∣∣∣∣ =

∣∣∣∣∣
∫

B

n∑

k=0

ckPk dµ

∣∣∣∣∣ ≤
∫

B

|P | d|µ| ≤ |µ|(B) =: A < ∞.

For the converse direction, suppose ϕ satisfies (2.3.3) with A ≥ 0 and define

ϕ< : N0 → R ϕ= : N0 → R
n 7→ <ϕ(n) n 7→ =ϕ(n).

For P =
∑n

k=0 ckPk ∈ P[R], ‖P‖B ≤ 1,

∣∣∣∣∣
n∑

k=0

ckϕ<,=(k)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

k=0

ckϕ<(k) + ickϕ=(k)

∣∣∣∣∣ ≤ A (2.3.4)
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2 Representation of Pn-positive definite Sequences

by (2.3.3). Hence Lemma 2.20 can be applied and there exists a decomposition

ϕ = ϕ+
< − ϕ−< + iϕ+

= − iϕ−=,

where ϕ+
<, ϕ−<, ϕ+

=, ϕ−= are Pn-positive definite. Theorem 2.3 yields

ϕ(n) =

∫

R
Pn dµ =

∫

R
Pn d(µ+

< − µ−< + iµ+
= − iµ−=).

It remains to show supp µ ⊆ B. Suppose there exists x ∈ supp µ \ B. Then there
can be easily found a f ∈ C(supp µ∪B,C) with ‖f‖B = 0 and f(x) = 1, such that∣∣∫ n · f dµ<

∣∣ →∞ as n →∞, which contradicts (2.3.4).
The uniqueness of the representing complex measure is straightforward, since the
support is bounded as supp µ ⊆ B.

We point out that the Spectral Theorem for bounded self-adjoint operators on
Hilbert spaces can be derived almost directly from Theorem 2.21. A similar ap-
proach has been used in [RR98, Thm. 2], where a more general version of the
following theorem has been shown.

Theorem 2.22: Let H be a Hilbert space and A ∈ B(H) self-adjoint. Then there
exists a spectral measure E on σ(A) such that

A =

∫

σ(A)

t dE(t).

In particular, for every x, y ∈ H there exists a measure Ex,y ∈MC(σ(A)) with total
variation ≤ ‖x‖‖y‖ such that

〈Ax; y〉 =

∫

σ(A)

t dEx,y(t).

Proof. Choose Pn ≡ xn for n ∈ N0. Let x, y ∈ H and define ϕx,y : N → C by
ϕx,y(n) := 〈Anx; y〉. Then for every P ∈ P[C] with ‖P‖σ(A) ≤ 1 holds by Lemma 1.7
and the Cauchy-Schwartz inequality

∣∣Φϕx,y(P )
∣∣ = 〈P (A)x; y〉 ≤ ‖P (A)‖‖x‖‖y‖ ≤ ‖x‖‖y‖.

Hence, there exists a unique representing measure Ex,y ∈ MC(σ(A)) of ϕx,y by
Theorem 2.21 since σ(A) ⊆ R is bounded. We define a mapping ρ : B(σ(A)) →
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2.3 Composition of the Support of the Representing Measure

B(H), where B(σ(A)) denotes the bounded Borel measurable functions on σ(A),
by

〈ρ(f)x; y〉 :=

∫
f dEx,y ∀x, y ∈ H.

We will show that ρ is a ∗-representation: Since all f ∈ B(σ(A)) are Ex,y-integrable
for all x, y ∈ H, ρ is well-defined, and as the mapping (x, y) 7→ Ex,y is sesquilinear,
the linearity of ρ(f) for all f ∈ B(σ(A)) is obvious. The identity Ex,y = Ey,x gives us
ρ(f̄) = ρ(f)∗ for all f ∈ B(σ(A)). By the definition of Ex,y, we have ρ(P ) = P (A)
for all polynomials P ∈ P[C]. In particular we have ρ(PQ) = ρ(P )ρ(Q) for all
polynomials P, Q ∈ P[C]. As P[C] is dense in L1(σ(A), Ex,y) for all x, y ∈ H, the
identity ρ(fg) = ρ(f)ρ(g) holds for all f, g ∈ B(σ(A)), too.

We define E : B → B(H), B 7→ ρ(χB). Exploiting the properties of ρ it is straight-
forward to show that E is a spectral measure.

For a suitable choice of
(
Pn

)
n∈N0

, there exists a large class of functions which
satisfy the requirements of Theorem 2.21. The following example shows that for an
orthonormal polynomial sequence the `2-sequences are such a class.

Example 2.3: Let
(
Rn

)
n∈N0

be an orthonormal polynomial sequence with respect

to ν ∈ M+(R), where ν has bounded support, and let ϕ ∈ `2(N0) be a real resp.
complex square summable sequence. Then holds for all N ∈ N and P ∈ PN [C] by
the Cauchy-Schwartz inequality

|Φϕ(P )| =
∣∣∣∣∣

N∑

k=0

ϕ(k)

∫

R
P ·Rk dν

∣∣∣∣∣ ≤
√∫

R
|P |2 dν ·

√√√√
N∑

k=0

|ϕ(k)|2

≤
√

ν(R) · ‖P‖supp ν · ‖ϕ‖2

and hence there exists a signed resp. complex Borel measure µ with supp µ ⊆ supp ν
and

ϕ(n) =

∫

R
Rn dµ ∀n ∈ N0.

Actually, µ is given by

µ(A) =

∫

A

∞∑
n=0

ϕ(n)Rn dν

for all Borel sets A. In particular, µ is absolutely continuous with respect to ν,
since

∑∞
n=0 ϕ(n)Rn ∈ L2(R, ν) ⊂ L1(R, ν).
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2 Representation of Pn-positive definite Sequences

Motivated by this example, we turn to the question under which conditions the rep-
resenting measure is absolutely continuous or singular with respect to an arbitrary
positive measure.

Theorem 2.23: Let
(
Pn

)
n∈N0

be a real polynomial family, ϕ : N0 → C a function,

and ν ∈M+(R). There exists a complex measure µ ∈MC(R) with compact support
and µ⊥ν such that

ϕ(n) =

∫
Pn dµ, ∀n ∈ N0, (2.3.5)

if and only if there exists a constant A ≥ 0 and a compact set B such that ϕ satisfies
(2.3.3) and for every ε > 0 there exists a polynomial p ∈ P[C] such that

‖p‖B ≤ 1,

∫

B

|p| dν < ε, |Φϕ(p)| ≥ A− ε.

Proof. Suppose ϕ can be represented by a singular measure µ with bounded sup-
port. We assume w.l.o.g. that ν(R) ≤ 1. Define B := supp µ and A := |µ|(B).
Hence (2.3.3) is satisfied. Now let ε > 0. There exists a µ-integrable function f
with |f(x)| = 1 for all x ∈ R and

∫
B

f dµ = |µ|(B), cp. Chapter 1. As C(B) is dense
in L1(B, µ), there exists a continuous function g with ‖g‖B ≤ 1 and ‖f − g‖1 < ε.

