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ABSTRACT

In the work at hand the rate balancing problem in the broad-
cast channel is stated and discussed under the restriction of in-
dependent encoding of transmitted information streams. For
a short term power constraint, the solution to this problem is
characterized and the number of time slots allocated by an
optimum scheduler is found to be limited by the number of
users. Furthermore, a practical algorithm is proposed that
is able to achieve optimality at the cost of complexity. A
suboptimum but efficient implementation of this algorithm is
discussed and compared with more elemental scheduling and
beamforming approaches. A major observation is the nearly
optimality of zero-forcing (ZF) beamforming vectors for all
kinds of rate balancing constraints andSNR values.

1. INTRODUCTION

The present work considers the rate balancing problem in a
point to multipoint communication system. In this setting, a
transmitter withM antennas communicates withK receivers,
each equipped with a single antenna.

Using successive encoding at the transmitter, a rate bal-
ancing algorithm has been presented in [1] that is essentially
the same as the algorithm proposed in [2] for power mini-
mization with given rate constraints. Based on some of the
results in [2] a rate balancing algorithm has been presented
in [3] that applies to any number of receive antennas and com-
prises optimization of encoding order and link scheduling.

Due to practical reasons, independent encoding of infor-
mation sent to the users in the network may be preferable. If
Gaussian inputs are assumed and no link scheduling is con-
sidered, i.e., all users are bound to be served in the same time
slot and using the same frequency band, the rate balancing
problem is intimately related to the SINR balancing problem,
which has been solved in [4]. Due to the fact that the achiev-
able rate region without link scheduling (time sharing) is gen-
erally non-convex, serving all users simultaneously can be ex-
tremely suboptimum, especially (but not only) if the number
of users in the network is larger than the number of transmit
antennas. In this paper we incorporate time sharing into the

formulation of the rate balancing problem. If the same power
constraint applies in each of the scheduled time slots, we char-
acterized the optimum solution and show that at mostK time
slots are needed to achieve the optimum solution. In order to
solve this problem an algorithm is presented that trades off
complexity for performance and is able to achieve the opti-
mum if no complexity constraints are considered. The algo-
rithm basically consists of a preselection of rate vectors from
within the achievable rate region without time sharing and the
subsequent solution of a linear optimization problem that de-
termines the optimum time allocation for the preselected rate
vectors. If no constraints are imposed regarding the number of
preselected vectors the algorithm has the potential to achieve
optimality. However, in order to keep complexity to reason-
able levels an efficient preselection method is proposed whose
asymptotical complexity depends polynomially onK.

Still, significant complexity regarding computation of op-
timum beamforming vectors as well as scheduling of users
motivates consideration of simpler beamforming and group-
ing approaches. ZF beamforming vectors are considered as
an alternative to the optimum minimum mean square error
(MMSE) beamforming vectors. On the other hand, as an al-
ternative to the polynomially complex preselection method
mentioned above, a simpler successive grouping approach sim-
ilar to that proposed in [5] is discussed. ZF forcing beam-
formers turn out to be nearly optimum for all scenarios in-
vestigated, independently ofSNR values and rate balancing
constraints. As we illustrate with the help of an example, this
is due to the fact that, even though the ZF achievable rate re-
gion without time sharing and the MMSE achievable rate re-
gion without time sharing significantly differ, the convex hulls
of both are nearly equal. Simpler scheduling approaches, as
the one presented here and those in [5] and [6], turn out to
perform good at low to moderateSNR values but are clearly
suboptimum at highSNR values. This is intimately related to
the restriction assumed by these approaches of serving each
user in no more than one time slot.

The rest of the paper is structured as follows. Section
2 introduces the system model and states the rate balancing
problem. In Section 3 the optimum solution to this prob-



lem is characterized and discussed. In Section 4 an opti-
mum algorithm is presented and a suboptimum but efficient
implementation of this algorithm is proposed. Section 5 dis-
cusses suboptimum beamforming and scheduling approaches
that are usually found in literature. Finally, numerical results
are shown in Section 6 and conclusions are drawn in Section
7.

1.1. Notation

In the following, vectors and matrices are denoted by lower
case bold and capital bold letters, respectively. We use(•)T

for matrix transposition and(•)H for conjugate transposition.
[A]i,j represents the entry in theith row andjth column of
matrixA and [A]•,j represents itsjth column. Co{R} de-
notes the convex hull of setR and|R| its cardinality.

