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ABSTRACT

In this paper, we present two extensions of the Block
Conjugate Gradient (BCG) algorithm, a method which ex-
ploits the concept of block Krylov subspaces. First, we ex-
tend the BCG algorithm such that it is more flexible concern-
ing the dimension of the block Krylov subspace. Second, a
computationally efficient Preconditioned BCG (PBCG) algo-
rithm is introduced which turns out to outperform the stan-
dard BCG algorithm concerning the complexity-performance
ratio. Hence, we provide a powerful implementation for
reduced-rank signal processing in the Minimum Mean Square
Error (MMSE) sense. Simulation results show the gain in
rank-flexibility and convergence speed.

1. INTRODUCTION

The Decision-Feedback Equalizer (DFE) [1] structure is an
extension of the principle of linear receive filters comprising
both a FeedForward (FF) and a FeedBack (FB) filter. For our
investigations, the filters are designed according to the MMSE
criterion. The calculation of the FF and FB filter turns out to
be computationally intense for observations of high dimen-
sionality. Reduced-rank methods approximate the filter coef-
ficients in a lower dimensional subspace, and thus, decrease
computational complexity. A solution algorithm for the ap-
proximation of the FF and FB filter in a block Krylov sub-
space is the Block Conjugate Gradient (BCG) algorithm [2].
Up to now, the application of the BCG algorithm required
the dimension of the block Krylov subspace to be an inte-
ger multiple of the signal dimension. In this paper, we mod-
ify the BCG algorithm such that this restriction is obsolete.
The importance of this rank-flexibility is that it avoids zero-
filling which would yield an unnecessary increase in compu-
tational complexity. The second contribution consists of the
performance analysis of the Preconditioned BCG (PBCG) al-
gorithm. Preconditioners have already been applied for the
approximation of reduced-rank Single Input Single Output
(SISO) Wiener DFEs [3]. Furtheron, the PBCG implemen-
tation in [4] is endowed with rank-flexibility, too. In spite of
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causing an additional computational effort for the implemen-
tation, the PBCG outperforms the BCG algorithm concern-
ing the performance-complexity ratio. Section 2 presents the
channel model, Section 3 contains the DFE receiver structure
together with the derivation of the Wiener DFE. Our main
contributions are the extensions of the BCG algorithm in Sec-
tion 4. In order to be able to judge the simulation results
correctly, we will provide a complexity analysis of all BCG
implementations. Throughout the paper, vectors and matri-
ces are denoted by lower and upper case bold letters. In or-
der to distinguish deterministic and random variables, we use
sans serif font for vectors and matrices containing random
entries. The matrix In is the n×n identity matrix, and 0n×m

the n × m zero matrix. Ru = E {uu
H} denotes the auto-

correlation matrix of a random vector u and Ru,v = E {uv
H}

the cross-correlation matrix between the vectors u and v . The
operation (·)ij denotes access to the (i, j)-th entry of a matrix
and [·]ij access to the (i, j)-th block of a block matrix. Hence,
the operation [·]Ri,j=1 builds up a block matrix where the in-
dices i, j run from 1 to R. When applied to a diagonal matrix,
(·)k extracts the (k, k)-th element.

2. CHANNEL MODEL

In this paper, we consider the frequency-selective MIMO
channel of length L with T transmitters and R receivers to
be described by the channel matrix impulse response H[n] =∑L−1

�=0 H�δ[n − �] ∈ C
R×T with the unit impulse function

δ[n]. The weighting matrices of the propagation paths, H�,
� ∈ {0, 1, . . . , L − 1}, are realizations of the random matrix
H having i. i. d. entries with Nc (0, 1/L). The receive vector

r [n] = H[n] ∗ s[n] + h[n] ∈ C
R (1)

(‘∗’ denotes convolution) is perturbed by additive white Gaus-
sian noise h[n] ∈ C

R with the complex normal distribu-
tion Nc

(
0R×1, σ

2IR

)
. The transmit signal vector s[n] at

time index n composes of T zero-mean i. i. d. symbols with
variance one, yielding a total transmit power of PTx =
tr {Rs} = T . In order to compute the equalizer filters of
length K (cf. Section 3), we derive an alternative matrix-
vector model of the time-dispersive MIMO channel. The

vector r̃ [n] =
[
r
T[n], rT[n − 1], . . . , rT[n − K + 1]

