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Abstract— Besides methods based on eigensubspaces, the
reduced-rank Multi-Stage Wiener Filter(MSWF) is a well-known
approach for the approximation of the Wiener Filter, the optimum
linear receive filter in the minimum mean square errorsense, in a
lower-dimensional subspace in order to reduce computational
complexity and enhance performance in case of low sample
support. Analogous, theTransmit Wiener Filter (TxWF) is the
optimum linear filter at the transmitter side where the receiver
is kept simple since it applies only a scalar weighting.

In this paper, we use the principles of the MSWF to derive
a multi-stage decomposition of the TxWF which we denote
Transmit Multi-Stage Wiener Filter(TxMSWF). In addition, we
will show that the reduced-rank TxMSWF can be seen as an
approximation of the TxWF in a Krylov subspace. Simula-
tion results reveal that the TxMSWF achieves near optimum
performance for relatively low rank. Thus, it is an interesting
alternative to low complexity approximations of the TxWF in
eigensubspaces.

I. I NTRODUCTION

TheWiener Filter (WF) [1], [2] performs optimal linear re-
ceive processing in theMinimum Mean Square Error(MMSE)
sense, based only on second order statistics, in order to esti-
mate an unknown signal from an observation vector which is
correlated to the desired data signal. Since the computation of
the filter coefficients ends up in solving theWiener-Hopfequa-
tion, the computational complexity increases with the third
order of the dimension of the observation vector. Reduced-rank
receive processing is a well-known approach to either reduce
computational complexity and/or enhance performance in case
of estimation errors due to estimated statistics based on a low
number of samples. The first reduced-rank approaches, viz. the
Principal Component(PC) analysis [3] and theCross-Spectral
(CS) method [4], were based on the approximation of the WF
in eigensubspaces. Recently, Goldstein et al. introduced the
Multi-Stage WF(MSWF) in [5] which is an approximation
of the WF in theKrylov subspace [6], [7], [8] of the auto-
correlation matrix of the observation and the cross-correlation
vector between the observation and the data signal. Thus, the
MSWF can be implemented using algorithms based on Krylov
subspaces like theLanczos[9], [8] or the Conjugate Gradient
method [10], [11], [12]. Simulation results of numerous sys-
tems, e. g. anEnhanced Data rates GSM Evolution(EDGE)
system [8], aGlobal Positioning System(GPS) [13], and a
cdma2000system [14], have shown that the Krylov subspace
based MSWF outperforms the eigensubspace based methods
if the computational complexity of both has the same order.

Reduced-rank receive processing is especially advantagous
in the downlink where theMobile Station(MS) has to be
simple for a low power consumption. The computational com-
plexity of the MS can be further reduced by moving the signal
processing except for a scalar weighting from the receiver to
the transmitter at theBase Station(BS) so that the channel
acts as an equalizer for the predistorted transmit signal. Such
a method requires normally fullChannel State Information
(CSI) at the transmitter which restricts the application toTime
Division Duplex(TDD) systems where the channel is slowly
varying. Due to the reciprocity of the channel in TDD systems,
the channel parameters estimated at the BS in the uplink can
be used for transmit processing in the downlink.

One popular transmit strategy is theTransmit WF(TxWF)
which minimizes theMean Square Error(MSE) between the
data signal and the received signal after the scalar weighting
(see [15], [16]). The TxWF outperforms not only theTransmit
Matched Filter(TxMF) [17], maximizing the cross-correlation
between the desired data signal and the received signal, but
also the Transmit Zero-Forcing Filter(TxZF) [18]) which
is optimized to completely suppress interference. Again, the
calculation of the TxWF is computational intensive and may
be an obstacle for the implementation even at the BS.

Motivated by the excellent properties of the reduced-rank
MSWF, we propose theTransmit MSWF(TxMSWF) which
is based on a similar decomposition as the MSWF at the
receiver. In accordance with the derivations of the MSWF,
we show that the reduced-rank TxMSWF lies in a Krylov
subspace which leads to an alternative implementation based
on the Lanczos algorithm. Finally, we present simulation
results of the reduced-rank TxMSWF as a precoder for a
time-dispersive communication channel and compare it to an
eigenvector based method motivated by the PC analysis known
from receive processing.