∣∣∣∣
∫

B

g dµ

∣∣∣∣ ≥
∣∣∣∣
∫

B

f dµ

∣∣∣∣−
∣∣∣∣
∫

B

f − g dµ

∣∣∣∣ ≥ A− ‖f − g‖1 > A− ε.

As µ⊥ν, there exists a Borel set Nν ⊆ R with µ|R\Nν ≡ 0 ≡ ν|Nν . Since µ is regular,
there exists a compact set K ⊆ B ∩Nν with

|µ(K)| ≥ |µ|(B ∩Nν)− ε = A− ε.

By the regularity of ν, there exists an open set U ⊃ K with

ν(U) ≤ ν(K) + ε ≤ ν(B ∩Nν) + ε = ε.

As L := B \ V and K are bounded and disjoint the Lemma of Urysohn gives us
a continuous function η : B → [0; 1] with η|L ≡ 0 and η|K ≡ 1. In particular there
exists a complex polynomial p such that

‖ηg − p‖B ≤ min
{ ε

A
; ε

}
.
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2.3 Composition of the Support of the Representing Measure

Altogether we have ‖p‖B ≤ 1 + ε and the inequalities
∫

B

|p| dν =

∫

L

|p| dν +

∫

K∩U

|p| dν ≤ εν(L) + ν(U) ≤ 2ε,
∣∣∣∣
∫

B

p dµ

∣∣∣∣ ≥
∣∣∣∣
∫

B

g dµ

∣∣∣∣−
∫

B

|g − p| d|µ| ≥
∣∣∣∣
∫

B

g dµ

∣∣∣∣−
∫

K

|ηg − p| d|µ|

≥ A− ε− |µ|(K)
ε

A
= A− 2ε.

We now turn towards the converse direction. Theorem 2.21 gives us the existence
of a representing measure µ. It remains to show µ⊥ν.
Thereto let ε > 0. We have to show that there exists a set B ⊂ R, such that
ν(B) < ε and |µ|(B) ≥ A − ε. By assumption, there exists a compact set E, a
positive number A ≥ 0 and a polynomial p ∈ P[C] with

‖p‖E ≤ 1,

∫

E

|p| dν ≤ ε2

2A
, |Φϕ(p)| =

∣∣∣∣
∫

E

p dµ

∣∣∣∣ ≥ A− ε

2
.

Now for B :=
{
x ∈ E : |p(x)| > ε

2A

}
we obtain

ν(B) =

∫

B

1 dν <

∫

B

2A

ε
|p| dν ≤ 2A

ε
· ε2

2A
= ε,

and conclude

|µ|(B) ≥
∣∣∣∣
∫

B

p dµ

∣∣∣∣ ≥
∣∣∣∣
∫

E

p dµ

∣∣∣∣−
∣∣∣∣
∫

E\B
p dµ

∣∣∣∣

≥ A− ε

2
− ε

2A

∫

E\B
d|µ| = A− ε.

Theorem 2.24: Let
(
Pn

)
n∈N0

be a real polynomial family, ϕ : N0 → C and let

ν ∈ M+(R). There exists a complex measure µ ¿ ν, µ ∈ MC(R) with compact
support and

ϕ(n) =

∫
Pn dµ, ∀n ∈ N0, (2.3.6)

if and only if there exists a compact set B ⊂ supp ν such that for any given ε > 0
there exists a δ > 0 such that for any polynomial p ∈ P[C] holds

‖p‖B ≤ 1,

∫

B

|p|dν < δ ⇒ |Φϕ(p)| < ε. (2.3.7)
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2 Representation of Pn-positive definite Sequences

Proof. Suppose we have a measure µ ¿ ν satisfying (2.3.6). Define B := supp µ
and let ε > 0. Since µ is absolutely continuous, there exists a function m ∈ L1(B, ν)
with dµ = mdν, see Theorem 1.1. There exists a continuous function f ∈ C(B)
with ∫

B

|m− f |dν <
ε

2
.

Choose δ := ε
2‖f‖B

. Now let p ∈ P[C] with ‖p‖B ≤ 1,
∫

B
|p|dν < δ. Then

|Φϕ(p)| =
∣∣∣∣
∫

B

pmdν

∣∣∣∣ ≤
∫

B

∣∣p(m− f
)∣∣ dν +

∫

B

|pf | dν

<
ε

2
+ ‖f‖B ·

∫

B

|p|dν ≤ ε

2
+

ε

2
= ε.

For the converse direction, we have to show the existence of µ first. Let ε > 0. By
assumption, there exists a δ > 0 such that (2.3.7) holds. Choose some α > 0, such
that α ≤ 1 and αν(B) < δ. Then for p =

∑
ckPk ∈ P[C] with ‖p‖B ≤ 1 holds

∫

B

|αp|dν ≤ αν(B) < δ.

Hence by assumption ∣∣∣∣∣
n∑

k=0

ckϕ(k)

∣∣∣∣∣ <
ε

α

and Theorem 2.21 – with A = ε
α

– yields the desired measure µ.
It remains to show that µ is absolutely continuous with respect to ν. By the Radon-
Nikodym theorem, cp. Theorem 1.1, there exists a decomposition dµ = dµs + fdν,
where µs⊥ν and f ∈ L1(B, ν). Suppose µs 6= 0 and define As := |µs|(R), ε := As

4

and

ϕ̃(n) :=

∫

B

Pnf dν.

Hence there exists δ̃ > 0 such that for any p ∈ P[C] holds

‖p‖B ≤ 1,

∫

B

|p|dν < δ̃ ⇒ |Φϕ̃(p)| < ε.

On the other hand, by Theorem 2.23, there is a p such that ‖p‖B ≤ 1 and
∫

B

|p| dν ≤ min{δ; δ̃} and |Φϕ−ϕ̃(p)| > As − ε.
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2.3 Composition of the Support of the Representing Measure

Summing up we get

|Φϕ(p)| ≥ |Φϕ−ϕ̃(p)| − |Φϕ̃(p)| ≥ As − ε− ε ≥ 2ε,

which is a contradiction to (2.3.7). Hence µs = 0 and thus µ ¿ ν.
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2 Representation of Pn-positive definite Sequences
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3 Examples of Pn-positive definite
Functions

In the previous chapter, we characterized Pn-positive definite functions as the trans-
formation of positive Borel measures and dealt with the support of these represent-
ing measures. Now, we want to give some examples of Pn-positive definite functions
and their appearance.
We continue to assume

(
Pn

)
n∈N0

to be a real polynomial family with linearization

coefficients g(m,n; k). Throughout this chapter, H will be a Hilbert space which
is equipped with the scalar product 〈·; ·〉. In time series analysis, we usually have
H = L2(Ω, µ), where µ is a probability measure.

