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Abstract— A minimax solution of the transmit Wiener filter
(TxWF) allocating identical mean-square-errors (MSEs) to all
users is derived for multi-user multiple-input single-output (MU-
MISO) systems with transmit processing. The conventional TxWF
minimizes the sum MSE of all users and features the possibility
to allocate different MSEs to the individual users depending on
the given channel realization. In contrast, the modified minimax
version is characterized by an equal user treatment resulting
from a minimization of the maximum single-user MSE. Although
this fairness can also be achieved by a transmit zero-forcing filter
(TxZF), the minimax TxWF meets this equality with a reduced
sum MSE since no other constraint is active than the fairness.
Simulation results reveal, that our new approach features a de-
creased outage probability compared to the conventional TxWF
and the TxZF, i.e., bit-error-rates (BERs) exceeding a certain
threshold become less likely. Moreover, the new criterion (equal
single-user MSEs) translates itself into nearly identical BERs to
all users for every channel realization.

I. INTRODUCTION

In order to combat the negative influence of the multi-
user interference in the downlink of a multi-user system with
multiple transmit antennas, several filter strategies have been
transferred from the receiver to the transmitter. Especially
for systems with decentralized receivers, where the individual
users cannot combine their received signals, precoding can
be applied when channel state information (CSI) is available
at the transmitter side as it is in time division duplex (TDD)
systems. Filter types that have been transferred are for example
the transmit matched filter (TxMF) [1], [2] maximizing the
similarity between the desired symbols and the processed
received symbols, and the transmit zero-forcing filter (TxZF)
[3], [4] which completely eliminates the multi-user interfer-
ence and leads to an equal user treatment. The conventional
transmit Wiener filter (TxWF) [5], [6] minimizes the sum MSE
assigning different link qualities to the users.

We present a modified version of the conventional TxWF
suspending this unequal treatment of the individual users
and simultaneously assuring smaller MSE values than its
zero-forcing counterpart. This is achieved by dropping the
complete interference removal constraint and replacing it by
the identical MSEs constraint.
This paper is organized as follows: In Section II, we discuss
the system model underlying all derivations and simulations,
Section III briefly reviews the conventional TxWF and the
TxZF. The analytical derivation of the minimax mean-square-
error TxWF is dealt with in Section IV. Having presented

some simulation results in Section V, this paper concludes in
Section VI.

II. SYSTEM MODEL AND NOTATION

The downlink of the broadcast channel is illustrated in
Fig. 1. The transmitter is equipped with Na antenna elements
and serves K decentralized receivers. We assume a frequency
flat channel, hence the propagation can be described by the
complex-valued K ×Na channel matrix H = [h1, . . . ,hK ]T.
The channel coefficients hk = [hk,1, . . . , hk,Na ]

T ∈ C
Na of

user k are the realizations of independent zero-mean Gaussian
random variables hk,n, k ∈ {1, . . . , K}, and n ∈ {1, . . . , Na}
with variance

Eh[|hk,n|2] = σ2
hk

∀n,

so the channel weight from each antenna to user k is assumed
to exhibit the same average path loss. The long-term average
channel power of user k herewith reads as

Eh

[
‖hk‖2

2

]
= Naσ

2
hk

,

and different average path losses resulting from different
distances of the users to the base station manifest in dif-
ferent values σ2

hk
. We define the mean channel power ratio

MCPRk,� as the ratio of the average channel powers of users
k and �, i.e.,

MCPRk,� =
Eh

[
‖hk‖2

]
Eh

[
‖h�‖2

] . (1)

The channel coefficients in H are assumed to be perfectly
known. Otherwise, a robust paradigm has to be applied [7].
The data symbols of the K users are stacked in s =
[s1, . . . , sK ]T ∈ C

