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ABSTRACT MMSE channel estimator. Typically ill-conditioning arises,

. - if less than100 independent observations of the channel
A (linear) minimum mean square error (MMSE) channel es- . o . . :
are available, which is often the case in practical wireless

timator leads to a significantly improved quality of the chan- .
nel estimates compared to a least squares approach. To rea'IY”MO channel as indicated by channel measurements [4].

ize these performance gains, it requires knowledge aboutthe " S€C- 2 the signal model and estimation problem are
statistical second order moments of the channel parameterStéted and in Sec. 3 the importance of having a positive
and noise. Previously proposed estimators for the secondsemidefinite estlmgte qf th_e _channel covariance matrix for
order moments are either heuristic or do not ensure posi-MMSE channele;ﬂmatlon isillustrated. The un_blased Ieas_t—
tive definite estimates of the channel covariance matrix. We Sauares (LS) estimator for the channel covariance matrix
present novel estimators, which are either guaranteed to b@"d Noise variance is reviewed in Sec. 4.1 and a new deriva-

positive definite or ensure numerical stability when applied tion IS given. We present two novel estimators, which are ei-
for MMSE estimation of MIMO channels. They ensure ther guaranteed to be positive semidefinite (Sec. 4.2) or en-

these gains already for a few noisy and statistically inde- Suré numerical stability (Sec. 4.3) when applied for MMSE
pendent observations of the channel. estimation of MIMO channels. They ensure the performance

gains already for dew statistically independent observa-
tions of the channel. Moreover, positive semidefinite esti-
1. INTRODUCTION mates are guaranteed and, thus, numerical stability is en-

The increased number of degrees of freedom in multiple- Sured for smallB. These algorithms are also applicable in
input-multiple-output (MIMO) systemsIeadstoaIargernum-frequency'se|eCtive channels, e.g., to estimate the power-
ber of channel parameters, which need to be estimated acdelay profile. Furthermore an optimization problem for the
curately to realize the envisioned capacity gains in a com- heuristic in [3] is given in Sec. 4.4. The estimators in Sec. 4
munication system. are derived assuming white noise. In Sec. 5 we generalize
A (linear) minimum mean square error (MMSE) chan- these estimators to spatially correlated noise and interfer-
nel estimator yields a significantly improved quality of the €nce.
channel estimates compared to a least squares approach. Notation: Random vectors and matrices are denoted by lower
To realize these performance gains, it requires knowledgeand upper case sans serif bold letters (é,98), whereas the re-
about the statistical second order moments of the channehlizations or deterministic variables are, etg.B. The operators

parameters and noise. For example, consid8seMIMO Efe], (o)", (), AT, andtr(e) stand for expectation, transpose,
system with64 channel parameters, which requires estima- Hermitian transpose, pseudo-inverse, and trace of a matrix, respec-
tion of a channel covariance matrix wifid? = 4096 inde- tively. E, [¢] denotes the expectation w.r.t. to random veetor
pendent real-valued parameters. ® andéy ;- denote the Kronecker product and functiewrc [B]

The estimation of the channel and noise statistics basedstacks the columns aB in a vector. e; is theith column of an
on a received training sequence ovindependently fad- N x N identity matrixIv. The squared Frobenius norm of a
ing blocks can be formulated as the problem of estimating matrix A is | A| = tr [A™ A].
a covariance matrix with linear structure [1, 2]. Previously
proposed estimators for the second order moments are ei-
ther heuristic [3] or do not ensure positive semidefinite (psd) 2. PROBLEM STATEMENT
estimates of the channel covariance matrix [1, 2]. If the es-
timated channel covariance matrix is not positive semidef- In a system withK transmit and) receive antennasy
inite, we typically obtain an ill-conditioned system of lin- training symbolss[n] € C¥,n € {1,2,..., N}, per trans-
ear equations=¢- numerically unstable) for computing the mitter are observed in thgth time slot. All N received



training symbols in time slaj

yln, ¢] = Hlg]s[n] + nln, g] 1)

are collected in
Yig = ly[l,q, ¥[2,4;- -, y[N, qll. 2

Thus, we obtain
Y[q] = Hlg|S + N[q) € C*"*¥, (3)

whereH[q] € CM*K describes the frequency flat MIMO
channel,N[q] = [n[l,q],n[2,q],...,n[N,q]] is additive
noise and interference, ar®l = [s[1],s[2],...,s[N]] €
CKN_ With § = §' ® Iy, ylg] = vec[Y]q]], and
h[q] = vec[H|q]] the system model can be rewritten as

ylg] = Shiq] + n[q] € CM¥. 4)