In the next section, we introduce the system model and
review briefly the computation of the TxWF. After the deriva-
tion of the TxMSWF and its Lanczos implementation in Sec-
tion III, we apply the reduced-rank approaches to a frequency-
selective communication system in Section IV.

Throughout the paper, vectors and matrices are denoted
by lower case bold and capital bold letters, respectively. The
matrix 1n is the n × n identity matrix,eν its ν-th column,
0m×n them× n zero matrix, and0n then-dimensional zero
vector. The operation ‘∗’ denotes discrete convolution, ‘⊗’ the



Kronecker product,E {·} expectation,(·)∗ conjugate complex,
(·)T transpose,(·)H Hermitian, i. e. conjugate transpose,‖·‖2
the Euclidian norm, andO (·) the Landau symbol. We use
span{A} as the span of the matrixA andnull{A} to denote
its null-space. All random processes are assumed to be zero-
mean and stationary. The variance of the scalar processx[k]
is denoted byσ2

x = E
{
|x[k]|2

}
.

II. SYSTEM MODEL AND TRANSMIT WIENER FILTER

We consider the communication system depicted in Fig-
ure 1. The vectorFinite Impulse Response(FIR) transmit filter

p[k] =
L−1∑
`=0

p`δ[k − `] ∈ CN (1)

of lengthL is applied to the data signals[k] ∈M with variance
σ2

s , to get the transmit signal for theN antenna elements which
propagates over the channel

h[k] =
Q−1∑
q=0

hqδ[k − q] ∈ CN (2)

of lengthQ and is perturbed by additive white Gaussian noise
n[k] ∈ C with varianceσ2

n . The setM denotes the modulation
alphabet.

s[k] ŝ[k]
β−1

p[k] hT[k]

n[k]

N

Fig. 1. System with FIR Transmit Filter

The resulting estimate after the multiplication of the re-
ceived signal with the scalarβ−1, can be written as

ŝ[k] = β−1pTHs[k] + β−1n[k] ∈ C, (3)

where

p =
[
pT

0 , pT
1 , . . . , pT

L−1

]T ∈ CNL (4)

comprises the transmit filter coefficients,

H =
Q−1∑
q=0

[
0L×q, 1L, 0L×(Q−q−1)

]
⊗ hq (5)

is aNL× (L+Q− 1) block Toeplitz matrix representing the
channelh[k], and the data symbols effectingŝ[k] are collected
in the data vectors[k] ∈ML+Q−1, i. e.

s[k] =
[
s[k], s[k − 1], . . . , s[k − L−Q+ 2]

]T
. (6)

The Transmit Wiener Filter(TxWF) pWF and the optimal
scalarβWF at the receiver minimize theMean Square Error
(MSE) between the data signals[k − κ] and its estimatês[n]
together with a transmit power constraint [15]:

{pWF, βWF} = argmin
{p,β}

E
{
|s[k − κ]− ŝ[k]|2

}
s. t. E

{
‖p[k] ∗ s[k]‖22

}
= Etr. (7)

The latency timeκ ∈ N is chosen adequately but fixed, i. e.
not optimized for every channel realization. Without loss of
generality, the scalarβ can be assumed to be positive real,
i. e. β ∈ R+, since it is only needed to fulfill the trans-
mit power constraint. In the sequel, we assume additionally
temporally uncorrelated data, i. e.E {s[k]s∗[k + µ]} = 0 for
µ 6= 0, and that the data is uncorrelated to the noise, i. e.
E {s[k]n∗[k + µ]} = 0 for µ ∈ Z. Using the Lagrangian
function

L (p, β, λ) = σ2
s + β−2σ2

n − 2β−1σ2
s Re

{
pTHeκ+1

}
+ β−2pTHHHp∗ + λ

(
Etr − σ2

s p
Hp
)
, λ ∈ R, (8)

we get the TxWF

pWF = βWFp0 with p0 = R−1
0 r0 ∈ CNL, (9)

whereR0 andr0 are defined as

R0 = H∗HT +
σ2

n

Etr
1NL, r0 = H∗eκ+1, (10)

and the optimal scalar weight

βWF =

√
Etr

σ2
s r

H
0 R
−2
0 r0

. (11)

Note that additionally to the full CSI, the transmitter needs
information about the noise variance at the receiver which
requires a feedback loop. Nevertheless, it was shown in [15]
that the performance of the TxWF is quite robust against a
wrongly choice of the noise variance if the system does not
provide a possibility for feedback.

