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ABSTRACT

A method is presented for efficiently describing the capabil-
ities of the physical layer in a MIMO communication sys-
tem. Such a description is required in systems that deter-
mine the optimum operation point based on information ex-
change between layers. We characterize the physical layer
by means of efficient MSE tuples. Such efficient tuples are
found by sampling the boundary of the MSE region. A par-
ticularly simple sampling algorithm is derived. We show
how the distance between subsequent samples can be di-
rectly controlled, allowing us to provide a characterization
of the physical layer that is both compact and representative.

1. INTRODUCTION

A key challenge in the design of future wireless commu-
nication systems is the efficient provision of a multitude
of different applications such as voice, data and real-time
video. Different applications have different requirements.
Optimum performance can only be achieved if the choice
of the operation point in each layer takes into account the
properties of the different applications. This observation
leads to the concept of cross-layer optimization. One pos-
sible approach to cross-layer optimization is to use a global
decision function that jointly optimizes the parameters of all
layers for determining the overall optimum operation point.
Using a global decision function requires full transparency
between layers. In this work, we follow a different ap-
proach. We focus on signal processing at the physical layer
of a wireless multiple-input multiple-output (MIMO) com-
munication system. We investigate to what extent physical
layer processing can contribute to finding the overall opti-
mum operation point in a cross-layer optimization context.

The physical layer processes the symbol streams cre-
ated by upper layers. If knowledge about the properties of
the upper layers is not available, a common approach is to
choose a physical layer operation point based on knowledge
available at the physical layer only. An example is the joint
design of linear transmit and receive filters based on a sum

of mean squared error (SMSE) criterion [1, 2]. In [1, 2], the
sum of the MSEs of the different data streams is minimized,
which does not take into account the properties of the upper
layers. To overcome this limitation, layer interaction is nec-
essary. One possibility is to have the upper layers formulate
QoS targets, which are then incorporated into the filter de-
sign (e.g., [3]). However, this approach may not provide the
optimum solution if the upper layers offer some flexibility
with respect to the QoS targets.

Instead of a top-down interaction in terms of QoS tar-
gets, we propose a bottom-up interaction in terms of a set
of operation points that the physical layer can provide (for a
detailed treatment of bottom-up optimization based on layer
descriptions, see [4]). Using the MSEs of the data streams
as performance measure, a description of all possible fil-
ter settings is given by the achievable MSE region. How-
ever, we seek a characterization that is as compact as pos-
sible while not excluding the optimum solution. Thus, we
are only interested in those points on the boundary of the
MSE region where the MSE of one data stream can only
be decreased by increasing the MSE of at least one other
data stream. The set of these points is denoted as efficient
set; multiobjective optimization (MOO) is the mathematical
framework for finding such efficient sets. We propose to
characterize the physical layer by a finite subset of the effi-
cient set. There exist a number of methods to compute effi-
cient points (cf. [5]). We show that for a MIMO system with
jointly optimized linear precoders and decoders, the compu-
tation of efficient points is particularly simple. We exploit
this simplicity to compute a finite number of efficient points
that represents a good discretization of the efficient set.

Notation: IN is the N ×N identity matrix, ek is the kth
column of IN , 1B is a vector of B ones; E [·], ‖ · ‖F, (·)T,
and (·)H denote expectation, Frobenius norm, transposition,
and conjugate transposition, respectively.

2. SYSTEM MODEL

We consider the wireless MIMO system depicted in Fig. 1,
consisting of a linear transmit filter P ∈ CN×B , a fre-
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Fig. 1. Linear MIMO System

quency flat-fading channel H ∈ CM×N and a linear re-
ceive filter G ∈ CB×M , where B, M and N denote the
number of data streams, receive antennas and transmit an-
tennas, respectively. The number of streams is chosen such
that B ≤ rank(H).

The transmitted data symbol vectors s are assumed to
be uncorrelated and to have unit power, i.e. E

[
ssH

]
= IB .

