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Abstract—We study computationally efficient spatial multi-
plexing transmission techniques aiming at high spectral efficiency.
Two nonlinear transmission schemes based on the minimum mean-
squared error criterion are considered in this paper: a detection
scheme also known as V-BLAST and a precoding scheme called
Tomlinson-Harashima precoding. The nonlinear techniques are
known to be more powerful than simple linear filters, however,
a large complexity overhead results. Initial proposals for the
nonlinear schemes require the complexity proportional to N4 if
the number of data streams is denoted by IN. We propose to apply
Cholesky factorization with symmetric permutation for finding a
very simple and efficient algorithm that reduces the complexity by
a factor of N. We conclude that the large performance advantage
of the nonlinear detection and precoding schemes against their
simple linear alternatives can be obtained without complexity
overhead.

Index Terms—Cholesky factorization, decision feedback
equalization (DFE), multiple-input multiple-output (MIMO),
minimum-mean squared error (MMSE), successive interference
cancellation (SIC), spatial multiplexing, symmetric permutation,
Tomlinson-Harashima precoding (THP), vertical Bell Labs lay-
ered space-time (V-BLAST).

1. INTRODUCTION

ERY high spectral efficiency is expected in future wireless
Vcommunication systems. It was shown in [1] that an enor-
mous capacity increase can be achieved on flat multiple-input
multiple-output (MIMO) channels compared to single-input
single-output (SISO) channels in rich scattering environments.
The capacity increase is linear with the number of transmit
antennas unless it exceeds the number of receive antennas.
To enable reliable communications in such systems, max-
imum-likelihood detection would be optimum; however, as the
number of transmit antennas increases, the complexity of the
receiver becomes prohibitive [2]. A number of research efforts
have been made to develop low complexity methods to ap-
proach the large capacity promised by the MIMO channels, e.g.,
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[3] and [4]. Vertical Bell Labs layered space-time (V-BLAST)
architecture was proposed in [5] as detection scheme with low
complexity. Independent data streams associated with different
transmit antennas, called layers, are detected at the receiver
by nulling out the interference of other layers in a successive
manner. Also suggested is an optimum detection ordering
which is of great importance for the successive interference
cancellation (SIC).

The originally proposed V-BLAST in [5] calculates the
nulling vector based on the zero forcing (ZF) criterion while
in [6], [7] the minimum-mean squared error (MMSE) crite-
rion is adopted to the V-BLAST architecture improving the
performance. These detection schemes require computation of
either a pseudo inverse (ZF V-BLAST) or an inverse (MMSE
V-BLAST) at every step of the layer detection which is still
computationally intensive for a large number of data streams.
Many research activities have been dedicated to further reduce
the complexity in the last years.

For the ZF criterion, computational reduction schemes have
been proposed in [8] and [9] which are based on QR factoriza-
tion with suboptimum detection ordering. In [10], a Cholesky
factorization is utilized with reordering by unitary transforma-
tions leading to the optimum detection ordering. Similar contri-
butions for the MMSE criterion based on QR factorization can
be found in [11]-[13]. The ordering in [11] is suboptimum while
in [12] the authors proposed an additional postsorting algorithm
using unitary transformations to improve the performance. The
contribution in [13] also utilizes unitary transformations for re-
ordering. The authors in [14] proposed to apply a Cholesky fac-
torization; however, they assume a known ordering. A fast recur-
sive algorithm using the Sherman—Morrison formula was pre-
sented in [15]. This leads to the optimum solution and seems to
be the most efficient algorithm proposed so far. Hence, we will
compare the complexity of our proposed schemes with that of
in [15].

While V-BLAST suffers from error propagation, its coun-
terpart at transmitter, called spatial Tomlinson—Harashima pre-
coding (THP) has been proposed in [16] to avoid the error prop-
agation. THP was originally proposed for dispersive SISO chan-
nelsin [17] and [18] to avoid inter-symbol interference. It moves
the feedback filter of a decision feedback equalization (DFE) to
the transmitter in order to circumvent error propagation. This
requires that the channel is known at the transmitter (for THP
with erroneous channel state information, see [19]). The same
principle can be applied to resolve spatial interference in MIMO
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as proposed in [16]. Note that all received signals must be co-
operatively processed for the scheme of [16], i.e., linear combi-
nations of the received signals must be computed, because the
feedforward filter remains at the receiver. However, cooperative
receive processing may not be possible in some scenarios, e.g.,
when the receive antennas belong to spatially separated users. It
is also worth mentioning that applying singular value decompo-
sition (SVD) is optimum in a scenario where cooperative receive
processing is possible [20] while THP is not.

An interesting approach of spatial THP has been proposed
in [21]-[24]. This approach moves not only the backward filter
but also the forward filter to the transmitter. This architecture
enables very simple receivers and more importantly, no signal
processing among different receive antennas is necessary.
A particularly interesting situation is that one transmitter
is serving decentralized receivers or users in the downlink
broadcast channel where no cooperation among receivers is
possible. Unfortunately, the complexity of this approach at
the transmitter becomes very high compared to linear transmit
filters as in [25] for a large number of receivers.

We will show that computationally efficient algorithms for
the above mentioned detection (V-BLAST) and precoding
(THP) can be obtained by a new common framework: 1) strict
derivation of optimum solution by explicitly including per-
mutation matrix into system model, 2) applying Cholesky
factorization with symmetric permutation to simplify the so-
lution, and 3) extention to a suboptimum solution for further
complexity reduction with a negligible performance loss. We
first introduce our system model in Section II. Then, V-BLAST
and THP are discussed in Section III and Section IV, re-
spectively, where we briefly review the originally proposed
algorithm, propose our new computationally efficient schemes,
provide a complexity analysis, and give some numerical results.
Since both successive detection and precoding schemes share
many ideas, we will also discuss similarities and differences
between these schemes in Section V. This paper is summarized
in Section VL.

II. SYSTEM MODEL

We consider a discrete-time complex baseband model for a
system with N transmit and /Ny receive antennas. We assume
narrowband signals, i.e., a nondispersive fading channel. The
channel gain from transmit antenna ¢ = 1,..., N7 to receive
antenna j = 1,..., Ny is denoted by h; ;. These channel taps
are assumed to be i.i.d zero mean complex Gaussian variables
of equal variance E[|h;;|?] = 1 where E[-] denotes expecta-
tion. This assumption of independent paths holds if the antenna
spacing is sufficiently large and the system is surrounded by rich
scattering environments. The signal at receive antenna j can be
expressed by y; = Zf\fl hjir; + n;, where x; and n;, re-
spectively, denote the signal transmitted from transmit antenna ¢
and the additive noise at receive antenna j. By collecting y; for
Npg receive antennas, the received signals can be concisely ex-
pressed in matrix form

y=Hx+n (1
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where [H]; i = hji,y = [y1, .- yne] " & = [21,- . 0Ny
n=[ny,...,nny|"%, and (-)T denotes transposition.

In this paper, we consider detection and precoding schemes
for spatially multiplexing data streams. The detection scheme,
also known as V-BLAST, is illustrated in Fig. 1. The Ny
channel inputs z; are simultaneously transmitted from Nt
uncooperative antennas. The receiver cooperatively detects the
Nr data streams using Ny antennas (Nt < Ng). We will
describe our computationally efficient detection technique in
Section III. In the case of the precoding scheme (Fig. 2), the
Nr inputs u; are cooperatively precoded and transmitted using
Nt antennas (Nt > Npg). The signal at each receive antenna
element is simply detected without any cooperation or knowl-
edge of signals at other antennas. Our efficient implementation
of the precoding technique will be explained in Section IV.
Note that the two schemes complement each other: V-BLAST
can be used in the uplink and THP in the downlink (see [26]
for a SISO system).