2. SYSTEM MODEL AND PROBLEM STATEMENT

At a given time instant during thesth time slot, userk receives

ys,k = hH
k

K∑
j=1
ps,jxj + nk,

wherexj ∼ CN (0, 1) is the transmit signal sent to userj,
hk ∈ CM×1 is the channel corresponding to userk, ps,j ∈
CM×1 represents the beamforming vector for userj at time
slot s, andnk ∼ CN (0, 1) represents a source of additive
white Gaussian noise. Perfect channel knowledge is assumed
at the transmitter and the receivers. LetU = {1, . . . ,K}
denote the set of users in the network andP the power set
of U minus the empty set. We define a scheduler as a pair
S = (S, t), whereinS ⊆ P andt ∈ R

|S|×1
+ , with ‖t‖1 =

1, indicates the relative transmission time allocated to each
element ofS = {G1, . . . ,G|S|}.

Let ρ = [ ρ1 · · · ρK ]T be the rate balancing con-
straint vector indicating the proportions that should be ful-
filled by the rates achieved by the users in the network. The
rate balancing problem with link scheduling can be stated as
follows,

max
S,p

s,k

γ s. t. rk = γρk

|S|∑
s=1
ts

K∑
k=1

‖ps,k‖22 ≤ PTx, (1)

whererk =
∑
s ts log2(1 + SINRs,k),

SINRs,k =
hH
k ps,kp

H
s,khk

1 + hH
k

∑
j 6=k ps,jp

H
s,jhk

, (2)

andPTx is the maximally allowed average transmit power.
Note that consistency of the problem statement requiresps,k =

0 if k 6∈ Gs, i.e., if userk is not served in time slots, no power
is allocated to that user in that slot. Analysis and solution of
this problem are very complex tasks. A more tractable prob-
lem is obtained if (1) is replaced by

K∑
k=1

‖ps,k‖22 ≤ PTx, ∀s, (3)

i.e., in each time slot the power constraint must be fulfilled.
As the noise have been assumed to have unit variance, for the
rest of the paper we defineSNR = PTx.

3. OPTIMUM SOLUTION

The solution of the rate balancing problem with constraint (3)
can be characterized as the intersection of the straight liner =
γρwith the boundary of the convex hull of the achievable rate
region without time sharing. The achievable region without
time sharing is defined as

R = {r : ∃Γ, rk ≤ log2(1 + SINRk)} , (4)

whereΓ = [ SINR1 · · · SINRK ]T is supposed to be a
feasible vector ofSINR values [4]. This characterization is a
direct consequence of the following result.

Theorem 1 LetS and{ps,k} be the optimum scheduler and
beamformers for the rate balancing problem with constraint
(3). In each time sloti, the corresponding beamformers{pi,k}
achieve a rate vectorri on the boundary of the convex hull of
R.

Proof: Let ri be the rate vector achieved by the optimum
solution in time sloti. Assume that this vector lies in the
interior ofCo{R}. This means that there exists a vectorr′i =
αri with α > 1 that belongs toCo{R}. Sincer′i ∈ Co{R},
a number of pointsrij ∈ R can be found such thatr′i =∑
j µjrij with

∑
j µj = 1. Let j ∈ {1, . . . , J}, ti be the

fraction of time allocated to sloti andr =
∑|S|
s=1 tsrs the rate

vector achieved by the optimum solution. The amplitude of
this vector can be increased as follows. First, divide time slot
i into two time slots. A time slota of lengthtai = ti/α and
another time slotb of lengthtbi = (α− 1)ti/α. In time slota,
r′i can be achieved by dividing this slot intoJ time slots and
assigning to each subslotj a fractionµj of the timetai . Doing
that,r is achieved without using time slotb. Indeed, we can
write

r =
|S|∑
s=1
s6=i

tsrs + tai
J∑
j=1
µjrij .

Applying the same scheduling policy within slotb as during
the time(1 − tbi ) a rate vectorr′ = r + tbir results that has
larger amplitude than vectorr and its same direction. This



contradicts the optimality of the initial solution.q.e.d.

Interestingly, for the rate balancing problem with con-
straint (3) an optimum scheduler can always be found that
allocates the users in at most|S| ≤ K time slots. This is
stated by the following theorem.