K and are precoded by the transmit filter
P ∈ C

Na×K . At the receiver side, Gaussian noise n =
[n1, . . . , nK ]T ∈ C

K is added. The scalar weighting by β−1 ∈
R+ for all users allows for an amplitude correction necessary
due to the limited transmit power at the sender.
Notation: Deterministic vectors and matrices are denoted by
lower and upper case italic bold letters, whereas the respective
random variables are written in sans serif font. The operators
E[·], tr(·), (·)H, (·)T stand for expectation with respect to
symbols and noise, trace of a matrix, Hermitian transposition,
and transposition, respectively. The scalar element in row b
and column c of the matrix A is denoted by [A]b,c. The diag-
operator stacks the diagonal elements [A]k,k (k ∈ {1, . . . , n})
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Figure 1. Downlink of multi-user multiple-input single-output (MU-MISO)
system.

of an arbitrary n×n matrix A in a n× 1 column vector, i.e.,
diag(A) = [[A]1,1, . . . , [A]n,n]T. Expectation with respect to
the channel is denoted by Eh[·], and the K×K identity matrix
is denoted by IK whose k-th column is ek.

III. REVIEW OF TWO COMMON TRANSMIT FILTERS

As depicted in Fig. 1, the estimate ŝ (at the input of the
quantizer) for the transmitted symbols s can be written as

ŝ = β−1HP s + β−1n. (2)

The sum MSE ε including all K single-user MSEs εk herewith
reads as

ε =
K∑

k=1

εk = tr
(
E
[
(s − ŝ)(s − ŝ)H

])
= tr(Rs) − β−1 tr(HPRs) − β−1 tr(RsP

HHH)

+ β−2 tr(HPRsP
HHH) + β−2 tr(Rn),

(3)

where we make use of the Hermitian noise covariance matrix
Rn = E[nnH] ∈ C

K×K and the Hermitian symbol covariance
matrix Rs = E[ssH] ∈ C

K×K . In order to be able to resolve
the single-user MSEs εk, we define the MSE vector

ε = diag
(
E
[
(s − ŝ)(s − ŝ)H

]) ∈ R
K
+ . (4)

The MSE εk of user k corresponds to the k-th entry of ε, i.e.,
εk = [ε]k,1.

A. Review of the Transmit Wiener Filter (TxWF)

The transmit Wiener filter minimizes the sum MSE ε subject
to a power constraint at the transmitter side. Its optimization
reads as [5], [6]

{P WF, βWF} = argmin
{P ,β}

K∑
k=1

εk s.t.: E
[‖P s‖2

2

] ≤ Etr. (5)

The constraint E
[‖P s‖2

2

] ≤ Etr assures that the symbol-
averaged transmit power does not exceed the maximum level
Etr. Inserting (3) into the optimization in (5) and solving for
P and β by means of Lagrangian multipliers finally yields

P WF = βWF

(
HHH +

tr(Rn)
Etr

INa

)−1

HH, (6)

and βWF is chosen such that the equality in the constraint in (5)
holds. Note that different single-user MSEs εWF,k are returned
by the solution in (6) depending on the channel realization
such that the sum MSE εWF is minimum. Moreover, (5) does
not optimize the individual MSEs.

B. Review of the Transmit Zero-Forcing Filter (TxZF)

The transmit zero-forcing filter results from the TxWF by
adding the unbiasedness and complete interference cancella-
tion constraint, i.e. β−1HP = IK . Thus, the sum MSE ε
in (3) simplifies to ε = β−2 tr(Rn). If degrees of freedom
are available (i.e., when Na > K) having satisfied the
unbiasedness constraint, this weighted trace is minimized:

{P ZF, βZF} = argmin
{P ,β}

β−2 tr(Rn)

s.t.: β−1HP = IK and E
[‖P s‖2

2

] ≤ Etr.
(7)

The solution of (7) reads as

P ZF = βZFH
H
(
HHH

)−1

,

βZF =

√
Etr

tr((HHH)−1Rs)
,

(8)

leading to single-user MSEs

εZF,k = β−2
ZF σ2

nk
, (9)

with σ2
nk

= [Rn]k,k. If all users exhibit the same noise
variance σ2

nk
= σ2

n , identical single-user MSEs are allocated
to them, i.e., εZF,k = εZF,� ∀k, �. However, the resulting sum
MSE εZF is lower bounded by that of the TxWF.

