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ABSTRACT

Sum throughput maximization under a power constraint con-
stitutes an important optimization problem for designing phys-
ical layer algorithms. However it often leads to an unfair dis-
tribution of resources to the users. On the other hand, due
to the nature of the capacity region of the multiuser MIMO
broadcast channel, strict Quality of Service (QoS) constraints
such as rate ratios might lead to severe losses in sum capac-
ity compared to the maximum possible sum capacity given
a power constraint. For this reason minimum rates for each
user are introduced and an algorithm is presented which di-
vides the users into two groups: in one group all users are
served with their required minimum rates as providing them
with further resources will lead to decreases in sum capac-
ity. Putting these further resources into the users of the other
group instead is more beneficial for sum capacity. That is
why these users will be served with higher rates than their re-
quired minimum. This user classification is conducted based
on perturbation analysis of convex optimization problems.

1. INTRODUCTION

Future wireless communication systems will be characterized
by a wide variety of different user applications, such as video
streaming, data transfer, voice etc. All of those have differ-
ent requirements on the wireless links between the transmit-
ter and the mobile users. Additionally from a network opera-
tor’s point of view it is desired to maximize the total through-
put in such a system. It is the transmitter’s task to accom-
plish these desires as good as possible given a transmit power
constraint. In this paper on the physical layer level the user
requirements are formulated as minimum transmission rates,
which are measured by channel capacity and which must be
fulfilled for every user. After satisfying these constraints there
are several possibilities how to distribute the remaining re-
sources, such as transmit power or sub carrier in an Orthogo-
nal Frequency Division Multiplexing (OFDM) system, to the
users. One is a fair distribution, such that each user receives
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the same proportional rate gain compared to its minimum re-
quired rate. That leads to the so-calledrate balancing prob-
lem, as for example described for a multiuser multiple-input
multiple-output (MIMO) OFDM system in [1]. Alternatively
one can maximize the weighted sum of the users’ capacities
with an appropriate choice of weights, as done for example
in [2]. However these algorithms maximize sum capacity in
a way that a predefined point on the boundary of the capacity
region should be achieved and leave no room for maximiza-
tion of sum capacity on the boundary of the capacity region it-
self. Therefore in favor of a higher system throughput we give
up the fair distribution of additional resources and present an
algorithm how to shift resources from the rate balancing solu-
tion from [1] such that system throughput is increased without
violating the minimum rate requirements. Consequently only
these users which can contribute most to sum capacity will re-
ceive more resources than required to satisfy their minimum
required rates. The main focus of this paper will be to identify
those users. For this purpose we utilitize the sensitivity analy-
sis of a perturbed convex optimization problem [3]. By means
of sensitivity and perturbation analysis one can find out how
sensitive a given convex objective function is with respect to
perturbations in the constraints of the optimization problem,
i.e. how a change of a certain constraint affects the objective
function. An example for the application of such an analysis
can be found in [4]. Therein overall transmit power is min-
imized, whereby the users’ Minimum Square Errors (MSEs)
must not fall below certain predefined values. In case these
requirements cannot be satisfied with the currently available
transmit power, sensitivity analysis is used to determine that
user whose constraint should be relaxed in order to gain the
largest reduction in transmit power.
An optimum solution to the problem of maximizing a weighted
sum of users’ rates with minimum rate constraints in a mul-
tiuser MIMO OFDM system has recently been found in [5].
However, the presented iterative algorithm exhibits a high
computational complexity, even within one iteration. Further-
more the stated problem may lead to solutions, where one or a
few users receive to many system resources such that they can
transmit at higher rates than their applications can make use



of. Our algorithm assures a fair allocation of resources among
the users to be served with more than their required minimum
rates and also allows the consideration of maximum transmis-
sion rates.
The outline of the paper is as follows. After introducing the
system model in Section 2 we will shortly review the algo-
rithm presented in [1], as it will be used during the solution of
the presented problem. We will then continue by explaining
the proposed algorithm in Section 4. The simulation results
are shown in Section 5 before we conclude the paper in Sec-
tion 6.
Notation: Bold lowercase and uppercase letters denote vec-
tors and matrices, respectively,(∗)H is the Hermitian of a ma-
trix or vector and byIn we refer to then× n identity matrix.

