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Reduced-Rank Equalization for EDGE Via
Conjugate Gradient Implementation of Multi-Stage

Nested Wiener Filter
Guido Dietl, Michael D. Zoltowski, and Michael Joham

Abstract— The Wiener filter solves the Wiener-Hopf equation and may
be approximated by the Multi-Stage Nested Wiener Filter (MSNWF) which
lies in the Krylov subspace of the covariance matrix of the observation and
the crosscorrelation vector between the observation and the desired signal.
Moreover, since the covariance matrix is Hermitian, the Lanczos algorithm
can be used to compute the Krylov subspace basis.

The Conjugate Gradient (CG) method is another approach in order to
solve a system of linear equations. In this paper, we derive the relationship
between the CG method and the Lanczos based MSNWF and finally trans-
form the formulas of the MSNWF into those of the CG algorithm. Conse-
quently, we present a CG based MSNWF where the filter weights and the
Mean Square Error (MSE) are updated at each iteration step.

The obtained algorithm is used to linearily equalize the received signal
in an Enhanced Data rates for GSM Evolution (EDGE) system. Simulation
results demonstrate the ability of the MSNWF to reduce receiver complex-
ity while maintaining the same level of system performance.

Keywords—Adaptive Filtering, Conjugate Gradients, EDGE, Multipath
Propagation, Reduced-Rank Equalization, Space-Time Processing, Wire-
less Communications.

I. INTRODUCTION

THE Wiener filter (WF) [1] estimates an unknown signal
d0[n] from an observation signal x0[n] by minimizing the

Mean Square Error (MSE) and needs only second order statis-
tics. Due to the necessity of solving the Wiener-Hopf equation
the computational complexity is high, especially for observa-
tions x0[n] of high dimensionality.

The Principal Component (PC) method [2] was the first ap-
proach to approximate the WF. The eigenvectors corresponding
to the principal eigenvalues of the covariance matrix of the ob-
servation are composed to a pre-filter matrix which is applied to
the observation signal. Then, a WF of reduced dimensionality
estimates the desired signal from the transformed observation.
An alternative approach uses the Cross-Spectral (CS) metric [3]
instead of the eigenvalue to choose the eigenvectors which com-
pose the pre-filter matrix. More recently, Goldstein et. al. devel-
oped the Multi-Stage Nested Wiener Filter (MSNWF) [4] where
the columns of the pre-filter matrix are no longer eigenvectors of
the covariance matrix. The improvement made by the MSNWF
shows that dimensionality reduction of the observation signal
based on eigenvectors is generally suboptimal.

Honig et. al. [5] observed that the MSNWF is the solution
of the Wiener-Hopf equation in the Krylov subspace of the
covariance matrix of the observation and the crosscorrelation
vector between the observation and the desired signal. Thus,
the Arnoldi algorithm may be used to generate the columns
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of the pre-filter matrix. Moreover, since the covariance ma-
trix is Hermitian, the Arnoldi algorithm can be replaced by the
Lanczos algorithm. The resulting order-recursive version of the
MSNWF [6] updates the filter weights and the Mean Square Er-
ror (MSE) at each iteration step.

Our contribution is to derive the relationship between the
Lanczos based implementation of the MSNWF and the Conju-
gate Gradient (CG) method which was introduced by Hestenes
and Stiefel [7] in order to solve a system of linear equations.
Moreover, we transform the formulas of the Lanczos based
MSNWF algorithm to yield a formulation of the CG algorithm,
and finally present a new implementation of the MSNWF where
the filter weights and the Mean Square Error (MSE) between the
estimated and desired signal are updated at each iteration step.

In the next section, we recall the Lanczos based MSNWF.
Before we show the relationship between the considered algo-
rithms in Section IV, we review the CG algorithm in Section III.
Finally, we present a new formulation of the MSNWF algorithm
in Section V and apply it to an EDGE system in Section VI.

Throughout the paper the covariance matrix of a vector x[n]
is denoted by Rx = E{x[n]xH[n]}, the crosscorrelation of a
vector x[n] and a scalar d[n] is rx,d = E{x[n]d∗[n]}, and the
variance of a scalar d[n] is σ2

d = E{|d[n]|2}.

