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Abstract—Besides methods based on eigensubspaces, the Reduced-rank receive processing is especially advantagous
reduced-rank Multi-Stage Wiener Filter(MSWF) is a well-known in the downlink where theMobile Station(MS) has to be
approach for the approximation of the Wiener Filter, the optimum simple for a low power consumption. The computational com-

linear receive filter in the minimum mean square errosense, in a lexity of the MS be furth d db ina the si |
lower-dimensional subspace in order to reduce computational plexity orthe can be further reduced by moving the signa

complexity and enhance performance in case of low sample Processing except for a scalar weighting from the receiver to
support. Analogous, the Transmit Wiener Filter (TXWF) is the the transmitter at th@&ase Station(BS) so that the channel

optimum linear filter at the transmitter side where the receiver gcts as an equalizer for the predistorted transmit signal. Such
is kept simple since it applies only a scalar weighting. a method requires normally fulChannel State Information

In this paper, we use the principles of the MSWF to derive . . . L
a multi-stage decomposition of the TXWF which we denote (CSI) at the transmitter which restricts the applicatioMitme

Transmit Multi-Stage Wiener Filter(TXMSWF). In addition, we ~ Division Duplex(TDD) systems where the channel is slowly
will show that the reduced-rank TXMSWF can be seen as an varying. Due to the reciprocity of the channel in TDD systems,
approximation of the TxWF in a Krylov subspace. Simula- the channel parameters estimated at the BS in the uplink can
tion results reveal that the TXMSWF achieves near optimum be used for transmit processing in the downlink.

erformance for relatively low rank. Thus, it is an interestin . . .
glternative to low complgxity approximatic;ns of the TXWF ig Qne p_opul_ar transmit strategy is tiieansmit WF(TxWF)
eigensubspaces. which minimizes theMean Square Erro(MSE) between the
data signal and the received signal after the scalar weighting
|. INTRODUCTION (see [15], [16]). The TXWF outperforms not only tieansmit
The Wiener Filter (WF) [1], [2] performs optimal linear re- Matched Filter(TxMF) [17], maximizing the cross-correlation
ceive processing in thiglinimum Mean Square ErrofMMSE)  between the desired data signal and the received signal, but
sense, based only on second order statistics, in order to esli$o the Transmit Zero-Forcing Filter(TxZF) [18]) which
mate an unknown signal from an observation vector which is optimized to completely suppress interference. Again, the
correlated to the desired data signal. Since the computatiorcafculation of the TXWF is computational intensive and may
the filter coefficients ends up in solving tiidener-Hopfequa- be an obstacle for the implementation even at the BS.
tion, the computational complexity increases with the third Motivated by the excellent properties of the reduced-rank
order of the dimension of the observation vector. Reduced-radiSWF, we propose th@ransmit MSWFTxXxMSWF) which
receive processing is a well-known approach to either redusebased on a similar decomposition as the MSWF at the
computational complexity and/or enhance performance in caseeiver. In accordance with the derivations of the MSWF,
of estimation errors due to estimated statistics based on a k& show that the reduced-rank TXMSWF lies in a Krylov
number of samples. The first reduced-rank approaches, viz. fubspace which leads to an alternative implementation based
Principal Componen{PC) analysis [3] and th€ross-Spectral on the Lanczos algorithm. Finally, we present simulation
(CS) method [4], were based on the approximation of the WEsults of the reduced-rank TXMSWF as a precoder for a
in eigensubspaces. Recently, Goldstein et al. introduced thre-dispersive communication channel and compare it to an
Multi-Stage WF(MSWF) in [5] which is an approximation eigenvector based method motivated by the PC analysis known
of the WF in theKrylov subspace [6], [7], [8] of the auto- from receive processing.
correlation matrix of the observation and the cross-correlationin the next section, we introduce the system model and
vector between the observation and the data signal. Thus, teeiew briefly the computation of the TXWF. After the deriva-
MSWEF can be implemented using algorithms based on Kryldon of the TXMSWF and its Lanczos implementation in Sec-
subspaces like theanczod9], [8] or the Conjugate Gradient tion Ill, we apply the reduced-rank approaches to a frequency-
method [10], [11], [12]. Simulation results of numerous sysselective communication system in Section IV.
tems, e.g. arEnhanced Data rates GSM EvolutiggDGE) Throughout the paper, vectors and matrices are denoted
system [8], aGlobal Positioning SystengGPS) [13], and a by lower case bold and capital bold letters, respectively. The
cdma2000system [14], have shown that the Krylov subspaamatrix 1,, is the n x n identity matrix, e, its v-th column,
based MSWF outperforms the eigensubspace based methyds,, the m x n zero matrix, and,, the n-dimensional zero
if the computational complexity of both has the same ordewector. The operation' denotes discrete convolutiony' the



