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ABSTRACT

A (linear) minimum mean square error (MMSE) channel es-
timator leads to a significantly improved quality of the chan-
nel estimates compared to a least squares approach. To real-
ize these performance gains, it requires knowledge about the
statistical second order moments of the channel parameters
and noise. Previously proposed estimators for the second
order moments are either heuristic or do not ensure posi-
tive definite estimates of the channel covariance matrix. We
present novel estimators, which are either guaranteed to be
positive definite or ensure numerical stability when applied
for MMSE estimation of MIMO channels. They ensure
these gains already for a few noisy and statistically inde-
pendent observations of the channel.

1. INTRODUCTION

The increased number of degrees of freedom in multiple-
input-multiple-output (MIMO) systems leads to a larger num-
ber of channel parameters, which need to be estimated ac-
curately to realize the envisioned capacity gains in a com-
munication system.

A (linear) minimum mean square error (MMSE) chan-
nel estimator yields a significantly improved quality of the
channel estimates compared to a least squares approach.
To realize these performance gains, it requires knowledge
about the statistical second order moments of the channel
parameters and noise. For example, consider an8×8 MIMO
system with64 channel parameters, which requires estima-
tion of a channel covariance matrix with642 = 4096 inde-
pendent real-valued parameters.

The estimation of the channel and noise statistics based
on a received training sequence overB independently fad-
ing blocks can be formulated as the problem of estimating
a covariance matrix with linear structure [1, 2]. Previously
proposed estimators for the second order moments are ei-
ther heuristic [3] or do not ensure positive semidefinite (psd)
estimates of the channel covariance matrix [1, 2]. If the es-
timated channel covariance matrix is not positive semidef-
inite, we typically obtain an ill-conditioned system of lin-
ear equations (⇒ numerically unstable) for computing the

MMSE channel estimator. Typically ill-conditioning arises,
if less than100 independent observations of the channel
are available, which is often the case in practical wireless
MIMO channel as indicated by channel measurements [4].

In Sec. 2 the signal model and estimation problem are
stated and in Sec. 3 the importance of having a positive
semidefinite estimate of the channel covariance matrix for
MMSE channel estimation is illustrated. The unbiased least-
squares (LS) estimator for the channel covariance matrix
and noise variance is reviewed in Sec. 4.1 and a new deriva-
tion is given. We present two novel estimators, which are ei-
ther guaranteed to be positive semidefinite (Sec. 4.2) or en-
sure numerical stability (Sec. 4.3) when applied for MMSE
estimation of MIMO channels. They ensure the performance
gains already for afew statistically independent observa-
tions of the channel. Moreover, positive semidefinite esti-
mates are guaranteed and, thus, numerical stability is en-
sured for smallB. These algorithms are also applicable in
frequency-selective channels, e.g., to estimate the power-
delay profile. Furthermore an optimization problem for the
heuristic in [3] is given in Sec. 4.4. The estimators in Sec. 4
are derived assuming white noise. In Sec. 5 we generalize
these estimators to spatially correlated noise and interfer-
ence.

Notation: Random vectors and matrices are denoted by lower
and upper case sans serif bold letters (e.g.b, B), whereas the re-
alizations or deterministic variables are, e.g.,b, B. The operators
E[•], (•)T, (•)H, A†, andtr(•) stand for expectation, transpose,
Hermitian transpose, pseudo-inverse, and trace of a matrix, respec-
tively. Ea [•] denotes the expectation w.r.t. to random vectora.
⊗ andδk,k′ denote the Kronecker product and function,vec [B]

stacks the columns ofB in a vector. ei is the ith column of an
N × N identity matrix IN . The squared Frobenius norm of a
matrixA is ‖A‖2

F = tr
ˆ
AHA

˜
.