III. T RANSMIT MULTI -STAGE WIENER FILTER

A. TxWF with Postfiltering

In this section, we combine the transmit filterp ∈ CNL
with the matrix FIR postfilter

T1[k] =
L−1∑
`=0

T1,`δ[k − `] ∈ CN×NL (12)

of lengthL as shown in Figure 2.

s[k]

ŝP[k]

β−1p

T1[k] hT[k]

n[k]

NNL

Fig. 2. Transmit Filter with FIR Postfilter

With the quadratic postfilter matrix

T1 =
[
TT

1,0, TT
1,1, . . . , TT

1,L−1

]T ∈ CNL×NL, (13)

the estimate reads as

ŝP[k] = β−1pTTT
1 Hs[k] + β−1n[k]. (14)



With the optimization (cf. Equation 7)

{pPWF, βPWF} = argmin
{p,β}

E
{
|s[k − κ]− ŝP[k]|2

}
s. t. σ2

s ‖T1p‖22 = Etr, (15)

we get the postfiltered TxWF

pPWF = βPWFpP with pP =
(
TH

1 R0T1

)−1
TH

1 r0, (16)

and the optimal scalar

βPWF =

√√√√ Etr

σ2
s r

H
0

(
T1

(
TH

1 R0T1

)−1
TH

1

)2

r0

. (17)

Note that ifT1 is a full-rank matrix, the estimatês[k] of the
TxWF and the estimatêsP[k] of the postfiltered TxWF are the
same, i. e.̂sP[k] = ŝ[k], because in this case,pWF = T1pPWF

andβWF = βPWF. Consequently,p0 = T1pP.
In the following, we consider the full-rank postfilter matrix

of the structure

T1 =
[
m1, B1

]
. (18)

The vectorm1 ∈ CNL is chosen to be a normalizedTransmit
Matched Filter (TxMF) maximizing the cross-correlation be-
tween the received signal portion̂s1[k,m) = α1m

THs[k] +
β−1

WFn[k] due tom and the desired signals[k − κ], i. e.

m1 = argmax
m

E
{

Re
{

ŝ1[k,m)sH[k]eκ+1

}}
(19)

= argmax
m

(
α1m

Tr∗0 + α∗1m
Hr0

)
s. t.mHm = 1,

where the first element of the filter vectorpP is denoted as
α1. The solution computes as

m1 =
α∗1
|α1|

r0

‖r0‖2
=

r0

‖r0‖2
∈ CNL, (20)

if we assume thatα1 ∈ R+. This can be done without loss of
generality since the productα1m

T
1 = |α1| rT

0 / ‖r0‖2 which is
finally applied to the transmit filter, is independent of the phase
of α1. Due to the normalization ofm1, an additional transmit
power constraint need not be taken into account. Finally, the
columns of the matrixB1 ∈ CNL×(NL−1) are defined to be
orthogonal tom1, i. e.

span (B1) = null
(
mH

1

)
⇔ BH

1 m1 = 0NL×1. (21)

Applying the inversion lemma for partitioned matrices [1],
we get for the filter vector

pP = α1

[
1
−p1

]
(22)

with

p1 = R−1
1 r1 ∈ CNL−1, (23)

α1 = ‖r0‖2
(
σ2

1 − rH
1 R
−1
1 r1

)−1 ∈ R+, (24)

where

R1 = BH
1 R0B1 ∈ C(NL−1)×(NL−1), (25)

r1 = BH
1 R0m1 ∈ CNL−1, and (26)

σ2
1 = mH

1R0m1 ∈ R+. (27)

Therefore, the filterp0 (cf. Equation 9) can be substituted
by α1 (m1 −B1p1) leading to the first step of the multi-
stage decomposition of the TxWF depicted in Figure 3 where
the non-zero coefficients of the matrix FIR filterB1[k] ∈
CN×(NL−1) and the vector FIR filterm1[k] ∈ CN , both of
lengthL, are defined implicitly by