]T
∈
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Fig. 1. Structure of the System With MIMO DFE

C
KR is composed of K adjacent receive vectors r [n]. Us-

ing the block Toeplitz matrix H̃ =
∑L−1

�=0 S(�,K,L−1) ⊗

H� ∈ C
KR×(K+L−1)T (‘⊗’ denotes the Kronecker

product and S(�,K,L−1) =
[
0K×�, IK ,0K×(L−1−�)

]
∈

{0, 1}K×(K+L−1) the selection matrix), Eq. (1) is equivalent
to

r̃ [n] = H̃ s̃[n] + h̃[n] ∈ C
KR. (2)

Analogous to r̃ [n], the vector s̃[n] ∈ C
(K+L−1)T is com-

posed of K + L − 1 adjacent signal vectors s[n] and h̃[n] ∈
C

KR of K adjacent noise vectors h[n].

3. WIENER DFE MODEL

In this section, we present the DFE structure in more detail
(cf. Fig. 1) [3]. In contrast to linear receive filters, the DFE is
endowed with a FF filter G[n] =

∑G−1
g=0 Ggδ[n−g] ∈ C

T×R

as well as a FB filter F [n] =
∑F

f=1 Ffδ[n−f ] ∈ C
T×T . The

estimate ŝ[k] ∈ C
T at the quantizer input states

ŝ[n] = G[n] ∗ r [n] + F [n] ∗ s̄[n], (3)

where the vector s̄[n] ∈ C
T denotes the estimated signal vec-

tor ŝ[n] after quantization. As we have already seen in Sec-
tion 2, it is necessary to substitute the convolution represen-
tation of the DFE structure in Eq. (3) by adequate matrix-
vector representations. If we define G = [G0, . . . ,GG−1] ∈
C

T×RG and F = [F1, . . . ,FF ] ∈ C
T×TF , we obtain

ŝ[n] = Gr̃ [n] + FS(T (ν+1),TF,T (ν+1))s̃[n]. (4)

Note, however, that the matrix-vector representation in Eq. (4)
requires the FF and FB length to be G = K and F = L +
K − ν − 2, respectively, and exploits the key assumption
that the decisions of the DFE are correct with delay ν, i.e.,
s̄[k] = s[k−ν] ∈ C

T . Hence, the error vector e[k] ∈ C
T can

be written as

e[n] = s̄[n] − ŝ[n] = s[n − ν] − Wu[n] ∈ C
T , (5)

where we make use of the abbreviations W := [G,F ] ∈
C

T×(TF+RG), s̃ν [n] := S(T (ν+1),TF,T (ν+1))s̃[k] ∈

C
TF , and u[n] :=

[
r̃
T[n], s̃T

ν [n]
]T

∈ C
TF+RG. The

filter W is chosen to solve the optimization problem

W = argmin
W

ξ (W) := argmin
W

E
{
‖e[n]‖2

2

}
, (6)

whose solution W is determined by [5, 6]

RuW
H =

[
Rr̃ Rr̃ ,̃sν

Rs̃ν ,̃r Rs̃ν

]
W

H = Ru,s . (7)

4. REDUCED-RANK IMPLEMENTATIONS OF THE
WIENER DFE USING BCG IMPLEMENTATIONS

For sake of simplicity, we introduce the following abbrevia-
tions for the matrices Ru ∈ C

(TF+RG)×(TF+RG), Ru,s ∈
C

(TF+RG)×T , and W : Ru ↔ A,Ru,s ↔ B,W H ↔ X ,
and we define N = TF + RG,M = T .
A block Krylov subspace [7] defined as

K
(D)
block(A,B) := span{[B, . . . ,Ad−2

B,

A
d−1

b1, . . . ,A
d−1

bµ]},
(8)

where d + 1 = �D/M�, µ = D − dM , and B =
[b1, . . . , bM ] ∈ C

N×M will be chosen as the D-dimensional
subspace for determining the reduced-rank Wiener DFE. The
reduced-rank BCG implementations minimize the cost func-
tion [2, 6] f(X) = tr

{
XHAX − 2Re

{
XHB

}}
itera-

tively, i.e., they solve the optimization problem

X = argmin
X

f(X ) s.t. X ∈ K
(D)
block(A,B). (9)

Note that f(X) is the same cost function as ξ(W ) in Eq. (6)
apart from an additive constant.