Kronecker productE {-} expectation(-)* conjugate complex,
()" transpose(-)" Hermitian, i.e. conjugate transposg|,
the Euclidian norm, and () the Landau symbol. We use
span{ A} as the span of the matriA andnull{ A} to denote

The latency timex € N is chosen adequately but fixed, i.e.
not optimized for every channel realization. Without loss of
generality, the scalaf can be assumed to be positive real,
i.e. B € R4, since it is only needed to fulfill the trans-

its null-space. All random processes are assumed to be zemit power constraint. In the sequel, we assume additionally

mean and stationary. The variance of the scalar prodéss
is denoted by2 = E {|x[k]|2}.

Il. SYSTEM MODEL AND TRANSMIT WIENER FILTER

temporally uncorrelated data, i. &€.{s[k]s*[k + u]} = 0 for

u # 0, and that the data is uncorrelated to the noise, i.e.
E{s[k|n*[k + n]} = 0 for u € Z. Using the Lagrangian
function

We consider the communication system depicted in Fig-

ure 1. The vectoFinite Impulse Respong€IR) transmit filter

L(p,B,A) = 052 + 57203 - 2571052 Re {pTHeRJrl}

Ll N + 07 *p T HH"p" + A (Ev — 02p''p), A€R, (8)
plk] => pulk— (] €C (1)
=0 we get the TXWF

of lengthL is applied to the data signs{k] € M with variance
o2, to get the transmit signal for th€ antenna elements which
propagates over the channel
Q-1
hlk] = hydlk —q) € CV (2)

q=0

Pwr = Bwrpo With pg = Ry 'rg € CVE, 9

where Ry andry are defined as

2
a,
Ry=H'H" + _E: 1z, ro=H%e.y,  (10)
r

of lengthQ and is perturbed by additive white Gaussian noigg"d the optimal scalar weight

n[k] € C with varianceo?2. The setM denotes the modulation
alphabet.

s[k] —= plk] i>hT[k]Wém
N

Fig. 1. System with FIR Transmit Filter

The resulting estimate after the multiplication of the re-

ceived signal with the scalai—!, can be written as
s[k] = 5~ 'p" Hs[k] + 5~ 'n[k] € C, 3)
where
p=[p, pf, ..., pf,] eCMt 4
comprises the transmit filter coefficients,

Q-1
H - Z [OLXQ7 1L7 OLX(qufl):I ®hq (5)
q=0

isaNLx (L+@Q—1) block Toeplitz matrix representing the
channelh[k], and the data symbols effectidg] are collected
in the data vectos[k] € MI+@-1 j e.

slk] = [slk], sk—1], ..., sk—L-Q+2]" . (6)

The Transmit Wiener Filter(TXWF) pwe and the optimal
scalar fwr at the receiver minimize thean Square Error
(MSE) between the data signgk — x| and its estimaté[n]
together with a transmit power constraint [15]:

{PwF, Bwr} = argminE{|s[k — K] — §[k]|2}
{p.B}

st E{Iplk] slk]l3 } = B (@)

Ey

Pwr = TR 71y (11)

Note that additionally to the full CSl, the transmitter needs
information about the noise variance at the receiver which
requires a feedback loop. Nevertheless, it was shown in [15]
that the performance of the TXWF is quite robust against a
wrongly choice of the noise variance if the system does not

provide a possibility for feedback.
IIl. TRANSMIT MULTI-STAGE WIENER FILTER

A. TXWF with Postfiltering

In this section, we combine the transmit filtpre CNE
with the matrix FIR postfilter

L—1
Ti[k] = Tk — €] € CVNE (12)
(=0

of length L. as shown in Figure 2.

s|k T
e T PR K] e

NL N

Fig. 2. Transmit Filter with FIR Postfilter

With the quadratic postfilter matrix
T
T, = [T8, T, ..., T, _ ] eCVE*NL (13
the estimate reads as

splk] = B pTTT Hs[k] + B~ n[k]. (14)