The stationary and zero-mean channel and noise with co-

variance matrice€', = E[h[q]h[q]"] andC,, = E[n[q]n[q]"]

are mutually uncorrelated. In Sec. 5 the case of spatially

correlated noise is addressed whérg= Iy ® C, s with
Chns = E [n[n,g]n[n, ¢|"], but at first we assum€,, =
enI pr N, for simplicity.

4. ESTIMATION APPROACHES

All estimation approaches in this Section aim at a structured
least squares approximation of the suffictestatistic w.r.t.
Cpande,: C, = - Zle ylqly[q)? (sample covariance
matrix).

4.1. Unbiased Least Squares Estimator

As indicated in [2] the structured least squares (LS) approx-
imation of C,

min |Cy — SCrS™ — c L nn |3 (8)
Ch,cn

performs close to maximum likelihood approache®as

oo, Which is referred to as “extended invariance principle”
in [5].2 The solution is obtained using the gradient of the
cost function [1] (see also [6])

ALS A pF
¢ = NN = K)trace [C'y PC'yP] (9)
1 1A pl
NN K)trace [ C, } (10)
¢, =s'¢, s (shg)-LaLs (11)

This yields the covariance matrix of the received signal with projector? = SS' on the column space o and

yld]

C, =Elylglylg)"] = SChS" + cal iy,  (5)

which depends on the channel covariance maffjxand
noise variance:,, to be estimated. Thus, the problem of
estimatingC, and ¢, can be formulated as estimation of
C, taking into account its structure.

Problem statemen&stimateC'y, andc, (or C, s) based
on B observationgy|g]}2_, of the random vectoy|q].

3. MMSE CHANNEL ESTIMATION

The MMSE channel estimator based on the observatigh
is given by

argmin B, |h - Wyldll3] =

cpSt(scSt + e, Iyn)™t (6)

With the eigenvalue decomposition (EVD)6%, = UAU ™,
whereA is diagonal withA; (\; > \;;1) on the diagonal,
and assuming''S = NI,k Eq. (6) can be written as

(7)

If \; < 0and\;N + ¢, ~ 0 for some: due to an in-
definite estimate o'y, the system of equations is highly
ill-conditioned, which leads to numerical problems in im-
plementation. Thus, for indefinite estimates(df numeri-
cal stability is not guaranteed in this application.

W = UA(AN + cpIni) UM SH.

orthogonal projectoP+ = (Inmn — SST). As shown in
Fig. 1 this leads to an indefinite estimate for moderate to
low B, as it is only an asymptotically optimum approach.

The estimate of the noise variance is obtained projecting
the observationg[q] on the noise subspace, which does not
contain the (training) signal. The estimate of the channel
covariance matrix is unbiased, as the second term in (11)
compensates for the bias in the first term, which is identical
to the heuristic estimator in Sec. 4.4 [1].

For further insights in the least squares approximation
we rewrite the cost function introducing, = (P* +
P)C,(P*+ + P)andIn = P + P+

Héy — SC/—,SH — C,,I[\/[NH% =
|PC,P—SC,S" —¢,P|}+||P+C, P+ —c,PF|3,
(12)

where we also used the propettd + B||Z = || A[jZ +
| B||% of two matricesA and B with inner product

tr [AHB} = 0. The first term in (12) can be forced to zero

foranyc, choosingCy, = STC, 8™ —(8"8)~1¢,, which
yields (11). With this choice problem (8) is equivalent to

min |P-C, P+ — ¢, P, (13)

which leads to (10).

1In case of complex Gaussian distributed observations.
2If a weighted Frobenius norm is used ML performance is achieved
asymptotically.