II. LANCZOS BASED MSNWF

Applying the linear filter w ∈ CN to the observation signal
x0 [n] ∈ CN leads to the estimate d̂0 [n] = wHx0 [n] of the
desired signal d0 [n] ∈ C. The mean square error

MSE0 = σ2
d0

− 2Re
{

wHrx0,d0

}

+ wHRx0
w (1)

is the variance of the error d0 [n] − d̂0 [n]. The Wiener filter
(WF) minimizes MSE0 leading to the Wiener-Hopf equation

Rx0
w0 = rx0,d0

, (2)

whose solution, the WF w0, achieves the minimum mean square
error MMSE0 = σ2

d0
− rH

x0,d0
R−1

x0
rx0,d0

.
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Fig. 1. MSNWF as Filter Bank



Figure 1 shows the block diagram of the Multi-Stage Nested
Wiener Filter (MSNWF, [4]) that solves Equation (2). The first
filter t1 is the normalized matched filter rx0,d0

/‖rx0,d0
‖2 and

the i-th filter ti maximizes the real part of the correlation be-
tween its output di[n] and the output di−1[n] of the previous
filter ti−1. If we restrict the filters ti to be orthonormal, the i-th
filter can be computed with following optimization [6]:

ti = argmax
t

E{Re(di[n]d∗i−1[n])} (3)

s. t. : tHt = 1 and tHtk = 0, k = 1, . . . , i− 1.

whose solution is the well known Arnoldi iteration (e. g. [8]):

ti =

(

∏i−1
k=1 P k

)

Rx0
ti−1

∥

∥

∥

(

∏i−1
k=1 P k

)

Rx0
ti−1

∥

∥

∥

2

∈ C
N , (4)

with the projector P k = 1N − tktHk onto the space orthogonal
to tk and 1N denotes the N ×N identity matrix. Since Rx0

is
Hermitian, we can use the Lanczos algorithm

ti =
P i−1P i−2Rx0

ti−1

‖P i−1P i−2Rx0
ti−1‖2

(5)

which leads to a tridiagonal covariance matrix Rd of the pre-
filtered observation vector d = [d1[n], . . . , dN [n]]. The scalar
WFs αi estimate the output of the previous filter di−1[n] from
the error signal εi[n].

For a reduced rank MSNWF we use the first D basis vectors
to build the pre-filter matrix T (D) = [t1, . . . , tD] ∈ CN×D

which leads to the length L observation vector d(D) [n] =

T (D),Hx0 [n]. The WF to estimate d0[n] from d(D)[n] can be

written as w
(D)
d

=
(

T (D),HRx0
T (D)

)

−1

T (D),Hrx0,d0
, thus,

the rank D approximation of the WF reads as

w
(D)
0 = T (D)

(

T (D),HRx0
T (D)

)

−1

T (D),Hrx0,d0
, (6)

which yields to the mean square error

MSE(D) = σ2
d0

− w
(D),H
0 Rx0

w
(D)
0 . (7)

Note that the rank D MSNWF is equivalent [5], [6]
to solving the Wiener-Hopf equation in the D-dimensional
Krylov subspace K(D)(Rx0

, rx0,d0
) and K(D)(A, b) =

span
([

b,Ab, . . . ,A(D−1)b
])

.

In [6], a Lanczos algorithm based order-recursive MSNWF
(cf. Algorithm I) was presented which exploits the tri-
diagonality of the covariance matrix R

(D)
d

of d(D)[n] and

the simple structure of the crosscorrelation vector r
(D)
d,d0

=
[

‖rx0,d0
‖2,0

T
]T

to compute the WF in reduced dimensions

w
(D)
d

from the previous one w
(D−1)
d

. Additionally, the MSE
is computed at each step.