The estimated data symbol vector ŝ is given by

ŝ = GHPs + Gη,

where η is complex AWGN with Rη = E
[
ηηH

]
. The

MSE of the k-th data stream is given by

σ2
εk

= E
[
|sk − ŝk|2

]
. (1)

3. MULTIOBJECTIVE OPTIMIZATION

In this section, we summarize the basic concepts of mul-
tiobjective optimization (e.g. [6]). The minimization of a
vector-valued cost function f : CN → RB (with B > 1) is
considered. In order to make a statement about the optimal-
ity of a point f(x), an order relation on RB is required [6].
We use the following definition of an order “�”:

y1 � y2 ⇐⇒ y1
k ≤ y2

k ∀k = 1, . . . , K.

Note that “�” is a partial order, i.e. there exist elements
y1, y2 for which neither y1 � y2 nor y2 � y1 is true.

Let G and f(G) denote the feasible set and the image
of the feasible set under f , respectively. Now assume that
there exist points y1, y2 ∈ f(G) that are smaller (with re-
spect to �) than any y ∈ f(G) they can be compared to, but
for which neither y1 � y2 nor y2 � y1 is true. There is no
reason for differentiating between y1 and y2, and thus both
are considered valid solutions of the minimization. Based
on this generalized concept of optimality, two sets are de-
fined: The efficient set

E = {y ∈ f(G) | � y′ ∈ f(G) \ y : y′ � y} ,

which contains all the points that are smaller than all points
they can be compared to, and the corresponding Pareto set

P = {x ∈ G | f(x) ∈ E} .

Points x ∈ P are called Pareto optimal. Based on these
two sets, we can define the operators min and argmin for
multiobjective optimization as follows:

min
x∈G

f(x) .= E , argmin
x∈G

f(x) .= P .

4. MSE-OPTIMUM FILTER DESIGN

We aim at characterizing the physical layer by a set M ⊂ E
of efficient MSE tuples m =

[
σ2

ε1
, . . . , σ2

εK

]T
. In order

to find this set, we first determine the set of Pareto optimal
filters P and G.

P̃I = argmin
(P ,G)

m(P , G) s.t. ‖P ‖2
F ≤ Etr. (2)

In the following, in order to emphasize our focus on the
MSE of each individual data stream, we denote problem (2)
as the individual MSE (IMSE) problem

Consider the eigenvalue decomposition of HHR−1
η H :

HHR−1
η H =

(
VB Ṽ

) (
ΛB 0
0 Λ̃

) (
VB Ṽ

)H
,

where the diagonal matrix ΛB contains the B largest eigen-
values of HHR−1

η H arranged in decreasing order.
For the SMSE criterion, it is well-known that the opti-

mum filters perform a decomposition of the channel matrix
into so-called eigenmodes, i.e. the original channel H is
converted into B parallel scalar subchannels whose gains
are given by the B largest eigenvalues. The question now
is whether eigenmode transmission is also optimum for the
IMSE problem. We first restate a result from [7]:

Theorem 1. Let (PI, GI) be a Pareto optimal point of (2).
Then there exists a vector α = [α1, . . . , αB ]T with

αk ≥ 0 and 1T
Bα = 1 (3)

such that (PI, GI) is a Karush-Kuhn-Tucker point of the
scalar optimization problem

min
(P ,G)

αTm s.t. ‖P ‖2
F ≤ Etr. (4)

The objective function in (4) is a weighted sum of MSEs
(WMSE). Joint linear filter design under the WMSE crite-
rion is investigated in [3]. Theorem 1 allows us to apply the
results derived in [3] to the IMSE problem. In particular, in
[3], it is shown that the optimum strategy under the WMSE
criterion is again eigenmode transmission.

Theorem 2. For each Pareto optimal pair (PI, GI) of (2) it
holds that PI and GI can be written as

PI = VBΠΦ and (5)

GI = ΨΠTV H
B HHR−1

η , (6)

with diagonal B × B matrices Φ and Ψ and a permutation
matrix Π .

Proof. Theorem 1, Lemmas 1 and 2 from [3].

III - 1142



Remark 1. The permutation Π determines which stream is
transmitted over which eigenmode. In contrast to the SMSE
problem, a parameter Π is required, as a fixed allocation of
eigenmodes to streams cannot be assumed.