B1 =
[
BT

1 [0], BT
1 [1], . . . , BT

1 [L− 1]
]T
, (28)

m1 =
[
mT

1 [0], mT
1 [1], . . . , mT

1 [L− 1]
]T
. (29)

s[k]
βWF α1

p1 N

N

NL− 1

m1[k]

B1[k]

Fig. 3. Transmit Multi-Stage Wiener Filter after First Step

It can be shown thatp1 ∈ CNL−1 is a reduced-dimension
TxWF minimizing the MSE between the received signal
portion due tom1 and the signal portion due toB1, i. e.

p1 = argmin
p

E
{∣∣mT

1Hs[k]− pTBT
1 Hs[k]

∣∣2}
s. t. β2

WFσ
2
s ‖α1 (m1 −B1p)‖22 = Etr, (30)

andα1 ∈ R+ is a scalar TxWF minimizing the MSE between
ŝ[k] and s[k − κ] with the corresponding transmit power
constraint and under the assumption of the filter structure given
in Figure 3. Remember that the derived structure produces the
same estimatês[k] as the TxWF of Equations (9) to (11).

B. Multi-Stage Decomposition of the TxWF

The fundamental idea of the multi-stage decomposition is to
repeat the substitution ofp0 = α1 (m1 −B1p1) ∈ CNL for
p1 ∈ CNL−1, and generally for the(i− 1)-th TxWF pi−1 ∈
CNL−i+1, i ∈ {1, 2, . . . , NL}, i. e.

pi−1 = αi (mi −Bipi) . (31)

If we define the received signal portion (cf. Figure 4)

ŝi[k,m) = (−1)i+1

 i∏
j=1

αj

mT

 1∏
j=i−1

BT
j

Hs[k]

+ β−1
WFn[k] (32)

due to the filter chain with the vectorm ∈ CNL−i+1, the
vector filtermi ∈ CNL−i+1 is chosen to maximize the cross-
correlation between̂si[k,m) and ŝi−1[k,mi−1), i. e.

mi = argmax
m

E
{

Re
{

ŝi[k,m)̂s∗i−1[k,mi−1)
}}

s. t.mHm = 1. (33)



The solution is given by the normalized TxMF

mi =
ri−1

‖ri−1‖2
∈ CNL−i+1, (34)

with

ri = BH
i Ri−1mi ∈ CNL−i and (35)

Ri = BH
i Ri−1Bi ∈ C(NL−i)×(NL−i), (36)

if we assume that the columns of the postfilter matricesBj ,
j ∈ {1, 2, . . . , i− 1}, are orthonormal, i. e.BH

j Bj = 1NL−j,
and the scalarsαj ∈ R+ for j ∈ {1, 2, . . . , i}. Analogous to
the first step of the multi-stage decomposition, the columns
of the matrixBi ∈ C(NL−i+1)×(NL−i) span the subspace
orthogonal tomi, i. e.

span (Bi) = null
(
mH
i

)
⇔ BH

i mi = 0NL−i. (37)

Again, we assume in the following thatBH
i Bi = 1NL−i.

With the definition ofmi andBi given by Equation (34)
and (37), respectively, the vector filterpi and the scalarαi
compute as

pi = R−1
i ri ∈ CNL−i, and (38)

αi = ‖ri−1‖2
(
σ2
i − rH

i R
−1
i ri

)−1 ∈ R+, (39)

where σ2
i = mH

i Ri−1mi. After some computation steps
which are not shown in this paper due to space limitations,
the vector filterpi is also the solution of the optimization
problem

pi = argmin
p

E
{
|̂si[k,mi)− ŝi[k,Bip)|2

}
s. t. β2

WFσ
2
s

∥∥∥∥∥∥
i∑

j=1

(−1)j+1

(
j−1∏
u=1

Bu

)
mj

(
j∏

u=1

αu

)

+(−1)i

 i∏
j=1

Bj

p
 i∏
j=1

αj

∥∥∥∥∥∥
2

2

= Etr, (40)

i. e. a TxWF minimizing the MSE between the received signal
portionŝi[k,mi) due to the filter chain withmi andŝi[k,Bip)
due to the filter chain withp ∈ CNL−i. Analogous,αi is a
scalar TxWF minimizing the MSE of two adjacent received
signal portions.