By denoting the number of data streams by /N and the number
of information bits per data stream by M, the SNR per bit and
per receive antenna is defined as

& A NRES (2)
No  NMtx(®,,)

where “tr”” denotes the trace of a matrix and the noise covariance
matrix is defined as ®,,,, £ E[nn'], and (-)" denotes Hermitian
transpose of a matrix. In the case of uncorrelated noise, i.e.,
®,, = 021y, we have E},/Ny = % Note that N =
Nr for the detection scheme and N = Ng for the precoding
scheme. The average total transmit power Fj is expressed as

E, 2 E[zY2] = t2(®,,), where ®,, = E[zz].



KUSUME et al.: CHOLESKY FACTORIZATION WITH SYMMETRIC PERMUTATION

III. MMSE V-BLAST AND EQUIVALENT BLOCK
DECISION FEEDBACK EQUALIZATION

We briefly review the MMSE V-BLAST algorithm. Let us
first consider the error signal of a linear filter F° H g cNrxNe
applied to the received vector y

g2 FHy — . 3)
The linear MMSE filter can be found with the orthogonality
principle (see, e.g., [27]), that is E[ey™] = 0. From (1) and
(3), the solution is given by

FH

opt

-9,,0 "

vy “
where we defined @, = Elzy"] = &,,H" and ®,, =
Elyy"]) = H®,. H Hid,,. Assuming that the covariance ma-
trices are invertible, and with (3) and (4), the error covariance
matrix @, 2 El[ee!!] can be expressed as

éaa = Q’I‘T - @ny—IQH =

~1
where we applied the matrix inversion lemmal! (see, e.g., [27]).
Using the lemma, (4) may be rewritten as

Fl . =®.H"®, . (6)

Notice that the error covariance matrix ®.. plays an im-
portant role to determine the detection ordering for MMSE
V-BLAST. Since the diagonal entries of ®.. represent the
mean squared errors (MSEs) of the respective channel inputs
by definition, i.e., E[|z; — #;|?], i = 1,..., N, the channel
input having the minimum diagonal entry of ®.. can be seen as
the most reliable one in MMSE sense. In SIC, the most reliable
stream must be detected at the first stage to reduce the risk of
error propagation. When denoting the detection ordering by
the ordered set K 2 {k1,...,kn,}, then the k;th diagonal
entry of ®.. must be minimum. The respective filter f?l is
the kith row of F™. The output from fEl is quantized and
decision is made to get Zj,. Assuming that this decision is
correct (£, = xy,), the contribution of x4, on the received
signal ¥, i.e., z;, multiplied with the corresponding channel
response, which is the kith column of H, is subtracted. At
the second stage, since the kqth entry of £ has been detected,
the k1th column of H can be neglected; leading to an updated
system only with N1 — 1 transmit antennas.

To generalize the procedure, the updated channel matrix H; is
introduced for ¢ = 2, ..., N1, where the k1, ..., k;_1 columns
of H are replaced by zeros and H 2 H. Atthe ith stage, ®.. ;
and F};{ are calculated from (5) and (6) by replacing H with
H,. Then, the optimum filter calculation with ordering can be
described as

k; = (N

. H H
argmin e, ®..;e;, and f), =e, F;

(A+BCD)'=A"'-A"'B(DA'B+C~")DA™ .
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Fig. 3. Example of block DFE structure for three data streams. P is a permu-
tation matrix recovering original ordering of data streams which may be changed
by the forward filter F*. 7 denotes delay.

where ey, is the kth column of the identity matrix Iy,.. The
MMSE V-BLAST repeats the procedure in (7) Nt times; thus,
it requires the matrix inverse calculation in (5) for each channel
input. That becomes computationally expensive for large N,
since we end up with O(N:}).

Note that it is also possible to formulate the V-BLAST algo-
rithm in a slightly different manner. That is to update H; by re-
moving the columns which correspond to the already detected
channel inputs, instead of replacing them by zeros. This natu-
rally leads to the lower complexity than the above formulation
with the same result (it still remains of the same order O(N7),
though). Nevertheless, we adopt the above formulation due to
the convenience to prove later that our proposed algorithm is
equivalent to the original MMSE V-BLAST with greatly re-
duced complexity.

A. Optimum MMSE DFE Applying Cholesky Factorization
With Symmetric Permutation

We derive our new algorithm based on a specific receiver
structure. As discussed, e.g., in [14] and [28], it is useful to
describe the SIC architecture by a pair of forward and back-
ward block filters with a certain constraint on the backward filter
structure. In contrast to the frequently used system model, e.g.,
in [14] and [28], we propose to include the detection order ex-
plicitly in the system model for the filter derivation. An example
of three data streams is illustrated in Fig. 3. There are three
main components in this figure which are subject to optimiza-
tion. The forward filter F*' is applied to the received signal y.
With proper delays, each output signal from the forward filter
is detected by the quantizer Q(-) and subtracted from the rest
of the data streams in a successive manner after being multi-
plied with the respective feedback filter coefficient, e.g., bh,
where (-)* denotes complex conjugation. The backward filter
coefficients can be stored in a matrix B" € CNT*NT that must
be unit lower triangular? so that BY 1 N, becomes strictly
lower triangular. Then, its outputs are not subtracted from the
already detected signals (cf. Fig. 3). This causality constraint is
necessary to describe the SIC procedure. Finally, the original or-
dering of data streams is recovered by a permutation matrix P".
Due to the permutation P" which we explicitly included, as
we will see, the forward filter resulting from the optimiza-
tion includes the respective P expressing the detection ordering.

2Unit lower triangular matrices are lower triangular matrices with ones along
the main diagonal.



3092

R

Q@) J NPT —) x

BH -1

Fig. 4. System model for deriving the MMSE block DFE taking into account
detection ordering represented by permutation matrix P.

The permutation matrix can be written in a general form as
P Zl Leiep € {0, 1}V XN 1o express the detection order

= {ki,..., kN, }. The transpose of P restores the original or-
dering, ie., PTP =PP' =1 ~N.- A compact general system
model for the optimization is illustrated in Fig. 4.

Instead of &, we optimize the estimate &,, (cf. Fig. 4) which
can be expressed as

= F'y — (B" - 1)Pz.

The desired signal for ,, is the channel input  permuted by P.
Assuming that decisions made prior to every detection stage are
correct ( = x), the error vector is written as

e, 2 Px— &, = B'Pz — F'y,. (8)
Then, the MSE reads as
A
op 2B le 3] = tr (@) ©)

where the error covariance matrix is defined as <I>§1;> 2 E[epef].
Our goal is to jointly optimize the forward and backward fil-
ters by minimizing the MSE ¢,,. As the backward filter must be

strictly lower triangular, our optimization problem is

{Fopt7 Bopt} = arg min Pp
{F.B}

H T .
s.t. : e?(B —IN,[,)Si =02 1w i=1,... Ny (10)
where the selection matrix cuts out the last N1 — 7 + 1 elements
of an Np-dimensional vector

A T —1 -
S; = [Ony—iv1xi-1, Ing—iy1] € {0, 1N IxXNr,

Y

Note that the constraint in (10) is defined for every row of the
backward filter so that its upper triangular part must be zero. The
constrained optimization problem in (10) can be solved using
Lagrangian multipliers (see, e.g., [29] and [30]), and we get the
solution for the forward and backward filters (see Appendix I)

Opt_Zel rsi(s,pazip'st) s, PH ;)

Bl — Z ee TST(S P& 1PTST) '$:P&PT (12
respectively. As can be observed from (12), the filters are deter-
mined row by row, each of which requires one matrix inverse as
it is the case for the MMSE V-BLAST. Note that the miniza-
tion of every individual MSE, i.e., ming g €, <I>(p)e;C7 Vk, leads
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to the same solution as in (12) for sum MSE minimization, since
the kth MSE eEQ(p s, only depends on the kth rows of F" and
B" [cf. (8)].