IV. DERIVATION OF THE EQUAL MEAN-SQUARE-ERROR

TRANSMIT WIENER FILTER

Motivated by the advantages of the transmit filters presented
in the previous two subsections, we are seeking for a precoding
filter which combines the merits of both worlds, i.e., identical
single-user MSEs εk and a small sum MSE ε. If all receiving
antennas were located at the same position and could coop-
eratively process the received signals, identical MSEs for all
substreams can be obtained in a joint fashion as shown in
[8]. But since the users are decentralized, the assignment of
identical MSEs has to be done by the precoder.

A. The Equal Mean-Square-Error Transmit Wiener Filter

We set up the following optimization for the equal MSE
(eMSE) transmit Wiener filter:

{P eMSE, βeMSE} = argmin
{P ,β}

K∑
k=1

εk

s.t.: ε1 = ε�, ∀� ∈ {2, . . . , K},
and E

[‖P s‖2
2

] ≤ Etr.

(10)

The first constraint in (10) ensures that all users feature the
same MSE. For the solution of above optimization, we set up
the Lagrangian function L(P , β, λ0, λ2, . . . , λK):

L(P , β, λ0, λ2, . . . , λK) =
K∑

k=1

εk +
K∑

k=2

λk(ε1 − εk)

+ λ0

(
tr(PRsP

H)−Etr

)
,

(11)



which can be transformed into

L(·)=
K∑

k=1

eT
k ε+

K∑
k=2

λk(eT
1 −eT

k )ε+λ0

(
tr(PRsP

H)−Etr

)

= eT
1 ε

(
1 +

K∑
k=2

λk

)
+

K∑
k=2

(1 − λk)eT
k ε

+ λ0

(
tr(PRsP

H)−Etr

)
.

(12)

From the derivatives of L(·) with respect to P and β, we
obtain the precoding matrix depending on the Lagrangian
factors λ2, . . . , λK :

P eMSE = βeMSE

(
HHTH +

tr(TRn)
Etr

INa

)−1

HHT , (13)

where we utilized the K ×K diagonal matrix T , whose main
diagonal elements read as

[T ]1,1 = 1 +
K∑

k=2

λk

[T ]k,k = 1 − λk, k ∈ {2, . . . , K},
(14)

and tr(T ) = K, cf. (12). The scalar weight βeMSE is chosen
such that tr(P eMSERsP

H
eMSE) = Etr holds. For k = 2 users,

a closed form solution for the Lagrangian multiplier λ2 can
be obtained by finding the real-valued roots of a fourth-order
polynomial, whose coefficients depend on channel matrix H ,
the symbol and noise covariance matrices Rs and Rn , and
the available maximum transmit power Etr. For more than two
users, numerical methods have to be applied in order to find
the K − 1 Lagrangian factors.

B. Relation to the Weighted Minimum Mean-Square-Error
Wiener Filter

The Lagrangian function for the optimization of the con-
ventional TxWF in (5) can be expressed by

L(P , β, λ0) =
K∑

k=1

eT
k ε + λ0

(
tr(PRsP

H)−Etr

)
. (15)

Taking a closer look at the Lagrangian function of the equal
MSE filter in (12), we observe that the equal MSE filter has
the same structure as the conventional TxWF, but a weighted
MSE sum

∑K
k=1[T ]k,kεk is minimized instead of the ordinary

MSE sum
∑K

k=1 εk:

ε → Tε

εk → [T ]k,kεk.
(16)

The weights [T ]k,k are chosen such that the resulting single-
user MSEs εk are identical. Due to this similarity of the
equal MSE filter to the weighted minimum MSE filter, the
Lagrangian factors λ2, . . . , λK have to be chosen from the
open set

λk ∈ (1 − K, 1) ∀k ∈ {2, . . . , K}, (17)

such that
∑K

k=2 λK > −1, since a negative weighting of
a single-user MSE does not make sense. Consequently, the

computational load of the numerical determination of the
optimum Lagrangian factors is drastically reduced since only
points in the interior of the K − 1 dimensional hyper-cube
with edge-length K have to be examined, see (17). Moreover,
when K = 2 and both users share the same noise and symbol
variances, i.e., [Rn]1,1 = [Rn]2,2 and [Rs ]1,1 = [Rs ]2,2,
the only thing which distinguishes the two users are their
instantaneous channel powers ‖h1‖2

2 and ‖h2‖2
2, respectively.