Remark 2. A popular method for solving MOO problems is
the so-called weighting method (e.g., [6, 5]). The weight-
ing method scalarizes a MOO problem by minimizing a
weighted sum of the objectives, which, in our case, corre-
sponds to the WMSE problem. As a result, we could also
use the WMSE method to find Pareto optimal filters. How-
ever, in the following we argue that this approach is inferior.

Plugging Eqs. (5) and (6) into Eq. (1) and defining

dk = eT
k ΠTΛBΠek, (7)

the MSE of the k-th data stream is given by

σ2
εk

= 1− 2 Re {ψkdkφk}+ |ψk|2d2
k|φk|2 + |ψk|2dk, (8)

where φk and ψk denote the k-th diagonal element of Φ and
Ψ , respectively. With respect to Ψ , we can minimize each
MSE separately by choosing

Ψ =
(
ΦΠTΛBΠΦH + IB

)−1
ΦH. (9)

Plugging Eq. (9) into Eq. (8) yields

σ2
εk

= 1 − (dk|φk|2 + 1)−1dk|φk|2 = (dk|φk|2 + 1)−1.
(10)

Obviously, the MSE of the k-th user depends only on the
absolute value of φk. Let the power allocation to the eigen-
modes be denoted by p = [p1, . . . , pB]T, where pk = |φk|2.
The set of feasible power allocations is given by

Tp = {p ∈ RB
0,+ : 1T

Bp ≤ Etr}. (11)

Moreover, let TΠ denote the set of B × B permutation ma-
trices. Finally, let T denote the product set of Tp and TΠ .
Now, the IMSE problem (2) can be rewritten as

PI = argmin
(p,Π)

f(p, Π) s.t. (p, Π) ∈ T ,

with fk(p, Π) = (dk(Π)pk + 1)−1. Next, define

f̃(p, Π) = Πf(p, Π). (12)

The k-th entry of f̃ corresponds to the MSE of the data
stream that is transmitted over the k-th eigenmode. Recall
that the eigenmodes are ordered in decreasing order, thus f̃1

corresponds to the MSE of the data stream that is transmit-
ted over the strongest eigenmode.

Theorem 3. If and only if for a pair (p, Π) ∈ T

1T
Bp = Etr and (13)

f̃1(p, Π) ≤ . . . ≤ f̃B(p, Π), (14)

then (p, Π) is Pareto optimal.

Proof. If 1T
Bp < Etr, we can add ∆p > 0 to pk, this will

decrease fk without affecting fj , j �= k, thus only p that
satisfy 1T

Bp = Etr can be Pareto optimal.
It suffices to consider Π = IB and a Π ′ that only ex-

changes two rows m and n, with m ≤ n. Given a p for
which (13) and (14) hold, we show that it is not possible to
construct a p′ such that

f(p′, Π ′) � f(p, IB) ∧ ∃i : fi(p′, Π ′) < fi(p, Π).

First choose p′i = pi, ∀i �= m, n and p′m = λm

λn
pm. This

sets fi(p′, Π ′) = fi(p, Π), ∀i �= n. By (14), pm ≥ λn

λm
pn.

Moreover, p′n = pn + pm − p′m. Using these results, we
can show that fn(p, IB) ≤ fn(p′, Π ′). Thus, we cannot
construct a smaller f(p′, Π ′).

Now, let m<n and (14) does not hold for (p′, Π ′). We
get fm(p, IB) < fn(p, IB), thus fn(p, IB) < fn(p′, Π ′)
and f(p, IB) � f(p′, Π ′). Consequently, (p′, Π ′) cannot
be Pareto optimal if (14) does not hold for (p′, Π ′).

Remark 3. The result of Theorem 3 is rather intuitive: For
optimality, the strongest eigenmode is allocated to the data
stream with the smallest MSE, while the weakest eigen-
mode is allocated to the stream with the largest MSE.

Corollary 1. Consider the permutation matrix Π = IB .
Let p0 ∈ Tp be chosen such that Eqs. (13) and (14) hold.
Then all power allocations p given by p = p0 + ∆p, with

∆p1 ≥ ∆p2 . . . ≥ ∆pB, (15)

∆pk ≥ −p0,k, and (16)

1T
B∆p = 0, (17)

are Pareto optimal.