The MSE ¢,, using the results in (12) can be written as (see
Appendix I)

Nt +
op =3 ek (L) e, (13)
i=1
where we defined
i—1
IL 2 P'STS,P=1In, - ewel. (14)
7j=1

Because the detection order should be chosen as to minimize
the MSE ¢,,, we can write

{Es o BN Fops arg min Zek (H@ H) e, .
kiyensking }i=1
(15)
Remark 3.1: We see that II; is independent of k;, ..., kni

from (14). In this view, we obtain the MMSE V-BLAST of
(7) if we minimize each summand separately, i.e., k; is chosen
under the assumption that kq,...,k; 1 are fixed. Obviously,
the ordering resulting from (15) is different from the MMSE
V-BLAST ordering in (7), in general.

Next, we show that the results in (12) can be greatly simplified
by the following equation:
= LDL"

P&__PT (16)

where L € CNt*Nt and D € RNTNT are a unit lower
triangular matrix and a diagonal matrix, respectively. Equa-
tion (16) is called the Cholesky factorization with symmetric
permutation [31]. The factorization can be computed since ®..
is Hermitian and also positive definite. With (16), the forward
and backward filters in (12) reduce to (see Appendix I)

F! =DL"PH"®]! (17)

op

and Bj,=L"".

This is a significant reduction of computational complexity
compared with (12). One factorization of ®.. in (16) and the
inversion of the triangular matrix L suffice instead of Nt
times matrix inversions. Notice that applying (16) to (12) is the
straightforward idea that is the consequence of the permutation
matrix P which we explicitly introduced in the system model
(cf. Figs. 3 and 4). Furthermore, we see that the resulting for-
ward ﬁlter structure makes sense as it applies the matched filter
H H<I> followed by the detection ordering optimization P,
the mterference suppression L", and the gain control D before
the decision device.

The results also simplify the error covariance matrix as fol-
lows (see Appendix I):

") = D 2 diag (dy,...,dxn,).

Remark 3.2: d; is the MSE of the 7th detected channel
input xy, .

(18)
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TABLE 1
DFE DETECTION USING CALCULATED FILTERS AND ORDERING

= Fiy BU=
for i =1,...,Nt
— Q(&,(i) - B(i,)a,)

BY — Iy, (strictly triangular)

Equation (18) means that the resulting error signal becomes
uncorrelated and the ordering optimization in (15) can be
rewritten as [also see (9) and (13)]

arg min Z d;.
{&1,

NT}l 1

(ke g Yope = (19)

Recall Remark 3.1 that minimizing each summand of (15) sep-
arately yields the MMSE V-BLAST of (7). Thus, the MMSE
V-BLAST in (7) is equivalent to

ks = d. (20)

arg min
k@g{ki,...ki_1}
Note that (20) leads to different orderings from (19) in gen-
eral (cf. Remark 3.1). We can conclude that a successive algo-
rithm computing (16) by minimizing the diagonal entries of D
for fixed previous indices {k1, ..., k;—1} leads to the optimum
MMSE V-BLAST ordering as in (7).

In [31, pp. 148], a successive algorithm to compute (16) is
presented. It is based on the following partitioning:

T d1 311{
L )
1t 0T [d 0T J[1 €4,
T lb/d, IT]]0 ®.,]|l0 I

where ®.. 1 2 ®.., and O » 2 v, — lll?/dl. This pro-
cedure can be repeated to complete the factorization. The al-
gorithm in [31] finds the maximum diagonal entry at each step
to enhance numerical stability for semidefinite matrices. That
means, for example, at the first step shown above, the permu-
tation P, is chosen such that d; is the maximum entry among
all the diagonal ones. However, since the diagonal entries in our
system represent the MSEs of the ordered channel inputs (recall
Remark 3.2: d; is the MSE of the channel input x, detected
first), we propose to choose the minimum diagonal entry (oppo-
site to [31]), then we equivalently achieve MMSE at each itera-
tion. As discussed above, this procedure is equal to the MMSE
V-BLAST algorithm, but we do not require the multiple matrix
inversions. Our proposed algorithm is summarized as a pseudo
code in Tables I and II for the detection procedure and the filter
calculation, respectively.

B. Suboptimum MMSE DFE Applying Cholesky Factorization
With Symmetric Permutation

The proposed optimum ordered Cholesky approach described
in the previous section requires the computation of the matrix
inverse in (5) to determine the error covariance matrix (also see
the first line of Table II). To avoid this inversion, we compute
the modified factorization as
— L/H D/ L/

P3_'P" 21
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TABLE II
CALCULATION OF DFE FILTERS WITH OPTIMUM DETECTION ORDERING

1: $. = (<I>;£ + H® H)
s fori=1,...,Nr
3: ¢= argmin D..(q,q)

N

L P=1Iy, D=0y

(3]

P; = Iy, whose i-th and ¢-th rows are exchanged
P=P,P, &, =P;®_ P/
D(i,1) = ®..(1,7), Pee(i:Nr,1) =
for j=4i+1,...,Np
D..(j: N1, j) = Pec(§: N1, 5) —

®,.(i:N1,1)/D(3,1)

Qiﬁ(j:NTv Z)(I);e(jv Z)D(Zv 7/)

‘Pes(jyj:NT) = ‘bsa(j5Nij)H
L= lower triangular of ®.,
11: B ="' F! = DI*PH"®,!

TABLE III
CALCULATION OF DFE FILTERS WITH SUBOPTIMUM ORDERING

c @t @ ~+H® 'H P=1Iy,
2 for 2= Ng,...,1
3: ¢q= argmm <I> 2, q)

D =0y,

P, = I Np whose i-th and g-th rows are exchanged

P=PP,o ! =P& P’

D(i,i) = @vl(z i), @, (1 i,4) = ®1(1:4,1)/D(4,1)

for j=1,...,i—1
@ (1:],5) = @ (134, 5) — B (15,0 @ (5, ) D3, 4)
.. (j, L) = 2. (L5, )F

L = upper triangular of ®_!
11:BY=L F'=D" 1L‘”PH“<I>‘1

nn

where L' and D’ are a lower triangular matrix and a diagonal
matrix, respectively. To avoid possible confusion, we note that
&' = @, + H'®, H requires one less matrix inversion
comparing to ®... Since we can rewrite (21) as [cf. (16)]
— LllelflLlfH

Pd__PT (22)

and the inverse of any unit lower triangular matrix is again unit
lower triangular [31, pp. 93], we can reuse the result of the op-
timum solution in (17) to end up with

Fl =D 'L'’"PH"®.! and B" (23)

subopt — subopt —

The algorithm for the filter calculation is summarized as
a pseudo code in Table III. We note that the suboptimum
solution cannot be computed by the optimum algorithm in
Table II. If, nevertheless, the algorithm in Table II is used
for ®, we get P®'PT = L'D'L'™ [cf. (21)] and the
corresponding backward filter, consequently, becomes upper
triangular (B = L") that contradicts the constraint in (10).
This observation shows that the inversion at the beginning of
Table II cannot be dropped.