For this setup, the optimum Lagrangian factor λ2,opt follows
from the root of a second-order polynomial instead of a fourth-
order one. The instantaneous channel power ratio shall be
defined as

ICPR1,2 =
‖h1‖2

2

‖h2‖2
2

. (18)

Imagine that both users reverse roles, and let the new variables
after this reversal be denoted by a prime-superscript ′. Then,
we have

h′
1 = h2,

h′
2 = h1,

ε′1 = ε2,

ε′2 = ε1,

ICPR′
1,2 =

1
ICPR1,2

.

(19)

Of course, the optimum MSE weighting coefficients [T opt]1,1

and [T opt]2,2 are also interchanged:

[T opt]′1,1 = [T opt]2,2 ⇔ 1 + λ′
2,opt = 1 − λ2,opt

[T opt]′2,2 = [T opt]1,1 ⇔ 1 − λ′
2,opt = 1 + λ2,opt.

(20)

Summing up, inverting the instantaneous channel power ratio
brings about a factor −1 of the optimum Lagrangian factor
λ2,opt:

ICPR1,2 → 1
ICPR1,2

⇒ λ2 → −λ2. (21)

For the given case, this translates itself into the nice property
that 1

‖h1‖2 > ‖h2‖2 ⇔ λ2,opt ∈ (−1, 0)
‖h1‖2 < ‖h2‖2 ⇔ λ2,opt ∈ (0, 1),

(22)

so only half of the open interval (−1, 1) actually has to be
checked. In particular, when ICPR1,2 = 1 then λ2,opt = 0,
so the conventional TxWF assigns identical single-user MSEs,
i.e., εWF,1 = εWF,2 in this case. If the mean channel power
ratio MCPR1,2 is much larger or much smaller than one, the
instantaneous ratio ICPR1,2 is also very likely to be far away
from one, and consequently, λ2,opt will strongly differ from
zero. Thus, the difference between the conventional TxWF
and the equal MSE TxWF becomes evident.

1The second-order polynomial, whose root is λ2,opt, has the form P (λ2) =
aλ2

2 + bλ2 + c with b < 0, ac ≥ 0, and a = ‖h2‖4
2 − ‖h1‖4

2. We can
conclude that the roots of P (λ2) are positive for ‖h2‖2 ≥ ‖h1‖2, whereas
they are negative otherwise.



C. Relation to the Minimax Mean-Square-Error Solution

A possible alternative fair transmit filter approach results
from minimizing the maximum MSE among the users:

{P minmax, βminmax} = argmin
{P ,β}

‖ε‖∞

s.t.: E
[‖P s‖2

2

] ≤ Etr.
(23)

In most cases, the minimax approach leads to identical MSEs
for all users. However, this is not true for minimax optimiza-
tions in general. For example, if the MSE of one user, say
kdecoupled, could be reduced without deteriorating the MSEs of
the other users in the neighborhood of the equal MSE solution,
the possible optimizers for the minimax approach would lead
to equal MSEs for the users k �= kdecoupled, whereas the MSE
of user kdecoupled would be smaller than or equal to the MSE of
the other users. We see that the equal MSE solution is also part
of the set of possible solutions for the minimax approach in
this special case. It’s straightforward to see that this statement
also holds for the case of more than one decoupled user, i.e.,
the equal MSE transmit Wiener filter is always part of the
solution set for the minimax optimization in (23).