After the last substitution ofpNL−1 by αNLmNL, the
multi-stage decomposition of the TxWF is complete. The
resulting Transmit Multi-Stage Wiener Filter(TxMSWF) is
depicted in Figure 4. Note that onlym1 andB1 comprise
coefficients of FIR filters, whereas the following stages only
determine how the columns ofB1 have to be combined.

C. Reduced-Rank TxMSWF and its Relationship to Krylov
Subspace Methods

Again, the transmit filter structure of Figure 4 produces
the same output as the full-rank TxWF. The reduced-rank
TxMSWF with rankD can be found by stopping the multi-
stage decomposition afterD steps and replacingpD−1 by
αDmD similar to the MSWF at the receiver (e. g. [5]). In

Figure 5, we present a filterbank representation of the reduced-
rank TxMSWF motivated by [8]. The vector representation of
the i-th FIR filter ti[k] of lengthL, i. e.

ti =
[
tTi [0], tTi [1], . . . , tTi [L− 1]

]T ∈ CNL, (41)

is simply the combination ofmi with the succeeding blocking
matricesBi−1, Bi−2, . . . , andB1, i. e.

ti =

i−1∏
j=1

Bj

mi. (42)

s[k] βMSWF α1

α2

αD

t1[k]

t2[k]

tD[k]
N

Fig. 5. RankD TxMSWF as Filterbank

With the definition of the received signal portion

ŝ
(D)
i [k, t) = (−1)i+1

 i∏
j=1

αj

 tTHs[k] + β−1
MSWFn[k] (43)

and the assumption that the postfilter vectorsti are mutually
orthonormal, they may be computed by solving the optimiza-
tion problem (cf. Equation 33)

ti = argmax
t

E
{

Re
{

ŝ
(D)
i [k, t)̂s

(D),∗
i−1 [k, ti−1)

}}
= argmax

t

(
tTHHHt∗i−1 + tHH∗HTti−1

)
s. t. tHt = 1 and

tHtj = 0 for j ∈ {1, 2, . . . , i− 1}. (44)

Using the method of Lagrangian multipliers and the fact that
Pi−1ti−1 = 0NL, the solution leads to the recursive filter
formula

ti =
Pi−2Pi−1R0ti−1

‖Pi−2Pi−1R0ti−1‖2
, (45)

wherePi = 1NL−titHi are projector matrices projecting onto
the subspace orthogonal to the one spanned by the vectorsti.
The above recursive algorithm is the modified Gram-Schmidt
Lanczos algorithm [9], [6]. Thus, we see that the set of filters
{t1, t2, . . . , tD} is an orthonormal basis of theD-dimensional
Krylov subspace [6]

K(D)(R0, r0) = span
{
r0,R0r0, . . . ,R

(D−1)
0 r0

}
. (46)

Note that each Lanczos step performs a matrix-vector multi-
plication of theNL×NL-matrixR0 with aNL-dimensional



s[k]
βWF α1

α2

αi

αNL

m2

mi

mNL

B2

Bi

N

NL− 1NL− 2

NL− i NL− i+ 1

m1[k]

B1[k]

Fig. 4. Transmit Multi-Stage Wiener Filter

vector, which determines the order of the computational com-
plexity to beO

(
N2L2

)
. Since the rankD TxMSWF performs

the Lanczos stepD times, its order isO
(
DN2L2

)
whereas the

full-rank TxWF hasO
(
N3L3

)
. If D � NL, the TxMSWF

leads to an enormous reduction in computational complexity
compared to the TxWF.

IV. SIMULATION RESULTS

We simulate the signal transmission over a single user
communication system with QPSK symbol modulation. The
BS comprises two transmit antenna elements and the MS
one receive antenna element. The channel is assumed to be
frequency-selective with three dominant propagation paths,
the first one without delay, i. e. the path with line of sight,
the second one with delayQ = 7 which is equal to the
maximum delay spread of the channel, and the third one with
an integer delay chosen arbitrarily for every channel realization
between the delays of the first two paths. All path weights are
independent and identically normal distributed and the sum of
their variances per transmit antenna is normalized. The channel
impulse response is assumed to be instananously known at the
transmitter. This assumption holds in aTime Division Duplex
(TDD) system with a slow varying channel because of its
reciprocity. The perfectly estimated channel of the uplink re-
ception, is used for the calculation of the transmit filter applied
to the downlink transmission. The impulse response length of
the FIR precoding filterp[k] is set toL = 9. Thus, the received
signal is obtained by linear combination ofL + Q − 1 = 15
adjacent input signalss[k]. The latency time of the transmit
filter is fixed toκ = 7. Note that in order to further improve
the behavior of the presented algorithms, the latency time can
be optimized for every channel realization. Nevertheless, this
leads to an increase in computational complexity especially
for the Krylov subspace based algorithms and is therefore not
shown in this paper since we are interested in computational
cheap implementations. The following simulation results are
averaged over several thousand channel realizations.