In the following, we explain why this algorithm is subop-
timum. The error covariance matrix of the suboptimum solution
reads as ®2) = D'~! = diag(d/ ", .. Ldigh.

Remark 3.3: d.” !is the MSE of the ith detected channel
input zy, .

The ordering optimization in (15) can now be rewritten as
{k1, . kNg Jopt = argmingg, ng) ZfVTl d.~ L. Thus, the
solution would be optimum for successive detectlon if the fol-
lowing criterion were possible: k; = arg mingg g, .. r,_,} d;:l
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TABLE IV
COMPLEXITY COMPARISON OF DIFFERENT DETECTION SCHEMES

| V-BLAST (from [15])

| fast V-BLAST in [15] || optimum Cholesky | suboptimum Cholesky

multiplications

ng‘ 4N3NR+—69N3 gNzNR
additions

[cf. (15) and (20)]. However, this is not the case since the subop-
timum algorithm in Table II is based on the repeated application
of the following partitioning:

‘P/ /
T _ Ny Enp
Pr.@ e Ph = i 2]
Nr Nr

_ I lﬁVT/dka Qse JNT—1 0
~ o 1 07 .

y I 0
el a1

where & Nr = (I>E_ and ¢I>EE Np_1 = \IIN GVT%{,IT/CI’NT.
Clearly, we must start the factorization by choosing the
channel input detected last (recall Remark 3.3) that is un-
desired and in the opposite direction compared to the op-
timum solution. This explains the suboptimality. Furthermore,
we observed that the general criterion at each iteration,
k; = arg nnnk€{k kg } d;c_l, results in poor overall
performance. That is because the criterion leads to the im-
provement of the layers detected later, but it does not bring
the improvement to the earlier detected layers which limit the
overall performance [32]. Therefore, we propose the following
criterion as can be found in Table III:

ki =

d;:l = argmin  d}.

kg {kit1,. kg }

arg max
k@{kiy1,...knp }

Starting from the last detected layer, at each iteration we choose
the worst layer, which benefits most from the SIC, and the better
layers are detected earlier so that the overall performance should
not be limited by the earlier detected layers. However, that does
not always lead to the optimum detection ordering.

C. Complexity Analysis

As discussed in Section I the complexity reduction of the
original V-BLAST has been intensively studied in the last years,
e.g., [8]-[15]. We compare the computational complexity of
the proposed algorithms with that of the fast recursive algo-
rithm [15] which is the most efficient algorithm proposed so
far. The analysis is performed under the assumption of uncorre-
lated input and noise, i.e., ®,, = 021y, and ®,,, = 021y,.
Since all processing is conducted on complex values, multipli-
cations and additions refer to complex operations. The com-
plexity comparison is summarized in Table IV neglecting the
terms below the third order for brevity. If N. = Ng, then the
speedups of the proposed optimum solution over the fast re-
cursive V-BLAST in the number of multiplications and addi-
tions are 2.75 and 2.25, respectively. Our suboptimum solution
is even faster, in a factor of 4.40 and 3.60 for multiplications
and additions, respectively, with a negligible performance loss

§N2 (4Nt + 18MVR)
INE+ NT3NR + 2B NP+ 3NZNg | $NF(3Nt + 15MNk)

§N2(5NT + 3MR) LN (2Nt + 3NR)
INZ(5Nr + 3MNg) ENTZ(er + 3Ng)

10° . :
——MMSE linear
5 —&- MMSE DFE: w/o ordering opt.
10711 =7 MMSE DFE: subopt.(proposed)
-©-MMSE DFE: opt §roposed)
—— MMSE V-BLAS
102 ]
% 0
m
S 103
3 10}
Q
Q
5 10
107
1]
105 0 10 20 30 1)

E/ N, in dB

Fig.5. Uncoded BER performance of a system with N = Nr = 4 antennas.

as illustrated in the next section. If N7 < NN, which is a usual
case (e.g., Ny = 8, Ng = 12 in [5]), the advantages of our
proposed solutions are larger as we can see from Table IV that
the complexity of our solutions are less sensitive to Ny in a
factor of 6 and 5, for multiplications and additions, respectively,
comparing to the fast V-BLAST. We note that the complexity
of our suboptimum solution is roughly that of the simple linear
MMSE filter (not even SIC!) in (6) whose complexity is due to
the computation of ®.. and it is given by (22) without permu-

tation (P = I).

D. Numerical Results

Computer simulations are performed to evaluate the uncoded
BER over Ey, /Ny [see (2)]. The channel input and the noise
are assumed white. The frame length of 10 information bits
are QPSK modulated. A quasi static channel is considered. The
performance is averaged over a large number of channel realiza-
tions. The channel and SNR are assumed to be perfectly known
at the receiver. Fig. 5 shows the uncoded BER performance of a
system with Nt = Ng = 4 antennas both at the transmitter and
the receiver. It can be observed that our optimum MMSE DFE
achieves the same performance as the MMSE V-BLAST, but
with significantly lower complexity. The significance of the de-
tection order can be also observed. Our suboptimum DFE does
not approach the optimum performance in the low uncoded BER
region, but almost has no performance degradation in the un-
coded BER of, e.g., 10~2 which is a practical operating point
in coded transmission. The performance loss due to the sub-
optimality of the ordering optimization is further investigated.
We observed that the loss of our suboptimum solution in a wide
range of the number of antennas for Ny = Ny is below 0.4 dB
at an uncoded BER of 102.
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Fig. 7. Example of THP structure for three data streams. P is a permutation
matrix changing the ordering of data streams where the forward filter F*! is
responsible for restoring the original ordering. 7 denotes delay.

IV. MMSE TOMLINSON-HARASHIMA PRECODING

We first review the MMSE THP scheme presented in [24]
with some modifications. The overall system structure is illus-
trated as a block diagram in Fig. 6 where the permutation matrix
P is additionally introduced to the system model in [24]. We as-
sume that the input symbol u;, j = 1,..., Ng, is taken from a
square QAM constellation and we define the set A 2 {ayf (z+
i)z,y € {£1,43, ... (M —1)}} where M 2 2°(b € N)
is the number of bits per symbol and «j; € Ry is chosen so
that the average symbol energy is unity, i.e., E[|u;|?] = 1,V;.
For instance, ay = V2, oy = /10, and g = /42 for 4QAM
(QPSK), 16QAM, and 64QAM, respectively. The input signal
vector u 2 [t1, ..., ung|T is reordered as Pu € CN® which is

’

iteratively filtered by the backward filter and also by the modulo
operator where P 2 Eévjl eje, € {0,1}V* N and the pre-
coding ordering is denoted by the ordered set {ky,...,kng }-
The precoding procedure may be better understood by an ex-
ample illustrated in Fig. 7 for three data streams. With proper de-
lays each data stream is multiplied with the feedback filter coef-
ficients, e.g., b’{yz, and subtracted from the other data streams to
cancel out the interference. Since this iterative feedback process
would increase the signal power significantly, the modulo oper-
ator is introduced to reduce the signal power. The modulo oper-
ator is defined for a complex variable c as

P2

M(c) =M’ (Re{c}) + M’ (Tm{c})

(6373 + 1| 2M
r—|——r+-| —,
2M 2| apm’
and the floor operator |-| rounds the argument to the nearest
integer towards minus infinity. Apparently, the output signal

P2

where  M/(r) reR (24)

v; from M(-) is an element of the set M 2 {z + jylz,y €
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TABLE V
ITERATIVE PRECODING PROCEDURE WITH ORDERING

v = Pu, B" = BY [y, (strictly triangular)
fori=1,...,Ng

v(i) = M(v(3) — BY(i,:)v)
z=F

Fig. 8. Alternative linear representations of modulo operators in Fig. 6.