Theorem 2 If S = (S, t) is an optimum scheduler with|S| >
K achieving the longest possible rate vectorr = γ∗ρ, there
exists a schedulerS′ = (S′, t′) such thatS′ ⊂ S and |S′| ≤
K that also achievesr.

Proof: Let S = (S, t) be an optimum scheduler with
|S| > K andts > 0 ∀s. In addition, letQ = {r1, r2, . . . , r|S|}
be a set formed by the rate vectors achieved in the different
time slots. It is well known that the convex hull of a finite set
of points inR

n is a convex polytope limited by facets of di-
mensionn− 1. In particular,Co{Q} is a convex polytope in
RK with facets of dimensionK−1. Achievability ofr = γ∗ρ
impliesr ∈ Co{Q}. In addition, optimality requires thatr
be in the boundary ofCo{Q}, as otherwise longer rate vec-
tors could be found withinCo{Q} on the straight line defined
by ρ. Due to convexity, there exists a hyperplane supporting
Co{Q} such thatr is in the hyperplane. Accordingly, if the
hyperplane equation is given byvTx = d, we havevTr = d
and,∀q ∈ Co{Q}, vTq ≤ d. In particular,vTrs ≤ d, ∀s,
and, therefore,

vTr = d ≥
|S|∑
s=1
tsv

Trs = vTr

holds. Here, equality is only achieved ifvTrs = d, ∀s, i.e.,
if all rate vectors lie on the supporting hyperplane.

So far, it has been shown that the rate vectors achieved in
each time slot of the optimum scheduler all lie in the same
hyperplane of dimensionK−1. Now, the result follows from
direct application of the Carath´eodory’s theorem on convex
sets. This theorem states that for any pointr lying in the con-
vex hull of a set of pointsQ in a space of dimensionK − 1,
there exists a subsetQ′ ⊆ Q such that|Q′| ≤ K whose con-
vex hull also containsr. q.e.d.

Building on the insights provided by these results, an op-
timum algorithm would proceed searching in the intersection
of the boundary ofR with its convex hull for a set of at most
K points such that the intersection of the convex hull of this
set withγρ is as far from the origin as possible. Unfortu-
nately, since little is known about the structure ofR, such a
procedure is only of theoretical interest.

4. PRACTICAL APPROACH

A practical approach to the rate balancing problem consists
of choosing an appropriate set of points on the boundary of

R and optimizing the scheduling strategy focussing on this
set. This can be done by solving the following optimization
problem

max
t
γ s. t. R̃t = γρ, ‖t‖1 = 1, t ∈ R

L
+, (5)

whereR̃ = [ r1 · · · rL ] ∈ R
K×L
+ is the matrix of rate

vectors selected fromR. Defining t̃ = t/γ, (5) can be re-
stated as a standard linear optimization problem as follows,

min
t̃
‖t̃‖1 s. t. R̃t̃ = ρ, t̃ ∈ R

L
+.

Sampling the boundary ofR very finely with a corre-
sponding high numberL of rate vectors allows to achieve
practically any point in the convex hull ofR by means of
time sharing, and, hence, it assures almost optimum perfor-
mance at the cost of high complexity. However, in order to
keep complexity at reasonable levels, it makes sense to limit
the selection to a few rate vectors that hopefully can deliver a
performance close to the optimum.

A good compromise between complexity and performance
is achieved by doing the selection of rate vectors as follows.
First, only subsetsGi ⊂ U are considered such that|Gi| ≤
M , i.e., no rate vectors are considered resulting from serv-
ing more thanM users in one time slot as these vectors are
usually in the interior of the convex hull ofR. From all sub-
sets with cardinality less or equal toM , two rate vectors are
computed. A rate vector that satisfies the rate constraints im-
posed byρ for the users in the subset. A rate vector obtained
by uniformly allocating power in the dual uplink [4] over the
users of the subset. The first vector is a natural choice that
provides the optimum solution in cases whereK ≤ M and
no time sharing is needed to achieve the optimum. The sec-
ond vector is likely to be close to a sum rate maximizing point
for a given subset as observed in [7]. The choice of sum rate
optimum vectors is purposeful due to Theorem 1 and the fol-
lowing result.

Theorem 3 Let G ⊆ U be any group of users and letr ∈
R
K×1 be the sum rate maximizing vector for this group. Vec-

tor r lies in the boundary ofCo{R}.