4.1. Rank-Flexible Implementation of the BCG Algo-
rithm

The standard BCG algorithm [2] generates a sequence of ap-
proximations X1,X2, . . . ,Xd for the solution of the opti-
mization problem in Eq. (9). The implementation of the stan-
dard BCG algorithm in [2] required the dimension D of the
block Krylov subspace to be an integer multiple of M . If
this restriction shall be obsolete now (cf. the definition of
K

(D)
block(A,B) in Eq. (8), the BCG algorithm only needs to

be modified when performing the last update Xd → Xd+1.
The transition from Xk to the next approximation Xk+1,
k = 1, . . . , d − 1, is performed using the update rule [2]

Xk+1 = Xk + DkΦk, k = 0, 1, . . . , d − 1, (10)

where Xk+1,Xk,Dk ∈ C
N×M , and Φk ∈ C

M×M . The ma-
trices Dk represent the searching directions along which the
function f(X) in Eq. (9) is minimized. The searching direc-
tion Dk of the k-th step and the optimum following searching
direction Dk+1 are A-conjugate, i.e., DH

k+1ADk = 0M×M .
Because of the modified structure of the block Krylov sub-
space K

(D)
block(A,B), it is necessary to adjust the update rule

for the last step of the optimization as Xd+1 = Xd+Dd+1Φd

where Xd+1,Xd ∈ C
N×M ,Dd+1 ∈ C

N×µ, and Φd ∈
C

µ×M . In order to determine the optimum value for Φd, we
plug the update rule of Eq. (10) into f(X) of Eq. (9) and set
the differentiation with respect to Φk to zero yielding

Φd = (DH
d+1ADd+1)

−1
D

H
d+1Rd. (11)
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Algorithm 1 shows the rank-flexible implementation of the
BCG algorithm where the previous restriction that D is an in-
teger multiple of M is obsolete. In Line 12 of Algorithm 1, the
assignment Dd+1 ← Dd(:, 1 : µ) defines the new searching
matrix Dd+1 ∈ C

N×µ as the first µ columns of the preceding
searching matrix Dd ∈ C

N×M .

Algorithm 1 Rank-Flexible Version of the BCG Algorithm

Choose any X0 ∈ C
N×M

2: R0,D0 ← B − AX0

d ← �D/M�, µ ← D − (d − 1)M
4: for k = 0, 1, . . . , d − 1 do

Φk ← (DH
k ADk)−1DH

k Rk

6: Xk+1 ← Xk + DkΦk

Rk+1 ← Rk − ADkΦk

8: Ψk ← (RH
k Rk)−1RH

k+1Rk+1

Dk+1 ← Rk+1 + DkΨk

10: end for
Dd+1 ← Dd(:, 1 : µ)

12: Φd ← (DH
d+1ADd+1)

−1DH
d+1Rd

Xd+1 ← Xd + Dd+1Φd

4.2. Preconditioned BCG (PBCG) Algorithm

If we apply the proposed channel model in Section 2 to the
Wiener DFE computation in Section 3, we observe that the
matrix Rr̃ = H̃H̃H+σ2IKR =: ABT ∈ C

RG×RG has Block
Toeplitz (BT) structure. The preconditioning technique for BT
systems [4], however, cannot be applied straightforward to
Rr̃ = ABT because preconditioning matrices can only be de-
signed for Toeplitz matrices. Some preparatory transforma-
tions are needed.
For the derivation of the PBCG algorithm, we present the im-
plementation of the PBCG algorithm for the BT system of
equations, ABTY = B̃, [ABT]ij = Aj−i ∈ C

R×R, where
Aj−i stands for a general matrix which is repeated in Toeplitz
fashion, and Y , B̃ ∈ C

RG×T are the solution and right-hand
side of the BT system of equations, respectively. Instead of
ABTY = B̃, we consider the permuted system TTBX = B′,
where TTB = MTABTM , X = MTY , and B′ = MTB̃,
using the permutation matrix