[—M/an, M/an)} and assuming that v; is uniformly dis-

tributed, the variance is o) = gg_ forj # 1land o7 =1.We
b M
A g2 . o
denote 02 = % for notational simplicity. The output vector
M

v2 [v1,...,ong]T € MR from the feedback section is finally
filtered by the forward filter F™' € CN7*Nr (0 get the transmit
signal &. The elements of v are assumed to be mutually uncorre-

lated: ®,,, = Bfov™] = diag(o?,,..., 02, ) € RNV Two
constraints have to be satisfied by the precoding filters. The first
one is to limit the total transmit power to a certain value E. The
second constraint is imposed on the backward filter (BH -1
which must have a strict triangular structure for the causality
of the feedback process. The complete precoding procedure is
concisely summarized in Table V.

The received signal y; at the jth antenna is multiplied with the
automatic gain control 1/3 € R which would be determined
by pilot signals in practice, then the modulo operator M(+) is ap-
plied to get rid of the respective effect of M(+) at the transmitter.
The quantizer Q(-) generates the estimate 4.

Our goal is to jointly optimize the backward and forward fil-
ters. In order to formulate the joint optimization using only a
linear system, the nonlinear modulo operator in Fig. 6 is in-
terpreted by the linear representation as shown in Fig. 8. We
introduce the signals a 2 [a1,...,ang]T € CN® and d 2
[d1,...,dn,]T € CV® which force v to be in the set M™® ., The
real and imaginary parts of a are integer multiples of 2M /aps
as can be understood with (24). The signal ¥ can be written as
v = Pd—IgBH — Iv [cf. Fig. 8], which we solve for d yielding
d = P B™v while the estimated signal at the receiver reads as
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d = f~'HF"y+ 3~'n. By defining the error signal e = d—d,
the MSE ¢ is written as

02 Elefe] = tr(®..) where @®.. 2 Elee"]. (25)

This is the cost function to be minimized. With the two con-
straints of the transmit power and the strict lower triangular
structure of the backward filter, the optimization problem is
stated as

{Fopt7 BOpt: ﬂopt} = arg min ©
{F,B,3}

st.: E[||z]3] = te(F'®,,F) = E; and
Sj (BH _INR) €; :0j><1 for J =
where the selection matrix S; is now defined as S; =
[I; 0jxny—;] € {0,1}7%Nr_ Note that the constraint for the
strict lower triangular structure is defined for every column of
the backward filter so that its upper triangular part must be zero.
This optimization problem can be solved using Lagrangian
multipliers [29] and we get the solution for the forward and
backward filters (see Appendix II)

Ngr 1
Fif =Bop Y H"P'S] (S;POP'S}) ~ Sje;e]
7j=1
Nr .
Bi, =S PeP'Ss! (sjPQPTsJT) Sie;e’  (27)
j=1
where we defined

N

7T (@)

The optimum scalar 3,5 € R, can be easily calculated to sat-
isfy the transmit power constraint in (26). As we can see from
(27), the filters are determined column by column, each of which
requires one matrix inverse resulting in the total complexity
order of O(N3). That becomes quite complex for large Ng.
Readers are referred to [24] for the complete description of the
algorithm based on the above solution.

and ®2 HH" + 4 Iy, (29

A. Ordering Strategy for Precoding

Before we present our computationally efficient solutions, let
us discuss the ordering strategy for precoding. We consider a
simple example of two data streams illustrated in Fig. 9 to dis-
cuss the difference. For DFE, let us assume that x; is detected
first, then x5. There is one interferer x2 when detecting 1 while
after its detection and cancellation, - is interference free and
easier to detect. This is true if there is no error propagation
from ;. Therefore, to reduce the risk of the error propagation,
the ordering strategy for V-BLAST is known as “best first,” i.e.,
always choosing the best data stream at every detection stage.

For THP, we assume that u; is precoded first, then wuo in
Fig. 9. There is no interferer when precoding u;, or in other
words, the precoder can neglect the other data stream us since
the precoded signal of uy, which will interfere with uy, can be
cancelled out by the feedback processing. After precoding w1
and its cancellation of the interference to us, precoding us is the
more difficult task. That is because uy is a potential interferer
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XIX

one interferer

after
detecting x, °

L]
and cancellation X, 4

no interferer

DFE
after
. ® U precoding u /’—» U
. . and cancellation .
no interferer one interferer
THP

Fig. 9. Difference between successive detection and precoding. The signal
shown in the box is the interferer. For DFE, detecting x5 is easier than x; after
21 is detected and cancelled out. For THP, precoding u» is more difficult than
w1 since it must avoid interfering the already precoded 1.

to w1, and, thus, it is necessary to avoid interfering the already
precoded ;.

To generalize, as the successive precoding process proceeds,
we should avoid interfering all the already precoded data
streams. The interference to the data streams, which are to be
precoded later, can be cancelled out by the feedback process.
From the filter optimization point of view, the data stream to
be precoded later, has to take into account more constraints
and it has less degrees of freedom. This is exactly the opposite
situation of DFE. Therefore, for THP we start choosing the
best data stream which is to be precoded last, i.e., we apply a
“best last” rule to find the precoding ordering in order to give
the later precoded data stream a better chance. This ordering
direction is reported in [24] and also known from the MSE
uplink-downlink duality, e.g., [33] and [34]. We observed by
means of computer simulations that this ordering strategy
performs close to the globally optimum solution achieving the
minimum bit errors among all possible orderings. Thereby, we
refer to this ordering “optimum” in the sequel.

B. Optimum MMSE THP Applying Cholesky Factorization
With Symmetric Permutation

This section presents our computationally efficient optimum
algorithm. We show that the results in (27) can be greatly sim-
plified by

Po 'P" =L"DL (29)
where L € CVe*Nr gpd D 2 diag(dy, . ..,dny ) € RNRXNr
are respectively a unit lower triangular matrix and a diagonal
matrix. The Cholesky factorization with symmetric permutation
of (29) can be computed, since ® is Hermitian and also positive
definite. Later in this section we will also show that the factor-
ization of (29) leads to the optimum precoding ordering strategy
which we discussed in the previous section. With (29), the for-
ward and backward filters in (27) reduce to (see Appendix II)

Fo. = fopcH'"P'L"D and BL, =L7"

opt =

(30)

This is a significant computational complexity reduction com-
pared to (27). Instead of Ny times matrix inversions, we com-
pute <I>_1, its factorization in (29), and the inversion of the trian-
gular matrix L. The proposed algorithm computing the filters is
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TABLE VI
CALCULATION OF THP FILTERS WITH OPTIMUM PRECODING ORDERING
(DIFFERENCE FROM SuUBOPTIMUM DFE FILTER COMPUTATION IN TABLE III)

! (HHH+"/711N) 1,P=INR,D=0NR
O = @7 Ny Vg, i j
2: for]—NR,.‘..,
3: qfdrgmmo @7, q)
..... J
11: B¥ = L—1 F'= H'P'L"D
x = IFC D)5 + o7 HFH( 2:Ng) |7,

B =+E]/x, F"' = pF"

summarized as a pseudo code in Table VI. The precoding pro-
cedure using the computed filters and ordering can be found in
Table V.