V. SIMULATION RESULTS

Fig. 2 shows the individual MSEs ε1 (triangle down marker)
and ε2 (triangle up marker) of the equal MSE Wiener fil-
ter depending on the Lagrangian factor λ2 for a specific
channel realization with an instantaneous channel power ratio
ICPR1,2 ≈ 1/4 (cf. Eq. 18). The noise and symbol
covariance matrices are scaled identity matrices, and the power
limitation Etr is chosen such that Etr/ tr(Rn) = 10. First of
all, we observe that for λ2 = 0, i.e., for the conventional
TxWF, different MSEs εWF,1 and εWF,2 are achieved. Since
user 2 has the stronger channel, εWF,1 > εWF,2 holds in this
case, so the MSE ratio ε1/ε2 (square marker) is larger than
one (approx. 1.7). Obviously, the sum MSE (star marker) has
its minimum for λ2 = 0. For ICPR1,2 < 1, the optimum
Lagrangian factor λ2,opt turns out to be larger than zero,
λ2,opt ≈ 0.37. Given λ2 = λ2,opt, the sum MSE εeMSE,1 +
εeMSE,2 ≈ 0.465 of the equal MSE Wiener filter is only slightly
increased compared to the sum MSE εWF,1 + εWF,2 ≈ 0.44
of the conventional TxWF, but still, it offers a much smaller
sum MSE than the zero-forcing filter TxZF (dashed line with
diamond marker) with εZF,1 + εZF,2 ≈ 0.73.

Fig. 3 shows the relative frequency of a system outage de-
pending on the transmit SNR 10 log10(Etr/ tr(Rn)), meaning
that the uncoded bit-error-rate of at least one user rises above
the outage threshold of 0.15, since a reliable communication
link cannot be established with an appropriate channel code for
example. The results are based on 72000 independent channel
realizations, where K = 2 users are served by Na = 2 antenna
elements. The mean channel power ratio is MCPR1,2 = 1
with Eh[‖h1‖2

2] + Eh[‖h2‖2
2] = 4. The modulation alphabet

is QPSK. The transmit matched filter TxMF (star marker)
[2], [1], saturates at a relative frequency of about 0.7, i.e.
in 70 percent of the cases the BER of at least one user is
above 0.15. This results from the fact that the TxMF does not
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Figure 2. MSE characteristics of the equal MSE Wiener filter for different
Lagrangian factors λ2.
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Figure 3. Relative frequency of system outage vs. transmit SNR for an
bit-error-ratio threshold of 0.15, MCPR1,2 = 1.

account for the multi-user interference. To achieve a relative
frequency of 0.1, the TxZF (diamond marker [3], [4]) requires
a transmit SNR of 10.25 dB, the TxWF [5], [6] needs 9.25 dB.
Surveying the performance of the equal MSE Wiener filter
(square marker), we observe that approx. 3 dB less transmit
SNR are sufficient to achieve the same relative frequency
of 0.1 compared to the TxZF and about 2 dB compared to
the TxWF (point marker). Note that the TxZF [3], [4] also
assigns identical MSEs for every channel realization in case
of identical noise variances of all users, whereas the TxWF
assigns MSEs according to the channel and noise conditions.

In Fig. 4, the mean channel power ratio is raised to 10, so
user 1 has on average a ten times stronger channel than user 2,
but Eh[‖h1‖2

2]+Eh[‖h2‖2
2] = 4 still holds. All other parameters

are also left unchanged. The uncoded bit-error-rate (BER) is
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Figure 4. Uncoded BER vs. transmit SNR; average channel power of user 1
is ten times that of user 2, MCPR1,2 = 10.

plotted versus the transmit SNR for different filter types. For a
BER of 0.1, the TxZF (diamond marker) needs about 10.5 dB,
the equal MSE filter (tringle down marker for user 1, triangle
up marker for user 2) needs only 8.6 dB. Although the MSEs
of the two users are the same, the mapping towards BERs
leads to slightly different BER values in this case. The unequal
treatment of the two users for the TxWF (square marker for
user 1, point marker for user 2) not only holds for the average,
but also for every individual channel realization.

VI. CONCLUSION

We presented a solution of the minimax mean-square-error
transmit filter which assigns identical MSEs to the individual
users in a multi-user scenario, so equal link qualities can
be allocated even under unfavorable channel conditions. In
contrast to the transmit zero-forcing filter, this aim can be
achieved with much smaller mean-square-errors for the links
to the users. Moreover, the minimax MSE solution and the
equal MSE solution were proven to be identical.
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