With the optimization (cf. Equation 7) where

inE < |s[k solk]1? Ry = BI'RyB; € CN-1x(VE=D), (25)
{Ppwr, Bpwr} = aﬁg%{n {|s[ — K] — Sp[k]| } r1 = B"Rymy € C¥1, and (26)
s.t.o? |Tip|> = Ex, (15) o =miRym; € R,. (27)

Therefore, the filterp, (cf. Equation 9) can be substituted
by a; (m1 — Byp:) leading to the first step of the multi-
— with oo = (TER-T:) " THy- , 16) Stage decomposition of the TXWF depicted in Figure 3 where
pewe = Jowrpe pe = (T RoT3) L (16) the non-zero coefficients of the matrix FIR filtdB,[k] €
and the optimal scalar CNx(NL=1) and the vector FIR filtetn, [k] € CV, both of
length L, are defined implicitly by

we get the postfiltered TXWF

Bewr = = = @0 B =[Bf0, B, ... BIL-1]". (28)

2..H H I als!
o2rfl (T (TP RoT) ' TH) g my = [mT0, mI[), ..., mFL-1T. (9

Note that if T} is a full-rank matrix, the estimatg/k] of the

TXWF and the estimaté&|[k] of the postfiltered TXWF are the Pwr g N
same, i.esp[k] = §[k], because in this casgwr = Tippwr [k
and Swr = Bpwr- Consequentlypy = T pp. -

In the following, we consider the full-rank postfilter matrix
' »{ > {Bi [k
of the structure (k] 1K)

=
i

T1 = [ml, Bl} . (18)
Fig. 3. Transmit Multi-Stage Wiener Filter after First Step
The vectorm; € CNL js chosen to be a normaliz8dansmit NL_1 ) )
Matched Filter (TXMF) maximizing the cross-correlation be-_ It ¢an be shown thap, € C is a reduced-dimension
tween the received signal portig[k, m) = a;m™ Hs[k] + TXWF minimizing the MSE between the received signal

Buin[k] due tom and the desired signalk — &, i. e. portion due tom; and the signal portion due tB1, i.e.
. 2
my = argmaxE {Re {3 [k, m)s" [k]e,11} } (199 P1= arg;nmE { |m Hs[k] — p" By Hs[k]| }
= argmax (aym'r§ + afmllr)) s.tmm =1, s.t. B3eo? a1 (my — Bip)|; = By, (30)
m

) _ _ anda; € Ry is a scalar TXWF minimizing the MSE between
where the first element of the filter vectpp is denoted as §[k] and s[k — ] with the corresponding transmit power
a1. The solution computes as constraint and under the assumption of the filter structure given
in Figure 3. Remember that the derived structure produces the

o To To
! T NE (2 same estimaté[k] as the TXWF of Equations (9) to (11).

my = e = :
lai| fIrolly ol

if we assume that;; € R. This can be done without loss ofB' Multi-Stage DeC(')mposmon of the TXWF o
generality since the produat mT = |a;|rT/ ||ro||, which is The fundamenjtal !dea of the multi-stage decompgsthlon is to
finally applied to the transmit filter, is independent of the pha$gP€at ]chLeilsUbSt'tUt'O” gho = a1 (m1 — Bipy) € C7% for

of a;. Due to the normalization afa;, an additional transmit PINEC_ L and generally for théi — 1)-th TXWF p; ., €
power constraint need not be taken into account. Finally, the hie{l,2,... ,NL} ie.

columns of the matrixB, € CNL*(NL=1) gre defined to be pi_1 = o (m; — Bip;). (31)

orthogonal tom, 1. €. If we define the received signal portion (cf. Figure 4)

span (Bj) = null (m{l) & Bimy =0npy. (21) i 1
. o N . Silk,m) = (-1)"" [ [Ty | m"™ [ T] B} | Hslk]
Applying the inversion lemma for partitioned matrices [1], =1

j=i—1
we get for the filter vector !

+ Ben[k] (32)
Pp =y [ 1 ] (22) due to the filter chain with the vectan € CNVL=+! the
P vector filterm,; € CNL—t1 js chosen to maximize the cross-
with correlation betwees; [k, m) ands;_1[k, m;_1), i.e.
pi = Ri'ry € CVE, (23) i = argmaxE {Re {&[k.m)si [k, mio)})

1 -1
ar = |rolly (0 —7I'Ry'r1) € Ry, (24) s.t.mfm =1. (33)



The solution is given by the normalized TXMF Figure 5, we present a filterbank representation of the reduced-

Tiq  CNL-it1 rank TXMSWF motivated by [8]. The vector representation of

™= el : (34)  thei-th FIR filter ¢;[k] of length L, i.e.