2. SYSTEM MODEL

We consider the downlink of a multi-user MIMO system with
a transmitter withMTx antennas andK users withMRx re-
ceive antennas at each user. The channel matrix of userk on
carriern is denoted asHk,n. Receivers as well as the trans-
mitter have full channel state information (CSI). We employ
an OFDM system withC carrier and the transmit power is
limited to PTx. The k-th user’s minimum rate requirement
is denoted asRk,min We thereby make the assumption that
unconstrained sum capacity maximizing algorithms such as
SESAM [6] do not meet these requirements.

3. SESAM WITH RELATIVE RATE CONSTRAINTS

The main idea of the Successive Encoding Successive Alloca-
tion Method (SESAM) [6] is to decompose the MIMO broad-
cast channel into a set of virtually decoupled scalar interference-
free sub channels. Each of these sub channels results from
assigning a transmit beamforming vector to a user and apply-
ing a matched filter, which is capacity conserving in this case,
at the corresponding receiver. Total suppression of multiuser
interference is achieved as follows: Letπ(1) be the user to be
encoded first on a certain carriern andvπ(1),n its correspond-
ing transmit beamforming vector. Then the channelsHk,n are
projected into the nullspace of the beamforming vector by the
operation

Hk,n,2 =Hk,n(IMTx − vπ(1),nv
H
π(1),n).

User Allocation is then continued with the projected chan-
nel matricesHk,n,2, whereas after each user allocation the
channels are again projected into the nullspace of all beam-
forming vectors. Due to the properties of the projections up
min(MTx,MRx) sub channels can result at the same time and
at the same frequency. That assures that usersπ(i) do not in-
terfere with usersπ(j) to be encoded later, whereasj > i.
Interference from previously encoded users is suppressed by
Dirty Paper Coding (DPC).

The optimum user allocation depends on the analyzed prob-
lem. For unconstrained maximization of sum capacity (see
[6]) the user with the strongest principal singular value of the
channel matrixHk,n in the first dimension and the user with
the strongest principal singular value of the projected chan-
nel matricesHk,n,i in the following dimensions is chosen. In
OFDM systems the algorithm can be run on each sub carrier
in parallel. Power is allocated to all sub channels according
to waterfilling.
In [1] the rate balancing problem is considered, wherein rel-
ative rate constraintsρk are introduced for each user. That
leads to the following optimization problem:

max
K∑
k=1
Rk(p`,k)

s.t.
Rk
Rref user

= ρk, ∀k = 1, ...,K, k 6= ref user

K∑
k=1

nk∑
`=1
p`,k = PTx, p`,k ≥ 0, (1)

whereinp`,k andnk denote the power allocated to the`-th
sub channel of userk and the number of subhannels allo-
cated to userk. For simplicity reasons we index the sub chan-
nels allocated to a certain user by` = 1, ..., nk regardless on
which carrier and in which spatial dimension the sub chan-
nels are assigned. “ref user” is an arbitrarily chosen reference
user.Note that here we use a slightly different for the rate bal-
ancing problem than in [1]. It can be easily shown that by
choosingγ = Rref user in [1] the two problems are equiva-
lent. (1) is divided into a sub channel allocation followed by
a power allocation. The former is again conducted succes-
sively, whereas in each spatial dimension it works as follows:
first the number of sub carriers each user will receive in the
current dimension is determined. This number depends on the
rate ratiosρk and the single user rates each user would achieve
if it occupied all carriers. Secondly the actual allocation user
to sub carrier is performed such that the previously computed
numbers of sub carriers are achieved and as little sum capacity
as possible is lost compared to the allocation according to the
strongest principal singular value. Given a certain sub chan-
nel allocation finally power allocation is conducted to fulfill
the rate ratios. For details the reader is referred to [1].

4. ALGORITHM

We will first give a brief overview of the proposed algorithm:
In Step 1 the users are classified into two groups: users in one
group are served with their corresponding minimum rates, as
further rate increases will be harmful for the total sum rate,
while users of the other group share the remaining system
resources for optimum system performance. In the second
step the spatial dimensions on each sub carrier are assigned



to the users. Finally in the third step the available transmit
power is allocated to the resulting sub channels.