4.2. Positive Semidefinite Least Squares Estimator

In (8) the optimization problem was solved for all quadratic
matricesC), € CMEXMK e propose to include con-
straints onC'y, andc¢, to be positive semidefinite (psd) into
the optimization:
glin Héy - SC/—,SH - C,,IMNHIQ; st.Cp>=0,c,>0
h>Cn

(14)
This can be solved analytically using Karush-Kuhn-Tucker
conditions [7] and the parameterization@4, via its EVD
C, = UAU" and corresponding constraints on the eigen-
vectorsUU = I, and eigenvalues; > 0.

Here, we proceed based on (12) with a more intuitive
reasoning. We defin8’ = S(S8"8)~'/2 with orthonor-
malized columns, i.e.S'"'S’ = I, which results in
P = 5'S""". We rewrite (12) using the EVD of

s'Hc, s =vzvH (15)
with ¥ = diag[o1,09,...,0MmKk], 07 > 0441 > 0, and of
X — (SHS)I/QC},(SHS)I/Q _ UXDXU,EI (16)

with D, = diag [dy,da, ..., dy K]

ICy — SChS™ — colun|l2
= S'(SMCyS — X — cal kS 3+
+ | P+Cy P+ — ¢, Pt ||E
=15y 8"~ X — cal i |3+ | PHCy P —c, P12

MK B
= (0i—di —cp)* + | PTCy P — ¢, P} (17)
=1

The last step is due to the definition of the Frobenius norm
andU, = V, which is the optimum choice of eigenvectors.
Completing the squares the optimization problem (14) reads

MK
{d_?gg ) > (o1 — di — ca)*+
=i i=1
+tr [P (e0 =t [PEC, P Jur [PLD2
std;, >0,c,>0. (18)

possibilities should be checked in general. These can
be reduced exploiting the order ef, which is our
focus in the sequel.

. As a first step we could set; = 0 for all j with

oj — ek < 0. Allindices j with o; — ¢55 < 0

n

are collected in the se€ C {1,2,..., MK} with
cardinalityZ = |Z|. For the remaining indices we
choosed; = o; — c,. Thus the cost function in (18)
is

Z(Ui - Cn>2+

€2

+tr {PL} (c,, —tr [PLC'yPL} /tr {PLD2 .
(19)

Minimization w.r.t.c, yields

~psd — ; tr PJ_C« PJ_ i)
o tr[PL}—i-Z( [ Y }—i_iega
(20)
1 .
= NN K1 Z (M(NK)CI,;S +éai> .
(21)

We haveebsd < eLS with strict inequality in case
Z > 0. Thus, also a part of the signal subspace is
considered as noise subspace.

. But the cost function (19) could be reduced further, if

only fewerd; are chosen zero. This is possible, if we
start with the smallest;, i.e.,« = MK, and check
whethers; — &5 < 0. If negative we setly;x = 0.
This decrease&®® based onZ = {M K }. We con-
tinue withj = M K —1and checkitry e 1 —éP%d <

0. éP*d is recomputed based on (21) in every step. As
¢bsd decreases, generally fewer— é2d are negative
than foro; — é{;s. We continue with decreasingintil

o; — ¢4 > 0, for which we choosd; = o; — ¢bsd,

. Thus, the numbeZ = |Z| of zerod; is minimized,

i.e., fewer terms appear in the cost function (19).

These observations yield Algorithm 1, which provides a

The term in the second line is equivalent to the cost function computationally efficient way to deal with optimization prob-
in (13). Problem (18) can be solved based on the following |em (18). The estimateg™? andé’iSd are biased as long as

observations:

the probability for anyr; — ¢&5 < 0 is non-zero, which is
ore likely for smallB, large noise varianceg,, and higher
correlations inC,.

As ¢Psd underestimates the noise variangg the fol-
lowing heuristic achieves better results, when applied to MMSE
channel estimation:

1. Ifthe unconstrained LS solution (11) is positive semide
inite, i.e.,d; > 0 for all 4, it is the solution to (18).

2. The constraints od; are either active or inactive cor-
responding tad; being zero or positive, i.e2M%



Algorithm 1 Positive semidefinite estimate of channel and
noise covariance matrix.