3.1 Pn-stationary Sequences on Hilbert Spaces

In the group case, positive definite functions arise as covariance functions of weakly
stationary time series. Over the past years, there has been some effort to extend
the theory of time series on the group (Z, +) to hypergroups and polynomial hy-
pergroups, cf. [HL92, HL03, Hös98, LL89, Lei91]. For any sequence

(
xn

)
n∈N0

in H,
we call

ψ : N0 × N0 → C, (m,n) 7→ 〈xm; xn〉
the covariance function of

(
xn

)
n∈N0

.

We call
(
xn

)
n∈N0

Pn-stationary , if

ψ(m,n) = Tn

(
ψ(k, 0)

)
k∈N0

(m) ∀m,n ∈ N0.

In the following, we will formally abbreviate

xm∗n :=
m+n∑

k=0

g(m,n; k)xk.
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3 Examples of Pn-positive definite Functions

This notation is motivated by the polynomial hypergroup case, where the convolu-
tion ω is often abbreviated in the same manner. By the definition of the translation
operators Tn this is equivalent to

ψ(m,n) = 〈xm; xn〉 =
m+n∑

k=0

g(m,n; k)〈xk; x0〉 = 〈xm∗n; x0〉.

Hence, we define ϕ(n) := ψ(n, 0) for all n ∈ N0. For simplicity reasons, we also
call ϕ the covariance function of

(
xn

)
n∈N0

, if this sequence is Pn-stationary. We

abbreviate the subspace of H which is generated by the sequence x =
(
xn

)
n∈N0

by

H(x), i.e.

H(x) := span {xn : n ∈ N0} . (3.1.1)

The following lemma provides a possibility to calculate examples of Pn-stationary
sequences. As we will see in the following, all Pn-stationary sequences are of this
form.

Lemma 3.1: Let
(
Pn

)
n∈N0

be a real polynomial family and A ∈ L(H) a self-

adjoint operator. For any x0 ∈ H with x0 ∈ D(An) for all n ∈ N, the sequence(
Pn(A)x0

)
n∈N0

is Pn-stationary.

Proof. For all m,n ∈ N0 the operator Pn(A) is self-adjoint and one has

〈Pm(A)x0; Pn(A)x0〉 = 〈(PmPn)(A)x0; x0〉

=
m+n∑

k=0

g(m,n; k) 〈Pk(A)x0; x0〉 .

Hence, the sequence
(
Pn(A)x0

)
n∈N0

is Pn-stationary.

The following theorem provides an analogon of the Herglotz theorem for weakly
stationary processes, cf. [BD02]:

Theorem 3.2: Let
(
Pn

)
n∈N0

be a real polynomial family. A sequence ϕ ∈ `(N0)
is the covariance function of a Pn-stationary sequence if and only if ϕ is positive
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3.1 Pn-stationary Sequences on Hilbert Spaces

definite with respect to
(
Pn

)
n∈N0

. In particular, there exists a self-adjoint operator

A ∈ L(`2(N0)) with spectral measure E,

ϕ(n) = 〈Pn(A)δ0; δ0〉 · ϕ(0) =

∫

σ(A)

Pn dEδ0,δ0 · ϕ(0),

and supp Eδ0,δ0 = σ(A), where δ0 = (δn0)n∈N0
.

Proof. Suppose ϕ is Pn-positive definite. By Theorem 2.3 and Remark 2.6, there
exists a measure µ ∈ M+(R) and a self-adjoint operator A ∈ L(`2(N0)), such that
µ is a representing measure of ϕ and

〈P (A)δ0; δ0〉 · ϕ(0) =

∫

R
P dµ

for all P ∈ P[C]. Since δ0 is a cyclic vector for A we have σ(A) = supp µ by
Theorem 1.8. Define xn := Pn(A)δ0 ·

√
ϕ(0). Then for all m,n ∈ N0

〈xn; x0〉 = 〈Pn(A)δ0; δ0〉 · ϕ(0) =

∫

R
Pn dµ = ϕ(n)

and
〈xm; xn〉 = 〈Pm(A)Pn(A)δ0; δ0〉 · ϕ(0) = 〈xm∗n; x0〉.

For the opposite direction, suppose
(
xn

)
n∈N0

is a Pn-stationary sequence. By defi-

nition, ϕ(n) = 〈xn; x0〉. Let n ∈ N, c1, . . . , cn ∈ C. Then

n∑
i,j=1

cicjcTiϕ(j) =
n∑

i,j=1

cicj〈xi; xj〉

=

〈
n∑

i=1

cixi;
n∑

j=1

cjxj

〉
≥ 0

gives us the Pn-positive definiteness of ϕ.

From this theorem follows a commutativity and associativity result which corre-
sponds to the theory of polynomial hypergroups.

Corollary 3.3: Any Pn-stationary sequence
(
xn

)
n∈N0

in H satisfies

〈xk∗m; xn〉 = 〈xm∗k; xn〉 = 〈xm; xn∗k〉 ∀ k, m, n ∈ N0.
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3 Examples of Pn-positive definite Functions

Proof. By Theorem 3.2, there exists a self-adjoint operator A ∈ L(`2(N0)) with
〈Pn(A)δ0; δ0〉 = 〈xn; x0〉 for all n ∈ N0. It follows for m,n, k ∈ N0

〈xm∗k; xn〉 = 〈Pm(A)Pk(A)δ0; Pn(A)δ0〉
= 〈Pk(A)Pm(A)δ0; Pn(A)δ0〉 = 〈xk∗m; xn〉

and

〈xm∗k; xn〉 = 〈Pm(A)Pk(A)δ0; Pn(A)δ0〉
= 〈Pm(A)δ0; Pn(A)Pk(A)δ0〉 = 〈xm; xn∗k〉.

A theorem from Chapter 2 gives us a characterization of bounded Pn-stationary
sequences, if we have certain restrictions on the real polynomial family:

Proposition 3.4: Let
(
Pn

)
n∈N0

be a real polynomial family and
(
xn

)
n∈N0

a Pn-
stationary sequence with covariance function ϕ. Suppose that there exists a uniform
bound α ≥ 1 for the absolute sums of the linearization coefficients of PmPn, i.e.

m+n∑

k=0

|g(m,n; k)| ≤ α ∀m,n ∈ N0.

The sequence
(
xn

)
n∈N0

is bounded if and only if ϕ is bounded. In this case, we have

‖xn‖ ≤ α‖x0‖ and |ϕ(n)| ≤ αϕ(0) for all n ∈ N0.

Proof. By Theorem 3.2, ϕ is a Pn-positive definite function and hence a representing
measure ϕ̂ exists. If supp ϕ̂ ⊆ Dα

s , then ϕ is bounded by αϕ(0) by Theorem 2.12
and

‖xn‖2 = 〈xn∗n; x0〉 =
2n∑

k=0

g(n, n; k)ϕ(k)

=

∫

Dα
s

P 2
n dϕ̂ ≤ α2‖x0‖2.