with t; = [L[0], ¢ [1],... ,¢7[L - 1] eCNE,  (41)
r; = BlHRi_lmi e CNL=7 and (35) is simply the combination ofrz; with the succeeding blocking
R, = B,LHRIABZ- c (C(NLfi)x(NLfi)v (36) matricesB;_1, B;_», ..., and By, i.e.

if we assume that the columns of the postfilter matri€gs —

je{1,2,...,i—1}, are orthonormal, i.eB}' B; = 1x7_, b= HBj i (42)

and the scalars;; € Ry for j € {1,2,...,i}. Analogous to =t

the first step of the multi-stage decomposition, the columns

of the matrix B; € CWVE—i+1x(NL=) gpan the subspaces[k] Prswr_ o1

orthogonal tom, i.e. (¢ [k]

span (B;) = null (m?) & Blm;=0yp_ ;. (37) as B

Again, we assume in the following thd@8'B; = 15,_;. g > g I = t2k]
With the definition ofm, and B; given by Equation (34) ) T
and (37), respectively, the vector filtgr, and the scalary; . . :
compute as . .ap
L»V»tD [k] ﬁ
N

pi = R 'r, e CNL~7 and (38)
o = ricilly (0 —rPRT) T e Ry, (39)

=

) - . Fig. 5. RankD TxMSWF as Filterbank
where o7 = m R;,_1m,;. After some computation steps

which are not shown in this paper due to space limitations, With the definition of the received signal portion
the vector filterp; is also the solution of the optimization

roblem R i : _
P §7k,t) = (~1)"*" | [T ay | €7 Hs[k] + Bdwenlk] (43)
pi = argminE {|§i[1€, m;) — ik, Bip)|2} i=1
P and the assumption that the postfilter vectrare mutually

7 J—1 j . L
P orthonormal, they may be computed by solving the optimiza-
2 2 +1
S. 1. Biweos Z(_l)J (H Bu) m; <H au) tion problem (cf. Equation 33)
j=1 u=1 u=1
2 t; = argmaxE {Re {§§D> [k, £)82)* [k, ti,l)}}
t

+(*1)Z H B] p H Oéj = Eth (40) = argmax (tTHHHt;k71 + tHH*HTtifl)
J=1 j=1 5 t
Hy _
i. e. a TXWF minimizing the MSE between the received signal s.tt’t=1and
portions; [k, m;) due to the filter chain withn; ands; [k, B;p) thj =0forje{1,2,...,i—1}. (44)
due to the filter chain witlp € CVX—%, Analogous,; is a
scalar TXWF minimizing the MSE of two adjacent receive

ising the method of Lagrangian multipliers and the fact that
signal portions.

_1ti_1 = Oy, the solution leads to the recursive filter

After the last substitution ofpyr_1 by axyrmyz, the formula
multi-stage decomposition of the TXWF is complete. The . P;_>P;_1Rot; 1 (45)
resulting Transmit Multi-Stage Wiener Filte(TXMSWF) is " ||[P—2Pmi Rty

depicted in Figure 4. Note that onby:; and B; comprise W
coefficients of FIR filters, whereas the following stages onl%
determine how the columns d@8; have to be combined.

hereP; = 1, —t;t!! are projector matrices projecting onto
e subspace orthogonal to the one spanned by the vegtors
The above recursive algorithm is the modified Gram-Schmidt
C. Reduced-Rank TXMSWF and its Relationship to Kryl&anczos algorithm [9], [6]. Thus, we see that the set of filters

Subspace Methods {t1,ta,...,tp} is an orthonormal basis of the-dimensional
Again, the transmit filter structure of Figure 4 produce§"Ylov subspace [6]
the same output as the full-rank TXWF. The reduced-rank ,C(D)(RO’TO) — span {ro,R{)ro, N ’R(()D—l)ro}' (46)

TXMSWF with rank D can be found by stopping the multi-
stage decomposition afteb steps and replacingp,_1 by Note that each Lanczos step performs a matrix-vector multi-
apmp Similar to the MSWF at the receiver (e.g. [5]). Inplication of theN L x N L-matrix Ry with a N L-dimensional