4.1. Step 1: User Classification

As simulation results showed in [1] the boundary of the ca-
pacity region achievable by the SESAM algorithm with rela-
tive rate constraints is nearly concave. Because we have fur-
thermore excluded the case that the point of maximum sum
capacity lies within the feasible region defined by the mini-
mum rates, it is reasonable to assume that the optimum so-
lution will lie on the boundary of the feasible region. That
means that certain users will only be served with their cor-
responding minimum rates. In this step those users are de-
termined. For this purpose we resort to the perturbation and
sensitivity analysis of a convex optimization problem, which
is explained in [3]. For our purposes we analyze an optimiza-
tion problem which aims at achieving a certain point on the
boundary of the capacity region. This point must lie within
the feasible domain and by perturbation analysis we can deter-
mine the direction in which this point should be moved within
the feasible domain in order to obtain a higher sum capacity.
Optimization problem (1) is chosen for this aim, wherein the
rate ratios are chosen according to:

ρk = Rk,min

Rref user, min
. (2)

Solving Problem (1) withρk according to (2) leads to trans-
mission rates, which are either all below or above the required
minimum rates. Hence this part of the algorithm can also be
seen as a kind of feasibility test. For the further proceeding
we assume that the original problem is feasible. The strategy
which should be followed in case the transmit power is not
enough to satisfy the minimum rate requirements is beyond
the scope of this paper. As a convex optimization problem
is needed for perturbation analysis we assume that the sub
channel allocation remains fixed after it has been determined
according to the algorithm in [1] given the rate ratios in (2).
Hence in the following we consider only the power allocation
problem.

min
p`,k

(
−
K∑
k=1
Rk(p`,k)

)
= (3)

= min
p`,k

(
−
K∑
k=1

nk∑
`=1

log2(1 + p`,kλ2
`,k)
)
,

s.t.
Rk
Rref user

= ρk, ∀k = 1, . . .K, k 6= ref user,

K∑
k=1

nk∑
`=1
p`,k = PTx, p`,k ≥ 0,

whereinλ`,k denotes the gain of thè-th sub channel of user
k. As we want to achieve the boundary of the capacity re-
gion, the power budget is fully exploited. We minimize the

negative sum capacity in (3) in order to obtain a convex ob-
jective function. Obviously this is equivalent to maximizing
sum capacity. By introducing “perturbation terms”uk in the
constraints, (3) reads as:

min
p`,k

(
−
K∑
k=1

nk∑
`=1

log2(1 + p`,kλ2
`,k)
)

(4)

s.t.
Rk
Rref user

= ρk + uk, ∀k = 1, . . .K, k 6= ref user,

K∑
k=1

nk∑
`=1
p`,k = PTx, p`,k ≥ 0.

The perturbation termsuk consider the fact that the constraints
are no longer fixed toρk but variable, whereby we are inter-
ested in finding rules for choosinguk in a way that the maxi-
mum sum capacity will be increased. The Lagrange function
of (4) then reads as:

L = −
K∑
k=1

nk∑
`=1

log2(1 + p`,kλ2
`,k)+ (5)

+
K∑
k=1

k 6=ref user

νk

(
Rk
Rref user

− (ρk + uk)
)

+ (6)

+ η
(
K∑
k=1

nk∑
`=1
p`,k − PTx

)
+
K∑
k=1

nk∑
`=1
µk,`p`,k

with the Lagrange multipliersνk, η andµk,`. As for the op-
timization problem in (4) strong duality is assumed and the
optimum sum capacityCsum,opt =

∑K
k=1Rk,opt is differen-

tiable with respect touk, the following relationships between
the Lagrange multipliersνk andCsum,opthold [3]:

∂Csum,opt

∂uk

∣∣∣∣
u1,...,uK=0

= νk ∀k = 1, . . . ,K, k 6= ref user.

Hence ifνk > 0, the maximum sum capacity will increase
for uk > 0, i.e. the relative rate requirementρk can be further
increased. On the other hand for users withνk < 0 a reduc-
tion of their rate requirements is necessary for an increase in
sum capacity. Applied to the original problem with minimum
rate constraints it is very likely that constraining those users
with νk < 0 on their minimum rates will gain a benefit in sum
capacity compared to the SESAM algorithm with relative rate
constraints applied so far. After computing the Lagrange mul-
tipliersνk as shown in the Appendix, we therefore conduct the
following user classification:

• Users withνk < 0 are put into the so-called “looser”
group, which will be referred to asGroup L in the fol-
lowing. They will be only served with the correspond-
ing minimum required rates.

• The remaining users are subsumed into the “winner”
Group W , i.e. during the next steps they will gain



more resources than in the current step of the algorithm.
Consequently their individual rates will increase then.
In the following we will maintain the relative rate con-
straints from (2) within this group for reasons that will
become clearer later.

Remarks:

1. Although there are onlyK − 1 constraints in (4) and
accordingly onlyK − 1 Lagrange multipliers relevant
for our analysis, a classification of all users is possible.
As shown in the Appendix, the sign ofνk is indepen-
dent of the choice of reference user. Therefore also the
reference user, to which no Lagrange multiplier can be
assigned in the current optimization problem, can be
clearly classified without repeating the whole optimiza-
tion with another reference user.