If supp ϕ̂ 6⊆ Dα
s , then the covariance function ϕ is unbounded by Theorem 2.12.

Using the Cauchy-Schwartz inequality

‖xn‖‖x0‖ ≥ |〈xn; x0〉| = |ϕ(n)|
and hence the Pn-stationary sequence

(
xn

)
n∈N0

is unbounded, too.
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3.1 Pn-stationary Sequences on Hilbert Spaces

3.1.1 Generator and spectral measure

We already know that for every self-adjoint A ∈ L(H) and x0 ∈
⋂

nD(An) the
sequence

(
Pn(A)x0

)
n∈N0

is Pn-stationary. The reverse would give us a self-adjoint

operator A ∈ L(H) corresponding to a given Pn-stationary sequence and we could
apply the Spectral Theorem. Hence, for a given Pn-stationary sequence

(
xn

)
n∈N0

,

we call a self-adjoint operator A ∈ L
(
H(x)

)
– where H(x) is given by (3.1.1) –

which satisfies xn = Pn(A)x0 for all n ∈ N, generator of
(
xn

)
n∈N0

. The follow-
ing theorem gives a positive answer to the question, whether every Pn-stationary
sequence possesses a generator.

Theorem 3.5: Let
(
Pn

)
n∈N0

be a real polynomial family. A sequence
(
xn

)
n∈N0

in

H is Pn-stationary if and only if there exists a self-adjoint operator A ∈ L
(
H(x)

)

with x0 ∈ D(An) – which implies H(x) ⊆ D(A) – and xn = Pn(A)x0 for all n ∈ N0.
In particular, Ex0,x0 is a representing measure of the covariance function of

(
xn

)
n∈N0

and supp Ex0;x0 = σ(A), where E denotes the spectral measure of A.

Proof. Suppose that
(
xn

)
n∈N0

is Pn-stationary. By Theorem 3.2, there exists a

self-adjoint linear operator B ∈ L(`2(N0) with ϕ(n) = 〈Pn(B)δ0; δ0〉 · ϕ(0). We
abbreviate yn := Pn(B)δ0 ·

√
ϕ(0) and define a linear mapping by

Ψ: span {yn : n ∈ N0} ⊆ `2(N0) → H(x)

yn 7→ xn.
(3.1.2)

Ψ is well-defined since
∑∞

n=0 anyn =
∑∞

n=0 bnyn ∈ `2(N0) implies for all m ∈ N0

〈 ∞∑
n=0

anxn; xm

〉
=

∞∑
n=0

an〈xn; xm〉 =
∞∑

n=0

an〈xm∗n; x0〉

=
∞∑

n=0

an〈ym∗n; y0〉 =
∞∑

n=0

bn〈ym∗n; y0〉

=

〈 ∞∑
n=0

bnxn; xm

〉
.
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3 Examples of Pn-positive definite Functions

Ψ is an isometric isomorphism, since it is surjective and for all m,n ∈ N0

〈Ψym; Ψyn〉 =
〈
Ψ

(
Pm(B)δ0

√
ϕ(0)

)
; Ψ

(
Pn(B)δ0

√
ϕ(0)

)〉

= 〈xm; xn〉 = Tmϕ(n)

=
〈
Pm(B)δ0

√
ϕ(0); Pn(B)δ0

√
ϕ(0)

〉

= 〈ym; yn〉.
Hence, A := ΨBΨ−1 is a self-adjoint linear operator onH(x) withD(A) = Ψ

(D(B)
)
.

Due to A(H(x)) ⊆ H(x) one has H(x) ⊆ D(An).

It remains to show xn = Pn(A)x0 for all n ∈ N0 which is an immediate consequence
of the equality

Pn(A)x0 = ΨPn(B)Ψ−1x0 = ΨPn(B)δ0 ·
√

ϕ(0)

= Ψyn = xn.

The backward direction follows from

〈xm; xn〉 = 〈Pm(A)Pn(A)x0; x0〉 = 〈xm∗n; x0〉 ∀m,n ∈ N0.

If A is bounded, then the uniqueness of the generator of a Pn-stationary sequence(
xn

)
n∈N0

is straightforward, since the operator is uniquely determined by its actions

on H(x). We call the measure Ex0;x0 spectral measure of
(
xn

)
n∈N0

. As in classical
time series analysis, it is a representing measure of the covariance function.

Our results from Chapter 2 yield a boundedness condition on the generator of a
Pn-stationary sequence.

Proposition 3.6: Let
(
Pn

)
n∈N0

be a real polynomial family and
(
xn

)
n∈N0

be a Pn-
stationary sequence in H with bounded covariance function. Suppose there exists a
constant α > 0 such that the linearization coefficients of the polynomial sequence(
Pn

)
n∈N0

satisfy
n+1∑

k=0

|g(n, 1; k)| ≤ α ∀n ∈ N0.

Then the generator A of
(
xn

)
n∈N0

is bounded, i.e. A ∈ B
(
H(x)

)
and

‖A‖ ≤ max
x∈[−α;α]

∣∣P−1
1 (x)

∣∣ .
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3.1 Pn-stationary Sequences on Hilbert Spaces

Proof. Let ϕ : N0 → R denote the covariance function of
(
xn

)
n∈N0

. Referring to

Theorem 3.5, there exists a self-adjoint A ∈ L(H(x)) with

ϕ(n) = 〈Pn(A)x0; x0〉 · ϕ(0) ∀n ∈ N0,

and ϕ is a Pn-positive definite function. Since x0 is a cyclic vector we have the
identity σ(A) = supp Ex0,x0 by Theorem 1.8. By Theorem 2.11, σ(A) is contained
in P−1

1 ([−α; α]). Since A is self-adjoint, spectral radius and operator norm coincide,
hence the claim is shown.

The boundedness of its generator does not necessarily imply the boundedness of
a Pn-stationary sequence. Yet, we can make statements on the boundedness of
Pn-stationary sequences if we know the spectrum of the generator.

Proposition 3.7: Let
(
Pn

)
n∈N0

be a real polynomial family and
(
xn

)
n∈N0

a Pn-

stationary sequence in H with generator A ∈ B(H). If the spectrum of A is con-
tained in U∞

s , i.e. σ(A) ⊂ U∞
s , then

(
xn

)
n∈N0

is bounded.

Proof. As σ(A) is the spectrum of a bounded operator, it is compact. By Proposi-
tion 2.7 (ii), there exists a constant α ≥ 1 such that σ(A) ⊆ Dα

s . This implies the
inequality

‖xn‖2 =

∫

σ(A)

P 2
n dµ ≤ α2‖x0‖2,

where µ denotes the spectral measure of
(
xn

)
n∈N0

. Hence the sequence
(
xn

)
n∈N0

is

bounded by α‖x0‖.