Now, we are going to show that the algorithm in Table VI
finds the optimum ordering. Using the solution in (30), it can be
shown that the MSE in (25) can be rewritten as (see Appendix II)

Ngr

o =71 te(D®,,) =71y 02 d.

=1

&1y

When we successively choose the precoding ordering so as to
minimize , the optimum strategy is to start choosing the data
stream which will be precoded last (see Section IV-A). Thus,
we can write

kj = di (32)

arg min aﬁk
k@{kji1,...kng }

where v~ in (31) is independent of the ordering [cf. (20) for

MMSE V-BLAST]. It can be observed from Table VI that the
algorithm determines the precoding ordering based on (32).

C. Suboptimum MMSE THP Applying Cholesky Factorization
With Symmetric Permutation

The proposed optimum ordered Cholesky approach described
in the previous section requires the matrix inverse of ®. To avoid
this inversion, we can also compute the following factorization:

PPt =L'D'LH (33)
where L' € CNoxNe gnd D' 2 diag(dy,...,dy,) €
RN=XNr are a unit lower triangular matrix and a diag-
onal matrix, respectively. Since we can rewrite (33) as
P 'PT = ['/"HD'7'L'7! [cf. (29)] and also because the
inverse of unit triangular matrix is again unit lower triangular,
we can reuse the result of the optimum solution in (30). We

replace L and D in (30) by L'~ and D', respectively, to get

Flopt = Bsubopc HTPTLUD'™' and B, . =L
(34)
The algorithm for computing the filters is summarized as a
pseudo code in Table VII.
To discuss why this is the suboptimum solution, we start
with the computation of the MSE. The MSE can be ob-

tained from (31) by substituting d; with d;_l as follows:

subop
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TABLE VII
CALCULATION OF THP FILTERS WITH SUBOPTIMUM PRECODING ORDERING
(DIFFERENCE FROM OPTIMUM DFE FILTER COMPUTATION IN TABLE II)

1: ®=HH" +y Iy, P=1y, D=0y,
P..— D, NT’_’NRy L]

2: for j=1,...,Ng

3: ¢= argmin ®(¢,q )/0

q'=j,....;Nr
11:BY=L, F'=H'P'L HD™!
LEHG, D13 + 02 F7(, 2:Ne) |2,

X
B =/Es/x, F" = BF*"

o = 4t Z; oo dy ! This result suggests to choose the
data stream, which has the minimum value of 02 d’ 1 atevery
stage of the successive processing. However, we observe from
Table VII that we must start choosing the first precoded data
stream. That is the reverse direction to the optimum strategy
as we discussed in Section IV-A. Therefore, we choose the
worst data stream at every optimization step so that it can have
a better condition or in other words, less interference. This
condition can be written as

arg min
kg{ky,....kj_1}

_ )
k] - dk/U'Uj

which can be seen from Table VII. Since the optimization direc-
tion is opposite to the desired strategy, this algorithm does not
always lead to the optimum ordering.

D. Complexity Analysis

We compare the computational complexity of the proposed
algorithms with that of the original THP in [24]. The proposed
algorithm for THP is similar to that for DFE. The major differ-
ence from the DFE solution is that we need to compute the for-
ward filter F*! explicitly in order to determine the normalization
factor satisfying the transmit power constraint. The results are
summarized in Table VIII which shows only the terms above the
second order. If Ny = Ng, then the speedup of the proposed op-
timum solution over the original THP in the number of both mul-
tiplications and additions is roughly 1.64Ng + 3.80. Our sub-
optimum solution is faster by a factor of roughly 2.25Ng +5.25
for both multiplications and additions. Note that the complexity
of our suboptimum solution for THP is roughly regarded as that
of a simple linear transmit filter (e.g., [25]).

E. Numerical Results

Computer simulations are performed to evaluate the uncoded
BER performance over E}, /Ny [cf. (2)]. In the following, we
assume a white input signal and noise, i.e., E[uut] = I Ny, and
®,,,, = 021y, . The frame length of 1000 information bits are
QPSK modulated (M = 2). The channel is quasi static and
assumed to be perfectly known at the transmitter.

Fig. 10 shows the performance of a system with Ny = Ny =
4 antennas both at the transmitter and the receiver. The impact
of the ordering optimization can be observed. The performance
of the MMSE linear filter is also plotted for comparison. Signif-
icant gain of the nonlinear THP against the linear filter can be
seen. Our optimum algorithm achieves the same performance as
the reference scheme in [24], but the complexity is drastically
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TABLE VIII
COMPLEXITY COMPARISON OF PROPOSED PRECODING SCHEMES

| THP in [24] | optimum Cholesky | suboptimum Cholesky
multiplications | NF(3NZ + 6Ng + N1) [ NZ(5Ng + 6N1) | $NZ(2Ng + 61N7)
additions NZ(BNg + 6Ng + Nr) | INZ(5Ng +6N1) | INZ(2Ng + 6N1)
10° . : 10° . : :
— MMSE linear ) — 1st detected layer
—8-MMSE THP: w/o ordering opt. ——2nd detected layer
10! =7~ MMSE THP: subopt.(proposed) 10°T -©-3rd detected layer |
-©-MMSE THP: ppt.(Eroposed) —©—4th detected layer
—+— MMSE THP: in reference [24]
1073 1072 1

uncoded BER
S

1074
107}
6 . . . .
1015 0 10 30 30 20
Eb/ N, in dB
Fig. 10. Uncoded BER performance of a system with Nt = Ny = 4
antennas.
10° -.
——ZF linear
—+— MMSE linear
10” -©-ZF THP ]

-&-MMSE THP

R
—_
i

IN

uncoded BE
=
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107}
107 : : : : j
=10 0 10 20 30 40
Eb/ N0 indB
Fig. 11. Uncoded BER performance of a system with N = Ny = 8
antennas.

reduced. Our suboptimum algorithm shows slight performance
degradation in the low uncoded BER region, but no performance
degradation in a practical operating point, e.g., uncoded BER of
10~2. We observed that the performance loss due to the subopti-
mality of the ordering in a wide range of the number of antennas
for Ny = Np is below 0.03 dB at an uncoded BER of 102!

Fig. 11 compares the performance of different transmission
schemes for a system with N7 = Nr = 8 antennas. We con-
clude that it is possible to obtain the large performance gain
against simple linear processing without complexity overhead.
The THP approach requires a modulo operation, but its com-
plexity is of minor impact on the total complexity.

V. COMPARISON BETWEEN DFE AND THP

We have shown through the preceding sections that both suc-
cessive detection and precoding schemes share many ideas in

uncoded BER
=

107k

10 - : : : - -
~10 -5 0 5 10 15 20 25
E/J N,indB

Fig. 12. Performance of genie MMSE DFE (V-BLAST) for a system with
Nt = Ngr = 4 antennas. The uncoded BER is plotted for each of the four
layers in the order of detection.

common. In this section, we discuss some differences between
these schemes. The performance demonstrated in the preceding
sections is averaged over all layers and the performance of indi-
vidual layers is invisible. Contrary, we investigate the perfor-
mance of individual layers and discuss the impact of the or-
dering for both schemes in this section.