Z=0,zZ2={}
D6y =clS

S =8(s"s)~1/2
. compute EVDS""'C, 8’ = vEVH

Y =diag[o1,09,...,00mK], 05 > 041V]
cfori= MK MK —1,...,1do
if o, — ¢, < 0then

di=0

7 — 7 +1

Z— ZU{i}

10:

Cp =

MRz (M(N —K)ekS + é, az->
else
di = 0; — én
end if
end for
D = dlag [dl,dg, ..
égsd — 6,,

18 G = (s1§)-1/2v DVH (St g)-1/2

12:
14:

16: ';dMK]

1. Estimatec, using éL® (10), which is unbiased and
based on the true noise subspace.

2. Solve the optimization problem
MK
min (oi — di — é25)?sitd; > 0, (22)
{d:} 2T

i.e., setalld; = 0 foro; — ¢S < 0. The solution
reads

~ psd2

C, =(S"s)2vDtvi(siig)tl/2 (23)

whereD™ performsmax(0, d;) for all elements inD
from the EVD of

(S18)12¢,°(s18)/2 = VDV (24)
For S'S « I,k this is equivalent to discarding the

negative definite part of the estime(ﬂ%js (12) similar
to [8].

The additional complexity for computing the positive def-
inite solution compared to (10) and (11) results from the

EVD of "', S" and computation ofS™ S)'/2 and

(S"8)~1/2. For the indefinite least-squares estimate (11)

a tracking-algorithm of very low-complexity was presented

by [9], whereas tracking of eigenvalues and eigenvectors is

more difficult and complex.

4.3. Biased Estimator using Tikhonov Regularization

In a third approach we propose to employ Tikhonov regu-
larization [10, 7] with regularization parametersand /.
First we constrain the norm ef, and, thus, decreases the
negative eigenvalues @f}, in magnitude:

min ||C, — SCpS™ — colyn |3+
Chicn

+a || SCrS™|E + Bleal®. (25)
Additionally, as the MMSE estimator (6) is invariant to a
common scaling irC', andc,, the first regularization term
with « is introduced to balance the norm©f%, andé,,. The
estimator is biased and the solution is computationally as
simple as the unbiased LS (8):

R = l1+a X
" (14+a)(MN+8)—- MK
- 1 -
X trace [Cy — H—aPCyP] (26)
~ R 1 ~
— T T H_ _ gHgy—12
T (s ¢, st - (sHg) c,,). 27)

4.4, Heuristic Estimator

For 5 — oo anda = 0 we obtain a justification for the
heuristic estimator proposed by [3], i.e., it minimizes

min |C, — SCKrS™|3. (28)
h

Implicitly the noise variance is assumed small and neglected.
Its solution is the sample-mean of the least-square channel

estimatedy [q] = STylq]

~ Heur

B
- 1 ~LS ~LS
Cyp  =8'Cy8M =2 hT[gh g (29)
qg=1

and is positive semidefinite and biased.

5. GENERALIZATION OF ESTIMATORS TO
CORRELATED NOISE

The algorithms presented in the previous section can be eas-
ily extended to correlated noise. Here, we present the results
for spatially correlated and temporally uncorrelated noise
with covariance matrixC, = Iy ® Cp s.

We rewrite (12) for this noise covariance matrix

ICy — SChS" — Inyn ® Cslt =
= |PCyP — SC,S" — P(Ijn @ Cug)P|%
+|P+CyP* — P (Iyn ® Cus)P|7. (30)



As before the first term is zero choosiat, from the space The MSE of the MMSE channel estimator based on the

of general quadratid/ K -dimensional matrices as proposed and previous estimatora®f andc, is shown in
LS } LS Fig. 2 forc, = 1. The maximum likelihood (ML) channel
¢, =8"(Cy—ITun®C,q)S™" (31)  estimatorW = ST (least squares channel estimator) serves
' as a reference. The MSE is averaged aw¥rindependent
given an est|matéjn 5 as described below. General&h estimates. For the unbiased LS estimator (8) performance

is indefinite. Now, we can minimize the second term in (30) already degrades severely for moder&te The heuristic
estimator (28) saturates for large The positive definite

min | P*C, P+ — P*(Iyny ® Cns)P|%.  (32)  extensionsin (14) and the biased estimator (25) show a per-
Cns formance better than the LS channel estimatorBor 5