Fig. 4. Transmit Multi-Stage Wiener Filter

vector, which determines the order of the computational com-In Figure 6, the uncodedit Error Rates(BERS) of the
plexity to beO (N2L2). Since the rankD TXMSWF performs different methods are plotted over tisgnal to Noise Ratio
the Lanczos step times, its order i© (DN2L2) whereas the (SNR), i.e. the ratio of the signal power at the transmit-
full-rank TXWF hasO (N3L3). If D < NL, the TXMSWF ter output to the noise power at the receiver input. In the
leads to an enormous reduction in computational complexitllowing, the reduced-rankransmit Eigensubspace based

compared to the TXWF. WF (TXEWF) denotes the approximation of the TXWF in
the subspace spanned by the principal eigenvectors of the
IV. SIMULATION RESULTS matrix Ry, i.e. the prefilter vectorg; are no longer base

We simulate the signal transmission over a single usegctors of the Krylov subspace but eigenvectors corresponding
communication system with QPSK symbol modulation. TH@ the largest eigenvalues dR,. It can be seen that the
BS comprises two transmit antenna elements and the NEKD = 6 TXEWF is clearly outperformed by the reduced-
one receive antenna element. The channel is assumed td@ik TXMSWEF, even if its rank is reduced f0 = 1 where
frequency-selective with three dominant propagation pattife TXMSWF is equal to the TXMF. Unlike the TXEWF, the
the first one without delay, i.e. the path with line of sightf XMSWF exhibits already for a rank equal 0 = 3 a far
the second one with delag) = 7 which is equal to the better BER than the TxMF and for a rank & = 6, its
maximum delay spread of the channel, and the third one wiggrformance comes even very close to the one of the full-
an integer delay chosen arbitrarily for every channel realizati6ank solution of the TXMSWF wittDmax = N L = 18 which
between the delays of the first two paths. All path weights ag@rresponds to the TXWF. Only for SNR values greater than
independent and identically normal distributed and the sum b#dB, we obtain marginally better results with the TxXWF.
their variances per transmit antenna is normalized. The channdfigure 7 depicts the simulation results for the BER depend-
impulse response is assumed to be instananously known atitige on the rankD of the proposed filter solutions at a SNR
transmitter. This assumption holds inTane Division Duplex value of 10 dB. Note that the TXWF (full-rank TXMSWF) is
(TDD) system with a slow varying channel because of itslotted overD as an asymptote for the compared methods
reciprocity. The perfectly estimated channel of the uplink rend again, the TxMF corresponds to the TXMSWF at rank
ception, is used for the calculation of the transmit filter applie® = 1. The TXEWF solution of rankD = 1 yields a BER of
to the downlink transmission. The impulse response length fproximately0.4 whereas the TXMSWF with the same rank
the FIR precoding filtep[k] is set toL = 9. Thus, the received leads to a BER which is by a factor o6 lower. The TXEWF
signal is obtained by linear combination 6f+ Q — 1 = 15 outbalances the TxMF only for ranks greater or equal than
adjacent input signals[k]. The latency time of the transmit D = 8 and converges to the BER of the TXWF for a rank of
filter is fixed tox = 7. Note that in order to further improve D = 15 which is a rather high value compared to the full rank
the behavior of the presented algorithms, the latency time aainDax = 18. Moreover, for every desired BER, the TXEWF
be optimized for every channel realization. Nevertheless, thiseds a greater rank than the TXMSWF, resulting in a higher
leads to an increase in computational complexity especiattpmputational complexity since the TXMSWF and the TXEWF
for the Krylov subspace based algorithms and is therefore radtrank D have the same order of computational complexity,
shown in this paper since we are interested in computatiomna. O (DNQLQ). Contrary to the behavior of the TXEWF,
cheap implementations. The following simulation results atke TXMSWF reaches already BER values comparable to the
averaged over several thousand channel realizations. TXWF for a rank of D = 5. Hence, the TXMSWF enables
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Fig. 6. BER comparison between the reduced-rank TXMSWF, the reduced-
rank TXEWF, the TxMF, and the optimal TXWF over SNR
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a tremendous reduction in computational complexity without

significant performance degradation. [10]
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Fig. 7. BER comparison between the TXMSWF and the TXEWF methqd7]
over the rankD (SNR= 10dB)

(18]
V. CONCLUSIONS
In this paper, we derived the TXMSWF, a multi-stage
decomposition of the TxWF. Furthermore, we presented a
Lanczos based implementation of the TXMSWF exploiting
its relationship to Krylov subspace methods. Simulation re-
sults of the application to a time-dispersive communication
system showed that the TXMSWF achieves near optimum
performance for relatively low rank, thus, tremendously out-
performing the eigensubspace based method.
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