Proof: Assume thatr lies in the interior ofCo{R}. This
means that there existsα > 1 such thatαr ∈ Co{R}. As a
result a numberI of vectorsri ∈ R, 1 ≤ i ≤ I, can be found
such thatαr =

∑
i µiri with

∑
i µi = 1. Lete ∈ {0, 1}K×1

be a vector with entriesek = 1 if k ∈ G, ek = 0 if k 6∈ G.
Choose

j = arg max
1≤i≤I

{eTri}.

Putting all together the following relations hold

eTr ≤ αeTr =
∑
i

µie
Tri ≤ eTrj .



This shows that there exists a vectorrj ∈ R achieving a sum
rate larger thanr as far as the users inG are concerned. This
clearly contradicts the initial assumption ofr being a sum rate
maximizing vector for the elements ofG. q.e.d.

Due to the restriction|Gi| ≤ M , the number of sets that
must be considered is given by

M∑
m=1

(
K

m

)
≈ O(KM ),

i.e., the complexity is polynomial in the number of users. This
is in contrast with the exponential complexity that would re-
sult if no restriction were imposed on the number of users
served in one time slot.

This approach is illustrated in Fig. 1 forM = 2 transmit
antennas,K = 3 users andSNR = 20 dB. All subsets of
U = {1, 2, 3} with 1 and 2 elements are considered. For each
set, the constraint fulfilling vector and the uniform power al-
location vector have been computed and plotted in the figure.
Note that in case of subsets with only one user the boundary
of R (represented by dotted lines) is achieved by a unique
vector. The constraint is represented by a straight line depart-
ing from the origin. The optimum scheduler assigns a portion
of time to each of the sets with two users, in particular, to the
points at the vertices of the dashed triangle. For two of the
sets the uniform power allocation points are chosen, for the
other set, with users 1 and 3, the constraint fulfilling vector is
chosen. The point represented by the square is achieved by
switching between these three points.
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Fig. 1. Achievable rate region without time sharing and achievable
rate vector forρ = [1, 1, 1].

Computation of rate vectors obtained with uniform power
loading in the dual uplink involves computing the optimum
MMSE beamforming vectors in the uplink. The correspond-
ing beamforming vectors in the downlink have the direction of

the MMSE beamforming vectors in the dual uplink and their
norm is obtained by computing the principal eigenvector of
the extended downlink coupling matrix [4].

Computation of the constraint fulfilling rate vectors can
be performed as follows. Without loss of generality con-
sider a setG including the firstN users ofU . Let ρG =
[ ρ1 · · · ρN ]T be the constraint vector corresponding to

the users in this set. First, initializer(0)
n = ρn andβ(1)

n =
2r(0)
n − 1, ∀n, and solve

max
{pn}n=1,...,N

η s. t. SINR(1)
n = ηβ(1)

n ∀n, (6)

N∑
n=1
‖pn‖22 ≤ PTx

by using theSINR balancing algorithm in [4]. Here,SINR(1)
n

is given by (2) with appropriate indexing. Next, compute
ξn = log2(1 + SINR(1)

n ), ∀n, and

γ(1) = min
n

{
ξn

r
(0)
n

}
. (7)

Definer(1)
n = γ(1)r

(0)
n andβ(2)

n = 2r(1)
n − 1, ∀n. We observe

thatβ(2)
n ≤ SINR(1)

n , ∀n, where equality holds for the index
that minimizes (7). That is,β(2) = [ β(2)

1 · · · β(2)
N

]T is
a vector of feasibleSINR values. As a result, solving (6) with
β(2) as a constraint yieldsη ≥ 1. That means that theSINR
of every user can be improved or maintained with respect to
β(2) and, hence, also the rate of every user can be improved
or maintained with respect tor(1) = [ r(1)

1 · · · r(1)
N

]T.

In other words, ifξn = log2(1 + SINR(2)
n ),

γ(2) = min
n

{
ξn

r
(1)
n

}
≥ 1.

Iterating this procedure a sequence of feasible rate vectors
r(1), r(2), r(3), . . . is obtained, all of them being colinear with
ρG and having increasing norms, i.e.,‖r(1)‖ ≤ ‖r(2)‖ ≤
‖r(3)‖ ≤ · · · . Since, due to the power constraint, this se-
quence is bounded, the algorithm converges. This algorithm
is summarized in Table 1.