III. CONJUGATE GRADIENT ALGORITHM

The Conjugate Gradient (CG) algorithm [7] is an iterative
method in order to solve a system Ax = b ofN linear equations

ALGORITHM I

LANCZOS BASED MSNWF

t0 = 0

2: t1 = rx0,d0
/ ‖rx0,d0

‖2

r0,1 = 0, r1,1 = β1 = tH
1 Rx0

t1

4: c
(1)
first = c

(1)
last = r−1

1,1

MSE(1) = σ2
d0

− ‖rx0,d0
‖
2
2 c

(1)
first

6: for i = 2 to D do
v = Rx0

ti−1 − ri−1,i−1ti−1 − ri−2,i−1ti−2

8: ri−1,i = ‖v‖2

ti = v/ri−1,i

10: ri,i = tHi Rx0
ti

βi = ri,i − r2i−1,iβ
−1
i−1

12: c
(i)
first =

[

c
(i−1)
first

0

]

+ β−1
i c

(i−1)
last,1

[

r2i−1,ic
(i−1)
last

−ri−1,i

]

c
(i)
last = β−1

i

[

−ri−1,ic
(i−1)
last

1

]

14: MSE(i) = σ2
d0

− ‖rx0,d0
‖2
2 c

(i)
first,1

end for
16: T (D) =

[

t1 · · · tD

]

w
(D)
0 = ‖rx0,d0

‖2 T (D)c
(D)
first

ALGORITHM II

CONJUGATE GRADIENT METHOD

x(0) = 0

2: p1 = −r1 = b

for i = 1 to D do
4: γi = −

(

pH
i ri

)

/
(

pH
i Api

)

x(i) = x(i−1) + γipi

6: ri+1 = ri + γiApi

δi =
(

pH
i Ari+1

)

/
(

pH
i Api

)

8: pi+1 = −ri+1 + δipi

end for

in N unknowns where the matrix A ∈ CN×N is assumed to be
Hermitian and positive definite. If an exact solution exists, it
is obtained after N steps. Stopping the iteration after D < N
steps yields an approximate solution of the problem.

Algorithm II is one possible implementation of the CG
method. The fundamental recursion formula which updates the
approximate solution of the system Ax = b is Line 5 of Algo-
rithm II, where pi is the search direction at iteration step i and γi

is its weight factor. The choice of γi (cf. Line 4 of Algorithm II)
ensures that the approximate solution x(i) minimizes the error
function

e (x) =
(

x(N) − x
)H

A
(

x(N) − x
)

= xHAx − xHb − b
H
x + x(N),Hb

(8)

on the line x = x(i−1) + γpi. x(N) denotes the exact solution
of the system. Line 6 of Algorithm II calculates the residual
ri+1 = Ax(i) − b which belongs to the approximation x(i).
The index mismatch is useful for the derivations we make in
Section IV. Finally, the remaining Lines 7 and 8 of Algorithm II



update the search direction pi and ensure its A-conjugacy to any
vector pj , j 6= i, i. e.

pH
i Apj = 0 ∀i 6= j. (9)

Thus, the CG algorithm belongs to the family of Conjugate Di-
rections (CD) methods. Moreover, the CG method is a special
case of the CD methods because the residuals are mutually or-
thogonal. It holds

rH
i rj = 0 ∀i 6= j. (10)

The proofs of Equations (9) and (10) [7], [9] are not shown in
this paper due to space limitations.

IV. RELATIONSHIP BETWEEN MSNWF AND CG
ALGORITHM

In numerous papers and books [6], [10] it was mentioned that
the Lanczos algorithm which is used by our implementation of
the MSNWF is only a version of the CG algorithm. In the fol-
lowing, the system Ax = b solved by the CG algorithm is re-
placed by the Wiener-Hopf equation (cf. Equation 2). Conse-
quently, the optimization functions in Equations (1) and (8) are
the same except for a constant which does not change the min-
imum. Moreover, the solution at each step i is searched in the
same Krylov subspace K(D)(Rx0

, rx0,d0
) (e. g. [8], [9]). To es-

tablish the equivalence of both algorithms, we transform [11],
[9] the formulas of the Lanczos based MSNWF to those of the
CG algorithm.