2. PROBLEM STATEMENT

In a system withK transmit andM receive antennas,N
training symbolss[n] ∈ CK , n ∈ {1, 2, . . . , N}, per trans-
mitter are observed in theqth time slot. All N received



training symbols in time slotq

y [n, q] = H [q]s[n] + n[n, q] (1)

are collected in

Y [q] = [y [1, q], y [2, q], . . . , y [N, q]]. (2)

Thus, we obtain

Y [q] = H [q]S̄ + N [q] ∈ C
M×N , (3)

whereH [q] ∈ CM×K describes the frequency flat MIMO
channel,N [q] = [n[1, q],n[2, q], . . . ,n[N, q]] is additive
noise and interference, and̄S = [s[1], s[2], . . . , s[N ]] ∈
CK×N . With S = S̄

T ⊗ IM , y [q] = vec[Y [q]], and
h[q] = vec[H [q]] the system model can be rewritten as

y [q] = Sh[q] + n[q] ∈ C
MN . (4)

The stationary and zero-mean channel and noise with co-
variance matricesCh = E[h[q]h[q]H] andCn = E[n[q]n[q]H]
are mutually uncorrelated. In Sec. 5 the case of spatially
correlated noise is addressed whereCn = IN ⊗Cn,S with
Cn,S = E

[
n[n, q]n[n, q]H

]
, but at first we assumeCn =

cnIMN , for simplicity.
This yields the covariance matrix of the received signal

y [q]

Cy = E[y [q]y [q]H] = SChS
H + cnIMN , (5)

which depends on the channel covariance matrixCh and
noise variancecn to be estimated. Thus, the problem of
estimatingCh and cn can be formulated as estimation of
Cy taking into account its structure.

Problem statement:EstimateCh andcn (orCn,S) based
onB observations{y[q]}Bq=1 of the random vectory [q].

3. MMSE CHANNEL ESTIMATION

The MMSE channel estimator based on the observationy[q]
is given by

argmin
W

Eh,y [‖h −W y [q]‖22] =

ChS
H(SChS

H + cnIMN )−1 (6)

With the eigenvalue decomposition (EVD) ofCh = UΛUH,
whereΛ is diagonal withλi (λi ≥ λi+1) on the diagonal,
and assumingSHS = NIMK Eq. (6) can be written as

W = UΛ(ΛN + cnIMK)−1UHSH. (7)

If λi < 0 andλiN + cn ≈ 0 for somei due to an in-
definite estimate ofCh, the system of equations is highly
ill-conditioned, which leads to numerical problems in im-
plementation. Thus, for indefinite estimates ofCh numeri-
cal stability is not guaranteed in this application.

4. ESTIMATION APPROACHES

All estimation approaches in this Section aim at a structured
least squares approximation of the sufficient1 statistic w.r.t.
Ch andcn: C̃y = 1

B

∑B
q=1 y[q]y[q]H (sample covariance

matrix).

4.1. Unbiased Least Squares Estimator

As indicated in [2] the structured least squares (LS) approx-
imation ofC̃y

min
Ch,cn

‖C̃y − SChS
H − cnIMN‖2F (8)

performs close to maximum likelihood approaches asB →
∞, which is referred to as “extended invariance principle”
in [5].2 The solution is obtained using the gradient of the
cost function [1] (see also [6])

ĉLS
n =

1
M(N −K)

trace
[
C̃y − PC̃yP

]
(9)

=
1

M(N −K)
trace

[
P⊥C̃yP⊥

]
(10)

Ĉ
LS

h = S†C̃yS
†,H − (SHS)−1ĉLS

n (11)

with projectorP = SS† on the column space ofS and
orthogonal projectorP⊥ = (IMN − SS†). As shown in
Fig. 1 this leads to an indefinite estimate for moderate to
low B, as it is only an asymptotically optimum approach.

The estimate of the noise variance is obtained projecting
the observationsy[q] on the noise subspace, which does not
contain the (training) signal. The estimate of the channel
covariance matrix is unbiased, as the second term in (11)
compensates for the bias in the first term, which is identical
to the heuristic estimator in Sec. 4.4 [1].