5. SUBOPTIMUM APPROACHES

5.1. Suboptimum Beamforming

Preselected rate vectors on the boundary ofR require opti-
mum beamforming vectors, i.e., MMSE vectors. As we have
just seen in the previous section, computation of the optimum
beamformers for a given constraintρG involves a doubly it-
erative algorithm. Indeed, problem (6) must be repeteadly
solved and its solution is computed by the iterativeSINR
balancing algorithm in [4]. In order to reduce computational



initialization : ` = 1, r(0)
n = ρn, β(1)

n = 2r
(0)
n − 1, ∀n

repeat :
1. max
{pn}n=1,...,N

η s. t. SINR(`)
n = ηβ(`)

n ∀n
PN
n=1 ‖pn‖22 ≤ PTx

2. γ(`) = min
n

n
ξn

r
(`−1)
n

o
, ξn = log2(1 + SINR(`)

n )

3. r(`)n = γ(`)r
(`−1)
n , β

(`+1)
n = 2r

(`)
n − 1, ∀n, ` = `+ 1

until 1− ε < γ(`) < 1 + ε

Table 1. Rate balancing algorithm

complexity, instead of optimum MMSE beamformers, ZF beam-
forming vectors can be employed. Doing so, the preselected
rate vectors will generally not lie on the boundary ofR. How-
ever, as we shall see, some of the preselected rate vectors will
always be good enough to achieve a solution almost as good
as that obtained with MMSE beamforming vectors.

Without loss of generality, let againG be a set including
the firstN users ofU andN ≤ M . The unit norm ZF beam-
forming vector for usern is given by

vn =

[
HH
G
(
HGHH

G
)−1

]
•,n√[(

HGHH
G
)−1

]
n,n

.

whereHG ∈ CN×M is a matrix formed by the channel vec-
tors of the users in groupG. Specifically, thenth row ofHG is
vectorhH

n . The channel gains of the scalar channels resulting
from applying unit-norm ZF beamformers at the transmitter
are given by

gn =
([(
HGHH

G
)−1

]
n,n

)−1

.

Having computed the unit-norm ZF beamforming vec-
tors, sum rate maximizing rate vectors can be obtained per-
forming a waterfilling power allocation over the resulting de-
coupled scalar channels. In case a rate constraintρG has
to be fulfilled the optimum power allocation can be com-
puted as follows. The constraintrn = γρn, ∀n, implies
pn = (2γρn − 1)/gn, ∀n. Due to the monotonicity of

∑
n pn

as a function ofγ, a bisection search can be applied in or-
der to look for the valueγ for which

∑
n pn = PTx. Starting

with a certain value forγ, if the total power exceeds the power
constraint,γ is decreased. Otherwise,γ is increased.

5.2. Suboptimum Group Selection

Even though the restriction|Gi| ≤ M deacreases complex-
ity from exponential to polynomial order, further complexity

reduction may be convenient if, for instance, the number of
users in the network is very high. Some work on low com-
plexity grouping algorithms have been done in recent years,
e.g., [5] [6]. Roughly speaking, algorithms of this kind group
users together with nearly orthogonal channels. Here, the
following simple grouping algorithm is considered, which is
similar to those presented in [5] and [6].

LetW` be the set of users that have still not been assigned
to any group at step̀ in the execution of the algorithm. Ini-
tially,W0 = U . Aiming at the construction of the first setG1

we defineT (0)
G1

= IM andC(0)
G1

= 0. Construction starts by
choosing the user with the largest channel norm, i.e.,

k0 = arg max
k
{hH
k T

(0)
G1
hk}, ∀k ∈ W0. (8)

Then, the following updates are made,W1 =W0 \ {k0},

T
(1)
G1

= T (0)
G1
− T

(0)
G1
hk0h

H
k0T

(0)
G1

hH
k T

(0)
G1
hk

andC(1)
G1

is set equal to the sum rate obtained by the users
in groupG1 using ZF beamforming vectors and waterfilling
power allocation. At this stageC(1)

G1
= log2(1+‖hk0‖2PTx).

Selection of the second user is made according to (8) us-
ing T (1)

G1
instead ofT (0)

G1
and considering only users inW1.