2. For the perturbed optimization problem we considered
in (4) the new constraints introduced above imply that
ui = 0 for the users in Group W andui < 0 for
the users in Group L. That is because their own rates
are reduced compared to the unperturbed problem and
the rate of the reference user, which can, without loss
of generality, be assumed to belong to Group W, is
very likely to increase. Trying to achieveui > 0 for
the users in Group W, as suggested by the perturbation
analysis, would discriminate the reference user.

3. The perturbation analysis is only valid near the opti-
mum solution obtained with the initial constraintsρk
from (2). That is not only becauseCsum, opt is usually
a non monotonic function of alluk and therefore the
signs of the partial derivatives do not remain constant
within the feasible domain. Furthermore the optimum
sub channel allocation is likely to change within the
whole feasible domain. To take these suboptimalities
into account an iterative extension to our algorithm is
presented in Section 4.4.

4.2. Step 2: Sub Channel Allocation

As in [6], the sub channel allocation is performed succes-
sively, i.e. we start in the first spatial dimension with the
sub carrier allocation, project the users’ channels into the null
space of the already used subspaces and continue until no spa-
tial dimensions are left. In each dimension first the number of
sub carriers each user can occupy is determined. For the users
in Group L the number of sub carriersNi,k thek-th user gains
in thei-th dimension is computed according to:

Ni,k = Rk,min

R
(1)
k

N
(1)
i,k .

TherebyN (1)
i,k denotes the number of sub carriers thek-th

user has occupied in the spatial dimensioni after running the

SESAM algorithm with relative rate constraints during Step 1.
R

(1)
k is the total rate userk would achieve with the resource

allocation determined in Step 1. The remaining sub carriers

N −
∑

k∈Group L

Ni,k

are distributed amongst the users in Group W in the same
way as the total number of sub carriers is distributed to the
users in the SESAM algorithm with relative rate constraints.
The necessary rate requirements are again chosen according
to Equation (2), whereby the reference user is an arbitrary
user of Group W. The actual allocation sub carrier to the users
is then performed as in [1].

4.3. Step 3: Power Allocation

First power is assigned to the sub channels occupied by the
users of Group L. The aim is thereby to satisfy the minimum
rate requirements with as little transmit power as possible.
Mathematically this optimization problem reads as:

min
p`,k


 ∑
k∈Group L

nk∑
`=1
p`,k


 (7)

s.t.
nk∑
`=1

log2(1 + p`,kλ2
`,k) = Rk,min, ∀k ∈ Group L,

p`,k ≥ 0.

As in the SESAM algorithm with relative constraints [1], the
solution to (7) is “waterfilling with user specific waterlevels
ηk” [1]:

p`,k = max
{

0,
(
ηk − 1

λ2
`,k

)}
.

Considering the rate constraints in (7), the waterlevels com-
pute according to:

ηk = 2
Rk,min−

Pn̂k
`=1 log2(λ2

`,k)
n̂k ,

wherebyn̂k ≤ nk denotes the number of sub channels with
p`,k > 0 and it is assumed that theλ2

`,k are arranged in de-
scending order from̀ = 1 to ` = nk. As n̂k is unknown,
the powersp`,k have to be determined iteratively: First the
waterlevelsηk are computed witĥnk = nk. Then the corre-
sponding powersp`,k are determined. With thosênk can be
updated and new waterlevels can be calculated. Ifn̂k remains
constant from one iteration to another, the algorithm has con-
verged.
Afterwards the remaining power is distributed to the users in
Group W. Applying pure waterfilling over the corresponding
sub channels is optimum for sum capacity but does not guar-
antee compliance with the minimum rate requirements. Using
the relative requirements from (2) it becomes very unlikely



that these constraints are not met, as more resources than in
step 1 are now available for the users in Group W. This choice
also provides fairness within Group W. Hence the power allo-
cation problem reads as

min
p`,k


− ∑

k∈Group W

nk∑
`=1

log2(1 + p`,kλ2
`,k)




s.t.

nk∑
`=1

log2(1 + p`,kλ2
`,k)

nref user∑
`=1

log2(1 + p`,ref userλ2
`,ref user)

= ρk

∀k ∈ Group W, k 6= ref user, p`,k ≥ 0.