For further insights in the least squares approximation
we rewrite the cost function introducing̃Cy = (P⊥ +
P )C̃y (P⊥ + P ) andIMN = P + P⊥

‖C̃y − SChS
H − cnIMN‖2F =

‖PC̃yP −SChS
H−cnP ‖2F +‖P⊥C̃yP⊥−cnP

⊥‖2F,
(12)

where we also used the property‖A + B‖2F = ‖A‖2F +
‖B‖2F of two matricesA andB with inner product

tr
[
AHB

]
= 0. The first term in (12) can be forced to zero

for anycn choosingCh = S†C̃yS
†,H−(SHS)−1cn, which

yields (11). With this choice problem (8) is equivalent to

min
cn

‖P⊥C̃yP
⊥ − cnP

⊥‖2F, (13)

which leads to (10).
1In case of complex Gaussian distributed observations.
2If a weighted Frobenius norm is used ML performance is achieved

asymptotically.



4.2. Positive Semidefinite Least Squares Estimator

In (8) the optimization problem was solved for all quadratic
matricesCh ∈ CMK×MK . We propose to include con-
straints onCh andcn to be positive semidefinite (psd) into
the optimization:

min
Ch,cn

‖C̃y − SChS
H − cnIMN‖2F s.t.Ch � 0, cn ≥ 0

(14)

This can be solved analytically using Karush-Kuhn-Tucker
conditions [7] and the parameterization ofCh via its EVD
Ch = UΛUH and corresponding constraints on the eigen-
vectorsUHU = IMK and eigenvaluesλi ≥ 0.

Here, we proceed based on (12) with a more intuitive
reasoning. We defineS′ = S(SHS)−1/2 with orthonor-

malized columns, i.e.,S′HS′ = IMK , which results in
P = S′S′H. We rewrite (12) using the EVD of

S′,HC̃yS′ = V ΣV H (15)

with Σ = diag [σ1, σ2, . . . , σMK ], σi ≥ σi+1 ≥ 0, and of

X = (SHS)1/2Ch(SHS)1/2 = UxDxU
H
x (16)

with Dx = diag [d1, d2, . . . , dMK ]

‖C̃y − SChS
H − cnIMN‖2F

= ‖S′(S′HC̃yS
′ −X − cnIMK)S′H‖2F+

+ ‖P⊥C̃yP
⊥ − cnP

⊥‖2F
= ‖S′HC̃yS′−X− cnIMK‖2F +‖P⊥C̃yP⊥− cnP

⊥‖2F

=
MK∑
i=1

(σi − di − cn)2 + ‖P⊥C̃yP
⊥ − cnP

⊥‖2F. (17)

The last step is due to the definition of the Frobenius norm
andUx = V , which is the optimum choice of eigenvectors.
Completing the squares the optimization problem (14) reads

min
{di}MK

i=1 ,cn

MK∑
i=1

(σi − di − cn)2+

+ tr
[
P⊥
] (

cn − tr
[
P⊥C̃yP⊥

]
/tr
[
P⊥
])2

s.t.di ≥ 0, cn ≥ 0. (18)

The term in the second line is equivalent to the cost function
in (13). Problem (18) can be solved based on the following
observations:

1. If the unconstrained LS solution (11) is positive semidef-
inite, i.e.,di ≥ 0 for all i, it is the solution to (18).

2. The constraints ondi are either active or inactive cor-
responding todi being zero or positive, i.e.,2MK

possibilities should be checked in general. These can
be reduced exploiting the order ofσi, which is our
focus in the sequel.

3. As a first step we could setdj = 0 for all j with
σj − ĉLS

n < 0. All indices j with σj − ĉLS
n < 0

are collected in the setZ ⊆ {1, 2, . . . , MK} with
cardinalityZ = |Z|. For the remaining indices we
choosedi = σj − cn. Thus the cost function in (18)
is

∑
i∈Z

(σi − cn)2+

+ tr
[
P⊥
] (

cn − tr
[
P⊥C̃yP⊥

]
/tr
[
P⊥
])2

.