Thereafter,T (2) andC(2)
G1

are computed as explained above.
Let k1 be the user selected at this stage. In order to decide
whether this second user is included in the first group,C(2)

G1

is compared withC(1)
G1

. If the sum rate obtained with both
users is greater than that obtained with only the first user the
second user is included inG1 and after making the update
W2 = W1 \ {k1} the same steps are repeated to look for a
third canditate. Otherwise, the second user is excluded from
groupG1 and this set is considered to be complete. In this
case, construction of the second group,G2, starts in the next
step by initializingT (0)

G2
= IM andC(0)

G2
= 0 and follow-

ing the same steps as in the construction of groupG1. The
algorithm finishes onceW` = ∅. A general outline of this
algorithm is given in Table 2.

This is essentially the same algorithm described in [5] but
using sum capacity as criterion for the inclusion of an addi-
tional user in a group rather than a more or less arbitrary or-
thogonality factor. The procedure has also some similarities
to the tree search proposed in [6]. Here, the metric function is
sum rate. However, the search, which starts from the bottom,
does not necessarily covers all the tree and does not follow an
order determined beforehand. Instead it is carried out dynam-
ically and finishes as soon as all users have been assigned to
groups.

6. NUMERICAL RESULTS

Figs. 2 and 3 show the average valueγ obtained from ap-
plication of approaches discussed in previous sections to a



initialization : ` = 0, g = 1, W0 = U , G1 = ∅
r

(0)
n = ρn, T

(0)
G1

= IM , C
(0)
G1

= 0
repeat :

1. k0 = arg max
k
{hH
k T

(`)
Gghk}, ∀k ∈ W`, Gg = Gg ∪ {k0}

2. compute C
(`+1)
Gg

3. if C
(`+1)
Gg > C

(`)
Gg

1. T
(`+1)
Gg = T

(`)
Gg −

T (`)
Gghk0hH

k0T (`)
Gg

hH
kT (`)

Gghk

2. W`+1 =W` \ {k0}, ` = `+ 1

else

1. Gg = Gg \ {k0}, g = g + 1

2. Gg = ∅, T
(`)
Gg = IM , C

(`)
Gg = 0

until W` = ∅

Table 2. Suboptimum grouping algorithm

scenario withM = 2 transmit antennas andK = 5 users.
Note that, in both plots, the value ofγ coincides with the rate
of userk = 1 asρ1 = 1. Averaging has been done over a
number of channel realizations whose coefficients have been
independently drawn according to a complex Gaussian distri-
bution of unit variance. The label ”combinatorial grouping”
designates the approach discussed in Section 4, which con-
siders all possible groups that can be built with no more users
than antennas. The label ”suboptimum grouping” refers to the
grouping approach discussed in Section 5.2.

It can be observed that suboptimum ZF beams perform
nearly as well as optimum MMSE beams with both grouping
approaches. The largest gap can be noticed between combi-
natorial grouping and suboptimum grouping at moderate to
high SNR values. The gap is, at least in part, due to the fact
that the suboptimum grouping approach is unable to allocate
a certain user in more than one time slot. In this scenario,
this means that even at high SNR there exists a time slot in
which only one user is served. In turn, this means that, at
least in one time slot, the potential multiplexing gain remains
unexploited. Note that this is a drawback of the suboptimum
algorithm proposed here as well as the simple grouping algo-
rithms proposed in [5] and [6].

Deeper insights can be gained by looking at scenarios
with two users. A particular example of such a scenario with
M = 2 antennas is shown in Figs. 4, 5 and 9. The points
achieved by each of the four approaches are plotted for all
constraints vectors of the formρ = [1, α]T with α = n/10 or
α = 10/n andn = 0, 1, . . . , 10. In addition to the curves of
the approaches previously discussed, we have also included
the boundary of the achievable region without time sharing
and that of the region that can be achieved by use of ZF beam-
forming vectors. The first region is the setR defined in (4).
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Fig. 2. Average rate per channel use achieved by any of the users in
a system withM = 2,K = 5 andρ = [1, 1, 1, 1, 1].
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Fig. 3. Average rate per channel use achieved by the first user in a
system withM = 2,K = 5 andρ = [1, 0.8, 0.6, 0.4, 0.2].