M =

⎡
⎢⎣

IR ⊗ eT
1

...
IR ⊗ eT

G

⎤
⎥⎦ ∈ {0, 1}RG×RG (12)

(ei ∈ {0, 1}G, i = 1, . . . , G, denotes the i-th unity vector of
dimension G). Thereby, the system describes the conversion
to a Toeplitz Block (TB) system. The so-called Chan precon-
ditioner [8, 4] CF(T ) ∈ C

G×G is defined as the circulant
matrix C = CF(T ), (C)ij = cj−i+G modulo G, dependent on
the Toeplitz matrix (T )ij = ti−j , i, j = 1, . . . , G, by

cj =

{
jtj−G+(G−j)tj

G
, 0 ≤ j < G,

cG+j , 0 < −j < G,
(13)

yielding those cyclic matrix CF(T ) minimizing ‖C − T ‖F.
For a TB matrix TTB ∈ C

RG×RG, we apply the construc-
tion of Eq. (13) to every block:

[
CTB

F

]
ij

=: CF(Tij),
i, j = 1, . . . , R, and Tij = [T ]ij . Every iteration of the
PBCG algorithm requires the determination of the precon-
ditioned solution V from CTB

F V = Y , V ,Y ∈ C
RG×T .

Of course, the circulant structure of the individual blocks
of CTB

F enables a computational cheap inversion using the
Fast Fourier Transform (FFT). Since CF(Tij) ∈ C

G×G,
i, j = 1, . . . , R, is circulant, we get from the diagonaliza-
tion property CF (Tij) = F ∗ΛijF , i.e. Λij ∈ C

G×G is
a diagonal matrix containing all G eigenvalues of CF (Tij).
By means of the definition F̃ := IR ⊗ F ∈ C

RG×RG

(F ∈ C
G×G denotes the G-dimensional Fourier matrix with

(F )k� = exp(−j2π(k − 1)(� − 1)/G), k, � = 1, . . . , G), we
get

C
TB
F = [CF (Tij)]

R

i,j=1 = F̃
∗ [Λij ]

R

i,j=1 F̃ . (14)

In the following, we make use of the matrix Dk ∈ C
R×R,

k = 1, . . . , G, defined by (Dk)ij = (Λij)k
, i, j =

1, . . . , R. The successive application of the permutation ma-
trix M from the left and right hand side collapses these
diagonal matrices to a block diagonal matrix. The whole
Toeplitz block matrix can be decomposed into CTB

F =

F̃ ∗MTdiag {D1, . . . ,DG}MF̃ . Hence, the solution V to
the linear system CTB

F V = Y can be computed via

V = F̃
∗

{
M

T
[
diag

{
D

−1
1 , . . . ,D−1

G

}
MF̃Y

]}
. (15)

Eq. (15) enables an efficient calculation of Sk, k =
0, . . . , d − 1, in Lines 4 and 9 of Algorithm 2 and is there-
fore the key tool for decreasing complexity. Again, the crucial

Algorithm 2 Rank-Flexible Version of the PBCG Algorithm

Choose any X0 ∈ C
N×M

2: A ← M̃TAM , B ← M̃TB

d ← �D/M�, µ ← D − (d − 1)M

4: R0 ← B − AX0, D0,S0 ← C
TB,−1
F R0

for k = 0, . . . , d − 1 do
6: Φk ←

(
DH

k ADk

)
−1

SH
k Rk

Xk+1 ← Xk + DkΦk

8: Rk+1 ← Rk − ADkΦk

Sk+1 ← C
TB,−1
F Rk+1

10: Ψk ←
(
RH

k Sk

)
−1

RH
k+1Sk+1

Dk+1 ← Sk+1 + DkΨk

12: end for
Dd+1 ← Dd(:, 1 : µ), Sd+1 ← Sd(:, 1 : µ)

14: Φd ←
(
DH

d+1ADd+1

)
−1

SH
d+1Rd

Xd+1 ← M̃ (Xd + Dd+1Φd)

matrix Rr̃ = H̃H̃H + σ2IKR (cf. Eq. 7) has BT structure.
Thus, the necessary conversion of Rr̃ from a BT matrix to a
TB matrix has to be performed using (cf. Algorithm 2)