V-BLAST suffers from error propagation while THP does
not. For the purpose of the comparison, we investigate the genie
detector for V-BLAST. This means that we perform the real
interference suppression and detection for each layer, but for
subsequent layers we assume ideal detection of the signals of
preceding layers [6]. In [6], the authors have demonstrated the
pure improvement of the diversity level for the case of no or-
dering optimization. We illustrate in Fig. 12 the performance
including the optimized detection ordering for a system with
N7 = Ny = 4 antennas. For high SNR, the improvement of
the diversity level can be observed as reported in [6] due to the
increased degrees of freedom for the layers detected later. How-
ever, the performance of layers is reversed for low SNR. To un-
derstand this behavior of V-BLAST in the low SNR region, let
us consider a white input signal and AWGN noise, i.e., ®,, =
Iy, and ®,,, = 021y, , where we assume E[|z;|*] = 1,Vi,
without loss of generality. It is well known that the MMSE filter
can be approximated as the matched filter for low SNR, that is3
F" ~ H" /o2 Then, the estimates from the filter can be ex-
pressed as & = (1/02)H Hz + (1/02)H"n. Also, the esti-
mate of the kqth layer at the first detection stage reads as

. 1 2 1 H I . n
T = 5 b, |z wry + p=y Z by hjz; + ?hkln
n "otk 2
3See also (6), with the white input and noise assumption, and for very large

2
a..
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— st precoded layer

——2nd precoded layer
10™ —©-3rd precoded layer |
—©—4th precoded layer

1072

uncoded BER
=

1074 1
1073 1
10 : : : : : :
-10 -5 0 5 10 15 20 25
E/ N, in dB

Fig. 13. Performance of MMSE THP for a system with No- = Ny = 4 an-
tennas. The uncoded BER is plotted for each of the four layers in the order of
precoding.

where hj, denotes the k;ith column of H. Since the channel
inputs are assumed to be mutually uncorrelated, the signal fo
noise plus interference ratio (SINR) of the kjth layer can be
written as

[
hy h;

2
~ Mha ]l

a.

2
ne

for large o

5 R
Ej;ékl + o2 [|hk, ||§
This means that the noise is the major factor for the SINR
degradation while the interference from the other layers is less
significant. The interference from the other layers is reduced
by the successive detection. After ¢+ — 1 layers are detected,
the interference from the other layers to the k;th layer for the
updated system can be writtenas 3 oy, 1 |h§ h;|?, which
is a rather small improvement in the very noisy environment.
Also, recall that V-BLAST applies the “best first” rule to
choose the best layer at each detection stage. Therefore, the
earlier chosen layers perform better than the succeeding layers
which take small benefits of interference reduction in the noisy
environment. The overall performance of V-BLAST is limited
by the worst layer even for the genie detector since there is no
power control at the transmitter. For the nongenie detector, the
performance is further limited by the error propagation.

Fig. 13 shows the performance of each layer for MMSE THP.
Remember that THP applies the “best last” rule to choose the
best layer starting from the one precoded last. It can be observed
that the last precoded layer successfully takes profit although it
has the largest number of constraints (to avoid interference to
all the other layers which are already precoded). Furthermore,
we can observe that all the layers perform similar, and, thus,
the overall performance is not limited by a particular layer. This
naturally means that the transmit power is implicitly controlled
so as to achieve similar performance for all layers on average.

VI. SUMMARY

We introduced a new common framework for successive
detection and precoding of spatially multiplexed data streams
over MIMO channels. We illustrated that both schemes could
be seen in the view of a system comprising forward and
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backward block filters where the latter has a strict triangular
structure for the causality of the feedback process. Based on
the system model, we strictly derived the optimum forward
and backward filters by solving the constrained optimization
problem in MMSE sense. The direct solution requires rather
high complexity of computing multiple matrix inversions.
We proposed to explicitly include the ordering of successive
processing into the system model using a permutation matrix.
That naturally leads us to apply Cholesky factorization with
symmetric permutation to the solution from the constrained
optimization problem. The factorization greatly simplifies the
solution and reduces the complexity drastically. Since the
proposed algorithms require to compute only a triangular part
of matrices due to their symmetric nature, that also contributes
to the complexity reduction. This framework also led us to
suboptimum solutions which show slight performance degra-
dation, but with the complexity roughly equivalent to that of
simple linear filters. We concluded that the large performance
advantage of nonlinear successive detection and precoding
against linear filters is possible without complexity overhead.
Finally, we compared the detection and precoding schemes by
investigating the performance of individual layers.

APPENDIX |
DERIVATION OF MMSE DFE

From (10), the Lagrangian function can be written as
Nt

L2y, 2Re {Ztr (SZ-Tuie,L-TBH) _ e,L.TS,L.Tm} (35)
i=1

where p; € CNt—i+l 4 = 1,..., Ny, are Lagrangian multi-
pliers. Using (8), we compute the error covariance matrix as

o"-B"Po, . P'B-F"¢! P'B-B"P®, F+F"®,F.
(36)
With (9), (35), and (36), we solve dL/OF™ = 0 for F* to get

F" =B"P%,,%, = B"PS..H"®,,  (37)

where the last equality can be understood by comparing (4) and
6),i.e., erd);yl =&__H"®,' Bysetting 9£/0B" = 0 and
using the first equality in (37), we get
Nt
H —1gH T
B"P (8., - ©,,8,,@%,) P" =} eul's..
=1

~

~~

=®..

Solving this equation for BY gives

]VT
BY = <Z em?s,) Pa_'P". (38)
i1=1

We plug this result into the constraint in (10) to get

Nr
e Zejlll?sj Pe_'P'-1|5] = 0Ny —itix1-
i=1

(39)
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Since
1, fori=7
T, _ ) J
€€ = {0, otherwise (40)
holds, (39) can be simplified and we solve for p,?:
-1
pll = eIsT (S,iPé;lPTSE ) . 1)

From (37), (38), and (41), we get the solution for the forward
and backward filters in (12).

Now we show that the MSE in (9) can be simplified to (13).
Using (37), the error covariance matrix in (36) can be simplified
to [see also (5)]

" = Bps__PTB. (42)
With (12), it can be rewritten as
NT NT
" =3"% e:el S/ U S;PO P S[W; 'S e ]

=1 j5=1

(43)
where we defined

v, 28, Pe'PTST. (44)

Using (43) and tr(AB) = tr(BA), (9) can be computed as
follows:

Nt Nt
=33 tr (e}eie;fs}w;lsim;&lPTs}\If;lsjej)

i=1 j=1

]\TT
=) €S U S, PO_'PTS{ U Sie;
=1

]\TT
= elSiU; Se;. (45)
=1

Before we further proceed, let us introduce the following
lemma.

Lemma 1: (S;AST)~' = 8,(878;A878;)*8} holds for
A e CNv>Nr if §;A8T is invertible. (-)* denotes pseudo
inverse.