The ZF region is formed by the surface under the dotted curve
in each figure and the intervals comprised between0 and the
respective single user capacity in both axes. Although the
ZF region is certainly much smaller in the three figures, it
can be easily seen that the convex hull of the ZF region is
in all cases, at least, almost as large asCo{R}. In partic-
ular, for SNR = 0 dB, the convex hull of the ZF region is
equal toCo{R}. Almost equality can also be claimed for
SNR = 20 dB. The most significant difference can be ap-
preciated forSNR = 10 dB. However, this difference hardly
represents a loss of more than one tenth of one bit for each
user. Even if this is a particular example, it seems to be gen-
erally true that the convex hull of the ZF region is almost as
large asCo{R}. At least, it is extraordinarily difficult to find
examples for which this statement is not true. This somehow
extends the observation made in [7], concerning the nearly



sum rate optimality of ZF beamforming vectors, to any point
of the time sharing achievable region obtained with indepen-
dently coded Gaussian inputs. This observation is also along
the lines of observations made in the context of successive
encoding regarding the nearly optimality of ZF beamform-
ers [3]. The main conclusion that may be drawn from these
observations is that, in both independent encoding and suc-
cessive encoding approaches, scheduling and resources allo-
cation are crucial and, provided that these are appropriately
implemented, no significant losses can be expected from the
use of ZF beamforming vectors.

Note that in this setting the combinatorial grouping ap-
proaches consider three sets and a total of four points out of
R in order to compute any of the resulting rate vectors rep-
resented by markers in the figures. ForSNR = 0 dB and
SNR = 10 dB, these four points are enough to achieve prac-
tically all points ofCo{R}. On the contrary, forSNR = 20
dB, we observe that the set of rate vectors achievable with
these four points is clearly non-convex. That is, in this case,
either more points or better points should be preselected in
order to achieve all rate vectors withinCo{R}.
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Fig. 4. Example of regions forM = 2,K = 2 andSNR = 0 dB.

Average performance results are presented for the two-
user setting withM = 2 in Figs. 7, 8 and 9. Averaging
has been performed over a number of channel realizations
whose coefficients have been independently drawn according
to a complex Gaussian distribution of unit variance. The rate
constraints are the same as those considered in Figs. 4, 5
and 6. The figures confirm the nearly optimality of ZF beam-
forming vectors for all rate constraints andSNR values. For
SNR = 0 dB andSNR = 10 dB suboptimum grouping per-
forms almost as well as combinatorial grouping. This is due
to the fact that, at theseSNR values, serving both users sep-
arately is nearly optimum for many channels. As separate
scheduling of users can be done by the suboptimum grouping
approaches, no large suboptimality is incurred in these cases.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

R
1
 (bits/channel use)

R
2

 

 

Achievable region (w/o time sharing)
MMSE beams & combinatorial grouping
ZF beams & combinatorial grouping
MMSE beams & suboptimum grouping
ZF beams & suboptimum grouping
ZF achievable region (w/o time sharing)

Fig. 5. Example of regions forM = 2,K = 2 andSNR = 10 dB.
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Fig. 6. Example of regions forM = 2,K = 2 andSNR = 20 dB.

The most sensitive performance gaps are appreciated in Fig.
6, especially in the region between the axes and the middle
part of the curve. In this areas the optimum scheduling hap-
pens frequently to be switching between a time slot with both
users and a time slot with one of the users alone. This form of
scheduling can not be performed by the suboptimum grouping
approaches. This limitation is particularly visible in Fig. 6.
There, we observe that the suboptimum grouping approaches
opt for serving both users in the same time slot all over the
range of rate constraints except forn = 0. This scheduling is
optimum in the middle of the curve, where these approaches
perform as well as the combinatorial grouping approaches.
However, towards the sides of the curves performance wors-
ens as time sharing is not exploited.
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Fig. 7. Average rates forM = 2,K = 2 andSNR = 0 dB.
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Fig. 8. Average rates forM = 2,K = 2 andSNR = 10 dB.
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Fig. 9. Average rates forM = 2,K = 2 andSNR = 20 dB.

7. CONCLUSION

The rate balancing problem with independent encoding of in-
formation streams has been introduced and discussed. An
algorithm has been proposed to solve this problem that has
the potential to reach optimality if no complexity constraints
are considered. An efficient implementation of this algorithm
has been introduced that is based on optimum MMSE beam-
forming vectors and consideration of all possible user groups
with no more users than transmit antennas. This implemen-
tation has been compared with some other implementations
based on ZF beamforming vectors and simpler grouping ap-
proaches. While application of ZF beamforming vectors does
not incur significant performance loss, simple scheduling ap-
proaches that allocate users in no more than one time slot are
clearly suboptimum especially at highSNR values and for
unbalanced rate balancing constraints.
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