Assume that D ≥ i ≥ 2. Using Lines 17 and 12 of Algo-
rithm I, and by setting T (i) = [T (i−1), ti], it holds for w

(i)
0 that

w
(i)
0 = ‖rx0,d0

‖2 T (i)c
(i)
first = w

(i−1)
0 + ηiui,

w
(1)
0 = ‖rx0,d0

‖2 r
−1
1,1t1,

(11)

where ηi and ui are defined as

ηi = ‖rx0,d0
‖2 %

−1
i β−1

i ri−1,ic
(i−1)
last,1 , (12)

ui = %i

(

ri−1,iT
(i−1)c

(i−1)
last − ti

)

, (13)

and where %i ∈ R \ {0} is so far an arbitrary factor which
we explain later. Multiplying Line 13 of Algorithm I on the
left side by T (i) and using Equation (13) leads to T (i)c

(i)
last =

−%−1
i β−1

i ui which we replace in Equation (13) in order to get
the recursion formula for ui+1 and D > i ≥ 1

ui+1 = ψiui − gi+1, u1 = −%1t1, (14)

where

ψi = −%i+1%
−1
i β−1

i ri,i+1, (15)

gi+1 = %i+1ti+1. (16)

In Equations (11) and (14) we observe the analogies to
Lines 5 and 8 of Algorithm II if we substitute the vectors ui

and gi by the search direction pi and the residual ri of the
CG algorithm, respectively. In the sequel, we prove that the
remaining formulas of the CG algorithm can be obtained from
the MSNWF, too.

Proposition 1: The vectors gi for D ≥ i ≥ 1 can be updated
by the recursion formula

gi+1 = gi + ηiRx0
ui,

g1 = %1t1, %1 = −‖rx0,d0
‖2 ,

(17)

where the definition of ηi is given in Equation (12) and η1 :=
r−1
1,1. Therefore, the vectors gi are residual vectors for D + 1 ≥
i ≥ 1, i. e.

gi = Rx0
w

(i−1)
0 − rx0,d0

(18)

and the absolute value of the factor %i is its length.
Proof: First, we prove Equation (17) by induction. Set

i = 1. Recall that u1 = ‖rx0,d0
‖2t1 = −g1 and we get by

using η1 := r−1
1,1 and Lines 7 to 9 of Algorithm I

g1 + η1Rx0
u1 = ‖rx0,d0

‖2 r
−1
1,1

(

η−1
1 t1 − Rx0

t1

)

= ‖rx0,d0
‖2 r

−1
1,1r1,2t2 = %2t2 = g2,

where %2 := ‖rx0,d0
‖2r

−1
1,1r1,2. Now assume that Equation (17)

holds for i = n − 1. This leads to Rx0
un−1 = η−1

n−1(gn −
gn−1). To prove Equation (17) for i = n if it holds for i =
n−1, we need the product between Rx0

and Equation (14), i. e.
Rx0

un = ψn−1Rx0
un−1 − Rx0

gn. Finally, we get by using
the expression for Rx0

un and Rx0
un−1

gn + ηnRx0
un = − %nηnRx0

tn

+ %n

(

1 + η−1
n−1ηnψn−1

)

tn

− %n−1η
−1
n−1ηnψn−1tn−1.

(19)

On the other hand, multiplying the recursion formula in Lines 7
to 9 of Algorithm I by %n+1 yields

%n+1tn+1 = + %n+1r
−1
n,n+1Rx0

tn

− %n+1r
−1
n,n+1rn,ntn

− %n+1r
−1
n,n+1rn−1,ntn−1.