3.1.2 Imaginary Part

In this subsection, we analyze the correspondence between Pn-stationary sequences
and weakly stationary sequences in the sense of time series analysis. A sequence(
zn

)
n∈Z in H is called weakly stationary, if

〈zm; zn〉 = 〈zm−n; z0〉 ∀m, n ∈ Z.
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3 Examples of Pn-positive definite Functions

Since a weakly stationary sequence corresponds to the trigonometric polynomial
sequence

(
eint

)
n∈Z =

(
cos(nt) + i sin(nt)

)
n∈Z, the idea to analyze Tn- resp. Un-

stationary sequences is self-evident. By Tn resp. Un we denote the Chebyshev
polynomials of first resp. second kind. They are given by the recurrence relations

xTn(x) =
1

2
Tn+1(x) +

1

2
Tn−1(x),

xUn(x) =
n + 2

2n + 2
Un+1(x) +

n

2n + 2
Un−1(x),

for n ∈ N, with initial conditions T0, U0 ≡ 1, T1(x), U1(x) = x. They also possess
a well-known representation in terms of trigonometric functions:

Tn(cos θ) = cos(nθ),

Un(cos θ) =
sin

(
(n + 1)θ

)

(n + 1) sin θ
.

Note that Tn and Un induce a polynomial hypergroup on N0, since for all m,n ∈ N0,
m ≤ n,

Tm(x)Tn(x) =
1

2
Tm+n(x) +

1

2
T|m−n|(x),

Um(x)Un(x) =
m∑

j=0

m + n + 1− 2j

(n + 1)(m + 1)
Un+m−2j(x).

Let
(
xn

)
n∈N0

be a Tn-stationary sequence in H. In the following, we say that(
xn

)
n∈N0

allows an imaginary part , if there exists a Un-stationary sequence
(
yn

)
n∈N0

in H, such that
(
x|n| + iny|n|−1

)
n∈Z is weakly stationary.

Proposition 3.8: Let
(
xn

)
n∈N0

be a Tn-stationary sequence in H.
(
xn

)
n∈N0

allows

an imaginary part in H(x) if and only if the covariance function ϕ is bounded. In
this case, the imaginary part is given by

yn = Un(A)B(x0) (3.1.3)

for all n ∈ N0, where A ∈ L(H(x)) denotes the unique bounded and self-adjoint
generator of

(
xn

)
n∈N0

and B is a self-adjoint solution of A2 + B2 = id, such that
A and B commute.
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Proof. Let A be the generator of
(
xn

)
n∈N0

. A is bounded by Proposition 3.6,

since T1(x) = x and
∑ |g(n, 1; k)| = 1 for all n ∈ N. The uniqueness of A is

evident. Let E be the spectral measure of A which is given by the Spectral Theorem,
cf. Theorem 1.5. Since ‖A‖ ≤ 1, we have σ(A) = supp E ⊆ [−1; 1]. Hence

B :=

∫

σ(A)

√
1− x2dE(x)

is a bounded self-adjoint operator. For n ∈ N0, define

yn := Un(A)Bx0.

Then, setting y−1 := 0, U−1 ≡ 0, it holds for m,n ∈ Z

〈x|m| + imy|m|−1; x|n| + iny|n|−1〉

=

∫ 1

−1

(
T|m|(x) + imU|m|−1(x)

√
1− x2

)(
T|n|(x)− inU|n|−1(x)

√
1− x2

)
dEx0;x0(x)

=

∫ π

−π

(
cos(mθ) + i sin(mθ)

)(
cos(nθ)− i sin(nθ)

)
dν(θ)

=

∫ π

−π

ei(m−n)θ dν(θ) = 〈x|m−n| + i(m− n)y|m−n|−1; x0〉,

where dν(θ) = sin(θ)dµ(cos θ).

Note that the imaginary part
(
yn

)
n∈N0

is uniquely determined by the choice of B.

As long as we assume yn ∈ H(x) for all n ∈ N0, the only possible choices for B are
±√1− A2.

3.2 Specific examples

While we were dealing with a rather abstract occurrence of Pn-positive definite
functions, namely covariance functions, in the previous section, we will now discuss
specific functions, e.g. n 7→ δn0 and n 7→ 1. Since there is no general answer possible
whether these functions are Pn-positive definite, we will handle some particular
real polynomial families. Here, the focus is on polynomial sequences which are not
orthogonal.
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3 Examples of Pn-positive definite Functions

3.2.1 Plancherel measure

In the harmonic analysis of hypergroups, the Plancherel measure π plays a central
role. It is characterized by the identity

∫

K

|f(x)|2 dm(x) =

∫

K̂

|f̂(α)|2 dπ(α), (3.2.1)

where m is the Haar measure on the hypergroup K with dual space K̂ and :̂ L1(K) →
C0(K̂) denotes the Fourier transform. If K is a polynomial hypergroup induced
by the orthogonal polynomial sequence

(
Rn

)
n∈N0

, then equation (3.2.1) takes the
shape

∞∑
n=0

|ϕ(n)|2h(n) =

∫

D1

∣∣∣∣∣
∞∑

n=0

ϕ(n)Rn(x)h(n)

∣∣∣∣∣ dµ(x),

where µ is the orthogonalizing measure of the polynomial sequence, the Haar
weights are given by h(n)−1 :=

∫
R2

n dµ and

ϕ ∈ `1(h,N0) :=

{
(ϕ(n))n∈N0

:
∞∑

n=0

|ϕ(n)|h(n) < ∞
}

.

Therefore, the Plancherel measure of a polynomial hypergroup is the orthogonaliz-
ing measure µ. Since µ is a representing measure of the – consequently Rn-positive
definite – sequence (δ0n)n∈N0

, we pose the question: Are there polynomial systems
such that (δ0n)n∈N0

is Pn-positive definite, but which are not orthogonal? This
question can be answered positively and we are now going to give two examples.

Example 3.1: Consider the real polynomial family
(
Pn

)
n∈N0

:=
(
xn

)
n∈N0

given by
the monomials. Then obviously

∫
Pn dδ0 = δn0 ∀n ∈ N0

and hence n 7→ δn0 is a xn-positive definite function.

Since this example is rather trivial, we want to give another example.

Example 3.2: The Bernoulli polynomials are defined by the generating function

text

et − 1
=

∞∑
n=0

Bn(x)

n!
tn.
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They obey the difference equation

Bn(x + 1)−Bn(x) = nxn−1.

Calculation of the partial derivative ∂
∂x

text

et−1
yields B′

n(x) = nBn−1(x). Hence

∫ 1

0

Bn(x) dx =
1

n + 1

(
Bn+1(1)−Bn+1(0)

)
= 0

for all n ∈ N. Altogether we have

∫ 1

0

Bn(x) dx = δ0n ∀n ∈ N0,

and n 7→ δn0 is a Bn-positive definite function.

This second example is more interesting, since the support of the representing
measure is of infinite cardinality, and hence Haar weights could be calculated. Still,
the existence of a Haar measure is depending on the orthogonality of the real
polynomial family. We also remark that the sequence

(
δ0n

)
n∈N0

is not necessarily
Pn-positive definite.