Proof: Let us define a partition of A as

Aé |:A1,1 A1,2}

46
Asi Ass (46)

where the dimensions of the square matrices of A; 1 and As -
are, respectively, 2 — 1 and N1 — i + 1. Then, the left-hand side
of Lemma 1 is expressed as

(S,;AS?)A — A7l @7)

For the right-hand side, we compute

T te\t [0 07" [0 o
sy -8 2] -8 2]
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Therefore, 8;(8} 8;ASS,)*8} = Ay Y which is equivalent
to the left-hand side. [ |
Using Lemma 1 and with (44), (45) can be computed as

Nrp _
op= elST (sipcp;;PTsiT) 'Sie:
=1

Nt
+
=3 efsIsP (PTS,L-TS,L-P@E‘EIPTSZ-TS,L-P)
i=1
X PTSZ-TSZ‘BZ'.
From the definition in (11), it is easy to see that the following
equality holds:

(48)

0, j<i

T _
Si S’Le_) - {ej, j>i (49)
and, therefore
NT NT
S;FSLP = SLTSL Z ejeg] = Z ejeg] .
j=1 j=i

Thus, we get el S} S;P = e;.. Using this result for (48), we
finally get (13).

In the following, we show that the factorization in (16) sim-
plifies the solution in (12) and the MSE ¢,, in (9). Let us first
introduce the following lemmas.

Lemma 2: S;ANA"ST = S;ASTS;ASTS;A"ST holds
for a diagonal matrix A € CNt*Nt and an upper triangular
matrix A € CNt XNt

Proof: We consider A = blockdiag(Ay,As), Ay €
Cim1xi=1 Ay, € CNr—i#IxXNe—i+l and the partition of
A defined in (46) where As; = 0. The both sides of
Lemma 2 are computed as A272A2A§72 since S;A = [0, As 2],
S;AS] = As 5, and S;AS! = A, hold. ]

Lemma 3: (8;A87)"1 = 8;A7'S} holds for a full rank
triangular matrix A € CNt >Nt

Proof: We consider the partition of A defined in (46). The
left-hand side of Lemma 3 is given in (47) while the right-hand
side is the inverse of the Schur complement of A, 5 [27, pp. 53]
which is written as (A2 o — Ag}lAi}Am)_l. That becomes
Az__é since A1 2 = 0 or A3 1 = 0 holds. [

With (16), Lemma 2, and Lemma 3, (41) can be rewritten as

ull =l ST (S’iL_HD_lL_l.S'Z-T)_l
—elST (SiL*HS,iTSiD*SESiL*S?)_1
=el's7 (8:L8T) (8:DST) (8:L"5T)
=elDSTS,L"S}. (50)

We applied e LS 8; = e which should be clear for the unit
lower triangular matrix L.
Lemma 4: 8} S;AS}8;A™" = 8}S; holds for an upper
triangular matrix A € CNt >Nt
Proof: Let us consider the partition of A defined in (46)

where A2’1 = 0. Then, applying the block matrix inversion
lemma yields [27, p. 53]
_[AL —AL1AiRA

A—l
0 A,
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Using this result, we get

0 0
0 A272

Ta 4 _ Ta 4-1_ 10 0
S,L-S,A_[ } and S;S;A _[0 A;ﬂ
Multiplication of these results proves Lemma 4. [ |

Using Lemma 4, (16), (38), and (50) can be computed as

follows:

Nt
B" =3 eelD (S,? siLHs;fsiL*H) DL

i=1

Nt
= eie/DS;S;D'L™
i=1

=Lt

With this result and (16), the forward filter in (37) can be also
simplified, and we get (17). Similarly, the error covariance in
(42) reduces to (18).
APPENDIX II
DERIVATION OF MMSE THP

From (26), the Lagrangian function reads as

£2¢p(u(F'®,F) - )

]\TR
—2Re Zﬂ?SjBHB]' - p,?S]-e]-

=1

(D

where p € R and p; € C’,j = 1,..., Ng, are Lagrangian
multipliers. From (25) the error covariance matrix is calculated
as

&..-4"’HF"®,,FH" +P*"B"®,,BP-3~'HF"®,,BP
- 'P"B"®, FH" + 32®,, (52

where we assume E[vn!] = 0. From (25), (51), and (52), we
solve 0L/ OF" = 0, then we obtain the following relation:

FH"H — 3BBPH = p3°F (53)

which will be useful shortly after, and we also solve for F " to
get

-1
Fi_g (HHH - pﬂ2INT) HYpTRH

— gH" (HHH _ pﬁZINR)_l PTBY. (54

The partial derivative of £ with respect to 3 reads as

oL

T il 28 3tr(HF" ®,,,FH")
+ 26 Re {tr(HFHQv,UBP)} — 26 3 x(Bn)
— — 20 % (FH@”, (FHUH — ﬁBPH))
— 2/5’_3tr(<I)nn)
= =287 p tr(F®,, F) — 267 tr(®,.,,)
= — 2671 (pE. + 5 2x(@00))

3101

where we used (53) to get the third equality. Solving 0L/93 =
0 gives p3% = —y~! [cf. (28)]. Using this result and (28), (54)
can be rewritten as

F" = pH"®~'P"B". (55)
From O£ /0B™ = 0 and using (55), we get
Ngr
> Sjue] =B"®,, - PHH"® 'P'B"®,,
j=1
=P(®—- HH"® 'P"B"®,,
=+y"'Po'P"B"e,,.
From this result, B can be expressed as
Nk y
H TqT, T
B" =) —P®P'S pe; (56)
j=1 vj
where we used ®,, = diag(c? ,...,07, ) as we have as-

sumed. We plug this result into the second constraint in (26)
to get

Ngr
S; (Z (:2 P®P"S] pel - INR> ej = 0jx1.

=1 Vi

Due to (40), the summation disappears and we solve for W

-1
uj =102 (S,PoP"S})  Sie;. (57)
From (55)—(57), we get the solution for the forward and back-
ward filters in (27)
Now we show that (27) can be simplified to (30) using (29).
With (29), (57) can be simplified as

-1
w=v"02 (SjL_lD_lL_HSJT) Sie;
-1
=y lo? (8,L7'8]8,D7'S[S,L7VS])  Sje;

=y"'02 S,L"S} S, DS} S; LS} Se;
=v"'0) S,L"S} S;De; (58)
where we applied S'jAAAHS';F =8 ]-A.S'JTS'jAS'JTS'jAHS';F for
a diagonal matrix A € CVr*Nr and a lower triangular matrix
A € CVrxXNr and (8;AS7)7! = S;A7'S for a full rank
triangular matrix A € CV* XM= which can be easily proved in
a similar way as Lemma 2 and Lemma 3, respectively. We also
used S';[S]-e]- =e; and S';»IS']-Lej = e; for the unit lower trian-
gular matrix L. With (29) and (58), B Hin (56) can be rewritten
as

Nr
B"=>"L'D'L™"S;8;L"S;S;Deje; =L~' (59)

=1
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where we applied L_HS;-fS’jLHS']TSj = S']TS]- which can be
easily proved similar to Lemma 4. Using (29) and (59), the for-
ward filter in (55) can be also simplified and we get (30).

Using (55) and (28), the error covariance matrix in (52) can
be expressed in terms of BY as follows:

®..=+20"'P'B"9,,BP®"' +37%®,,.  (60)

From (26), (28), and (55), the trace of the noise covariance ma-
trix can be written as

tr(®,,,) =y Ftr(H '@ 'P"B"®,,BP®'H). (61)
From (60) and (61), the MSE in (25) can be computed as

¢ =y %tr(® 'P*"B"®,,BP® )
+y Ytr(H"® ' P*"B"®,,BP® ' H)
—~~Lir (<1>*1PTBH<1>WBP<I>*1 (7‘1INR + HHH))
=~ tr(®,,BP® ' PTBY) (62)

With (29) and (30), (62) is finally simplified to (31).
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