(20)

Consequently, since gn+1 = %n+1tn+1, Equation (17) of
Proposition 1 is proven if the following three equations are true:

−%nηn = %n+1r
−1
n,n+1, (21)

%n

(

1 + η−1
n−1ηnψn−1

)

= −%n+1r
−1
n,n+1rn,n, (22)

%n−1η
−1
n−1ηnψn−1 = %n+1r

−1
n,n+1rn−1,n. (23)

Take Equation (21), replace n+1 by i and solve it for %i by using
Equation (12) and the expression c(i−1)

last,1 = −ri−2,i−1β
−1
i−1c

(i−2)
last,1

(cf. Line 13 of Algorithm I). It follows for D > i ≥ 2

%i = −%i−1ηi−1ri−1,i, (24)

= ‖rx0,d0
‖2 ri−1,ic

(i−1)
last,1 . (25)

If we plug Equations (25) and (24) in Equations (12) and (15),
respectively, we get simpler formulas for ηi and ψi

ηi = β−1
i , D ≥ i ≥ 1, (26)

ψi = β−2
i r2i,i+1, D > i ≥ 1. (27)



Finally, with Equations (24), (26), (27) and Line 11 of Algo-
rithm I, it can easily be shown [11], [9] that Equations (22)
and (23) hold. Thus, Equation (17) is established.

It remains to verify Equation (18) in order to complete the
proof of Proposition 1. Again, this is done by induction. Set
i = 1. It holds that Rx0

w
(0)
0 − rx0,d0

= −‖rx0,d0
‖2t1 = g1,

where w
(0)
0 = 0. Assume that Equation (18) holds for i = n−1.

Hence, we get for i = n (cf. Equation 11)

Rx0
w

(n−1)
0 − rx0,d0

= gn−1 + ηn−1Rx0
un−1 = gn.

The last equality holds because of Equation (17) which we have
already proven.

Up to now we showed, in addition to the already found anolo-
gies, that the residuals gi are updated by a similar formula as the
residuals ri. To derive the remaining problem, we need to show
that the computation of the weight factors ψi and ηi is similar to
those of the CG algorithm.

Proposition 2: The factor ψi in Equation (14) satisfies the re-
lation

ψi =
uH

i Rx0
gi+1

uH
i Rx0

ui

(28)

and thus, {u1, . . . ,uD} is a set of Rx0
-conjugate vectors.

Proof: Use Equation (14) and the fact that ujRx0
gi = 0

for j ≤ i− 2 [11], [9], to get

uH
i Rx0

gi+1 = −%i%i+1ri,i+1. (29)

To optain a similar expression for the denominator on the right
side of Equation (28), substitute ui given by Equation (14) and
use Equations (16), (27), (29), and Line 10 of Algorithm I.

uH
i Rx0

ui = %2
i

(

ri,i − r2i−1,iβ
−1
i−1

(

2 −
uH

i−1Rx0
ui−1

%2
i−1βi−1

))

Comparing the equation above with Line 11 of Algorithm I
yields the denominator uH

i Rx0
ui = %2

i βi and Equation (28)
is established. Thus, similar to δi in Algorithm II, ψi and
Equations (14) ensure that the vectors ui are mutually Rx0

-
conjugate.

Proposition 3: It holds for D ≥ i ≥ 1 that

ηi = −
uH

i gi

uH
i Rx0

ui

. (30)

Thus, with w = w
(i−1)
0 + ηiui the value of ηi above minimizes

the error function e(w).
Proof: Replacing gi by Equation (18) and uH

i Rx0
ui by

%2
iβi, and using recursively Equation (11) yields

−
uH

i gi

uH
i Rx0

ui

= %−2
i β−1

i uH
i rx0,d0

,

because the vectors ui are mutually Rx0
-conjugate (cf. Propo-

sition 2). Now, complete the proof by induction. Set i =
1. It holds by using u1 = −%1t1 and Equation (26) that
%−2
1 β−1

1 uH
1 rx0,d0

= β−1
1 = η1. Then, set D ≥ i ≥ 2 and

substitute ui by Equation (13). It follows

%−2
i β−1

i uH
i rx0,d0

= %−1
i β−1

i ri−1,ic
(i−1)
last,1 ‖rx0,d0

‖2 = ηi,

if we remember that tHi rx0,d0
= 0 for all D ≥ i ≥ 2.