For arbitrary n0 ∈ N, the function n 7→ δnn0 is never Pn-positive definite, since
every Pn-positive definite function satisfies ϕ(0) > 0.

3.2.2 The unit sequence

Let
(
Pn

)
n∈N0

be an orthogonal polynomial sequence with orthogonalizing measure

ν ∈M+([−1; 1]). As in the case of polynomial hypergroups, we assume Pn(1) = 1.
Hence

1 =

∫

[−1;1]

Pn dδ1

and the unit sequence n 7→ 1 is Pn-positive definite. The point measure δ1 is
absolutely continuous with respect to ν if and only if ν({1}) > 0. In this case, the
Radon-Nikodym derivative of δ1 with respect to ν equals

0 6≡ χ{1} · 1

ν({1}) ∈ L1([−1; 1], ν).
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3 Examples of Pn-positive definite Functions

Since χ2
{1} = χ{1}, this function is in L2([−1; 1], ν), too, and we have the expansion

χ{1} =
∞∑

n=0

〈
χ{1};

Pn

‖Pn‖
〉

ν

· Pn

‖Pn‖ =
∞∑

n=0

1

‖Pn‖ ·
∫

{1}
Pn dν · Pn

‖Pn‖

=
∞∑

n=0

ν({1})
‖Pn‖ · Pn

‖Pn‖ .

Thus, we have the identity

dδ1

dν
=

∞∑
n=0

1

‖Pn‖ ·
Pn

‖Pn‖ ,

which gives us
(

1
‖Pn‖

)
n∈N0

∈ `2(N0) if ν({1}) > 0.

If on the other hand we have
(

1
‖Pn‖

)
n∈N0

∈ `2(N0), we can show δ1 ¿ ν with the

help of Theorem 2.24. Therefore let ε > 0 and abbreviate C :=
∑∞

n=0
1

‖Pn‖ and

δ := ε
C
. For any polynomial p ∈ P[C] with

∫ |p| dν < δ and ‖p‖supp ν ≤ 1 holds

p =
∞∑

n=0

〈p;
Pn

‖Pn‖〉ν ·
Pn

‖Pn‖ .

Applying the Cauchy Schwartz inequality and Parseval’s identity we obtain

|Φ1(p)| = |p(1)| =
∣∣∣∣∣
∞∑

n=0

〈
p;

Pn

‖Pn‖
〉

ν

· Pn(1)

‖Pn‖

∣∣∣∣∣

≤
∞∑

n=0

1

‖Pn‖2
·
∞∑

n=0

∣∣∣∣
〈

p;
Pn

‖Pn‖
〉∣∣∣∣

2

= C · ‖p‖2
ν = C ·

∫
|p|2︸︷︷︸
≤|p|

dν < C · δ = ε.

Hence the unique representing measure of n 7→ 1, namely δ1, is absolutely continu-

ous with respect to ν. Altogether we have that
(

1
‖Pn‖

)
n∈N0

∈ `2(N0) if and only if

ν({1}) > 0.

If we assume
(
Pn

)
n∈N0

to induce a polynomial hypergroup, then

0 < ‖Pn‖2 =

∫

[−1;1]

2n∑

k=0

g(n, n; k)Pk dν = g(n, n; 0) ≤ 1.
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3.2 Specific examples

Hence,
(

1
‖Pn‖

)
n∈N0

6∈ `2(N0) and thus ν({1}) = 0. This implies for every polynomial

hypergroup that if 1 is contained in the support of the Plancherel measure, then it
is an accumulation point.

Again there are examples of real polynomial families
(
Pn

)
n∈N0

which are not or-
thogonal, although the unit sequence is Pn-positive definite:

1 =

∫
xn dδ1 and 1 =

∫ 1

0

nxn−1 dx =

∫ 1

0

Bn(x + 1)−Bn(x) dx,

where Bn denote the Bernoulli polynomials. As in the previous subsection the
second example seems to be of more interest, since there is no point x0 where the
polynomials are all equal to 1.
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3 Examples of Pn-positive definite Functions
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4 Application to Linear
Difference Equations

As in Chapter 3, we will always assume H to be a Hilbert space. In this chapter,
we will analyze linear difference equations of the form

n+1∑

k=0

an,kx(k) = Ax(n) ∀n ∈ N, (4.0.1)

with initial condition x(0) = x0, where x(n) ∈ H and A ∈ L(H) with Anx0 ∈ D(A),
an,k ∈ R for all n, k ∈ N0. We assume an,n+1 6= 0 for all n ∈ N. Equation 4.0.1
belongs to the class of linear Volterra difference equation, see [Ela05].

In the following, we attach a polynomial sequence
(
Pn

)
n∈N0

to (4.0.1), which is
recursively defined by

xPn =
n+1∑

k=0

an,kPk (4.0.2)

with initial condition P0 ≡ 1. We will formally abbreviate equation (4.0.1) by
x(n ∗ 1) = Ax(n). This notation is inspired by the theory of hypergroups, where
the convolution ω is often abbreviated in the same manner. By this approach, we
have the advantage of dealing with a formally autonomous equation instead of a
time-dependent difference equation.

4.1 Representation of the Solutions

The solution of the equation x(n + 1) = Ax(n) is given by x(n) = Anx0. Taking
into account that this equation is connected to the monomials Pn(x) = xn, there
exists an equivalent formula for the solution of the more general nonautonomous
problem (4.0.1):
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4 Application to Linear Difference Equations

Proposition 4.1: Let A ∈ L(H). The sequence
(
x(n)

)
n∈N0

in H is a solution of

x(n ∗ 1) = Ax(n) with initial value x(0) = x0 ∈ H if and only if x(n) = Pn(A)x0

for all n ∈ N0. In particular, if Anx0 6∈ D(A) for some n ∈ N0, then there does not
exist a solution of the initial value problem.

Proof. Define x(n) := Pn(A)x0. By definition x(0) = x0. For all n ≥ 1 holds:

n+1∑

k=0

an,kx(k) =
n+1∑

k=0

an,kPk(A)x0 = APn(A)x0 = Ax(n).

Hence
(
x(n)

)
n∈N0

is a solution of x(n ∗ 1) = Ax(n).

Now suppose that a solution of x(n ∗ 1) = Ax(n) is given by
(
x(n)

)
n∈N0

. The

identity x(0) = P0(A)x0 is obviously true and we have the solution identity

x(N + 1) =
1

aN,N+1

·
(

Ax(N)−
N∑

n=0

aN,nx(n)

)

=
1

aN,N+1

·
(

P1(A)PN(A)x0 −
N∑

n=0

aN,nPn(A)x0

)

= PN+1(A)x0.

It follows immediately:

Corollary 4.2: The solution of x(n ∗ 1) = Ax(n) is a Pn-stationary sequence, if
and only if A∣∣H(x)

is a symmetric operator.