Again this optimization problem is identical to the power al-
location problem described in [1]. Consequently it can be
solved by applying the iterative algorithm from [1].
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Fig. 1. Illustration of the proposed algorithm for a two user scenario

For a two user scenario the algorithm is visualized in Fig-
ure 1 and we selected users1 and 7 from the scenario de-
scribed in Section 5. The feasible domain is characterized by
R1,min = 1 bit / sub carrier andR7,min = 2.5 bit / sub carrier.
First a point on the boundary is achieved with the rate bal-
ancing algorithm from [1] denoted as “SESAM R.B.” , which
lies very close to the theoretical boundary, as also shown in
Figure 1. Secondly the direction is determined by the user
classification, to which boarder of the feasible domain one
must move to increase sum capacity. Thirdly resources are
reallocated to achieve this point.

4.4. Iterative Extension

While running the heuristic algorithm proposed in the previ-
ous section we moved from one point on the boundary of the
capacity region to another on the basis of a local perturbation
analysis at the first point. Clearly it can happen for a scenario
with K > 2 users that at the second point the user classifica-
tion done in Step1 can no longer be justified, i.e. there are
users in Group W, whose rate requirements should now also
be reduced in order to increase sum capacity. On the other
hand there might be users in Group L, which could contribute
to a higher sum capacity without being forced to their min-
imum rate requirement. If the computational resources are
available and the results of the above algorithm are dissatis-
factory, we therefore propose an iterative application of the
algorithm. In step 1 of each further iteration the Lagrange
multipliers are determined the same way as described in the
previous section, but with new requirements

ρ
(n)
k = R

(n−1)
k

R
(n−1)
ref user

, (8)

wherebyR(n−1)
k denote the rates obtained through the previ-

ous iteration. If the signs of the Lagrange multipliers have
changed compared to the last iteration, we adjust the user
classification accordingly and repeat steps2 and 3. Other-
wise no further changes of the requirements in the proposed
directions are possible and the algorithm has converged.
During an iterative application of the algorithm it is also pos-
sible to consider maximum rate requirements, i.e. it can be
avoided that a user in Group W receives more capacity than
its application can make use of. If in one iteration a user’s
rate is larger than the maximum it can exploit, that user is
added to Group L with the corresponding maximum rate as
requirement for the next iterations.

5. SIMULATION RESULTS

For the simulation results shown in Fig. 2 we used the mea-
sured MIMO indoor channels described in [7]. The transmit-
ter is a uniform linear array (ULA) withMTx = 4 transmit an-
tennas and the receivers are equipped with two antennas each.
The OFDM system consists ofC = 1024 sub carrier and
the bandwidth is equal to130 MHz. The receive SNR is20
dB in the strongest channel. Figure 2 exhibits the individual
rates with minimum rate requirements0.1 bits/sub carrier for
the odd and0.2 bits/sub carrier for the even users. “SESAM
minimum rates” denotes the proposed algorithm with one it-
eration. For comparison the algorithm from [1], denoted as
“SESAM R.B.”, and Time Division Multiple Access (TDMA)
are also included in the figure. Those algorithms were re-
quired to serve the even users with twice the rate of the odd
users. One can see that large gains in the individual rates
as well as in sum capacity are possible, when minimum rate



requirements are imposed on the users and the remaining re-
sources can be distributed to the users without any constraints
compared to scenarios, where, as in our case for TDMA and
SESAM with relative rate constraints, strict requirements need
to be fulfilled. In this scenario sum capacity increases by
72.5% compared to SESAM with relative rate constraints.
This gain is achieved only with a readjustment of resources
avoiding an iterative search for rate ratios or weights that
achieve the point of maximum sum capacity within the fea-
sible domain. Furthermore no time-sharing is required.
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Fig. 2. Achievable transmission rates with the proposed algorithm
after1 iteration with measured indoor channels in an OFDM system
with C = 1024 sub carrier,MTx = 4 transmit antennas andMRx =
2 antennas at each receiver, SNR=20dB.