In Figure 6, the uncodedBit Error Rates (BERs) of the
different methods are plotted over theSignal to Noise Ratio
(SNR), i. e. the ratio of the signal power at the transmit-
ter output to the noise power at the receiver input. In the
following, the reduced-rankTransmit Eigensubspace based
WF (TxEWF) denotes the approximation of the TxWF in
the subspace spanned by the principal eigenvectors of the
matrix R0, i. e. the prefilter vectorsti are no longer base
vectors of the Krylov subspace but eigenvectors corresponding
to the largest eigenvalues ofR0. It can be seen that the
rankD = 6 TxEWF is clearly outperformed by the reduced-
rank TxMSWF, even if its rank is reduced toD = 1 where
the TxMSWF is equal to the TxMF. Unlike the TxEWF, the
TxMSWF exhibits already for a rank equal toD = 3 a far
better BER than the TxMF and for a rank ofD = 6, its
performance comes even very close to the one of the full-
rank solution of the TxMSWF withDmax = NL = 18 which
corresponds to the TxWF. Only for SNR values greater than
14 dB, we obtain marginally better results with the TxWF.

Figure 7 depicts the simulation results for the BER depend-
ing on the rankD of the proposed filter solutions at a SNR
value of 10 dB. Note that the TxWF (full-rank TxMSWF) is
plotted overD as an asymptote for the compared methods
and again, the TxMF corresponds to the TxMSWF at rank
D = 1. The TxEWF solution of rankD = 1 yields a BER of
approximately0.4 whereas the TxMSWF with the same rank
leads to a BER which is by a factor of10 lower. The TxEWF
outbalances the TxMF only for ranks greater or equal than
D = 8 and converges to the BER of the TxWF for a rank of
D = 15 which is a rather high value compared to the full rank
of Dmax = 18. Moreover, for every desired BER, the TxEWF
needs a greater rank than the TxMSWF, resulting in a higher
computational complexity since the TxMSWF and the TxEWF
of rankD have the same order of computational complexity,
i. e. O

(
DN2L2

)
. Contrary to the behavior of the TxEWF,

the TxMSWF reaches already BER values comparable to the
TxWF for a rank ofD = 5. Hence, the TxMSWF enables



B
E

R
B

E
R

SNR/dBSNR/dB

TxWF (Rank18)TxWF (Rank18)
TxMSWF Rank6TxMSWF Rank6
TxMSWF Rank3TxMSWF Rank3
TxMF (Rank1)TxMF (Rank1)
TxEWF Rank6TxEWF Rank6

00 22 44 66 88 1010 1212 1414 1616 1818 2020
10−410−4

10−310−3

10−210−2

10−110−1

Fig. 6. BER comparison between the reduced-rank TxMSWF, the reduced-
rank TxEWF, the TxMF, and the optimal TxWF over SNR

a tremendous reduction in computational complexity without
significant performance degradation.
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RankDRankD

TxWF (Rank18)TxWF (Rank18)

TxEWFTxEWF
TxMSWFTxMSWF
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10−210−2

10−110−1

Fig. 7. BER comparison between the TxMSWF and the TxEWF method
over the rankD (SNR= 10 dB)

V. CONCLUSIONS

In this paper, we derived the TxMSWF, a multi-stage
decomposition of the TxWF. Furthermore, we presented a
Lanczos based implementation of the TxMSWF exploiting
its relationship to Krylov subspace methods. Simulation re-
sults of the application to a time-dispersive communication
system showed that the TxMSWF achieves near optimum
performance for relatively low rank, thus, tremendously out-
performing the eigensubspace based method.
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