Corollary 4.3: Let A ∈ L(H) be a normal operator and
(
x(n)

)
n∈N0

a solution of

x(n ∗ 1) = Ax(n). Then by the Spectral Theorem 1.5, there exists a set B ⊆ σ(A)
and a measure µ with

〈x(n); x(0)〉 =

∫

B

Pn dµ.

Example 4.1: Let H = Cm, A ∈ Cm×m be normal. Consider the nonautonomous
equation

n + 2

2n + 2
x(n + 1) +

n

2n + 2
x(n− 1) = Ax(n) (4.1.1)
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4.1 Representation of the Solutions

with initial conditions x(0) = x0 ∈ Cm, x(1) = Ax(1). The polynomial sequence
associated to this equation, are the Chebyshev polynomials

(
Un

)
n∈N0

of second
kind. They satisfy

lim
n→∞

|Un(z)| = ∞ for all z ∈ C \ [−1; 1].

If σ(A) 6⊆ [−1; 1], then there exists a solution
(
x(n)

)
n∈N0

of (4.1.1), which is un-

bounded. In particular, for normal but non-Hermitian A ∈ Cm×m, there exists an
unbounded solution of x(n ∗ 1) = Ax(n).

Up to now, we are restricted to normal matrices. We are interested in the repre-
sentation of the solution of equations of type (4.0.1) with arbitrary A ∈ Cn×n. In
her 2006 paper [Oro06], Á. Orosz analyzed the solutions of the following type of
one dimensional equations of higher order:

Q(T1)f(n) = 0, with Q ∈ P[C], f : N0 → C, (4.1.2)

where T1 denotes the translation operator defined in Chapter 2. The author arrives
at the following theorem:

Theorem 4.4 ([Oro06]): Suppose Q ∈ Pn[C] for some n ∈ N. Let λ1, . . . , λr be
the distinct complex roots of Q and let mj be the multiplicity of λj. Then the solu-
tions of (4.1.2) form a n-dimensional linear space. The solution space is spanned

by n 7→ P
(k)
n (λj), where 1 ≤ j ≤ r and 0 ≤ k ≤ mj − 1.

It is straightforward that the approach of [Oro06] is related to ours in the following
way:

Proposition 4.5: Suppose
(
x(n)

)
n∈N0

is a solution of the difference equation

T N
1 f(n) + aN−1T N−1

1 f(n) + · · ·+ a0f(n) = 0. (4.1.3)

Then y(n) :=
(
x(n), T1x(n), . . . , T N−1

1 x(n)
)T ∈ CN is a a solution of

y(n ∗ 1) =




0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−a0 −a1 . . . −aN−2 −aN−1




y(n). (4.1.4)
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4 Application to Linear Difference Equations

An equation of type x(n ∗ 1) = Ax(n) can be transferred into an equation of type
(4.1.3) if and only if A is similar to a companion matrix as in (4.1.4). Still, there
is a possibility of using the explicit representation of A. Orosz for matrices, which
are not similar to a companion matrix.

Example 4.2: Consider the equation

x(n ∗ 1) =




2 0 0
0 2 0
2 1 2




︸ ︷︷ ︸
=:A

x(n), x(0) = x0 ∈ C3.

A is not similar to a companion matrix, since the characteristic polynomial of A
does not equal its minimal polynomial, cf. [Bra64]. Its Jordan canonical form J
and its transition matrix B are given by

J =




2 1 0
0 2 0
0 0 2


 and B =




0 0 −1
0 1 2
1 −1 0


 ,

hence A = BJB−1. The Jordan blocks of J are similar to companion matrices
and hence J is similar to a matrix C where the transition matrix is given by D,
i.e. C = DJD−1:

C =




0 1 0
−4 4 0
0 0 2


 and D =




1 −1
2

0
2 0 0
0 0 1


 .

Applying Theorem 4.4 we receive the general solution

x(n) = B ·D−1 ·



a · Pn(2) + b · P ′
n(2)

a · P1Pn(2) + b · (P1Pn)′(2)
c · Pn(2)


 .

This implies

Pn(A) = BD−1




Pn(2)− 2P ′
n(2) P ′

n(2) 0
P1Pn(2)− 2(P1Pn)′(2) (P1Pn)′(2) 0

0 0 P2(2)


 DB−1

under the additional assumption, that P1(x) = x.

In the special case Pn = Tn all solutions of the equation x(n ∗ 1) = Ax(n) are
bounded if and only if A is a diagonalizable matrix and σ(A) ⊆ [−1; 1].
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4.2 Boundedness and Unboundedness

4.2 Boundedness and Unboundedness

As Example 4.1 shows, results on real polynomial families and Pn-positive definite
functions can help to show the existence of bounded or unbounded solutions. We
are now going to concentrate on this question.

Proposition 4.6: Let A ∈ B(H) be similar to a self-adjoint operator D ∈ B(H)
and suppose

(
x(n)

)
n∈N0

is a solution of x(n ∗ 1) = Ax(n) with initial condition

x(0) = x0 ∈ H. Then there exists a complex bounded measure µ ∈MC(σ(A)) with

〈x(n); x0〉 =

∫

σ(A)

Pn dµ.

Proof. By assumption, there exists an invertible S ∈ B(H) with S−1AS = D.
Now choose P ∈ P[C] with ‖P‖σ(A) ≤ 1. Note that σ(A) = σ(D) ⊆ R. We
abbreviate ϕ(n) := 〈x(n); x0〉 for all n ∈ N0. By Theorem 2.21, we have to show
that |Φϕ(P )| ≤ C for a constant C ≥ 0 which is independent of the choice of P .
Since ‖P‖σ(D) ≤ 1, it follows with Lemma 1.7 and the Cauchy-Schwartz inequality

|Φϕ(P )| =
∣∣∣∣∣

n∑

k=0

ck〈SPk(D)S−1x0; x0〉
∣∣∣∣∣

≤ ‖S‖‖S−1‖‖P (D)‖‖x0‖2

≤ ‖S‖‖S−1‖‖x0‖2 =: C.

Hence Theorem 2.21 gives us the existence of the required measure.

Now follows immediately with Proposition 2.7:

Corollary 4.7: Let A ∈ B(H) be similar to a self-adjoint bounded operator. If
σ(A) ⊆ U∞

s , then every solution
(
x(n)

)
n∈N0

of x(n ∗ 1) = Ax(n) is bounded.

Proof. From the proof of Proposition 2.7 follows the existence of some α ≥ 1 with
σ(A) ⊆ Dα

s . Hence for all n ∈ N0

‖x(n)‖2 = 〈x(n ∗ n); x0〉 =

∫

σ(A)

P 2
n dµ ≤ α2‖x(0)‖2.
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4 Application to Linear Difference Equations

Using results from Chapter 2, we can give more criteria for the existence of bounded
and unbounded solutions.