Proof. Eq. (14) holds for ∆p = 0B . Eq. (15) ensures that
Eq. (14) holds for ∆p �= 0B . Eqs. (16) and (17) ensure that
p ∈ Tp and that Eq. (13) holds.

Remark 4. If we choose p0,k = λ−1
k

(∑B
i=1 λ−1

i

)−1
Etr in

Corollary 1, equality holds in Eq. (14). Thus, with this
choice for p0, we can generate all Pareto optimal power al-
locations p corresponding to Π = IB by varying ∆p.

Corollary 2. Given a Pareto optimal power allocation p
obtained with Π = IB , a Pareto optimal power allocation
p′ corresponding to a permutation Π ′ can be obtained by
simply permuting p, i.e. p′ = Π ′p.

Remark 5. Corollaries 1 and 2 provide a very simple way
for computing elements of the Pareto set PI. In contrast,
if the WMSE method is used for generating Pareto optimal
points (cf. Remark 2), a WMSE problem has to be solved for
each generated point. In particular, for each set of weights,
the corresponding power allocation has to be computed iter-
atively [3]. Compared to Corollary 1, a much higher effort.
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Fig. 2. Sampled Efficient Set

5. PHYSICAL LAYER CHARACTERIZATION

The previous section provided us with a simple way for gen-
erating elements of the Pareto set PI. As mentioned before,
we seek a representation of the physical layer in terms of
efficient MSE tuples. Given the Pareto set PI, the efficient
set is given by EI = f(PI). Both PI and EI contain an infi-
nite number of elements. We use a finite subset M ⊂ EI to
characterize the physical layer. The characterization M is
generated by first choosing a set P ′ ⊂ PI of Pareto optimal
(p, Π) and then computing M = f(P ′). Clearly, it is de-
sirable to choose the elements in P ′ in such a way that M
well characterizes EI.

In order to get a good discretization of EI, we propose
a simple rule for ∆p that achieves a nearly constant dis-
tance between subsequent samples in the objective space.
According to Eq. (17), ∆p ∈ null(1T

B). Let Q ∈ RB×B−1

be an orthonormal basis of null(1T
B). For each of the B − 1

columns qi of Q, a candidate power increment is given by
∆pi = qiδi. If the absolute value of δi is small enough, the
distance between f(p) and f(p+∆pi) can be well approx-
imated by

|∆f | = ‖Jf (p, IB)qiδi‖2 ,

where Jf denotes the (diagonal) Jacobian matrix of f . Ac-
cordingly, a distance |∆f | between subsequent points in the
objective space can be obtained by choosing

|δi| = ‖Jf (p, IB)qi‖−1
2 |∆f |. (18)

Fig. 2 shows subsets of the efficient set EI for a sys-
tem with B = 2 data streams and a random channel real-
ization. The first subset (dots in Fig. 2) was created with
∆f = 0.005, the second subset (crosses) used a larger dis-
tance ∆f = 0.03. It can be observed that the proposed
algorithm can provide a nearly equidistant sampling of the

efficient set for the case B = 2. Notably, the MSE region is
non-convex, due to the fact that we can switch eigenmodes
between streams.

Remark 6. Eq. (18) shows the significance of Theorem 3:
Building on the theoretical results from Section 4, the prop-
erties of the generated efficient points can be directly con-
trolled. This stands in clear contrast to the WMSE method,
which does not provide direct control in the objective space.
As a result, it is in general not possible to determine a set of
weights α that leads to an equidistant distribution of sam-
ples [5]. Another drawback of the weighting method is that
it can only generate all efficient points if the efficient set
lies on the boundary of a convex set – but our example just
demonstrated that the MSE region is non-convex.

6. CONCLUSIONS

We introduced the concept of characterizing the physical
layer in a MIMO system by a set of efficient points. Based
on the theory of multiobjective optimization, an algorithm
for sampling the efficient set was developed. The algorithm
has low complexity and provides direct control in the ob-
jective space. The approach presented here represents one
building block in a system that is optimized based on layer
descriptions (cf. [4]).
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