(19)

Minimization w.r.t.cn yields

ĉpsd
n =

1

tr
[
P⊥
]

+ Z

(
tr
[
P⊥C̃yP⊥

]
+
∑
i∈Z

σi

)

(20)

=
1

M(N −K) + Z

(
M(N −K) ĉLS

n +
∑
i∈Z

σi

)
.

(21)

We haveĉpsd
n ≤ ĉLS

n with strict inequality in case
Z > 0. Thus, also a part of the signal subspace is
considered as noise subspace.

4. But the cost function (19) could be reduced further, if
only fewerdi are chosen zero. This is possible, if we
start with the smallestσi, i.e., i = MK, and check
whetherσi − ĉLS

n < 0. If negative we setdMK = 0.
This decreaseŝcpsd

n based onZ = {MK}. We con-
tinue withj = MK−1 and check ifσMK−1−ĉpsd

n <
0. ĉpsd

n is recomputed based on (21) in every step. As
ĉpsd
n decreases, generally fewerσi− ĉpsd

n are negative
than forσi− ĉLS

n . We continue with decreasingi until
σi − ĉpsd

n ≥ 0, for which we choosedi = σi − ĉpsd
n .

5. Thus, the numberZ = |Z| of zerodi is minimized,
i.e., fewer terms appear in the cost function (19).

These observations yield Algorithm 1, which provides a
computationally efficient way to deal with optimization prob-

lem (18). The estimateŝcpsd
n andĈ

psd

h are biased as long as
the probability for anyσi − ĉLS

n < 0 is non-zero, which is
more likely for smallB, large noise variancecn, and higher
correlations inCh.

As ĉpsd
n underestimates the noise variancecn, the fol-

lowing heuristic achieves better results, when applied to MMSE
channel estimation:



Algorithm 1 Positive semidefinite estimate of channel and
noise covariance matrix.

Z = 0,Z = {}
2: ĉn = ĉLS

n
S′ = S(SHS)−1/2

4: compute EVDS′HC̃yS′ = V ΣV H

Σ = diag [σ1, σ2, . . . , σMK ], σj ≥ σj+1∀j
6: for i = MK, MK − 1, . . . , 1 do

if σi − ĉn < 0 then
8: di = 0

Z ← Z + 1
10: Z ← Z ∪ {i}

ĉn = 1
M(N−K)+Z

(
M(N −K) ĉLS

n +
∑
i∈Z

σi

)
12: else

di = σi − ĉn
14: end if

end for
16: D = diag [d1, d2, . . . , dMK ]

ĉpsd
n = ĉn

18: Ĉ
psd

h = (SHS)−1/2V DV H(SHS)−1/2

1. Estimatecn using ĉLS
n (10), which is unbiased and

based on the true noise subspace.

2. Solve the optimization problem

min
{di}MK

i=1

MK∑
i=1

(σi − di − ĉLS
n )2s.t.di ≥ 0, (22)

i.e., set alldi = 0 for σi − ĉLS
n < 0. The solution

reads

Ĉ
psd2

h = (SHS)−1/2V D+V H(SHS)−1/2, (23)

whereD+ performsmax(0, di) for all elements inD
from the EVD of

(SHS)1/2Ĉ
LS

h (SHS)1/2 = V DV H. (24)

ForSHS ∝ IMK this is equivalent to discarding the

negative definite part of the estimateĈ
LS

h (11) similar
to [8].

The additional complexity for computing the positive def-
inite solution compared to (10) and (11) results from the
EVD of S′HC̃yS′ and computation of(SHS)1/2 and
(SHS)−1/2. For the indefinite least-squares estimate (11)
a tracking-algorithm of very low-complexity was presented
by [9], whereas tracking of eigenvalues and eigenvectors is
more difficult and complex.