Theorem 4.8: Let A ∈ L(H) be a self-adjoint operator leaving D(A) invariant,
i.e. A

(D(A)
) ⊆ D(A) and suppose for some α > 0 holds

n+1∑

k=0

|an,k| ≤ α|a0,1| − |a0,0| ∀n ∈ N.

If σ(A) 6⊆ P−1
1 ([−α; α]), then there exists an unbounded solution of x(n∗1) = Ax(n).

Proof. Since the absolute sums of the linearization coefficients of xPn are bounded
by α|a0,1| − |a0,0|, the absolute sums of the linearization coefficients of P1Pn are
bounded by α. We abbreviate Σ := supp ϕ̂ \ P−1

1 ([−α; α]). Let E be the spectral
measure of A. Hence E(Σ) 6= 0 is a projection, cf. Theorem 1.5. Choose some
x0 ∈ R(E(Σ)), such that x0 6= 0 and define x(n) := Pn(A)x0. By Proposition 4.1,(
x(n)

)
n∈N0

is a solution of x(n ∗ 1) = Ax(n) with initial condition x(0) = x0. The

function ϕ : N0 → C defined by ϕ(n) := 〈x(n); x0〉 is Pn-positive definite since

〈x(n); x0〉 = 〈Pn(A)x0; x0〉 = 〈Pn(A)E(Σ)x0; x0〉
= 〈(PnχΣ)(A)x0; x0〉 =

∫

Σ

Pn dEx0;x0 .

In particular, Ex0;x0 is a representing measure of µ and supp Ex0;x0 6⊆ P−1
1 ([α; α]).

Hence ϕ is unbounded by Theorem 2.11 and by the Cauchy-Schwartz inequality(
x(n)

)
n∈N0

is an unbounded sequence in H.

Theorem 2.12 gives us the following dichotomy:

Proposition 4.9: Let
(
Pn

)
n∈N0

be the real polynomial family which arises from

(4.0.2) and A ∈ L(H) a self-adjoint operator with spectral measure E leaving D(A)
invariant, i.e. R(A) ⊆ D(A). Suppose there exists a constant α ≥ 1 such that

m+n∑

k=0

|g(m,n; k)| ≤ α ∀m,n ∈ N0.

Then holds:
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4.2 Boundedness and Unboundedness

1. If x0 ∈ R
(
E(Dα)

)
, then the solution of x(n∗1) = Ax(n) with initial condition

x(0) = x0 is bounded by α‖x0‖.

2. If x0 6∈ R
(
E(Dα)

)
, then the solution of x(n∗1) = Ax(n) with initial condition

x(0) = x0 is unbounded.

Proof. Suppose x(0) = x0 ∈ R(E(Dα)). Then

‖x(n)‖2 = 〈P 2
n(A)x0; x0〉 = 〈(P 2

nχDα)(A)x0; x0〉
=

∫

Dα

P 2
n dEx0;x0 ≤ α2‖x0‖2.

If on the other hand x(0) = x0 6∈ R(E(Dα)), then follows as in the proof of
Theorem 4.8

〈Pn(A)x0; x0〉 =

∫

R
Pn(A) dEx0,x0

with supp Ex0,x0 6⊆ Dα. By Theorem 2.12 and the Cauchy-Schwartz inequality the
sequence

(
x(n)

)
n∈N0

is unbounded.

Example 4.3: We consider the discrete wave equation, where the spatial Laplacian
has been discretized using central difference quotients:

üi(t) = ui−1(t)− 2ui(t) + ui+1(t), i ∈ Z, (4.2.1)

with some suitable initial condition on
(
ui(0)

)
i∈Z and

(
u̇i(0)

)
i∈Z. Discretization in

time via the central difference quotients gives us the equation

u(k + 1)− 2u(k) + u(k − 1) = h2Ju(k), (4.2.2)

with initial condition u(0) = u0 ∈ `2(Z), some step size h > 0 and the tridiagonal
operator

J : `2(Z) → `2(Z),
(
x(n)

)
n∈Z 7→

(
x(n− 1)− 2x(n) + x(n + 1)

)
n∈Z.

This operator is well-defined and J ∈ B(`2(Z)) with σ(J) = [−4; 0]. The real
polynomial family which is induced by (4.2.2) is a translation and dilation of the
Chebyshev polynomials of first kind, namely Pn(x) = Tn(x+2

2
). In particular, we

have D∞
s = D1

s = [−4; 0] and thus σ(J) ⊆ D1
s . Hence for every initial condition

x0 ∈ `2(Z), the solution of (4.2.2) is bounded by ‖x0‖ as soon as h ≤ 1.
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4 Application to Linear Difference Equations
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Notation

N the natural numbers
N0 N ∪ {0}
R the real numbers
C the complex numbers

`(N0) space of all complex sequences on N0, cf. p.1
`p(N0) Banach space of all p-summable sequences in `(N0), cf. p.1
`∞(N0) space of all bounded sequences in `(N0), cf. p.1
Lp(Ω, µ) Banach space of all measurable, p-µ-integrable functions

on Ω ⊆ R, cf. p.4
L∞(Ω, µ) Banach space of all measurable bounded functions

on Ω ⊆ R, cf. p.4
P[K] space of all polynomials with coefficients in the field K
Pn[K] space of all polynomials of exact degree n ∈ N0 with coefficients

in the field K
(H, 〈·; ·〉) Hilbert space with scalar product
H(x) subspace of H generated by a sequence x =

(
xn

)
n∈N0

, cf. p.50

L(X) densely defined linear operators on a space X, cf. p.6
B(X) bounded linear operators on a space X, cf. p.6
M(Ω) the signed bounded Borel measures on Ω ⊆ R, cf. p.2
M+(Ω) cone of positive bounded Borel measures on Ω ⊆ R, cf. p.2
MC(Ω) the complex Borel measures on Ω ⊆ C, cf. p.3
D(A) dense domain of a linear operator A ∈ L(H), cf. p.6
R(A) range of a linear operator A ∈ L(H), cf. p.6
Dα set where a real polynomial family is bounded by α > 0, cf. p.24
D∞ set where a real polynomial family is bounded, cf. p.24
Dα

s Dα ∩ R, cf. p.24
D∞

s D∞ ∩ R, cf. p.24
Uα

s interior of Dα
s , cf. p.24

U∞
s union of all Uα

s , cf. p.24
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Notation

P
(α,β)
n Jacobi polynomials depending on the parameters α, β > −1, cf. p.10
Tn Chebyshev polynomials of first kind, cf. p.11
Un Chebyshev polynomials of second kind, cf. p.56

g(m,n; k) linearization coefficients of the product PmPn, cf. p.17
Φϕ linear functional, cf. p.18
Tn translation operator, cf. p.17

µ⊥ν µ and ν are mutually singular , cf. p.4
µ ¿ ν µ is absolutely continuous w.r.t. ν, cf. p.4

ϕ̂ representing measure of the sequence ϕ, cf. p.20
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