Figure 3 exhibits the achievable rates when the algorithm is
applied iteratively as proposed in Section 4.4. In this scenario
the algorithm has converged after2 iterations. Compared to
the first iteration sum capacity is drastically increased by as-
signing user10 also to Group L. The bars denoted as “bound-
ary point” represent the point on the capacity region with the
same rate ratios as the resulting rates from SESAM with min-
imum rates. As other SESAM based algorithms [6], [1], the
boundary of the capacity region can be achieved closely. Cer-
tainly the resulting operation point makes only sense, if users
2, 3 and 4 can make use of these relatively high transmis-
sion rates. That is for example the case if they perform data
transfer, which can then be finished earlier. But in contrast
to [5], our algorithm delivers a valid solution after each iter-
ation. Hence in case applications cannot make use of these
high transmission rates, the algorithm can be stopped at any
time. Furthermore, as already mentioned in Section 4.4, it
allows the introduction of maximum rates.
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Fig. 3. Achievable transmission rates with iterative application of
the proposed algorithm with measured indoor channels in an OFDM
system withC = 1024 sub carrier,MTx = 4 transmit antennas and
MRx = 2 antennas at each receiver, SNR=20dB.

6. CONCLUSIONS

In this paper we presented an algorithm which aims at max-
imizing sum capacity under minimum rate constraints. The
main part constitutes a user classification which separates the
users into two groups: one are served with their minimum
required rates while the others receive additional system re-
sources than required to satisfy their minimum rates. This
classification is done on the basis of perturbation analysis of
convex optimization problems, with which those users can be
identified that contribute most to sum capacity.

7. REFERENCES

[1] P. Tejera, W. Utschick, and J.A. Nossek, “Rate Balanc-
ing in Multiuser MIMO OFDM Systems,” Submitted to
Transactions on Communications, 2006.

[2] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality,
Achievable Rates, and Sum-Rate Capacity of Gaussian
MIMO Broadcast Channels,” IEEE Transactions on In-
formation Theory, vol. 49, pp. 2658–2668, 2003.

[3] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2006.

[4] D. Palomar, M. Lagunas, and J. Cioffi, “Optimum Lin-
ear Joint Transmit-Receive Processing for MIMO Chan-



nels with QoS Constraints,” IEEE Transactions on Signal
Processing, vol. 52, pp. 1179–1197, 2004.

[5] G. Wunder and T. Michel, “Minimum Rates Schedul-
ing for MIMO-OFDM Broadcast Channels,” in Proc. 9th
IEEE Intern. Symp. on Spread Spectrum Techniques and
Applications (ISSSTA 2006), Manaus, Brazil, Aug. 2006,
invited.

[6] P. Tejera, W. Utschick, G. Bauch, and J. A. Nossek, “Sub-
channel Alloaction in Multiuser Multiple-Input-Multiple-
Output Systems,” IEEE Transactions on Information The-
ory, vol. 52, pp. 4721–4733, 2006.

[7] G. Bauch, J. Bach Andersen, C. Guthy, M. Herdin,
J. Nielsen, P. Tejera, W. Utschick, and J.A. Nossek,
“Multiuser MIMO Channel Measurements and Perfor-
mance in a Large Office Environment,” in Proc. of
IEEE Wireless Communications & Networking Confer-
ence (WCNC), 2007.

A. COMPUTATION OF THE LAGRANGE
MULTIPLIERS FOR PERTURBATION ANALYSIS

In this appendix we will derive a formula for the computa-
tion of the Lagrange multipliersνk in the convex optimiza-
tion problem (3). The optimum transmit power distribution
can be obtained, as shown in [1], via a “waterfilling with user
dependent water levelξk”, i.e.

p`,k = max
{

0,
(
ξk − 1

λ2
`,k

)}
.

Inserting these solutions into the Karush-Kuhn-Tucker (KKT)
conditions of (3) leads to:

νk = (1 − ξkη ln 2)Rref user, opt, ∀k 6= ref user,

wherebyRref user, optis the optimum rate of the reference user
after running the SESAM algorithm with the relative rate re-
quirements from (2). Furthermore we obtain from the KKT
conditions:

η = 1
ξref userln 2


1 +

K∑
k=1

k 6=ref user

νkρk
Rref user, opt


 .

Solving this linear system of equations results in

νk = Rref user, opt

1 +
K∑
i=1

i6=ref user

ξi
ξref user
qi


(1− ξk

ξref user

)
+

K∑
i=1

i6=ref user

ξk
ξref user

qi

(
ξi
ξk
− 1
) .

Considering thatρref user= 1 we obtain:

νk = Rref user, opt

K∑
i=1
ξiρi


ρref user(ξref user− ξk) +

K∑
i=1

i6=ref user

ρi(ξi − ξk)


 .

Further simplifications lead to:

νk =
(

1− ξk
∑K
i=1 ρi∑K

i=1 ξiρi

)
Rref user, opt

As all transmission rates are greater or equal to zero and the
waterlevelsξk are independent of the choice of the reference
user, the sign ofνk is identical for all possible choices of the
reference user.