M̃ =

[
M 0RG×TF

0TF×RG ITF

]
∈ {0, 1}(TF+RG)×(TF+RG),
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Complexity Analysis for the BCG Algorithm in Flops
Line 5 N(2N − 1)M + 2(2N − 1)M 2 + (2 + 1

3 )M3

Line 6 NM + (2M − 1)NM
Line 7 (2N − 1)M2 + NM
Line 8 M2(2N − 1) + (2 + 1

3 )M3

Line 9 (2M − 1)NM + NM

Table 1. Computational Complexity of the BCG Algorithm

Calculation of the Preconditioner
R2 preconditioners 5GR2

G Cholesky factorizations 1
3GR3

calculation of Dk|
G
k=1

3
2R2G log2 G

Calculation in Every Iteration Step
FFT and IFFT in Eq. (15) 2

(
3
2G log2 G

)
RM

GM for-/backward substitutions 2GR2M

Table 2. Computational Complexity of the PBCG Algorithm
in Flops Needed in Addition to the Complex Flops in Tab. 1

where M ∈ {0, 1}RG×RG is defined as in Eq. (12).

5. COMPLEXITY COMPARISON

This section will give the resulting complexity analysis of the
presented reduced-rank equalization algorithms considering
only terms of main order. Every complex addition (subtrac-
tion) as well as every complex multiplication (division) is as-
sumed to have the computational complexity of one floating-
point operation (flop). Tabs. 1 and 2 sum up the complexity
of one iteration step of the BCG algorithm and the complexity
needed additionally for the extension to Algorithm 2.

6. SIMULATION RESULTS

We consider QPSK transmission over a frequency-selective
MIMO channel of length L = 3 with T = 4 transmitters and
R = 8 receivers. The latency time of the frequency-selective
channel is set to ν = L − 1 = 2. Hence, if we choose the
length of the FF filter to G = K = 4, the FB filter must
have length F = L + G − ν − 2 = G − 1 = 3. Fig. 2 de-
picts the uncoded Bit Error Rates (BERs) over Signal to Noise
Ratio (SNR) 10 log10(PTx/σ

2) of the different reduced-rank
Wiener DFEs based on the BCG and the PBCG algorithm as
well as their rank-flexible implementations. Previous imple-
mentations of the BCG algorithm [2] and those of the PBCG
algorithm [8, 4] did not offer the rank-flexibility which we can
observe in Fig. 2, i.e., in our implementations the desired rank
of the block Krylov subspace does not necessarily have to be
an integer multiple of the observation length (T = 4 in this
case). Hence, Algorithm 1 and 2 avoid zero-filling and prevent
the BCG and the PBCG algorithm from becoming computa-
tionally inefficient. The considerations of Fig. 2 yield that the
BCG Wiener DFEs of rank 8 and rank 12 are outperformed
by the PBCG Wiener DFEs of rank 4 and rank 8, respectively.
According to Tab. 1, the total computational complexities of

−10 −5 0 5 10 15 20 25 30
10
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10
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10
−3
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−1

Full-Rank Wiener DFE
BCG Wiener DFE Rank 7
BCG Wiener DFE Rank 8
BCG Wiener DFE Rank 12
PBCG Wiener DFE Rank 4
PBCG Wiener DFE Rank 5
PBCG Wiener DFE Rank 8

10 log10(PTx/σ
2)/dB

U
nc

od
ed

B
E

R
Fig. 2. Uncoded BER vs. SNR for Reduced-Rank Wiener
DFEs for T = 4, R = 8, L = 3, ν = 2, G = K = 4
and F = 3

the BCG Wiener DFEs of rank 8 and rank 12 are 0.7 ·105 and
1.05 ·105 flops, respectively, but, however, those of the PBCG
Wiener DFEs of rank 4 and 8 are 0.45 · 105 and 0.85 · 105,
respectively. We can conclude that despite of the additional
complexity of the preconditioners (cf. Tab. 2), there is still a
sufficient save of complexity when applying them and they
even yield a better performance.
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