This yields the estimate of the noise covariance maifix and converge to the unbiased LS approach for tigh
Parameterization of the biased LS estimator (Sec. 4.3)
N - is easier at low SNR—as in this example. A good choice
C,. s = )P-CyP*(e, ® I), isa = 10* ands = 10° with a small deviation from the

n=1 results shown here, but in general adaptation to SNR and
(33) B is necessary and not straight forward as for many robust
methods. In the results shown here we chose thedast
5 for this application via a brute-force grid search.
For B = 100 the MSE vs. SNR is shown in Fig. 3.
. T N ~ LS Whenever the MMSE channel estimator shows a significant
nlg,n] = (e, @ In)P yla] = ylg,n] — H g]s["] performance gain over the ML estimator (low SNR and high

which is performed in the noise subspace. Itis equivalent to
the sample mean of the estimated noise

(34) channel correlations), already a few independent observa-
based on the least-squares channel estimate tions are sufficient to achieve performance superior fco the
ML estimator. If the gap between MMSE and ML estima-
~LS ~ LS i i i . i
h°lq) = vec {H [q]] = Syl (35) tor is smal! more reallzatlons are necessary: In Fig. 3 the
MMSE estimator is worse than the ML estimator at high

SNR. Moreover, the heuristic estimator (Sec. 4.4) is more
robust in this case, as the biased estimate can be interpreted
LS N B X . as a diagonally dominant loading.
Chs = BV -K) > ) alg.nlalgnt. (36) In scenario 2we haveM = 8 and K = 3, where
n=1g=1 the users’ mean angles of arrival aré-at5°,0°, 15°] rela-
tively to the bore side wit3° uniform angular spread each.
A uniform linear array with half wavelength element spac-
ing is assumed. The spatially correlated interference is mod-
eled asCp s = C; + eIy With ¢, = 0.01 andtr [C}] =
Me¢;. Cjis given by100 random angles of arrival uniformly
distributed within30° around the mean &0°.

Due to the spatially correlated noise the gains of our
new estimators over the heuristic (Sec. 4.4) are substantial,
where Fig. 4 shows the MSE versBsatc¢; = 1 and Fig. 5
versusg for B = 100. B > 10 observations are neces-
sary to be superior to ML channel estimation. Unbiased LS
refers to (31) and (36), positive definite LS takes only the
positive semidefinite part of (31) as discussed in (23).

which leads to

This estimate of the noise covariance matrix is very similar
to the well-known ML estimate [11] of the noise covariance
matrix, when estimated jointly with the chanriely]. The
difference is in the scaling by¢ — K instead ofN, which
yields an improved estimate.

A positive semi-definite solution &', can be obtained
similar to the heuristic introduced at the end of Sec. 4.2.

6. PERFORMANCE EVALUATION

In scenario la statistically independent zero-mean com-
plex Gaussian channalq] ~ N.(0,C}) and noisen[q] ~
N:(0,cnIpn), with M = K = 8 and N = 16 training
symbols is considered. The channel covariance is modeled

asCj = C ® C with elementgCY; ; = pl'~7l andp = 0.9 7. CONCLUSIONS

as in [1] for comparison. FoB = 100 andc, = 1 a signif-

icant number of eigenvalues (normalized to the maximum Knowledge of the second order moments of the channel pa-
eigenvalue\,) of the unbiased LS are negative (Figure 1) rameters and noise is important for a wide class of signal
and very close in magnitude to the estimated (and scaled)processing algorithms. We presented estimators for these
noise-variance (size of loading in MMSE; solid horizontal moments based on least-squares approximation of the sam-
line). This leads to eigenvalues very close to zero in the ple covariance matrix of the observed signal, which exploit
inverse of (6) & lll-conditioned matrix). the linear structure of this covariance matrix. The most
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Figure 2. Normalized MSE of MMSE channel estimator
(6) for different estimators of', and¢,, compared to ML

Solid horizontal line shows negative value of loading, i.e., channel estimation (Scenariod,, = 1).
—elS/(NA) (cf. Eq. 7), in the MMSE estimator to illus-
trate problem of ill-conditioned inverse in (6).

promising solution ensures that all estimates are positive
semidefinite. Moreover, we introduced extensions for spa-
tially correlated noise. Applying the estimates to MMSE
channel estimation, performance gains over conventional
ML (least-squares) channel estimation can already be ob-
tained forB = 5 — 10 observations at low SNR.
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