4.3. Biased Estimator using Tikhonov Regularization

In a third approach we propose to employ Tikhonov regu-
larization [10, 7] with regularization parametersα andβ.
First we constrain the norm ofcn and, thus, decreases the
negative eigenvalues of̂Ch in magnitude:

min
Ch,cn

‖C̃y − SChS
H − cnIMN‖2F+

+ α ‖SChS
H‖2F + β |cn|2. (25)

Additionally, as the MMSE estimator (6) is invariant to a
common scaling inCh andcn, the first regularization term
with α is introduced to balance the norm ofĈh andĉn. The
estimator is biased and the solution is computationally as
simple as the unbiased LS (8):

ĉR
n =

1 + α

(1 + α)(MN + β)−MK
×

× trace
[
C̃y − 1

1 + α
PC̃yP

]
(26)

Ĉ
R

h =
1

1 + α

(
S†C̃yS†,H − (SHS)−1ĉn

)
. (27)

4.4. Heuristic Estimator

For β → ∞ andα = 0 we obtain a justification for the
heuristic estimator proposed by [3], i.e., it minimizes

min
Ch

‖C̃y − SChS
H‖2F. (28)

Implicitly the noise variance is assumed small and neglected.
Its solution is the sample-mean of the least-square channel

estimateŝh
LS

[q] = S†y[q]

Ĉ
Heur

h = S†C̃yS†,H =
1
B

B∑
q=1

ĥ
LS

[q]ĥ
LS

[q]H. (29)

and is positive semidefinite and biased.

5. GENERALIZATION OF ESTIMATORS TO
CORRELATED NOISE

The algorithms presented in the previous section can be eas-
ily extended to correlated noise. Here, we present the results
for spatially correlated and temporally uncorrelated noise
with covariance matrixCn = IN ⊗Cn,S.

We rewrite (12) for this noise covariance matrix

‖C̃y − SChS
H − IMN ⊗Cn,S‖2F =

= ‖PC̃yP − SChS
H − P (IMN ⊗Cn,S)P ‖2F

+ ‖P⊥C̃yP
⊥ − P⊥(IMN ⊗Cn,S)P⊥‖2F. (30)



As before the first term is zero choosingCh from the space
of general quadraticMK-dimensional matrices as

Ĉ
LS

h = S†(C̃y − IMN ⊗ Ĉ
LS

n,S)S
†,H (31)

given an estimatêC
LS

n,S as described below. Generally,Ĉ
LS

h
is indefinite. Now, we can minimize the second term in (30)

min
Cn,S
‖P⊥C̃yP⊥ − P⊥(IMN ⊗Cn,S)P⊥‖2F. (32)

This yields the estimate of the noise covariance matrixCn,S

Ĉ
LS

n,S =
1

N −K

N∑
n=1

(eT
n ⊗ IM )P⊥C̃yP⊥(en ⊗ IM ),

(33)

which is performed in the noise subspace. It is equivalent to
the sample mean of the estimated noise

n̂[q, n] = (eT
n ⊗ IM )P⊥y[q] = y[q, n]− Ĥ

LS
[q]s[n]

(34)

based on the least-squares channel estimate

ĥ
LS

[q] = vec
[
Ĥ

LS
[q]
]

= S†y[q] (35)

which leads to

Ĉ
LS

n,S =
1

B(N −K)

N∑
n=1

B∑
q=1

n̂[q, n]n̂[q, n]H. (36)

This estimate of the noise covariance matrix is very similar
to the well-known ML estimate [11] of the noise covariance
matrix, when estimated jointly with the channelh[q]. The
difference is in the scaling byN −K instead ofN , which
yields an improved estimate.

A positive semi-definite solution ofCh can be obtained
similar to the heuristic introduced at the end of Sec. 4.2.