Thus, we see that the remaining Equations (30) and (28)
which compute the weight factors ψi and ηi are similar to
Lines 4 and 7 of Algorithm II. To put it in a nutshell, the Lanc-
zos based MSNWF uses the same formulas as the CG algorithm
if we make the following equivalences:

approximate solution: w
(i)
0 ↔ x(i), ηi ↔ γi, (31)

search directions: ui ↔ pi, ψi ↔ δi, (32)

residuals: gi ↔ ri. (33)

V. CG BASED MSNWF

In Section IV we have derived that the Lanczos based
MSNWF can be expressed by the CG algorithm. Thus, Equa-
tions (30) and (28) can be replaced [7], [9] as follows

ηi =
gH

i gi

uH
i Rx0

ui

, ψi =
gH

i+1gi+1

gH
i gi

. (34)

This reduces computational complexity because the matrix vec-
tor multiplication Rx0

gi+1 in Equation (28) is avoided. The
resulting computational complexity for a rank D MSNWF is
O(N2D), since a matrix vector multiplication with O(N 2) has
to be performed at each step.

The Lanczos implementation of the MSNWF computes the
mean square error MSE(i) at each step. In order to get a re-
cursion formula for MSE(i) in the CG implementation consider
the first elements in Line 12 of Algorithm I and use this equa-
tion to replace c(i)first,1 in Line 14 of Algorithm I. This yields for
D ≥ i ≥ 1

MSE(i) = MSE(i−1) − ηig
H
i gi, MSE(0) = σ2

d0
. (35)

Finally, summarizing Equations (34), (11), (35), (17),
and (14) leads to a CG implementation of the MSNWF which is
given by Algorithm III. Note that P. S. Chang and A. N. Will-
son, Jr., presented a similar algorithm to solve the Wiener-Hopf
equation in [12]. However, we derived the CG algorithm from
the MSNWF and in addition, our implementation computes the
mean square error at each iteration step.

VI. APPLICATION TO AN EDGE SYSTEM

In the following we consider an EDGE system with 8PSK
modulation and Laurent pulse shaping. The Laurent impulse is
a linearized GMSK impulse [13] which has a duration of five
symbol times. Thus, we have severe intersymbol interference
even without channel distortion. The symbol time T = 3.69µs
and the two antennas of the mobile station (MS) receive the sig-
nal of a base station which propagates over Rayleigh multipath
fading channels with a delay spread of τmax = 10µs or three
symbol times. We assume a constant channel during one burst
with 148 symbols (excluding guard symbols). The CG based
implementation of the MSNWF is used as a linear equalizer fil-
ter for the received signal at the MS. We sample two times dur-
ing one symbol duration and take 20 samples of each antenna to
build the space-time observation vector x0 [n], thus, its dimen-
sion N = 40.

Figure 2 shows the measered MSE using the CG based
MSNWF for D ∈ {6, 8, 10} steps compared to the MMSE



ALGORITHM III

CG MSNWF

w
(0)
0 = 0

2: u1 = −g1 = rx0,d0

l1 = gH
1 g1

4: MSE(0) = σ2
d0

for i = 1 to D do
6: v = Rx0

ui

ηi = li/
(

uH
i v

)

8: w
(i)
0 = w

(i−1)
0 + ηiui

MSE(i) = MSE(i−1) − ηili
10: gi+1 = gi + ηiv

li+1 = gH
i+1gi+1

12: ψi = li+1/li
ui+1 = −gi+1 + ψiui

14: end for

PSfrag replacements

M
SE

SNR/dB

MMSE
CG MSNWF – 10 steps
CG MSNWF – 6 steps
MF

-20 10 0 10 20 30 40
10−4

10−3

10−2

10−1

100

101
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equalizer or WF which corresponds to the MSNWF with D =
40 steps. The statistics are derived from the least squares esti-
mation of the channel where we used the 26 training symbols of
a burst. We observe that the MSNWF with D = 10 steps is very
close to the MMSE equalizer even for high SNR values.

VII. CONCLUSIONS

In this paper we transformed the formulas of the Lanczos
based implementation of the MSNWF to those of the CG algo-
rithm and obtained a new implementation of MSNWF. Simula-
tion results of an application to an EDGE system showed that
despite the reduced computational complexity, the CG based
MSNWF yields almost the same results as the MMSE equal-
izer and outperforms other methods of dimension reduction like
the PC or CS method.
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