6. PERFORMANCE EVALUATION

In scenario 1a statistically independent zero-mean com-
plex Gaussian channelh[q] ∼ Nc(0, Ch) and noisen[q] ∼
Nc(0, cnIMN ), with M = K = 8 andN = 16 training
symbols is considered. The channel covariance is modeled
asCh = C⊗C with elements[C]i,j = ρ|i−j| andρ = 0.9
as in [1] for comparison. ForB = 100 andcn = 1 a signif-
icant number of eigenvalues (normalized to the maximum
eigenvalueλ1) of the unbiased LS are negative (Figure 1)
and very close in magnitude to the estimated (and scaled)
noise-variance (size of loading in MMSE; solid horizontal
line). This leads to eigenvalues very close to zero in the
inverse of (6) (⇒ Ill-conditioned matrix).

The MSE of the MMSE channel estimator based on the
proposed and previous estimators ofCh andcn is shown in
Fig. 2 for cn = 1. The maximum likelihood (ML) channel
estimatorW = S† (least squares channel estimator) serves
as a reference. The MSE is averaged over100 independent
estimates. For the unbiased LS estimator (8) performance
already degrades severely for moderateB. The heuristic
estimator (28) saturates for largeB. The positive definite
extensions in (14) and the biased estimator (25) show a per-
formance better than the LS channel estimator forB ≥ 5
and converge to the unbiased LS approach for highB.

Parameterization of the biased LS estimator (Sec. 4.3)
is easier at low SNR—as in this example. A good choice
is α = 104 andβ = 106 with a small deviation from the
results shown here, but in general adaptation to SNR and
B is necessary and not straight forward as for many robust
methods. In the results shown here we chose the bestα and
β for this application via a brute-force grid search.

For B = 100 the MSE vs. SNR is shown in Fig. 3.
Whenever the MMSE channel estimator shows a significant
performance gain over the ML estimator (low SNR and high
channel correlations), already a few independent observa-
tions are sufficient to achieve performance superior to the
ML estimator. If the gap between MMSE and ML estima-
tor is small more realizations are necessary: In Fig. 3 the
MMSE estimator is worse than the ML estimator at high
SNR. Moreover, the heuristic estimator (Sec. 4.4) is more
robust in this case, as the biased estimate can be interpreted
as a diagonally dominant loading.

In scenario 2we haveM = 8 and K = 3, where
the users’ mean angles of arrival are at[−15◦, 0◦, 15◦] rela-
tively to the bore side with3◦ uniform angular spread each.
A uniform linear array with half wavelength element spac-
ing is assumed. The spatially correlated interference is mod-
eled asCn,S = C i + cnIM with cn = 0.01 andtr [C i] =
Mci. C i is given by100 random angles of arrival uniformly
distributed within30◦ around the mean of30◦.

Due to the spatially correlated noise the gains of our
new estimators over the heuristic (Sec. 4.4) are substantial,
where Fig. 4 shows the MSE versusB at ci = 1 and Fig. 5
versusci for B = 100. B > 10 observations are neces-
sary to be superior to ML channel estimation. Unbiased LS
refers to (31) and (36), positive definite LS takes only the
positive semidefinite part of (31) as discussed in (23).

7. CONCLUSIONS

Knowledge of the second order moments of the channel pa-
rameters and noise is important for a wide class of signal
processing algorithms. We presented estimators for these
moments based on least-squares approximation of the sam-
ple covariance matrix of the observed signal, which exploit
the linear structure of this covariance matrix. The most
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Figure 1. Eigenvaluesλi/λ1 of true channel covari-
ance matrixCh and different estimateŝCh (B = 100).
Solid horizontal line shows negative value of loading, i.e.,
−ĉLS

n /(Nλ1) (cf. Eq. 7), in the MMSE estimator to illus-
trate problem of ill-conditioned inverse in (6).

promising solution ensures that all estimates are positive
semidefinite. Moreover, we introduced extensions for spa-
tially correlated noise. Applying the estimates to MMSE
channel estimation, performance gains over conventional
ML (least-squares) channel estimation can already be ob-
tained forB = 5− 10 observations at low SNR.
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